WO2011125556A1 - 銀メッキ銅微粉及びその製造方法 - Google Patents

銀メッキ銅微粉及びその製造方法 Download PDF

Info

Publication number
WO2011125556A1
WO2011125556A1 PCT/JP2011/057439 JP2011057439W WO2011125556A1 WO 2011125556 A1 WO2011125556 A1 WO 2011125556A1 JP 2011057439 W JP2011057439 W JP 2011057439W WO 2011125556 A1 WO2011125556 A1 WO 2011125556A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
silver
copper fine
slurry
plated
Prior art date
Application number
PCT/JP2011/057439
Other languages
English (en)
French (fr)
Inventor
隆宏 芳賀
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to CN201180016826.1A priority Critical patent/CN102811830B/zh
Priority to KR1020127021829A priority patent/KR101424369B1/ko
Publication of WO2011125556A1 publication Critical patent/WO2011125556A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a silver-plated copper fine powder and a method for producing the same, and more particularly to a silver-plated copper fine powder useful for conductive pastes for through holes, via holes, MLCC internal electrodes and external electrodes, and a method for producing the same.
  • Silver-plated copper fine powder with a silver layer coated on it is processed into a conductive paste and applied to circuit formation of printed wiring boards using screen printing methods, various electrical contacts, etc., and used as a material for ensuring electrical continuity Has been.
  • silver-plated copper fine powder is more excellent in electrical conductivity than copper fine powder when compared with normal copper fine powder that does not cover the surface with a silver layer.
  • a conductive paste made of copper fine powder plated with silver which is superior in conductive properties, has a great merit that a low-resistance conductor can be manufactured at low cost.
  • Patent Document 1 a surface treatment process is introduced before and after the silver plating reaction, and a silver layer is formed on the surface of the copper fine powder by electroless displacement plating and reduction plating.
  • the silver-plated copper fine powder has excellent tap reproducibility and has the same tap density as the raw copper fine powder. Specifically, silver-plated copper fine powder having an average particle diameter of 1 to 30 ⁇ m, a tap density of 2.4 g / cm 3 or more, and a specific surface area of 0.9 m 2 / g or less is described.
  • Patent Document 1 as a method for producing this silver-plated copper fine powder, the copper fine powder is washed with an organic solution on the surface of the copper fine powder in an alkaline solution and washed with water, and then the oxide on the surface of the copper fine powder is pickled in an acidic solution. After washing with water, a reducing agent is added to the acidic solution in which the copper fine powder is dispersed to adjust the pH to prepare a copper fine powder slurry, and a silver ion solution is continuously added to the copper fine powder slurry.
  • a method for producing silver-plated copper fine powder is described in which a silver layer is formed on the surface of the copper fine powder by electrolytic displacement plating and reduction-type electroless plating.
  • Patent Document 2 in an aqueous medium containing an additive of a natural resin, a polysaccharide or a derivative thereof for the purpose of rapidly and efficiently producing a fine copper fine powder.
  • a method for producing fine copper powder by a disproportionation reaction in which a cuprous oxide is added to prepare a slurry, and a 5 to 50% aqueous acid solution is added to the slurry at once within 15 minutes to perform a disproportionation reaction Is described.
  • the method for producing silver-plated copper fine powder described in Patent Document 1 is certainly effective, but if the silver-plated copper fine powder is further refined, it will be advantageous from the viewpoint of fine pitch.
  • the present inventor initially anticipated that this problem would be solved if the method described in Patent Document 1 was applied after obtaining fine copper fine powder by the method described in Patent Document 2, but silver plating was performed. It has been found that as the particle size of the copper fine powder before application decreases to less than 1 ⁇ m, aggregation tends to occur and it is difficult to obtain fine silver-plated copper fine powder.
  • the present inventors have conducted filtration washing and dehydration of the copper fine powder obtained by the disproportionation reaction to form dry copper fine powder. I found it easy to progress. Then, after obtaining the slurry-like copper fine powder by disproportionation reaction, when continuously moving to the silver plating process while maintaining the wet conditions, the dispersion of the copper fine powder is maintained in the plating solution, causing aggregation. We found that ultra-thin silver plating is possible without any problems. Furthermore, when the average particle diameter (D50) of the copper fine powder was less than 0.4 ⁇ m, it was found that it was not sufficient, and it was necessary to perform silver plating while irradiating with ultrasonic waves.
  • D50 average particle diameter
  • D50 particle size at which the cumulative weight by laser diffraction scattering type particle size distribution measurement is 50%.
  • the silver-plated copper fine powder according to the present invention is a copper fine powder having a surface plated with silver, and the weight of silver is 1 to 25% by mass.
  • the silver-plated copper fine powder according to the present invention has a D50 of 0.05 to 0.5 ⁇ m and a silver plating film thickness of 0.2 nm to 0.05 ⁇ m.
  • the silver-plated copper fine powder according to the present invention has a BET specific surface area of 3.0 to 10.0 m 2 / g.
  • the tap density is larger than the apparent density, the apparent density is 1.0 to 3.0 g / cm 3 , and the tap density is 2.0. -4.0 g / cm 3 .
  • the silver-plated copper fine powder according to the present invention has a particle diameter (D50) of 0 to 50% in the cumulative weight by laser diffraction scattering type particle size distribution measurement of the copper fine powder before silver plating is performed. .05 to 0.9 ⁇ m.
  • a slurry is prepared by adding cuprous oxide to an aqueous medium containing an additive of a natural resin, polysaccharide or derivative thereof, and an acidic aqueous solution is added to the slurry within 16 minutes.
  • Step 1 for producing a copper fine powder slurry having a particle size (D50) of 50 to 50% and a cumulative weight of 0.05 to 0.9 ⁇ m, and the copper fine powder slurry are made alkaline
  • the process 2 which removes the organic substance on the copper fine powder surface by treating with the solution
  • the process 3 which treats the copper fine powder with the acidic solution to remove the oxide on the copper fine powder surface, and the copper fine powder is dispersed in the reducing agent.
  • Step 4 for preparing a copper fine powder slurry having a pH of 3.5 to 4.5, and by adding a silver ion solution continuously to the copper fine powder slurry, the surface of the copper fine powder by electroless displacement plating and reduction type electroless plating Forming a silver layer on the surface
  • a method for producing a silver-plated copper fine powder comprising performing the steps 6 to solid-liquid separation of silver-plated copper fine powder slurry obtained in the step 5 in this order.
  • the method for producing a silver-plated copper fine powder according to the present invention produces a copper fine powder slurry having a cumulative particle weight (D50) of less than 0.4 ⁇ m in Step 1 and having a cumulative weight of less than 0.4 ⁇ m.
  • the ultrasonic wave is irradiated during the addition of the silver ion solution.
  • step 5 ultrasonic irradiation is continued for 10 minutes or more even after the addition of the silver ion solution is completed.
  • the oscillation frequency of the ultrasonic wave to be irradiated is 16 to 50 kHz.
  • the present invention is a conductive paste containing the silver-plated copper fine powder according to the present invention.
  • a silver-plated copper fine powder in which an ultrathin silver-plated layer is formed on the surface of an ultrafine copper fine powder having an average particle diameter of less than 1 ⁇ m.
  • ⁇ Step 1 Preparation of spherical copper fine powder>
  • a copper fine powder having a cumulative particle weight of 50% (herein also referred to as “average particle diameter” or “D50”) is 0.05 to 0.9 ⁇ m.
  • D50 average particle diameter
  • spherical copper fine powder having a D50 of 0.05 to 0.3 ⁇ m can be used. This is to increase the packing density as much as possible when used as a conductive paste application.
  • Copper fine powder can be spherical.
  • the term “spherical” means that the ratio of the minor axis to the major axis of each copper particle is 150% or less on average, particularly 120% or less on average. Therefore, the ratio of the minor axis to the major axis exceeding 150% on average has a flat shape, which is not called spherical.
  • the average of the ratio between the minor axis and the major axis is given as an average value of 20 particles or more by directly measuring the minor axis and major axis of the copper particle image obtained from the SEM photograph. The diameter of the smallest circle that can surround each particle was the major axis, and the diameter of the largest circle that was surrounded by the particles was the minor axis.
  • the spherical copper fine powder itself having an average particle diameter in this range is known and can be produced by, for example, the method described in WO2009 / 001710 (Patent Document 2), which will be briefly described below.
  • Spherical copper fine powder can be produced by a disproportionation reaction between cuprous oxide and acid. Specifically, a slurry in which cuprous oxide is dispersed in water is prepared, and an aqueous acid solution is added thereto to obtain a spherical copper fine powder slurry, which is produced by solid-liquid separation.
  • the particle size of the obtained spherical copper fine powder can be reduced. This is because these additives have a function of suppressing particle growth as a protective colloid and a function of reducing the contact frequency between particles.
  • natural rubbers or gelatins can be used. Specifically, rosin, gelatin, glue, carboxymethyl cellulose (CMC), starch, dextrin, gum arabic, casein and the like are effective.
  • the particle size can be reduced by shortening the addition time of the acid aqueous solution added to the cuprous oxide slurry. For example, it can be added all at once within 20 minutes, further within 15 minutes, further within 3 minutes, and even within 1 minute.
  • the slurry of spherical copper fine powder obtained by a wet method is preferably used as it is in the silver plating step without being dried. This is because the step of once filtering or drying the spherical copper fine powder can be omitted, and the copper fine powder can be connected to the step 2 without being exposed to the air, and the progress of oxidation can be prevented. Moreover, it is because it is easy to ensure the dispersibility of copper fine powder and can suppress aggregation by performing silver plating continuously on wet conditions.
  • Step 2 Alkali treatment of copper fine powder>
  • the copper fine powder is treated with an alkaline solution to remove organic substances on the surface of the copper fine powder.
  • the alkaline solution is not particularly limited as long as it is an alkaline solution that can reliably remove organic substances adhering to the copper fine powder surface.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium phosphate An aqueous solution may be mentioned. Among these, when stronger basicity is required for hydrolysis or the like, it is preferable to use an aqueous potassium hydroxide solution.
  • an alkaline solution having a concentration of 0.1 to 5.0% by mass can be used in an amount of 50 to 500 ml with respect to 100 g of copper powder.
  • a specific method for the alkali treatment is not particularly limited as long as the copper fine powder and the alkaline solution are sufficiently contacted.
  • a certain time for example, 10 ( ⁇ 20 minutes)
  • the method of stirring is simple and reliable.
  • the liquid temperature may be room temperature. It is preferable from the viewpoint of preventing oxidation of copper fine powder that the copper fine powder slurry produced by the wet method is used as it is in the step 2 without making it dry.
  • ⁇ Process 3 Pickling treatment of copper fine powder>
  • the copper fine powder is treated with an acidic solution to remove oxides on the surface of the copper fine powder.
  • the acidic solution is not particularly limited as long as it can reliably remove the copper oxide on the surface of the copper fine powder, and examples thereof include sulfuric acid, hydrochloric acid, phosphoric acid, sulfuric acid-chromic acid, and sulfuric acid-hydrochloric acid.
  • sulfuric acid is preferable because it is used at the time of producing copper fine powder in the previous step and is available at a relatively low cost. It should be noted that the acid type and concentration to be selected should not excessively dissolve the copper fine copper itself.
  • the pH of this acidic solution is desirably in the acidic range of 2.0 to 5.0. If the pH exceeds 5.0, the oxide of the copper fine powder cannot be sufficiently dissolved and removed, and if the pH is lower than 2.0, the copper powder is dissolved and the aggregation of the copper fine powder itself easily proceeds.
  • a specific method of pickling treatment is not particularly limited as long as the copper fine powder and the acidic solution are sufficiently contacted.
  • the copper fine powder is dispersed in the acidic solution and then stirred for a certain time. Is simple and reliable.
  • the alkaline solution is separated from the copper fine powder by decantation treatment, and then washed with water by decantation treatment as appropriate, and then the copper fine powder slurry dispersed in water is used in Step 3.
  • Decantation treatment is also called a gradient method, which means an operation in which a liquid containing a precipitate is allowed to stand and a solid matter is allowed to settle, and then the container is gently tilted and only the supernatant liquid is poured away. Thereby, it becomes possible to shift to the next step (here, from step 2 to step 3) without bringing the copper fine powder into contact with the atmosphere.
  • Step 4 Dispersion of copper fine powder in reducing agent> After step 3, a copper fine powder slurry having a pH of 3.5 to 4.5 in which the copper fine powder is dispersed in a reducing agent is prepared.
  • a specific method for dispersing there is a method of stirring the copper fine powder in the reducing agent for a certain time (for example, 10 to 20 minutes).
  • the liquid temperature may be room temperature.
  • various reducing agents can be used.
  • a preferred reducing agent is a weak reducing agent.
  • a weak reducing agent that can be used in the present invention is a reducing organic compound.
  • examples of such a reducing agent include carbohydrates, polyvalent carboxylic acids and salts thereof, and aldehydes. Specific examples include glucose (glucose), malonic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, oxalic acid, sodium potassium tartrate (Rochelle salt), formalin and the like.
  • sodium potassium tartrate (Rochelle salt) is preferable. Since it has a mild reducing action, it is often used as a reducing agent when performing electroless plating of silver.
  • a reducing agent aqueous solution having a concentration of 0.1 to 5.0% by mass can be used with respect to 100 g of copper powder.
  • a preferred pH is 3.7 to 4.3.
  • the pH can be adjusted appropriately with acid or alkali.
  • the acid is not particularly limited as long as it is an acidic solution that can reliably remove the copper oxide on the surface of the copper fine powder.
  • sulfuric acid hydrochloric acid, phosphoric acid, sulfuric acid -Chromic acid, sulfuric acid-hydrochloric acid.
  • sulfuric acid is preferable because it is used in the copper fine powder of the previous step and is available at a relatively low cost.
  • the alkali is not particularly limited as long as it is an alkaline solution that can reliably remove organic substances adhering to the copper fine powder surface.
  • potassium hydroxide is preferable when stronger basicity is required for hydrolysis or the like.
  • step 3 the acidic solution is separated from the copper fine powder by decantation treatment, and then appropriately washed with water by decantation treatment and then dispersed in water. It is preferred to use the slurry in step 4 in order to avoid contact with the atmosphere as well.
  • ⁇ Step 5 Formation of silver layer>
  • a silver layer is formed on the surface of the copper fine powder by electroless displacement plating and reduction type electroless plating.
  • the silver ion solution may be any known solution as a silver plating solution, but a silver nitrate solution is preferable.
  • the silver nitrate concentration can be 20 to 300 g / L, preferably 50 to 100 g / L.
  • the silver nitrate solution is preferably provided as an ammoniacal silver nitrate solution because complex formation is easy and relatively inexpensive.
  • the liquid temperature may be room temperature.
  • the speed of the silver ion solution added to the copper fine powder slurry is 200 mL / min or less, preferably 100 mL / min or less.
  • the addition time of the silver ion solution can be set to 10 to 60 minutes in accordance with the silver plating coating amount, and is preferably set so that the addition is completed in 20 to 40 minutes. If the addition of the silver ion solution is fast, there is a concern that the silver coating becomes non-uniform and the variation among particles becomes large. Further, when the addition of the silver ion solution is slow, there is no problem in the reaction, but the time required for the process becomes long, which is disadvantageous economically. As a result, when the silver plating coating amount is large, the silver ion solution addition rate is high, and conversely, when the silver plating coating amount is small, the silver ion solution addition rate is low.
  • the particle size of the copper fine powder before silver plating is 0.4 ⁇ m or more, a thin silver plating film can be obtained without irradiating ultrasonic waves at the time of silver plating. Aggregation is likely to occur at the time of plating, and silver plating must be performed while irradiating with ultrasonic waves in order to obtain fine and uniform silver-plated copper fine powder. If the oscillation frequency of the ultrasonic wave is too low, the effect is insufficient. On the other hand, if it is too high, the silver plating film is difficult to grow into copper powder, and therefore it is preferably 16 to 50 kHz, more preferably 25 to 45 kHz. From the viewpoint of preventing aggregation, it is desirable to continue irradiation for 10 minutes or more, preferably 20 minutes or more, for example, 10 to 40 minutes after the addition of ultrasonic waves during addition of the silver ion solution.
  • Silver-plated spherical copper fine powder is obtained by solid-liquid separation of the silver-plated copper fine powder slurry obtained in step 5 by any known means.
  • the solid-liquid separation method include a method in which the plating solution and silver-plated spherical copper fine powder are separated by decantation treatment, and then the silver-plated spherical copper fine powder is dispersed in water and washed, followed by filtration and drying. .
  • the silver-plated spherical copper fine powder obtained by the above method can have the following characteristics.
  • the silver-plated spherical copper fine powder according to the present invention has a silver thickness of 0.1 nm to 0.2 ⁇ m, preferably 0.2 nm to 0.05 ⁇ m, for example, 0.01 to 0.05 ⁇ m. is there.
  • the weight of silver is 1 to 25% by mass.
  • the filler for electrically conductive paste excellent in electroconductivity and oxidation resistance is obtained.
  • the content is preferably 1 to 20% by mass, more preferably 2 to 15% by mass.
  • the weight ratio of silver contained in the silver-plated spherical copper fine powder is measured with an ICP emission spectroscopic analyzer.
  • the silver-plated copper fine powder according to the present invention has a particle diameter (D50) of 50% cumulative weight by laser diffraction scattering particle size distribution measurement of less than 1 ⁇ m, typically 0.05 ⁇ m or more and 0 .9 ⁇ m or less.
  • D50 particle diameter
  • the D50 of the silver-plated spherical copper fine powder is preferably 0.05 to 0.5 ⁇ m, more preferably 0.05 to 0.3 ⁇ m. D50 measured here is the average particle size of the secondary particles.
  • the silver-plated copper fine powder according to the present invention has a BET specific surface area of 1.0 to 10.0 m 2 / g.
  • a BET specific surface area of 1.0 to 10.0 m 2 / g.
  • the silver-plated copper fine powder according to the present invention has a tap density larger than an apparent density, an apparent density of 1.0 to 3.0 g / cm 3 , and a tap density of 2.0 to 4. 0 g / cm 3 .
  • a powder having a higher tap density is advantageous because it can increase the packing density during paste production and firing.
  • the tap density is preferably 2.5 to 4.0 g / cm 3 , more preferably 3.0 to 4.0 g / cm 3 .
  • the apparent density is measured by the method of JISZ2504.
  • the tap density is measured by the method of JISZ2512.
  • a conductive paste can be produced by adding a resin and a solvent to the silver-plated copper fine powder according to the present invention and kneading it into a paste. Since this conductive paste has a dense interface between copper and silver, it is excellent in conductivity (volume specific resistance value (specific resistance value)).
  • Example 1 (no ultrasonic irradiation) 8 g of gum arabic was dissolved in 7 liters of pure water, 1000 g of cuprous oxide was added and suspended while stirring, and the cuprous oxide slurry was kept at 7 ° C.
  • the concentration of cuprous oxide in the slurry is about 143 g / L, and the concentration of gum arabic in the slurry is about 1.14 g / L.
  • 2000 cc of dilute sulfuric acid (concentration 24 mass%: 9 N, molar ratio (acid aqueous solution / slurry): 1.3) maintained at 7 ° C. was added over 16 minutes with stirring, and stirring was continued for 10 minutes after the addition was completed. Continued.
  • the stirring speed was 500 rpm and no ultrasonic irradiation was performed. It was confirmed by FE-SEM observation that the produced copper powder was spherical. A portion of the produced spherical copper powder slurry was sampled, and the average particle size (D50) was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100). The average particle size was 0.79 ⁇ m. The yield of spherical copper fine powder is estimated to be 440 g.
  • quaternary decantation treatment was performed, and 2200 mL of 1% sodium potassium tartrate solution was added and stirred for several minutes to form a copper slurry.
  • a dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.
  • Substitution reaction treatment while adding 880 mL of silver nitrate ammonia solution (added 77.0 g of silver nitrate to water and adjusting to 880 mL) to copper slurry with adjusted pH, slowly adding over 30 minutes. Then, a reduction reaction treatment was performed, and stirring was further performed for 30 minutes to obtain a slurry of silver-plated copper fine powder.
  • the fifth decantation process was performed, 3500 mL of pure water was added, and it stirred for several minutes. Further, a sixth decantation treatment was performed, 3500 mL of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by suction filtration, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.
  • the average particle diameter (D50) of the silver-plated spherical copper fine powder was measured with a laser diffraction particle size distribution measuring apparatus (model SALD-2100, manufactured by Shimadzu Corporation), and found to be 0.85 ⁇ m.
  • Example 2 (without ultrasonic irradiation) 8 g of glue was dissolved in 7 liters of pure water, 1000 g of cuprous oxide was added and suspended while stirring, and the cuprous oxide slurry was kept at 7 ° C.
  • the cuprous oxide concentration in the slurry is about 143 g / L
  • the glue concentration in the slurry is about 1.14 g / L.
  • 2000 cc of dilute sulfuric acid concentration 24 mass%: 9 N, molar ratio (acid aqueous solution / slurry): 1.3
  • a portion of the produced spherical copper powder slurry was sampled, and the average particle size (D50) was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100).
  • the average particle size was 0.53 ⁇ m.
  • the yield of spherical copper fine powder is estimated to be 440 g.
  • silver plating was performed in the same manner as in Example 1.
  • the average particle size (D50) of the silver-plated spherical copper fine powder was 0.68 ⁇ m as measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100).
  • spherical copper fine powder By obtaining spherical copper fine powder by disproportionation reaction, filtering and washing the spherical copper fine powder, and continuously silver plating in the slurry state without suction dehydration, it is almost the same as the spherical copper fine powder which is the original powder efficiently Silver-plated spherical copper fine powder having the same particle size (about 128% with respect to the original powder) can be obtained.
  • the apparent density was 2.08 g / cm 3
  • the tap density was 2.79 g / cm 3
  • the BET specific surface area was 3.96 m 2 / g.
  • the mass% of silver was 10.1 mass%.
  • Example 3 (with ultrasonic irradiation) 8 g of glue was dissolved in 7 liters of pure water, 1000 g of cuprous oxide was added and suspended while stirring, and the cuprous oxide slurry was kept at 7 ° C.
  • the cuprous oxide concentration in the slurry is about 143 g / L
  • the glue concentration in the slurry is about 1.14 g / L.
  • 2000 cc of dilute sulfuric acid concentration 24 mass%: 9 N, molar ratio (acid aqueous solution / slurry): 1.3
  • a portion of the produced spherical copper powder slurry was sampled, and the average particle size (D50) was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100). The average particle size was 0.10 ⁇ m.
  • the yield of spherical copper fine powder is estimated to be 440 g.
  • silver plating was carried out in the same manner as in Example 1 except that ultrasonic irradiation was performed at a total oscillation time of 40 kHz for a total of 60 minutes including a continuous addition time of 30 minutes for the silver nitrate ammonia solution and a subsequent stirring time of 30 minutes.
  • the average particle size (D50) of the silver-plated spherical copper fine powder was measured by a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation, model SALD-2100) and found to be 0.12 ⁇ m.
  • a laser diffraction type particle size distribution measuring device manufactured by Shimadzu Corporation, model SALD-2100
  • spherical copper fine powder By obtaining spherical copper fine powder by disproportionation reaction, filtering and washing the spherical copper fine powder, and continuously silver plating in the slurry state without suction dehydration, it is almost the same as the spherical copper fine powder which is the original powder efficiently Silver-plated spherical copper fine powder having the same particle size (about 120% with respect to the original powder) can be obtained.
  • the apparent density was 2.23 g / cm 3
  • the tap density was 3.09 g / cm 3
  • the BET specific surface area was 6.05 m 2 / g.
  • a portion of the produced spherical copper powder slurry was sampled, and the average particle size (D50) was measured with a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100). The average particle size was 0.10 ⁇ m. The yield of spherical copper fine powder is estimated to be 440 g. Thereafter, silver plating was performed in the same manner as in Example 1. The average particle size (D50) of the silver-plated spherical copper fine powder was measured by a laser diffraction type particle size distribution analyzer (manufactured by Shimadzu Corporation, model SALD-2100) and found to be 0.78 ⁇ m.
  • the spherical copper fine powder that is the original powder is efficiently obtained.
  • a silver-plated spherical copper fine powder having a considerably large particle size (about 780% with respect to the original powder) can be obtained.
  • the apparent density was 1.65 g / cm 3
  • the tap density was 2.44 g / cm 3
  • the BET specific surface area was 11.06 m 2 / g.
  • the mass% of silver was 9.0 mass%.
  • the thickness of the silver plating was a value obtained by subtracting the average particle diameter of the spherical copper fine powder from the average particle diameter of the silver plated spherical copper fine powder.
  • the average particle diameter of the raw spherical copper fine powder is about 0.4 ⁇ m or more, the surface of the ultrafine copper fine powder having an average particle diameter of less than 1 ⁇ m by continuous silver plating under wet conditions It is possible to provide a silver-plated copper fine powder in which a very thin silver-plated layer is formed. However, when the average particle size is less than about 0.4 ⁇ m, the degree of agglomeration becomes high, and it is understood that continuous silver plating under wet conditions and ultrasonic irradiation treatment during silver plating are required.

Abstract

 超微細な銅微粉の表面に極薄い銀メッキ層が形成された銀メッキ銅微粉を提供する。表面に銀メッキが施された銅微粉であって、銀の重量が1~25質量%であり、レーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が、1μm未満であり、銀メッキ膜の厚みが0.1nm~0.2μmである銀メッキ銅微粉。

Description

銀メッキ銅微粉及びその製造方法
 本発明は銀メッキ銅微粉及びその製造方法に関し、特にスルーホール、ビアホール、MLCC内部電極及び外部電極用等の導電ペーストに対して有用な銀メッキ銅微粉及びその製造方法に関する。
 銀層を表面に被覆した銀メッキ銅微粉は、導電ペーストに加工され、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、電気的導通確保の材料として用いられてきた。これは、表面に銀層を被覆しない通常の銅微粉と比較したとき、銀メッキ銅微粉は銅微粉よりも電気的導電性に優れるからである。また、銀粉のみでは高価になるが、銅に銀をめっきすれば、導電性粉末全体としては安価になり、製造コストを大幅に低減できるからである。したがって、導電特性により優れている銀をメッキした銅微粉からなる導電ペーストは、低抵抗の導体を低コストで製造できるという大きなメリットが得られる。
 従来、銀メッキ銅微粉のこのような利点を生かすために、銀メッキ銅微粉に対して種々の特徴付けが行われてきた。
 WO2008/059789号(特許文献1)では、銀メッキ反応の前後に表面処理工程を導入すること及び無電解置換メッキと還元型メッキにより銅微粉表面に銀層を形成することで、銀メッキ製造時の再現性に優れ、原料銅微粉並みのタップ密度を有する銀メッキ銅微粉を得ている。具体的には、平均粒径が1~30μm、タップ密度が2.4g/cm3以上、比表面積が0.9m2/g以下である銀メッキ銅微粉が記載されている。
 特許文献1には、この銀メッキ銅微粉の製造方法として、銅微粉をアルカリ性溶液中で銅微粉表面の有機物を除去・水洗し、次に酸性溶液中で銅微粉表面の酸化物を酸洗・水洗した後、この銅微粉を分散させた酸性溶液中に還元剤を添加しpHを調整して銅微粉スラリーを作成し、この銅微粉スラリーに銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成する銀メッキ銅微粉の製造方法が記載されている。
 一方、WO2009/001710(特許文献2)には、微細な銅微粉を迅速に効率良く、かつ安定して製造することを目的として、天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに5~50%酸水溶液を15分以内に一度に添加して、不均化反応を行う不均化反応による銅微粉の製造方法が記載されている。
WO2008/059789号 WO2009/001710号
 特許文献1に記載の銀メッキ銅微粉の製造方法は確かに有効であるが、銀メッキ銅微粉の更なる微細化が進めば、ファインピッチ化の観点で有利であろう。本発明者は当初、特許文献2に記載の方法で微細な銅微粉を得た上で、特許文献1に記載の方法を適用すればこの課題が解決されると見込んでいたが、銀メッキを施す前の銅微粉の粒径が1μm未満と小さくなるにつれ、凝集が発生しやすくなり、微細な銀メッキ銅微粉を得ることは難しいことが分かった。
 そこで、本発明は1μm未満の平均粒径を有するような超微細な銅微粉の表面に極薄い銀メッキ層が形成された銀メッキ銅微粉を提供することを課題の一つとする。また、本発明はそのような銀メッキ銅微粉を製造するための方法を提供することを別の課題の一つとする。
 本発明者らは、上記の課題を解決するために検討を重ねたところ、不均化反応によって得られた銅微粉を濾過洗浄したり脱水したりして乾燥銅微粉にしてしまうと、凝集が進行しやすいことが分かった。そして、不均化反応によってスラリー状の銅微粉を得た後にそのまま湿式条件を維持しながら連続的に銀メッキ工程へと移行すると、めっき液中で銅微粉の分散が維持されて、凝集を起こすことなく極薄の銀メッキが可能であることを見出した。更に、銅微粉の平均粒径(D50)が0.4μm未満になると、それだけでは不十分であり、超音波照射しながら銀めっきを行うことが必要であることも見出した。
 本発明は以上の知見を基礎として完成され、一側面において、表面に銀メッキが施された銅微粉であって、レーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が1μm未満であり、銀メッキ膜の厚みが0.1nm~0.2μmである銀メッキ銅微粉である。
 本発明に係る銀メッキ銅微粉は一実施形態において、表面に銀メッキが施された銅微粉であって、銀の重量が1~25質量%である。
 本発明に係る銀メッキ銅微粉は一実施形態において、D50が0.05~0.5μmであり、銀メッキ膜の厚みが0.2nm~0.05μmである。
 本発明に係る銀メッキ銅微粉は別の一実施形態において、BET比表面積が3.0~10.0m2/gである。
 本発明に係る銀メッキ銅微粉は更に別の一実施形態において、タップ密度は見掛密度よりも大きく、見掛密度が1.0~3.0g/cm3であり、タップ密度が2.0~4.0g/cm3である。
 本発明に係る銀メッキ銅微粉は更に別の一実施形態において、銀メッキが施される前の銅微粉のレーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が0.05~0.9μmである。
 本発明は別の一側面において、天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに酸性水溶液を16分以内で添加して、不均化反応を行うことで、累積重量が50%となる粒子径(D50)が0.05~0.9μmである銅微粉スラリーを製造する工程1と、当該銅微粉スラリーをアルカリ性溶液で処理して銅微粉表面の有機物を除去する工程2と、当該銅微粉を酸性溶液で処理して銅微粉表面の酸化物を除去する工程3と、当該銅微粉を還元剤中に分散させたpH3.5~4.5の銅微粉スラリーを調製する工程4と、当該銅微粉スラリーに銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成する工程5と、工程5で得られた銀メッキ銅微粉スラリーを固液分離する工程6とを順に実施することを含む銀メッキ銅微粉の製造方法である。
 本発明に係る銀メッキ銅微粉の製造方法は一実施形態において、工程1において、累積重量が50%となる粒子径(D50)が0.4μm未満である銅微粉スラリーを製造し、工程5において、銀イオン溶液の添加中に超音波を照射する。
 本発明に係る銀メッキ銅微粉の製造方法は別の一実施形態において、工程5において、銀イオン溶液の添加終了後にも10分以上超音波照射を継続する。
 本発明に係る銀メッキ銅微粉の製造方法は別の一実施形態において、照射する超音波の発振周波数が16~50kHzである。
 本発明は更に別の一側面において、本発明に係る銀めっき銅微粉を含有する導電性ペーストである。
 本発明によれば、1μm未満の平均粒径を有するような超微細な銅微粉の表面に極薄い銀メッキ層が形成された銀メッキ銅微粉を提供することが出来る。これにより、ファインピッチ化の要請に応えることができ、とりわけスルーホール、ビアホール、MLCC内部電極及び外部電極用等の導電ペーストの用途に適している。
<工程1:球状銅微粉の準備>
 本発明に係る銀メッキ銅微粉の原材料として、累積重量が50%となる粒子径(ここでは、“平均粒径”又は“D50”ともいう。)が0.05~0.9μmである銅微粉を使用することができ、その中でも微細化を目的とする場合には、D50が0.05~0.3μmの球状の銅微粉を使用することができる。これは、導電ペースト用途として使用する時に、できるだけ充填密度を高めるためである。
 銅微粉は球状のものを使用することができる。ここで球状とは、個々の銅粒子の短径と長径との比が平均で150%以下、特に平均で120%以下であるものを言う。したがって、短径と長径との比が平均で150%を超えるものは、扁平な形状を有しており、これを球状とは言わない。短径と長径との比の平均は、具体的には、SEM写真から得られる銅粒子画像の短径と長径を直接計測し、20粒子以上の平均値として与えられる。個々の粒子を取り囲むことのできる最小円の直径を長径とし、粒子に取り囲まれる最大円の直径を短径とした。
 この範囲の平均粒径を有する球状銅微粉自体は公知であり、例えばWO2009/001710号(特許文献2)に記載の方法で製造可能であるが、以下に簡単に説明する。
 球状銅微粉は亜酸化銅と酸の不均化反応により製造することができる。具体的には、亜酸化銅を水に分散させたスラリーを準備し、これに対して酸水溶液を添加することで球状銅微粉スラリーを得て、固液分離する方法で製造する。
 亜酸化銅のスラリーに天然樹脂、多糖類又はその誘導体を添加することで、得られる球状銅微粉の粒径を小さくすることができる。これらの添加剤は保護コロイドとして粒子成長を抑制する働きがあり、また粒子同志の接触頻度を低減する作用を行うからである。添加剤としては、天然ゴム類又はゼラチン類を使用することができる。具体的には、松脂、ゼラチン、にかわ、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインなどが有効である。
 また、亜酸化銅のスラリーに添加する酸水溶液の添加時間を短くすることで粒径を小さくすることができる。例えば20分以内、さらには15分以内、さらには3分以内、さらには1分以内に一度に添加することができる。
 湿式法(不均化反応)で得られた球状銅微粉のスラリーは、乾燥せずにそのまま銀メッキ工程において使用することが好ましい。球状銅微粉をいったんろ過したり乾燥したりする工程を省略することができ、また、銅微粉を空気中に晒すことなく工程2につなげることができ、酸化の進行を防止できるからである。また、連続して湿式条件下で銀めっきを行なうことにより、銅微粉の分散性を確保しやすく、凝集を抑制できるからである。
<工程2:銅微粉のアルカリ処理>
 工程1の後、銅微粉をアルカリ性溶液で処理して銅微粉表面の有機物を除去する。これにより銅微粉表面の防錆被膜や不純物成分を除去でき、より効果的に次工程の酸洗処理を行なえる。アルカリ性溶液としては、銅微粉表面に付着している有機物を確実に除去できるアルカリ性溶液であれば特に制限はないが、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、リン酸ナトリウムの水溶液が挙げられる。その中でも、加水分解などでより強い塩基性が必要とされる場合は、水酸化カリウム水溶液を使用することが好ましい。例えば、濃度0.1~5.0質量%のアルカリ溶液を銅粉100gに対して、50~500ml使用することができる。
 アルカリ処理の具体的な方法としては、銅微粉とアルカリ性溶液の接触が十分に行われる方法であれば特に制限はないが、例えば銅微粉をアルカリ性溶液に分散させた後、一定時間(例えば、10~20分)攪拌する方法が簡便で確実である。液温は室温でよい。湿式法で製造した銅微粉スラリーを乾粉にすることなく、そのまま工程2で使用することが銅微粉の酸化防止の観点で好ましい。
<工程3:銅微粉の酸洗処理>
 工程2の後、該銅微粉を酸性溶液で処理して銅微粉表面の酸化物を除去する。これにより、清浄な銅表面が得られ、均一な厚みでの銀めっきが可能になる。酸性溶液としては、銅微粉表面の銅酸化物を確実に除去できる酸性溶液であれば特に制限はないが、例えば硫酸、塩酸、リン酸、硫酸-クロム酸、硫酸-塩酸が挙げられる。その中でも、前工程の銅微粉製造時に使用していること及び比較的安価に入手可能であることから、硫酸が好ましい。なお、選択する酸の種類や濃度は過剰に銅微粉の銅自体を溶解しないように留意すべきである。
 この酸性溶液のpHは2.0~5.0の酸性領域とすることが望ましい。pHが5.0を越えると銅微粉の酸化物を十分に溶解除去できなくなり、pHが2.0より小さくなると銅粉の溶解が生じ、銅微粉自体の凝集も進行し易くなる。
 酸洗処理の具体的な方法としては、銅微粉と酸性溶液の接触が十分に行われる方法であれば特に制限はないが、例えば銅微粉を酸性溶液に分散させた後、一定時間攪拌する方法が簡便で確実である。好ましくは、工程2の後、アルカリ溶液をデカンテーション処理によって銅微粉から分離し、次いで、適宜デカンテーション処理による水洗を行った後、水中へ分散させた銅微粉スラリーを工程3で使用する。
 デカンテーション処理は傾斜法とも呼ばれ、沈殿を含む液体を放置して固形物を沈降させたのち、容器を静かに傾けて上澄み液だけを流し去る操作をいう。これにより、銅微粉を大気と接触させることなく次工程(ここでは工程2から工程3へ)に移行することが可能となる。
<工程4:銅微粉の還元剤中への分散>
 工程3の後、当該銅微粉を還元剤中に分散させたpH3.5~4.5の銅微粉スラリーを調製する。分散させるための具体的な方法としては、還元剤中の銅微粉を一定時間(例えば、10~20分)攪拌する方法が挙げられる。液温は室温でよい。
 この発明において用いることができる還元剤として、種々の還元剤を用いることができる。好ましい還元剤は、弱い還元剤である。これは、銀イオン添加による置換析出により銀被膜が形成されるが、その置換反応の副生成物として酸化物(CuO、Cu2O、AgO、Ag2O)が生成し、これを還元する必要があるからであるが、銅の錯イオンまでも還元させないためである。
 この発明で用いることができる弱い還元剤として還元性有機化合物があり、そのようなものとして、例えば、炭水化物類、多価カルボン酸およびその塩類、アルデヒド類等を用いることができる。具体的には、ブドウ糖(グルコース)、マロン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、シュウ酸、酒石酸ナトリウムカリウム(ロッシェル塩)、ホルマリンなどが挙げられる。
 還元剤の中でも、酒石酸ナトリウムカリウム(ロッシェル塩)が好ましい。穏和な還元作用をもつため、銀の無電解めっきを行う場合に還元剤としてよく用いられる。
 例えば、濃度0.1~5.0質量%の還元剤水溶液を銅粉100gに対して、100~1000ml使用することができる。
 ここでのpHを3.5~4.5に調節する理由は、酸洗処理の効果と同じである。好ましいpHは3.7~4.3である。pH調節は酸又はアルカリによって適宜行うことができるが、酸としては、銅微粉表面の銅酸化物を確実に除去できる酸性溶液であれば特に制限はないが、例えば硫酸、塩酸、リン酸、硫酸-クロム酸、硫酸-塩酸が挙げられる。その中でも、前工程の銅微粉で使用していること及び比較的安価に入手可能であるとの理由により、硫酸が好ましい。アルカリとしては、銅微粉表面に付着している有機物を確実に除去できるアルカリ性溶液であれば特に制限はないが、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、リン酸ナトリウムの水溶液が挙げられる。その中でも、加水分解などでより強い塩基性が必要とされる場合は、水酸化カリウムが好ましい。
 銅微粉を還元剤中に分散させるにあたっては、工程3の後、酸性溶液をデカンテーション処理によって銅微粉から分離し、次いで、適宜デカンテーション処理による水洗を行った後、水中へ分散させた銅微粉スラリーを工程4で使用することが同様に大気との接触を避けるために好ましい。
<工程5:銀層の形成>
 工程4で得られた銅微粉スラリーに対して、銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成する。銀イオン溶液としては、銀メッキ液として公知の任意の溶液で構わないが、硝酸銀溶液が好ましい。硝酸銀濃度は20~300g/Lとすることができ、好ましくは50~100g/Lである。また、硝酸銀溶液は錯形成が容易で比較的安価であることから、アンモニア性硝酸銀溶液として与えられるのが好ましい。液温は室温でよい。
 銅微粉スラリーに添加する銀イオン溶液の速度は、200mL/min以下とし、好ましくは100mL/min以下とする。上記濃度範囲の硝酸銀溶液を比較的ゆっくりとした添加速度、実用的には20~200mL/minで連続的に添加することで、銅微粉表面に均一な銀層を被覆することが確実に行うことができる。ゆっくり銀イオン溶液を添加することで、銀が均一な厚みでめっきされやすい。添加が速いと銀被膜が不均一になること、粒子間でのバラツキが大きくなることが懸念される。銀イオン溶液を連続的に添加することで均一な銀被膜形成と粒子間のばらつき低減に寄与することができる。この際、一定の速度で反応系中に銀イオン溶液を供給することが好ましい。
 また、銀イオン溶液添加時間は、銀めっき被覆量に合わせて10~60分とすることができ、好ましくは20~40分で添加が終わるように設定する。銀イオン溶液の添加が速いと銀被膜が不均一になること、粒子間でのバラツキが大きくなることが懸念される。また、銀イオン溶液の添加が遅いと反応上は問題ないが、工程所要時間が長くなり、経済的に不利となる。結果として、銀めっき被覆量が多いと、銀イオン溶液添加速度は速くなり、逆に、銀めっき被覆量が少ないと、銀イオン溶液添加速度は遅くなる。
 ここで、銀メッキを施す前の銅微粉の粒径が0.4μm以上であれば、銀メッキ時に超音波照射することなく薄い銀メッキ被膜を得ることができるが、0.4μm未満だと銀メッキ時に凝集が発生しやすくなり、微細で均一な大きさの銀メッキ銅微粉を得るには超音波照射しながら銀メッキを行うことが必要となる。超音波の発振周波数は低すぎると効果が不十分である一方で、高すぎると銀メッキ被膜が銅粉に成長しにくくなることから16~50kHzが好ましく、25~45kHzがより好ましい。超音波は、銀イオン溶液を添加している最中のほか、添加終了後も10分以上、好ましくは20分以上、例えば10~40分は照射を継続することが凝集防止の観点から望ましい。
<6.固液分離>
 工程5で得られた銀メッキ銅微粉スラリーを公知の任意の手段で固液分離することで、銀メッキ球状銅微粉が得られる。固液分離の方法としては、例えばメッキ液と銀メッキ球状銅微粉をデカンテーション処理によって分離し、次いで、銀メッキ球状銅微粉を水中に分散させて洗浄後、ろ過及び乾燥を行う方法が挙げられる。
<7.銀メッキ球状銅微粉の特性>
 上記の方法によって得られた銀メッキ球状銅微粉は、以下のような特性を有することができる。
 本発明に係る銀メッキ球状銅微粉は一実施形態において、銀の厚みが0.1nm~0.2μmであり、好ましくは0.2nm~0.05μmであり、例えば0.01~0.05μmである。極薄の銀被膜を銅の最表面に設けることで、銅の欠点である耐酸化性を改善するとともに、安価な導電フィラーが得られる。
 本発明に係る銀メッキ球状銅微粉は一実施形態において、銀の重量が1~25質量%である。これにより導電性、耐酸化性に優れた導電ペースト用フィラーが得られる。好ましくは1~20質量%であり、より好ましく2~15質量%である。本発明においては、銀メッキ球状銅微粉に含まれる銀の重量比はICP発光分光分析装置で測定する。
 本発明に係る銀メッキ銅微粉は一実施形態において、レーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が、1μm未満であり、典型的には0.05μm以上0.9μm以下である。湿式反応で得られるスラリー状のサブミクロン粉をそのまま原料とすることで、アトマイズ粉や電解粉を原料とした場合には到達できない微細な銀メッキ銅微粉が得られる。銀メッキ球状銅微粉のD50は好ましくは0.05~0.5μmであり、より好ましくは0.05~0.3μmである。ここで測定されるD50は二次粒子の平均粒径となる。
 本発明に係る銀メッキ銅微粉は一実施形態において、BET比表面積が1.0~10.0m2/gである。これにより分散状態の良いサブミクロン球状銀めっき銅微粉が得られていることが推察できる。凝集した状態で銀メッキされると、BET比表面積が上記範囲よりも下回る。BET比表面積は好ましくは3.0~10.0m2/gであり、より好ましく5.0~10.0m2/gである。
 本発明に係る銀メッキ銅微粉は一実施形態において、タップ密度は見掛密度よりも大きく、見掛密度が1.0~3.0g/cm3であり、タップ密度が2.0~4.0g/cm3である。タップ密度が高い粉末の方が、ペースト作製時、焼成時の充填密度を高めることができるので有利である。従って、タップ密度は好ましくは2.5~4.0g/cm3であり、より好ましく3.0~4.0g/cm3である。
 本発明においては、見掛密度はJISZ2504の方法によって測定される。
 本発明においては、タップ密度はJISZ2512の方法によって測定される。
 本発明に係る銀メッキ銅微粉に対して樹脂と溶剤を加え、混練してペースト化することで導電性ペーストが製造可能である。この導電性ペーストは銅と銀の界面が緻密であるため、導電性(体積固有抵抗値(比抵抗値))が優れている。
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
実施例1(超音波照射なし)
 7リッターの純水に、アラビアゴムを8g溶解させ、攪拌しつつ亜酸化銅1000gを添加して懸濁させ、亜酸化銅スラリーを7℃で保持した。スラリー中の亜酸化銅濃度は約143g/L、スラリー中のアラビアゴム濃度は約1.14g/Lである。
 次いで7℃に保持した希硫酸(濃度24質量%:9N、モル比(酸水溶液/スラリー):1.3)2000ccを、攪拌しながら16分かけて添加し、添加終了後も攪拌を10分間続けた。攪拌速度は500rpmとし、超音波照射は行わなかった。生成した銅粉が球状であることは、FE-SEM観察で確認した。生成した球状銅微粉のスラリーの一部を採取し、レーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で平均粒径(D50)を測定したところ、球状銅微粉の平均粒径は0.79μmであった。球状銅微粉の収量は440gと推定される。
 この球状銅微粉スラリー440gを1%水酸化カリウム水溶液880mLに加えて20分間攪拌し、続いて一次デカンテーション処理を行い、さらに純水880mLを加えて数分間攪拌した。
 その後、二次デカンテーション処理を行い、硫酸濃度15g/Lの硫酸水溶液2200mLを加えて30分間攪拌した。
 さらに、三次デカンテーション処理を行い、純水2200mLを加えて数分間攪拌した。
 次いで、四次デカンテーション処理を行い、1%酒石酸ナトリウムカリウム溶液2200mLを加えて数分間攪拌し、銅スラリーを形成させた。
 該銅スラリーに希硫酸又は水酸化カリウム溶液を加えて、銅スラリーのpHを3.5~4.5になるように調整した。
 pHを調整した銅スラリーに硝酸銀アンモニア溶液880mL(硝酸銀77.0gを水に添加してアンモニア水を加え、880mLとして調整したもの)を、30分間の時間をかけてゆっくりと添加しながら置換反応処理及び還元反応処理を行い、さらに30分間の攪拌をして銀メッキ銅微粉のスラリーを得た。
 その後、五次デカンテーション処理を行い、純水3500mLを加えて数分間攪拌した。
 さらに六次デカンテーション処理を行い、純水3500mLを加えて数分間攪拌した。そして、吸引ろ過することで銀メッキ銅微粉と溶液とを濾別し、銀メッキ銅微粉を90℃の温度で2時間の乾燥を行った。
 この銀メッキ球状銅微粉の平均粒径(D50)をレーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で測定したところ、0.85μmであった。不均化反応により球状銅微粉を得て、球状銅微粉を濾過洗浄、吸引脱水することなくスラリー状態のまま連続して銀メッキをすることにより、効率的に元粉である球状銅微粉とほぼ同一粒径(元粉に対して約107%)である銀めっき球状銅微粉を得ることができる。見掛密度は2.35g/cm3、タップ密度は3.51g/cm3、BET比表面積は1.68m2/gであった。銀の質量%は10.4質量%であった。
実施例2(超音波照射なし)
 7リッターの純水に、ニカワを8g溶解させ、攪拌しつつ亜酸化銅1000gを添加して懸濁させ、亜酸化銅スラリーを7℃で保持した。スラリー中の亜酸化銅濃度は約143g/L、スラリー中のニカワ濃度は約1.14g/Lである。
 次いで7℃に保持した希硫酸(濃度24質量%:9N、モル比(酸水溶液/スラリー):1.3)2000ccを、16分で添加した。生成した球状銅微粉のスラリーの一部を採取し、レーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で平均粒径(D50)を測定したところ、球状銅微粉の平均粒径は0.53μmであった。球状銅微粉の収量は440gと推定される。
 以下、実施例1と同様に銀メッキを行った。
 この銀メッキ球状銅微粉の平均粒径(D50)をレーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で測定したところ、0.68μmであった。不均化反応により球状銅微粉を得て、球状銅微粉を濾過洗浄、吸引脱水することなくスラリー状態のまま連続して銀メッキをすることにより、効率的に元粉である球状銅微粉とほぼ同一粒径(元粉に対して約128%)である銀めっき球状銅微粉を得ることができる。見掛密度は2.08g/cm3、タップ密度は2.79g/cm3、BET比表面積は3.96m2/gであった。銀の質量%は10.1質量%であった。
実施例3(超音波照射あり)
 7リッターの純水に、ニカワを8g溶解させ、攪拌しつつ亜酸化銅1000gを添加して懸濁させ、亜酸化銅スラリーを7℃で保持した。スラリー中の亜酸化銅濃度は約143g/L、スラリー中のニカワ濃度は約1.14g/Lである。
 次いで7℃に保持した希硫酸(濃度24質量%:9N、モル比(酸水溶液/スラリー):1.3)2000ccを、5秒で添加した。生成した球状銅微粉のスラリーの一部を採取し、レーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で平均粒径(D50)を測定したところ、球状銅微粉の平均粒径は0.10μmであった。球状銅微粉の収量は440gと推定される。
 以下、硝酸銀アンモニア溶液の連続添加時間30分とその後の攪拌時間30分を合わせた計60分間、発振周波数を40kHzとして超音波照射をしたこと以外は実施例1と同様に銀メッキを行った。
 この銀メッキ球状銅微粉の平均粒径(D50)をレーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で測定したところ、0.12μmであった。不均化反応により球状銅微粉を得て、球状銅微粉を濾過洗浄、吸引脱水することなくスラリー状態のまま連続して銀メッキをすることにより、効率的に元粉である球状銅微粉とほぼ同一粒径(元粉に対して約120%)である銀めっき球状銅微粉を得ることができる。見掛密度は2.23g/cm3、タップ密度は3.09g/cm3、BET比表面積は6.05m2/gであった。銀の質量%は10.2質量%であった。
比較例(超音波照射なし)
 7リッターの純水に、ニカワを8g溶解させ、攪拌しつつ亜酸化銅1000gを添加して懸濁させ、亜酸化銅スラリーを7℃で保持した。スラリー中の亜酸化銅濃度は約143g/L、スラリー中のニカワ濃度は約1.14g/Lである。
 次いで7℃に保持した希硫酸(濃度24質量%:9N、モル比(酸水溶液/スラリー):1.3)2000ccを、5秒で添加した。生成した球状銅微粉のスラリーの一部を採取し、レーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で平均粒径(D50)を測定したところ、球状銅微粉の平均粒径は0.10μmであった。球状銅微粉の収量は440gと推定される。
 以下、実施例1と同様に銀メッキを行った。
 この銀メッキ球状銅微粉の平均粒径(D50)をレーザー回折式粒度分布測定装置((株)島津製作所製、型式SALD-2100)で測定したところ、0.78μmであった。不均化反応により球状銅微粉を得て、球状銅微粉を濾過洗浄、吸引脱水することなくスラリー状態のまま連続して銀メッキをすることにより、効率的に元粉である球状銅微粉に対してかなり大きな粒径(元粉に対して約780%)である銀めっき球状銅微粉を得ることができる。見掛密度は1.65g/cm3、タップ密度は2.44g/cm3、BET比表面積は11.06m2/gであった。銀の質量%は9.0質量%であった。
 以上の結果を表1にまとめた。銀メッキの厚みは、銀メッキ球状銅微粉の平均粒径から球状銅微粉の平均粒径を差し引いた値とした。
Figure JPOXMLDOC01-appb-T000001
 これらの結果から、原料の球状銅微粉の平均粒径が約0.4μm以上であれば、湿式条件下での連続銀めっきで1μm未満の平均粒径を有するような超微細な銅微粉の表面に極薄い銀メッキ層が形成された銀メッキ銅微粉を提供することができる。しかしながら、平均粒径が約0.4μm未満では凝集度が高くなるので、湿式条件下での連続銀めっきと銀めっき時の超音波照射処理が必要となることが分かる。

Claims (11)

  1.  表面に銀メッキが施された銅微粉であって、レーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が1μm未満であり、銀メッキ膜の厚みが0.1nm~0.2μmである銀メッキ銅微粉。
  2.  表面に銀メッキが施された銅微粉であって、銀の重量が1~25質量%であることを特徴とする請求項1記載の銀メッキ銅微粉。
  3.  D50が0.05~0.5μmであり、銀メッキ膜の厚みが0.2nm~0.05μmである請求項1又は2に記載の銀メッキ銅微粉。
  4.  BET比表面積が3.0~10.0m2/gである請求項1~3の何れか一項に記載の銀メッキ銅微粉。
  5.  タップ密度は見掛密度よりも大きく、見掛密度が1.0~3.0g/cm3であり、タップ密度が2.0~4.0g/cm3である請求項1~4何れか一項に記載の銀メッキ銅微粉。
  6.  銀メッキが施される前の銅微粉のレーザー回折散乱式粒度分布測定による累積重量が50%となる粒子径(D50)が0.05~0.9μmである請求項1~5何れか一項に記載の銀メッキ銅微粉。
  7.  天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに酸性水溶液を16分以内で添加して、不均化反応を行うことで、累積重量が50%となる粒子径(D50)が0.05~0.9μmである銅微粉スラリーを製造する工程1と、当該銅微粉スラリーをアルカリ性溶液で処理して銅微粉表面の有機物を除去する工程2と、当該銅微粉を酸性溶液で処理して銅微粉表面の酸化物を除去する工程3と、当該銅微粉を還元剤中に分散させたpH3.5~4.5の銅微粉スラリーを調製する工程4と、当該銅微粉スラリーに銀イオン溶液を連続的に添加することにより、無電解置換メッキと還元型無電解メッキにより銅微粉表面に銀層を形成する工程5と、工程5で得られた銀メッキ銅微粉スラリーを固液分離する工程6とを順に実施することを含む銀メッキ銅微粉の製造方法。
  8.  工程1において、累積重量が50%となる粒子径(D50)が0.4μm未満である銅微粉スラリーを製造し、工程5において、銀イオン溶液の添加中に超音波を照射する請求項7に記載の製造方法。
  9.  工程5において、銀イオン溶液の添加終了後にも10分以上超音波照射を継続する請求項8に記載の製造方法。
  10.  照射する超音波の発振周波数が16~50kHzである請求項8又は9に記載の製造方法。
  11.  請求項1~6何れか一項に記載の銀メッキ銅微粉を含有する導電性ペースト。
PCT/JP2011/057439 2010-03-31 2011-03-25 銀メッキ銅微粉及びその製造方法 WO2011125556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180016826.1A CN102811830B (zh) 2010-03-31 2011-03-25 镀银铜微粉及其制备方法
KR1020127021829A KR101424369B1 (ko) 2010-03-31 2011-03-25 은도금 구리 미분 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083589 2010-03-31
JP2010083589A JP5571435B2 (ja) 2010-03-31 2010-03-31 銀メッキ銅微粉の製造方法

Publications (1)

Publication Number Publication Date
WO2011125556A1 true WO2011125556A1 (ja) 2011-10-13

Family

ID=44762509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057439 WO2011125556A1 (ja) 2010-03-31 2011-03-25 銀メッキ銅微粉及びその製造方法

Country Status (5)

Country Link
JP (1) JP5571435B2 (ja)
KR (1) KR101424369B1 (ja)
CN (1) CN102811830B (ja)
TW (1) TWI468241B (ja)
WO (1) WO2011125556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084021A1 (ja) * 2012-11-30 2014-06-05 三井金属鉱業株式会社 銀コート銅粉及びその製造方法
EP2806429A4 (en) * 2012-01-20 2016-02-10 Toyo Aluminium Kk CONDUCTIVE FILLER IN FLAKE FORM

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912663B2 (ja) * 2012-02-29 2016-04-27 Jx金属株式会社 コバルトめっき銅微粉及びコバルトめっき銅微粉を用いて製造した導電ペースト並びにコバルトめっき銅微粉の製造方法
JP6309758B2 (ja) * 2013-12-26 2018-04-11 三井金属鉱業株式会社 銀コート銅粉及びその製造方法
JP2016004659A (ja) * 2014-06-16 2016-01-12 株式会社村田製作所 導電性樹脂ペーストおよびセラミック電子部品
JP6549924B2 (ja) * 2015-07-23 2019-07-24 三井金属鉱業株式会社 銀コート銅粉及びその製造方法
TWI609381B (zh) * 2016-02-02 2017-12-21 國立成功大學 可在空氣中燒結高導電率奈米銀包銅厚膜膏之製備方法
JP6811080B2 (ja) * 2016-02-03 2021-01-13 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
WO2018062527A1 (ja) * 2016-09-29 2018-04-05 Jx金属株式会社 レーザー焼結用表面処理金属粉
CN106925774B (zh) * 2017-03-16 2019-06-07 重庆云天化瀚恩新材料开发有限公司 一种银包铜粉的制备方法
TWI792540B (zh) * 2020-09-15 2023-02-11 日商Jx金屬股份有限公司 銅粉及銅粉之製造方法
CN113814396A (zh) * 2021-10-18 2021-12-21 苏州卡睿杰新材料科技有限公司 一种异质结太阳电池低温浆料用亚微米级镀银铜粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224420A (ja) * 2006-02-24 2007-09-06 Samsung Electro-Mechanics Co Ltd コア−シェル構造の金属ナノ粒子及びその製造方法
WO2008059789A1 (fr) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Fine poudre de cuivre plaquée argent, pâte conductrice produite à partir d'une fine poudre de cuivre plaquée argent, et procédé pour produire une fine poudre de cuivre plaquée argent
WO2009001710A1 (ja) * 2007-06-28 2008-12-31 Nippon Mining & Metals Co., Ltd. 球状銅微粉及びその製造方法
JP2010065260A (ja) * 2008-09-09 2010-03-25 Tohoku Univ 銀被覆銅微粉の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832247B2 (ja) * 1990-07-24 1998-12-09 三井金属鉱業株式会社 銀被覆銅粉の製造方法
JP4204849B2 (ja) * 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 微粒子銅粉の製法
JP4242176B2 (ja) * 2003-02-25 2009-03-18 石原産業株式会社 銅微粒子及びその製造方法
JP2005023417A (ja) * 2003-07-04 2005-01-27 Fukuda Metal Foil & Powder Co Ltd 銅超微粉末の製造方法
KR100719993B1 (ko) 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 혼합 도전 분말 및 그의 이용
JP4868329B2 (ja) * 2004-03-09 2012-02-01 Jx日鉱日石金属株式会社 銅微粉の製造方法
KR20050053040A (ko) * 2005-05-23 2005-06-07 이찬우 전자기파 차폐용 도전성 시트 조성물 및 그의 제조 방법
KR100695564B1 (ko) 2005-12-27 2007-03-16 제일모직 주식회사 실리콘 페이스트 조성물 및 전자파 차폐 가스켓
US7686875B2 (en) * 2006-05-11 2010-03-30 Lam Research Corporation Electroless deposition from non-aqueous solutions
CN1962957A (zh) * 2006-11-02 2007-05-16 中国地质大学(武汉) 超声波电镀金刚石钻头的方法
CN1974870A (zh) * 2006-11-23 2007-06-06 上海交通大学 超声波降低电镀铜薄膜内应力的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224420A (ja) * 2006-02-24 2007-09-06 Samsung Electro-Mechanics Co Ltd コア−シェル構造の金属ナノ粒子及びその製造方法
WO2008059789A1 (fr) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Fine poudre de cuivre plaquée argent, pâte conductrice produite à partir d'une fine poudre de cuivre plaquée argent, et procédé pour produire une fine poudre de cuivre plaquée argent
WO2009001710A1 (ja) * 2007-06-28 2008-12-31 Nippon Mining & Metals Co., Ltd. 球状銅微粉及びその製造方法
JP2010065260A (ja) * 2008-09-09 2010-03-25 Tohoku Univ 銀被覆銅微粉の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806429A4 (en) * 2012-01-20 2016-02-10 Toyo Aluminium Kk CONDUCTIVE FILLER IN FLAKE FORM
WO2014084021A1 (ja) * 2012-11-30 2014-06-05 三井金属鉱業株式会社 銀コート銅粉及びその製造方法

Also Published As

Publication number Publication date
KR20120116004A (ko) 2012-10-19
TW201139012A (en) 2011-11-16
JP2011214080A (ja) 2011-10-27
JP5571435B2 (ja) 2014-08-13
KR101424369B1 (ko) 2014-07-31
CN102811830B (zh) 2014-12-10
CN102811830A (zh) 2012-12-05
TWI468241B (zh) 2015-01-11

Similar Documents

Publication Publication Date Title
JP5571435B2 (ja) 銀メッキ銅微粉の製造方法
JP5394084B2 (ja) 銀メッキ銅微粉及び銀メッキ銅微粉を用いて製造した導電ペースト並びに銀メッキ銅微粉の製造方法
JP4868716B2 (ja) フレーク銅粉及び導電性ペースト
KR101945166B1 (ko) 도전성 페이스트용 구리분 및 그 제조 방법
JPWO2008059789A1 (ja) 銀メッキ銅微粉及び銀メッキ銅微粉を用いて製造した導電ペースト並びに銀メッキ銅微粉の製造方法
KR20080100365A (ko) 미립 은 입자 제조 방법 및 그 제조 방법으로 얻어진 미립 은 입자
JP5778941B2 (ja) 銀被覆フレーク銅粉の製造方法
TWI583802B (zh) Conductive particles, a method for producing the same, a conductive resin composition containing the same, and a conductive coating
JP2004330247A (ja) ニッケル粉末、及び導電性ペースト、並びに積層セラミック電子部品
JP6159505B2 (ja) 扁平銅粒子
JP5255580B2 (ja) フレーク銅粉の製造方法
JP6889831B2 (ja) ニッケル粉末の水スラリーとその製造方法
JP4569727B2 (ja) 銀粉およびその製造方法
JP2016094665A (ja) 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
JP2017039991A (ja) 銀コート銅粉とその製造方法、及びそれを用いた導電性ペースト
JP6549924B2 (ja) 銀コート銅粉及びその製造方法
JP5912663B2 (ja) コバルトめっき銅微粉及びコバルトめっき銅微粉を用いて製造した導電ペースト並びにコバルトめっき銅微粉の製造方法
JP5571053B2 (ja) 低炭素銅粒子
JP6213301B2 (ja) ニッケル粉末の製造方法
JP5785433B2 (ja) 低炭素銅粒子
TW201439377A (zh) 銅粉
TWI544977B (zh) 導電性糊用銅粉及其製造方法
WO2016027597A1 (ja) はんだ被覆ボールおよびその製造方法
JP6083295B2 (ja) ニッケル粉末の製造方法
KR20120122885A (ko) 저탄소 구리입자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016826.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021829

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765457

Country of ref document: EP

Kind code of ref document: A1