WO2011101918A1 - 発光装置とその製造方法 - Google Patents

発光装置とその製造方法 Download PDF

Info

Publication number
WO2011101918A1
WO2011101918A1 PCT/JP2010/001118 JP2010001118W WO2011101918A1 WO 2011101918 A1 WO2011101918 A1 WO 2011101918A1 JP 2010001118 W JP2010001118 W JP 2010001118W WO 2011101918 A1 WO2011101918 A1 WO 2011101918A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lower electrode
electrode layer
film
recess
Prior art date
Application number
PCT/JP2010/001118
Other languages
English (en)
French (fr)
Inventor
矢田修平
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010538252A priority Critical patent/JP5453303B2/ja
Priority to CN201080001392.3A priority patent/CN102334384B/zh
Priority to KR1020107022897A priority patent/KR101567114B1/ko
Priority to PCT/JP2010/001118 priority patent/WO2011101918A1/ja
Priority to US13/043,803 priority patent/US8519425B2/en
Publication of WO2011101918A1 publication Critical patent/WO2011101918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to a light emitting device and a manufacturing method thereof.
  • organic electroluminescence (organic EL) display devices have been researched and developed (for example, see Patent Documents 1 and 2).
  • the organic EL display device has a configuration in which organic EL elements are provided in units of subpixels, and each organic EL element emits light by utilizing an electroluminescence phenomenon of a solid fluorescent material.
  • the configuration of the organic EL display device according to the prior art will be described with reference to FIG.
  • a TFT (Thin Film Transistor) layer (only the source 901a as a part thereof is shown in the figure) is formed on a substrate 900, and a passivation film 902 and A planarizing film 903 is formed. Furthermore, an anode layer 910 is formed on the planarizing film 903 in a state corresponding to each subpixel.
  • the lower electrode layer (anode layer) 910 has a stacked structure of a metal layer 9101 and a transparent conductive layer 9102 and is connected to the source 901a of the TFT layer through a contact hole 904.
  • the lower electrode layer 910 is provided for each subpixel, such as a first lower electrode layer 910a and a second lower electrode layer 910b. That is, in the adjacent subpixels, the first metal layer 9101a and the first transparent conductive layer 9102a of the first lower electrode layer 910a and the second metal layer 9101b and the second transparent conductive layer 9102b of the second lower electrode layer 910b are Are electrically separated from each other.
  • a light emitting laminate 920 On the lower electrode layer 910 and the planarizing film 903 between the sub-pixels, a light emitting laminate 920, an upper electrode layer (cathode layer) 930, and a sealing layer 931 are sequentially laminated.
  • the light emitting laminate 920 includes a semiconductor intermediate layer 921, a light emitting layer 922, an electron injection layer 924, and a partition wall 923 that are sequentially stacked from the upper surface side of the planarization film 903.
  • the partition wall 923 partitions the light emitting layer 922 for each subpixel. Specifically, the partition 923 partitions the light emitting layer 922a on the first lower electrode layer 910a and the light emitting layer 922b on the second lower electrode layer 910b.
  • the lower electrode layer 910 (first lower portion) of the adjacent subpixel is formed.
  • a leakage current flows between the electrode layer 910a and the second lower electrode layer 910b, and crosstalk occurs.
  • an organic EL display device is taken as an example as a conventional technique, but a similar problem occurs with a light emitting device including the organic EL display device.
  • the present invention has been made to solve the above-described problems, and provides a light-emitting device capable of suppressing leakage current between adjacent lower electrode layers and effectively preventing the occurrence of crosstalk, and a method for manufacturing the same. For the purpose.
  • a light-emitting device employs the following configuration.
  • a light-emitting device includes a planarization film formed above a substrate and having a depression, and a first lower electrode formed on the planarization film and outside the formation area of the depression
  • a second lower electrode layer formed on the planarizing film and adjacent to the first lower electrode layer with the recess portion outside the formation region of the recess portion, and the first lower electrode
  • a semiconducting intermediate layer formed above the layer and the second lower electrode layer, an end of the first lower electrode layer, an end of the second lower electrode layer adjacent to the first lower electrode layer, and
  • a barrier rib formed to cover the recess portion of the planarization film, and the recess portion of the planarization film is formed between the first lower electrode layer and the second lower electrode layer.
  • the upper surface of the depression of the planarization film is the same as the semiconducting intermediate layer.
  • the layer of the material is formed, and the film thickness of the end portion of the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film is on the upper surface of the recess portion of the planarization film. It is thinner than the film thickness of the central part of the layer made of the same material as the semiconductive intermediate layer formed.
  • a recess is provided between the first lower electrode layer and the second lower electrode layer in the planarization film.
  • the depression in the planarization film is submerged from the other upper surface of the planarization film, and a layer made of the same material as the semiconductive intermediate layer is formed on the upper surface of the depression.
  • the layer of the same material as that of the semiconductive intermediate film formed on the upper surface of the recess portion of the planarizing film is thinner at the end than at the center.
  • the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film due to the film thickness relationship of the same material as the semiconductive intermediate layer as described above.
  • the conductivity is low at the end of the layer.
  • the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film substantially separates the first lower electrode layer and the second lower electrode layer. Thus, a leakage current between the first lower electrode layer and the second lower electrode layer is prevented.
  • FIG. 1 is a schematic block diagram illustrating an overall configuration of an organic EL display device 1 according to Embodiment 1.
  • FIG. 1 is a schematic bird's-eye view showing a display panel 10 of an organic EL display device 1.
  • 3 is a schematic end view showing a partial configuration of the display panel 10.
  • FIG. 3 is a schematic plan view showing a partition wall 123 in the display panel 10.
  • FIG. 4 is a schematic end view showing a manufacturing process of the display panel 10.
  • FIG. 4 is a schematic end view showing a manufacturing process of the display panel 10.
  • FIG. 4 is a schematic end view showing a manufacturing process of the display panel 10.
  • FIG. 5 is a schematic end view showing a partial configuration of a display panel unit 12 of an organic EL display device according to Embodiment 2.
  • FIG. 1 is a schematic bird's-eye view showing a display panel 10 of an organic EL display device 1.
  • 3 is a schematic end view showing a partial configuration of the display panel 10.
  • FIG. 3 is
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 12.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 12.
  • FIG. 10 is a schematic end view showing a partial configuration of a display panel unit 14 of an organic EL display device according to Embodiment 3.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 14.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 14.
  • FIG. 6 is a schematic end view showing a partial configuration of a display panel unit 16 of an organic EL display device according to Embodiment 4.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 16.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 16.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 16.
  • FIG. 5 is a schematic end view showing a manufacturing process of the display panel 16.
  • FIG. It is a schematic plan view which shows the partition 263 in the display panel 18 which concerns on a modification. It is a model end elevation which shows a partial structure of the display panel which concerns on a prior art.
  • a light-emitting device includes a planarization film formed above a substrate and having a depression, and a first lower electrode formed on the planarization film and outside the formation area of the depression
  • a second lower electrode layer formed on the planarizing film and adjacent to the first lower electrode layer with the recess portion outside the formation region of the recess portion, and the first lower electrode
  • a semiconducting intermediate layer formed above the layer and the second lower electrode layer; an end of the first lower electrode layer; an end of the second lower electrode layer adjacent to the first lower electrode layer; and
  • a barrier rib formed to cover the recess portion of the planarization film, and the recess portion of the planarization film is formed between the first lower electrode layer and the second lower electrode layer.
  • the same material as the semiconducting intermediate layer is formed on the upper surface of the recess portion of the planarizing film, sinking from the other upper surface of the film
  • the thickness of the end of the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film is formed on the upper surface of the recess portion of the planarization film. It is thinner than the thickness of the central part of the layer made of the same material as the semiconductive intermediate layer.
  • a recess is provided between the first lower electrode layer and the second lower electrode layer in the planarization film.
  • the depression in the planarization film is submerged from the other upper surface of the planarization film, and a layer made of the same material as the semiconductive intermediate layer is formed on the upper surface of the depression. Then, the layer of the same material as the semiconductive intermediate film formed on the upper surface of the recess portion of the planarizing film has a thickness that is thinner at the end than at the center.
  • the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film due to the film thickness relationship of the same material as the semiconductive intermediate layer as described above.
  • the conductivity is low at the end of the layer.
  • the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film substantially separates the first lower electrode layer and the second lower electrode layer. Thus, a leakage current between the first lower electrode layer and the second lower electrode layer is prevented.
  • a partition wall formed so as to cover the depression of the planarization film, the depression of the planarization film between the first lower electrode layer and the second lower electrode layer,
  • the lower surface of the planarization film sinks below the upper surface of the recess of the planarization film, and the semiconductive intermediate A layer of the same material is formed, and a side surface of the recess has a region where a layer of the same material as the semiconductive intermediate layer
  • a recess is provided between the first lower electrode layer and the second lower electrode layer in the flat film.
  • the depression in the planarization film is submerged from the other upper surface of the planarization film, and a layer made of the same material as the semiconductive intermediate layer is formed on the upper surface of the depression.
  • the side surface of the hollow part of a planarization film has the area
  • the semiconductive intermediate layer is divided at the portion by having a region where the semiconductive intermediate layer is not formed on the side surface of the indented portion.
  • the first lower electrode layer and the second lower electrode layer formed across the depression are not formed continuously.
  • the semiconductive intermediate layer does not electrically connect the first lower electrode layer and the second lower electrode layer, and can prevent a leakage current between the first lower electrode layer and the second lower electrode layer.
  • the partition wall of the light-emitting device according to one embodiment of the present invention is formed so as to enter into a shape portion that is recessed in the direction of the pixel region, adhesion with the planarization film is improved. As a result, in the light-emitting device of one embodiment of the present invention, the partition wall is hardly peeled off and has high reliability.
  • a side surface of the recess is shaped to enter below each of the first lower electrode layer and the second lower electrode layer.
  • the side surface of the indented portion has a shape that penetrates below each of the first lower electrode layer and the second lower electrode layer.
  • the side surface of the recess portion of the chemical film has a region where the semiconductive intermediate layer is not formed.
  • the first lower electrode layer and the second lower electrode layer tail are physically electrically connected at the end of the upper surface of the recess portion of the planarization film. Since there is no medium to perform, leakage current between the first lower electrode layer and the second lower electrode layer can be completely prevented.
  • the first lower electrode layer includes a layer made of a first transparent conductive film on the semiconductive intermediate layer side
  • the second lower electrode layer includes A layer made of a second transparent conductive film is included on the semiconductive intermediate layer side, and the semiconductive intermediate layer is formed on the layer made of the first transparent conductive film and on the layer made of the second transparent conductive film.
  • a TFT layer is formed between the substrate and the planarization film, and the planarization film is formed over the TFT layer.
  • the TFT layer is formed between the substrate and the planarization film, and the planarization film is formed on the TFT layer.
  • the recess portion of the planarization film is submerged between the first lower electrode layer and the second lower electrode layer from the other upper surface of the planarization film, so that the TFT layer is formed.
  • the thickness of the upper planarizing film can be larger than the thickness of the planarizing film formed between the first lower electrode layer and the second lower electrode layer.
  • the first light-emitting layer formed on the semiconductive intermediate layer above the first lower electrode layer and the second lower electrode layer And a second light emitting layer formed on the semiconducting intermediate layer, and the partition partitions the first light emitting layer and the second light emitting layer.
  • the partition includes the first light-emitting layer formed on the semiconductive intermediate layer above the first lower electrode layer, and the second lower electrode layer. It is the structure which divides the 2nd light emitting layer formed on the upper side and semiconductive intermediate
  • the first light emitting layer and the second light emitting layer are also separated from each other, the light emitted from the first light emitting layer and the light emitted from the second light emitting layer are not mixed.
  • the light-emitting device according to one embodiment of the present invention has excellent light-emitting characteristics.
  • the light-emitting device includes the upper electrode layer formed above the first light-emitting layer and the second light-emitting layer in the above structure.
  • the light emitting device can include an upper electrode layer formed above the first light emitting layer and the second light emitting layer.
  • the upper electrode layer is a cathode layer.
  • the upper electrode layer may be a cathode layer.
  • the first lower electrode layer and the second lower electrode layer are anode layers
  • the semiconducting intermediate layer is a hole injection layer.
  • the semiconducting intermediate layer is a hole injection layer.
  • injection of holes from the first lower electrode layer to the first light emission layer and injection of holes from the second lower electrode layer to the second light emission layer are performed. Injection is facilitated by the hole injection layer.
  • the driving voltage is low and the power consumption is small.
  • the depth of the recess is the center of the same material layer as the semiconductive intermediate layer formed on the upper surface of the recess of the planarization film. It is larger than the film thickness of the part.
  • the depth of the recess in the planarization film is the center of the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess in the planarization film. It is larger than the film thickness of the part. That is, in the light-emitting device according to one embodiment of the present invention, a semiconducting intermediate layer is formed on the side surface of the recess portion of the planarization film so as to enter the lower side of each of the first lower electrode layer and the second lower electrode layer.
  • the thickness of the end portion of the layer made of the same material as the semiconductive intermediate layer formed on the upper surface of the recess portion of the planarization film is increased on the upper surface of the recess portion of the planarization film. It becomes easy to make it thinner than the film thickness of the center part of the layer of the same material as the formed semiconductive intermediate layer.
  • the width of the region where the semiconducting intermediate layer is not formed on the side surface of the recess of the planarization film is increased. Therefore, even if the thickness of the semiconducting intermediate layer and the layer of the same material as the semiconducting intermediate layer is increased, the semiconductive intermediate layer above the first lower electrode layer and the semiconductive intermediate layer above the second lower electrode layer Is easily divided, and the semiconducting intermediate layer is not formed across the first lower electrode layer and the second lower electrode layer formed across the recess of the planarization film.
  • the semiconductive intermediate layer does not electrically connect the first lower electrode layer and the second lower electrode layer, and can further prevent leakage current between the first lower electrode layer and the second lower electrode layer. Is preferred.
  • crosstalk due to leakage current does not occur between adjacent subpixels.
  • a first step of preparing a substrate, a second step of forming a planarizing film above the substrate, and a first lower portion on the planarizing film A third step of forming an electrode layer and a second lower electrode layer; a fourth step of forming a resist on the first lower electrode layer and the second lower electrode layer; and the first lower electrode layer; By etching the region of the planarization film where the resist is not formed between the second electrode layer, the upper surface of the planarization film in the region of the planarization film where the resist is not formed
  • a fifth step of forming a depressed portion that sinks below the other upper surface of the planarizing film; and a semiconducting intermediate on the first lower electrode layer, the second lower electrode layer, and the bottom surface of the depressed portion A third step of forming an electrode layer and a second lower electrode layer; a fourth step of forming a resist on the first lower electrode layer and the second lower electrode layer; and the first lower electrode layer; By etching the region of the planarization film where the
  • a sixth step of forming a layer, and an upper surface of the recess portion of the planarization film The thickness of the end portion of the formed the semiconductor intermediate layer, thinner form than the thickness of the central portion of the formed on the upper surface of the recessed portion of the planarization film the semiconductor intermediate layer.
  • a depressed portion is formed between the first lower electrode layer and the second lower electrode layer in the planarization film, which is sunk more than the other upper surface of the planarization film.
  • a semiconducting intermediate layer is formed on the upper surface of the recess of the planarizing film.
  • the film thickness of the edge of the semiconducting intermediate layer formed on the upper surface of the recess of the planarizing film is that the semiconducting intermediate layer is cut off by the shadowing effect on the side of the indentation when forming the semiconductive intermediate layer. Therefore, it becomes thinner than the film thickness of the central part of the semiconductive intermediate layer formed on the upper surface of the recess part of the planarizing film.
  • the conductivity of the semiconductive intermediate layer is reduced at the end of the semiconductive intermediate layer formed on the upper surface of the recess of the planarization film.
  • the semiconducting intermediate layer formed on the upper surface of the recess of the planarizing film does not substantially electrically connect the first lower electrode layer and the second lower electrode layer, so the first lower electrode layer and the second lower electrode layer Leakage current between the electrode layers can be prevented.
  • a light-emitting device that does not generate crosstalk can be realized.
  • a first step of preparing a substrate, a second step of forming a planarizing film above the substrate, and a first lower portion on the planarizing film A third step of forming an electrode layer and a second lower electrode layer; and using the first lower electrode layer and the second lower electrode layer itself as a mask, the first lower electrode layer and the second lower electrode layer Etching the region of the planarization film between the first lower electrode layer and the second lower electrode layer in the region of the planarization film to sink more than the other upper surface of the planarization film
  • a fourth step of forming a depressed portion, and a fifth step of forming a semiconducting intermediate layer on the first lower electrode layer, the second lower electrode layer, and the bottom surface of the depressed portion The side surface of the recess has a region where the semiconducting intermediate layer is not formed, The conductive intermediate layer, wherein the dividing the semiconductor intermediate layer is not formed region in the side surface of the rece
  • a planarization film is formed by etching a planarization film between the first lower electrode layer and the second lower electrode layer, and etching in the fourth process.
  • a depression is formed which is depressed below the other upper surface of the planarizing film, and a region in which the semiconductive intermediate layer is not formed is formed on the side surface of the depression, so that the semiconductive intermediate above the first lower electrode layer is formed.
  • the layer is separated from the semiconductive intermediate layer above the second lower electrode layer.
  • the semiconductive intermediate layer above the first lower electrode layer and the semiconductive intermediate layer above the second lower electrode layer are semiconductive intermediate on the side surface of the recess.
  • the semiconductor intermediate layer is formed continuously across the first lower electrode layer and the second lower electrode layer formed with the recess in between because the layer is divided in the region where the layer is not formed. Is something that disappears.
  • an electrode remaining after the first lower electrode layer and the second lower electrode layer are formed in the third step.
  • the metal film residue for forming the layer can also be completely removed. Therefore, leakage current between the first lower electrode layer and the second lower electrode layer can be prevented.
  • a short circuit between the first lower electrode layer and the second lower electrode layer and a leakage current of the semiconducting intermediate layer are caused between adjacent subpixels.
  • a light-emitting device that does not cause crosstalk can be manufactured.
  • the partition wall is formed so as to enter into a shape portion that is recessed in the direction of the sub-pixel region, so that the adhesion with the planarization film is improved.
  • the planarization between the first lower electrode layer and the second lower electrode layer is performed by etching in the fourth step.
  • the recess formed in the film has a shape in which a side surface enters below each of the first lower electrode layer and the second lower electrode layer.
  • the side surface has a recess having a shape that enters under each of the first lower electrode layer and the second lower electrode layer. Since it forms in a planarization film
  • the electrical connection between the first lower electrode layer and the second lower electrode layer tail is physically performed at the end portion of the upper surface of the recess portion of the planarization film. Since there is no connection medium, leakage current between the first lower electrode layer and the second lower electrode layer can be completely prevented.
  • a light-emitting device in which occurrence of crosstalk is prevented can be manufactured.
  • the etching is dry etching.
  • the first lower electrode layer includes a layer made of a first transparent conductive film on the semiconducting intermediate layer side
  • the second The lower electrode layer includes a layer made of a second transparent conductive film on the semiconductive intermediate layer side, and when forming the semiconductive intermediate layer, the layer on the first transparent conductive film and the second transparent conductive film A semiconducting intermediate layer is formed on the layer.
  • the first lower electrode layer and the second lower electrode layer including a layer made of the first transparent conductive film or a layer made of the second transparent conductive film on each semiconductive intermediate layer side.
  • Form. In forming the layer of the first transparent conductive film in the first lower electrode layer and the layer of the second transparent conductive film layer in the second lower electrode layer, patterning is performed by wet etching, and the first lower electrode layer and the second lower electrode are formed. The transparent conductive film formed between the layers is removed.
  • dry etching is performed using the layer made of the first transparent conductive film and the layer made of the second transparent conductive film patterned by the wet etching as a mask. Etching is performed.
  • planarization film is dry-etched using the layer made of the first transparent conductive film and the layer made of the second transparent conductive film as a mask, a new mask for dry etching is used to form a recess in the planarization film. There is no need, and the manufacturing process can be simplified.
  • the organic EL display device 1 includes a display panel 10 and a drive control unit 20 connected thereto.
  • the display panel 10 is an organic EL panel using an electroluminescent phenomenon of an organic material, and a plurality of organic EL elements are arranged and configured.
  • TFTs 101 are formed on a substrate 100 corresponding to the respective subpixels, and source signal lines 31 and power supply lines 32 are connected to the TFTs 101.
  • a lower electrode layer 110, a light emitting laminate 120, and an upper electrode layer 130 are sequentially laminated on the substrate 100 on which the TFT 101 is formed. The detailed configuration of the display panel 10 will be described later.
  • the drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25.
  • the arrangement of the drive control unit 20 with respect to the display panel 10 is not limited to this.
  • subpixels 11a, 11b, and 11c each including an organic light emitting layer having an emission color of red (R), green (G), or blue (B) are adjacently formed.
  • R red
  • G green
  • B blue
  • the display panel 10 is a top emission type organic EL display.
  • a TFT layer (only the source 101a is shown in FIG. 3) and a passivation film 102 are formed, and a planarizing film 103 is laminated thereon.
  • a lower electrode layer (anode layer) 110 is formed corresponding to each of the subpixels 11a, 11b, and 11c.
  • the lower electrode layer 110 belonging to the subpixel 11a may be referred to as a first lower electrode layer 110a
  • the lower electrode layer 110 belonging to the subpixel 11b may be referred to as a second lower electrode layer.
  • the lower electrode layer 110 and the source 101a of the TFT layer are connected by a contact hole 104 that penetrates the planarization film 103 vertically.
  • a semiconductive intermediate layer 121a is formed on the lower electrode layer 110.
  • the semiconducting intermediate layer 121a functions as a hole injection layer, a hole transport layer, or a hole injection / transport layer.
  • a portion between the adjacent lower electrode layers 110 has a depressed portion 103a that is sunk more than the upper surface of the other portion.
  • a recess-inside formation layer 121b that is a layer made of the same material as the semiconductive intermediate layer 121a is also formed on the upper surface of each recess 103a.
  • the semiconductive intermediate layer 121a and the in-dent formation layer 121b may be collectively referred to as the semiconductive layer 121.
  • a light emitting layer 122 is formed on the lower electrode layer 110 for each of the subpixels 11a, 11b, and 11c.
  • a partition wall 123 made of an insulating material is erected on the in-dent formation layer 121b and on a part of the end of the semiconductive intermediate layer 121a. .
  • the light emitting layer 122 is partitioned for each of the subpixels 11a, 11b, and 11c.
  • the light emitting layer 122 belonging to the subpixel 11a may be referred to as a first light emitting layer 122a
  • the light emitting layer 122 belonging to the subpixel 11b may be referred to as a second light emitting layer 122b.
  • the partition wall 123 is integrally formed with the partition element 123 a extending in the Y-axis direction and the partition element 123 b extending in the X-axis direction.
  • a so-called pixel bank is employed.
  • the subpixels 11a, 11b, and 11c adjacent in the X-axis direction are partitioned by the partition element 123a, and similarly, the subpixels adjacent in the Y-axis direction are partitioned by the partition element 123b.
  • the electron injection layer 124, the upper electrode layer (cathode layer) 130, and the sealing layer 131 are continuously formed on the light emitting layer 122 over the region defined by the partition wall 104. It is formed to do. Note that the stacked structure of the semiconducting layer 121, the light emitting layer 122, the partition wall 123, and the electron injection layer 124 corresponds to the light emitting stacked body 120 in FIG.
  • the three sub-pixels 11a, 11b, and 11c formed adjacent to each other correspond to each color of red (R), green (G), and blue (B), and set them as one set.
  • One pixel (pixel) is configured.
  • the substrate 100 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin. Or an insulating material such as alumina.
  • planarization film 103 is formed using an organic compound such as polyimide, polyamide, or acrylic resin material.
  • the lower electrode layer 110 includes, for example, Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy). Alloy). Note that, in the case of a top emission type organic EL as in the present embodiment, it is preferably formed using a highly reflective material.
  • the semiconductor layer 121 is formed using, for example, a metal oxide such as WO X (tungsten oxide) or MoWO X (molybdenum-tungsten oxide), or a metal nitride or metal oxynitride.
  • a metal oxide such as WO X (tungsten oxide) or MoWO X (molybdenum-tungsten oxide)
  • a metal nitride or metal oxynitride tungsten oxide
  • the light-emitting layer 122 has a function of emitting light by generating an excited state when holes and electrons are injected and recombined.
  • the material used for forming the light-emitting layer 122 needs to be a light-emitting organic material that can be formed by a wet printing method.
  • the oxinoid compound, perylene compound, coumarin compound, azacoumarin compound, oxazole compound, oxadiazole compound, perinone compound, pyrrolopyrrole described in Japanese Patent Publication (JP-A-5-163488) Compound, naphthalene compound, anthracene compound, fluorene compound, fluoranthene compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenanthrene compound, cyclopentadiene compound, stilbene compound , Diphenylquinone compound, styryl compound, butadiene compound, dicyanomethylenepyran compound, dicyanomethylenethiopyran compound, fluoro Cein compound, pyrylium compound, thiapyrylium compound, seren
  • the partition wall 123 is made of an organic material such as resin and has an insulating property.
  • the organic material used for forming the partition wall 123 include acrylic resin, polyimide resin, and novolac type phenol resin.
  • the partition wall 123 preferably has organic solvent resistance. Further, since the partition wall 123 may be subjected to an etching process, a baking process, or the like, it is preferable that the partition wall 123 be formed of a highly resistant material that does not excessively deform or alter the process. In addition, the surface can be treated with fluorine to give water repellency.
  • the insulating material used for forming the partition wall 123 a material having a water repellency that has a resistivity of 10 5 [ ⁇ ⁇ cm] or more, in particular, the above-described materials can be used. This is because when a material having a resistivity of 10 5 [ ⁇ ⁇ cm] or less is used, a leakage current between the lower electrode layer 110 and the upper electrode layer 130 or between adjacent elements is caused by the partition wall 123. This is because the generation of a leakage current in the case causes various problems such as an increase in power consumption.
  • the partition wall 123 is formed using a hydrophilic material, so that the difference in affinity / water repellency between the surface of the partition wall 123 and the surface of the semiconductive intermediate layer 121a is reduced, so that the light emitting layer 122 is formed. This is because it becomes difficult to selectively hold the ink containing an organic substance in the opening of the partition wall 123.
  • the structure of the partition wall 123 not only a single layer structure as shown in FIG. 3 but also a multilayer structure of two or more layers can be adopted.
  • the above materials can be combined for each layer, and an inorganic material and an organic material can be used for each layer.
  • Electron injection layer 124 has a function of transporting electrons injected from the upper electrode layer 130 to the light emitting layer 122, and is preferably formed of, for example, barium, phthalocyanine, lithium fluoride, or a combination thereof.
  • Upper electrode layer 130 The upper electrode layer (cathode layer) 130 is made of, for example, ITO or IZO (indium zinc oxide). In the case of the top emission type organic EL elements 100a, 100b, and 100c, it is preferably formed of a light transmissive material. About light transmittance, it is preferable that the transmittance is 80% or more.
  • the upper electrode layer 130 As a material used for forming the upper electrode layer 130, in addition to the above, for example, a structure in which a layer containing an alkali metal, an alkaline earth metal, or a halide thereof and a layer containing silver are stacked in this order is used. You can also In the above, the layer containing silver may be formed of silver alone, or may be formed of a silver alloy. In order to improve the light extraction efficiency, a highly transparent refractive index adjusting layer can be provided on the silver-containing layer.
  • the sealing layer 131 has a function of suppressing the light emitting layer 122 or the like from being exposed to moisture or air, and for example, a material such as SiN (silicon nitride) or SiON (silicon oxynitride) is used. Formed using. In the case of the top emission type, it is preferably formed of a light transmissive material.
  • Indentation 103a and semiconducting layer 121 in planarization film 103 As shown in FIG. 3, in the organic EL display device 1 according to the present embodiment, in the display panel 10, a depression 103 a is provided between the first lower electrode layer 110 a and the second lower electrode layer 110 b in the planarization film 103. Is provided. The depression 103a in the planarization film 103 is submerged from the other upper surface of the planarization film 103a, and a depression-part forming layer 121b is formed on the upper surface of the depression 103a. Then, as shown in a portion surrounded by the two-dot chain line in FIG. 3, the recess portion forming layer 121b in the recess 103a of the planarization film 103, the film thickness t 2 at the end portion, the central portion side of the membrane than it It is thinner than the thickness t 1 .
  • the organic EL display device 1 at the end portion (the portion of the film thickness t 2 ) of the in-cavity forming layer 121 b in the indentation portion 103 a of the planarization film 103 due to the relationship between the film thicknesses t 1 and t 2 as described above.
  • the conductivity is lowered, and the indentation portion formation layer 121b in the indentation portion 103a of the planarizing film 103 includes the first lower electrode layer 110a and the semiconductive intermediate layer 121a thereon, the second lower electrode layer 110b and the upper portion thereof. Leakage current between the first lower electrode layer 110a and the second lower electrode layer 110b is prevented by making the semiconductor intermediate layer 121a substantially not electrically connected.
  • the partition wall 123 is formed so as to enter into the recessed portion with the formation of the recess portion 103 a in the planarization film 103.
  • the partition wall 123 is difficult to peel off. Therefore, the organic EL display device 1 according to the present embodiment has high reliability.
  • a substrate 100 is prepared.
  • a TFT layer and a passivation film 102 are formed on the Z-axis upper main surface 100f of the substrate 100, and a flattening film 1030 is laminated so as to cover the TFT layer (see FIG. 5B).
  • a flattening film 1030 is laminated so as to cover the TFT layer (see FIG. 5B).
  • FIG. 5B for the sake of illustration, only the source 101a is shown in the configuration of the TFT layer.
  • a flattened film 1031 having contact holes 104 formed at locations corresponding to the respective sources 101a of the TFT layer is formed, and a metal film (for example, an Ag thin film) 1100 is formed thereon.
  • the metal film 1100 can be formed using, for example, a sputtering method or a vacuum evaporation method.
  • a photosensitive resist 500 is deposited on a region of the metal film 1100 where the lower electrode layer 110 is to be formed.
  • patterning is performed by a photolithography method and an etching method to form the lower electrode layer 110 including the first lower electrode layer 110a and the second lower electrode layer 110b.
  • both edges 110 s of the lower electrode layer 110 enter a state below the resist 500.
  • etching for example, dry etching
  • etching is performed in a state where the resist 500 remains on the lower electrode layer 110, whereby the first lower electrode layer 110a and the second lower electrode layer 110b are formed in the planarization film 103.
  • a recess 103a is formed in a region 1031f where the resist 500 is not formed (see FIG. 6C).
  • FIG. 6C a slight distance is maintained between both edges 110s of the lower electrode layer 110 (see FIG. 6B) and the opening edge of the recess 103a. . This is because both edges 110 s of the lower electrode layer 110 enter below the resist 500, as shown in FIGS. 6B and 6C.
  • the formation of the depression 103a of the planarizing film 103 in FIG. 6C is not limited to dry etching, and can be performed by wet etching.
  • a semiconducting material is deposited on the bottom surface of the recess 103a in the lower electrode layer 110 and the planarizing film 103 to form a semiconducting layer 121 in a stacked manner.
  • the semiconducting layer 121 includes a semiconducting intermediate layer 121 a on the lower electrode layer 110, and a recess-inside formation layer 121 b on the bottom surface of the recess 103 a of the planarizing film 103.
  • an insulating material layer for forming the partition wall 123 is formed on the semiconducting layer 121 by, for example, a spin coating method, and patterned by exposure and development using a photomask. Thereafter, the partition wall 123 is formed by performing cleaning with a cleaning liquid as shown in FIG.
  • the light-emitting layer 122 is formed by dropping a composition ink containing the material of the light-emitting layer 122 into the region defined by the partition wall 123 by an inkjet method and drying the ink. . Further, the electron injection layer 124, the upper electrode layer 130, and the sealing layer 131 are stacked on the light emitting layer 122.
  • a dispenser method for example, a dispenser method, a nozzle coating method, a spin coating method, an intaglio printing method, a relief printing method, or the like can be used.
  • a dispenser method for example, a dispenser method, a nozzle coating method, a spin coating method, an intaglio printing method, a relief printing method, or the like.
  • a vacuum deposition method can be used to form the electron injection layer 124
  • a plasma coating method can be used to form the upper electrode layer 130, for example.
  • the depression 103 a is formed between the first lower electrode layer 110 a and the second lower electrode layer 110 b in the planarization film 103. Since the semiconductor layer 121 is formed in the formed state, the film thickness t 2 at the end of the in-dent formation layer 121b is larger than the film thickness t 1 at the center due to the shadowing effect on the side surface of the depression 103a. It becomes thinner (see the portion surrounded by the two-dot chain line in FIG. 3).
  • the semiconducting intermediate layer 121a on the first lower electrode layer 110a and the in-cavity-forming layer 121b adjacent to the first intermediate electrode 121a are substantially reduced in conductivity due to the side surface portion of the indentation 103. Is not electrically connected to. The same applies to the semiconductive intermediate layer 121a on the second lower electrode layer 110b and the in-dent formation layer 121b adjacent thereto.
  • a resist 500 for forming the lower electrode layer 110 is formed after the lower electrode layer 110 is formed. Without being removed, it is used as it is as a mask when forming the depression 103a of the planarizing film 103. Therefore, it is not necessary to use a new mask for forming the depression 103a, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
  • the organic EL display device according to the present embodiment has the same configuration as that of the organic EL display device 1 according to Embodiment 1 except for the configuration of the display panel 12.
  • the configuration of the display panel 12 will be described with reference to FIG.
  • the display panel 12 also includes sub-pixels 13a including organic light-emitting layers each having a light emission color of red (R), green (G), or blue (B). 13b and 13c are formed adjacent to each other, which is a top emission type organic EL display.
  • the display panel according to the first embodiment is used. 10 has the same configuration.
  • the display panel 12 also has a recess 143a formed in a region between the lower electrode layers (anode layers) 150.
  • the semiconducting layer 161 is formed on the lower electrode layer 150 and has a semiconductive intermediate layer 161a that functions as a hole injection layer, a hole transport layer, or a hole injection / transport layer, and a recess 143a in the planarization film 143.
  • the in-recessed portion forming layer 161b which is a layer of the same material as the semiconductive intermediate layer 161a.
  • a light emitting layer 162, an electron injection layer 164, an upper electrode layer (cathode layer) 170, and a sealing layer 171 are sequentially stacked on the semiconducting intermediate layer 161a.
  • a partition wall 163 for partitioning 13a, 13b, 13c is provided upright.
  • the light-emitting stacked body 160 is configured by the semiconductor intermediate layer 161 a, the light-emitting layer 162, the partition 163, and the electron injection layer 164.
  • the first light emitting layer 162a formed above the first lower electrode layer 150a and the second lower electrode layer 150b are disposed above. And the formed second light emitting layer 162b.
  • partition 163 of the display panel 12 according to the present embodiment is not particularly shown in a planar shape, but a so-called pixel bank is adopted as with the partition 123 of the display panel 10 according to the first embodiment. ing.
  • Indentation 143a and semiconductor layer 161 in planarization film 143 As shown in FIG. 8, also in the display panel 12 according to the present embodiment, a recess 143a is provided in a region between the first lower electrode layer 150a and the second lower electrode layer 150b in the planarization film 143. Yes.
  • the depression 143a in the flattening film 143 is the same as the display panel 10 according to the first embodiment in that it is depressed below the other upper surface of the flattening film 143a.
  • the point in which the hollow part formation layer 161b is formed on the bottom face of the hollow part 143a is the same as that of the display panel 10 according to the first embodiment.
  • a part of the side surface 143 s of the recess 143 a in the planarization film 143 has a region where the semiconducting layer 161 is not formed.
  • the semiconductive intermediate layer 161a on the electrode layer 150a and the semiconductive intermediate layer 161a on the second lower electrode layer 150b are divided. For this reason, each semiconducting intermediate layer 161a in the subpixels 13a, 13b, and 13c is not continuously formed across the recess 143a between them. Therefore, in the display panel 12, the semiconductive layer 161 does not electrically connect the first lower electrode layer 150a and the second lower electrode layer 150b, and the first lower electrode layer 150a and the second lower electrode layer 150b are not electrically connected. Leakage current can be prevented.
  • the partition wall 163 is formed so as to enter the recessed portion with the recess portion 143 a of the planarization film 143.
  • the adhesiveness of the partition wall 163 is difficult to peel off. Therefore, the organic EL display device according to this embodiment also has high reliability.
  • the TFT layer (FIG. 9A) is formed on the substrate 100 by executing the steps shown in FIGS. 5A to 5C in the first embodiment. ), Only the source 101a is shown), the passivation film 102, the planarization film 1431, the contact hole 104, and the metal film 1500 are formed.
  • a photosensitive resist 501 is deposited on a region on the metal film 1500 where the lower electrode layer 150 is to be formed. Then, as shown in FIG. 9B, the lower electrode layer 150 including the first lower electrode layer 150a and the second lower electrode layer 150b is formed by patterning by a photolithography method and an etching method.
  • both edges 110s of the lower electrode layer 110 enter the lower side of the resist 500 after the etching.
  • FIG. 9B after etching, both edges 150 s of the lower electrode layer 150 are made to coincide with the edges of the resist 501.
  • etching for example, dry etching
  • the resist 501 remaining on the lower electrode layer 150.
  • a recess 143a is formed in a region 1431f where the resist 501 is not formed between the first lower electrode layer 150a and the second lower electrode layer 150b (FIG. 9C). See).
  • the formation of the depressed portion 143a of the planarization film 143 is not limited to dry etching, and can be performed by wet etching.
  • a semiconducting material is deposited on the bottom surfaces of the recesses 143a in the lower electrode layer 150 and the planarizing film 143 to form a semiconducting layer 161.
  • the semiconducting layer 161 includes a semiconducting intermediate layer 161 a on the lower electrode layer 150, and a recess-forming layer 161 b on the bottom surface of the recess 143 a of the planarizing film 143.
  • an insulating material layer for forming the partition wall 163 is formed on the semiconducting layer 161 by, for example, a spin coating method, and patterned by exposure and development using a photomask. Thereafter, the partition wall 163 is formed by performing cleaning with a cleaning liquid as shown in FIG.
  • the composition ink containing the material of the light emitting layer 162 is dropped onto the region defined by the partition wall 163 by an ink jet method and dried to form the light emitting layer 162. Further, an electron injection layer 164, an upper electrode layer 170, and a sealing layer 171 are stacked on the light emitting layer 162.
  • a dispenser method for example, a dispenser method, a nozzle coating method, a spin coating method, an intaglio printing method, or a relief printing, as in the manufacturing method according to the first embodiment.
  • a printing method or the like can also be used.
  • vacuum drying and drying in a nitrogen atmosphere are sequentially performed.
  • a vacuum deposition method can be used as in the manufacturing method according to the first embodiment.
  • a plasma coating method is used for the formation of the upper electrode layer 170. Can be used.
  • the recess 143a is formed between the first lower electrode layer 150a and the second lower electrode layer 150b in the planarization film 143. Since the semiconductor layer 161 is formed in a state where the semiconductor layer 161 is formed, a region where the semiconductor layer 161 is not formed in a part of the side surface 143s of the recess portion 143a is generated due to the shadowing effect (a portion surrounded by a two-dot chain line in FIG. 8). See). For this reason, the semiconductive intermediate layer 161a on the first lower electrode layer 150a is not electrically connected to the in-dent formation layer 161b adjacent thereto. The same applies to the semiconductive intermediate layer 161a on the second lower electrode layer 150b and the in-dent formation layer 161b adjacent thereto.
  • the leakage current between the first lower electrode layer 150a and the second lower electrode layer 150b can be prevented more reliably and crosstalk can be prevented than in the display panel 10 according to the first embodiment. Does not occur.
  • the resist 501 for forming the lower electrode layer 150 is formed. Without being removed, it is used as it is as a mask when forming the recess 143a of the planarizing film 143. Therefore, it is not necessary to use a new mask for forming the recess 143a, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
  • the depth of the recess 143a in the planarizing film 143 is set to the thickness of the recess-forming layer 161b formed on the bottom surface of the recess 143a (the center of the recess 143a).
  • the film thickness is deeper than the thickness of the film. This is for the purpose of completely separating the in-cavity forming layer 161b from the semiconductive intermediate layer 161a or the lower electrode layer 150.
  • Embodiment 3 Configuration of Display Panel 14
  • the organic EL display device according to the present embodiment also has the same configuration as the organic EL display devices 1,... According to Embodiments 1 and 2 except for the configuration of the display panel 14. Below, the structure of the display panel 14 is demonstrated using FIG.
  • the display panel 14 also includes sub-pixels 15a each including an organic light-emitting layer having a light emission color of red (R), green (G), or blue (B). 15b and 15c are adjacently formed, and are a top emission type organic EL display.
  • sub-pixels 15a each including an organic light-emitting layer having a light emission color of red (R), green (G), or blue (B).
  • 15b and 15c are adjacently formed, and are a top emission type organic EL display.
  • the TFT layer formed on the substrate 100 (only the source 101a is also shown in FIG. 11), the passivation film 102, and the contact hole 104 provided in the planarization film 183 are related to the first and second embodiments. It has the same configuration as the display panels 10 and 12.
  • a recess 183 a is formed in a region between the lower electrode layers (anode layers) 190 in the planarization film 183.
  • the semiconducting layer 201 is formed on the lower electrode layer 190 and has a semiconducting intermediate layer 201a that functions as a hole injection layer, a hole transport layer, or a hole injection / transport layer, and a depression 183a in the planarization film 183.
  • the in-recessed portion forming layer 201b which is a layer made of the same material as the semiconductive intermediate layer 201a.
  • a light emitting layer 202, an electron injection layer 204, an upper electrode layer (cathode layer) 210, and a sealing layer 211 are stacked in this order on the semiconducting intermediate layer 201a.
  • a partition wall 203 that divides 15a, 15b, and 15c is provided upright.
  • a light emitting laminate 200 is configured by the semiconductive intermediate layer 201 a, the light emitting layer 202, the partition wall 203, and the electron injection layer 204.
  • the first light emitting layer 202a formed above the first lower electrode layer 190a and the second lower electrode layer are formed as in the display panels 10 and 12 according to the first and second embodiments.
  • a so-called pixel bank is also used for the partition wall 203 of the display panel 14 according to the present embodiment.
  • a recess 183a is provided in a region between the first lower electrode layer 190 a and the second lower electrode layer 190 b in the planarization film 183.
  • the depression 183a in the flattening film 183 is the same as the display panels 10 and 12 according to the first and second embodiments described above in that the depressed portion 183a sinks from the other upper surface of the flattening film 183a.
  • the point that the dent part forming layer 201b is formed on the bottom surface of the dent part 183a is the same as the display panels 10 and 12 according to the first and second embodiments.
  • the upper end edge (location P 3 ) of the recess 183 a in the planarization film 183 is the end of the lower electrode layer 190. It is in a state of entering the lower electrode layer 190 below the edge (location P 4 ). Therefore, in the display panel 14 according to the present embodiment, the portion of the side surface 183s of the recess 183a in the planarization film 183 that enters the lower electrode layer 190 (the portion indicated by the arrow B) has a semiconductor layer. By having a region where 201 is not formed, the semiconductive intermediate layer 201a on the first lower electrode layer 190a and the semiconductive intermediate layer 201a on the second lower electrode layer 190b are separated in this region.
  • the semiconductor intermediate layers 201a in the subpixels 15a, 15b, and 15c are not continuously formed across the recess 183a between them. Therefore, in the display panel 14, the semiconductive layer 201 does not electrically connect the first lower electrode layer 190a and the second lower electrode layer 190b, and the first lower electrode layer 190a and the second lower electrode layer 190b are not connected. Leakage current can be prevented. In the present embodiment, since at least a part of the recess 183a enters the lower electrode layer 190 and the semiconductor layer 201 is divided at the entered portion, the display according to the second embodiment Leakage current between the first lower electrode layer 190a and the second lower electrode layer 190b can be prevented more reliably than the panel 12.
  • the partition wall 203 is also formed so as to enter the recessed shape portion with the formation of the recessed portion 183 a of the planarization film 183. As described above, the partition wall 203 is difficult to peel off, and the organic EL display device has high reliability.
  • the TFT layer (FIG. 12A) is formed on the substrate 100 by executing the steps shown in FIGS. 5A to 5C in the first embodiment. ), Only the source 101a is shown), the passivation film 102, the planarization film 1831, the contact hole 104, and the metal film 1900 are formed.
  • a photosensitive resist 502 is deposited on the region on the metal film 1900 where the lower electrode layer 190 is to be formed. Then, as shown in FIG. 12B, patterning is performed by photolithography and etching to form the lower electrode layer 190 including the first lower electrode layer 190a and the second lower electrode layer 190b. In the manufacturing method according to the present embodiment, both edges 190 s of the lower electrode layer 190 coincide with the edges of the resist 502 after etching as shown in FIG.
  • etching for example, dry etching
  • a recess 183a is formed in a region 1831f where the resist 502 is not formed between the first lower electrode layer 190a and the second lower electrode layer 190b (FIG. 12C). See).
  • the manufacturing method according to the present embodiment at least a part of the side surface 183s of the recess 183a is obtained by changing the etching conditions (for example, the etching time) with respect to the manufacturing method according to the second embodiment.
  • the lower electrode layer 190 may enter below.
  • the formation of the recessed portion 183a of the planarizing film 183 is not limited to dry etching, and can be performed by wet etching.
  • a semiconducting material 201 is deposited on the bottom surfaces of the recesses 183a in the lower electrode layer 190 and the planarizing film 183, and the semiconducting layer 201 is laminated.
  • the semiconducting layer 201 includes a semiconducting intermediate layer 201 a on the lower electrode layer 190, and a indentation portion forming layer 201 b on the bottom surface of the indentation portion 183 a of the planarization film 183.
  • the recess 183a is deposited in a state where a semiconductor material is deposited.
  • the semiconductor layer 201 is surely divided at at least a part of the side surface 183s.
  • an insulating material layer for forming the partition wall 203 is formed on the semiconducting layer 201 by, for example, a spin coating method, and patterned by exposure and development using a photomask. Thereafter, the partition 203 is formed by performing cleaning with a cleaning liquid as shown in FIG.
  • the composition ink containing the material of the light emitting layer 202 is dropped onto the region defined by the partition wall 203 by an ink jet method and dried to form the light emitting layer 202. Further, an electron injection layer 204, an upper electrode layer 210, and a sealing layer 211 are stacked on the light emitting layer 202.
  • the light emitting layer 202 in addition to the inkjet method, for example, a dispenser method, a nozzle coating method, a spin coating method, an intaglio printing method, as in the manufacturing methods according to the first and second embodiments.
  • a relief printing method or the like can be used.
  • vacuum drying and drying in a nitrogen atmosphere are sequentially performed.
  • the electron injection layer 204 can be formed by using, for example, a vacuum deposition method, as in the manufacturing methods according to the first and second embodiments.
  • a vacuum deposition method for example, plasma coating is used. Can be used.
  • a recess 183a is formed between the first lower electrode layer 190a and the second lower electrode layer 190b in the planarization film 183. Since the semiconductor layer 201 is formed in a state where the semiconductor layer 201 is formed, a region where the semiconductor layer 201 is not formed in at least a part of the side surface 183s of the recess 183a is generated due to the shadowing effect (enclosed by a two-dot chain line in FIG. 11). See section). For this reason, the semiconductive intermediate layer 201a on the first lower electrode layer 190a is not electrically connected to the in-dent formation layer 201b adjacent thereto. The same applies to the semiconducting intermediate layer 201a on the second lower electrode layer 190b and the in-dent formation layer 201b adjacent thereto.
  • the semiconductor layer 201 can be more reliably divided.
  • the display panel 14 can more reliably prevent the leakage current between the first lower electrode layer 190a and the second lower electrode layer 190b than the display panels 10 and 12 according to the first and second embodiments. No crosstalk.
  • the resist 502 for forming the lower electrode layer 190 is formed. Without being removed, it is used as it is as a mask when forming the recess 183a of the planarization film 183. Therefore, it is not necessary to use a new mask for forming the recess 183a, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
  • the depth of the depression 183a in the planarization film 183 is set to the thickness of the in-well formation layer 201b formed on the bottom surface of the depression 183a (the center of the depression 183a).
  • the film thickness is deeper than the film thickness at the portion. This is for the purpose of completely separating the in-dent formation layer 201b from the semiconductive intermediate layer 201a or the lower electrode layer 190.
  • the organic EL display device according to the present embodiment also has the same configuration as the organic EL display devices 1,... According to the above-described first, second, and third embodiments except for the configuration of the display panel 16. . Below, the structure of the display panel 16 is demonstrated using FIG.
  • the display panel 16 also includes sub-pixels 17a each including an organic light-emitting layer having a light emission color of red (R), green (G), or blue (B). 17b and 17c are formed adjacent to each other, which is a top emission type organic EL display.
  • the TFT layer formed on the substrate 100 (only the source 101a is shown in FIG. 14), the passivation film 102, and the contact hole 104 provided in the planarization film 223 are implemented as described above.
  • the display panels 10 and 12 according to the first and second embodiments have the same configuration.
  • a recess 223 a is formed in a region between the lower electrode layers (anode layers) 230 in the planarizing film 223.
  • the semiconducting layer 241 is formed on the lower electrode layer 230 and has a semiconducting intermediate layer 241a functioning as a hole injection layer, a hole transport layer, or a hole injection / transport layer, and a recess 223a in the planarization film 223.
  • the hollow intermediate layer 241a is formed on the bottom surface of each of the first and second recess formation layers 241b, which are layers of the same material.
  • the lower electrode layer 230 has a laminated structure of the metal layer 2301 and the transparent conductive layer 2302.
  • the first lower electrode layer 230a belonging to the subpixel 17a has a stacked structure of the first metal layer 2301a and the first transparent conductive layer 2302a.
  • the second lower electrode layer 230b belonging to the subpixel 17b The second metal layer 2301b and the second transparent conductive layer 2302b have a laminated structure.
  • a light emitting layer 242, an electron injection layer 244, an upper electrode layer (cathode layer) 250, and a sealing layer 251 are sequentially stacked on the semiconductive intermediate layer 241a.
  • a partition wall 243 that divides 17a, 17b, and 17c is provided upright.
  • a light emitting laminate 240 is configured by the semiconductive intermediate layer 241 a, the light emitting layer 242, the partition 243, and the electron injection layer 244. Note that, in the light emitting layer 242, as in the display panels 10, 12, and 14 according to the first, second, and third embodiments, the first light emitting layer 242 is formed above the first transparent conductive layer 2302a in the first lower electrode layer 230a.
  • the first light emitting layer 242a and the second light emitting layer 242b formed above the second transparent conductive layer 2302b in the second lower electrode layer 230b are included.
  • a so-called pixel bank is also used for the partition 243 of the display panel 16 according to the present embodiment.
  • a recess 223 a is provided in a region between the first lower electrode layer 230 a and the second lower electrode layer 230 b in the planarization film 223.
  • the depression 223a in the flattening film 223 is the same as the display panels 10, 12, and 14 according to the first, second, and third embodiments, in that the hollow portion 223a is depressed below the other upper surface of the flattening film 223a.
  • the point in which the hollow part formation layer 241b is formed on the bottom surface of the hollow part 223a is the same as that of the display panels 10, 12, and 14 according to the first, second, and third embodiments.
  • the display panel 16 As shown in a portion surrounded by a two-dot chain line in FIG. 14, the display panel 16 according to the present embodiment, the upper edge of the recess 223a in the planarization film 223 (portion P 5), to the third embodiment Similar to the display panel 14, the lower electrode layer 230 enters the lower electrode layer 230 below the edge (location P 6 ) of the transparent conductive layer 2302. In the lower electrode layer 230, the side edge of the metal layer 2301 is covered with the transparent conductive layer 2302.
  • the portion of the side surface 223 s of the recess 223 a in the planarization film 223 that enters the lower electrode layer 230 below the transparent conductive layer 2302. By having a region in which the semiconducting layer 241 is not formed in the portion (indicated by arrow C), the semiconductor intermediate layer 241a on the first lower electrode layer 230a and the semiconductor on the second lower electrode layer 230b in the region.
  • the intermediate layer 241a is divided.
  • the semiconductor intermediate layers 241a in the sub-pixels 17a, 17b, and 17c are not continuously formed across the depressions 223a between each other. Therefore, in the display panel 16, the semiconductive layer 241 does not electrically connect the first lower electrode layer 230a and the second lower electrode layer 230b, and the first lower electrode layer 230a and the second lower electrode layer 230b are not connected. Leakage current can be prevented.
  • the recess 223a enters below the transparent conductive layer 2302 of the lower electrode layer 230, and the semiconductor layer 241 is divided at the entered part, so that Similarly to the display panel 14 according to the third aspect, it is possible to reliably prevent a leakage current between the first lower electrode layer 230a and the second lower electrode layer 230b.
  • the partition wall 243 is formed so as to enter the recessed shape portion with the formation of the recessed portion 223 a of the planarizing film 223. Similarly to the above, the partition wall 243 is hardly peeled off, and the organic EL display device has high reliability.
  • the TFT layer (FIG. 15A) is formed on the substrate 100 by executing the steps shown in FIGS. 5A to 5C in the first embodiment. ), Only the source 101a is shown), a passivation film 102, a planarization film 2231, a contact hole 104, and a metal film 2303 are formed.
  • a photosensitive resist 503 is deposited on the metal film 2303 in a region where the metal layer 2301 of the lower electrode layer 230 is to be formed.
  • patterning is performed by a photolithography method and an etching method, and the lower electrode layer 230 including the metal layer 2301a in the first lower electrode layer 230a and the metal layer 2301b in the second lower electrode layer 230b is formed.
  • a metal layer 2301 is formed.
  • both edges 2301s of the metal layer 2301 in the lower electrode layer 230 coincide with the edges of the resist 503 after the etching, as shown in FIG. To do.
  • the resist 503 is removed from the metal layer 2301 of the lower electrode layer 230. Then, as shown in FIG. 15C, a transparent conductive film 2304 is formed so as to cover the metal layer 2301 and the exposed surface 2231f of the planarization film 2231 exposed between the metal layers 2301. For example, a sputtering method can be used for forming the transparent conductive film 2304.
  • a photosensitive resist 504 is deposited on the transparent conductive film 2304 in a region of the lower electrode layer 230 where the transparent conductive layer 2302 is to be formed.
  • the transparent conductive layer 2302 including the transparent conductive layer 2302a and the transparent conductive layer 2302b can be patterned.
  • the lower electrode layer 230 including the first lower electrode layer 230a and the second lower electrode layer 230b can be formed.
  • etching for example, dry etching
  • etching is performed using the transparent conductive layer 2302 in the lower electrode layer 230 as a mask.
  • etching for example, dry etching
  • the planarizing film 223 a recess 223a is formed in a region 2231g between the first lower electrode layer 230a and the second lower electrode layer 230b (see FIG. 16B).
  • the etching conditions for example, the etching time.
  • the lower electrode layer 230 may enter below the transparent conductive layer 2302.
  • the formation of the recess 223a of the planarization film 223 is not limited to dry etching, and can be performed by wet etching.
  • a semiconducting material is deposited on the transparent conductive layer 2302 in the lower electrode layer 230 and on the bottom surface of the recess 223 a in the planarizing film 223, thereby forming the semiconducting layer.
  • 241 is laminated.
  • the semiconducting layer 241 includes a semiconducting intermediate layer 241 a on the transparent conductive layer 2302 in the lower electrode layer 230, and an indentation portion forming layer 241 b on the bottom surface of the indentation portion 223 a of the planarizing film 223. Note that, as shown in FIG.
  • the semiconductor material is deposited.
  • the semiconductor layer 241 is reliably divided at at least a part of the side surface 223s of the recess 223a.
  • an insulating material layer for forming the partition wall 243 is formed on the semiconducting layer 241 by, for example, a spin coating method, and patterned by exposure and development using a photomask. Thereafter, the partition wall 243 is formed by performing cleaning with a cleaning liquid as shown in FIG.
  • the composition ink containing the material of the light emitting layer 242 is dropped onto the region defined by the partition wall 243 by an ink jet method and dried to form the light emitting layer 242. Further, an electron injection layer 244, an upper electrode layer 250, and a sealing layer 251 are stacked on the light emitting layer 242.
  • a dispenser method for example, a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, as in the manufacturing methods according to the first, second, and third embodiments.
  • a letterpress printing method can be used.
  • drying the composition ink vacuum drying and drying in a nitrogen atmosphere are sequentially performed.
  • a vacuum deposition method can be used as in the manufacturing methods according to the first, second, and third embodiments.
  • a plasma coating method can be used for the formation of the upper electrode layer 250.
  • a recess 223a is formed between the first lower electrode layer 230a and the second lower electrode layer 230b in the planarization film 223. Since the semiconducting layer 241 is formed in a state in which the semiconducting layer is formed, a region where the semiconducting layer 241 is not formed in at least a part of the side surface 223s of the recess 223a is generated due to the shadowing effect (enclosed by a two-dot chain line in FIG. See section). For this reason, the semiconductive intermediate layer 201a on the first lower electrode layer 190a is not electrically connected to the in-dent formation layer 241b adjacent thereto. The same applies to the semiconductive intermediate layer 241a on the second lower electrode layer 230b and the in-dent formation layer 241b adjacent thereto.
  • the semiconductor layer 241 is more surely formed. Can be divided.
  • the leakage current between the first lower electrode layer 230a and the second lower electrode layer 230b can be more reliably prevented, and crosstalk can be prevented. Does not occur.
  • the transparent conductive layer 2302 in the lower electrode layer 230 is formed, and the recess 223a of the planarizing film 223 is formed. It is used as a mask when Therefore, it is not necessary to use a new mask for forming the recess 223a, the manufacturing process can be simplified, and the manufacturing cost can be reduced.
  • the depth of the recess 223a in the planarizing film 223 is set to the thickness of the recess-forming layer 241b formed on the bottom surface of the recess 223a (the center of the recess 223a).
  • the film thickness is deeper than the film thickness at the portion. This is for the purpose of completely separating the in-dent formation layer 241b from the semiconductive intermediate layer 241a or the lower electrode layer 230.
  • so-called pixel banks are used for the partition walls 123, 163, 203, and 243, but the present invention is not limited to this.
  • a so-called line bank-structured partition wall 263 may be employed to partition the light emitting layers of the subpixels 19a, 19b, and 19c in the X-axis direction.
  • the organic EL display device 1,... is used as an example of the light emitting device, but the present invention is not limited to this.
  • the present invention can be applied to a lighting device.
  • the configuration of the lower electrode layer 230 according to the fourth embodiment can be applied instead of the lower electrode layers 110 and 150 according to the first and second embodiments.
  • the lower electrode layers 110, 150, 190, and 230 are anodes
  • the upper electrode layers 130, 170, 210, and 250 are cathodes.
  • a configuration in which the positions of the anode and the cathode are reversed may be employed.
  • the top emission type organic EL display device is used.
  • a bottom emission type organic EL display device may be used.
  • the shape and size of the recesses 103a, 143a, 183a, and 223a of the planarizing films 103, 143, 183, and 223 are not limited to those shown in the attached drawings.
  • the leakage current between the lower electrode layers can be more reliably prevented by increasing the depth of the recess.
  • the present invention is useful for realizing a light emitting device having no light emission performance and no crosstalk.
  • Subpixel 20. Drive control unit 21, 22, 23, 24. Drive circuit 25.
  • Control circuit 31. Source signal wiring 32. Power supply wiring 100.
  • Source 102. Passivation film 103,143,183,223. Planarization films 103a, 143a, 183a, 223a. Hollow part 104.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 発光装置の表示パネル10では、平坦化膜103におけるサブピクセル11aの下部電極層110とサブピクセル11bの下部電極層110との間に窪み部103aが設けられている。平坦化膜103における窪み部103aは、平坦化膜103の他の上面よりも沈下しており、窪み部103の上面には、半導体性中間層121aと同一材料の窪み部内形成層121bが形成されている。そして、平坦化膜103の窪み部103aの上面に形成された半導体性中間膜と同一材料の窪み部内形成層121bは、端部での膜厚t2が、中央部での膜厚t1よりも薄くされている。

Description

発光装置とその製造方法
 本発明は、発光装置とその製造方法に関する。
 近年においては、有機エレクトロルミネッセンス(有機EL)表示装置が研究・開発されている(例えば、特許文献1、2を参照)。有機EL表示装置は、サブピクセル単位で有機EL素子が設けられた構成を有し、有機EL素子毎に固体蛍光性物質の電界発光現象を利用して自発光する。従来技術に係る有機EL表示装置の構成について、図19を用い説明する。
 図19に示すように、有機EL表示装置では、基板900上にTFT(Thin Film Transistor)層(図では、その一部であるソース901aだけを図示)が形成され、その上にパッシベーション膜902および平坦化膜903が形成されている。さらに、平坦化膜903上には、各サブピクセルに対応する状態で、陽極層910が形成されている。下部電極層(陽極層)910は、金属層9101と透明導電層9102との積層構成を有し、TFT層のソース901aに対して、コンタクトホール904により接続されている。
 なお、下部電極層910は、第1下部電極層910aと第2下部電極層910bというように、サブピクセル毎に設けられている。即ち、隣接するサブピクセルにおいて、第1下部電極層910aの第1金属層9101aおよび第1透明導電層9102aと、第2下部電極層910bの第2金属層9101bおよび第2透明導電層9102bとは、互いに電気的に分離されている。
 下部電極層910およびサブピクセル間における平坦化膜903の上には、発光積層体920、上部電極層(陰極層)930および封止層931が順に積層形成されている。発光積層体920は、平坦化膜903の上面側から順に積層された半導体関中間層921、発光層922および電子注入層924と、隔壁923とからなる。隔壁923は、サブピクセル毎に発光層922を区画するものである。具体的には、隔壁923により、第1下部電極層910a上の発光層922aと、第2下部電極層910b上の発光層922bとが区画されている。
特開平11-54286号公報 特開2004-192890号公報
 しかし、図19の矢印Dで示すように、従来技術に係る有機EL表示装置では、半導体性中間層921がパネル全面に形成されているので、隣接するサブピクセルの下部電極層910(第1下部電極層910aと第2下部電極層910bとの)間でリーク電流が流れ、クロストークが発生する。
 なお、図19では、従来技術として、有機EL表示装置を一例としたが、これを含む発光装置について同様の問題が発生する。
 本発明は、上記課題の解決を図るべくなされたものであって、隣接する下部電極層間でのリーク電流の抑制し、クロストークの発生を有効に防止し得る発光装置およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る発光装置は、次の構成を採用する。
 本発明の一態様に係る発光装置は、基板の上方に形成され、窪み部を有する平坦化膜と、前記平坦化膜上であって前記窪み部の形成領域外に形成された第1下部電極層と、前記平坦化膜上であって前記窪み部の形成領域外に前記窪み部を挟んで前記第1下部電極層と隣接して形成された第2下部電極層と、前記第1下部電極層および前記第2下部電極層の上方に形成された半導体性中間層と、 前記第1下部電極層の端部、前記第1下部電極層と隣接する前記第2下部電極層の端部、および前記平坦化膜の窪み部を覆って形成された隔壁と、を具備し、前記平坦化膜の窪み部は、前記第1下部電極層および前記第2下部電極層との間で、前記平坦化膜の他の上面よりも沈下し、前記平坦化膜の窪み部の上面には、前記半導体性中間層と同一材料の層が形成されており、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の端部の膜厚は、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の中央部の膜厚よりも薄い。
 本発明の一態様に係る発光装置では、平坦化膜における第1下部電極層と第2下部電極層との間に窪み部が設けられている。平坦化膜における窪み部は、平坦化膜の他の上面よりも沈下しており、窪み部の上面には、半導体性中間層と同一材料の層が形成されている。そして、平坦化膜の窪み部の上面に形成された半導体性中間膜と同一材料の層は、その膜厚が、中央部よりも端部で薄くなっている。
 本発明の一態様に係る発光装置では、上記のような半導体性中間層と同一材料の層の膜厚の関係により、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層の端部において、導電性が低くなる。よって、本発明の一態様に係る発光装置では、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層が、第1下部電極層と第2下部電極層とを実質的に電気接続しない状態とし、第1下部電極層と第2下部電極層との間でのリーク電流が防止される。
 従って、本発明の一態様に係る発光装置では、クロストークの発生が有効に防止される。
実施の形態1に係る有機EL表示装置1の全体構成を示す模式ブロック図である。 有機EL表示装置1の表示パネル10を示す模式鳥瞰図である。 表示パネル10の一部構成を示す模式端面図である。 表示パネル10における隔壁123を示す模式平面図である。 表示パネル10の製造工程を示す模式端面図である。 表示パネル10の製造工程を示す模式端面図である。 表示パネル10の製造工程を示す模式端面図である。 実施の形態2に係る有機EL表示装置の表示パネル部12の一部構成を示す模式端面図である。 表示パネル12の製造工程を示す模式端面図である。 表示パネル12の製造工程を示す模式端面図である。 実施の形態3に係る有機EL表示装置の表示パネル部14の一部構成を示す模式端面図である。 表示パネル14の製造工程を示す模式端面図である。 表示パネル14の製造工程を示す模式端面図である。 実施の形態4に係る有機EL表示装置の表示パネル部16の一部構成を示す模式端面図である。 表示パネル16の製造工程を示す模式端面図である。 表示パネル16の製造工程を示す模式端面図である。 表示パネル16の製造工程を示す模式端面図である。 変形例に係る表示パネル18における隔壁263を示す模式平面図である。 従来技術に係る表示パネルの一部構成を示す模式端面図である。
 [本発明の一態様の概要]
 本発明の一態様に係る発光装置は、基板の上方に形成され、窪み部を有する平坦化膜と、前記平坦化膜上であって前記窪み部の形成領域外に形成された第1下部電極層と、前記平坦化膜上であって前記窪み部の形成領域外に前記窪み部を挟んで前記第1下部電極層と隣接して形成された第2下部電極層と、前記第1下部電極層および前記第2下部電極層の上方に形成された半導体性中間層と、 前記第1下部電極層の端部、前記第1下部電極層と隣接する前記第2下部電極層の端部、および前記平坦化膜の窪み部を覆って形成された隔壁と、を具備し、前記平坦化膜の窪み部は、前記第1下部電極層および前記第2下部電極層との間で、前記平坦化膜の他の上面よりも沈下し、前記平坦化膜の窪み部の上面には、前記半導体性中間層と同一材料の層が形成されており、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の端部の膜厚は、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の中央部の膜厚よりも薄い。
 本発明の一態様に係る発光装置では、平坦化膜における第1下部電極層と第2下部電極層との間に窪み部が設けられている。平坦化膜における窪み部は、平坦化膜の他の上面よりも沈下しており、窪み部の上面には、半導体性中間層と同一材料の層が形成されている。そして、平坦化膜の窪み部の上面に形成された半導体性中間膜と同一材料の層は、その膜厚が、中央部よりも端部で薄くされている。
 本発明の一態様に係る発光装置では、上記のような半導体性中間層と同一材料の層の膜厚の関係により、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層の端部において、導電性が低くなる。よって、本発明の一態様に係る発光装置では、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層が、第1下部電極層と第2下部電極層とを実質的に電気接続しない状態とし、第1下部電極層と第2下部電極層との間でのリーク電流が防止される。
 従って、本発明の一態様に係る発光装置では、クロストークの発生が有効に防止される。
 また、本発明の一態様に係る発光装置では、基板の上方に形成され、窪み部を有する平坦化膜と、 前記平坦化膜上であって前記窪み部の形成領域外に形成された第1下部電極層と、前記平坦化膜上であって前記窪み部の形成領域外に前記窪み部を挟んで前記第1下部電極層と隣接して形成された第2下部電極層と、前記第1下部電極層および前記第2下部電極層の上方に形成された半導体性中間層と、前記第1下部電極層の端部、前記第1下部電極層と隣接する前記第2下部電極層の端部、および前記平坦化膜の窪み部を覆って形成された隔壁と、を具備し、前記平坦化膜の窪み部は、前記第1下部電極層および前記第2下部電極層との間で、前記平坦化膜の他の上面よりも沈下し、前記平坦化膜の窪み部の上面には、前記半導体性中間層と同一材料の層が形成されており、前記窪み部の側面は、前記半導体性中間層と同一材料の層が形成されていない領域を有し、前記半導体性中間層と、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層とは、前記窪み部の側面において前記半導体性中間層と同一材料の層が形成されていない領域により分断されている。
 本発明の一態様に係る発光装置では、平坦膜における第1下部電極層と第2下部電極層との間に窪み部を設けられている。平坦化膜における窪み部は、平坦化膜の他の上面よりも沈下しており、窪み部の上面には、半導体性中間層と同一材料の層が形成されている。そして、平坦化膜の窪み部の側面には、半導体性中間膜が形成されていない領域を有している。
 本発明の一態様に係る発光装置では、上記窪み部の側面における半導体性中間層が形成されていない領域を有することにより、当該部分で半導体性中間層が分断されており、半導体性中間層は、第1下部電極層と窪み部を挟んで形成された第2下部電極層とに跨って連続して形成されることはなくなるものである。
 そのため、半導体性中間層は、第1下部電極層と第2下部電極層とを電気的に接続せず、第1下部電極層および第2下部電極層との間でのリーク電流を防止できる。
 従って、本発明の一態様に係る発光装置では、クロストークの発生が防止される。
 さらに、本発明の一態様に係る発光装置の隔壁は、画素領域の方向に窪んだ形状部分にも入り込んで形成されるため、平坦化膜との間での密着性が向上されている。その結果、本発明の一態様に係る発光装置では、隔壁が剥離し難く、高い信頼性を有する。
 また、本発明の一態様に係る発光装置では、上記構成において、前記窪み部の側面が、前記第1下部電極層および前記第2下部電極層の各々の下方に入り込んだ形状である。
 本発明の一態様に係る発光装置では、上記のように、窪み部の側面が、第1下部電極層および第2下部電極層の各々の下方に入り込んだ形状とされており、これにより、平坦化膜の窪み部の側面には半導体性中間層が形成されていない領域を有することとなる。
 そのため、本発明の一態様に係る発光装置では、平坦化膜の窪み部における上面の端部において、物理的にも第1下部電極層と第2下部電極層尾との間を電気的に接続する媒体が存在しないので、第1下部電極層と第2下部電極層との間でのリーク電流を完全に防止できる。
 従って、本発明の一態様に係る発光装置では、クロストークの発生が防止される。
 また、本発明の一態様に係る発光装置では、前記第1下部電極層には、前記半導体性中間層側に第1透明導電膜による層が含まれ、前記第2下部電極層には、前記半導体性中間層側に第2透明導電膜による層が含まれ、前記半導体性中間層は、前記第1透明導電膜による層上および前記第2透明導電膜による層上に形成されている。
 本発明の一態様に係る発光装置では、上記のように、第1下部電極層の上面および第2下部電極層の上面と、半導体性中間層との間に、第1透明導電膜による層および第2透明導電膜による層が各々介在することとしてもよい。
 また、本発明の一態様に係る発光装置では、上記構成において、前記基板と前記平坦化膜との間には、TFT層が形成され、前記平坦化膜は、前記TFT層上に形成されている。
 本発明に一態様に係る発光装置では、上記のように、基板と平坦化膜との間にTFT層が形成され、平坦化膜はTFT層上に形成されている。このような構成において、平坦化膜の窪み部は、第1下部電極層および第2下部電極層との間で、平坦化膜の他の上面よりも沈下しているため、TFT層が形成された上方の平坦化膜の膜厚は、第1下部電極層および第2下部電極層との間に形成された平坦化膜の膜厚よりも厚くすることができる。
 このことより、TFT層と、第1下部電極層および第2下部電極層との間隔を確保できるため、TFT層と、第1下部電極層および第2下部電極層との間で発生する寄生容量の増加を防止することができる。
 従って、本発明の一態様に係る発光装置では、信号遅延、消費電力のロスが少ない。
 また、本発明の一態様に係る発光装置では、上記構成において、前記第1下部電極層の上方であって前記半導体性中間層上に形成された第1発光層と、前記第2下部電極層の上方であって前記半導体性中間層上に形成された第2発光層と、を具備し、前記隔壁は、前記第1発光層と前記第2発光層とを区画する。
 本発明の一態様に係る発光装置では、上記のように、隔壁が、第1下部電極層の上方であって半導体性中間層上に形成された第1発光層と、第2下部電極層の上方であって半導体性中間層上に形成された第2発光層とを区画する構成である。
 このことにより、第1発光層と第2発光層とについても互いに分断されるため、第1発光層が発光する光と、第2発光層が発光する光とが混色することがない。
 従って、本発明の一態様に係る発光装置では、優れた発光特性を有する。
 また、本発明の一態様に係る発光装置では、上記構成において、前記第1発光層および前記第2発光層の上方に形成された上部電極層を具備する。
 本発明の一態様に係る発光装置では、第1発光層および第2発光層の上方に形成された上部電極層を具備することができる。
 また、本発明の一態様に係る発光装置では、前記上部電極層は、陰極層である。
 本発明の一態様に係る発光装置では、上部電極層が陰極層であるという構成とすることができる。
 また、本発明の一態様に係る発光装置では、上記構成において、前記第1下部電極層および前記第2下部電極層は、陽極層であり、前記半導体性中間層は、正孔注入層である。
 本発明の一態様に係る発光装置では、半導体性中間層が正孔注入層である。半導体性中間層を正孔注入層とした構成の発光装置では、第1下部電極層から第1発光層への正孔の注入、および第2下部電極層から第2発光層への正孔の注入が、正孔注入層により促進される。
 従って、本発明の一態様に係る発光装置では、駆動電圧が低く消費電力が小さい。
 また、本発明の一態様に係る発光装置では、上記構成において、前記窪み部の深さは、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の中央部の膜厚よりも大きい。
 本発明の一態様に係る発光装置では、上記のように、平坦化膜における窪み部の深さが、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層の中央部の膜厚よりも大きい。即ち、本発明の一態様に係る発光装置では、平坦化膜の窪み部における側面の、第1下部電極層および第2下部電極層の各々の下方に入り込んだ形状による半導体性中間層が形成されていない領域の幅が大きくなり、その結果、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層の端部の膜厚を、平坦化膜の窪み部の上面に形成された半導体性中間層と同一材料の層の中央部の膜厚よりも薄くすることが容易となる。
 あるいは、平坦化膜の窪み部の側面において半導体性中間層が形成されていない領域の幅が大きくなる。そのため、半導体性中間層および半導体性中間層と同一材料の層の膜厚を厚くしても第1下部電極層の上方の半導体性中間層と第2下部電極層の上方の半導体性中間層とが分断され易くなり、第1下部電極層と平坦化膜の窪み部を挟んで形成された第2下部電極層とに跨って、半導体性中間層が形成されることはなくなる。
 そのため、半導体性中間層は、第1下部電極層と第2下部電極層とを電気的に接続せず、第1下部電極層と第2下部電極層との間のリーク電流を防止できることでさらに好適である。
 従って、本発明の一態様に係る発光装置では、隣接するサブピクセル間でリーク電流に起因するクロストークが、一層、発生しない。
 また、本発明の一態様に係る発光装置の製造方法では、基板を準備する第1工程と、前記基板の上方に平坦化膜を形成する第2工程と、前記平坦化膜上に第1下部電極層と第2下部電極層とを形成する第3工程と、前記第1下部電極層と前記第2下部電極層との上にレジストを形成する第4工程と、前記第1下部電極層と前記第2電極層との間の、前記レジストが形成されていない前記平坦化膜の領域をエッチングすることにより、前記レジストが形成されていない前記平坦化膜の領域の前記平坦化膜の上面が、前記平坦化膜の他の上面よりも沈下した窪み部を形成する第5工程と、前記第1下部電極層上、前記第2下部電極層上、および前記窪み部の底面上に半導体性中間層を形成する第6工程と、を含み、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層の端部の膜厚を、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層の中央部の膜厚よりも薄く形成する。
 本発明の一態様に係る発光装置の製造方法では、平坦化膜における第1下部電極層と第2下部電極層との間に、平坦化膜の他の上面よりも沈下した窪み部を形成する。この平坦化膜の窪み部の上面には、半導体性中間層を形成する。平坦化膜の窪み部の上面に形成された半導体性中間層の端部の膜厚は、半導体性中間層を形成する際の窪み部の側面でのシャドーイング効果により半導体性中間層が段切れするため、平坦化膜の窪み部の上面に形成された半導体性中間層の中央部の膜厚よりも薄くなる。
 これにより、本発明の一態様に係る発光装置の製造方法では、半導体性中間層が、平坦化膜の窪み部の上面に形成された半導体性中間層の端部において、導電性が小さくなる。そのため、平坦化膜の窪み部の上面に形成された半導体性中間層は、第1下部電極層と第2下部電極層とを実質的に電気接続しないので、第1下部電極層と第2下部電極層との間のリーク電流を防止できる。
 従って、本発明の一態様に係る発光装置の製造方法では、クロストークが発生しない発光装置を実現することができる。
 また、本発明の一態様に係る発光装置の製造方法では、基板を準備する第1工程と、前記基板の上方に平坦化膜を形成する第2工程と、前記平坦化膜上に第1下部電極層と第2下部電極層とを形成する第3工程と、前記第1下部電極層および前記第2下部電極層自体をマスクとして、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜の領域をエッチングすることにより、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜の領域に、前記平坦化膜の他の上面よりも沈下した窪み部を形成する第4工程と、前記第1下部電極層上、前記第2下部電極層上、および前記窪み部の底面上に半導体性中間層を形成する第5工程と、を含み、前記窪み部の側面は、前記半導体性中間層が形成されていない領域を有し、前記半導体性中間層を、前記窪み部の側面において前記半導体性中間層が形成されていない領域により分断する。
 本発明の一態様に係る発光装置の製造方法では、第1下部電極層と第2下部電極層との間の平坦化膜をエッチングする第4工程と、第4工程のエッチングにより、平坦化膜に当該平坦化膜の他の上面よりも沈下した窪み部が形成され、当該窪み部の側面に半導体性中間層が形成されていない領域を有するので、第1下部電極層の上方の半導体性中間層と第2下部電極層の上方の半導体性中間層とを分断する。
 本発明の一態様に係る発光装置の製造方法では、第1下部電極層の上方の半導体性中間層と第2下部電極層の上方の半導体性中間層とが、窪み部の側面における半導体性中間層が形成されていない領域で分断されているので、半導体性中間層は、第1下部電極層と窪み部を挟んで形成された第2下部電極層とに跨って連続して形成されることがなくなるものである。
 このことにより、平坦化膜に当該平坦化膜の他の上面よりも沈下した窪み部を形成するため、第3工程により第1下部電極層と第2下部電極層とを形成した後に残存する電極層形成のための金属膜の残渣も完全に除去することができる。よって、第1下部電極層と第2下部電極層との間でのリーク電流が防止できる。
 従って、本発明の一態様に係る発光装置の製造方法では、隣接するサブピクセル間で、第1下部電極層と第2下部電極層との間でのショート、および半導体性中間層のリーク電流に起因するクロストークが発生しない発光装置を製造することができる。
 また、本発明の一態様に係る発光装置の製造方法では、隔壁が、サブピクセル領域の方向に窪んだ形状部分にも入り込んで形成されるため、平坦化膜との密着力が向上される。その結果、本発明の一態様に係る発光装置の製造方法では、隔壁が剥離し難い高い信頼性の発光装置を製造することができる。
 また、本発明の一態様に係る発光装置の製造方法では、前記第4工程において、前記第4工程のエッチングにより、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜に形成された窪み部は、その側面が前記第1下部電極層および前記第2下部電極層の各々の下方に入り込んだ形状である。
 本発明の一態様に係る発光装置の製造方法では、上記のように、第4工程において、側面が、第1下部電極層および第2下部電極層の各々の下方に入り込んだ形状の窪み部を平坦化膜に形成するので、平坦化膜の窪み部の側面に半導体性中間層が形成されていない領域を有することとすることができる。
 そのため、本発明の一態様に係る発光装置の製造方法では、平坦化膜の窪み部における上面の端部において、物理的にも第1下部電極層と第2下部電極層尾との間を電気的に接続する媒体が存在しないので、第1下部電極層と第2下部電極層との間でのリーク電流を完全に防止できる。
 従って、本発明の一態様に係る発光装置の製造方法では、クロストークの発生が防止された発光装置を製造することができる。
 また、本発明の一態様に係る発光装置の製造方法では、上記構成において、前記エッチングは、ドライエッチングである。
 また、本発明の一態様に係る発光装置の製造方法では、上記構成において、前記第1下部電極層には、前記半導体性中間層側に第1透明導電膜による層が含まれ、前記第2下部電極層には、前記半導体性中間層側に第2透明導電膜による層が含まれ、前記半導体性中間層の形成に際しては、前記第1透明導電膜による層上および前記第2透明導電膜による層上に半導体性中間層が形成される。
 本発明の一態様に係る発光装置の製造方法では、各半導体性中間層側に第1透明導電膜による層または第2透明導電膜による層を含む第1下部電極層および第2下部電極層を形成する。第1下部電極層における第1透明導電膜による層、および第2下部電極層における第2透明導電膜層による層の形成では、ウェットエッチングでパターニングを行い、第1下部電極層と第2下部電極層との間に形成された透明導電膜を除去する。そして、平坦化膜の窪み部を形成するためのドライエッチングを行う際には、上記ウェットエッチングでパターニングされた第1透明導電膜による層および第2透明導電膜による層をマスクとして用いて、ドライエッチングを行うものである。
 第1透明導電膜による層および第2透明導電膜による層をマスクとして用いて平坦化膜をドライエッチングするため、平坦化膜への窪み部の形成のためにドライエッチング用のマスクを新たに用いなくてもよく、製造工程の簡略化を図ることができる。
 以下では、本発明を実施するための形態について、数例を用い説明する。
 なお、以下の説明で用いる実施の形態は、本発明の構成および作用・効果を分かりやすく説明するために用いる例示であって、本発明は、その本質的部分以外に何ら以下の形態に限定を受けるものではない。
 [実施の形態1]
  1.表示装置1の全体構成
 以下では、発光装置の一例としての有機EL表示装置1で説明する。
 本実施の形態に係る有機EL表示装置1の全体構成について、図1および図2を用い説明する。
 図1に示すように、有機EL表示装置1は、表示パネル10と、これに接続された駆動制御部20とを有し構成されている。表示パネル10は、有機材料の電界発光現象を利用した有機ELパネルであり、複数の有機EL素子が配列され構成されている。図2に示すように、表示パネル10は、基板100の上に各サブピクセルに対応してTFT101が形成されており、TFT101には、ソース信号配線31および電源配線32が接続されている。図2に示すように、TFT101が形成された基板100の上には、下部電極層110、発光積層体120および上部電極層130が順に積層形成されている。なお、表示パネル10の詳細構成については、後述する。
 図1に戻って、駆動制御部20は、4つの駆動回路21~24と制御回路25とから構成されている。
 なお、実際の有機EL表示装置1では、表示パネル10に対する駆動制御部20の配置については、これに限られない。
 2.表示パネル10の構成
 表示パネル10の構成について、図3および図4を用い説明する。
 図3に示すように、表示パネル10は、各々が赤(R)、緑(G)、青(B)の何れか発光色を有する有機発光層を備えるサブピクセル11a,11b,11cが隣接形成されている。表示パネル10は、トップエミッション型の有機ELディスプレイである。
 基板100上には、TFT層(図3では、ソース101aだけを図示)およびパッシベーション膜102が形成され、その上に、平坦化膜103が積層形成されている。平坦化膜103には、各サブピクセル11a,11b,11cごとに対応して、下部電極層(陽極層)110が形成されている。ここで、以下においては、サブピクセル11aに属する下部電極層110を第1下部電極層110aと呼称することがあり、サブピクセル11bに属する下部電極層110を第2下部電極層と呼称することがある。下部電極層110とTFT層のソース101aとは、平坦化膜103を上下に貫通するコンタクトホール104で接続されている。
 下部電極層110上には、半導体性中間層121aが形成されている。半導体性中間層121aは、ホール注入層、またはホール輸送層、またはホール注入兼輸送層として機能する。また、平坦化膜103では、隣接する下部電極層110間の部分が、他の部分の上面よりも沈下した窪み部103aを有する。そして、各窪み部103aの上面にも、半導体性中間層121aと同一材料の層である窪み部内形成層121bが形成されている。なお、以下では、半導体性中間層121aと窪み部内形成層121bとを、半導体性層121と総称することもある。
 図3に示すように、下部電極層110の上には、各サブピクセル11a,11b,11c毎に、発光層122が形成されている。また、サブピクセル11a,11b,11cの各間には、窪み部内形成層121bの上、および半導体性中間層121aの端部の一部上に、絶縁材料からなる隔壁123が立設されている。隔壁123により、発光層122は、サブピクセル11a,11b,11c毎に区画されている。以下では、サブピクセル11aに属する発光層122を、第1発光層122aと呼称し、サブピクセル11bに属する発光層122を第2発光層122bと呼称することがある。
 なお、図4に示すように、表示パネル10においては、隔壁123が、Y軸方向に延設された隔壁要素123aと、X軸方向に延設された隔壁要素123bとが一体に形成された、所謂、ピクセルバンクが採用されている。そして、X軸方向において隣接するサブピクセル11a,11b,11c同士の間は、隔壁要素123aにより区画されており、同様に、Y軸方向において隣接するサブピクセル同士の間は、隔壁要素123bにより区画されている。
 図3に戻って、発光層122の上には、電子注入層124、上部電極層(陰極層)130、および封止層131が、それぞれ隔壁104で規定された領域を超えて、全体にわたり連続するように形成されている。なお、半導体性層121、発光層122、隔壁123、および電子注入層124の積層構造が、図2における発光積層体120と対応している。
 なお、図3に示すように、隣接形成された3つのサブピクセル11a,11b,11cは、それぞれ赤色(R)、緑色(G)、青色(B)の各色に対応し、それらを1セットとして1つのピクセル(画素)が構成されている。
 a)基板100
 基板100は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料をベースとして形成されている。
 b)平坦化膜103
 平坦化膜103は、例えば、ポリイミド、ポリアミド、アクリル系樹脂材料などの有機化合物を用い形成されている。
 c)下部電極層110
 下部電極層110は、例えば、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などから形成されている。なお、本実施の形態のように、トップエミッション型の有機ELの場合には、高反射性の材料を用い形成されていることが好ましい。
 d)半導体性層121
 半導体性層121は、例えば、WOX(酸化タングステン)またはMoWOX(モリブデン-タングステン酸化物)などの金属酸化物、あるいは金属窒化物または金属酸窒化物を用い形成されている。
 e)発光層122
 発光層122は、ホールと電子とが注入され再結合されることにより励起状態が生成され発光する機能を有する。発光層122の形成に用いる材料は、湿式印刷法を用い製膜できる発光性の有機材料を用いることが必要である。
 具体的には、例えば、特許公開公報(日本国・特開平5-163488号公報)に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体などの蛍光物質で形成されることが好ましい。
 f)隔壁123
 隔壁123は、樹脂等の有機材料で形成されており絶縁性を有する。隔壁123の形成に用いる有機材料の例としては、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等があげられる。隔壁123は、有機溶剤耐性を有することが好ましい。さらに、隔壁123はエッチング処理、ベーク処理など施されることがあるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。また、撥水性をもたせるために、表面をフッ素処理することもできる。
 なお、隔壁123の形成に用いる絶縁材料については、上記の各材料をはじめ、特に抵抗率が105[Ω・cm]以上であって、撥水性を有する材料を用いることができる。これは、抵抗率が105[Ω・cm]以下の材料を用いた場合には、隔壁123を要因として、下部電極層110と上部電極層130との間でのリーク電流、あるいは隣接素子間でのリーク電流の発生の原因となり、消費電力の増加などの種々の問題を生じることになるためである。
 また、隔壁123を親水性の材料を用い形成した場合には、隔壁123の表面と半導体性中間層121aの表面との親和性/撥水性の差異が小さくなり、発光層122を形成するために有機物質を含んだインクを、隔壁123の開口部に選択的に保持させることが困難となってしまうためである。
 さらに、隔壁123の構造については、図3に示すような一層構造だけでなく、二層以上の多層構造を採用することもできる。この場合には、層毎に上記材料を組み合わせることもできるし、層毎に無機材料と有機材料とを用いることもできる。
 g)電子注入層124
 電子注入層124は、上部電極層130から注入された電子を発光層122へ輸送する機能を有し、例えば、バリウム、フタロシアニン、フッ化リチウム、あるいはこれらの組み合わせで形成されることが好ましい。
 h)上部電極層130
 上部電極層(陰極層)130は、例えば、ITO、IZO(酸化インジウム亜鉛)などで形成される。トップエミッション型の有機EL素子100a,100b,100cの場合においては、光透過性の材料で形成されることが好ましい。光透過性については、透過率が80[%]以上とすることが好ましい。
 上部電極層130の形成に用いる材料としては、上記の他に、例えば、アルカリ金属、アルカリ土類金属、またはそれらのハロゲン化物を含む層と銀を含む層とをこの順で積層した構造を用いることもできる。上記において、銀を含む層は、銀単独で形成されていてもよいし、銀合金で形成されていてもよい。また、光取出し効率の向上を図るためには、当該銀を含む層の上から透明度の高い屈折率調整層を設けることもできる。
 i)封止層131
 封止層131は、発光層122などが水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)などの材料を用い形成される。トップエミッション型の場合においては、光透過性の材料で形成されることが好ましい。
 3.平坦化膜103における窪み部103aと半導体性層121
 図3に示すように、本実施の形態に係る有機EL表示装置1では、表示パネル10において、平坦化膜103における第1下部電極層110aと第2下部電極層110bとの間に窪み部103aが設けられている。平坦化膜103における窪み部103aは、平坦化膜103aの他の上面よりも沈下しており、窪み部103aの上面には、窪み部内形成層121bが形成されている。そして、図3の二点鎖線で囲む部分に示すように、平坦化膜103の窪み部103aにおける窪み部内形成層121bは、端部での膜厚t2が、それよりも中央部側の膜厚t1よりも薄くなっている。
 よって、有機EL表示装置1では、上記のような膜厚t1,t2の関係により、平坦化膜103の窪み部103aにおける窪み部内形成層121bの端部(膜厚t2の部分)において、導電性が低くなり、平坦化膜103の窪み部103aにおける窪み部内形成層121bが、第1下部電極層110aおよびその上の半導体性中間層121aと、第2下部電極層110bおよびその上の半導体性中間層121aとを実質的に電気接続しない状態とし、第1下部電極層110aと第2下部電極層110bとの間でのリーク電流が防止される。
 従って、本実施の形態に係る有機EL表示装置1では、クロストークの発生が有効に防止される。
 さらに、図3に示すように、表示パネル10では、隔壁123が、平坦化膜103における窪み部103aの形成に伴い窪んだ形状部分にも入り込んで形成されているので、隔壁123の密着性を向上させることができ、隔壁123が剥離し難い。よって、本実施の形態に係る有機EL表示装置1では、高い信頼性を有する。
 4.表示パネル10の製造方法
 表示パネル10の製造方法について、図5から図7を用い説明する。なお、図5から図7においても、一部を抜き出し、模式的に示している。
 先ず、図5(a)に示すように、基板100を準備する。
 次に、基板100におけるZ軸上側主面100fにTFT層およびパッシベーション膜102を形成し、さらに、その上を覆うように平坦化膜1030を積層形成する(図5(b)を参照)。なお、図5(b)では、図示の都合上、TFT層の構成の内、ソース101aのみを図示している。
 次に、図5(c)に示すように、TFT層の各ソース101aに対応する箇所にコンタクトホール104を形成した平坦化膜1031とし、その上に金属膜(例えば、Ag薄膜)1100を形成する。金属膜1100の形成は、例えば、スパッタリング法や真空蒸着法などを用い行うことができる。
 次に、図6(a)に示すように、金属膜1100上における下部電極層110を形成しようとする領域に、感光性のレジスト500を堆積させる。そして、図6(b)に示すように、フォトリソグラフィ法およびエッチング法によりパターニングし、第1下部電極層110aおよび第2下部電極層110bを含む下部電極層110を形成する。
 なお、図6(b)に示すように、エッチングの後においては、下部電極層110の両縁110sがレジスト500の下方に入り込んだ状態とする。
 次に、下部電極層110上にレジスト500を残した状態で、エッチング(例えば、ドライエッチング)を行うことにより、平坦化膜103において、第1下部電極層110aと第2下部電極層110bとの間の、レジスト500が形成されていない領域1031fに、窪み部103aを形成する(図6(c)を参照)。なお、図6(c)に示すように、下部電極層110の両縁110s(図6(b)を参照)と、窪み部103aの開口縁との間には、若干の距離が保たれる。これは、図6(b)および図6(c)に示すように、下部電極層110の両縁110sが、レジスト500の下方に入り込んでいることに起因する。
 図6(c)における平坦化膜103の窪み部103aの形成においては、ドライエッチングによることに限定はされず、ウェットエッチングで行うことも可能である。
 次に、図7(a)に示すように、下部電極層110および平坦化膜103における窪み部103aの底面上に対して、半導体性材料を堆積させて、半導体性層121を積層形成する。半導体性層121は、下部電極層110上の半導体性中間層121aと平坦化膜103の窪み部103aの底面上の窪み部内形成層121bとを含む。
 次に、半導体性層121の上に、隔壁123を形成するための絶縁材料層を、例えば、スピンコート法などにより成膜し、フォトマスクを用い露光・現像することでパターニングを行う。その後に、洗浄液で洗浄を行うことで、図7(b)に示すように、隔壁123を形成する。
 次に、図7(c)に示すように、隔壁123で規定された領域に、インクジェット法により発光層122の材料を含む組成物インクを滴下し、乾燥させることで発光層122が形成される。さらに、発光層122の上に、電子注入層124、上部電極層130および封止層131を積層形成する。
 ここで、発光層122の形成においては、上記インクジェット法の他に、例えば、ディスペンサ法、ノズルコート法、スピンコート法、凹版印刷法、あるいは凸版印刷法などを用いることもできる。また、組成物インクの乾燥では、真空乾燥および窒素雰囲気下乾燥を順に行うこととする。
 また、電子注入層124の形成には、例えば、真空蒸着法を用いることができ、上部電極層130の形成には、例えば、プラズマコーティング法を用いることができる。
 以上のようにして、表示パネル10の要部が完成する。
 本実施の形態に係る表示パネル10の製造方法では、図7(a)に示すように、平坦化膜103における第1下部電極層110aと第2下部電極層110bとの間に窪み部103aを形成した状態で、半導体性層121を形成するので、窪み部103aの側面部におけるシャドーイング効果により、窪み部内形成層121bの端部における膜厚t2が、中央部における膜厚t1よりも薄くなる(図3の二点鎖線で囲んだ部分を参照)。このため、第1下部電極層110a上の半導体性中間層121aと、これに隣接する窪み部内形成層121bとが、窪み部103の側面部で導電性が小さくなることに起因して、実質的に電気的に接続されない。第2下部電極層110b上の半導体性中間層121aと、これに隣接する窪み部内形成層121bとについても、同様である。
 従って、表示パネル10では、第1下部電極層110aと第2下部電極層110bとの間でのリーク電流を防止でき、クロストークが発生しない。
 さらに、本実施の形態に係る製造方法では、図6(b)および図6(c)に示すように、下部電極層110の形成のためのレジスト500を、下部電極層110を形成した後も除去することなく、平坦化膜103の窪み部103aを形成する際のマスクとして、そのまま用いている。よって、窪み部103aの形成のために新たなマスクを用いなくてもよく、製造工程を簡略化することができ、製造コストの低減が可能となる。
 [実施の形態2]
 1.表示パネル10の構成
 本実施の形態に係る有機EL表示装置では、表示パネル12の構成を除き、上記実施の形態1に係る有機EL表示装置1と同一の構成を有する。以下では、表示パネル12の構成について、図8を用い説明する。
 図8に示すように、実施の形態2に係る表示パネル12も、各々が赤(R)、緑(G)、青(B)の何れか発光色を有する有機発光層を備えるサブピクセル13a,13b,13cが隣接形成されており、トップエミッション型の有機ELディスプレイである。
 基板100上に形成されたTFT層(図8においても、ソース101aだけを図示)およびパッシベーション膜102、および平坦化膜143に設けられたコンタクトホール104については、上記実施の形態1に係る表示パネル10と同一構成を有する。
 図8に示すように、表示パネル12においても、下部電極層(陽極層)150間の領域に窪み部143aが形成されている。そして、半導体性層161は、下部電極層150上に形成され、ホール注入層、またはホール輸送層、またはホール注入兼輸送層として機能する半導体性中間層161aと、平坦化膜143における窪み部143aの底面上に形成された、半導体性中間層161aと同一材料の層である窪み部内形成層161bとを有する。
 図8に示すように、半導体性中間層161aの上には、発光層162、電子注入層164、上部電極層(陰極層)170、および封止層171が順に積層され、また、各サブピクセル13a,13b,13cを区画する隔壁163が立設されている。半導体性中間層161a、発光層162、隔壁163、および電子注入層164により発光積層体160が構成されている。なお、発光層162においては、上記実施の形態1に係る表示パネル10と同様に、第1下部電極層150aの上方に形成された第1発光層162aと、第2下部電極層150bの上方に形成された第2発光層162bとが含まれる。
 なお、本実施の形態に係る表示パネル12の隔壁163については、平面形状を特に示していないが、上記実施の形態1に係る表示パネル10の隔壁123と同様に、所謂、ピクセルバンクが採用されている。
 2.平坦化膜143における窪み部143aと半導体性層161
 図8に示すように、本実施の形態に係る表示パネル12においても、平坦化膜143における第1下部電極層150aと第2下部電極層150bとの間の領域に窪み部143aが設けられている。平坦化膜143における窪み部143aは、平坦化膜143aの他の上面よりも沈下している点で、上記実施の形態1に係る表示パネル10と同様である。また、窪み部143aの底面上に、窪み部内形成層161bが形成されている点も、上記実施の形態1に係る表示パネル10と同様である。
 しかしながら、図8の二点鎖線で囲んだ部分に示すように、本実施の形態に係る表示パネル12では、窪み部143aの側面143sの一部において、半導体性層161が形成されていない領域(矢印Aで示す箇所P1と箇所P2の間の領域)を有する。
 よって、本実施の形態に係る表示パネル12では、平坦化膜143における窪み部143aの側面143sの一部に、半導体性層161が形成されていない領域を有することにより、当該領域で第1下部電極層150a上の半導体性中間層161aと第2下部電極層150b上の半導体性中間層161aとが分断されている。このため、サブピクセル13a,13b,13cにおける各半導体性中間層161aは、互いの間の窪み部143aを跨いで連続して形成されていない。よって、表示パネル12では、半導体性層161が、第1下部電極層150aと第2下部電極層150bとを電気的に接続せず、第1下部電極層150aと第2下部電極層150bとの間でのリーク電流を防止できる。
 従って、本実施の形態に係る表示パネル12でも、クロストークの発生が防止される。
 さらに、図8に示すように、本実施の形態に係る表示パネル12でも、隔壁163が、平坦化膜143の窪み部143aに伴い窪んだ形状部分にも入り込んで形成されているので、隔壁163の密着性を向上させることができ、隔壁163が剥離し難い。よって、本実施の形態に係る有機EL表示装置でも、高い信頼性を有する。
 3.表示パネル12の製造方法
 表示パネル12の製造方法について、図9および図10を用い説明する。なお、図9および図10においても、一部を抜き出し、模式的に示している。
 先ず、図9(a)に示すように、上記実施の形態1における図5(a)から図5(c)に示す各工程を実行することで、基板100上にTFT層(図9(a)では、ソース101aのみを図示)、パッシベーション膜102、平坦化膜1431、コンタクトホール104、および金属膜1500を形成する。
 次に、図9(b)に示すように、金属膜1500上における下部電極層150を形成しようとする領域に、感光性のレジスト501を堆積させる。そして、図9(b)に示すように、フォトリソグラフィ法およびエッチング法によりパターニングし、第1下部電極層150aおよび第2下部電極層150bを含む下部電極層150を形成する。
 なお、上記実施の形態1に係る製造方法では、エッチングの後において、下部電極層110の両縁110sがレジスト500の下方に入り込んだ状態としたが、本実施の形態に係る製造方法では、図9(b)に示すように、エッチングの後において、下部電極層150の両縁150sがレジスト501の各縁と合致するようにする。
 次に、上記実施の形態1に係る製造方法と同様に、レジスト501を下部電極層150上に残した状態で、エッチング(例えば、ドライエッチング)を行う。これにより、平坦化膜143において、第1下部電極層150aと第2下部電極層150bとの間の、レジスト501が形成されていない領域1431fに、窪み部143aを形成する(図9(c)を参照)。
 本実施の形態に係る製造方法においても、平坦化膜143の窪み部143aの形成においては、ドライエッチングによることに限定はされず、ウェットエッチングで行うことも可能である。
 次に、図10(a)に示すように、下部電極層150および平坦化膜143における窪み部143aの底面上に対して、半導体性材料を堆積させて、半導体性層161を積層形成する。半導体性層161は、下部電極層150上の半導体性中間層161aと、平坦化膜143の窪み部143aの底面上の窪み部内形成層161bとを含む。
 次に、半導体性層161の上に、隔壁163を形成するための絶縁材料層を、例えば、スピンコート法などにより成膜し、フォトマスクを用い露光・現像することでパターニングを行う。その後に、洗浄液で洗浄を行うことで、図10(b)に示すように、隔壁163を形成する。
 次に、図10(c)に示すように、隔壁163で規定された領域に、インクジェット法により発光層162の材料を含む組成物インクを滴下し、乾燥させることで発光層162を形成する。さらに、発光層162の上に、電子注入層164、上部電極層170および封止層171を積層形成する。
 ここで、発光層162の形成においても、上記実施の形態1に係る製造方法と同様に、上記インクジェット法の他に、例えば、ディスペンサ法、ノズルコート法、スピンコート法、凹版印刷法、あるいは凸版印刷法などを用いることもできる。また、組成物インクの乾燥では、真空乾燥および窒素雰囲気下乾燥を順に行うこととする。
 また、電子注入層164の形成についても、上記実施の形態1に係る製造方法と同様に、例えば、真空蒸着法を用いることができ、上部電極層170の形成には、例えば、プラズマコーティング法を用いることができる。
 以上のようにして、表示パネル12の要部が完成する。
 本実施の形態に係る表示パネル12の製造方法においても、図10(a)に示すように、平坦化膜143における第1下部電極層150aと第2下部電極層150bとの間に窪み部143aを形成した状態で、半導体性層161を形成するので、シャドーイング効果により、窪み部143aにおける側面143sの一部において半導体性層161が形成されない領域が生じる(図8の二点鎖線で囲む部分を参照)。このため、第1下部電極層150a上の半導体性中間層161aと、これに隣接する窪み部内形成層161bとが、電気的に接続されない状態となる。第2下部電極層150b上の半導体性中間層161aと、これに隣接する窪み部内形成層161bとについても、同様である。
 従って、表示パネル12では、上記実施の形態1に係る表示パネル10よりも、第1下部電極層150aと第2下部電極層150bとの間でのリーク電流をさらに確実に防止でき、クロストークが発生しない。
 また、本実施の形態に係る製造方法においても、図9(b)および図9(c)に示すように、下部電極層150の形成のためのレジスト501を、下部電極層150を形成した後も除去することなく、平坦化膜143の窪み部143aを形成する際のマスクとして、そのまま用いている。よって、窪み部143aの形成のために新たなマスクを用いなくてもよく、製造工程を簡略化することができ、製造コストの低減が可能となる。
 なお、本実施の形態に係る表示パネル12では、平坦化膜143における窪み部143aの深さを、窪み部143aの底面上に形成する窪み部内形成層161bの膜厚(窪み部143aの中央部での膜厚)よりも、深い様に構成されている。これは、窪み部内形成層161bが、半導体性中間層161aあるいは下部電極層150との間で完全に分断されるようにするためである。
 [実施の形態3]
 1.表示パネル14の構成
 本実施の形態に係る有機EL表示装置でも、表示パネル14の構成を除き、上記実施の形態1,2に係る有機EL表示装置1,・・と同一の構成を有する。以下では、表示パネル14の構成について、図11を用い説明する。
 図11に示すように、本実施の形態に係る表示パネル14も、各々が赤(R)、緑(G)、青(B)の何れか発光色を有する有機発光層を備えるサブピクセル15a,15b,15cが隣接形成されており、トップエミッション型の有機ELディスプレイである。
 基板100上に形成されたTFT層(図11においても、ソース101aだけを図示)およびパッシベーション膜102、および平坦化膜183に設けられたコンタクトホール104については、上記実施の形態1,2に係る表示パネル10,12と同一構成を有する。
 図11に示すように、表示パネル14においても、平坦化膜183において、下部電極層(陽極層)190間の領域に窪み部183aが形成されている。そして、半導体性層201は、下部電極層190上に形成され、ホール注入層、またはホール輸送層、またはホール注入兼輸送層として機能する半導体性中間層201aと、平坦化膜183における窪み部183aの底面上に形成された、半導体性中間層201aと同一材料の層である窪み部内形成層201bとを有する。
 図11に示すように、半導体性中間層201aの上には、発光層202、電子注入層204、上部電極層(陰極層)210、および封止層211が順に積層され、また、各サブピクセル15a,15b,15cを区画する隔壁203が立設されている。半導体性中間層201a、発光層202、隔壁203、および電子注入層204により発光積層体200が構成されている。なお、発光層202においては、上記実施の形態1,2に係る表示パネル10,12と同様に、第1下部電極層190aの上方に形成された第1発光層202aと、第2下部電極層190bの上方に形成された第2発光層202bとが含まれる。
 なお、本実施の形態に係る表示パネル14の隔壁203についても、所謂、ピクセルバンクが採用されている。
 2.平坦化膜183における窪み部183aと半導体性層201
 図11に示すように、本実施の形態に係る表示パネル14においても、平坦化膜183における第1下部電極層190aと第2下部電極層190bとの間の領域に窪み部183aが設けられている。平坦化膜183における窪み部183aは、平坦化膜183aの他の上面よりも沈下している点で、上記実施の形態1,2に係る表示パネル10,12と同様である。また、窪み部183aの底面上に、窪み部内形成層201bが形成されている点も、上記実施の形態1,2に係る表示パネル10,12と同様である。
 図11の二点鎖線で囲んだ部分に示すように、本実施の形態に係る表示パネル14では、平坦化膜183における窪み部183aの上端縁(箇所P3)が、下部電極層190の端縁(箇所P4)よりも、下部電極層190の下方へと入り込んだ状態となっている。よって、本実施の形態に係る表示パネル14では、平坦化膜183における窪み部183aの側面183sの内、下部電極層190の下方へと入り込んだ部分(矢印Bで示す部分)に、半導体性層201が形成されていない領域を有することにより、当該領域で第1下部電極層190a上の半導体性中間層201aと第2下部電極層190b上の半導体性中間層201aとが分断されている。
 上記構成のため、サブピクセル15a,15b,15cにおける各半導体性中間層201aは、互いの間の窪み部183aを跨いで連続して形成されていない。よって、表示パネル14では、半導体性層201が、第1下部電極層190aと第2下部電極層190bとを電気的に接続せず、第1下部電極層190aと第2下部電極層190bとの間でのリーク電流を防止できる。なお、本実施の形態では、窪み部183aの少なくとも一部が下部電極層190の下方へと入り込み、当該入り込んだ部分で半導体性層201が分断されているので、上記実施の形態2に係る表示パネル12よりも、さらに確実に第1下部電極層190aと第2下部電極層190bとの間でのリーク電流を防止できる。
 従って、本実施の形態に係る表示パネル14でも、クロストークの発生が防止される。
 なお、図11に示すように、本実施の形態に係る表示パネル14でも、隔壁203が、平坦化膜183の窪み部183aの形成に伴い窪んだ形状部分にも入り込んで形成されているので、上記同様に、隔壁203が剥離し難く、有機EL表示装置が高い信頼性を有する。
 3.表示パネル14の製造方法
 表示パネル14の製造方法について、図12および図13を用い説明する。なお、図12および図13においても、一部を抜き出し、模式的に示している。
 先ず、図12(a)に示すように、上記実施の形態1における図5(a)から図5(c)に示す各工程を実行することで、基板100上にTFT層(図12(a)では、ソース101aのみを図示)、パッシベーション膜102、平坦化膜1831、コンタクトホール104、および金属膜1900を形成する。
 次に、図12(b)に示すように、金属膜1900上における下部電極層190を形成しようとする領域に、感光性のレジスト502を堆積させる。そして、図12(b)に示すように、フォトリソグラフィ法およびエッチング法によりパターニングし、第1下部電極層190aおよび第2下部電極層190bを含む下部電極層190を形成する。なお、本実施の形態に係る製造方法でも、図12(b)に示すように、エッチングの後において、下部電極層190の両縁190sがレジスト502の各縁と合致するようにする。
 次に、上記実施の形態1,2に係る製造方法と同様に、レジスト502を下部電極層190上に残した状態で、エッチング(例えば、ドライエッチング)を行う。これにより、平坦化膜183において、第1下部電極層190aと第2下部電極層190bとの間の、レジスト502が形成されていない領域1831fに、窪み部183aを形成する(図12(c)を参照)。なお、本実施の形態に係る製造方法では、上記実施の形態2に係る製造方法に対して、エッチング条件(例えば、エッチング時間など)を変更することにより、窪み部183aの側面183sの少なくとも一部が、下部電極層190の下方に入り込むようにすることができる。
 本実施の形態に係る製造方法においても、平坦化膜183の窪み部183aの形成においては、ドライエッチングによることに限定はされず、ウェットエッチングで行うことも可能である。
 次に、図13(a)に示すように、下部電極層190および平坦化膜183における窪み部183aの底面上に対して、半導体性材料を堆積させて、半導体性層201を積層形成する。半導体性層201は、下部電極層190上の半導体性中間層201aと、平坦化膜183の窪み部183aの底面上の窪み部内形成層201bとを含む。なお、図13(a)に示すように、窪み部183aの側面183sの少なくとも一部を下部電極層190の下方に入り込むようにしているので、半導体性材料を堆積させた状態で、窪み部183aの側面183sの少なくとも一部で半導体性層201が確実に分断される。
 次に、半導体性層201の上に、隔壁203を形成するための絶縁材料層を、例えば、スピンコート法などにより成膜し、フォトマスクを用い露光・現像することでパターニングを行う。その後に、洗浄液で洗浄を行うことで、図13(b)に示すように、隔壁203を形成する。
 次に、図13(c)に示すように、隔壁203で規定された領域に、インクジェット法により発光層202の材料を含む組成物インクを滴下し、乾燥させることで発光層202を形成する。さらに、発光層202の上に、電子注入層204、上部電極層210および封止層211を積層形成する。
 ここで、発光層202の形成においても、上記実施の形態1,2に係る製造方法と同様に、上記インクジェット法の他に、例えば、ディスペンサ法、ノズルコート法、スピンコート法、凹版印刷法、あるいは凸版印刷法などを用いることもできる。また、組成物インクの乾燥では、真空乾燥および窒素雰囲気下乾燥を順に行うこととする。
 また、電子注入層204の形成についても、上記実施の形態1,2に係る製造方法と同様に、例えば、真空蒸着法を用いることができ、上部電極層210の形成には、例えば、プラズマコーティング法を用いることができる。
 以上のようにして、表示パネル14の要部が完成する。
 本実施の形態に係る表示パネル14の製造方法においても、図13(a)に示すように、平坦化膜183における第1下部電極層190aと第2下部電極層190bとの間に窪み部183aを形成した状態で、半導体性層201を形成するので、シャドーイング効果により、窪み部183aにおける側面183sの少なくとも一部において半導体性層201が形成されない領域が生じる(図11の二点鎖線で囲む部分を参照)。このため、第1下部電極層190a上の半導体性中間層201aと、これに隣接する窪み部内形成層201bとが、電気的に接続されない状態となる。第2下部電極層190b上の半導体性中間層201aと、これに隣接する窪み部内形成層201bとについても、同様である。
 なお、上記の通り、本実施の形態では、窪み部183aの側面183sの少なくとも一部が下部電極層190の下方に入り込むようにしているので、より確実に半導体性層201の分断ができる。
 従って、表示パネル14では、上記実施の形態1,2に係る表示パネル10,12よりも、第1下部電極層190aと第2下部電極層190bとの間でのリーク電流をさらに確実に防止でき、クロストークが発生しない。
 また、本実施の形態に係る製造方法においても、図12(b)および図12(c)に示すように、下部電極層190の形成のためのレジスト502を、下部電極層190を形成した後も除去することなく、平坦化膜183の窪み部183aを形成する際のマスクとして、そのまま用いている。よって、窪み部183aの形成のために新たなマスクを用いなくてもよく、製造工程を簡略化することができ、製造コストの低減が可能となる。
 なお、本実施の形態に係る表示パネル14においても、平坦化膜183における窪み部183aの深さを、窪み部183aの底面上に形成する窪み部内形成層201bの膜厚(窪み部183aの中央部での膜厚)よりも、深い様に構成されている。これは、窪み部内形成層201bが、半導体性中間層201aあるいは下部電極層190との間で完全に分断されるようにするためである。
 [実施の形態4]
 1.表示パネル16の構成
 本実施の形態に係る有機EL表示装置でも、表示パネル16の構成を除き、上記実施の形態1,2,3に係る有機EL表示装置1,・・と同一の構成を有する。以下では、表示パネル16の構成について、図14を用い説明する。
 図14に示すように、本実施の形態に係る表示パネル16も、各々が赤(R)、緑(G)、青(B)の何れか発光色を有する有機発光層を備えるサブピクセル17a,17b,17cが隣接形成されており、トップエミッション型の有機ELディスプレイである。
 図14に示すように、基板100上に形成されたTFT層(図14においても、ソース101aだけを図示)およびパッシベーション膜102、および平坦化膜223に設けられたコンタクトホール104については、上記実施の形態1,2に係る表示パネル10,12と同一構成を有する。
 図14に示すように、表示パネル16においても、平坦化膜223において、下部電極層(陽極層)230間の領域に窪み部223aが形成されている。そして、半導体性層241は、下部電極層230上に形成され、ホール注入層、またはホール輸送層、またはホール注入兼輸送層として機能する半導体性中間層241aと、平坦化膜223における窪み部223aの底面上に形成された、半導体性中間層241aと同一材料の層である窪み部内形成層241bとを有する。
 ここで、本実施の形態に係る表示パネル16では、下部電極層230が、金属層2301と透明導電層2302との積層構造を有している。そして、サブピクセル17aに属する第1下部電極層230aが、第1金属層2301aと第1透明導電層2302aとの積層構造を有し、同様に、サブピクセル17bに属する第2下部電極層230bが、第2金属層2301bと第2透明導電層2302bとの積層構造を有する。
 図14に示すように、半導体性中間層241aの上には、発光層242、電子注入層244、上部電極層(陰極層)250、および封止層251が順に積層され、また、各サブピクセル17a,17b,17cを区画する隔壁243が立設されている。半導体性中間層241a、発光層242、隔壁243、および電子注入層244により発光積層体240が構成されている。なお、発光層242においては、上記実施の形態1,2,3に係る表示パネル10,12,14と同様に、第1下部電極層230aにおける第1透明導電層2302aの上方に形成された第1発光層242aと、第2下部電極層230bにおける第2透明導電層2302bの上方に形成された第2発光層242bとが含まれる。
 なお、本実施の形態に係る表示パネル16の隔壁243についても、所謂、ピクセルバンクが採用されている。
 2.平坦化膜223における窪み部223aと半導体性層241
 図14に示すように、本実施の形態に係る表示パネル16においても、平坦化膜223における第1下部電極層230aと第2下部電極層230bとの間の領域に窪み部223aが設けられている。平坦化膜223における窪み部223aは、平坦化膜223aの他の上面よりも沈下している点で、上記実施の形態1,2,3に係る表示パネル10,12,14と同様である。また、窪み部223aの底面上に、窪み部内形成層241bが形成されている点も、上記実施の形態1,2,3に係る表示パネル10,12,14と同様である。
 図14の二点鎖線で囲んだ部分に示すように、本実施の形態に係る表示パネル16では、平坦化膜223における窪み部223aの上端縁(箇所P5)が、上記実施の形態3に係る表示パネル14と同様に、下部電極層230における透明導電層2302の端縁(箇所P6)よりも、下部電極層230の下方へと入り込んだ状態となっている。なお、下部電極層230では、金属層2301の側縁が透明導電層2302で覆われている。
 以上の構成を採用することにより、本実施の形態に係る表示パネル16では、平坦化膜223における窪み部223aの側面223sの内、下部電極層230の透明導電層2302の下方へと入り込んだ部分(矢印Cで示す部分)に、半導体性層241が形成されていない領域を有することにより、当該領域で第1下部電極層230a上の半導体性中間層241aと第2下部電極層230b上の半導体性中間層241aとが分断されている。
 上記構成のため、サブピクセル17a,17b,17cにおける各半導体性中間層241aは、互いの間の窪み部223aを跨いで連続して形成されていない。よって、表示パネル16では、半導体性層241が、第1下部電極層230aと第2下部電極層230bとを電気的に接続せず、第1下部電極層230aと第2下部電極層230bとの間でのリーク電流を防止できる。なお、本実施の形態では、窪み部223aの少なくとも一部が下部電極層230の透明導電層2302の下方へと入り込み、当該入り込んだ部分で半導体性層241が分断されているので、上記実施の形態3に係る表示パネル14と同様に、確実に第1下部電極層230aと第2下部電極層230bとの間でのリーク電流を防止できる。
 従って、本実施の形態に係る表示パネル16でも、クロストークの発生が防止される。
 なお、図14に示すように、本実施の形態に係る表示パネル16でも、隔壁243が、平坦化膜223の窪み部223aの形成に伴い窪んだ形状部分にも入り込んで形成されているので、上記同様に、隔壁243が剥離し難く、有機EL表示装置が高い信頼性を有する。
 3.表示パネル16の製造方法
 表示パネル16の製造方法について、図15から図17を用い説明する。なお、図15から図17においても、一部を抜き出し、模式的に示している。
 先ず、図15(a)に示すように、上記実施の形態1における図5(a)から図5(c)に示す各工程を実行することで、基板100上にTFT層(図15(a)では、ソース101aのみを図示)、パッシベーション膜102、平坦化膜2231、コンタクトホール104、および金属膜2303を形成する。
 次に、図15(b)に示すように、金属膜2303上における下部電極層230の金属層2301を形成しようとする領域に、感光性のレジスト503を堆積させる。そして、図15(b)に示すように、フォトリソグラフィ法およびエッチング法によりパターニングし、第1下部電極層230aにおける金属層2301aおよび第2下部電極層230bにおける金属層2301bを含む下部電極層230の金属層2301を形成する。なお、本実施の形態に係る製造方法でも、図15(b)に示すように、エッチングの後において、下部電極層230における金属層2301の両縁2301sがレジスト503の各縁と合致するようにする。
 次に、上記実施の形態1,2,3に係る製造方法とは異なり、レジスト503を下部電極層230の金属層2301上から除去する。そして、図15(c)に示すように、金属層2301上および金属層2301間に露出された平坦化膜2231の露出面2231f上を覆うように、透明導電膜2304を成膜する。透明導電膜2304の成膜には、例えば、スパッタリング法を用いることができる。
 次に、図16(a)に示すように、透明導電膜2304に対し、下部電極層230における透明導電層2302を形成しようとする領域に、感光性のレジスト504を堆積させる。そして、この状態で、透明導電膜2304に対して、エッチング(例えば、ウェットエッチング)を実行することにより、透明導電層2302aおよび透明導電層2302bを含む透明導電層2302がパターニングできる。これにより、第1下部電極層230aおよび第2下部電極層230bを含む、下部電極層230が形成できる。
 次に、レジスト504を除去した後、下部電極層230における透明導電層2302をマスクとしてエッチング(例えば、ドライエッチング)する。これにより、平坦化膜223において、第1下部電極層230aと第2下部電極層230bとの間の領域2231gに、窪み部223aを形成する(図16(b)を参照)。なお、本実施の形態に係る製造方法では、上記実施の形態3に係る製造方法と同様に、エッチング条件(例えば、エッチング時間など)を考慮することにより、窪み部223aの側面223sの少なくとも一部が、下部電極層230における透明導電層2302の下方に入り込むようにすることができる。
 本実施の形態に係る製造方法においても、平坦化膜223の窪み部223aの形成においては、ドライエッチングによることに限定はされず、ウェットエッチングで行うことも可能である。
 次に、図16(c)に示すように、下部電極層230における透明導電層2302上および平坦化膜223における窪み部223aの底面上に対して、半導体性材料を堆積させて、半導体性層241を積層形成する。半導体性層241は、下部電極層230における透明導電層2302上の半導体性中間層241aと、平坦化膜223の窪み部223aの底面上の窪み部内形成層241bとを含む。なお、図16(c)に示すように、窪み部223aの側面223sの少なくとも一部を下部電極層230における透明導電層2302の下方に入り込むようにしているので、半導体性材料を堆積させた状態で、窪み部223aの側面223sの少なくとも一部で半導体性層241が確実に分断される。
 次に、半導体性層241の上に、隔壁243を形成するための絶縁材料層を、例えば、スピンコート法などにより成膜し、フォトマスクを用い露光・現像することでパターニングを行う。その後に、洗浄液で洗浄を行うことで、図17(a)に示すように、隔壁243を形成する。
 次に、図17(b)に示すように、隔壁243で規定された領域に、インクジェット法により発光層242の材料を含む組成物インクを滴下し、乾燥させることで発光層242を形成する。さらに、発光層242の上に、電子注入層244、上部電極層250および封止層251を積層形成する。
 ここで、発光層242の形成においても、上記実施の形態1,2,3に係る製造方法と同様に、上記インクジェット法の他に、例えば、ディスペンサ法、ノズルコート法、スピンコート法、凹版印刷法、あるいは凸版印刷法などを用いることもできる。また、組成物インクの乾燥では、真空乾燥および窒素雰囲気下乾燥を順に行うこととする。
 また、電子注入層244の形成についても、上記実施の形態1,2,3に係る製造方法と同様に、例えば、真空蒸着法を用いることができ、上部電極層250の形成には、例えば、プラズマコーティング法を用いることができる。
 以上のようにして、表示パネル16の要部が完成する。
 本実施の形態に係る表示パネル16の製造方法においても、図16(c)に示すように、平坦化膜223における第1下部電極層230aと第2下部電極層230bとの間に窪み部223aを形成した状態で、半導体性層241を形成するので、シャドーイング効果により、窪み部223aにおける側面223sの少なくとも一部において半導体性層241が形成されない領域が生じる(図14の二点鎖線で囲む部分を参照)。このため、第1下部電極層190a上の半導体性中間層201aと、これに隣接する窪み部内形成層241bとが、電気的に接続されない状態となる。第2下部電極層230b上の半導体性中間層241aと、これに隣接する窪み部内形成層241bとについても、同様である。
 なお、上記の通り、本実施の形態では、窪み部223aの側面223sの少なくとも一部が下部電極層230における透明導電層2302の下方に入り込むようにしているので、より確実に半導体性層241の分断ができる。
 従って、表示パネル16では、上記実施の形態3に係る表示パネル14と同様に、第1下部電極層230aと第2下部電極層230bとの間でのリーク電流をさらに確実に防止でき、クロストークが発生しない。
 また、本実施の形態に係る製造方法においても、図16(a)および図16(b)に示すように、下部電極層230における透明導電層2302を、平坦化膜223の窪み部223aを形成する際のマスクとして用いている。よって、窪み部223aの形成のために新たなマスクを用いなくてもよく、製造工程を簡略化することができ、製造コストの低減が可能となる。
 なお、本実施の形態に係る表示パネル16においても、平坦化膜223における窪み部223aの深さを、窪み部223aの底面上に形成する窪み部内形成層241bの膜厚(窪み部223aの中央部での膜厚)よりも、深い様に構成されている。これは、窪み部内形成層241bが、半導体性中間層241aあるいは下部電極層230との間で完全に分断されるようにするためである。
 [その他の事項]
 上記実施の形態1,2,3,4では、隔壁123,163,203,243について、所謂、ピクセルバンクを採用したが、必ずしもこれに限られない。例えば、図18に示すように、所謂、ラインバンク構造の隔壁263を採用し、これにより、X軸方向でのサブピクセル19a,19b,19cの各発光層を区画することとしてもよい。
 また、上記実施の形態1,2,3,4では、発光装置の一例として有機EL表示装置1,・・を採用したが、これに限定されるものではない。例えば、照明装置などにも適用することが可能である。
 また、上記実施の形態4に係る下部電極層230の構成を、上記実施の形態1,2に係る下部電極層110,150の代わりに適用することも可能である。
 さらに、上記実施の形態1,2,3,4では、下部電極層110,150,190,230が陽極であり、上部電極層130,170,210,250が陰極である構成を採用したが、陽極と陰極との位置が逆転した構成とすることもできる。
 また、上記実施の形態1,2,3,4では、トップエミッション型の有機EL表示装置としたが、ボトムエミッション型の有機EL表示装置とすることもできる。
 さらに、平坦化膜103,143,183,223の各窪み部103a,143a,183a,223aの形状やサイズは、添付した図面に示すものに限定されるものではない。例えば、工程面で許容される場合には、窪み部の深さをより深くすることで、さらに確実に下部電極層間でのリーク電流を防止できる。
 本発明は、クロストークの発生がなく、優れた発光性能を有する発光装置を実現するのに有用である。
   1.有機EL表示装置
  10,12,14,16,18.表示パネル
  11a,11b,11c,13a,13b,13c,15a,15b,15c,17a,17b,17c,19a,19b,19c.サブピクセル
  20.駆動制御部
  21,22,23,24.駆動回路
  25.制御回路
  31.ソース信号配線
  32.電源配線
 100.基板
 101.TFT
 101a.ソース
 102.パッシベーション膜
 103,143,183,223.平坦化膜
 103a,143a,183a,223a.窪み部
 104.コンタクトホール
 110,150,190,230.下部電極層
 110a,150a,190a,230a.第1下部電極層
 110b,150b,190b,230b.第2下部電極層
 120,160,200,240.発光積層体
 121,161,201,241.半導体性層
 121a,161a,201a,241a.半導体性中間層
 121b,161b,201b,241b.窪み部内形成層
 122,162,202,242.発光層
 122a,162a,202a,242a.第1発光層
 122b,162b,202b,242b.第2発光層
 123,163,203,243,263.隔壁
 124,164,204,244.電子注入層
 130,170,210,250.上部電極層
 131,171,211,251.封止層
 143s,183s,223s.窪み部側面
 500,501,502,503,504.レジスト
1030,1031,1431,1831,2231.平坦化膜
1100,1500,1900.金属膜
2301.金属層
2301a.第1金属層
2301b.第2金属層
2302.透明導電層
2302a.第1透明導電層
2302b.第2透明導電層
2303.金属膜
2304.透明導電膜

Claims (16)

  1.  基板の上方に形成され、窪み部を有する平坦化膜と、
     前記平坦化膜上であって前記窪み部の形成領域外に形成された第1下部電極層と、
     前記平坦化膜上であって前記窪み部の形成領域外に前記窪み部を挟んで前記第1下部電極層と隣接して形成された第2下部電極層と、
     前記第1下部電極層および前記第2下部電極層の上方に形成された半導体性中間層と、
     前記第1下部電極層の端部、前記第1下部電極層と隣接する前記第2下部電極層の端部、および前記平坦化膜の窪み部を覆って形成された隔壁と、を具備し、
     前記平坦化膜の窪み部は、前記第1下部電極層および前記第2下部電極層との間で、前記平坦化膜の他の上面よりも沈下し、
     前記平坦化膜の窪み部の上面には、前記半導体性中間層と同一材料の層が形成されており、
     前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の端部の膜厚は、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の中央部の膜厚よりも薄い
     発光装置。
  2.  基板の上方に形成され、窪み部を有する平坦化膜と、
     前記平坦化膜上であって前記窪み部の形成領域外に形成された第1下部電極層と、
     前記平坦化膜上であって前記窪み部の形成領域外に前記窪み部を挟んで前記第1下部電極層と隣接して形成された第2下部電極層と、
     前記第1下部電極層および前記第2下部電極層の上方に形成された半導体性中間層と、
     前記第1下部電極層の端部、前記第1下部電極層と隣接する前記第2下部電極層の端部、および前記平坦化膜の窪み部を覆って形成された隔壁と、を具備し、
     前記平坦化膜の窪み部は、前記第1下部電極層および前記第2下部電極層との間で、前記平坦化膜の他の上面よりも沈下し、
     前記平坦化膜の窪み部の上面には、前記半導体性中間層と同一材料の層が形成されており、
     前記窪み部の側面は、前記半導体性中間層と同一材料の層が形成されていない領域を有し、
     前記半導体性中間層と、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層とは、前記窪み部の側面において前記半導体性中間層と同一材料の層が形成されていない領域により分断されている
     発光装置。
  3.  前記窪み部の側面は、前記第1下部電極層および前記第2下部電極層の各々の下方に入り込んだ形状である
     請求項2に記載の発光装置。
  4.  前記第1下部電極層には、前記半導体性中間層側に第1透明導電膜による層が含まれ、
     前記第2下部電極層には、前記半導体性中間層側に第2透明導電膜による層が含まれ、
     前記半導体性中間層は、前記第1透明導電膜による層上および前記第2透明導電膜による層上に形成されている
     請求項1から請求項3の何れか1項に記載の発光装置。
  5.  前記基板と前記平坦化膜との間には、TFT層が形成され、
     前記平坦化膜は、前記TFT層上に形成されている
     請求項1から請求項4の何れか1項に記載の発光装置。
  6.  前記第1下部電極層の上方であって前記半導体性中間層上に形成された第1発光層と、
     前記第2下部電極層の上方であって前記半導体性中間層上に形成された第2発光層と、を具備し、
     前記隔壁は、前記第1発光層と前記第2発光層とを区画する
     請求項1から請求項4の何れか1項に記載の発光装置。
  7.  前記第1発光層および前記第2発光層の上方に形成された上部電極層を具備する
     請求項6に記載の発光装置。
  8.  前記上部電極層は、陰極層である
     請求項6に記載の発光装置。
  9.  前記第1下部電極層および前記第2下部電極層は、陽極層であり、
     前記半導体性中間層は、正孔注入層である
     請求項1から請求項8の何れか1項に記載の発光装置。
  10.  前記窪み部の深さは、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層と同一材料の層の中央部の膜厚よりも大きい
     請求項1から請求項9の何れか1項に記載の発光装置。
  11.  基板を準備する第1工程と、
     前記基板の上方に平坦化膜を形成する第2工程と、
     前記平坦化膜上に第1下部電極層と第2下部電極層とを形成する第3工程と、
     前記第1下部電極層と前記第2下部電極層との上にレジストを形成する第4工程と、
     前記第1下部電極層と前記第2電極層との間の、前記レジストが形成されていない前記平坦化膜の領域をエッチングすることにより、前記レジストが形成されていない前記平坦化膜の領域の前記平坦化膜の上面が、前記平坦化膜の他の上面よりも沈下した窪み部を形成する第5工程と、
     前記第1下部電極層上、前記第2下部電極層上、および前記窪み部の底面上に半導体性中間層を形成する第6工程と、を含み、
     前記平坦化膜の窪み部の上面に形成された前記半導体性中間層の端部の膜厚を、前記平坦化膜の窪み部の上面に形成された前記半導体性中間層の中央部の膜厚よりも薄く形成する
     発光装置の製造方法。
  12.  基板を準備する第1工程と、
     前記基板の上方に平坦化膜を形成する第2工程と、
     前記平坦化膜上に第1下部電極層と第2下部電極層とを形成する第3工程と、
     前記第1下部電極層および前記第2下部電極層自体をマスクとして、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜の領域をエッチングすることにより、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜の領域に、前記平坦化膜の他の上面よりも沈下した窪み部を形成する第4工程と、
     前記第1下部電極層上、前記第2下部電極層上、および前記窪み部の底面上に半導体性中間層を形成する第5工程と、を含み、
     前記窪み部の側面は、前記半導体性中間層が形成されていない領域を有し、
     前記半導体性中間層を、前記窪み部の側面において前記半導体性中間層が形成されていない領域により分断する
     発光装置の製造方法。
  13.  前記第4工程において、
     前記第4工程のエッチングにより、前記第1下部電極層と前記第2下部電極層との間の前記平坦化膜に形成された窪み部は、その側面が前記第1下部電極層および前記第2下部電極層の各々の下方に入り込んだ形状である
     請求項12に記載の発光装置の製造方法。
  14.  前記エッチングは、ドライエッチングである
     請求項12または請求項13に記載の発光装置の製造方法。
  15.  前記第1下部電極層には、前記半導体性中間層側に第1透明導電膜による層が含まれ、
     前記第2下部電極層には、前記半導体性中間層側に第2透明導電膜による層が含まれ、
     前記第6工程において、前記半導体性中間層は、前記第1透明導電膜による層上および前記第2透明導電膜による層上に形成される
     請求項11に記載の発光装置の製造方法。
  16.  前記第1下部電極層には、前記半導体性中間層側に第1透明導電膜による層が含まれ、
     前記第2下部電極層には、前記半導体性中間層側に第2透明導電膜による層が含まれ、
     前記第5工程において、前記半導体性中間層は、前記第1透明導電膜による層上および前記第2透明導電膜による層上に形成される
     請求項12に記載の発光装置の製造方法。
PCT/JP2010/001118 2010-02-22 2010-02-22 発光装置とその製造方法 WO2011101918A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010538252A JP5453303B2 (ja) 2010-02-22 2010-02-22 発光装置とその製造方法
CN201080001392.3A CN102334384B (zh) 2010-02-22 2010-02-22 发光装置及其制造方法
KR1020107022897A KR101567114B1 (ko) 2010-02-22 2010-02-22 발광 장치와 그 제조 방법
PCT/JP2010/001118 WO2011101918A1 (ja) 2010-02-22 2010-02-22 発光装置とその製造方法
US13/043,803 US8519425B2 (en) 2010-02-22 2011-03-09 Light-emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001118 WO2011101918A1 (ja) 2010-02-22 2010-02-22 発光装置とその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/043,803 Continuation US8519425B2 (en) 2010-02-22 2011-03-09 Light-emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011101918A1 true WO2011101918A1 (ja) 2011-08-25

Family

ID=44475767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001118 WO2011101918A1 (ja) 2010-02-22 2010-02-22 発光装置とその製造方法

Country Status (5)

Country Link
US (1) US8519425B2 (ja)
JP (1) JP5453303B2 (ja)
KR (1) KR101567114B1 (ja)
CN (1) CN102334384B (ja)
WO (1) WO2011101918A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063197A (ja) * 2014-09-22 2016-04-25 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
WO2021201026A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 表示装置および電子機器
WO2022137342A1 (ja) * 2020-12-22 2022-06-30 シャープ株式会社 表示装置及び表示装置の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308404B (zh) 2009-02-10 2016-01-20 株式会社日本有机雷特显示器 发光元件、显示装置以及发光元件的制造方法
CN102272970B (zh) 2009-02-10 2014-12-10 松下电器产业株式会社 发光元件、具备发光元件的发光装置以及发光元件的制造方法
JP5303036B2 (ja) 2009-09-29 2013-10-02 パナソニック株式会社 発光素子およびそれを用いた表示装置
JP5209123B2 (ja) 2009-11-04 2013-06-12 パナソニック株式会社 表示パネル装置及びその製造方法
JP5612692B2 (ja) 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法
WO2012017489A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子、表示装置および発光装置
JP5677437B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子
WO2012017487A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法
CN103038908B (zh) 2010-08-06 2016-01-06 株式会社日本有机雷特显示器 发光元件、具备发光元件的发光装置以及发光元件的制造方法
JP5620495B2 (ja) 2010-08-06 2014-11-05 パナソニック株式会社 発光素子、発光素子を備えた発光装置および発光素子の製造方法
JP5543599B2 (ja) 2010-08-06 2014-07-09 パナソニック株式会社 発光素子の製造方法
JP5677433B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子、表示装置および発光装置
CN103053042B (zh) 2010-08-06 2016-02-24 株式会社日本有机雷特显示器 有机el元件及其制造方法
JP5677431B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子、表示装置および発光装置
CN103053040B (zh) 2010-08-06 2015-09-02 株式会社日本有机雷特显示器 有机el元件
JP5612691B2 (ja) 2010-08-06 2014-10-22 パナソニック株式会社 有機el素子およびその製造方法
WO2012017499A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子
JP6155020B2 (ja) * 2012-12-21 2017-06-28 株式会社半導体エネルギー研究所 発光装置及びその製造方法
KR101504331B1 (ko) * 2013-03-04 2015-03-19 삼성전자주식회사 발광소자 패키지
JP6282428B2 (ja) * 2013-09-09 2018-02-21 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置及びその製造方法
JP6300231B2 (ja) * 2014-06-25 2018-03-28 パナソニック株式会社 有機el素子
KR102464613B1 (ko) * 2015-04-30 2022-11-08 엘지디스플레이 주식회사 유기 발광 표시장치 및 이의 제조 방법
CN106972032B (zh) * 2017-05-22 2020-08-25 上海天马有机发光显示技术有限公司 阵列基板及包含其的显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011572A (ja) * 2003-06-17 2005-01-13 Seiko Epson Corp 有機el装置とその製造方法、並びに電子機器
JP2007220393A (ja) * 2006-02-15 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2007287346A (ja) * 2006-04-12 2007-11-01 Mitsubishi Electric Corp 有機el表示装置および有機el表示装置の製造方法
JP2008059868A (ja) * 2006-08-30 2008-03-13 Seiko Epson Corp 有機エレクトロルミネッセンス装置とその製造方法及び電子機器
JP2008089634A (ja) * 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置及び電子機器

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
JP3599964B2 (ja) 1997-07-29 2004-12-08 パイオニア株式会社 発光ディスプレイ及びその製造方法
CN100530758C (zh) * 1998-03-17 2009-08-19 精工爱普生株式会社 薄膜构图的衬底及其表面处理
JP3078257B2 (ja) * 1998-04-15 2000-08-21 ティーディーケイ株式会社 有機el表示装置及びその製造方法
KR20010108148A (ko) * 1999-11-29 2001-12-07 요트.게.아. 롤페즈 유기 전기발광 디바이스와 그 제조 방법
US6838696B2 (en) * 2000-03-15 2005-01-04 Advanced Display Inc. Liquid crystal display
US20040113168A1 (en) * 2001-02-21 2004-06-17 Ivan Eliashevich Light extraction efficiency of gan based leds
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
JP3778176B2 (ja) * 2002-05-28 2006-05-24 セイコーエプソン株式会社 発光装置および電子機器
JP4615197B2 (ja) * 2002-08-30 2011-01-19 シャープ株式会社 Tftアレイ基板の製造方法および液晶表示装置の製造方法
JP2004127551A (ja) * 2002-09-30 2004-04-22 Seiko Epson Corp 有機el装置とその製造方法、および電子機器
JP2004192890A (ja) 2002-12-10 2004-07-08 Sony Corp 有機電界発光素子
JP2004192935A (ja) * 2002-12-11 2004-07-08 Hitachi Displays Ltd 有機el表示装置
KR100919199B1 (ko) * 2002-12-31 2009-09-28 엘지디스플레이 주식회사 횡전계방식 액정표시소자
JP4138672B2 (ja) * 2003-03-27 2008-08-27 セイコーエプソン株式会社 電気光学装置の製造方法
US7436114B2 (en) * 2005-06-03 2008-10-14 E.I. Du Pont De Nemours And Company Electronic device including a first workpiece, a second workpiece, and a conductive member substantially directly bonded to the first and second workpieces
JP4101823B2 (ja) * 2005-06-13 2008-06-18 株式会社東芝 半導体素子、電極形成方法及び半導体素子の製造方法
WO2007013692A1 (en) * 2005-07-29 2007-02-01 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element, exposure device and image forming apparatus
US20070241665A1 (en) * 2006-04-12 2007-10-18 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent element, and manufacturing method thereof, as well as display device and exposure apparatus using the same
JP2007286081A (ja) * 2006-04-12 2007-11-01 Hitachi Displays Ltd 有機el表示装置
KR101473021B1 (ko) 2006-09-08 2014-12-15 도판 인사츠 가부시키가이샤 적층체
JP2009071162A (ja) * 2007-09-14 2009-04-02 Rohm Co Ltd 半導体装置及び半導体装置の製造方法
JP2009128577A (ja) * 2007-11-22 2009-06-11 Hitachi Ltd 有機発光表示装置
JP2009133914A (ja) * 2007-11-28 2009-06-18 Sony Corp 表示装置
JP2009135053A (ja) * 2007-11-30 2009-06-18 Sumitomo Chemical Co Ltd 電子デバイス、表示装置および電子デバイスの製造方法
US8158988B2 (en) * 2008-06-05 2012-04-17 International Business Machines Corporation Interlevel conductive light shield
JP4555880B2 (ja) * 2008-09-04 2010-10-06 株式会社沖データ 積層半導体発光装置及び画像形成装置
EP2172977A1 (en) * 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
CN102386236B (zh) * 2008-10-24 2016-02-10 株式会社半导体能源研究所 半导体器件和用于制造该半导体器件的方法
JP5572942B2 (ja) * 2008-11-28 2014-08-20 住友化学株式会社 発光装置およびその製造方法
CN102308404B (zh) * 2009-02-10 2016-01-20 株式会社日本有机雷特显示器 发光元件、显示装置以及发光元件的制造方法
TWI617029B (zh) * 2009-03-27 2018-03-01 半導體能源研究所股份有限公司 半導體裝置
JP5453952B2 (ja) * 2009-06-23 2014-03-26 ソニー株式会社 有機エレクトロルミネッセンス素子およびその製造方法、並びに表示装置およびその製造方法
JP5642447B2 (ja) * 2009-08-07 2014-12-17 株式会社半導体エネルギー研究所 半導体装置
WO2011036981A1 (en) * 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102145488B1 (ko) * 2009-10-09 2020-08-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN102598282B (zh) * 2009-11-06 2015-09-23 株式会社半导体能源研究所 半导体装置及其制造方法
JP5423325B2 (ja) * 2009-11-10 2014-02-19 ソニー株式会社 発光素子及びその製造方法
WO2011074506A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101007136B1 (ko) * 2010-02-18 2011-01-10 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
KR101929190B1 (ko) * 2010-03-05 2018-12-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101653844B1 (ko) * 2010-04-19 2016-09-02 가부시키가이샤 제이올레드 유기 el 표시 패널 및 이를 구비한 유기 el 표시 장치 및 유기 el 표시 패널의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011572A (ja) * 2003-06-17 2005-01-13 Seiko Epson Corp 有機el装置とその製造方法、並びに電子機器
JP2007220393A (ja) * 2006-02-15 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2007287346A (ja) * 2006-04-12 2007-11-01 Mitsubishi Electric Corp 有機el表示装置および有機el表示装置の製造方法
JP2008059868A (ja) * 2006-08-30 2008-03-13 Seiko Epson Corp 有機エレクトロルミネッセンス装置とその製造方法及び電子機器
JP2008089634A (ja) * 2006-09-29 2008-04-17 Seiko Epson Corp 電気光学装置及び電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063197A (ja) * 2014-09-22 2016-04-25 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
WO2021201026A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 表示装置および電子機器
WO2022137342A1 (ja) * 2020-12-22 2022-06-30 シャープ株式会社 表示装置及び表示装置の製造方法

Also Published As

Publication number Publication date
KR101567114B1 (ko) 2015-11-06
JP5453303B2 (ja) 2014-03-26
US20110204410A1 (en) 2011-08-25
KR20120136432A (ko) 2012-12-20
US8519425B2 (en) 2013-08-27
CN102334384A (zh) 2012-01-25
CN102334384B (zh) 2015-01-28
JPWO2011101918A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5453303B2 (ja) 発光装置とその製造方法
US8604494B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness, and organic display device
US8604495B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US8604492B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
JP4659141B1 (ja) 発光素子とその製造方法、および発光装置
JP5357194B2 (ja) 発光素子、発光素子を備えた発光装置および発光素子の製造方法
US8889474B2 (en) Organic light-emitting element and process for production thereof, and organic display panel and organic display device
US8604493B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
US9153628B2 (en) Display panel having an inter-layer insulation layer with planar and protruding regions
JP5336524B2 (ja) 発光素子の製造方法と発光素子、および発光装置の製造方法と発光装置
US8847250B2 (en) Organic light-emitting element and manufacturing method of the same, organic display panel, and organic display device
KR20130018501A (ko) 유기 발광 표시 장치의 제조 방법
JP2005327674A (ja) 有機エレクトロルミネッセント表示素子、それを有する表示装置、及び、その製造方法
US9722006B2 (en) Organic light-emitting device and method for producing same
WO2012001727A1 (ja) 有機発光素子とその製造方法、有機表示パネル、有機表示装置
CN112670332A (zh) 像素单元及其制作方法和显示装置
WO2012017491A1 (ja) 発光素子、発光素子を備えた発光装置および発光素子の製造方法
JP2009266803A (ja) 有機elディスプレイパネル及びその製造方法
JP2011034931A (ja) 有機el表示装置
US20200243613A1 (en) Organic el display panel and method of manufacturing organic el display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001392.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010538252

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107022897

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846060

Country of ref document: EP

Kind code of ref document: A1