WO2011096559A1 - ブロックポリイソシアネート組成物及びこれを含む塗料組成物 - Google Patents

ブロックポリイソシアネート組成物及びこれを含む塗料組成物 Download PDF

Info

Publication number
WO2011096559A1
WO2011096559A1 PCT/JP2011/052484 JP2011052484W WO2011096559A1 WO 2011096559 A1 WO2011096559 A1 WO 2011096559A1 JP 2011052484 W JP2011052484 W JP 2011052484W WO 2011096559 A1 WO2011096559 A1 WO 2011096559A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyisocyanate
formula
block polyisocyanate
compound
Prior art date
Application number
PCT/JP2011/052484
Other languages
English (en)
French (fr)
Inventor
理計 山内
貴行 宮崎
貴裕 板持
希絵 篠宮
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201180008753.1A priority Critical patent/CN102753596B/zh
Priority to US13/577,293 priority patent/US9156937B2/en
Priority to EP20110739906 priority patent/EP2535364B1/en
Priority to BR112012019717A priority patent/BR112012019717A2/pt
Priority to KR20127020675A priority patent/KR101450985B1/ko
Publication of WO2011096559A1 publication Critical patent/WO2011096559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8093Compounds containing active methylene groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8048Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8064Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/807Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
    • C08G18/808Monoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • C08G18/8096Masked polyisocyanates masked with compounds having only one group containing active hydrogen with two or more compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a block polyisocyanate composition capable of forming a crosslinked coating film at a temperature of 100 ° C. or less, excellent in moisture stability, and having good curability after storage, and a coating composition using the same. .
  • the block polyisocyanate composition is widely used for baking paints as a heat-crosslinking type curing agent together with a melamine curing agent.
  • formalin is generated when a melamine-based curing agent is used, and block polyisocyanate compositions are attracting attention from the viewpoints of the global environment, safety, hygiene, and the like.
  • oximes, phenols, alcohols, and lactams are known as blocking agents for block polyisocyanate compositions.
  • the block polyisocyanate composition formed using the conventional blocking agent generally requires a high baking temperature of 140 ° C. or higher, the energy cost is very high.
  • Patent Document 1 pyrazole block polyisocyanate compositions
  • Patent Document 2 aliphatic secondary amine block polyisocyanate compositions are used as block polyisocyanate compositions that form a crosslinked coating film at a relatively low temperature.
  • Patent Document 2 pyrazole block polyisocyanate compositions
  • these block polyisocyanate compositions require a baking temperature of about 120 ° C., and further reduction in the baking temperature has been desired.
  • Patent Documents As block polyisocyanate compositions capable of further lowering the baking temperature, co-block polyisocyanate compositions containing ( ⁇ ) diisopropylamine, ( ⁇ ) active methylene compound, and ( ⁇ ) oxime as a blocking agent (Patent Documents) 3) Block polyisocyanate composition containing malonic acid diester as blocking agent (Patent Document 4), Block polyisocyanate composition containing diethyl malonate and ethyl acetoacetate as blocking agents (Patent Document 5), isobutanoyl acetate A block polyisocyanate composition (Patent Document 6) or the like that is used as a blocking agent has been proposed.
  • Patent Document 7 describes an addition product in which a CH-active alkyl ester or a CH-active alkyl ester is added to an isocyanate as one of raw materials for a synthetic intermediate of an amino group-containing curing component. .
  • EP159117B1 publication EP96210A1 publication EP600314A1 publication JP 57-121065 A JP-A-8-225630 JP 2009-155408 A JP-A 63-265916
  • Patent Document 3 the baking temperature is not sufficiently lowered.
  • the block polyisocyanate compositions of Patent Documents 4 and 5 absorb moisture, carbon dioxide gas is generated, which may cause swelling of the can.
  • the gel fraction after storage may fall.
  • the present invention has been made in view of the above circumstances, a block polyisocyanate composition capable of forming a crosslinked coating film at a temperature of 100 ° C. or lower, excellent in moisture stability, and having good curability after storage. It is an object to provide a product and a coating composition using the product.
  • composition containing at least one block polyisocyanate having a specific structure retains low-temperature curability and has excellent moisture stability and curability after storage. As a result, the present invention has been completed.
  • a blocked polyisocyanate composition comprising at least one blocked polyisocyanate represented by formula (I).
  • R is a residue excluding an isocyanate group of a polyisocyanate formed from one or more selected from aliphatic polyisocyanate, alicyclic polyisocyanate, and aromatic polyisocyanate; And A is a substituent including B, wherein A is one or more keto isomers represented by the following formula (II) or enol isomers thereof, and B is a group represented by formula (III) 1 or 2 or more types of structural units shown, the sum of x and y is 2.0 to 20, and x is not 0.)
  • R 1 represents an alkyl group having 1 to 8 carbon atoms, a phenyl group or a benzyl group, and R 3 and R 4 may be the same or different, and may be any one having 1 to 30 carbon atoms.
  • R 3 and R 4 are optionally 5 or 6 membered together.
  • 3-membered, 4-membered, 5-membered or 6 which may form a cycloalkyl group or together with a nitrogen atom sandwiched between R 3 and R 4 may additionally contain a nitrogen or oxygen atom as a bridging member A member ring can be formed.
  • R 5 is a residue excluding active hydrogen of the active hydrogen-containing compound.
  • the block polyisocyanate composition according to any one of [1] to [4], wherein at least a part of the block polyisocyanate of formula (I) is at least one block polyisocyanate represented by formula (V) object.
  • R is a residue excluding an isocyanate group of a polyisocyanate formed from one or more selected from aliphatic polyisocyanate, alicyclic polyisocyanate, and aromatic polyisocyanate;
  • A is one or more keto isomers represented by the above formula (II) or enol isomers thereof,
  • B is one or more structural units represented by the above formula (III),
  • R 10 is a residue excluding active hydrogen of the active hydrogen-containing hydrophilic compound.
  • the basic compound (e) having an acid dissociation constant (PKa) of 7.0 to 8.5 is contained in an amount of 10 mol% or more based on the blocked isocyanate group of the blocked polyisocyanate composition.
  • the number of moles indicates the number of moles based on an isocyanate group derived from a polyisocyanate that is a precursor
  • a and B of the polyisocyanate that is a precursor are indicated.
  • a coating composition comprising the block polyisocyanate composition according to any one of [7] and a polyol. [9].
  • the coating composition according to [8] which is an aqueous coating composition.
  • a coating film comprising the coating composition according to [8] or [9]. [11].
  • a malonic acid diester represented by the formula (VII) is added to a polyisocyanate (a) having one or more selected from the group consisting of an aliphatic polyisocyanate, an alicyclic polyisocyanate, and an aromatic polyisocyanate as a skeleton.
  • the manufacturing method of a block polyisocyanate composition including the 2nd process of making the product obtained by 1 and 1 type, or 2 or more types of the organic amine compound (c) shown by Formula (VIII) react.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 8 carbon atoms, a phenyl group or a benzyl group, and R 1 and R 2 may be the same or different.
  • R 3 and R 4 may be the same or different and may contain at least one selected from the group consisting of an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group.
  • one or more of the organic amine compound (c) is added in an amount of 50 to 500 mol% based on the isocyanate group of the polyisocyanate (a), and reacted with the product obtained in the first step.
  • PKa acid dissociation constant
  • a blocked polyisocyanate composition capable of forming a crosslinked coating film at a temperature of 100 ° C. or less and excellent in moisture stability and curability after storage, a coating composition containing the same, and a coating composition thereof
  • the coating film which consists of a thing can be provided.
  • the block polyisocyanate contained in the block polyisocyanate composition of the present invention is represented by the following formula (I).
  • R is a residue except the isocyanate group of the polyisocyanate formed from 1 type, or 2 or more types chosen from aliphatic polyisocyanate, alicyclic polyisocyanate, and aromatic polyisocyanate.
  • aliphatic polyisocyanate examples include aliphatic diisocyanate, lysine triisocyanate (hereinafter referred to as LTI), 4-isocyanatomethyl-1,8-octamethylene diisocyanate (trimer triisocyanate: hereinafter referred to as TTI), bis (2-isocyanate).
  • LTI lysine triisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • TTI 4-isocyanatomethyl-1,8-octamethylene diisocyanate
  • aliphatic diisocyanate used in the aliphatic polyisocyanate those having 4 to 30 carbon atoms are preferable.
  • tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (hereinafter referred to as HDI), 2, 2, 4 -Trimethyl-1,6-diisocyanatohexane, lysine diisocyanate and the like are preferable because of its industrial availability.
  • Aliphatic diisocyanates may be used alone or in combination of two or more.
  • the alicyclic polyisocyanate As the alicyclic polyisocyanate, the following alicyclic diisocyanates are mainly used. As the alicyclic diisocyanate, those having 8 to 30 carbon atoms are preferable. Isophorone diisocyanate (hereinafter referred to as IPDI), 1,3-bis (isocyanatomethyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, norbornene Examples include diisocyanate and hydrogenated xylylene diisocyanate. Of these, IPDI is preferred from the viewpoint of weather resistance and industrial availability. An alicyclic diisocyanate may be used independently and may use 2 or more types together.
  • IPDI Isophorone diisocyanate
  • 1,3-bis (isocyanatomethyl) -cyclohexane 1,3-bis (isocyanatomethyl) -cyclohexane
  • Aromatic diisocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, and the like. Aromatic diisocyanates may be used alone or in combination of two or more.
  • aliphatic polyisocyanates and / or alicyclic polyisocyanates are preferable because of excellent weather resistance. Furthermore, among the aliphatic polyisocyanates, aliphatic diisocyanates are most preferable.
  • the average number of isocyanate groups in the polyisocyanate formed from one or more selected from these polyisocyanates is preferably from 2.0 to 20. Furthermore, the lower limit is preferably 2.3, more preferably 2.5, and most preferably 3.0. The upper limit is more preferably 15, and more preferably 10. When the average number of isocyanate groups is 2.0 or more, the crosslinkability is improved and the desired coating film properties can be obtained. On the other hand, when the average number of isocyanate groups is 20 or less, the cohesive force can be prevented from becoming too high, and a smooth coating film can be obtained.
  • the average number of isocyanate groups is determined by the following formula.
  • polyisocyanates that are the source of R in formula (I) include triisocyanates such as LTI, TTI, GTI, and derivatives thereof, as well as biuret bonds, urea bonds, isocyanurate bonds, uretdione bonds, urethanes.
  • triisocyanates such as LTI, TTI, GTI, and derivatives thereof, as well as biuret bonds, urea bonds, isocyanurate bonds, uretdione bonds, urethanes.
  • a polyisocyanate having a biuret bond is obtained by reacting a so-called biuretizing agent such as water, t-butanol or urea with a diisocyanate at a molar ratio of biuretizing agent / isocyanate group of the diisocyanate of about 1/2 to about 1/100. Thereafter, unreacted diisocyanate can be removed and purified.
  • a polyisocyanate having an isocyanurate bond can be obtained by, for example, carrying out a cyclic trimerization reaction with a catalyst or the like, stopping the reaction when the conversion rate is about 5 to about 80% by mass, and removing and purifying unreacted diisocyanate. .
  • a monovalent to hexavalent alcohol compound can be used in combination.
  • catalysts for the isocyanuration reaction those having basicity are generally preferred.
  • examples of such catalysts include (1) Tetraalkylammonium hydroxide such as tetramethylammonium, tetraethylammonium, and trimethylbenzylammonium, and weak organic acid salts such as acetic acid and capric acid, (2) Hydroxyalkylammonium hydroxides such as trimethylhydroxypropylammonium, trimethylhydroxyethylammonium, triethylhydroxypropylammonium and triethylhydroxyethylammonium, and weak organic acid salts such as acetic acid and capric acid, (3) alkyl metal salts of alkyl carboxylic acids such as tin, zinc, lead and the like, (4) Metal alcoholates such as sodium and potassium, (5) Aminosilyl group-containing compound such as hexamethyldisilazane, (6) Mannich bases, (7) Combined use of tertiary amines and epoxy compounds
  • reaction catalyst used may adversely affect the properties of the paint or coating film
  • an acidic compound or the like examples include inorganic acids such as hydrochloric acid, phosphorous acid, and phosphoric acid, and sulfonic acids such as methanesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid methyl ester, and p-toluenesulfonic acid ethyl ester.
  • the polyisocyanate having a urethane bond is, for example, a di-isocyanate having a bivalent to hexavalent alcoholic compound such as trimethylolpropane and the molar ratio of the hydroxyl group of the alcoholic compound / the isocyanate group of the diisocyanate is about 1/2 to about 1 /. After reacting at 100, unreacted diisocyanate can be removed and purified.
  • LTI Long Term Evolution
  • TTI Triisocyanate
  • GTI Triisocyanate
  • the substituent A in the formula (I) is one or more keto isomers represented by the following formula (II) or an enol isomer group thereof.
  • Formula (II) shows keto forms, but also includes enol groups that are keto-enol tautomers. For example, a structure in which the proton of the methine group becomes an enol body on the amide group side and a structure in which the proton on the amide group side becomes an enol body are included.
  • the composition ratio of the keto body is preferably 50% or more, more preferably 75% or more, and more preferably 90% or more.
  • R 1 in the formula (II) represents an alkyl group having 1 to 8 carbon atoms, a phenyl group or a benzyl group.
  • R 1 is an alkyl group having 9 or more carbon atoms, the effective NCO% is lowered, and compatibility with the main agent and the like when used as a paint may be lowered, which is not preferable.
  • R 1 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably a methyl group or an ethyl group, most preferably It is an ethyl group.
  • R 3 and R 4 in the formula (II) may be the same or different, and have at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms. And optionally R 3 and R 4 together form a 5- or 6-membered cycloalkyl group or together with a nitrogen atom sandwiched between R 3 and R 4 Thus, a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member can be formed.
  • R 3 and R 4 may be the same or different, and optionally contain at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms.
  • 3-membered, 4-membered, 5-membered or 6-membered which may be a good hydrocarbon group or may contain an additional nitrogen or oxygen atom as a bridging member together with a nitrogen atom sandwiched between R 3 and R 4 It is preferable that it can form a ring.
  • R 3 and R 4 in formula (II) are divided into a structure that exists independently (hereinafter referred to as an independent structure) and a structure that is connected (hereinafter referred to as a connected structure). To do.
  • R 3 and R 4 in formula (II) in the case of an independent structure may be the same or different, and optionally have an ether bond, ester bond, hydroxyl group, carbonyl group, and thiol group having 1 to 30 carbon atoms. It is a hydrocarbon group which may contain at least one selected from Among them, R 3 and R 4 are preferably a hydrocarbon group having 1 to 8 carbon atoms, more preferably a branched alkyl group having 3 to 6 carbon atoms, and still more preferably carbon atoms. A branched alkyl group having a number of 3-4, and most preferably an isopropyl group.
  • R 3 and R 4 may contain include an ether bond and an ester bond.
  • R 3 and R 4 are alkyl groups having 30 or less carbon atoms, a decrease in effective NCO% can be suppressed and compatibility with the main agent and the like when used as a paint can be kept high.
  • the (R 3 ) (R 4 ) N— moiety in the formula (II) in the case of a linking structure is a residue excluding the active hydrogen of a cyclic secondary amine containing a nitrogen atom shown below.
  • Specific cyclic secondary amines include 2-azabicyclo [2.1.1] hexane, azabicyclo compounds such as 7-azabicyclo [2.2.1] heptane, aziridine, azetidine, pyrrolidine, and 2-methylpyrrolidine.
  • cyclic secondary amines aziridine, azetidine, pyrrolidine, 2-methylpyrrolidine, 3-pyrroldiol, 2-pyrrolidone, proline, 4-hydroxyproline, piperidine, 2-methylpiperidine, 3-methylpiperidine, 4- Methylpiperidine, 4-benzylpiperidine, 2,4-dimethylpiperidine, 3,5-dimethylpiperidine, 2,6-dimethylpiperidine, 2,2,6,6-tetramethylpiperidine, 3-piperidinemethanol, 2-piperidineethanol 4-piperidineethanol, 4-piperidinol, 2-piperidone, 4-piperidone, 4-piperidinecarboxylic acid methyl ester, 4-piperidinecarboxylic acid ethyl ester, 2,2,6,6-tetramethyl-4-piperidone, 4, -Piperidinopiperid , Decahydroquinoline, piperazine, N-methylpiperazine, N-ethylpiperazine, N-allyl
  • examples of the cyclic secondary amine compound containing a nitrogen atom include saturated cyclic secondary amines, aromatic secondary amines, and unsaturated bond-containing cyclic secondary amines. Secondary amines are preferred. Of the saturated cyclic secondary amines, secondary amines containing only one nitrogen atom are preferred, more preferably 5-membered or 6-membered rings, and still more preferably a structure represented by the following formula (IV). In addition, a piperidine derivative in which the substituents at the 2 and 6 positions are hydrogen or a methyl group, and at least one of them is a methyl group.
  • R 6 , R 7 , R 8 and R 9 each independently represent hydrogen or a methyl group, and at least one of them is a methyl group. That is, in the alkyl substituent on the nitrogen atom in the formula (II), at least one of the carbon atoms adjacent to the nitrogen atom is preferably bonded to two or more carbon atoms.
  • the block polyisocyanate composition of the present invention comprises, as an alternative to the substituent A in the formula (I), a block polyisocyanate having a keto isomer or a group of enols represented by the following formula (IX). May be included.
  • R 3 and R 4 may be the same or different, and optionally contain at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms.
  • R 3 , R 4 together form a 5- or 6-membered cycloalkyl group or together with a nitrogen atom sandwiched between R 3 and R 4
  • a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member can be formed.
  • R 11 and R 12 may be the same or different, and may contain hydrogen or at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms.
  • a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member can be formed.
  • the content of the block polyisocyanate represented by the formula (IX) in the substituent A in the formula (I) is preferably 50% by mass or less from the viewpoint of suppressing crystallization while maintaining low temperature curability. Further, it is preferably 30% by mass or less, more preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the substituent B in the formula (I) is one or more structural units represented by the following formula (III).
  • R 5 in the formula (III) is a residue excluding active hydrogen of the active hydrogen-containing compound.
  • the active hydrogen-containing compound that is a source of R 5 in formula (III) is not particularly limited as long as it is an active hydrogen-containing compound that can react with an isocyanate group.
  • the active hydrogen-containing compound to be used those generally known as blocking agents are preferable.
  • the blocking agent a compound having one active hydrogen in the molecule is preferable. For example, an alcohol, alkylphenol, phenol, active methylene, mercaptan, acid amide, acid imide, imidazole, urea, There are oxime, amine, imide, and pyrazole compounds.
  • aliphatic alcohols such as methanol, ethanol, 2-propanol, n-butanol, sec-butanol, 2-ethyl-1-hexanol, 2-methoxyethanol, 2-ethoxyethanol and 2-butoxyethanol;
  • Alkylphenol-based mono- and dialkylphenols having an alkyl group having 4 or more carbon atoms as a substituent such as n-propylphenol, i-propylphenol, n-butylphenol, sec-butylphenol, t-butylphenol , N-hexylphenol, 2-ethylhexylphenol, n-octylphenol, monoalkylphenols such as n-nonylphenol, di-n-propylphenol, diisopropylphenol, isopropylcresol, di-n-butylphenol, di-t-butylphenol, di Dialkylphenols such as -sec
  • the preferred active hydrogen-containing compound is at least one selected from alcohol-based, oxime-based, amine-based, acid amide-based, active methylene-based, and pyrazole-based blocking agents, and more preferably oxime-based, active methylene-based, pyrazole. And at least one selected from active methylene-based blocking agents. Most preferred is malonic acid diester.
  • the active hydrogen of the active hydrogen-containing compound if it is an alcohol, it is a hydrogen of a hydroxyl group, and if it is an active methylene, it is a hydrogen of a methylene group sandwiched between two carbonyl groups, and if it is an amine, Illustrative is hydrogen bonded to a nitrogen atom. That is, the residue excluding active hydrogen of the active hydrogen-containing compound refers to a residue obtained by removing each active hydrogen from an active hydrogen-containing compound such as alcohol, active methylene, and amine.
  • the total of x and y in the formula (I) of the present invention is a value corresponding to the average number of isocyanate groups of the polyisocyanate that is the source of R, and is 2.0 to 20, and x is not 0. y may be 0, but is more preferably not 0.
  • the lower limit of the sum of x and y is preferably 2.3, more preferably 2.5, and most preferably 3.0.
  • the upper limit of the sum of x and y is more preferably 15, and most preferably 10.
  • x and y here mean the statistical average number with respect to R of A and B, respectively.
  • x and y are preferably x / y ⁇ 1, more preferably x / y ⁇ 1.5, and further preferably x / y ⁇ 2.
  • the block polyisocyanate used in the block polyisocyanate composition of the present invention contains at least one block polyisocyanate having a substituent C having a specific structure represented by the following formula (V), thereby improving blendability in water-based paints. Further increase is possible. Blocked polyisocyanates of formula (V) are included within the definition of formula (I).
  • a and B in the formula (V) are one or more keto isomers represented by the above formula (II) or enol isomers thereof, and one or two species represented by the above formula (III). These structural units.
  • C in Formula (V) is 1 type, or 2 or more types of structural units shown by following formula (VI).
  • R 10 in the formula (VI) is a residue excluding active hydrogen of the active hydrogen-containing hydrophilic compound.
  • the active hydrogen-containing hydrophilic compound serving as a source of C in the formula (V) is selected from a nonionic hydrophilic compound, an anionic hydrophilic compound, and a cationic hydrophilic compound.
  • nonionic hydrophilic compounds and anionic hydrophilic compounds are preferable from the viewpoint of ease of production, and nonionic hydrophilic compounds are more preferable.
  • These hydrophilic compounds may be used alone or in combination of two or more.
  • nonionic hydrophilic compounds include polyethylene glycol compounds having at least three consecutive ethylene oxide groups.
  • the number average molecular weight of the nonionic hydrophilic compound is preferably 200 to 2,000.
  • the lower limit of the number average molecular weight is more preferably 300, still more preferably 400.
  • the upper limit of the number average molecular weight is more preferably 1500, still more preferably 1200, and most preferably 1000.
  • the lower limit of the number average molecular weight is 200 or more, sufficient water dispersibility of the composition can be obtained.
  • the upper limit of the number average molecular weight is 2000 or less, it is possible to suppress a decrease in coating properties such as water resistance after baking.
  • the exemplified polyethylene glycol compound having at least three consecutive ethylene oxide groups may contain other oxyalkylene groups, specifically oxypropylene groups or oxystyrene groups, in the ethylene oxide repeating unit. good.
  • the ethylene oxide group molar ratio is preferably 60 mol% or more, more preferably 70 mol% or more, and most preferably 80 mol% or more.
  • a high ethylene oxide group molar ratio is preferable because the compoundability in the water-based paint can be improved efficiently.
  • polyethylene glycol compounds examples include monoalkoxy polyethylene glycol, polyethylene glycol or triol, so-called pluronic type polypropylene glycol or triol obtained by addition polymerization of ethylene oxide at the end of polypropylene glycol, polyoxypropylene polyoxyethylene copolymer diol or triol. , Polyoxypropylene polyoxyethylene block polymer diol or triol.
  • monoalkoxy polyethylene glycol and polyethylene glycol are preferable, and monoalkoxy polyethylene glycol is more preferable.
  • Monoalkoxy polyethylene glycol is obtained by adding an alcohol to one end of polyethylene glycol.
  • the monoalcohol that can be used in the monoalkoxy polyethylene glycol preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Most preferred are methanol and ethanol. Accordingly, among the monoalkoxy polyethylene glycols, monomethoxy polyethylene glycol and monoethoxy polyethylene glycol are preferable, and monomethoxy polyethylene glycol is most preferable. Among these polyethylene glycol compounds used as the active hydrogen-containing hydrophilic compound, polyethylene glycol compounds in which a monoalcohol having 1 to 4 carbon atoms is added to one terminal having a number average molecular weight of 200 to 2000 are particularly preferable.
  • polyethylene glycol examples include PEG200, 300, 400, 600, 1000, 2000 manufactured by Nippon Oil & Fats Co., Ltd.
  • monomethoxypolyethylene glycol examples include UNIOX M400, 550, 1000, 2000 manufactured by Nippon Oil & Fats Co., Ltd., and product MPG-081 manufactured by Nippon Emulsifier Co., Ltd.
  • anionic hydrophilic compounds include carboxylic acid group-containing compounds and sulfonic acid group-containing compounds.
  • carboxylic acid group-containing compound examples include monohydroxycarboxylic acid, dihydroxycarboxylic acid, and derivatives thereof.
  • monohydroxycarboxylic acid or dihydroxycarboxylic acid is preferable, and monohydroxycarboxylic acid is more preferable.
  • carboxylic acid-containing compound examples include hydroxypivalic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, and derivatives such as polycaprolactone diol and polyether polyol using these as initiators. Can be mentioned.
  • carboxylic acid group containing compound it is preferable to neutralize with a neutralizing agent after manufacture of a block polyisocyanate composition.
  • the neutralizing agent include tertiary amines such as alkali metals, alkaline earth metals, ammonia, trimethylamine, triethylamine, and dimethylethanolamine.
  • sulfonic acid group-containing compound examples include aminoethylsulfonic acid, ethylenediamino-propyl- ⁇ -ethylsulfonic acid, 1,3-propylenediamine- ⁇ -ethylsulfonic acid, N, N-bis (2-hydroxyethyl) -2 -Aminoethanesulfonic acid.
  • a neutralizing agent examples include tertiary amines such as alkali metals, alkaline earth metals, ammonia, trimethylamine, triethylamine, and dimethylethanolamine.
  • the carboxylic acid group-containing compound is compared with the sulfonic acid group-containing compound, the carboxylic acid group-containing compound is preferable from the viewpoint of ease of production and blendability in the water-based paint.
  • Examples of the cationic hydrophilic compound include a hydroxyl group-containing amino compound. Specific examples include dimethylethanolamine, diethylethanolamine, and hydroxypyridine. When using a hydroxyl-containing amino compound, it is preferable to neutralize with a neutralizing agent after manufacture of a block polyisocyanate composition like the above.
  • Examples of the neutralizing agent include organic acids such as acetic acid, propionic acid, butanoic acid, and 2-ethylhexanoic acid.
  • the active hydrogen of the above active hydrogen-containing hydrophilic compound a hydrogen atom of a hydroxyl group is exemplified as long as it is a nonionic hydrophilic compound.
  • hydroxypivalic acid which is an anionic hydrophilic compound
  • hydrogen of a hydroxyl group is exemplified
  • aminoethylsulfonic acid hydrogen of an amino group is exemplified.
  • dimethylethanolamine which is a cationic hydrophilic compound
  • hydrogen of a hydroxyl group is illustrated. That is, the residue excluding active hydrogen of the active hydrogen-containing hydrophilic compound refers to a residue obtained by removing each active hydrogen from a nonionic, anionic, or cationic active hydrogen-containing hydrophilic compound.
  • the total of x, y, and z in the formula (V) is a value corresponding to the average number of isocyanate groups of the polyisocyanate that is the source of R, and is preferably 2.0 to 20.
  • the lower limit is more preferably 2.3, still more preferably 2.5, and most preferably 3.0.
  • the upper limit is more preferably 15 and even more preferably 10.
  • x, y, and z mean the statistical average numbers for R of A, B, and C, respectively.
  • x, y, and z are preferably 49 ⁇ (x + y) / z ⁇ 1. More preferably, the lower limit is 1.5, and even more preferably 2.0.
  • x and y are preferably x / y ⁇ 1, more preferably x / y ⁇ 1.5, and still more preferably x / y ⁇ 2.
  • the block polyisocyanate composition of the present invention includes those in which some isocyanate groups remain. The preferred amount of the remaining isocyanate group varies depending on the purpose of use, but when blended with a polyol or the like and used as a one-pack coating composition, 20 mol% of the isocyanate group before blocking is ensured to ensure storage stability. The content is preferably 10 mol% or less, more preferably 5 mol% or less, and most preferably no residual isocyanate group.
  • the block polyisocyanate composition can be broadly classified and synthesized by two production methods (hereinafter referred to as “production method 1” and “production method 2”).
  • R 1 and R 2 represent an alkyl group having 1 to 8 carbon atoms, a phenyl group or a benzyl group, and R 1 and R 2 may be the same or different.
  • R 3 and R 4 may be the same or different, and optionally contain at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms.
  • R 3 , R 4 together form a 5- or 6-membered cycloalkyl group and together with a nitrogen atom sandwiched between R 3 and R 4
  • a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member can be formed.
  • the step of reacting the isocyanate group of the polyisocyanate (a) with the active hydrogen-containing hydrophilic compound (d) is also included in the first step. .
  • reaction between the isocyanate groups and the active hydrogen-containing hydrophilic compound polyisocyanate (a) (d), to the reaction of the malonic acid diester (b) can be performed simultaneously, were either reaction advance Later, a second reaction can be carried out.
  • Production method 2 is a method in which a polyisocyanate serving as a source of R in formula (I) (or formula (V)) is reacted with a compound represented by the following formula (X).
  • R 1 represents an alkyl group having 1 to 8 carbon atoms, a phenyl group or a benzyl group
  • R 3 and R 4 may be the same or different, and may be any one having 1 to 30 carbon atoms.
  • R 3 and R 4 are optionally taken together to form a 5- or 6-membered cycloalkyl 3-membered, 4-membered, 5-membered or 6-membered which can form a group or together with a nitrogen atom sandwiched between R 3 and R 4 can additionally contain a nitrogen or oxygen atom as a bridging member A ring can be formed.
  • transducing the substituent C shown by Formula (V) the process of reacting with an active hydrogen containing hydrophilic compound (d) is also included.
  • reaction between the isocyanate groups and the active hydrogen-containing hydrophilic compound polyisocyanate (a) (d), to the reaction may be performed with a compound represented by formula (X) at the same time, either the reaction advance
  • a second reaction can also be performed after it has been performed.
  • Manufacturing method 1 is more preferable because of the simplicity of manufacturing.
  • the production method 1 will be described below.
  • Production method 1 includes a polyisocyanate (a) having one or more selected from the group consisting of aliphatic polyisocyanates, alicyclic polyisocyanates, and aromatic polyisocyanates as a skeleton and a malon represented by formula (VII)
  • the amount of malonic acid diester (b) added in the first step of production method 1 is from 75 to 75 relative to the isocyanate group in polyisocyanate (a) which is the source of R in formula (I) (or formula (V)).
  • 150 mol% As a lower limit, 90 mol% is more preferable, More preferably, it is 95 mol%, Most preferably, it is 100 mol%.
  • 130 mol% is more preferable, More preferably, it is 120 mol%, Most preferably, it is 110 mol%.
  • the addition amount is 75 mol% or more, deterioration of low-temperature curability can be prevented.
  • the addition amount is 150 mol% or less, it is possible to suppress adverse effects on coating film properties such as water resistance of the baked coating film.
  • the active hydrogen-containing hydrophilic compound (d) and the formula (VII) are represented with respect to the isocyanate group of the polyisocyanate (a).
  • the total amount of malonic acid diester (b) is preferably 77 to 150 mol%.
  • the lower limit of the above ratio is more preferably 90 mol%, further preferably 95 mol%, and most preferably 100 mol%.
  • the upper limit of the ratio is more preferably 130 mol%, still more preferably 120 mol%, and most preferably 110 mol%.
  • the active hydrogen-containing hydrophilic compound used in the first step has a function of improving the compoundability in the water-based paint.
  • the addition amount of the active hydrogen-containing hydrophilic compound (d) is 2 to 50 mol% with respect to the isocyanate group in the polyisocyanate (a) which is a precursor of the block polyisocyanate, based on the number of moles of active hydrogen. Is preferred.
  • 40 mol% is more preferable, More preferably, it is 35 mol%.
  • the ratio is 2 mol% or more, sufficient water dispersibility of the composition can be obtained.
  • the said ratio is 50 mol% or less, the fall of a crosslinking density can be suppressed and desired physical properties, such as the water resistance of a coating film, can be obtained.
  • the active hydrogen-containing hydrophilic compound (d) in the first step is selected from the aforementioned nonionic hydrophilic compounds, anionic hydrophilic compounds, and cationic hydrophilic compounds.
  • nonionic hydrophilic compounds and anionic hydrophilic compounds are preferable from the viewpoint of ease of production, and nonionic hydrophilic compounds are more preferable.
  • These hydrophilic compounds may be used alone or in combination of two or more.
  • the addition amount of the malonic acid diester (b) is from 75 to 75 relative to the isocyanate group in the polyisocyanate (a) which is a precursor of the block polyisocyanate. It is preferable that it is 148 mol%.
  • the lower limit of the above ratio is more preferably 88 mol%, still more preferably 98 mol%.
  • R 1 and R 2 are an alkyl group having 1 to 8 carbon atoms, a phenyl group, or a benzyl group.
  • R 1 and R 2 are alkyl groups having 8 or less carbon atoms, it is possible to suppress a decrease in effective NCO% and to prevent deterioration of compatibility with the main agent and the like when used as a paint.
  • an alkyl group having 1 to 8 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, a methyl group or an ethyl group is more preferable, and an ethyl group is most preferable.
  • the effective NCO mass% is the mass% of isocyanate groups potentially present with respect to the total mass of the blocked polyisocyanate composition.
  • malonic acid diester (b) examples include dimethyl malonate, diethyl malonate, di-n-propyl malonate, diisopropyl malonate, di-n-butyl malonate, diisobutyl malonate, di-t-butyl malonate, and malon.
  • examples thereof include methyl t-butyl ester, di-n-hexyl malonate, di-2-ethylhexyl malonate, diphenyl malonate, and dibenzyl malonate.
  • it is dimethyl malonate, diethyl malonate, di-n-propyl malonate, diisopropyl malonate, di-n-butyl malonate, diisobutyl malonate, di-t-butyl malonate, methyl t-butyl malonate. More preferred are dimethyl malonate and diethyl malonate, and most preferred is diethyl malonate.
  • the malonic acid diester shown above can be used alone or in combination of two or more.
  • the reaction in the first step can be performed regardless of the presence or absence of a solvent.
  • a solvent it is preferable to use a solvent which is inert to the isocyanate group and hardly hydrolyzes.
  • Preferred solvents are ether solvents such as propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dimethyl ether and diethylene glycol diethyl ether, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone.
  • a reaction catalyst can be used. Specific examples of the reaction catalyst include organic metal salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
  • reaction catalyst used may adversely affect the properties of the paint or coating film
  • an acidic compound or the like examples include inorganic acids such as hydrochloric acid, phosphorous acid, and phosphoric acid, and sulfonic acids such as methanesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid methyl ester, and p-toluenesulfonic acid ethyl ester.
  • ethyl phosphate diethyl phosphate, isopropyl phosphate, diisopropyl phosphate, butyl phosphate, dibutyl phosphate, 2-ethylhexyl phosphate, di (2-ethylhexyl) phosphate, isodecyl phosphate, diisodecyl phosphate, oleyl acid phosphate, tetracosyl acid phosphate , Ethyl glycol acid phosphate, butyl pyrophosphate, butyl phosphite and the like. Two or more of these acidic compounds may be used in combination.
  • the reaction in the first step can be generally carried out at ⁇ 20 to 150 ° C., preferably 0 to 100 ° C., more preferably 40 to 80 ° C.
  • ⁇ 20 to 150 ° C. preferably 0 to 100 ° C., more preferably 40 to 80 ° C.
  • composition ratio of x and y in the formula (I) depends on the mole% of the malonic acid diester (b) added to the isocyanate group in the polyisocyanate (a) and the reaction rate in the first step. .
  • the composition ratio of x and y depends not only on the mole% of malonic acid diester (b) added to the isocyanate group in the polyisocyanate (a) in the first step, but also on the reaction rate thereof, before the second step.
  • the organic amine (c) in the second step is obtained from the reaction between the isocyanate group produced in the first step and the ester part of the reaction product of the malonic acid diester (b). Also preferentially react with isocyanate groups.
  • x ratio is high and there are few residual isocyanate groups, it is more preferable to perform a 2nd process, after confirming that the isocyanate group has lose
  • the addition amount of the organic amine compound (c) represented by the formula (VIII) in the second step is 50 to 500 mol% with respect to the isocyanate group of the polyisocyanate (a) which is a precursor of the block polyisocyanate. preferable.
  • 70 mol% is more preferable, More preferably, it is 90 mol%.
  • the upper limit of the total addition amount is more preferably 400 mol%, further preferably 300 mol%, and most preferably 200 mol%.
  • the organic amine (c) used in the second step is added mainly for the reaction of the ester part of the reaction product of the polyisocyanate and the malonic acid diester (b) after the first step.
  • the isocyanate group remains after the first step, the remaining isocyanate group and the organic amine (c) used in the second step may react. In that case, it becomes the substituent B in Formula (I) (or Formula (V)).
  • the malonic acid diester (b) with respect to the isocyanate group in the polyisocyanate (a) is added in an amount exceeding 100 mol% in the first step, the malonic acid diester (b) remains after the first step. .
  • a part of malonic acid monoester monoamide or malonic acid diamide which is a reaction product of malonic acid diester (b) remaining after the first step and the organic amine compound (c) added in the second step, is included. It doesn't matter.
  • the organic amine compound (c) used in the second step is represented by the formula (VIII).
  • R 3 and R 4 may be the same or different and optionally have an ether bond or ester bond having 1 to 30 carbon atoms.
  • a hydrocarbon group that may contain at least one selected from a hydroxyl group, a carbonyl group, and a thiol group, and optionally R 3 and R 4 together form a 5- or 6-membered cycloalkyl group, Or, together with the nitrogen atom sandwiched between R 3 and R 4 , a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member is formed. .
  • R 3 and R 4 may be the same or different, and optionally contain at least one selected from an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol group having 1 to 30 carbon atoms. May be a hydrocarbon group, or together with a nitrogen atom sandwiched between R 3 and R 4 , it may additionally contain a nitrogen or oxygen atom as a bridging member. It is preferable to form a member ring.
  • the organic amine compound (c) is roughly classified into a chain secondary amine compound and a cyclic secondary amine compound containing a nitrogen atom.
  • the chain secondary amine compound will be described.
  • R 3 and R 4 in the chain secondary amine compound of the formula (VIII) may be the same or different, and optionally having 1 to 30 carbon atoms, an ether bond, an ester bond, a hydroxyl group, a carbonyl group, and a thiol It is a hydrocarbon that may contain at least one selected from the group.
  • a hydrocarbon having 1 to 8 carbon atoms is preferable, a branched alkyl group having 3 to 6 carbon atoms is more preferable, and a branched alkyl group having 3 to 4 carbon atoms is more preferable.
  • An isopropyl group is preferred.
  • chain secondary amine compound used in the present invention include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dioctylamine, dilaurylamine, ditridecylamine, and distearylamine.
  • chain secondary amine compounds dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, dioctylamine, diisopropylamine, diisobutylamine, di (2-butylamine), di (t-butyl) ) Amine, di (2-ethylhexyl) amine, dicyclohexylamine, di (2-methylcyclohexyl) amine, diallylamine, methylethylamine, N-methylisopropylamine, methyl t-butylamine, N-methylhexylamine, ethyl t-butylamine, N-ethylhexylamine, N-ethyl-1,2-dimethylpropylamine, N-ethylisoamylamine, N-methylcyclohexylamine, N-ethylcyclohexylamine, Nt-butyl
  • diisopropylamine diisobutylamine, di (2-butylamine), di (t-butyl) amine, dicyclohexylamine, Nt-butylcyclohexylamine
  • diisopropylamine diisobutylamine, di ( 2-butylamine) and di (t-butyl) amine, and most preferably diisopropylamine.
  • R 3 and R 4 together form a 5- or 6-membered cycloalkyl group, or together with the nitrogen atom
  • a 3-membered, 4-membered, 5-membered or 6-membered ring which may additionally contain a nitrogen or oxygen atom as a bridging member.
  • cyclic secondary amine compound containing a nitrogen atom examples include azabicyclo compounds such as 2-azabicyclo [2.1.1] hexane and 7-azabicyclo [2.2.1] heptane, aziridine, azetidine, and pyrrolidine.
  • cyclic secondary amine compounds containing nitrogen atoms aziridine, azetidine, pyrrolidine, 2-methylpyrrolidine, 3-pyrroldiol, 2-pyrrolidone, proline, 4-hydroxyproline, piperidine, 2-methylpiperidine, 3- Methylpiperidine, 4-methylpiperidine, 4-benzylpiperidine, 2,4-dimethylpiperidine, 3,5-dimethylpiperidine, 2,6-dimethylpiperidine, 2,2,6,6-tetramethylpiperidine, 3-piperidinemethanol 2-piperidineethanol, 4-piperidineethanol, 4-piperidinol, 2-piperidone, 4-piperidone, 4-piperidinecarboxylic acid methyl ester, 4-piperidinecarboxylic acid ethyl ester, 2,2,6,6-tetramethyl- 4-piperidone, 4 Piperidinopiperidine, decahydroquinoline, piperazine, N-methylpiperazine, N-ethylpiperazine, N-
  • Examples of the cyclic secondary amine compound containing a nitrogen atom include saturated cyclic secondary amines, aromatic secondary amines, and unsaturated bond-containing cyclic secondary amines as shown in the specific examples above. Secondary amines are preferred. Among the saturated cyclic secondary amines, secondary amines containing only one nitrogen atom are preferable, more preferably 5-membered or 6-membered rings, and still more preferably 2,6-positions represented by the following formula (XI). Are substituents of hydrogen or methyl, and at least one of which is a methyl group. Specific examples of the compound name include 2-methylpiperidine, 2,6-dimethylpiperidine, and 2,2,6,6-tetramethylpiperidine described above.
  • R 6 , R 7 , R 8 , and R 9 each independently represent hydrogen or a methyl group, and at least one of them is a methyl group. That is, in the alkyl substituent on the nitrogen atom in the formula (II), it is preferable that at least one of the carbon atoms adjacent to the nitrogen atom is bonded to two or more carbon atoms.
  • the chain amine compound and the cyclic amine compound containing a nitrogen atom shown above can be used alone, or two or more kinds can be used in combination.
  • the reaction in the second step can be performed regardless of the presence or absence of a solvent.
  • a solvent it is preferable to use a solvent which is inert to the isocyanate group and hardly hydrolyzes.
  • Preferred solvents are ether solvents such as propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol dimethyl ether and diethylene glycol diethyl ether, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone.
  • the catalyst described above for the first step can also be used. However, when used, the reaction solution may be colored, and it is desirable not to use it.
  • a catalyst is used in the first step, it is preferable to carry out the second step after deactivation with an acidic compound or the like.
  • the reaction in the second step can be generally carried out at ⁇ 20 to 150 ° C. as in the first step, preferably 0 to 100 ° C., more preferably 40 to 80 ° C. By performing the reaction at 150 ° C. or lower, side reactions can be suppressed, and by performing the reaction at ⁇ 20 ° C. or higher, the reaction rate can be kept high.
  • the remaining organic amine compound and / or the reaction between the ester group of the reaction product of polyisocyanate and malonic acid diester produced in the first step and the organic amine compound In order to reduce the amount of the alcohol compound dissociated by (that is, the reaction in the second step), removal purification and the like may be performed. In order to improve moisture stability when used as a solvent-based paint, and storage stability when used as a water-based paint (inhibition of gas generation amount, suppression of change in coating solution pH), it remained after the reaction in the second step.
  • the organic amine compound (c) is preferably subjected to removal purification by heating at 20 to 80 ° C. under reduced pressure to reduce the residual amount.
  • the residual amount of the organic amine compound (c) is preferably 100 mol% or less, more preferably 50 mol% or less, still more preferably 30 mol% or less, and most preferably 10 mol based on the blocked isocyanate group of the blocked polyisocyanate. % Or less.
  • the number of moles of the blocked isocyanate group in this case is the number of moles based on the isocyanate group derived from the polyisocyanate that is the precursor for the formula (I), and the polyisocyanate that is the precursor for the formula (V). The number of moles based on the isocyanate group that is the source of the partial structures of A and B is shown.
  • the alcohol compound dissociated by the reaction of the ester group of the polyisocyanate and malonic acid diester produced in the first step and the organic amine compound moisture stability when used as a solvent-based paint
  • moisture stability when used as a solvent-based paint
  • the residual amount of the alcohol compound is preferably 80 mol% or less, more preferably 50 mol% or less, still more preferably 30 mol% or less, and most preferably 10 mol% or less based on the blocked isocyanate group of the blocked polyisocyanate. is there.
  • block polyisocyanate composition of the present invention may be produced in batch by any of the above production methods, or may be mixed with block polyisocyanate compositions produced separately.
  • the block polyisocyanate composition of the present invention is used alone or mixed with a block polyisocyanate derived from two or more kinds of block agents selected from existing active methylene-based, oxime-based, amine-based and pyrazole-based blocking agents. You can also
  • the mixing amount of the block polyisocyanate other than the block polyisocyanate according to the formula (I) (or the formula (V)) is preferably 20% by mass or less, more preferably 10% by weight based on the total amount of the block polyisocyanates. % Or less, more preferably 5% by mass or less.
  • Examples of the existing active methylene blocking agent include dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, and acetylacetone. Among these, dimethyl malonate and diethyl malonate are preferable because they are excellent in low-temperature curability.
  • Examples of the oxime blocking agent include formaldehyde oxime, acetoald oxime, acetone oxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • examples of the amine blocking agent include diphenylamine, aniline, carbazole, di-n-propylamine, diisopropylamine, and isopropylethylamine.
  • examples of the pyrazole-based blocking agent include pyrazole, 3-methylpyrazole, and 3,5-dimethylpyrazole.
  • the number average molecular weight of the block polyisocyanate composition of the present invention is preferably 500 to 5,000.
  • the lower limit is more preferably 700, more preferably 800, and most preferably 1,000.
  • the upper limit is more preferably 4,000, more preferably 3,000, and most preferably 2,000. If the number average molecular weight is 500 or more, the number of functional groups of the blocked isocyanate group per molecule can be ensured to be 2.0 or more, and if the number average molecular weight is 5,000 or less, the viscosity can be increased. Can be suppressed.
  • the viscosity of the block polyisocyanate composition of the present invention is 100 to 1,000 mPa ⁇ s / 25 ° C. with a resin solid content of 60% by mass diluted with a solvent or the like. If the viscosity is 100 mPa ⁇ s or more, it is possible to ensure 2.0 or more functional groups of blocked isocyanate groups per molecule, and if it is 1,000 mPa ⁇ s or less, blending into a paint becomes easy. .
  • blocked isocyanate groups of the block polyisocyanate composition In order to improve moisture stability when used as a solvent-based paint, and storage stability when used as a water-based paint (inhibition of gas generation amount, suppression of changes in coating pH), blocked isocyanate groups of the block polyisocyanate composition
  • the acid dissociation constant (PKa) is a value measured at 20 ° C. by potentiometric titration.
  • Block polyisocyanate composition in which 10 mol% or more of basic compound (e) having an acid dissociation constant (PKa) of 7.0 to 8.5 is mixed with a block isocyanate group of a specific active methylene block polyisocyanate composition
  • PKa acid dissociation constant
  • PKa 7.0 to 8.5 Specific examples of the basic compound (e) of PKa 7.0 to 8.5 include morpholine (PKa: 8.4), N-allyl morpholine (PKa: 7.1), and N-methylmorpholine (PKa: 7. 4), morpholine derivatives such as N-ethylmorpholine (PKa: 7.7), triallylamine (PKa: 8.3), triethanolamine (PKa: 7.8), 2-methylimidazole (PKa: 7.8) ), Phthalamide (PKa: 8.3), and the like.
  • N-allylmorpholine, N-methylmorpholine, N-ethylmorpholine, triethanolamine, and 2-methylimidazole are more preferable, and N-methylmorpholine and N-ethylmorpholine are more preferable.
  • the upper limit value of PKa of the basic compound (e) used in the block polyisocyanate composition of the present invention is more preferably 8.3, and more preferably 8.0. If the PKa of the basic compound is 7.0 or more, it is preferable because the storage stability is improved.
  • the mixing amount of the basic compound (e) is preferably 10 mol% or more based on the blocked isocyanate group of the blocked polyisocyanate composition.
  • the lower limit of the mixing amount of the basic compound is more preferably 20 mol%, and further preferably 30 mol%.
  • the upper limit is preferably 500 mol%, more preferably 400 mol%, and even more preferably 300 mol%.
  • the number of moles of the blocked isocyanate group in this case is the number of moles based on the isocyanate group derived from the polyisocyanate that is the precursor for the formula (I), and the polyisocyanate that is the precursor for the formula (V). The number of moles based on the isocyanate group that is the source of the partial structures of A and B is shown.
  • a part of the basic compound (e2) having a PKa of more than 8.5 may be mixed.
  • the mixing amount is preferably 100 mol% or less, more preferably 50 mol% or less, still more preferably 30 mol% or less, and most preferably 10 mol% or less, based on the blocked isocyanate group of the block polyisocyanate composition.
  • the basic compound (e) having a PKa of 7.0 to 8.5 existing in the block polyisocyanate composition of the present invention is preferably added after the first step and the second step are completed, and the first step, It is more preferable to add after the 2nd process and the 3rd process are completed.
  • the block polyisocyanate composition of the present invention forms a coating composition by blending with at least one of polyol, polyamine and alkanolamine. Furthermore, in order to improve the storage stability when blended with a polyol, the block polyisocyanate composition in the present invention may contain a monohydric alcohol compound. Examples of the monohydric alcohol compound include aliphatic, alicyclic, and aromatic, with aliphatic being preferred. The aliphatic monohydric alcohol compound preferably has 1 to 20 carbon atoms.
  • saturated alcohols such as 2-dimethyl-1-propanol
  • ether alcohols such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, and 3,6-dioxa-1-heptanol.
  • the amount added is preferably 0.2 to 10 times the molar amount of the blocked isocyanate group contained in the composition.
  • surfactants when used in water-based paints, depending on the purpose of improving the compoundability in water-based paints, surfactants, solvents that tend to be miscible with water, etc. are added to the block polyisocyanate composition in the present invention. May be used.
  • Specific examples of surfactants include anions such as aliphatic soaps, rosin acid soaps, alkyl sulfonates, dialkylaryl sulfonates, alkylsulfosuccinates, polyoxyethylene alkyl sulfates, and polyoxyethylene alkyl aryl sulfates.
  • nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, and polyoxyethylene oxypropylene block copolymer.
  • Solvents that tend to be miscible with water include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, isobutanol, butyl glycol, and N-methylpyrrolidone. Butyl diglycol or butyl diglycol acetate.
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, isobutanol, butyl glycol, N-methylpyrrolidone, and butyl diglycol are preferable, and diethylene glycol dimethyl ether is more preferable.
  • Diethylene glycol diethyl ether, propylene glycol dimethyl ether, and dipropylene glycol dimethyl ether are preferred.
  • These solvents may be used alone or in combination of two or more.
  • esters such as ethyl acetate, acetic acid-n-butyl and cellosolve acetate are not preferable because the solvent itself may be hydrolyzed during storage.
  • the block polyisocyanate composition thus prepared is a main component of the coating composition together with at least one of polyol, polyamine and alkanolamine.
  • a polyol is included.
  • this polyol include polyester polyol, acrylic polyol, polyether polyol, polyolefin polyol, fluorine polyol, polycarbonate polyol, polyurethane polyol and the like.
  • polyester polyol for example, a dibasic acid selected from the group of carboxylic acids such as succinic acid, adipic acid, sebacic acid, dimer acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, or a mixture thereof
  • Polyester polyol obtained by a condensation reaction with a single or mixture of polyhydric alcohols selected from the group of ethylene glycol, propylene glycol, diethylene glycol, neopentyl glycol, trimethylolpropane, glycerin, and the like, and for example, polyhydric alcohols were used.
  • polycaprolactones obtained by ring-opening polymerization of ⁇ -caprolactone.
  • Acrylic polyol is obtained by copolymerizing an ethylenically unsaturated bond-containing monomer having a hydroxyl group alone or a mixture thereof and another ethylenically unsaturated bond-containing monomer copolymerizable therewith. Is obtained.
  • Examples of the ethylenically unsaturated bond-containing monomer having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate. It is done. Preferred are hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • ethylenically unsaturated bond-containing monomers copolymerizable with the above monomers include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, acrylate-n-butyl, isobutyl acrylate, Acrylic acid ester such as acrylic acid-n-hexyl, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate Methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid-n-hexyl, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, phen
  • Unsaturated carboxylic acids such as phosphoric acid esters, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, methacrylamide, N, N-methylenebisacrylamide, diacetone acrylamide, diacetone methacrylamide, maleic acid amide, maleimide, etc.
  • Unsaturated amides and vinyl monomers such as glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acrylonitrile, dibutyl fumarate, vinyltrimethoxysilane, vinylmethyldimethoxysilane, ⁇ - (meth) acryloxypropyltri Examples thereof include vinyl monomers having a hydrolyzable silyl group such as methoxysilane.
  • Polyether polyols include, for example, ethylene oxide, propylene oxide, a single or mixture of polyvalent hydroxy compounds, using, for example, hydroxides such as lithium, sodium and potassium, strong basic catalysts such as alcoholates and alkylamines.
  • Polyether polyols obtained by adding an alkylene oxide such as butylene oxide, cyclohexene oxide or styrene oxide alone or in a mixture polyether polyols obtained by reacting an alkylene oxide with a polyfunctional compound such as ethylenediamine, and So-called polymer polyols obtained by polymerizing acrylamide or the like using these polyethers as a medium are included.
  • the polyvalent hydroxy compound As the polyvalent hydroxy compound, (1) Diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, etc. (2) Sugar alcohol compounds such as erythritol, D-threitol, L-arabinitol, ribitol, xylitol, sorbitol, mannitol, galactitol, rhamnitol, (3) monosaccharides such as arabinose, ribose, xylose, glucose, mannose, galactose, fructose, sorbose, rhamnose, fucose, ribodesose, (4) disaccharides such as trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, melibiose, (5) trisaccharides such as raffinose, gentianose, and mele
  • polystyrene resin examples include polybutadiene having two or more hydroxyl groups, hydrogenated polybutadiene, polyisoprene, and hydrogenated polyisoprene.
  • the number of hydroxyl groups (hereinafter, the average number of hydroxyl groups) possessed by one statistical molecule of polyol is preferably 2 or more. When the average number of hydroxyl groups of the polyol is 2 or more, a decrease in the crosslinking density of the obtained coating film can be suppressed.
  • the fluorine polyol is a polyol containing fluorine in the molecule.
  • copolymers such as esters.
  • Polycarbonate polyols are polycondensation of low molecular carbonate compounds such as dialkyl carbonates such as dimethyl carbonate, alkylene carbonates such as ethylene carbonate, diaryl carbonates such as diphenyl carbonate, and low molecular polyols used in the above-mentioned polyester polyols. Can be obtained.
  • the polyurethane polyol can be obtained by a conventional method, for example, by reacting a polyol with a polyisocyanate.
  • Examples of the polyol not containing a carboxyl group include ethylene glycol and propylene glycol as low molecular weights, and examples of the high molecular weight include acrylic polyol, polyester polyol, and polyether polyol.
  • the hydroxyl value per resin of the polyol is preferably 10 to 300 mgKOH / g resin.
  • the hydroxyl value per resin is 10 mgKOH / g or more of resin, it is possible to prevent the crosslink density from being reduced and to sufficiently achieve the object physical properties of the present invention.
  • the hydroxyl value per resin is 300 mgKOH / resin g or less, an excessive increase in the cross-linking density can be suppressed, and the mechanical properties of the coating film can be maintained at a high level.
  • the acid value per resin of the polyol is preferably 5 to 150 mgKOH / resin g, more preferably 8 to 120 mgKOH / resin g, and still more preferably 10 to 100 mgKOH / resin g.
  • the acid value is 5 mgKOH / resin g or more, water dispersibility is kept high, and when it is 150 mgKOH / resin g or less, the water resistance of the coating film can be prevented from being lowered.
  • the equivalent ratio of the blocked isocyanate group to the hydroxyl group of the polyol is usually set to 10: 1 to 1:10.
  • polyamine those having two or more primary amino groups or secondary amino groups in one molecule are used, and among them, those having three or more in one molecule are preferable.
  • Specific examples of the polyamine include diamines such as ethylenediamine, propylenediamine, butylenediamine, triethylenediamine, hexamethylenediamine, 4,4′-diaminodicyclohexylmethane, piperazine, 2-methylpiperazine, isophoronediamine, bishexamethylenetriamine, Chain polyamines having three or more amino groups such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentamethylenehexamine, tetrapropylenepentamine, 1,4,7,10,13,16-hexaazacyclooctadecane Cyclic polyamines such as 1,4,7,10-tetraazacyclodecane, 1,4,8,12-tetraazacyclopentadecane, 1,4,8,11-t
  • the alkanolamine here means a compound having an amino group and a hydroxyl group in one molecule.
  • monoethanolamine, diethanolamine, aminoethylethanolamine, N- (2-hydroxypropyl) ethylenediamine, mono-, di- (n- or iso-) propanolamine, ethylene glycol-bis-propylamine, neopentanolamine examples include methylethanolamine.
  • the blending method of the block polyisocyanate composition and the polyol may be performed by mixing and dispersing the block polyisocyanate composition as it is in the polyol, Once the block polyisocyanate composition is mixed with water, it may be mixed with a polyol.
  • the pH of the aqueous coating composition containing the block polyisocyanate composition represented by the formula (V) is preferably 7.0 to 9.0.
  • the lower limit thereof is more preferably 7.5, still more preferably 8.0, and the upper limit thereof is more preferably 8.8, further preferably 8.6. It is preferable that the pH of the water-based coating composition is 7.0 to 9.0 because the stability of additives such as pigments such as aluminum and rheology control agents can be maintained.
  • the basic compound (e) of PKa 7.0 to 8.5 may be added at the time of blending the water-based paint. In that case, you may use together with the basic compound (e2) in which pKa exceeds 8.5.
  • the composition ratio of the weak basic compound (e) to the sum of the weak basic compound (e) and the basic compound (e2) (total basic composition) is preferably 20 mol% or more.
  • the lower limit of the constituent ratio of the weakly basic compound (e) is preferably 30 mol%, more preferably 40 mol%, and even more preferably 50 mol%.
  • the weakly basic compound (e) is added in an amount of 20 mol% or more in the total basic composition, so that it is in excess of the formation of a neutral salt of the total acidic content present in each component in the paint. Is also preferable because the pH of the prepared coating composition does not become too high.
  • the acidic group to be neutralized include a carbonyl group and a sulfonyl group, among which a carbonyl group is preferable.
  • the addition amount of all the basic compositions can be determined on the basis of the acid component of the preparation at the time of polyol manufacture.
  • the addition amount of the total basic composition is preferably 30 mol% or more with respect to 100 mol% of the total acidic content of the basic group present in each component in the paint.
  • it is 50 mol%, More preferably, it is 70 mol%, Most preferably, it is 100 mol% or more.
  • it is 500 mol%, More preferably, it is 400 mol%, More preferably, it is 300 mol%.
  • the existing melamine resin, epoxy resin, and polyurethane resin can be blended with the coating composition containing the block polyisocyanate composition of the present invention.
  • an oxazoline group containing compound and a carbodiimide group containing compound can be mix
  • a hydrazide group containing compound and a semicarbazide group containing compound can be mix
  • Examples of the melamine resin include a part obtained by a reaction between melamine and an aldehyde or a completely methylolated melamine resin.
  • Examples of the aldehyde include formaldehyde and paraformaldehyde.
  • what methylated the methylol group of this methylol-ized melamine resin partially or completely etherified with alcohol can also be used.
  • alcohols used for etherification include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-ethylbutanol, 2-ethylhexanol and the like.
  • melamine resin examples include Cymel 303, Cymel 323, Cymel 325, Cymel 327, Cymel 350, Cymel 370, Cymel 380, Cymel 385, Cymel 212, Cymel 251, Cymel 254, My Coat manufactured by Nippon Cytec Industries, Ltd. 776 (all are trade names).
  • an acidic compound is effective as a catalyst for curing.
  • the acidic compound include carboxylic acid, sulfonic acid, acidic phosphate ester, and phosphite ester.
  • carboxylic acid examples include acetic acid, lactic acid, succinic acid, oxalic acid, maleic acid, and decanedicarboxylic acid.
  • Typical examples of the sulfonic acid include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, and dinonylnaphthalenedisulfonic acid.
  • acidic phosphate esters include dimethyl phosphate, diethyl phosphate, dibutyl phosphate, dioctyl phosphate, dilauryl phosphate, monomethyl phosphate, monoethyl phosphate, monobutyl phosphate, and monooctyl phosphate.
  • phosphites include diethyl phosphite, dibutyl phosphite, dioctyl phosphite, dilauryl phosphite, monoethyl phosphite, monobutyl phosphite, monooctyl phosphite and monolauryl phosphite.
  • the epoxy resin is not particularly limited as long as it is a resin having two or more epoxy groups per molecule, and a known one can be used.
  • the epoxy resin include a bisphenol type epoxy resin obtained by adding epoxychlorohydrin to bisphenol, a novolak type epoxy resin obtained by adding epichlorohydrin to a phenol novolac resin, and polyethylene glycol diglycidyl ether.
  • the epoxy resin can be used after being dispersed in water as necessary.
  • the polyurethane resin is not limited as long as it is generally used in paints, but a polyurethane resin obtained by reacting an isocyanate group with a polyol to extend a chain is preferable.
  • the polyurethane resin includes those having a carboxyl group obtained by using a carboxyl group-containing polyol as part of the polyol, and those having a hydroxyl group at the terminal.
  • the polyurethane resin having a carboxyl group is preferably neutralized with a basic substance. Examples of commercially available products include Superflex series 110, 150, 460S (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Neoletz R9649, R966 (trade name, manufactured by Avicia).
  • oxazoline group-containing compound examples include a polymer compound having at least two oxazoline groups in the side chain, and a monomer compound having at least two oxazoline groups in the molecule.
  • the carbodiimide group-containing compound can be obtained, for example, by reacting the isocyanate groups of the polyisocyanate compound with each other to remove carbon dioxide.
  • Examples of commercially available carbodiimide group-containing compounds include Carbodilite V-02, Carbodilite V-02-L2, Carbodilite V-04, Carbodilite E-01, Carbodilite E-02 (both manufactured by Nisshinbo Co., Ltd.). Can be mentioned.
  • the hydrazide group-containing compound includes a compound having at least 2, preferably 2 to 10, hydrazide groups represented by —CO—NH—NH 2 in one molecule.
  • Examples of the hydrazide group-containing compound include saturated dicarboxylic acid dihydrazides having 2 to 18 carbon atoms such as oxalic acid dihydrazide, malonic acid dihydrazide, glutaric acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide; maleic acid dihydrazide Monoolefinic unsaturated dicarboxylic acid dihydrazides such as fumaric acid dihydrazide and itaconic acid dihydrazide; and polyhydrazides obtained by reacting a low polymer having a carboxylic acid lower alkyl ester group with hydrazine or hydrazine hydrate .
  • the semicarbazide group-containing compound includes a compound having at least two, preferably 2 to 10, semicarbazide groups represented by —NH—CO—NH—NH 2 in one molecule.
  • Semicarbazide group-containing compounds such as bissemicarbazide; diisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate or polyisocyanate compounds derived therefrom are reacted with N, N-substituted hydrazines such as N, N-dimethylhydrazine and the hydrazines exemplified above And polyfunctional semicarbazide obtained by the reaction.
  • the coating composition of the present invention comprises an antioxidant such as hindered phenol, an ultraviolet absorber such as benzotriazole and benzophenone, a pigment such as titanium oxide, carbon black, indigo, quinacridone, and pearl mica.
  • an antioxidant such as hindered phenol
  • an ultraviolet absorber such as benzotriazole and benzophenone
  • a pigment such as titanium oxide, carbon black, indigo, quinacridone, and pearl mica.
  • Powder pigments such as aluminum, rheology control agents such as hydroxyethyl cellulose, urea compounds and microgels, and curing accelerators such as tin compounds, zinc compounds and amine compounds may also be included.
  • the coating composition prepared in this manner is applied to a material such as a steel plate, surface-treated steel plate and other metals and plastics, and inorganic materials by roll coating, curtain flow coating, spray coating, electrostatic coating, bell coating, etc. It is suitably used as an intermediate coating or top coating.
  • this coating composition is intended to impart cosmetics, weather resistance, acid resistance, rust resistance, chipping resistance, adhesion, etc. to pre-coated metal, automobile coating, plastic coating, etc. that further include a rust-proof steel plate.
  • the coating composition is also useful as a raw material for urethane such as adhesives, pressure-sensitive adhesives, elastomers, foams, and surface treatment agents.
  • the coating composition of the present invention forms a coating film through a baking process after coating by roll coating, curtain flow coating, spray coating, electrostatic coating, bell coating or the like.
  • This coating composition preferably has a crosslinked coating film formed through a baking step.
  • the crosslinked coating film after curing of the coating composition is characterized by having not only a polyisocyanate-derived urethane bond before the blocking reaction but also polar groups such as an amide bond and an ester bond derived from a blocked isocyanate group.
  • the cross-linked coating film formed from the coating composition of the present invention in addition to chemical resistance, heat resistance, water resistance, etc., which are the characteristics of a general urethane cross-linked coating film, when performing layer coating or recoating, It is possible to perform hydrogen bonding between layers and to have excellent adhesion between layers. Even in the coating film in which the crosslinked structure is not completely formed after the baking step, since it has the above polar group, it is excellent in adhesion as well as the crosslinked coating film at the time of lamination coating or recoating.
  • an organic amine compound exists in the coating composition of the present invention or in the crosslinked coating film after curing, There is also the possibility of acting as a catalyst for the crosslinking reaction of the lower layer or the upper layer.
  • the number average molecular weight of the polyisocyanate is a number average molecular weight based on polystyrene as measured by gel permeation chromatography (hereinafter referred to as GPC) using the following apparatus.
  • Equipment Tosoh Corporation HLC-8120GPC (trade name) Column: Tosoh Corporation TSKgel SuperH1000 (trade name) x 1 TSKgel SuperH2000 (trade name) x 1 TSKgel SuperH3000 (trade name) x 1 Carrier: Tetrahydrofuran Detection method: Differential refractometer
  • the number average molecular weight of the polyol is a polystyrene-based number average molecular weight according to the following GPC measurement.
  • Equipment Tosoh Corporation HLC-8120GPC (trade name)
  • Column Tosoh Corporation TSKgel SuperHM-H (trade name)
  • Carrier N, N-dimethylformamide
  • Detection method differential refractometer
  • the effective NCO group mass% here is used to quantify the amount of blocked isocyanate groups that can participate in the crosslinking reaction present in the blocked polyisocyanate composition after the blocking reaction, and is expressed as mass% of isocyanate groups. Expressed by the following formula. ⁇ (Solid content (mass%) of block polyisocyanate composition) ⁇ (mass of polyisocyanate used in reaction ⁇ isocyanate group content% of precursor polyisocyanate) ⁇ / (block polyisocyanate composition after blocking reaction) Resin mass) When diluted with a solvent or the like, the value in the diluted state is described.
  • the effective NCO group mass% is for quantifying the amount of blocked isocyanate groups that can participate in the crosslinking reaction present in the blocked polyisocyanate composition after the blocking reaction, and is represented by A in formula (V). And expressed as mass% of the isocyanate group derived from B, and is calculated by the following formula.
  • the block polyisocyanate having a substituent represented by the formula (IX) can be produced by reacting 2 mole equivalent of the organic amine in the second step with 1 mole equivalent of the malonic acid diester moiety.
  • a secondary amine is used as an organic amine in the second step from an experimental result with a model compound (using n-hexyl isocyanate as the isocyanate component), it is probably 1% by mass of the entire block polyisocyanate due to steric hindrance.
  • the residual mole% of isocyanate groups after the malonic acid diester reaction is quantified by infrared spectrum measurement of the reaction solution, and the reaction rate of the organic amine compound is quantified by gas chromatographic measurement of the amount of organic amine compound decreased after the second step.
  • Device Shimadzu GC-14A (trade name)
  • Column Shimadzu GL DB-1 (trade name)
  • the block polyisocyanate, the malonic acid monoester monoamide, and the malonic acid diamide having a substituent of the formula (IX) were ignored for the same reason as described above.
  • the prepared coating solution was coated with an applicator so as to have a film thickness of 40 ⁇ m and baked at 90 ° C. for 30 minutes to obtain a cured coating film.
  • the cured coating film was baked, allowed to stand at 20 ° C. for 1 hour, immersed in acetone at 20 ° C. for 24 hours, and then the value of the undissolved part mass relative to the mass before immersion was calculated.
  • ⁇ when gel fraction is 85% or more, ⁇ when 80% or more and less than 85%, ⁇ ⁇ when 70% or more and less than 80%, ⁇ when 60% or more and less than 70%, 50% or more and less than 60%
  • the case of x was taken as x, and the case of less than 50% was taken as x.
  • the prepared coating solution was stored at 40 ° C. for 10 days, then, after drying, an applicator was applied to a film thickness of 40 ⁇ m and baked at 90 ° C. for 30 minutes to obtain a cured coating film.
  • the cured coating film was baked, allowed to stand at 20 ° C. for 1 hour, immersed in acetone at 20 ° C. for 24 hours, and then the value of the undissolved part mass relative to the mass before immersion (gel fraction after storage) was calculated.
  • the amount of gas (carbon dioxide) generated during that period is less than 4cc, ⁇ if 4cc or more but less than 8cc, ⁇ if 8cc or less but less than 16cc, ⁇ , 16cc or more but 24cc
  • the coating solution pH at the time of preparing the initial coating solution was adjusted to 8.5.
  • the case of 6 or less was marked as ⁇ , the case of exceeding 0.6 and within 0.9, ⁇ , the case of exceeding 0.9 and within 1.2 as x, and the case of exceeding 1.2 as xx.
  • the amount of gas (carbon dioxide) generated during that period is less than 4cc, ⁇ if 4cc or more but less than 8cc, ⁇ if 8cc or less but less than 16cc, ⁇ , 16cc or more but 24cc
  • the reaction solution was kept at 60 ° C., an isocyanuration catalyst trimethylbenzylammonium hydroxide was added, and phosphoric acid was added when the conversion rate reached 48% to stop the reaction. Then, after filtering a reaction liquid, unreacted HDI was removed with the thin film distillation apparatus.
  • the obtained polyisocyanate had a viscosity of 25,000 mPa ⁇ s at 25 ° C., an isocyanate group content of 19.9% by mass, a number average molecular weight of 1080, and an average number of isocyanate groups of 5.1. Thereafter, the presence of urethane bond, allophanate bond and isocyanurate bond was confirmed by NMR measurement.
  • the temperature of the reaction solution was kept at 60 ° C., an isocyanuration catalyst trimethylbenzylammonium hydroxide was added, and phosphoric acid was added when the conversion rate reached 42% to stop the reaction. Then, after filtering a reaction liquid, unreacted HDI and IPDI were removed with the thin film distillation apparatus.
  • the resulting polyisocyanate had a viscosity at 25 ° C. of 60,000 mPa ⁇ s, an isocyanate group content of 18.9% by mass, a number average molecular weight of 900, and an isocyanate group average number of 4.1. Thereafter, the presence of urethane bond, allophanate bond and isocyanurate bond was confirmed by NMR measurement.
  • Example 1 Production of block polyisocyanate composition
  • a 4-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen blowing tube, and dropping funnel was placed in a nitrogen atmosphere, and 100 parts by mass of the polyisocyanate obtained in Production Example 1 (the isocyanate group of the polyisocyanate in this case) The number of moles was 100), 92.4 parts by mass of n-butyl acetate, and 88.9 parts by mass of diethyl malonate (corresponding to 105 mol% of the isocyanate groups in the polyisocyanate) were charged and maintained at 60 ° C. Thereafter, 0.77 parts by mass of 28% sodium methylate was added and held for 4 hours.
  • Table 1 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (I) of the block polyisocyanate.
  • the block polyisocyanate composition was transferred to an eggplant flask, and evaporated under reduced pressure at 60 ° C. and 10 hPa for 60 minutes using an evaporator. After removing most of the solvent, NMR measurement was performed. .
  • x / y in formula (I) was 2.4.
  • the keto body / enol body composition ratio of the A component was 99/1.
  • Example 8 Production of block polyisocyanate composition
  • a 4-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen blowing tube, and dropping funnel was placed in a nitrogen atmosphere, and 100 parts by mass of the polyisocyanate obtained in Production Example 2 (the isocyanate group of the polyisocyanate in this case) The number of moles is 100), 92.7 parts by mass of propylene glycol monomethyl ether acetate, and 60.7 parts by mass of diethyl malonate (corresponding to 80 mol% of the isocyanate groups in the polyisocyanate composition) were charged and maintained at 60 ° C. .
  • this reaction solution was transferred to an eggplant flask and distilled off under reduced pressure using an evaporator at 60 ° C. and a reduced pressure of 10 hPa for 30 minutes.
  • solid content of the reaction liquid was 73 mass%.
  • propylene glycol monomethyl ether acetate was added again to obtain a block polyisocyanate composition having a solid concentration of 60% by mass.
  • the residual amounts of ethanol and diisopropylamine were measured by gas chromatography, they were 0.3% by mass and 0.4% by mass, respectively.
  • Table 1 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (I) of the block polyisocyanate.
  • Example 1 (Examples 2-7, 9-15, Comparative Example 1) (Production of Block Polyisocyanate Composition) The same procedure as in Example 1 was performed except that the components and ratios shown in Table 1 were used. Table 1 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (I) of the block polyisocyanate.
  • Table 1 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (I) of the block polyisocyanate.
  • Example 16 (Initial gel fraction of block polyisocyanate composition, measurement of gel fraction retention after storage, evaluation of moisture stability)
  • the main component is acrylic polyol (trade name “A801” of DIC Corporation, resin concentration 50% by mass, hydroxyl value 100 mg KOH / g per resin) 100 parts by mass, and the block polyisocyanate composition 60. 4 parts by mass (mixed with an equivalent ratio of the blocked isocyanate group to the hydroxyl group of the main agent at 1.0) was adjusted with butyl acetate so that the solid content of the paint was 40% by mass.
  • the prepared coating solution was dried and then applied with an applicator so as to have a film thickness of 40 ⁇ m, baked at 90 ° C.
  • Example 17-30 Comparative Example 5-8
  • Example 17-30 Comparative Example 5-8
  • Table 2 shows the results of the initial gel fraction, the gel fraction retention after storage, and the moisture stability of the obtained block polyisocyanate composition.
  • Example 31 Measurement of gel fraction of block polyisocyanate composition 22.9 parts by mass of the block polyisocyanate composition obtained in Example 2, 16.5 parts by mass of water, sodium dialkylsulfosuccinate (trade name “New Coal 290M” of Nippon Emulsifier Co., Ltd., solid content 70% by mass) 3 Each part by mass was added and mixed with a homomixer. After mixing, a milky white aqueous dispersion was obtained.
  • Example 32 (Production of block polyisocyanate composition) A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen blowing tube, and dropping funnel was placed in a nitrogen atmosphere, and 100 parts by mass of the polyisocyanate obtained in Production Example 1 (the isocyanate group of the polyisocyanate in this case) The number of moles is 100), monomethoxypolyethylene glycol having a number average molecular weight of 400 (trade name “Uniox M400” of NOF Corporation), 42.3 parts by mass (corresponding to 20 mol% of isocyanate groups in polyisocyanate), 117.1 parts by mass of diethylene glycol dimethyl ether was charged and held at 80 ° C. for 6 hours.
  • reaction solution temperature was cooled to 60 ° C., 72.0 parts by mass of diethyl malonate (corresponding to 85 mol% of the isocyanate group in polyisocyanate), 0.88 parts by mass of 28% methanol solution of sodium methylate, After holding for 4 hours, 0.86 parts by mass of 2-ethylhexyl acid phosphate was added. Thereafter, 45.5 parts by mass of diisopropylamine (corresponding to 85 mol% of the isocyanate group in the polyisocyanate) was added, and the temperature of the reaction solution was raised to 70 ° C. and held for 5 hours. This reaction solution was analyzed by gas chromatography, and it was confirmed that the reaction rate of diisopropylamine was 70%.
  • Examples 33-46 (Production of Block Polyisocyanate Composition) The same operation as in Example 32 was performed except that the components and ratios shown in Table 3 were used. Table 3 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (V) of the block polyisocyanate.
  • reaction solution temperature was cooled to 60 ° C., 33.9 parts by mass of diethyl malonate (corresponding to 40 mol% of the isocyanate group in polyisocyanate), 0.72 parts by mass of 28% methanol solution of sodium methylate, After holding for 4 hours, 0.70 parts by weight of 2-ethylhexyl acid phosphate was added. Thereafter, 21.4 parts by mass of diisopropylamine (corresponding to 40 mol% of the isocyanate group in the polyisocyanate) was added, and the temperature of the reaction solution was raised to 70 ° C. and held for 5 hours. This reaction solution was analyzed by gas chromatography, and it was confirmed that ethanol and disisopropylamine were not present. Table 3 shows the physical properties of the obtained block polyisocyanate composition and the structure of formula (V) of the block polyisocyanate.
  • DNBA Di-n-butylamine (R3: n-butyl group, R4: n-butyl group) * 13 Mixture of R3 and R4 derived from DNBA, which is a chain amine compound, and 2,6-dimethylpiperidine, which is a cyclic amine compound containing a nitrogen atom.
  • this coating solution After preparing this coating solution, it was stored at 40 ° C. for 10 days, and after storage, it was coated in the same manner as described above, and the gel fraction after storage was measured. The results of the gel fraction retention after storage are shown in Table 4. Further, the pH of the coating solution after storage at 40 ° C. for 10 days was measured. Further, 28.0 g of the block polyisocyanate composition obtained in Example 32 (equivalent to 30 mmol as an effective NCO group) and 172.0 g of water (added so that the total mass becomes 200.0 g) were blended, An aqueous solution of an isocyanate composition was obtained. The amount of gas (carbon dioxide) generated during storage of this aqueous solution at 40 ° C. for 10 days was measured. The results are shown in Table 4.
  • Example 48-61 Reference Example 1, Comparative Example 12-14
  • Evaluation of Block Polyisocyanate Composition The same operation as in Example 47 was performed except that the components and ratios shown in Table 4 were used. The evaluation results of the obtained block polyisocyanate composition are shown in Table 4.
  • Example 62 (Production of block polyisocyanate composition) A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen blowing tube, and dropping funnel was placed in a nitrogen atmosphere, and 100 parts by mass of the polyisocyanate obtained in Production Example 1 (isocyanate group of polyisocyanate in this case) The number of moles is 100), monomethoxypolyethylene glycol having a number average molecular weight of 400 (trade name “Uniox M400” of NOF Corporation), 42.3 parts by mass (corresponding to 20 mol% of isocyanate groups in polyisocyanate), 107.1 parts by mass of diethylene glycol dimethyl ether was charged and maintained at 80 ° C. for 6 hours.
  • reaction solution temperature was cooled to 60 ° C., 72.0 parts by mass of diethyl malonate (corresponding to 85 mol% of the isocyanate group in polyisocyanate), 0.88 parts by mass of 28% methanol solution of sodium methylate, After holding for 4 hours, 0.86 parts by mass of 2-ethylhexyl acid phosphate was added. Thereafter, 45.5 parts by mass of diisopropylamine (corresponding to 85 mol% of the isocyanate group in the polyisocyanate) was added, and the temperature of the reaction solution was raised to 70 ° C. and held for 5 hours. This reaction solution was analyzed by gas chromatography, and it was confirmed that the reaction rate of diisopropylamine was 70%.
  • this reaction solution was transferred to an eggplant flask, and distilled under reduced pressure for 30 minutes at 60 ° C. and a reduced pressure of 10 hPa using an evaporator.
  • the amount of diisopropylamine remaining was 2 It was confirmed that 0.1 part by mass (corresponding to 5 mol% with respect to the blocked isocyanate group) and the remaining ethanol was 1.0 part by mass (corresponding to 5 mol% with respect to the blocked isocyanate group).
  • N-ethylmorpholine (24.2 parts by mass) (corresponding to 50 mol% with respect to the blocked isocyanate group) and diethylene glycol dimethyl ether were added to obtain a block polyisocyanate composition having a solid content concentration of 60% by mass.
  • Table 5 shows the physical properties of the resulting block polyisocyanate composition.
  • Example 63-73 Comparative Example 15, Reference Example 2-3
  • Example 5 Production of Block Polyisocyanate Composition
  • Example 74 Evaluation of block polyisocyanate composition
  • Acrylic emulsion as main ingredient hydroxyl value per resin 40 mgKOH / g, acid value 13 mgKOH / g per resin, Tg 20 ° C., number average molecular weight 100,000, resin concentration 42% by mass, adjusted to pH 8.5 with dimethylethanolamine)
  • 30.0 parts by weight of water were blended (adjusted so that the solid content of the paint was 35% by mass).
  • Example 62 28.0 g of the block polyisocyanate composition obtained in Example 62 (corresponding to 30 mmol as an effective NCO group) and 172.0 g of water (added so that the total mass becomes 200.0 g) were blended, and the block An aqueous solution of the polyisocyanate composition was obtained. The amount of gas (carbon dioxide) generated during storage of this aqueous solution at 40 ° C. for 10 days was measured. The results are shown in Table 6.
  • Example 75 to 85 Reference Examples 4 and 6, Comparative Example 16
  • Evaluation of Block Polyisocyanate Composition The same operation as in Example 74 was performed except that the components and ratios shown in Table 6 were used. Table 6 shows the evaluation results of the obtained block polyisocyanate composition.
  • the block polyisocyanate composition of the present invention is crosslinkable at a baking temperature of 100 ° C. or less and excellent in moisture stability, and as a water-based coating composition from the results of the above Examples, Comparative Examples and Reference Examples. It was found that when used, it was excellent in storage stability (pH change, gas generation, curability after storage, etc.).
  • the block polyisocyanate composition of the present invention can be suitably used as a coating composition having excellent low-temperature curability, moisture stability, and curability after storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、式(I)により示される少なくとも1種のブロックポリイソシアネートを含むブロックポリイソシアネート組成物を提供する。R-(A)(B)y (I)(式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基であって、A及びBを含む置換基と結合しており、Aは、以下の式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群であり、Bは、式(III)に示される1種又は2種以上の構造単位であり、xとyの合計が2.0~20であり、かつxは0ではない。)

Description

ブロックポリイソシアネート組成物及びこれを含む塗料組成物
 本発明は、100℃以下の温度で架橋塗膜を形成可能であり、かつ、湿気安定性に優れ、貯蔵後の硬化性も良好なブロックポリイソシアネート組成物、及びそれを用いた塗料組成物に関する。
 ブロックポリイソシアネート組成物は、メラミン系硬化剤と共に、熱架橋型の硬化剤として焼付塗料用に広く使用されている。近年、メラミン系硬化剤を使用した場合、ホルマリンが発生することが指摘されており、地球環境、安全、衛生などの観点からブロックポリイソシアネート組成物が注目されている。ブロックポリイソシアネート組成物のブロック剤としては、従来、オキシム類、フェノール類、アルコール類、ラクタム類が知られている。しかしながら、従来のブロック剤を使用して形成されたブロックポリイソシアネート組成物は、一般に140℃以上の高い焼付け温度を必要とするため、エネルギーコストが非常に大きくなる。また、耐熱性の低いプラスチックへの加工には、高温焼付けが必要なブロックポリイソシアネート組成物は使用することができないという制限があった。
 そのような欠点を克服するため、比較的低温で架橋塗膜を形成するブロックポリイソシアネート組成物として、ピラゾール系ブロックポリイソシアネート組成物(特許文献1)、脂肪族2級アミン系ブロックポリイソシアネート組成物(特許文献2)が提案されている。しかし、これらのブロックポリイソシアネート組成物においては120℃程度の焼付け温度が必要であり、焼付け温度の更なる低温化が望まれていた。
 焼付け温度の更なる低温化が可能なブロックポリイソシアネート組成物としては、(α)ジイソプロピルアミン、(β)活性メチレン化合物、及び(γ)オキシムをブロック剤とする共ブロックポリイソシアネート組成物(特許文献3)、マロン酸ジエステルをブロック剤とするブロックポリイソシアネート組成物(特許文献4)、マロン酸ジエチルとアセト酢酸エチルとをブロック剤とするブロックポリイソシアネート組成物(特許文献5)、イソブタノイル酢酸エステルをブロック剤とするブロックポリイソシアネート組成物(特許文献6)等が提案されている。
 また、特許文献7には、アミノ基含有硬化用成分の合成中間体の原料の1つとして、CH-活性アルキルエステルまたはCH-活性アルキルエステルがイソシアネートに付加した付加生成物が、記載されている。
EP159117B1公報 EP96210A1公報 EP600314A1公報 特開昭57-121065号公報 特開平8-225630号公報 特開2009-155408号公報 特開昭63-265916号公報
 しかしながら、特許文献3では、焼付け温度の低温化が不十分である。特許文献4、5のブロックポリイソシアネート組成物は、湿気を吸収した場合、炭酸ガスが発生し、缶膨れを引き起こす場合がある。また、特許文献6では、貯蔵後のゲル分率が低下する場合がある。
 本発明は、上記事情にかんがみてなされたものであり、100℃以下の温度で架橋塗膜を形成可能であり、かつ、湿気安定性に優れ、貯蔵後の硬化性も良好なブロックポリイソシアネート組成物、及びそれを用いた塗料組成物を提供することを目的とする。
 本発明者は、鋭意研究した結果、驚くべきことに、ある特定構造を有する少なくとも一種のブロックポリイソシアネートを含む組成物が、低温硬化性を保持しつつ、湿気安定性、貯蔵後硬化性が格段に向上することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の構成を有する。
[1]. 式(I)により示される少なくとも1種のブロックポリイソシアネートを含むブロックポリイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000009

(式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基であって、A及びBを含む置換基と結合しており、Aは、以下の式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群であり、Bは、式(III)に示される1種又は2種以上の構造単位であり、xとyの合計が2.0~20であり、かつxは0ではない。)
Figure JPOXMLDOC01-appb-C000010

(式中、Rは、炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも1種を含んでもよい炭化水素基であり、任意にR、Rは、一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができる。)
Figure JPOXMLDOC01-appb-C000011

(式中、Rは、活性水素含有化合物の活性水素を除く残基である。)
[2]. 式(II)のR、Rがともに炭素数3~6個の分岐アルキル基である、[1]に記載のブロックポリイソシアネート組成物。
[3]. 式(II)の(R)(R)N-が式(IV)で示される連結構造である、[1]に記載のブロックポリイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000012

(式中、R、R、R、Rは、各々独立して水素あるいはメチル基を示し、かつ、そのうち少なくとも1つはメチル基である。)
[4]. 式(I)中のx、yがx/y≧1である、[1]~[3]のいずれか1項に記載のブロックポリイソシアネート組成物。
[5]. 式(I)のブロックポリイソシアネートの少なくとも一部が、式(V)により示される少なくとも1種のブロックポリイソシアネートである、[1]~[4]のいずれか1項に記載のブロックポリイソシアネート組成物。
Figure JPOXMLDOC01-appb-C000013

(式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基であり、
 Aは、上記式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群であり、
 Bは、上記式(III)に示される1種又は2種以上の構造単位であり、
 Cは、式(VI)に示される1種又は2種以上の構造単位であり、
 x+y+z=2.0~20であり、かつ、x、zはいずれも0ではない。)
Figure JPOXMLDOC01-appb-C000014

(式中、R10は、活性水素含有親水性化合物の活性水素を除く残基である。)
[6]. 式(V)中のx、y、zが、49≧(x+y)/z≧1であり、かつx/y≧1である、[5]に記載のブロックポリイソシアネート組成物。
[7]. 酸解離定数(PKa)が7.0~8.5である塩基性化合物(e)を、上記ブロックポリイソシアネート組成物のブロックイソシアネート基に対して10モル%以上含有し、ここで、ブロックイソシアネート基のモル数は、式(I)については、前駆体であるポリイソシアネート由来のイソシアネート基を基準としたモル数を示し、式(V)については、前駆体であるポリイソシアネートのうちA及びBの部分構造の源となるイソシアネート基を基準としたモル数を示す、[1]~[6]のいずれか1項に記載のブロックポリイソシアネート組成物。
[8]. [1]~[7]のいずれか1項に記載のブロックポリイソシアネート組成物、及びポリオールを含む塗料組成物。
[9]. 水性塗料組成物である、[8]に記載の塗料組成物。
[10]. [8]または[9]に記載の塗料組成物からなる塗膜。
[11]. 脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートからなる群から選ばれる1種又は2種以上を骨格として有するポリイソシアネート(a)に、式(VII)で示されるマロン酸ジエステル(b)を、ポリイソシアネート(a)のイソシアネート基に対し75-150モル%添加し、ポリイソシアネート(a)のイソシアネート基とマロン酸ジエステル(b)とを反応させる第1工程、並びに、第1工程で得られた生成物と式(VIII)で示される有機アミン化合物(c)の1種又は2種以上とを反応させる第2工程を含む、ブロックポリイソシアネート組成物の製造方法。
Figure JPOXMLDOC01-appb-C000015

(式中、R及びRは、それぞれ独立に炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、RとRは同一でも、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000016

(式中、R及びRは、同一でも異なっていてもよく、エーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基からなる群から選ばれる少なくとも1種を含有してもよい炭素数1~30個の炭化水素基であって、R及びRは、互いに結合して5員または6員環のシクロアルキル基を形成するか、または、RとRに挟まれた窒素原子と共に、架橋員として付加的に窒素または酸素原子を含有してもよい3員、4員、5員または6員環を形成することができる。)。
[12]. 第1工程が、ポリイソシアネート(a)と、マロン酸ジエステル(b)および活性水素含有親水性化合物(d)を、マロン酸ジエステル(b)と活性水素含有親水性化合物(d)の合計量としてポリイソシアネートのイソシアネート基に対し77-150モル%添加し、ポリイソシアネート(a)と、マロン酸ジエステル(b)および活性水素含有親水性化合物(d)を反応させる工程である、[11]に記載のブロックポリイソシアネート組成物の製造方法。
[13]. 第1工程が、ポリイソシアネート(a)と活性水素含有親水性化合物(d)の反応後に、マロン酸ジエステル(b)を反応させる工程である、[12]に記載のブロックポリイソシアネート組成物の製造方法。
[14]. 第2工程において、有機アミン化合物(c)の1種又は2種以上をポリイソシアネート(a)のイソシアネート基に対し50-500モル%添加し、第1工程で得られた生成物と反応させる、[11]-[13]のいずれか1項に記載のブロックポリイソシアネート組成物の製造方法。
[15]. 第1工程、第2工程の後に、第3工程として有機アミン化合物(c)の除去精製を行う、[11]-[14]のいずれか1項に記載のブロックポリイソシアネート組成物の製造方法。
[16]. 第3工程で、有機アミン化合物(c)、および第1工程の生成物のエステル基と有機アミン化合物の反応により解離したアルコール化合物の除去精製を行う、[15]に記載のブロックポリイソシアネート組成物の製造方法。
[17]. 第1工程、第2工程及び第3工程の後に、酸解離定数(PKa)が7.0~8.5である塩基性化合物(e)を添加する、[15]又は[16]に記載のブロックポリイソシアネート組成物の製造方法。
 本発明によれば、100℃以下の温度で架橋塗膜を形成可能であり、かつ、湿気安定性、貯蔵後硬化性に優れるブロックポリイソシアネート組成物、それを含む塗料組成物、及びその塗料組成物からなる塗膜を提供することができる。
 以下に、本発明について、特にその好ましい形態を中心に、詳述する。
 本発明のブロックポリイソシアネート組成物に含まれるブロックポリイソシアネートは、下記式(I)により表される。
Figure JPOXMLDOC01-appb-C000017

 式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基である。
 脂肪族ポリイソシアネートとしては、脂肪族ジイソシアネート、リジントリイソシアネート(以下LTIと示す)、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート(トリマートリイソシアネート:以下TTIと示す)、ビス(2-イソシアナトエチル)2-イソシアナトグルタレート(グルタミン酸エステルトリイソシアネート:以下GTIと示す)を例示することができる。
 脂肪族ポリイソシアネートに使用される脂肪族ジイソシアネートとしては、炭素数4~30のものが好ましく、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下HDIと記載する)、2,2,4-トリメチル-1,6-ジイソシアナトヘキサン、リジンジイソシアネートなどが挙げられる。中でも、工業的入手のしやすさからHDIが好ましい。脂肪族ジイソシアネートは、単独で使用してもいいし、2種以上を併用しても構わない。
 脂環族ポリイソシアネートとしては、以下に示される脂環族ジイソシアネートが主に用いられる。脂環族ジイソシアネートとしては、炭素数8~30のものが好ましく、イソホロンジイソシアネート(以下IPDIと記載する)、1,3-ビス(イソシアナトメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルネンジイソシアネート、水添キシリレンジイソシアネートなどが例示される。中でも、耐候性、工業的入手の容易さから、IPDIが好ましい。脂環族ジイソシアネートは単独で使用してもいいし、2種以上を併用しても構わない。
 芳香族ポリイソシアネートとしては、以下に示される芳香族ジイソシアネートが主に用いられる。芳香族ジイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。芳香族ジイソシアネートは、単独で使用してもいいし、2種以上を併用しても構わない。
 これらのポリイソシアネートの中でも、脂肪族ポリイソシアネート及び/または脂環族ポリイソシアネートが耐候性に優れるため、好ましい。さらに、脂肪族ポリイソシアネートの中では、脂肪族ジイソシアネートが最も好ましい。
 これらのポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基平均数は2.0~20が好ましい。更に、下限値は、2.3であることが好ましく、より好ましくは2.5、最も好ましくは3.0である。上限値は、15であることが更に好ましく、より好ましくは10である。このイソシアネート基平均数が2.0以上であることによって、架橋性が向上し、目的とする塗膜物性を得ることができる。一方、このイソシアネート基平均数が20以下であることによって、凝集力が高くなりすぎることを防止し、平滑な塗膜を得ることができる。
 イソシアネート基平均数は以下の数式により求められる。
Figure JPOXMLDOC01-appb-M000018
 式(I)中のRの源となるポリイソシアネートの例としては、LTI、TTI、GTI等のトリイソシアネート、あるいは、これらの誘導体に加え、ビウレット結合、尿素結合、イソシアヌレート結合、ウレトジオン結合、ウレタン結合、アロファネート結合、オキサジアジントリオン結合等を形成することにより製造されたジイソシアネートの2~20量体のオリゴマーが挙げられる。ビウレット結合を有するポリイソシアネートは、水、t-ブタノール、尿素などのいわゆるビウレット化剤とジイソシアネートとを、ビウレット化剤/ジイソシアネートのイソシアネート基のモル比が約1/2~約1/100で反応させた後、未反応ジイソシアネートを除去精製し得られる。イソシアヌレート結合を有するポリイソシアネートは、例えば、触媒などにより環状3量化反応を行い、転化率が約5~約80質量%になった時に反応を停止し、未反応ジイソシアネートを除去精製して得られる。この際に、1~6価のアルコール化合物を併用することができる。
 上記イソシアヌレート化反応の触媒としては、一般に塩基性を有するものが好ましい。このような触媒の例としては、
 (1)テトラメチルアンモニウム、テトラエチルアンモニウム、トリメチルベンジルアンモニウム等のテトラアルキルアンモニウムのハイドロオキサイドや、例えば、酢酸、カプリン酸等の有機弱酸塩、
 (2)トリメチルヒドロキシプロピルアンモニウム、トリメチルヒドロキシエチルアンモニウム、トリエチルヒドロキシプロピルアンモニウム、トリエチルヒドロキシエチルアンモニウム等のヒドロキシアルキルアンモニウムのハイドロオキサイドや、例えば酢酸、カプリン酸等の有機弱酸塩、
 (3)アルキルカルボン酸の例えば錫、亜鉛、鉛等のアルキル金属塩、
 (4)ナトリウム、カリウム等の金属アルコラート、
 (5)ヘキサメチルジシラザン等のアミノシリル基含有化合物、
 (6)マンニッヒ塩基類、
 (7)第3級アミン類とエポキシ化合物との併用、
 (8)トリブチルホスフィン等の燐系化合物等が挙げられ、2種以上を併用してもよい。
 用いた反応触媒が塗料または塗膜物性に悪影響を及ぼす可能性がある場合には、該触媒を酸性化合物などで中和することが好ましい。この場合の酸性化合物としては、例えば、塩酸、亜燐酸、燐酸などの無機酸、メタンスルホン酸、p-トルエンスルホン酸、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸エチルエステル等のスルホン酸またはその誘導体、燐酸エチル、燐酸ジエチル、燐酸イソプロピル、燐酸ジイソプロピル、燐酸ブチル、燐酸ジブチル、燐酸2-エチルヘキシル、燐酸ジ(2-エチルヘキシル)、燐酸イソデシル、燐酸ジイソデシル、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、エチルグリコールアシッドホスフェート、ピロリン酸ブチル、亜燐酸ブチル等があり、2種以上を併用しても良い。
 ウレタン結合を有するポリイソシアネートは、例えば、トリメチロールプロパンなどの2~6価のアルコール系化合物とジイソシアネートとを、アルコール系化合物の水酸基/ジイソシアネートのイソシアネート基のモル比が約1/2~約1/100で反応させた後、未反応ジイソシアネートを除去精製し得られる。
 LTI、TTI、GTIの誘導体もジイソシアネートから誘導されるポリイソシアネートと同様の方法で、製造される。これらのトリイソシアネートの場合、未反応トリイソシアネートの除去精製は必ずしも必要ではない。
 式(I)中の置換基Aは、下記式(II)に示される1種又は2種以上のケト体あるいはそのエノール体群である。
Figure JPOXMLDOC01-appb-C000019

式(II)は、ケト体を示しているが、ケト-エノール互変異性体であるエノール体群も含む。例えば、メチン基のプロトンがアミド基側でエノール体となった構造や、エステル基側でエノール体となった構造も含む。この場合のケト体の組成比は、50%以上であることが好ましく、更に好ましくは75%以上であり、より好ましくは90%以上である。
 式(II)中のRは、炭素数1~8個のアルキル基、フェニル基またはベンジル基を示す。Rが炭素数9以上のアルキル基であると、有効NCO%が低下するとともに、塗料とした時の主剤等との相溶性が低下する場合があり、好ましくない。これらの中でも、Rは炭素数1~8のアルキル基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基またはエチル基であり、最も好ましくは、エチル基である。
 式(II)中のR、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR、Rは一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができるものである。その中でも、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であるか、RとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができるものであることが好ましい。
 ここで、式(II)中のR、Rを、それぞれ独立して存在する構造(以後、独立構造と言う)と、連結している構造(以後、連結構造と言う)に分けて説明する。
 まず、R及びRの独立構造について説明する。
 独立構造の場合の式(II)中のR、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基である。その中でも、R、Rは、炭素数1~8個の炭化水素基であることが好ましく、より好ましくは、炭素数3~6の分岐アルキル基であることが好ましく、さらに好ましくは、炭素数3~4の分岐アルキル基であり、最も好ましくは、イソプロピル基である。R、Rが含んでもいい好ましい置換基としては、エーテル結合、エステル結合が挙げられる。R、Rが、炭素数30以下のアルキル基であることによって、有効NCO%の低下を抑制し、塗料とした時の主剤等との相溶性を高く保つことができる。
 次に、R及びRの連結構造について説明する。
 連結構造の場合の式(II)中の(R)(R)N-部分は、以下に示す窒素原子を含む環状二級アミンの活性水素を除く残基である。具体的な環状二級アミンとしては、2-アザビシクロ[2.1.1]ヘキサン、7-アザビシクロ[2.2.1]ヘプタンのようなアザビシクロ系化合物、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、3-ピロリジオール、2-ピロリドン、プロリン、4-ヒドロキシプロリン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、3-ピペリジンメタノール、2-ピペリジンエタノール、4-ピペリジンエタノール、4-ピペリジノール、2-ピペリドン、4-ピペリドン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、デカヒドロキノリン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジン、オキサゾリジン、モルホリン、イミダゾリジン、2-イミダゾリドン、ヒダントイン、1-メチルヒダントイン、5-メチルヒダントイン、クレアチニン、パラバン酸、ウラゾール、チアゾリジン、チアルジンのような飽和環状二級アミン、ピロール、2-メチルピロール、2,4-ジメチルピロール、3,4-ジメチルピロール、2-アセチルピロール、2-ピロールカルボン酸、インドール、3H-インドール、3-メチルインドール、2-フェニルインドール、3-ヒドロキシルインドール、3-インドール酢酸、インドリン、2-インドリノン、イサチン、α-シサチンオキシム、イソインドール、イソインドリン、1-イソインドリノン、カルバゾール、1,2,3,4-テトラヒドロキノリン、1,2,3,4-テトラヒドロイソキノリン、9-アクリドン、ピラゾール、3,5-ジメチルピラゾール、イミダゾール、ベンゾイミダゾール、ベンゾイミダゾロン、1H-1,2,3-トリアゾール、1H-1,2,4-トリアゾール、ベンゾトリアゾール、テトラゾール、プリン、キサンチン、フェノキサジン、無水イサト酸、ベンゾチアゾリン、2-ベンゾチアゾロン、フェノチアジン、5,10-ジヒドロフェナジン、β-カルボリン、ペリミジンのような芳香族二級アミン、2-ピロリン、3-ピロリン、ジヒドロピリジン、2-ピラゾリン、5-ピラゾロン、2-イミダゾリン、4H-1,4-オキサジン、4H-1,4-チアジン、2H,6H-1,5,2-ジチアジンのような不飽和結合含有環状二級アミン等が挙げられる。
 これらの環状二級アミンの中でも、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、3-ピロリジオール、2-ピロリドン、プロリン、4-ヒドロキシプロリン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、3-ピペリジンメタノール、2-ピペリジンエタノール、4-ピペリジンエタノール、4-ピペリジノール、2-ピペリドン、4-ピペリドン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、デカヒドロキノリン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジン、オキサゾリジン、モルホリン、イミダゾリジン、2-イミダゾリドン、ヒダントイン、1-メチルヒダントイン、5-メチルヒダントイン、クレアチニン、パラバン酸、ウラゾール、チアゾリジン、チアルジンが好ましい。
 より好ましくは、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジンであり;さらに好ましくは、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンであり;最も好ましくは、2-メチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンである。
 上記に具体例を示したように、窒素原子を含む環状二級アミン化合物として、飽和環状二級アミン、芳香族二級アミン、不飽和結合含有環状二級アミンが挙げられるが、その中でも飽和環状二級アミンが好ましい。また、飽和環状二級アミンの中でも、窒素原子一個のみを含む二級アミンが好ましく、より好ましくは5員環あるいは6員環であり、更に好ましくは、下記式(IV)で示される構造を有し、2,6位の置換基が水素かメチル基で、かつ、その中の少なくとも1つはメチル基であるピペリジン誘導体である。具体的な化合物名としては、上記の2-メチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンが該当する。
Figure JPOXMLDOC01-appb-C000020

式(IV)中、R、R、R、Rは、各々独立して水素あるいはメチル基を示し、かつ、そのうち少なくとも1つはメチル基である。
 すなわち、上記式(II)における窒素原子上のアルキル置換基において、窒素原子と隣接する炭素原子の少なくとも1つが2個以上の炭素原子と結合していることが好ましい。
 本発明のブロックポリイソシアネート組成物は、式(I)中の置換基Aの代替として、以下の式(IX)に示される置換基のケト体あるいはそのエノール体群を有するブロックポリイソシアネートを、一部含んでもよい。
Figure JPOXMLDOC01-appb-C000021
(式中、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR、Rは一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができる。
 R11、R12は、同じでも異なっていてもよく、水素、あるいは炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR11、R12は一緒になって5員または6員のシクロアルキル基を形成するか、またはR11とR12に挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができる。)
 式(I)中の置換基Aにおける式(IX)に示されるブロックポリイソシアネートの含有量は、低温硬化性を維持しつつ、結晶化を抑制する観点から、50質量%以下であることが好ましく、さらに好ましくは30質量%以下であり、より好ましくは20質量%以下であり、最も好ましくは10質量%以下である。
 式(I)中の置換基Bは、下記式(III)に示される1種又は2種以上の構造単位である。
Figure JPOXMLDOC01-appb-C000022

式(III)におけるRは、活性水素含有化合物の活性水素を除く残基である。
 式(III)中のRの源となる活性水素含有化合物としては、イソシアネート基と反応しうる活性水素含有化合物であれば、特に制限されることはない。使用される活性水素含有化合物としては、一般にブロック剤として知られているものが好ましい。ブロック剤としては、活性水素を分子内に1個有する化合物が好ましく、例えば、アルコール系、アルキルフェノール系、フェノール系、活性メチレン系、メルカプタン系、酸アミド系、酸イミド系、イミダゾール系、尿素系、オキシム系、アミン系、イミド系、ピラゾール系化合物等がある。
 より具体的なブロック剤の例を下記に示す。
 (1)メタノール、エタノール、2-プロパノール、n-ブタノール、sec-ブタノール、2-エチル-1-ヘキサノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノールなどの脂肪族アルコール類、
 (2)アルキルフェノール系;炭素原子数4以上のアルキル基を置換基として有するモノおよびジアルキルフェノール類であって、例えばn-プロピルフェノール、i-プロピルフェノール、n-ブチルフェノール、sec-ブチルフェノール、t-ブチルフェノール、n-ヘキシルフェノール、2-エチルヘキシルフェノール、n-オクチルフェノール、n-ノニルフェノール等のモノアルキルフェノール類、ジ-n-プロピルフェノール、ジイソプロピルフェノール、イソプロピルクレゾール、ジ-n-ブチルフェノール、ジ-t-ブチルフェノール、ジ-sec-ブチルフェノール、ジ-n-オクチルフェノール、ジ-2-エチルヘキシルフェノール、ジ-n-ノニルフェノール等のジアルキルフェノール類、
 (3)フェノール系;フェノール、クレゾール、エチルフェノール、スチレン化フェノール、ヒドロキシ安息香酸エステル等、
 (4)活性メチレン系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等、
 (5)メルカプタン系;ブチルメルカプタン、ドデシルメルカプタン等、
 (6)酸アミド系;アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等、
 (7)酸イミド系;コハク酸イミド、マレイン酸イミド等、
 (8)イミダゾール系;イミダゾール、2-メチルイミダゾール等、
 (9)尿素系;尿素、チオ尿素、エチレン尿素等、
 (10)オキシム系;ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等、
 (11)アミン系;ジフェニルアミン、アニリン、カルバゾール、ジ-n-プロピルアミン、ジイソプロピルアミン、イソプロピルエチルアミン、ジイソブチルアミン、ジ(2-ブチルアミン)、ジ(t-ブチル)アミン、ジシクロヘキシルアミン、N-t-ブチルシクロヘキシルアミン、2-メチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン等、
 (12)イミン系;エチレンイミン、ポリエチレンイミン等、
 (13)ピラゾール系;ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等がある。
 好ましい活性水素含有化合物は、アルコール系、オキシム系、アミン系、酸アミド系、活性メチレン系、ピラゾール系のブロック剤から選ばれる少なくとも1種であり、より好ましくは、オキシム系、活性メチレン系、ピラゾール系のブロック剤から選ばれる少なくとも1種であり、さらに好ましくは、活性メチレン系のブロック剤の中から選ばれる少なくとも1種である。最も好ましくは、マロン酸ジエステルである。
 上記の活性水素含有化合物の活性水素としては、アルコール系であれば、水酸基の水素、また、活性メチレン系であれば、2つのカルボニル基に挟まれたメチレン基の水素、アミン系であれば、窒素原子に結合している水素が例示される。すなわち、活性水素含有化合物の活性水素を除く残基とは、アルコール系、活性メチレン系、アミン系等の活性水素含有化合物から各々の活性水素を除いた残基を示す。
 本発明の式(I)中のxとyの合計は、Rの源となるポリイソシアネートのイソシアネート基平均数に相当する値であり、2.0~20であり、かつxは0ではない。yは0であってもよいが、0でないことがより好ましい。xとyの合計の下限値は、2.3であることが好ましく、より好ましくは2.5、最も好ましくは3.0である。xとyの合計の上限値は、15であることがより好ましく、最も好ましくは10である。なお、ここでのx、yは、A、B各々の、Rに対する統計的平均数を意味する。
 xとyの合計が2.0以上であることによって、架橋性が向上し、目的とする塗膜物性を得ることができる。一方、xとyの合計が20以下であることによって、凝集力が高くなりすぎることを防止し、平滑な塗膜を得ることができる。また、yが0でない場合はx、yがx/y≧1であることが好ましく、より好ましくはx/y≧1.5であり、さらに好ましくはx/y≧2である。
 本発明のブロックポリイソシアネート組成物に用いられるブロックポリイソシアネートは、下記式(V)に示される特定構造の置換基Cを有するブロックポリイソシアネートの少なくとも1種を含むことによって、水系塗料における配合性をさらに高めることが可能となる。式(V)のブロックポリイソシアネートは、式(I)の定義の範ちゅうに包含される。
Figure JPOXMLDOC01-appb-C000023
 式(V)中のA及びBは、それぞれ上記式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群、及び上記式(III)に示される1種又は2種以上の構造単位である。また、式(V)中のCは、下記式(VI)に示される1種又は2種以上の構造単位である。
Figure JPOXMLDOC01-appb-C000024

式(VI)におけるR10は、活性水素含有親水性化合物の活性水素を除く残基である。
 式(V)中のCの源となる活性水素含有親水性化合物は、ノニオン系親水性化合物、アニオン系親水性化合物、カチオン系親水性化合物から選ばれる。これらの中でも、製造容易性から、ノニオン系親水性化合物、アニオン系親水性化合物が好ましく、さらに好ましくは、ノニオン系親水性化合物である。これらの親水性化合物は、単独で用いてもよいし、2種以上を併用して用いてもよい。
 ノニオン系親水性化合物としては、少なくとも3個連続したエチレンオキサイド基を有するポリエチレングリコール系化合物が挙げられる。さらに、ノニオン系親水性化合物の数平均分子量は200~2000であることが好ましい。数平均分子量の下限は、より好ましくは300、さらに好ましくは400である。数平均分子量の上限は、より好ましくは1500、さらに好ましくは1200、最も好ましくは1000である。数平均分子量の下限が200以上であることによって、組成物の十分な水分散性を得ることができる。一方、数平均分子量の上限が2000以下であることによって、焼付け後の耐水性等の塗膜物性の低下を抑制することができる。
 例示した少なくとも3個連続したエチレンオキサイド基を有するポリエチレングリコール系化合物には、エチレンオキサイド繰り返し単位に、その他のオキシアルキレン基、具体的にはオキシプロピレン基、あるいはオキシスチレン基などを含有していても良い。その場合のエチレンオキサイド基モル比率は、60モル%以上が好ましく、より好ましくは70モル%以上、最も好ましくは80モル%以上である。エチレンオキサイド基モル比率が高い場合、水系塗料における配合性を効率よく向上することができるため、好ましい。
 このようなポリエチレングリコール系化合物として、モノアルコキシポリエチレングリコール、ポリエチレングリコールあるいはトリオール、ポリプロピレングリコールの末端にエチレンオキサイドを付加重合させた所謂プルロニックタイプのポリプロピレングリコールあるいはトリオール、ポリオキシプロピレンポリオキシエチレンコポリマージオールあるいはトリオール、ポリオキシプロピレンポリオキシエチレンブロックポリマージオールあるいはトリオールが挙げられる。特にモノアルコキシポリエチレングリコール、ポリエチレングリコールが好ましく、さらに好ましくは、モノアルコキシポリエチレングリコールである。モノアルコキシポリエチレングリコールは、ポリエチレングリコールの片末端にアルコールが付加したものである。モノアルコキシポリエチレングリコールに使用しうるモノアルコールとしては、炭素数1~8が好ましく、より好ましくは炭素数1~6であり、さらに好ましくは炭素数1~4である。最も好ましくは、メタノール、エタノールである。
 従って、モノアルコキシポリエチレングリコールの中でも、モノメトキシポリエチレングリコール、モノエトキシポリエチレングリコールが好ましく、モノメトキシポリエチレングリコールが最も好ましい。
 活性水素含有親水性化合物として用いられるこれらのポリエチレン系グリコール化合物の中でも、数平均分子量200~2000の片末端に炭素数1~4のモノアルコールが付加したポリエチレングリコール系化合物が特に好ましい。
 ポリエチレングリコールの具体例としては、日本油脂株式会社製PEG200、300、400、600、1000、2000が挙げられる。また、モノメトキシポリエチレングリコールとしては、日本油脂株式会社製ユニオックスM400、550、1000、2000、日本乳化剤株式会社の製品MPG-081が挙げられる。
 アニオン系親水性化合物としては、カルボン酸基含有化合物、スルホン酸基含有化合物が挙げられる。カルボン酸基含有化合物としては、モノヒドロキシカルボン酸あるいはジヒドロキシカルボン酸あるいはそれらの誘導体が挙げられる。カルボン酸基含有化合物の中では、モノヒドロキシカルボン酸あるいはジヒドロキシカルボン酸が好ましく、さらに好ましくは、モノヒドロキシカルボン酸である。
 カルボン酸含有化合物の具体例としては、ヒドロキシピバリン酸、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、あるいはこれらを開始剤としたポリカプロラクトンジオールやポリエーテルポリオール等の誘導体が挙げられる。カルボン酸基含有化合物を使用する場合には、ブロックポリイソシアネート組成物の製造後、中和剤で中和することが好ましい。中和剤としては、アルカリ金属類、アルカリ土類金属類、アンモニア、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン等の3級アミンが挙げられる。
 スルホン酸基含有化合物としては、アミノエチルスルホン酸、エチレンジアミノ-プロピル-β-エチルスルホン酸、1,3-プロピレンジアミン-β-エチルスルホン酸、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸が挙げられる。スルホン酸基含有化合物を使用する場合には、上記同様にブロックポリイソシアネート組成物の製造後、中和剤で中和することが好ましい。中和剤としては、アルカリ金属類、アルカリ土類金属類、アンモニア、トリメチルアミン、トリエチルアミン、ジメチルエタノールアミン等の3級アミンが挙げられる。
 カルボン酸基含有化合物とスルホン酸基含有化合物とを比較した場合、製造容易性、水系塗料における配合性から、カルボン酸基含有化合物が好ましい。
 カチオン系親水性化合物としては、水酸基含有アミノ化合物が挙げられる。具体的には、ジメチルエタノールアミン、ジエチルエタノールアミン、ヒドロキシピリジン等が挙げられる。水酸基含有アミノ化合物を使用する場合には、上記同様にブロックポリイソシアネート組成物の製造後、中和剤で中和することが好ましい。中和剤としては、酢酸、プロピオン酸、ブタン酸、2-エチルヘキサン酸等の有機酸が挙げられる。
 上記の活性水素含有親水性化合物の活性水素としては、ノニオン系親水性化合物であれば、水酸基の水素が例示される。アニオン系親水性化合物であるヒドロキシピバリン酸であれば、水酸基の水素、また、アミノエチルスルホン酸であれば、アミノ基の水素が例示される。カチオン系親水性化合物であるジメチルエタノールアミンであれば、水酸基の水素が例示される。すなわち、活性水素含有親水性化合物の活性水素を除く残基とは、ノニオン系、アニオン系、カチオン系の活性水素含有親水性化合物から各々の活性水素を除いた残基を示す。
 式(V)中のx、y、zの合計は、Rの源となるポリイソシアネートのイソシアネート基平均数に相当する値であり、2.0~20であることが好ましい。下限値は、2.3であることがより好ましく、さらに好ましくは2.5、最も好ましくは3.0である。上限値は、15であることがより好ましく、さらに好ましくは10である。なお、ここでのx、y、zは、A、B、C各々の、Rに対する統計的平均数を意味する。
 式(V)中のx、y、zの合計が2.0以上であることによって、架橋性の低下を抑制し、目的とする塗膜物性を得ることができる。一方、x、y、zの合計が20以下であることによって、凝集力が高くなりすぎることを防止し、平滑な塗膜を得ることができる。また、x、zはいずれも0ではない。yは0であってもよいが、0でないことがより好ましい。x=0ではないことによって、低温硬化性、水性塗料組成物とした場合の貯蔵安定性が良好に保たれる。また、z=0ではないことによって、水性塗液組成物とした場合における分離や沈降等の発生を避けることができる。
 式(V)中のx、y、zは49≧(x+y)/z≧1であることが好ましい。より好ましくは、下限値が1.5であり、さらに好ましくは2.0である。また、式(V)中のx、yはx/y≧1であることが好ましく、より好ましくはx/y≧1.5、さらに好ましくは、x/y≧2である。
 なお、本発明のブロックポリイソシアネート組成物は、一部イソシアネート基が残存しているものも含まれる。残存イソシアネート基の好ましい量は、使用目的により異なるが、ポリオール等と配合し、1液塗料組成物として使用する場合には、貯蔵安定性確保のため、ブロック化前のイソシアネート基のうち20モル%以下であることが好ましく、10モル%以下であることが更に好ましく、より好ましくは、5モル%以下であり、最も好ましくは残存イソシアネート基が存在しないことである。
 次に、本発明のブロックポリイソシアネート組成物の製造方法について説明する。当該ブロックポリイソシアネート組成物は、大きく分類して、2つの製造方法で合成しうる(以下、「製造方法1」及び「製造方法2」と称する)。
 製造方法1は、式(I)(又は式(V))中のRの源となるポリイソシアネート(a)と、下記式(VII)に示されるマロン酸ジエステル(b)とを反応させた後に、下記式(VIII)に示される有機アミン化合物(c)を反応させる方法である。
Figure JPOXMLDOC01-appb-C000025
(式中、R、Rは、炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、RとRは同一でも、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000026
(式中、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR、Rは、一緒になって5員または6員のシクロアルキル基を形成するか、またRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができる。)
 また、式(V)に示される置換基Cを導入する場合には、ポリイソシアネート(a)のイソシアネート基と活性水素含有親水性化合物(d)との反応を行う工程も第1工程に含まれる。その場合、ポリイソシアネート(a)のイソシアネート基と活性水素含有親水性化合物(d)との反応、マロン酸ジエステル(b)との反応を同時に行うこともできるし、あらかじめどちらかの反応を行った後に、2つ目の反応を実施することもできる。その中でも、イソシアネート基と活性水素含有親水性化合物(d)とを反応させた後に、マロン酸ジエステル(b)と反応させることが好ましい。
 製造方法2は、式(I)(又は式(V))中のRの源となるポリイソシアネートと、下記式(X)に示される化合物を反応させる方法である。
Figure JPOXMLDOC01-appb-C000027
(式中、Rは、炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR、Rは一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含むことができる3員、4員、5員または6員環を形成することができる。)
 また、式(V)に示される置換基Cを導入する場合には、活性水素含有親水性化合物(d)との反応を行う工程も含まれる。その場合、ポリイソシアネート(a)のイソシアネート基と活性水素含有親水性化合物(d)との反応、式(X)に示される化合物との反応を同時に行うこともできるし、あらかじめどちらかの反応を行った後に、2つ目の反応を実施することもできる。その中でも、イソシアネート基と活性水素含有親水性化合物(d)とを反応させた後に、式(X)に示される化合物と反応させることが好ましい。
 製造の簡便さから、製造方法1がより好ましい。以下に製造方法1について説明する。
 製造方法1は、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネートからなる群から選ばれる1種又は2種以上を骨格として有するポリイソシアネート(a)と式(VII)で示されるマロン酸ジエステル(b)を、ポリイソシアネート(a)のイソシアネート基に対し75-150モル%添加し、ポリイソシアネート(a)のイソシアネート基とマロン酸ジエステル(b)とを反応させる第1工程と、第1工程で得られた生成物と式(VIII)で示される有機アミン化合物(c)の1種又は2種以上とを反応させる第2工程の2つの工程からなる。
 第1工程について説明する。製造方法1の第1工程におけるマロン酸ジエステル(b)の添加量は、式(I)(又は式(V))中のRの源となるポリイソシアネート(a)におけるイソシアネート基に対し、75~150モル%である。下限値としては、90モル%がより好ましく、さらに好ましくは95モル%であり、最も好ましくは100モル%である。上限値としては、130モル%がより好ましく、さらに好ましくは120モル%であり、最も好ましくは110モル%である。添加量が75モル%以上であることによって、低温硬化性の悪化を防止することができる。また、添加量が150モル%以下であることによって、焼付塗膜の耐水性等の塗膜物性に対する悪影響を抑制することができる。
 製造方法1の第1工程において、式(V)の置換基Cを導入する場合、ポリイソシアネート(a)のイソシアネート基に対し、活性水素含有親水性化合物(d)と式(VII)で示されるマロン酸ジエステル(b)の合計量が77~150モル%であることが好ましい。上記割合の下限値としては、90モル%であることがより好ましく、さらに好ましくは、95モル%であり、最も好ましくは、100モル%である。上記割合の上限値としては、130モル%がより好ましく、さらに好ましくは、120モル%であり、最も好ましくは110モル%である。上記化合物の合計量の割合が77モル%以上であることによって、組成物の低温硬化性の悪化を防止することができる。また、上記化合物の合計の割合が150モル%以下であることによって、焼付塗膜の耐水性等の塗膜物性に対する悪影響を抑制することができる。第1工程において用いられる活性水素含有親水性化合物は、水系塗料における配合性を高める機能を有する。
 活性水素含有親水性化合物(d)の添加量は、活性水素のモル数を基準として、ブロックポリイソシアネートの前駆体であるポリイソシアネート(a)におけるイソシアネート基に対し、2~50モル%であることが好ましい。上記割合の上限値としては、40モル%がより好ましく、さらに好ましくは35モル%である。上記割合が2モル%以上であることによって、組成物の充分な水分散性を得ることができる。また、上記割合が50モル%以下であることによって、架橋密度の低下を抑制し、塗膜の耐水性等の所望の物性を得ることができる。
 第1工程における活性水素含有親水性化合物(d)は、前記のノニオン系親水性化合物、アニオン系親水性化合物、カチオン系親水性化合物から選ばれる。これらの中で、製造容易性から、ノニオン系親水性化合物、アニオン系親水性化合物が好ましく、さらに好ましくはノニオン系親水性化合物である。これらの親水性化合物は、単独で用いてもいいし、2種以上を併用して用いてもよい。
 第1工程において、式(V)の置換基Cを導入する場合、マロン酸ジエステル(b)の添加量は、ブロックポリイソシアネートの前駆体であるポリイソシアネート(a)におけるイソシアネート基に対し、75~148モル%であることが好ましい。上記割合の下限値としては、88モル%がより好ましく、さらに好ましくは98モル%である。上記割合が75モル%以上であることによって、架橋密度の低下を防止し、塗膜の耐水性等の所望の物性を得ることができる。上記割合が148モル%以下であることによって、焼付塗膜の耐水性等の塗膜物性に対する悪影響を抑制することができる。
 製造方法1の第1工程におけるマロン酸ジエステル(b)は、式(VII)に示される。具体的には、R、Rは、炭素数1~8のアルキル基、フェニル基またはベンジル基である。R、Rは同一であっても、異なっていても構わないが、入手の容易さから、R=Rであることが好ましい。R、Rが炭素数8以下のアルキル基であることによって、有効NCO%の低下を抑制すると共に、塗料とした時の主剤等との相溶性の悪化を防止することができる。これらの中でも、炭素数1~8のアルキル基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基またはエチル基であり、最も好ましくは、エチル基である。ここで有効NCO質量%とは、ブロックポリイソシアネート組成物の全質量に対する潜在的に存在するイソシアネート基の質量%である。
 マロン酸ジエステル(b)の具体例としては、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-プロピル、マロン酸ジイソプロピル、マロン酸ジn-ブチル、マロン酸ジイソブチル、マロン酸ジt-ブチル、マロン酸メチルt-ブチルエステル、マロン酸ジn-ヘキシル、マロン酸ジ2-エチルヘキシル、マロン酸ジフェニル、マロン酸ジベンジルが挙げられる。その中でも、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-プロピル、マロン酸ジイソプロピル、マロン酸ジn-ブチル、マロン酸ジイソブチル、マロン酸ジt-ブチル、マロン酸メチルt-ブチルエステル、マロン酸ジn-ヘキシル、マロン酸ジ2-エチルヘキシルが好ましい。より好ましくは、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジn-プロピル、マロン酸ジイソプロピル、マロン酸ジn-ブチル、マロン酸ジイソブチル、マロン酸ジt-ブチル、マロン酸メチルt-ブチルエステルであり、さらに好ましくは、マロン酸ジメチル、マロン酸ジエチルであり、最も好ましくは、マロン酸ジエチルである。上記に示したマロン酸ジエステルは、単独で用いることもできるし、2種以上を併用して使用することもできる。
 上記第1工程の反応は、溶剤の存在の有無に関わらず行うことができる。溶剤を用いる場合、イソシアネート基に対して不活性でかつ加水分解しにくい溶剤を用いるのが好ましい。好ましい溶剤は、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤である。
 第1工程の反応に際しては、反応触媒を使用することができる。具体的な反応触媒としては、錫、亜鉛、鉛等の有機金属塩、金属アルコラート、及び3級アミン等が挙げられる。
 用いた反応触媒が塗料または塗膜物性に悪影響を及ぼす可能性がある場合には、該触媒を酸性化合物などで失活させることが好ましい。この場合の酸性化合物としては、例えば、塩酸、亜燐酸、燐酸などの無機酸、メタンスルホン酸、p-トルエンスルホン酸、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸エチルエステル等のスルホン酸またはその誘導体、燐酸エチル、燐酸ジエチル、燐酸イソプロピル、燐酸ジイソプロピル、燐酸ブチル、燐酸ジブチル、燐酸2-エチルヘキシル、燐酸ジ(2-エチルヘキシル)、燐酸イソデシル、燐酸ジイソデシル、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、エチルグリコールアシッドホスフェート、ピロリン酸ブチル、亜燐酸ブチル等が挙げられる。これらの酸性化合物は、2種以上を併用しても良い。
 第1工程の反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃であり、より好ましくは40~80℃である。150℃以下で反応を行うことによって副反応を抑制することができ、また、-20℃以上で反応を行うことによって反応速度を高く維持することができる。
 式(I)(又は式(V))におけるx、yの組成比は、第1工程におけるポリイソシアネート(a)におけるイソシアネート基に対するマロン酸ジエステル(b)の添加モル%とその反応率に依存する。しかし、別の反応槽で合成したブロックポリイソシアネート組成物を最終的に混合し、本発明のブロックポリイソシアネート組成物とする場合には、混合比にも依存する。x、yの組成比は、第1工程でのポリイソシアネート(a)におけるイソシアネート基に対するマロン酸ジエステル(b)の添加モル%だけでなく、その反応率に依存するため、第2工程実施前に、第1工程終了時のイソシアネート残存率を確認することが好ましい。未反応のイソシアネート基が残存している場合、第2工程の有機アミン(c)は、第1工程で生成したイソシアネート基とマロン酸ジエステル(b)との反応生成物のエステル部との反応よりも、イソシアネート基と優先して反応する。本発明ではx比率が高いこと、及び、残存イソシアネート基が少ないことが好ましいため、第1工程において、イソシアネート基が消滅したことを確認した後に、第2工程を行うことがより好ましい。
 次に、製造方法1の第2工程について説明する。第2工程における式(VIII)に示される有機アミン化合物(c)の添加量は、ブロックポリイソシアネートの前駆体であるポリイソシアネート(a)のイソシアネート基に対し、50~500モル%であることが好ましい。この添加量の下限値としては、70モル%がより好ましく、さらに好ましくは90モル%である。この合計添加量の上限値としては、400モル%であることがより好ましく、さらに好ましくは300モル%であり、最も好ましくは200モル%である。合計添加量が50モル%以上であることによって、湿気安定性を高く保つことができ、500モル%以下であることによって、フリーなアミンの量を低減し、焼付塗膜の着色を防止することができる。
 第2工程で使用する有機アミン(c)は、第1工程後のポリイソシアネートとマロン酸ジエステル(b)との反応生成物のエステル部との反応を主目的として、添加している。しかしながら、第1工程後にイソシアネート基が残存している場合は、残存イソシアネート基と第2工程で用いる有機アミン(c)が反応しても構わない。その場合、式(I)(又は式(V))における置換基Bとなる。
 また、第1工程でポリイソシアネート(a)におけるイソシアネート基に対するマロン酸ジエステル(b)が100モル%を超える量添加された場合には、第1工程終了後に、マロン酸ジエステル(b)が残存する。その場合、第一工程後に残存するマロン酸ジエステル(b)と第2工程で添加した有機アミン化合物(c)との反応物であるマロン酸モノエステルモノアミドあるいはマロン酸ジアミドを、一部含んでいても構わない。
 第2工程で用いられる有機アミン化合物(c)は、式(VIII)に示される。具体的には、式(VIII)に示される有機アミン化合物(c)において、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であり、任意にR、Rは一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成するものである。これらの中でも、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素基であるか、RとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成するものであることが好ましい。
 有機アミン化合物(c)は、大きく分けて、鎖状二級アミン化合物と窒素原子を含む環状二級アミン化合物に分類される。まず、鎖状二級アミン化合物について説明する。式(VIII)の鎖状二級アミン化合物におけるR、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも一種を含んでもよい炭化水素である。その中でも炭素数は1~8個の炭化水素であることが好ましく、より好ましくは、炭素数3~6の分岐アルキル基であり、さらに好ましくは炭素数3~4の分岐アルキル基であり、最も好ましくはイソプロピル基である。R、Rが、炭素数30以下のアルキル基であることによって、有効NCO%の低下を抑制し、塗料とした時の主剤等との相溶性を高く保つことができる。
 本発明に用いる鎖状二級アミン化合物の具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジトリデシルアミン、ジステアリルアミンのような直鎖二級アミン、ジイソプロピルアミン、ジイソブチルアミン、ジ(2-ブチルアミン)、ジ(t-ブチル)アミン、ジ(2-エチルヘキシル)アミン、ジシクロヘキシルアミン、ジ(2-メチルシクロヘキシル)アミンのような分岐二級アミン、ジアリルアミンのような不飽和二重結合含有二級アミン、メチルエチルアミン、N-メチルイソプロピルアミン、メチルt-ブチルアミン、N-メチルヘキシルアミン、エチルt-ブチルアミン、N-エチルヘキシルアミン、N-エチル-1,2-ジメチルプロピルアミン、N-エチルイソアミルアミン、N-エチルラウリルアミン、N-エチルステアリルアミン、N-メチルシクロヘキシルアミン、N-エチルシクロヘキシルアミン、N-t-ブチルシクロヘキシルアミンのような非対称二級アミン、ジフェニルアミン、ジベンジルアミン、メチルベンジルアミン、エチルベンジルアミン、t-ブチルベンジルアミン、N-メチルアニリン、N-エチルアニリン、N-シクロヘキシルアニリン、3-(ベンジルアミノ)プロピオン酸エチルエステルのような芳香族置換基を有する二級アミン、2-(ヒドロキシメチルアミノ)エタノール、ジエタノールアミン、N-メチルエタノールアミン、4-メチルアミノブタノール、N-エチルエタノールアミン、N-プロピルエタノールアミン、N-イソプロピルエタノールアミン、N-ブチルエタノールアミン等が挙げられる。
 これらの鎖状二級アミン化合物の中でも、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ(2-ブチルアミン)、ジ(t-ブチル)アミン、ジ(2-エチルヘキシル)アミン、ジシクロヘキシルアミン、ジ(2-メチルシクロヘキシル)アミン、ジアリルアミン、メチルエチルアミン、N-メチルイソプロピルアミン、メチルt-ブチルアミン、N-メチルヘキシルアミン、エチルt-ブチルアミン、N-エチルヘキシルアミン、N-エチル-1,2-ジメチルプロピルアミン、N-エチルイソアミルアミン、N-メチルシクロヘキシルアミン、N-エチルシクロヘキシルアミン、N-t-ブチルシクロヘキシルアミン、ジフェニルアミン、ジベンジルアミン、メチルベンジルアミン、エチルベンジルアミン、t-ブチルベンジルアミン、N-メチルアニリン、N-エチルアニリン、2-(ヒドロキシメチルアミノ)エタノール、ジエタノールアミン、N-メチルエタノールアミン、4-メチルアミノブタノール、N-エチルエタノールアミン、N-プロピルエタノールアミン、N-イソプロピルエタノールアミン、N-ブチルエタノールアミンが好ましい。より好ましくは、ジイソプロピルアミン、ジイソブチルアミン、ジ(2-ブチルアミン)、ジ(t-ブチル)アミン、ジシクロヘキシルアミン、N-t-ブチルシクロヘキシルアミンであり、さらに好ましくは、ジイソプロピルアミン、ジイソブチルアミン、ジ(2-ブチルアミン)、ジ(t-ブチル)アミンであり、最も好ましくは、ジイソプロピルアミンである。
 次に、窒素原子を含む環状二級アミン化合物について説明する。窒素原子を含む環状二級アミン化合物としては、式(VIII)において、R、Rが一緒になって5員または6員のシクロアルキル基を形成するか、または窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成するものである。
 窒素原子を含む環状二級アミン化合物の具体例としては、2-アザビシクロ[2.1.1]ヘキサン、7-アザビシクロ[2.2.1]ヘプタンのようなアザビシクロ系化合物、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、3-ピロリジオール、2-ピロリドン、プロリン、4-ヒドロキシプロリン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、3-ピペリジンメタノール、2-ピペリジンエタノール、4-ピペリジンエタノール、4-ピペリジノール、2-ピペリドン、4-ピペリドン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、デカヒドロキノリン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジン、オキサゾリジン、モルホリン、イミダゾリジン、2-イミダゾリドン、ヒダントイン、1-メチルヒダントイン、5-メチルヒダントイン、クレアチニン、パラバン酸、ウラゾール、チアゾリジン、チアルジンのような飽和環状二級アミン、ピロール、2-メチルピロール、2,4-ジメチルピロール、3,4-ジメチルピロール、2-アセチルピロール、2-ピロールカルボン酸、インドール、3H-インドール、3-メチルインドール、2-フェニルインドール、3-ヒドロキシルインドール、3-インドール酢酸、インドリン、2-インドリノン、イサチン、α-シサチンオキシム、イソインドール、イソインドリン、1-イソインドリノン、カルバゾール、1,2,3,4-テトラヒドロキノリン、1,2,3,4-テトラヒドロイソキノリン、9-アクリドン、ピラゾール、3,5-ジメチルピラゾール、イミダゾール、ベンゾイミダゾール、ベンゾイミダゾロン、1H-1,2,3-トリアゾール、1H-1,2,4-トリアゾール、ベンゾトリアゾール、テトラゾール、プリン、キサンチン、フェノキサジン、無水イサト酸、ベンゾチアゾリン、2-ベンゾチアゾロン、フェノチアジン、5,10-ジヒドロフェナジン、β-カルボリン、ペリミジンのような芳香族二級アミン、2-ピロリン、3-ピロリン、ジヒドロピリジン、2-ピラゾリン、5-ピラゾロン、2-イミダゾリン、4H-1,4-オキサジン、4H-1,4-チアジン、2H,6H-1,5,2-ジチアジンのような不飽和結合含有環状二級アミン等が挙げられる。
 これらの窒素原子を含む環状二級アミン化合物の中でも、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、3-ピロリジオール、2-ピロリドン、プロリン、4-ヒドロキシプロリン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、3-ピペリジンメタノール、2-ピペリジンエタノール、4-ピペリジンエタノール、4-ピペリジノール、2-ピペリドン、4-ピペリドン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、デカヒドロキノリン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジン、オキサゾリジン、モルホリン、イミダゾリジン、2-イミダゾリドン、ヒダントイン、1-メチルヒダントイン、5-メチルヒダントイン、クレアチニン、パラバン酸、ウラゾール、チアゾリジン、チアルジンが好ましい。
 これらの中でも、より好ましくは、アジリジン、アゼチジン、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、4-ベンジルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジン、4-ピペリジンカルボン酸メチルエステル、4-ピペリジンカルボン酸エチルエステル、2,2,6,6-テトラメチル-4-ピペリドン、4-ピペリジノピペリジン、ピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-アリルピペラジン、N-イソブチルピペラジン、N-シクロヘキシルピペラジン、N-シクロペンチルピペラジン、N-フェニルピペラジン、1-(2-ピリジル)ピペラジン、1-(4-ピリジル)ピペラジン、1-(2-ピリミジル)ピペラジン、N-メチルホモピペラジン、N-アセチルホモピペラジン、N-ブチリルホモピペラジンであり;さらに好ましくは、ピロリジン、2-メチルピロリジン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、2,4-ジメチルピペリジン、3,5-ジメチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンであり;最も好ましくは、2-メチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンである。
 窒素原子を含む環状二級アミン化合物として、上記に具体例を示したように、飽和環状二級アミン、芳香族二級アミン、不飽和結合含有環状二級アミンが挙げられるが、その中でも飽和環状二級アミンが好ましい。また、飽和環状二級アミンの中でも、窒素原子一個のみを含む二級アミンが好ましく、より好ましくは5員環あるいは6員環であり、更に好ましくは下記式(XI)に示される2,6位の置換基が水素かメチル基で、かつ、その中の少なくとも1つはメチル基であるピペリジン誘導体である。具体的な化合物名としては、上記記載の2-メチルピペリジン、2,6-ジメチルピペリジン、2,2,6,6-テトラメチルピペリジンが該当する。
Figure JPOXMLDOC01-appb-C000028

式(XI)中、R、R、R、Rは、各々独立して水素あるいはメチル基を示し、かつ、そのうち少なくとも1つはメチル基である。
 すなわち、上記式(II)における窒素原子上のアルキル置換基において、窒素原子と隣接する炭素原子の少なくとも1つが2個以上の炭素原子と結合していることが、好ましい。
 製造方法1の第2工程においては、上記に示した鎖状アミン化合物、窒素原子を含む環状アミン化合物を単独で用いることもできるし、2種以上を併用して使用することもできる。第2工程の反応も、第1工程の反応と同様、溶剤の存在の有無に関わらず行うことができる。溶剤を用いる場合、イソシアネート基に対して不活性でかつ加水分解しにくい溶剤を用いるのが好ましい。好ましい溶剤は、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤である。
 製造方法1の第2工程の反応に際しては、第1工程用として上記に記載した触媒も使用することもできるが、使用した場合、反応液が着色する場合があり、使用しないことが望ましい。また、第1工程で触媒を使用した場合には、酸性化合物などで失活させた後、第2工程を実施することが好ましい。
 第2工程の反応も、第1工程と同様、一般に-20~150℃で行うことができるが、好ましくは0~100℃であり、より好ましくは40~80℃である。150℃以下で反応を行うことによって副反応を抑制することができ、また、-20℃以上で反応を行うことによって反応速度を高く維持することができる。
 製造方法1の第2工程の反応後に、第3工程として、残存した有機アミン化合物、及び/又は第1工程で生成したポリイソシアネートとマロン酸ジエステルの反応生成物のエステル基と有機アミン化合物の反応(すなわち第2工程の反応)により解離したアルコール化合物の量を低減させるために、除去精製等を実施してもよい。
 溶剤系塗料として使用した場合の湿気安定性、また、水系塗料として使用した場合の貯蔵安定性(ガス発生量抑制、塗液pH変化抑制)を向上させるため、上記第2工程の反応後に残存した有機アミン化合物(c)は、例えば、減圧下20~80℃加熱することによる除去精製等を実施し、残存量を低減させることが好ましい。有機アミン化合物(c)の残存量としては、ブロックポリイソシアネートのブロックイソシアネート基に対し、100モル%以下が好ましく、より好ましくは50モル%以下、さらに好ましくは30モル%以下、最も好ましくは10モル%以下である。この場合のブロックイソシアネート基のモル数は、式(I)については、前駆体であるポリイソシアネート由来のイソシアネート基を基準としたモル数を示し、式(V)については、前駆体であるポリイソシアネートのうちA及びBの部分構造の源となるイソシアネート基を基準としたモル数を示す。
 また、第1工程で生成したポリイソシアネートとマロン酸ジエステルの反応生成物のエステル基と有機アミン化合物の反応により解離したアルコール化合物についても、溶剤系塗料として使用した場合の湿気安定性、また、水系塗料として使用した場合の貯蔵安定性(ガス発生量抑制、塗液pH変化抑制)を向上させるためには、残存した有機アミン化合物と同様、残存量を低減させることが好ましい。当該アルコール化合物の残存量としては、ブロックポリイソシアネートのブロックイソシアネート基に対し、80モル%以下が好ましく、より好ましくは50モル%以下、さらに好ましくは30モル%以下、最も好ましくは10モル%以下である。
 また、本発明のブロックポリイソシアネート組成物は、上記のいずれかの製造方法で一括製造してもいいし、別々に製造したブロックポリイソシアネート組成物を混合しても構わない。
 本発明のブロックポリイソシアネート組成物に、既存の活性メチレン系、オキシム系、アミン系、ピラゾール系ブロック剤から選ばれる単独あるいは2種以上のブロック剤から誘導されるブロックポリイソシアネートを混合して使用することもできる。
 しかし、既存の活性メチレン系ブロックポリイソシアネートを多く混合した際には、水系塗料組成物とした際の貯蔵安定性が低下する場合がある。また、オキシム系ブロックポリイソシアネート、アミン系ブロックポリイソシアネート、ピラゾール系ブロックポリイソシアネートを多く混合した際には、低温硬化性が低下する場合がある。そのため、式(I)(又は式(V))によるブロックポリイソシアネート以外のブロックポリイソシアネートの混合量は、それらのブロックポリイソシアネートの合計量に対して20質量%以下が好ましく、より好ましくは10重量%以下、さらに好ましくは5質量%以下である。
 既存の活性メチレン系ブロック剤としては、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンが例示される。この中でも、マロン酸ジメチル、マロン酸ジエチルが、低温硬化性に優れるため、好ましい。オキシム系ブロック剤としては、ホルムアルドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムが挙げられる。
 また、アミン系ブロック剤としては、ジフェニルアミン、アニリン、カルバゾール、ジ-n-プロピルアミン、ジイソプロピルアミン、イソプロピルエチルアミンが挙げられる。ピラゾール系ブロック剤としては、ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾールが挙げられる。
 本発明のブロックポリイソシアネート組成物の数平均分子量は、500~5,000であることが好ましい。その下限値は、700であることが更に好ましく、より好ましくは800、最も好ましくは1,000である。また、その上限値は、4,000であることが更に好ましく、より好ましくは3,000であり、最も好ましくは2,000である。数平均分子量が500以上であれば、1分子あたりのブロックイソシアネート基の官能基数2.0以上を確保することが可能となり、また、数平均分子量が5,000以下であれば、高粘度化を抑制することができる。
 本発明のブロックポリイソシアネート組成物の粘度は、溶剤等で希釈された、樹脂固形分60質量%の状態で、100~1,000mPa・s/25℃である。粘度が100mPa・s以上であれば、1分子あたりのブロックイソシアネート基の官能基数2.0以上を確保することが可能となり、1,000mPa・s以下であれば、塗料への配合が容易になる。
 溶剤系塗料として使用した場合の湿気安定性、また、水系塗料として使用した場合の貯蔵安定性(ガス発生量抑制、塗液pH変化抑制)を向上させるため、ブロックポリイソシアネート組成物のブロックイソシアネート基に対し、酸解離定数(PKa)が7.0~8.5である塩基性化合物(e)を10モル%以上混合することが好ましい。ここでの酸解離定数(PKa)は、電位差滴定法により20℃で測定される値である。ある特有の活性メチレンブロックポリイソシアネート組成物のブロックイソシアネート基に対し、酸解離定数(PKa)7.0~8.5の塩基性化合物(e)を10モル%以上混合させたブロックポリイソシアネート組成物が、低温硬化性を保持しつつ、水系塗料組成物としての貯蔵安定性を大きく改善し、かつ、貯蔵後の硬化性保持率も高いという結果は、驚くべき結果であった。
 PKa7.0~8.5の塩基性化合物(e)の具体例としては、モルホリン(PKa:8.4)、N-アリルモルホリン(PKa:7.1)、N-メチルモルホリン(PKa:7.4)、N-エチルモルホリン(PKa:7.7)等のモルホリン誘導体、トリアリルアミン(PKa:8.3)、トリエタノールアミン(PKa:7.8)、2-メチルイミダゾール(PKa:7.8)、フタルアミド(PKa:8.3)等が挙げられる。その中でも、N-アリルモルホリン、N-メチルモルホリン、N-エチルモルホリン、トリエタノールアミン、2-メチルイミダゾールがより好ましく、N-メチルモルホリン、N-エチルモルホリンがさらに好ましい。
 本発明のブロックポリイソシアネート組成物に使用される塩基性化合物(e)のPKaの上限値は、更に好ましくは8.3であり、より好ましくは8.0である。塩基性化合物のPKaが7.0以上であれば、貯蔵安定性が改良されるため好ましく、8.5以下であれば、水系塗料配合時のpHが高くなりすぎないため好ましい。
 塩基性化合物(e)の混合量は、ブロックポリイソシアネート組成物のブロックイソシアネート基に対し、10モル%以上であることが好ましい。塩基性化合物の混合量の下限値は、より好ましくは20モル%、さらに好ましくは30モル%である。その上限値としては、好ましくは500モル%、より好ましくは400モル%、さらに好ましくは300モル%である。この場合のブロックイソシアネート基のモル数は、式(I)については、前駆体であるポリイソシアネート由来のイソシアネート基を基準としたモル数を示し、式(V)については、前駆体であるポリイソシアネートのうちA及びBの部分構造の源となるイソシアネート基を基準としたモル数を示す。
 また、PKaが8.5を超える塩基性化合物(e2)を一部混合しても構わない。混合量としては、ブロックポリイソシアネート組成物のブロックイソシアネート基に対し、100モル%以下が好ましく、より好ましくは50モル%以下、さらに好ましくは30モル%以下、最も好ましくは10モル%以下である。
 本発明のブロックポリイソシアネート組成物中に存在するPKa7.0~8.5の塩基性化合物(e)は、第1工程、第2工程が終了した後に、添加することが好ましく、第1工程、第2工程、第3工程が終了した後に添加することがより好ましい。
 本発明において、式(I)(又は式(V))の構造を有するブロックポリイソシアネートを含む組成物を塗料組成物として用いることによって、低温硬化性を保持しつつ、湿気安定性、貯蔵後硬化性を格段に向上させることが可能となる。上記の特許文献3には、(α)ジイソプロピルアミン、(β)活性メチレン化合物、及び(γ)オキシムをブロック剤とする共ブロックポリイソシアネート組成物(ポリイソシアネート組成物のイソシアネート基のモル当量に対し、α+β+γ=100モル%となる)が記載されている。しかし、本発明の組成物に含まれるブロックポリイソシアネートは、式(I)中にAの構造を有しているという点で大きく異なる。
 本発明のブロックポリイソシアネート組成物は、ポリオール、ポリアミン及びアルカノールアミンの少なくとも1種と配合することにより塗料組成物を形成する。さらに、ポリオールと配合した際の貯蔵安定性を向上するために、本発明におけるブロックポリイソシアネート組成物は、1価アルコール系化合物を含んでもよい。該1価アルコール系化合物としては、脂肪族、脂環族、芳香族などがあり、脂肪族が好ましい。脂肪族の1価アルコール系化合物としては、炭素数1~20が好ましく、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、t-ブタノール、2-エチル-1-プロパノール、n-アミルアルコール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール等の飽和アルコール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、3,6-ジオキサ-1-ヘプタノール等のエーテルアルコール等がある。その添加量は、組成物に含まれるブロックイソシアネート基に対して0.2~10倍モル量が好ましい。
 更に水系塗料で使用される場合、水系塗料における配合性の向上の目的に応じて、本発明におけるブロックポリイソシアネート組成物に対して、界面活性剤、水に対し混和性の傾向を示す溶剤等を使用してもよい。界面活性剤の具体的としては、脂肪族セッケン、ロジン酸セッケン、アルキルスルホン酸塩、ジアルキルアリールスルホン酸塩、アルキルスルホコハク酸塩、ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルアリール硫酸塩などのアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンオキシプロピレンブロックコポリマーなどのノニオン性界面活性剤が挙げられる。水に対し混和性の傾向を示す溶剤としては、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、イソブタノール、ブチルグリコール、N-メチルピロリドン、ブチルジグリコールまたはブチルジグリコールアセテート等が挙げられる。
 これらの溶剤の中でも、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、イソブタノール、ブチルグリコール、N-メチルピロリドン、ブチルジグリコールが好ましく、より好ましくは、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテルが好ましい。これらの溶剤は、単独で用いてもよく、2種以上を併用してもよい。また、酢酸エチル、酢酸-n-ブチル、酢酸セロソルブ等のエステル類は、溶剤自体が貯蔵中に加水分解する場合があり、好ましくない。
 このように調製されたブロックポリイソシアネート組成物は、ポリオール、ポリアミン及びアルカノールアミンの少なくとも1種と共に塗料組成物の主要構成成分となる。その中でも、ポリオールを含むことが好ましい。このポリオールの例としては、ポリエステルポリオール、アクリルポリオール、ポリエーテルポリオール、ポリオレフィンポリオール、フッ素ポリオール、ポリカーボネートポリオール、ポリウレタンポリオールなどが挙げられる。
 ポリエステルポリオールとしては、例えばコハク酸、アジピン酸、セバシン酸、ダイマー酸、無水マレイン酸、無水フタル酸、イソフタル酸、テレフタル酸等のカルボン酸の群から選ばれた二塩基酸の単独または混合物と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、グリセリンなどの群から選ばれた多価アルコールの単独または混合物との縮合反応によって得られるポリエステルポリオール、及び、例えば多価アルコールを用いたε-カプロラクトンの開環重合により得られるポリカプロラクトン類等が挙げられる。
 アクリルポリオールは、ヒドロキシル基を有するエチレン性不飽和結合含有単量体の単独または混合物と、これと共重合可能な他のエチレン性不飽和結合含有単量体の単独または混合物とを共重合させることにより得られる。
 ヒドロキシル基を有するエチレン性不飽和結合含有単量体としては、例えば、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル等が挙げられる。好ましくは、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルである。
 上記単量体と共重合可能な他のエチレン性不飽和結合含有単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ベンジル、アクリル酸フェニルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ベンジル、メタクリル酸フェニル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、メタクリルアミド、N,N-メチレンビスアクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、マレイン酸アミド、マレイミド等の不飽和アミド、及びメタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル等のビニル系単量体、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等の加水分解性シリル基を有するビニル系単量体等が挙げられる。
 ポリエーテルポリオール類としては、多価ヒドロキシ化合物の単独または混合物に、例えばリチウム、ナトリウム、カリウムなどの水酸化物、アルコラート、アルキルアミンなどの強塩基性触媒を使用して、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、シクロヘキセンオキサイド、スチレンオキサイドなどのアルキレンオキサイドの単独または混合物を付加して得られるポリエーテルポリオール類、エチレンジアミン類等の多官能化合物にアルキレンオキサイドを反応させて得られるポリエーテルポリオール類、及び、これらポリエーテル類を媒体としてアクリルアミド等を重合して得られるいわゆるポリマーポリオール類等が含まれる。
 前記多価ヒドロキシ化合物としては、
 (1)ジグリセリン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなど、
 (2)エリスリトール、D-トレイトール、L-アラビニトール、リビトール、キシリトール、ソルビトール、マンニトール、ガラクチトール、ラムニトール等糖アルコール系化合物、
 (3)アラビノース、リボース、キシロース、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、ラムノース、フコース、リボデソース等の単糖類、
 (4)トレハロース、ショ糖、マルトース、セロビオース、ゲンチオビオース、ラクトース、メリビオースなどの二糖類、
 (5)ラフィノース、ゲンチアノース、メレチトースなどの三糖類、
 (6)スタキオースなどの四糖類等が挙げられる。
 ポリオレフィンポリオールとしては、例えば、水酸基を2個以上有するポリブタジエン、水素添加ポリブタジエン、ポリイソプレン、水素添加ポリイソプレンなどが挙げられる。ポリオールの統計的1分子が持つ水酸基数(以下、水酸基平均数)は2以上であることが好ましい。ポリオールの水酸基平均数が2以上であることによって、得られた塗膜の架橋密度の低下を抑制することができる。
 フッ素ポリオールは分子内にフッ素を含むポリオールであり、例えば特開昭57-34107号公報、特開昭61-275311号公報で開示されているフルオロオレフィン、シクロビニルエーテル、ヒドロキシアルキルビニルエーテル、モノカルボン酸ビニルエステル等の共重合体がある。
 ポリカーボネートポリオール類としては、ジメチルカーボネート等のジアルキルカーボネート、エチレンカーボネート等のアルキレンカーボネート、ジフェニルカーボネート等のジアリールカーボネート等の低分子カーボネート化合物と、前述のポリエステルポリオールに用いられる低分子ポリオールとを、縮重合して得られるものが挙げられる。
 ポリウレタンポリオールは、常法により、例えば、ポリオールとポリイソシアネートとを反応させることにより得ることができる。カルボキシル基を含有しないポリオールとしては、低分子量のものとして、エチレングリコール、プロピレングリコール等が例示され、高分子量のものとして、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール等が例示される。
 前記ポリオールの樹脂あたりの水酸基価は10~300mgKOH/樹脂gであることが好ましい。樹脂あたりの水酸基価が10mgKOH/樹脂g以上であることによって、架橋密度が減少することを防止し、本発明の目的とする物性を十分に達成することができる。一方、樹脂あたりの水酸基価が300mgKOH/樹脂g以下であることによって、架橋密度が過度に増大することを抑制し、塗膜の機械的物性を高度に維持することができる。
 また、前記ポリオールの樹脂あたりの酸価は、好ましくは5~150mgKOH/樹脂g、より好ましくは8~120mgKOH/樹脂g、更に好ましくは、10~100mgKOH/樹脂gである。酸価が5mgKOH/樹脂g以上であることにより、水分散性を高く保ち、150mgKOH/樹脂g以下であることにより、塗膜の耐水性の低下を防止することができる。
 上で列挙したポリオールの中でも、アクリルポリオール、ポリエステルポリオールが好ましい。ポリオールを用いる場合の塗料組成物において、ブロックイソシアネート基とポリオールの水酸基の当量比は、通常10:1~1:10に設定される。
 ここでのポリアミンとしては、1級アミノ基あるいは2級アミノ基を1分子中に2個以上有するものが用いられ、その中でも、1分子中に3個以上有するものが好ましい。
 ポリアミンの具体例としては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジシクロヘキシルメタン、ピペラジン、2-メチルピペラジン、イソホロンジアミン等のジアミン類、ビスヘキサメチレントリアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタメチレンヘキサミン、テトラプロピレンペンタミン等の3個以上のアミノ基を有する鎖状ポリアミン類、1,4,7,10,13,16-ヘキサアザシクロオクタデカン、1,4,7,10-テトラアザシクロデカン、1,4,8,12-テトラアザシクロペンタデカン、1,4,8,11-テトラアザシクロテトラデカン等の環状ポリアミン類が挙げられる。
 また、ここでのアルカノールアミンとは、1分子中に、アミノ基と水酸基を有する化合物を意味する。例えば、モノエタノールアミン、ジエタノールアミン、アミノエチルエタノールアミン、N-(2-ヒドロキシプロピル)エチレンジアミン、モノ-、ジ-(n-またはイソ-)プロパノールアミン、エチレングリコールービスープロピルアミン、ネオペンタノールアミン、メチルエタノールアミン等が挙げられる。
 本発明のブロックポリイソシアネート組成物とポリオールを水系塗料組成物に使用する場合、ブロックポリイソシアネート組成物とポリオールの配合方法は、ポリオールにブロックポリイソシアネート組成物をそのまま混合・分散させてもいいし、一旦ブロックポリイソシアネート組成物を水と配合させた後、ポリオールと混合させてもよい。
 式(V)で表されるブロックポリイソシアネート組成物を含む水系塗料組成物のpHは、7.0~9.0であることが好ましい。その下限としては、より好ましくは7.5であり、さらに好ましくは8.0であり、その上限としては、より好ましくは8.8であり、さらに好ましくは8.6である。水系塗料組成物のpHが7.0~9.0であることによって、配合されているアルミ等の顔料、レオロジーコントロール剤等の添加剤の安定性を保つことができるため、好ましい。
 また、上記のPKa7.0~8.5の塩基性化合物(e)は、水系塗料配合時に添加しても構わない。その場合、pKaが8.5を超える塩基性化合物(e2)と併用しても構わない。該弱塩基性化合物(e)と該塩基性化合物(e2)との和(全塩基性組成物)に対する弱塩基性化合物(e)の構成比は、20モル%以上であることが好ましい。
 弱塩基性化合物(e)の構成比の下限値は、30モル%が好ましく、より好ましくは40モル%、さらに好ましくは50モル%である。本発明においては、弱塩基性化合物(e)が全塩基性組成物中20モル%以上添加されることで、塗料中の各成分に存在する全酸性分の中和塩を形成するよりも過剰に存在した場合にも、調整した塗料組成物のpHが高くなりすぎないため、好適である。中和の対象となる酸性基としては、カルボニル基、スルホニル基等が例示されるが、その中でもカルボニル基が好ましい。また、カルボキシル基を有するポリオールの場合のカルボキシル基については、ポリオール製造時の仕込みの酸成分を基準として、全塩基性組成物の添加量を決定することができる。
 全塩基性組成物の添加量は、その塩基性基が、塗料中の各成分に存在する全酸性分100モル%に対し、30モル%以上であることが好ましい。下限値としては、さらに好ましくは50モル%であり、より好ましくは70モル%、最も好ましくは100モル%以上である。また、上限値としては、好ましくは500モル%であり、より好ましくは400モル%、さらに好ましくは300モル%である。
 本発明のブロックポリイソシアネート組成物を含む塗料組成物に、既存のメラミン樹脂、エポキシ樹脂、ポリウレタン樹脂を配合することができる。また、前述したポリオールがカルボキシル基を有する場合には、オキサゾリン基含有化合物、カルボジイミド基含有化合物を配合することができる。また、前述したポリオールがカルボニル基を有する場合には、ヒドラジド基含有化合物、セミカルバジド基含有化合物を配合することができる。これらの化合物は単独で配合するだけでなく、2種以上の化合物を配合することもできる。
 メラミン樹脂としては、例えばメラミンとアルデヒドとの反応によって得られる部分もしくは完全メチロール化メラミン樹脂が挙げられる。上記アルデヒドとしは、例えば、ホルムアルデヒド、パラホルムアルデヒドなどが挙げられる。また、このメチロール化メラミン樹脂のメチロール基をアルコールによって部分的にもしくは完全にエーテル化したものも使用することができる。エーテル化に用いられるアルコールの例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、2-エチルブタノール、2-エチルヘキサノールなどが挙げられる。
 該メラミン樹脂の具体例としては、日本サイテックインダストリーズ社製のサイメル303、サイメル323、サイメル325、サイメル327、サイメル350、サイメル370、サイメル380、サイメル385、サイメル212、サイメル251、サイメル254、マイコート776(以上いずれも商品名)などを挙げることができる。
 メラミン系硬化剤を併用する場合は、硬化させる際の触媒として、酸性化合物の添加が有効である。酸性化合物の具体例としては、カルボン酸、スルホン酸、酸性リン酸エステル、亜リン酸エステルが挙げられる。
 カルボン酸としては、酢酸、乳酸、コハク酸、シュウ酸、マレイン酸、デカンジカルボン酸が代表例として挙げられる。スルホン酸としては、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンジスルホン酸が代表例として挙げられる。また、酸性リン酸エステルとしては、ジメチルホスフェート、ジエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジラウリルホスフェート、モノメチルホスフェート、モノエチルホスフェート、モノブチルホスフェート、モノオクチルホスフェートが代表例として挙げられる。亜リン酸エステルとしては、ジエチルホスファイト、ジブチルホスファイト、ジオクチルホスファイト、ジラウリルフホスファイト、モノエチルホスファイト、モノブチルホスファイト、モノオクチルホスファイト、モノラウリルホスファイトが代表例として挙げられる。
 エポキシ樹脂としては、1分子にエポキシ基を2個以上有する樹脂であれば特に制限はなく、それ自体既知のものを使用することができる。エポキシ樹脂として、例えば、ビスフェノールにエポクロルヒドリンを付加させて得られるビスフェノール型エポキシ樹脂、フェノールノボラック樹脂にエピクロルヒドリンを付加させて得られるノボラック型エポキシ樹脂、ポリエチレングリコールジグリシジルエーテルなどが挙げられる。該エポキシ樹脂は、必要に応じて水分散化して使用することができる。
 ポリウレタン樹脂としては、塗料に一般的に用いられているものなら限定されないが、イソシアネート基とポリオールを反応させて鎖延長されたポリウレタン樹脂が好ましい。該ポリウレタン樹脂は、ポリオールの一部にカルボキシル基含有ポリオールを使用して得られたカルボキシル基を有するものや、末端に水酸基を有するものも含まれる。カルボキシル基を有するポリウレタン樹脂は、塩基性物質を用いて中和するものが好ましい。市販品としては、スーパーフレックスシリーズ110、150、460S(第一工業製薬社製、商品名)、ネオレッツR9649、R966(アビシア社製、商品名)などを挙げることができる。
 オキサゾリン基含有化合物としては、オキサゾリン基を側鎖に少なくとも2個有する重合体状の化合物、1分子中にオキサゾリン基を少なくとも2個有する単量体の化合物などが挙げられる。
 カルボジイミド基含有化合物としては、例えば、ポリイソシアネート化合物のイソシアネート基同士を脱二酸化炭素反応せしめることにより得ることができる。カルボジイミド基含有化合物の市販品としては、例えば、カルボジライトV-02、カルボジライトV-02-L2、カルボジライトV-04、カルボジライトE-01、カルボジライトE-02(いずれも日清紡社製、商品名)などを挙げることができる。
 ヒドラジド基含有化合物としては、-CO-NH-NHで示されるヒドラジド基を1分子中に少なくとも2個、好ましくは2~10個有する化合物が包含される。ヒドラジド基含有化合物として、例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、グルタル酸ジヒドラジド、こはく酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジドなどの2~18個の炭素原子を有する飽和ジカルボン酸ジヒドラジド;マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジドなどのモノオレフィン性不飽和ジカルボン酸ジヒドラジド;カルボン酸低級アルキルエステル基を有する低重合体をヒドラジンまたはヒドラジン水和物と反応させることにより得られるポリヒドラジドなどが挙げられる。
 セミカルバジド基含有化合物としては、-NH-CO-NH-NHで示されるセミカルバジド基を1分子中に少なくとも2個、好ましくは2~10個有する化合物が包含される。セミカルバジド基含有化合物として、例えば、ビスセミカルバジド;ヘキサメチレンジイソシアネートやイソホロンジイソシアネートなどのジイソシアネート又はそれから誘導されるポリイソシアネート化合物にN,N-ジメチルヒドラジンなどのN,N-置換ヒドラジンや上記例示のヒドラジンを反応させて得られる多官能セミカルバジドなどが挙げられる。
 本発明の塗料組成物は、必要に応じて、酸化防止剤例えばヒンダードフェノール等、紫外線吸収剤例えばベンゾトリアゾール、ベンゾフェノン等、顔料例えば、酸化チタン、カーボンブラック、インジゴ、キナクリドン、パールマイカ等、金属粉顔料例えばアルミ等、レオロジーコントロール剤例えばヒドロキシエチルセルロース、尿素化合物、マイクロゲル等、硬化促進剤例えば、錫化合物、亜鉛化合物、アミン化合物等を含んでもよい。
 この様に調製された塗料組成物は、ロール塗装、カーテンフロー塗装、スプレー塗装、静電塗装、ベル塗装などにより、鋼板、表面処理鋼板などの金属及びプラスチック、無機材料などの素材に、プライマーまたは中塗り、上塗りとして好適に使用される。
 又、この塗料組成物は、更に防錆鋼板を含むプレコートメタル、自動車塗装、プラスチック塗装などに、美粧性、耐候性、耐酸性、防錆性、耐チッピング性、密着性などを付与するために好適に用いられる。また、当該塗料組成物は、接着剤、粘着剤、エラストマー、フォーム、表面処理剤などのウレタン原料としても有用である。
 本発明の塗料組成物は、ロール塗装、カーテンフロー塗装、スプレー塗装、静電塗装、ベル塗装などにより塗装後、焼付け工程を経て、塗膜を形成する。この塗料組成物は、焼付け工程を経て、架橋塗膜が形成されていることが好ましい。塗料組成物の硬化後の架橋塗膜は、ブロック化反応前のポリイソアネート由来のウレタン結合だけでなく、ブロックイソシアネート基由来のアミド結合、エステル結合等の極性基を有することが特徴である。そのため、本発明の塗料組成物から形成された架橋塗膜は、一般的なウレタン架橋塗膜の特徴である耐薬品性、耐熱性、耐水性等に加え、積層塗装あるいはリコートを行う場合に、層間での水素結合等が可能となり、層間の密着性に優れる点が挙げられる。焼付け工程後、架橋構造が完全に形成されていない塗膜においても、上記の極性基を有するため、積層塗装あるいはリコート時に、密着性に優れる点は架橋塗膜と同様に優れている。
 また、自動車の新車ラインの塗装のように、数層の塗液をウェットオンウェットで積層する場合、本発明の塗料組成物中あるいは硬化後の架橋塗膜中に有機アミン化合物が存在するため、下層あるいは上層の架橋反応の触媒として働く可能性もある。
 以下に、実施例に基づいて本発明を更に詳細に説明する。まず、各種物性の測定・評価方法について説明する。
<測定方法>
(数平均分子量の測定)
 ポリイソシアネートの数平均分子量は、下記の装置を用いたゲルパーミエーションクロマトグラフ(以下GPCという)測定によるポリスチレン基準の数平均分子量である。
 装置:東ソー(株)HLC-8120GPC(商品名)
 カラム:東ソー(株)TSKgel SuperH1000(商品名)×1本
           TSKgel SuperH2000(商品名)×1本
           TSKgel SuperH3000(商品名)×1本
 キャリアー:テトラハイドロフラン
 検出方法:示差屈折計
 また、ポリオールの数平均分子量は、下記のGPC測定によるポリスチレン基準の数平均分子量である。
 装置:東ソー(株)HLC-8120GPC(商品名)
 カラム:東ソー(株)TSKgel SuperHM-H(商品名)×2本
 キャリアー:N,N-ジメチルホルムアミド
 検出方法:示差屈折計
(粘度の測定)
 E型粘度計(トキメック社製VISCONIC ED型(商品名))を用いて、25℃で測定した。
(有効NCO基質量%の算出(置換基Cを含有しない場合))
 ここでの有効NCO基質量%とは、ブロック化反応後のブロックポリイソシアネート組成物中に存在する架橋反応に関与しうるブロックイソシアネート基量を定量化するものであって、イソシアネート基の質量%として表し、以下の式により算出される。
 {(ブロックポリイソシアネート組成物の固形分(質量%))×(反応に使用したポリイソシアネート質量×前駆体のポリイソシアネートのイソシアネート基含有量%)}/(ブロック化反応後のブロックポリイソシアネート組成物の樹脂質量)
 なお、溶剤等で希釈されている場合は、希釈された状態での値を記載する。
(有効NCO基質量%の算出(置換基Cを含有する場合))
 ここでの有効NCO基質量%とは、ブロック化反応後のブロックポリイソシアネート組成物中に存在する架橋反応に関与しうるブロックイソシアネート基量を定量化するものであって、式(V)におけるA及びB由来のイソシアネート基の質量%として表し、以下の式により算出される。
 {(ブロックポリイソシアネート組成物の固形分(質量%))×(反応に使用したポリイソシアネート質量×前駆体のポリイソシアネートのうちA及びBの部分構造の源となるイソシアネート基含有量%)}/(ブロック化反応後のブロックポリイソシアネート組成物の樹脂質量)
 なお、溶剤等で希釈されている場合は、希釈された状態での値を記載する。
(ブロックポリイソシアネートのx、y比(置換基Cを包含しない場合))
 製造方法1における第1工程反応後のイソシアネート基残存モル%(p)、第2工程反応後の有機アミン化合物の反応モル%(q)、第2工程における有機アミン化合物のイソシアネート基に対する添加モル%(r)とした時、以下の式から算出した。
 p≠0の場合、有機アミン化合物は、残存するイソシアネート基と優先して反応するため、有機アミン化合物の反応分からその量も考慮する必要がある。そのため、x={(q×r)-p}、x/y={(q×r)-p}/(100-x)として算出した。第1工程終了後のイソシアネート基残存モル%は反応液の赤外スペクトル測定より定量し、有機アミン化合物の反応率は、第2工程終了後に減少した有機アミン化合物の量をガスクロマトグラフ測定で定量することによって算出した。
 装置:島津製作所製GC-14A(商品名)
 カラム:島津ジーエルシー製DB-1(商品名)
 なお、式(IX)に示される置換基を有するブロックポリイソシアネートは、第2工程の有機アミン2モル等量がマロン酸ジエステル部分1モル当量と反応することで生成しうる。しかし、モデル化合物での実験結果(イソシアネート成分として、n-ヘキシルイソシアネートを使用)から第2工程で有機アミンとして、2級アミンを使用した場合、おそらく立体障害から、ブロックポリイソシアネート全体の1質量%以下しか生成しないことがわかった。そこで、x/y比の算出には、式(IX)の置換基を有するブロックポリイソシアネートの生成は無視した。
 また、第1工程で残存するマロン酸ジエステルと第2工程で添加する有機アミン化合物が反応しうる。しかし、上記のモデル実験例のガスクロマトグラフ測定により、マロン酸モノエステルモノアミド、マロン酸ジアミドの合計量が1質量%以下であることから、有機アミンとして2級アミンを使用した場合のx/yの算出には、この反応による有機アミンの減少は無視した。
(ブロックポリイソシアネートのx、y、zの比(置換基Cを包含する場合))
・zの組成比
 活性水素含有親水性化合物の反応前後で、赤外スベクトル測定により、イソシアネート基の残存モル%を測定することにより算出した。
・x、yの組成比
 p≠0の場合、有機アミン化合物は、残存するイソシアネート基と優先して反応するため、有機アミン化合物の反応分からその量も考慮する必要がある。そのため、x={(q×r)-p}、y=(100-(x+z))として算出した(p、q、rの定義は上述のとおり)。マロン酸ジエステル反応後のイソシアネート基残存モル%は反応液の赤外スペクトル測定より定量し、有機アミン化合物の反応率は、第2工程終了後に減少した有機アミン化合物の量をガスクロマトグラフ測定で定量することによって算出した。
 装置:島津製作所製GC-14A(商品名)
 カラム:島津ジーエルシー製DB-1(商品名)
 なお、式(IX)の置換基を有するブロックポリイソシアネート、マロン酸モノエステルモノアミド、マロン酸ジアミドは、上記と同様の理由により、無視した。
(ブロックポリイソシアネートの構造特定:NMR測定)
 以下の装置を用いたH-NMR測定から、ブロックポリイソシアネートの構造特定を実施した。ケミカルシフト基準:テトラメチルシランを0ppmとした。
 第1工程生成物であるイソシアネート基とマロン酸ジエステルとの反応物のケト体のメチンプロトンは、4.3ppm付近に、そのエノール体のプロトンは16.5ppm付近に観測された。また、第2工程後の生成物である式(II)の置換基Aのケト体のメチンプロトンは、4.5ppm付近に、そのエノール体のプロトンが19.2ppm付近に観測された。これらのピークの積分値から、第2工程の反応比、ケト体とエノール体の存在比を確認した。
 装置:日本電子製ECS-400(商品名)
 溶剤:重クロロホルム
 積算回数:128回
 試料濃度:5質量%
 ケミカルシフト基準:テトラメチルシランを0ppmとした。
(初期ゲル分率)
 作成した塗料溶液を乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、硬化塗膜を得た。その硬化塗膜を焼付け後、20℃で1時間放置し、アセトン中に20℃、24時間浸漬後、未溶解部質量の浸漬前質量に対する値を計算した。ゲル分率が85%以上の場合を◎、80%以上85%未満の場合を○、70%以上80%未満の場合を○△、60%以上70%未満を△、50%以上60%未満の場合を×、50%未満の場合を××とした。
(貯蔵後ゲル分率保持率)
 作成した塗料溶液を40℃、10日間貯蔵し、その後、乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、硬化塗膜を得た。その硬化塗膜を焼付け後、20℃で1時間放置し、アセトン中に20℃、24時間浸漬後、未溶解部質量の浸漬前質量に対する値(貯蔵後ゲル分率)を計算した。貯蔵後ゲル分率が、貯蔵後ゲル分率/初期ゲル分率=0.90以上の場合を◎、0.85以上0.90未満の場合を○、0.80以上0.85未満の場合を△、0.75以上0.80未満の場合を×、0.75未満の場合を××とした。
(湿気安定性試験)
 ブロックポリイソシアネート組成物を有効NCO基として30mmol分取り、そこに、水5.4g(300mmolに相当)を添加し、その後、全体の溶液の質量が200gとなるようにジエチレングリコールジメチルエーテルを添加し、攪拌し、試験溶液を得た。その溶液を内量300ccの三角フラスコに移し、そこに、シリコンゴム栓で固定したメスピペットの先を液面に浸漬させた状態で固定し、40℃のウォーターバスに入れて、メスピペットの液面の高さにより、ガス発生量を測定した。40℃、10日間貯蔵し、その期間に発生したガス(炭酸ガス)の量が4cc未満の場合を◎◎、4cc以上8cc未満の場合を◎、8cc以上16cc未満の場合を○、16cc以上24cc未満の場合を△、24cc以上32cc未満の場合を×、32cc以上の場合を××とした。
(塗液の外観)
 各成分を添加した塗液を2時間室温で放置し、放置後の状態を肉眼で観察した。乳化、分散あるいは溶解状態の場合を○、一部、分散の状態が変化し、塗液の白化が進行したものを△、分離や沈降等の異常があった場合は×とした。
(塗液配合時のpH設定)
 塗液(水系塗料組成物)の配合時に、ジメチルエタノールアミンで塗液のpHを8.5に調整できるものを○、そのように調整できないものを×、さらにジメチルエタノールアミンを無添加の場合にも、得られた塗液のpHが9.0を超える場合を×にした。
(貯蔵前後の塗液pH変化)
 初期塗液調製時の塗液pHを8.5に調整した。40℃、10日間貯蔵後の塗液pHの初期との差が0.2以内の場合を◎◎、0.2を超えて0.4以内の場合を◎、0.4を超えて0.6以内の場合を○、0.6を超えて0.9以内の場合を△、0.9を超えて1.2以内の場合を×、1.2を超える場合を××とした。
(貯蔵中ガス発生試験)
 ブロックポリイソシアネート組成物を有効NCO基として30mmol分取り、そこに、全体の溶液の質量が200gとなるように水を添加し、試験溶液を得た。その溶液を内量300ccの三角フラスコに移し、そこに、シリコンゴム詮で固定したメスピペットの先を液面に浸漬させた状態で固定し、40℃のウォーターバスに入れて、メスピペットの液面の高さにより、ガス発生量を測定した。40℃、10日間貯蔵し、その期間に発生したガス(炭酸ガス)の量が4cc未満の場合を◎◎、4cc以上8cc未満の場合を◎、8cc以上16cc未満の場合を○、16cc以上24cc未満の場合を△、24cc以上32cc未満の場合を×、32cc以上の場合を××とした。
(製造例1)(HDI系イソシアヌレート型ポリイソシアネートの製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管を取り付けた4つ口フラスコの内部を窒素置換し、HDI:1000gを仕込み、60℃で攪拌下、触媒としてトリメチルベンジルアンモニウム・ハイドロオキサイド0.1gを加えた。4時間後、反応液の転化率が38%になった時点でリン酸0.2gを添加して反応を停止した。その後、反応液を濾過した後、未反応のHDIモノマーは薄膜蒸留により除去した。
 得られたポリイソシアネートの25℃における粘度は2,700mPa・s、イソシアネート基含有量は22.2質量%、数平均分子量は650、イソシアネート基平均数は3.4であった。その後、NMR測定により、イソシアヌレート結合の存在を確認した。
(製造例2)(HDI系ウレタン結合、アロファネート結合含有イソシアヌレート型ポリイソシアネートの製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI:1000質量部、3価アルコールであるトリメチロールプロパン(分子量134)22質量部を仕込み、攪拌下反応器内温度を90℃1時間保持しウレタン化を行った。その後反応液温度を60℃に保持し、イソシアヌレート化触媒トリメチルベンジルアンモニウム・ハイドロオキサイドを加え、転化率が48%になった時点で燐酸を添加し反応を停止した。その後、反応液を濾過した後、未反応のHDIを薄膜蒸留装置により除去した。
 得られたポリイソシアネートの25℃における粘度は25,000mPa・s、イソシアネート基含有量は19.9質量%、数平均分子量は1080、イソシアネート基平均数は5.1であった。その後、NMR測定により、ウレタン結合、アロファネート結合、イソシアヌレート結合の存在を確認した。
(製造例3)(HDI、IPDI系ウレタン結合、アロファネート結合含有イソシアヌレート型ポリイソシアネートの製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管を取り付けた4ツ口フラスコ内を窒素雰囲気にし、HDI:700質量部、IPDI:300質量部、3価アルコールであるポリカプロラクトン系ポリエステルポリオール「プラクセル303」(ダイセル化学の商品名:分子量300)30質量部を仕込み、攪拌下反応器内温度を90℃1時間保持しウレタン化を行った。その後反応液温度を60℃に保持し、イソシアヌレート化触媒トリメチルベンジルアンモニウム・ハイドロオキサイドを加え、転化率が42%になった時点で燐酸を添加し反応を停止した。その後、反応液を濾過した後、未反応のHDI、IPDIを薄膜蒸留装置により除去した。
 得られたポリイソシアネートの25℃における粘度は60,000mPa・s、イソシアネート基含有量は18.9質量%、数平均分子量は900、イソシアネート基平均数は4.1であった。その後、NMR測定により、ウレタン結合、アロファネート結合、イソシアヌレート結合の存在を確認した。
(実施例1)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、酢酸n-ブチル92.4質量部、マロン酸ジエチル88.9質量部(ポリイソシアネートにおけるイソシアネート基の105モル%に相当)を仕込み、60℃に保持した。その後、28%ナトリウムメチラート0.77質量部を添加し、4時間保持した。赤外スペクトルを測定した結果、イソシアネート基の消失を確認し、2-エチルヘキシルアシッドホスフェート0.76質量部を添加した。
 引き続き、ジイソプロピルアミン53.5質量部(ポリイソシアネートにおけるイソシアネート基の100モル%に相当)を添加し、反応液温度70℃で5時間保持した。この反応液をガスクロマトグラフで分析し、ジシソプロピルアミンの反応率が70%であることを確認した。その後、n-ブタノールを19.6部添加し、固形分濃度60質量%のブロックポリイソシアネート組成物が得られた。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
 別途、上記ブロックポリイソシアネート組成物をナスフラスコに移し、エバポレーターを用いて、60℃、10hPaの減圧度で、60分間減圧留去を行い、大部分の溶剤を取り除いた後、NMR測定を行った。その結果、式(I)におけるx/y=2.4であった。また、A成分のケト体/エノール体組成比は、99/1であった。
(実施例8)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例2で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、プロピレングリコールモノメチルエーテルアセテート92.7質量部、マロン酸ジエチル60.7質量部(ポリイソシアネート組成物におけるイソシアネート基の80モル%に相当)を仕込み、60℃に保持した。その後、28%ナトリウムメチラート0.68質量部を添加し、4時間保持した。赤外スペクトルを測定した結果、イソシアネート基の残存率が22%であることを確認し、2-エチルヘキシルアシッドホスフェート0.66質量部を添加した。
 引き続き、ジイソプロピルアミン47.9質量部(ポリイソシアネートにおけるイソシアネート基の100モル%に相当)を添加し、反応液温度70℃で5時間保持した。この反応液をガスクロマトグラフィーで分析し、ジシソプロピルアミンの反応率が80%であることを確認した。その後、この反応液をナスフラスコに移し、エバポレーターを用いて、60℃、10hPaの減圧度で、30分間減圧留去を行った。減圧留去実施の質量を測定したところ、反応液の固形分は73質量%であった。その後、再度、プロピレングリコールモノメチルエーテルアセテート53.9質量部を添加し、固形分濃度60質量%のブロックポリイソシアネート組成物が得られた。エタノール、ジイソプロピルアミンの残存量をガスクロマトグラフで測定したところ、それぞれ0.3質量%、0.4質量%であった。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
(実施例2-7、9-15、比較例1)(ブロックポリイソシアネート組成物の製造)
 表1に示す成分及び割合を用いた以外は実施例1と同様に行った。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
(比較例2)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、酢酸n-ブチル97.8質量部を仕込み、40℃に保持した。その後、3,5-ジメチルピラゾール52.3質量部(ポリイソシアネート組成物におけるイソシアネート基の103モル%に相当)を5回に分けて、添加した。添加終了後、1時間攪拌し、その後、赤外スペクトルを測定した結果、イソシアネート基の消失を確認し、固形分濃度60質量%のブロックポリイソシアネート組成物が得られた。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
(比較例3)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例2で得られたポリイソシアネート組成物100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、酢酸n-ブチル92.9質量部を仕込み、40℃に保持した。その後、メチルエチルケトオキシム42.5質量部(ポリイソシアネートにおけるイソシアネート基の103モル%に相当)を滴下ロートから滴下した。滴下終了後、1時間攪拌し、その後、赤外スペクトルを測定した結果、イソシアネート基の消失を確認し、固形分濃度60質量%のブロックポリイソシアネート組成物が得られた。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
(比較例4)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、酢酸n-ブチル92.4質量部、マロン酸ジエチル42.3質量部(ポリイソシアネートにおけるイソシアネート基の50モル%に相当)を仕込み、60℃に保持した。その後、28%ナトリウムメチラート0.58質量部を添加し、4時間保持した。赤外スペクトルを測定した結果、マロン酸ジエチル添加モル分のイソシアネート基の消失を確認し、2-エチルヘキシルアシッドホスフェート0.57質量部を添加した。
 引き続き、ジイソプロピルアミン26.8質量部ポリイソシアネートにおけるイソシアネート基の50モル%に相当)を添加し、反応液温度70℃で5時間保持した。その後、赤外スペクトル測定により、イソシアネート基の消失を確認した。ガスクロマトグラフィーで分析した結果、エタノール、ジシソプロピルアミンが存在しないことを確認した。その後、n-ブタノールを20.3部添加し、固形分濃度60質量%のブロックポリイソシアネート組成物が得られた。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(I)における構造を表1に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 表1中における*部の注解は、以下のとおりである。
*1 (各化合物のモル数)/(ポリイソシアネートのイソシアネート基のモル数)のモル%
*2 2-エチルヘキシルアシッドホスフェート(城北化学工業の商品名)
*3 (消失したアミンのモル数)/(反応に添加したアミンのモル数)をGC分析から算出した値
*4 表1記載の配合物としての有効NCO基の質量%(計算値)
*5 <>内に記載の化合物の活性水素を除く残基
*6 DEM:マロン酸ジエチル(R1:エチル基、R2:エチル基)
*7 DIPA:ジイソプロピルアミン(R3:イソプロピル基、R4:イソプロピル基)
*8 PMA:プロピレングリコールモノメチルエーテルアセテート
*9 DNBA:ジn-ブチルアミン(R3:n-ブチル基、R4:n-ブチル基)
*10 鎖状アミン化合物であるDNBA及び窒素原子を含む環状アミン化合物である2,6-ジメチルピペリジン由来のR3及びR4の混合
*11 DIPM:マロン酸ジイソプロピル(R1:イソプロピル基、R2:イソプロピル基)
*12 ECHA:N-エチルシクロヘキシルアミン(R3:エチル基、R4:シクロヘキシル基)
*13 N75BA(ヘキサメチレンジイソシアネートのビウレット型ポリイソシアネート組成物の75%酢酸ブチル溶液:バイエル社の商品名)
*14 ME20-100(ヘキサメチレンジイソシアネートとポリオールとのウレタン、アロファネート型ポリイソシアネート組成物:旭化成ケミカルズ株式会社の商品名)
*15 DMM:マロン酸ジメチル(R1:メチル基、R2:メチル基)
*16 VESTANAT T1890E(イソホロンジイソシアネートのイソシアヌレート型ポリイソシアネート組成物の70%酢酸ブチル溶液:エボニックデグサ社の商品名)
*17 コロネートL(トリレンジイソシアネートとトリメチロールプロパン体とのウレタン型ポリイソシアネート組成物の75%酢酸エチル溶液:日本ポリウレタン工業株式会社の商品名)
*18 マロン酸ジエチルの活性水素を除く残基及びジイソプロピルアミンの活性水素を除く残基の混合
*19 鎖状アミン化合物であるDIPA及び窒素原子を含む環状アミン化合物である2,2,6,6-テトラメチルピペリジン由来のR3及びR4の混合
*20 DPhM:マロン酸ジフェニル(R1:フェニル基、R2:フェニル基)
*21 窒素原子を含む環状アミン化合物である2,6-ジメチルピペリジン由来のR3、R4
(実施例16)(ブロックポリイソシアネート組成物の初期ゲル分率、貯蔵後ゲル分率保持率測定、湿気安定性評価)
 主剤にアクリルポリオール(DIC株式会社の商品名「A801」、樹脂分濃度50質量%、樹脂あたりの水酸基価100mgKOH/g)100質量部と、実施例1で得られたブロックポリイソシアネート組成物60.4質量部(ブロックイソシアネート基と主剤の水酸基の当量比を1.0で配合)とを配合し、酢酸ブチルで塗料固形分が40質量%になるように調整した。作成した塗料溶液を乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、初期ゲル分率を測定した。結果を表2に示す。
 また、上記で作成した塗料溶液を40℃×10日間貯蔵した後、上記の方法で焼付塗膜を作成し、貯蔵後のゲル分率を測定した。貯蔵後のゲル分率保持率を表2に示す。さらに、ブロックポリイソシアネート組成物20.3g(有効NCO基として30mmolに相当)に、水5.4g(300mmolに相当)を配合し、最後にジエチレングリコールジメチルエーテル174.3g(この3成分の全体で200gとなるように調整)を配合し、攪拌し、ブロックポリイソシアネート組成物の溶液を得た。この溶液の40℃、10日間貯蔵中に発生したガス(炭酸ガス)の量を測定した。この結果を表2に示す。
(実施例17-30、比較例5-8)(ブロックポリイソシアネート組成物の初期ゲル分率、貯蔵後ゲル分率保持率測定、湿気安定性評価)
 表2に示す成分及び割合を用いた以外は実施例16と同様に行った。得られたブロックポリイソシアネート組成物の初期ゲル分率、貯蔵後ゲル分率保持率、湿気安定性の結果を表2に示す。
(実施例31)(ブロックポリイソシアネート組成物のゲル分率測定)
 実施例2で得られたブロックポリイソシアネート組成物22.9質量部、水16.5質量部、ジアルキルスルホコハク酸ナトリウム(日本乳化剤株式会社の商品名「ニューコール290M」、固形分70質量%)3質量部をそれぞれ添加し、ホモミキサーで混合した。混合後、乳白色の水分散液が得られた。その後、この水分散液とアクリルエマルジョン(樹脂分濃度42質量%、樹脂あたりの水酸基価40mgKOH/g、Tg20℃、数平均分子量170,000)100質量部を混合した(ブロックイソシアネート基と主剤の水酸基の当量比を1.0で配合、塗料固形分は40質量%で調整)。混合後、乳白色の水分散液が得られた。作成した塗液を乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、ゲル分率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 表2中における*部の注釈は、以下のとおりである。
*22 アクリルポリオール(DIC株式会社の商品名「A801」、樹脂分濃度50質量%、樹脂あたりの水酸基価100mgKOH/g)
*23 アクリルエマルジョン(樹脂分濃度42質量%、樹脂あたりの水酸基価40mgKOH/g、Tg20℃、数平均分子量170,000)
(実施例32)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、数平均分子量400のモノメトキシポリエチレングリコール(日本油脂株式会社の商品名「ユニオックスM400」)42.3質量部(ポリイソシアネートにおけるイソシアネート基の20モル%に相当)、ジエチレングリコールジメチルエーテル117.1質量部を仕込み、80℃で6時間保持した。その後反応液温度を60℃に冷却し、マロン酸ジエチル72.0質量部(ポリイソシアネートにおけるイソシアネート基の85モル%に相当)、ナトリウムメチラートの28%メタノール溶液0.88質量部を添加し、4時間保持した後、2-エチルヘキシルアシッドホスフェート0.86質量部を添加した。その後、ジイソプロピルアミン45.5質量部(ポリイソシアネートにおけるイソシアネート基の85モル%に相当)を添加し、反応液温度を70℃に昇温し、5時間保持した。この反応液をガスクロマトグラフで分析し、ジイソプロピルアミンの反応率が70%であることを確認した。その後、n-ブタノールを14.2質量部添加し、固形分濃度60質量%のブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(V)における構造を表3に示す。
(実施例33-46)(ブロックポリイソシアネート組成物の製造)
 表3に示す成分及び割合を用いた以外は実施例32と同様に行った。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(V)における構造を表3に示す。
(比較例9)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート組成物100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、数平均分子量680のモノメトキシポリエチレングリコール(日本乳化剤株式会社の商品名「MPG-081」)71.9質量部(ポリイソシアネートにおけるイソシアネート基の20モル%に相当)、ジエチレングリコールジメチルエーテル137.6質量部を仕込み、80℃で6時間保持した。その後、マロン酸ジイソプロピル84.6質量部(ポリイソシアネートにおけるイソシアネート基の85モル%に相当)、ナトリウムメチラートの28%メタノール溶液1.06質量部を添加し、4時間保持した後、2-ブタノールを24.5質量部添加し、さらに2時間保持した。その後、赤外スペクトルを測定した結果、イソシアネート基の消失を確認し、引き続き、2-エチルヘキシルアシッドホスフェート1.03質量部を添加し、固形分濃度60質量%のブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(V)における構造を表3に示す。
(比較例10)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート組成物100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、数平均分子量680のモノメトキシポリエチレングリコール(日本乳化剤株式会社の商品名「MPG-081」)71.9質量部(ポリイソシアネートにおけるイソシアネート基の20モル%に相当)、ジエチレングリコールジメチルエーテル116.2質量部を仕込み、80℃で6時間保持した。その後、反応液温度を60℃に冷却し、3,5-ジメチルピラゾール41.7質量部(ポリイソシアネートにおけるイソシアネート基の82モル%に相当)を5回に分けて、添加した。添加終了後、1時間攪拌し、その後、赤外スペクトルを測定した結果、イソシアネート基の消失を確認した。その後、イソブタノールを24.5質量部添加し、固形分濃度60質量%のブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(V)における構造を表3に示す。
(比較例11)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート組成物100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、数平均分子量400のモノメトキシポリエチレングリコール(日本油脂株式会社の商品名「ユニオックスM400」)42.3質量部(ポリイソシアネートにおけるイソシアネート基の20モル%に相当)、ジエチレングリコールジメチルエーテル130.3質量部を仕込み、80℃で6時間保持した。その後反応液温度を60℃に冷却し、マロン酸ジエチル33.9質量部(ポリイソシアネートにおけるイソシアネート基の40モル%に相当)、ナトリウムメチラートの28%メタノール溶液0.72質量部を添加し、4時間保持した後、2-エチルヘキシルアシッドホスフェート0.70質量部を添加した。その後、ジイソプロピルアミン21.4質量部(ポリイソシアネートにおけるイソシアネート基の40モル%に相当)を添加し、反応液温度を70℃に昇温し、5時間保持した。この反応液をガスクロマトグラフィーで分析し、エタノール、ジシソプロピルアミンが存在しないことを確認した。得られたブロックポリイソシアネート組成物の物性と、ブロックポリイソシアネートの式(V)における構造を表3に示す。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 表3中における*部の注解は、以下のとおりである。
*1 (各化合物のモル数)/(ポリイソシアネートのイソシアネート基のモル数)のモル%
*2 2-エチルヘキシルアシッドホスフェート(城北化学工業の商品名)
*3 (消失したアミンのモル数)/(反応に添加したアミンのモル数)をGC分析から算出した値
*4 表3記載の配合物としての有効NCO基の質量%(計算値)
*5 <>内に記載する化合物の活性水素を除く残基
*6 DMDG:ジエチレングリコールジメチルエーテル
*7 ユニオックスM400(数平均分子量400のモノメトキシポリエチレングリコール:日本油脂株式会社の商品名(表中では「M400」))
*8 DEM:マロン酸ジエチル(R1:エチル基、R2:エチル基)
*9 DIPA:ジイソプロピルアミン(R3:イソプロピル基、R4:イソプロピル基)
*10 DMDP:ジプロピレングリコールジメチルエーテル
*11 ユニオックスM550(数平均分子量550のモノメトキシポリエチレングリコール:日本油脂株式会社の商品名(表中では「M550」))
*12 DNBA:ジn-ブチルアミン(R3:n-ブチル基、R4:n-ブチル基)
*13 鎖状アミン化合物であるDNBA及び窒素原子を含む環状アミン化合物である2,6-ジメチルピペリジン由来のR3及びR4の混合
*14 ユニオックスM1000(数平均分子量1000のモノメトキシポリエチレングリコール:日本油脂株式会社の商品名(表中では「M1000」))
*15 DIPM:マロン酸ジイソプロピル(R1:イソプロピル基、R2:イソプロピル基)
*16 ECHA:N-エチルシクロヘキシルアミン(R3:エチル基、R4:シクロヘキシル基)
*17 N75BA(ヘキサメチレンジイソシアネートのビウレット型ポリイソシアネートの75%酢酸ブチル溶液:バイエル社の商品名)
*18 ME20-100(ヘキサメチレンジイソシアネートとポリオールとのウレタン、アロファネート型ポリイソシアネート:旭化成ケミカルズ株式会社の商品名)
*19 MPG-081(数平均分子量680のモノメトキシポリエチレングリコール:日本乳化剤株式会社の商品名)
*20 DMM:マロン酸ジメチル(R1:メチル基、R2:メチル基)
*21 VESTANAT T1890E(イソホロンジイソシアネートのイソシアヌレート型ポリイソシアネートの70%酢酸ブチル溶液:エボニックデグサ社の商品名(表中では「T1890E」))
*22 コロネートL(トリレンジイソシアネートとトリメチロールプロパン体とのウレタン型ポリイソシアネートの75%酢酸エチル溶液:日本ポリウレタン工業株式会社の商品名)
*23 マロン酸ジエチルの活性水素を除く残基及びジイソプロピルアミンの活性水素を除く残基の混合
*24 HPA:ヒドロキシピバリン酸
*25 鎖状アミン化合物であるDIPA及び窒素原子を含む環状アミン化合物である2,2,6,6-テトラメチルピペリジン由来のR3及びR4の混合
*26 プラクセル205BA(2,2-ジメチロールブタン酸誘導体:ダイセル化学工業株式会社の商品名(表中では「205BA」))
*27 窒素原子を含む環状アミン化合物である2,6-ジメチルピペリジン由来のR3、R4
*28 MPG(250)(数平均分子量250のモノメトキシポリエチレングリコール)
(実施例47)(ブロックポリイソシアネート組成物の評価)
 主剤にアクリルエマルジョン(樹脂あたりの水酸基価40mgKOH/g、樹脂あたりの酸価13mgKOH/樹脂g、Tg20℃、数平均分子量100,000、樹脂分濃度42質量%、ジメチルエタノールアミンでpH8.5に調整済み)100質量部と、実施例32で得られたブロックポリイソシアネート組成物8.45質量部(主剤の水酸基モル当量Gとブロックポリイソシアネート組成物の有効NCO基のモル当量Hの比がH/G=0.3となるように配合)と、水26.0質量部とを配合した(塗料固形分35質量%になるように調整)。さらに、この塗液のpHが8.5となるようにジメチルエタノールアミンを添加しながら、最終調整を行った。作成した塗料溶液を室温で2時間放置して塗液の外観を観察した後、乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、初期ゲル分率を測定した。結果を表4に示した。
 この塗料溶液を作成した後、40℃で10日間貯蔵し、貯蔵後、上記と同様の方法で塗装し、貯蔵後のゲル分率を測定した。貯蔵後のゲル分率保持率の結果を表4に示した。また、40℃で10日間貯蔵後の塗料溶液のpHを測定した。さらに、実施例32で得られたブロックポリイソシアネート組成物28.0g(有効NCO基として30mmolに相当)と水172.0g(全体質量を200.0gになるように添加)を配合し、ブロックポリイソシアネート組成物の水溶液を得た。この水溶液の40℃、10日間貯蔵中に発生したガス(炭酸ガス)の量を測定した。結果を表4に示した。
(実施例48-61、参考例1、比較例12-14)(ブロックポリイソシアネート組成物の評価)
 表4に示す成分及び割合を用いた以外は実施例47と同様に行った。得られたブロックポリイソシアネート組成物の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 表4中における*部の注解は、以下のとおりである。
*29 アクリルエマルジョン(樹脂分濃度42質量%、樹脂あたりの水酸基価40mgKOH/g、Tg20℃、数平均分子量100,000)
*30 参考例1は、塗液が分離するため、それらの物性の評価は実施しなかった。
(実施例62)(ブロックポリイソシアネート組成物の製造)
 攪拌器、温度計、還流冷却管、窒素吹き込み管、滴下ロートを取り付けた4ツ口フラスコ内を窒素雰囲気にし、製造例1で得られたポリイソシアネート100質量部(この場合のポリイソシアネートのイソシアネート基モル数を100とする)、数平均分子量400のモノメトキシポリエチレングリコール(日本油脂株式会社の商品名「ユニオックスM400」)42.3質量部(ポリイソシアネートにおけるイソシアネート基の20モル%に相当)、ジエチレングリコールジメチルエーテル107.1質量部を仕込み、80℃で6時間保持した。その後反応液温度を60℃に冷却し、マロン酸ジエチル72.0質量部(ポリイソシアネートにおけるイソシアネート基の85モル%に相当)、ナトリウムメチラートの28%メタノール溶液0.88質量部を添加し、4時間保持した後、2-エチルヘキシルアシッドホスフェート0.86質量部を添加した。その後、ジイソプロピルアミン45.5質量部(ポリイソシアネートにおけるイソシアネート基の85モル%に相当)を添加し、反応液温度を70℃に昇温し、5時間保持した。この反応液をガスクロマトグラフで分析し、ジイソプロピルアミンの反応率が70%であることを確認した。その後、この反応液をナスフラスコに移し、エバポレーターを用いて、60℃、10hPaの減圧度で、30分間減圧留去を実施し、ガスクロマトグラフィーで分析した結果、残存するジイソプロピルアミンの量が2.1質量部(ブロックイソシアネート基に対し5モル%に相当)、残存するエタノールが1.0質量部(ブロックイソシアネート基に対し5モル%に相当)であることを確認した。N-エチルモルホリン24.2質量部(ブロックイソシアネート基に対し50モル%に相当)とジエチレングリコールジメチルエーテルを加え、固形分濃度60質量%のブロックポリイソシアネート組成物を得た。得られたブロックポリイソシアネート組成物の物性を表5に示す。
(実施例63-73、比較例15、参考例2-3)(ブロックポリイソシアネート組成物の製造)
 表5に示す成分及び割合を用いた以外は実施例62と同様に行った。得られたブロックポリイソシアネート組成物の物性を表5に示す。
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059

 表5中における*部の注解は、以下のとおりである。表5中において、表1及び表3と同一の略語については、同一の意味である。
*1 第1工程で生成したポリイソシアネートとマロン酸ジエステルの反応生成物のエステル基と有機アミン化合物の反応により解離したアルコール化合物の残存量
*2 ブロックイソシアネート基に対するモル%
*3 NEMO:N-エチルモルホリン Pka:7.7
*4 TEA:トリエタノールアミン Pka:7.8
*5 鎖状アミン化合物であるDNBAと窒素原子を含む環状アミン化合物である2,6-ジメチルピペリジン由来のR3、R4の混合
*6 NMMO:N-メチルモルホリン Pka:7.4
*7 2MIM:2-メチルイミダゾール Pka:7.8
*8 IM:イミダゾール Pka:7.0
*9 MO:モルホリン Pka:8.4
*10 鎖状アミン化合物であるDIPAと窒素原子を含む環状アミン化合物である2,2,6,6-テトラメチルピペリジン由来のR3、R4の混合
*11 DMEA:ジメチルエタノールアミン Pka:9.4
*12 ピリジン Pka:5.4
(実施例74)(ブロックポリイソシアネート組成物の評価)
 主剤にアクリルエマルジョン(樹脂あたりの水酸基価40mgKOH/g、樹脂あたりの酸価13mgKOH/g、Tg20℃、数平均分子量100,000、樹脂分濃度42質量%、ジメチルエタノールアミンでpH8.5に調整済み)100質量部と、実施例62で得られたブロックポリイソシアネート組成物14.0質量部(ブロックポリイソシアネート組成物の有効NCO基のモル当量Aと主剤の水酸基モル当量Bとの比がA/B=0.5となるように配合)と、水30.0質量部とを配合した(塗料固形分35質量%になるように調整)。さらに、塗液のpHが8.5となるようにジメチルエタノールアミンを添加しながら、最終調整を行った。作成した塗料溶液を室温で2時間放置して塗液の外観を観察した後、乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、初期ゲル分率を測定した。結果を表6に示した。この塗料の配合後、40℃で10日間貯蔵した後、上記と同様の方法で塗装し、貯蔵後のゲル分率を測定した。貯蔵後のゲル分率保持率の結果を表6に示した。さらに、40℃で10日間貯蔵後の塗液のpHを測定し、結果を表6に示した。
 また、実施例62で得られたブロックポリイソシアネート組成物28.0g(有効NCO基として30mmolに相当)と水172.0g(全体質量を200.0gになるように添加)とを配合し、ブロックポリイソシアネート組成物の水溶液を得た。この水溶液の40℃、10日間貯蔵中に発生したガス(炭酸ガス)の量を測定した。結果を表6に示した。
(参考例5)(ブロックポリイソシアネート組成物の評価)
 主剤にアクリルエマルジョン(樹脂あたりの水酸基価40mgKOH/g、樹脂あたりの酸価13mgKOH/g、Tg20℃、数平均分子量100,000、樹脂分濃度42質量%、ジメチルエタノールアミンでpH8.5に調整済み)100質量部と、参考例2で得られたブロックポリイソシアネート組成物8.6質量部(ブロックポリイソシアネート組成物の有効NCO基のモル当量Aと主剤の水酸基モル当量Bとの比がA/B=0.3となるように配合)と、水26.1質量部とを配合した(塗料固形分35質量%になるように調整)。この時点で塗液のpHを測定したところ、すでに9.6となっており、塗液のpHを8.5に調整することができなかった。作成した塗料溶液を室温で2時間放置して塗液の外観を観察した後、乾燥後膜厚40μmになるようにアプリケーター塗装し、90℃で30分間焼付けし、初期ゲル分率を測定した。結果を表6に示した。この塗料の配合後、40℃で10日間貯蔵した後、上記と同様の方法で塗装し、貯蔵後のゲル分率を測定した。貯蔵後のゲル分率保持率の結果を表6に示した。さらに、40℃で10日間貯蔵後の塗液のpHを測定し、結果を表6に示した。この場合のpH変化は、実施例74と同様に、初期値からの変化量として測定したが、初期値が異なる(8.5超である)ため、( )書きで示した。
 また、参考例2で得られたブロックポリイソシアネート組成物28.6g(有効NCO基として30mmolに相当)と水171.4g(全体質量を200.0gになるように添加)とを配合し、ブロックポリイソシアネート組成物の水溶液を得た。この水溶液の40℃、10日間貯蔵中に発生したガス(炭酸ガス)の量を測定した。結果を表6に示した。
(実施例75-85、参考例4、6、比較例16)(ブロックポリイソシアネート組成物の評価)
 表6に示す成分及び割合を用いた以外は実施例74と同様に行った。得られたブロックポリイソシアネート組成物の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
 表6中における*部の注解は、以下のとおりである。
*13 アクリルエマルジョン
(樹脂分濃度42質量%、媒体:水、樹脂あたりの水酸基価40mgKOH/g、樹脂あたりの酸価13mgKOH/g、Tg20℃、数平均分子量100,000)
*14 アクリルポリオール
(樹脂分濃度60質量%、溶剤:DMDG、樹脂あたりの水酸基価80mgKOH/g、樹脂あたりの酸価47mgKOH/g、Tg30℃、数平均分子量7,400)
*15 塗液配合時のpHが8.5よりも高くなり、ジメチルエタノールアミンを用いてpHを8.5に調整できなかったため、pH変化測定の初期値を当該pH(8.5超)とし、結果を()書きで示した。
 本発明のブロックポリイソシアネート組成物は、上記実施例、比較例及び参考例の結果から、100℃以下の焼付け温度で架橋可能であり、かつ、湿気安定性に優れ、また、水系塗料組成物として使用した場合には、貯蔵安定性(pH変化、ガス発生、貯蔵後硬化性等)に優れていることが分った。
 本発明のブロックポリイソシアネート組成物は、低温硬化性、湿気安定性、及び貯蔵後硬化性に優れた塗料組成物として、好適に用いることができる。

Claims (17)

  1.  式(I)により示される少なくとも1種のブロックポリイソシアネートを含むブロックポリイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基であって、A及びBを含む置換基と結合しており、Aは、以下の式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群であり、Bは、式(III)に示される1種又は2種以上の構造単位であり、xとyの合計が2.0~20であり、かつxは0ではない。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは、炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、R、Rは、同じでも異なっていてもよく、炭素数1~30個の、任意にエーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基から選ばれる少なくとも1種を含んでもよい炭化水素基であり、任意にR、Rは、一緒になって5員または6員のシクロアルキル基を形成するか、またはRとRに挟まれた窒素原子と一緒になって、架橋員として付加的に窒素または酸素原子を含んでもよい3員、4員、5員または6員環を形成することができる。)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rは、活性水素含有化合物の活性水素を除く残基である。)
  2.  式(II)のR、Rがともに炭素数3~6個の分岐アルキル基である、請求項1に記載のブロックポリイソシアネート組成物。
  3.  式(II)の(R)(R)N-が式(IV)で示される連結構造である、請求項1に記載のブロックポリイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000004

    (式中、R、R、R、Rは、各々独立して水素あるいはメチル基を示し、かつ、そのうち少なくとも1つはメチル基である。)
  4.  式(I)中のx、yがx/y≧1である、請求項1~3のいずれか1項に記載のブロックポリイソシアネート組成物。
  5.  式(I)のブロックポリイソシアネートの少なくとも一部が、式(V)により示される少なくとも1種のブロックポリイソシアネートである、請求項1~4のいずれか1項に記載のブロックポリイソシアネート組成物。
    Figure JPOXMLDOC01-appb-C000005

    (式中、Rは、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートから選ばれる1種又は2種以上から形成されたポリイソシアネートのイソシアネート基を除く残基であり、
     Aは、上記式(II)に示される1種又は2種以上のケト体あるいはそのエノール異性体群であり、
     Bは、上記式(III)に示される1種又は2種以上の構造単位であり、
     Cは、式(VI)に示される1種又は2種以上の構造単位であり、
     x+y+z=2.0~20であり、かつ、x、zはいずれも0ではない。)
    Figure JPOXMLDOC01-appb-C000006

    (式中、R10は、活性水素含有親水性化合物の活性水素を除く残基である。)
  6.  式(V)中のx、y、zが、49≧(x+y)/z≧1であり、かつx/y≧1である、請求項5に記載のブロックポリイソシアネート組成物。
  7.  酸解離定数(PKa)が7.0~8.5である塩基性化合物(e)を、上記ブロックポリイソシアネート組成物のブロックイソシアネート基に対して10モル%以上含有し、ここで、ブロックイソシアネート基のモル数は、式(I)については、前駆体であるポリイソシアネート由来のイソシアネート基を基準としたモル数を示し、式(V)については、前駆体であるポリイソシアネートのうちA及びBの部分構造の源となるイソシアネート基を基準としたモル数を示す、請求項1~6のいずれか1項に記載のブロックポリイソシアネート組成物。
  8.  請求項1~7のいずれか1項に記載のブロックポリイソシアネート組成物、及びポリオールを含む塗料組成物。
  9.  水性塗料組成物である、請求項8に記載の塗料組成物。
  10.  請求項8または9に記載の塗料組成物からなる塗膜。
  11.  脂肪族ポリイソシアネート、脂環族ポリイソシアネート、及び芳香族ポリイソシアネートからなる群から選ばれる1種又は2種以上を骨格として有するポリイソシアネート(a)に、式(VII)で示されるマロン酸ジエステル(b)を、ポリイソシアネート(a)のイソシアネート基に対し75-150モル%添加し、ポリイソシアネート(a)のイソシアネート基とマロン酸ジエステル(b)とを反応させる第1工程、並びに、第1工程で得られた生成物と式(VIII)で示される有機アミン化合物(c)の1種又は2種以上とを反応させる第2工程を含む、ブロックポリイソシアネート組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000007

    (式中、R及びRは、それぞれ独立に炭素数1~8個のアルキル基、フェニル基またはベンジル基を示し、RとRは同一でも、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000008

    (式中、R及びRは、同一でも異なっていてもよく、エーテル結合、エステル結合、水酸基、カルボニル基、及びチオール基からなる群から選ばれる少なくとも1種を含有してもよい炭素数1~30個の炭化水素基であって、R及びRは、互いに結合して5員または6員環のシクロアルキル基を形成するか、または、RとRに挟まれた窒素原子と共に、架橋員として付加的に窒素または酸素原子を含有してもよい3員、4員、5員または6員環を形成することができる。)。
  12.  第1工程が、ポリイソシアネート(a)と、マロン酸ジエステル(b)および活性水素含有親水性化合物(d)を、マロン酸ジエステル(b)と活性水素含有親水性化合物(d)の合計量としてポリイソシアネートのイソシアネート基に対し77-150モル%添加し、ポリイソシアネート(a)と、マロン酸ジエステル(b)および活性水素含有親水性化合物(d)を反応させる工程である、請求項11に記載のブロックポリイソシアネート組成物の製造方法。
  13.  第1工程が、ポリイソシアネート(a)と活性水素含有親水性化合物(d)の反応後に、マロン酸ジエステル(b)を反応させる工程である、請求項12に記載のブロックポリイソシアネート組成物の製造方法。
  14.  第2工程において、有機アミン化合物(c)の1種又は2種以上をポリイソシアネート(a)のイソシアネート基に対し50-500モル%添加し、第1工程で得られた生成物と反応させる、請求項11~13のいずれか1項に記載のブロックポリイソシアネート組成物の製造方法。
  15.  第1工程、第2工程の後に、第3工程として有機アミン化合物(c)の除去精製を行う、請求項11~14のいずれか1項に記載のブロックポリイソシアネート組成物の製造方法。
  16.  第3工程で、有機アミン化合物(c)、および第1工程の生成物のエステル基と有機アミン化合物の反応により解離したアルコール化合物の除去精製を行う、請求項15に記載のブロックポリイソシアネート組成物の製造方法。
  17.  第1工程、第2工程及び第3工程の後に、酸解離定数(PKa)が7.0~8.5である塩基性化合物(e)を添加する、請求項15又は16に記載のブロックポリイソシアネート組成物の製造方法。
PCT/JP2011/052484 2010-02-08 2011-02-07 ブロックポリイソシアネート組成物及びこれを含む塗料組成物 WO2011096559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180008753.1A CN102753596B (zh) 2010-02-08 2011-02-07 封闭多异氰酸酯组合物和含有其的涂料组合物
US13/577,293 US9156937B2 (en) 2010-02-08 2011-02-07 Block polyisocyanate composition and coating composition containing same
EP20110739906 EP2535364B1 (en) 2010-02-08 2011-02-07 Block polyisocyanate composition and coating composition containing same
BR112012019717A BR112012019717A2 (pt) 2010-02-08 2011-02-07 Composição de poliisocianato bloqueado, composição de revestimento, filme de revestimento, e, método para produzir uma composição de poliisocianato bloqueado
KR20127020675A KR101450985B1 (ko) 2010-02-08 2011-02-07 블록 폴리이소시아네이트 조성물 및 이것을 포함하는 도료 조성물

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010025828 2010-02-08
JP2010-025828 2010-02-08
JP2010-025805 2010-02-08
JP2010025805 2010-02-08
JP2010088516 2010-04-07
JP2010-088516 2010-04-07
JP2010129249 2010-06-04
JP2010-129249 2010-06-04

Publications (1)

Publication Number Publication Date
WO2011096559A1 true WO2011096559A1 (ja) 2011-08-11

Family

ID=44355552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052484 WO2011096559A1 (ja) 2010-02-08 2011-02-07 ブロックポリイソシアネート組成物及びこれを含む塗料組成物

Country Status (7)

Country Link
US (1) US9156937B2 (ja)
EP (1) EP2535364B1 (ja)
KR (1) KR101450985B1 (ja)
CN (1) CN102753596B (ja)
BR (1) BR112012019717A2 (ja)
TW (1) TWI417310B (ja)
WO (1) WO2011096559A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137881A1 (ja) * 2011-04-08 2012-10-11 関西ペイント株式会社 ブロックポリイソシアネート化合物
WO2016093323A1 (ja) * 2014-12-11 2016-06-16 日本パーカライジング株式会社 金属表面処理液、表面処理金属材料の製造方法、表面処理金属材料
JP2017095533A (ja) * 2015-11-18 2017-06-01 旭化成株式会社 ブロックポリイソシアネート組成物、熱硬化性組成物、及び硬化物
JP2018193426A (ja) * 2017-05-12 2018-12-06 旭化成株式会社 ブロックポリイソシアネート組成物、その製造方法、塗料組成物、及び硬化物
WO2019065890A1 (ja) * 2017-09-28 2019-04-04 旭化成株式会社 ブロックポリイソシアネート組成物及びその使用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841893B2 (ja) * 2012-04-23 2016-01-13 ヘンケルジャパン株式会社 積層シート用接着剤
MY174272A (en) 2013-08-23 2020-04-01 Mitsui Chemicals Inc Blocked isocyanate, coating composition, adhesive composition, and article
CN104293274B (zh) * 2014-08-18 2016-08-31 中国科学院理化技术研究所 一种秸秆人造板专用胶粘剂及秸秆人造板的制备
CN107922584B (zh) * 2015-09-11 2020-11-27 旭化成株式会社 封端多异氰酸酯组合物、单液型涂覆组合物、涂膜、及涂装物品
US11021562B2 (en) * 2016-10-14 2021-06-01 Asahi Kasei Kabushiki Kaisha Polyisocyanate composition, blocked polyisocyanate composition, hydrophilic polyisocyanate composition, coating material composition, and coating film
JP7287795B2 (ja) * 2019-03-07 2023-06-06 旭化成株式会社 ブロックポリイソシアネート組成物、水系塗料組成物及び塗膜
CN113508150B (zh) * 2019-03-29 2023-04-11 三井化学株式会社 纤维或皮革用交联剂
EP3771720B1 (en) * 2019-08-02 2024-05-01 Asahi Kasei Kabushiki Kaisha Blocked polyisocyanate composition, resin composition, resin film and laminate
EP4052807A4 (en) * 2019-11-01 2023-11-08 Kansai Paint Co., Ltd AQUEOUS COATING COMPOSITION
EP4365252A3 (en) * 2020-05-15 2024-07-17 Asahi Kasei Kabushiki Kaisha Block polyisocyanate composition, resin composition, resin film, and layered body
JP2023070109A (ja) * 2021-11-05 2023-05-18 旭化成株式会社 ブロックポリイソシアネート組成物及びその製造方法、樹脂組成物、樹脂膜及びその製造方法、並びに、積層体
KR20230089479A (ko) * 2021-12-13 2023-06-20 주식회사 케이씨씨 블록 폴리이소시아네이트 및 이를 포함하는 수용성 클리어 코트 조성물

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734107A (en) 1980-08-08 1982-02-24 Asahi Glass Co Ltd Room temperature-curable fluorine-containing copolymer
JPS57121065A (en) 1980-12-10 1982-07-28 Bayer Ag Manufacture of coating composition and coated matter
EP0096210A1 (de) 1982-06-08 1983-12-21 Hüls Aktiengesellschaft Lagerstabile Polyurethan-Einkomponenten-Einbrennlacke
JPS61275311A (ja) 1984-12-18 1986-12-05 Dainippon Ink & Chem Inc 硬化可能なフルオロオレフイン共重合体及びその製造法
JPS63265916A (ja) 1987-04-09 1988-11-02 ヘキスト・アクチエンゲゼルシヤフト 合成樹脂の硬化用成分およびその用途
EP0159117B1 (en) 1984-02-29 1993-01-27 The Baxenden Chemical Company Limited Blocked isocyanates
EP0600314A1 (de) 1992-12-02 1994-06-08 Bayer Ag 0rganische Polyisocyanate mit zumindest teilweise blockierten Isocyanatgruppen
JPH08225630A (ja) 1995-02-21 1996-09-03 Asahi Chem Ind Co Ltd ブロックポリイソシアネート、組成物、及び一液型熱硬化性組成物
JPH09125001A (ja) * 1995-09-18 1997-05-13 Bayer Ag ジフェニルメタンジイソシアネートに基づき、アロファネート基とブロックされたイソシアネート基を含有するポリイソシアネート
JPH09249731A (ja) * 1996-01-31 1997-09-22 Huels Ag ブロックされた脂肪族ジイソシアネートまたは−ジイソシアネート付加物
JP2002521541A (ja) * 1998-07-29 2002-07-16 ロディア・シミ 混合型ブロック(ポリ)イソシアネート
JP2004528415A (ja) * 2001-02-26 2004-09-16 バイエル アクチェンゲゼルシャフト 1k−ポリウレタン焼付ラッカーおよびその使用
JP2009155409A (ja) * 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物
JP2009155408A (ja) 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2404740C2 (de) * 1974-02-01 1982-04-29 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Filmen und Überzügen und Beschichtungsmittel
US4495229A (en) * 1982-06-08 1985-01-22 Chemische Werke Huls A.G. One-component, heat-curing polyurethane-coatings, stable in storage
DE3734916A1 (de) 1987-10-15 1989-04-27 Hoechst Ag Haertungskomponente fuer kunstharze, diese enthaltende haertbare mischungen sowie deren verwendung
JP3712295B2 (ja) * 1996-04-12 2005-11-02 旭化成ケミカルズ株式会社 ブロックポリイソシアネート組成物及びそれを用いた一液性熱硬化組成物
JP2000327647A (ja) 1999-05-25 2000-11-28 Asahi Chem Ind Co Ltd メタントリカルボニル誘導体の製造方法
DE19941213A1 (de) 1999-08-30 2001-03-01 Bayer Ag Malonester-blockiertes HDI-Trimerisat mit IPDA- und Formaldehydstabilisierung
US20040067318A1 (en) * 2001-01-12 2004-04-08 Jones Richard Garfield Mixed-blocked polyisocyanates and uses thereof
JP2004292502A (ja) 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp 水性塗料組成物
JP2006335954A (ja) 2005-06-03 2006-12-14 Sumika Bayer Urethane Kk ブロックポリイソシアネート組成物および一液型コーティング組成物
JP2007023208A (ja) 2005-07-20 2007-02-01 Asahi Kasei Chemicals Corp 水系ブロックポリイソシアネート組成物及びこれを含む水性塗料組成物
JP2007023209A (ja) 2005-07-20 2007-02-01 Asahi Kasei Chemicals Corp 水性ブロックポリイソシアネート組成物及びこれを含む水性塗料組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734107A (en) 1980-08-08 1982-02-24 Asahi Glass Co Ltd Room temperature-curable fluorine-containing copolymer
JPS57121065A (en) 1980-12-10 1982-07-28 Bayer Ag Manufacture of coating composition and coated matter
EP0096210A1 (de) 1982-06-08 1983-12-21 Hüls Aktiengesellschaft Lagerstabile Polyurethan-Einkomponenten-Einbrennlacke
EP0159117B1 (en) 1984-02-29 1993-01-27 The Baxenden Chemical Company Limited Blocked isocyanates
JPS61275311A (ja) 1984-12-18 1986-12-05 Dainippon Ink & Chem Inc 硬化可能なフルオロオレフイン共重合体及びその製造法
JPS63265916A (ja) 1987-04-09 1988-11-02 ヘキスト・アクチエンゲゼルシヤフト 合成樹脂の硬化用成分およびその用途
EP0600314A1 (de) 1992-12-02 1994-06-08 Bayer Ag 0rganische Polyisocyanate mit zumindest teilweise blockierten Isocyanatgruppen
JPH08225630A (ja) 1995-02-21 1996-09-03 Asahi Chem Ind Co Ltd ブロックポリイソシアネート、組成物、及び一液型熱硬化性組成物
JPH09125001A (ja) * 1995-09-18 1997-05-13 Bayer Ag ジフェニルメタンジイソシアネートに基づき、アロファネート基とブロックされたイソシアネート基を含有するポリイソシアネート
JPH09249731A (ja) * 1996-01-31 1997-09-22 Huels Ag ブロックされた脂肪族ジイソシアネートまたは−ジイソシアネート付加物
JP2002521541A (ja) * 1998-07-29 2002-07-16 ロディア・シミ 混合型ブロック(ポリ)イソシアネート
JP2004528415A (ja) * 2001-02-26 2004-09-16 バイエル アクチェンゲゼルシャフト 1k−ポリウレタン焼付ラッカーおよびその使用
JP2009155409A (ja) * 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物
JP2009155408A (ja) 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2535364A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137881A1 (ja) * 2011-04-08 2012-10-11 関西ペイント株式会社 ブロックポリイソシアネート化合物
US10047189B2 (en) 2011-04-08 2018-08-14 Kansai Paint Co., Ltd. Block polyisocyanate compound
WO2016093323A1 (ja) * 2014-12-11 2016-06-16 日本パーカライジング株式会社 金属表面処理液、表面処理金属材料の製造方法、表面処理金属材料
JPWO2016093323A1 (ja) * 2014-12-11 2017-04-27 日本パーカライジング株式会社 金属表面処理液、表面処理金属材料の製造方法、表面処理金属材料
CN107429110A (zh) * 2014-12-11 2017-12-01 日本帕卡濑精株式会社 金属表面处理液、经表面处理的金属材料的制造方法、经表面处理的金属材料
CN107429110B (zh) * 2014-12-11 2020-04-21 日本帕卡濑精株式会社 金属表面处理液、经表面处理的金属材料的制造方法、经表面处理的金属材料
JP2017095533A (ja) * 2015-11-18 2017-06-01 旭化成株式会社 ブロックポリイソシアネート組成物、熱硬化性組成物、及び硬化物
JP2018193426A (ja) * 2017-05-12 2018-12-06 旭化成株式会社 ブロックポリイソシアネート組成物、その製造方法、塗料組成物、及び硬化物
WO2019065890A1 (ja) * 2017-09-28 2019-04-04 旭化成株式会社 ブロックポリイソシアネート組成物及びその使用
JPWO2019065890A1 (ja) * 2017-09-28 2020-04-23 旭化成株式会社 ブロックポリイソシアネート組成物及びその使用
JP7044797B2 (ja) 2017-09-28 2022-03-30 旭化成株式会社 塗膜の耐水性及び硬度保持性を向上させる方法
US11661473B2 (en) 2017-09-28 2023-05-30 Asahi Kasei Kabushiki Kaisha Blocked polyisocyanate composition and use thereof

Also Published As

Publication number Publication date
EP2535364A4 (en) 2014-07-30
KR20120103741A (ko) 2012-09-19
CN102753596B (zh) 2014-03-26
US20120316291A1 (en) 2012-12-13
KR101450985B1 (ko) 2014-10-15
US9156937B2 (en) 2015-10-13
EP2535364A1 (en) 2012-12-19
TWI417310B (zh) 2013-12-01
EP2535364B1 (en) 2015-01-21
BR112012019717A2 (pt) 2023-11-21
TW201144344A (en) 2011-12-16
CN102753596A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5572566B2 (ja) ブロックポリイソシアネート組成物及びこれを含む塗料組成物
WO2011096559A1 (ja) ブロックポリイソシアネート組成物及びこれを含む塗料組成物
JP5572567B2 (ja) ブロックポリイソシアネート組成物を製造する方法
JP5562267B2 (ja) ブロックポリイソシアネート組成物及びこれを含む塗料組成物
JP5572565B2 (ja) ブロックポリイソシアネート組成物を製造する方法
EP3037450B1 (en) Blocked isocyanate, coating composition, adhesive agent composition, and article
JP5725655B2 (ja) ブロックポリイソシアネート組成物及びこれを含む塗料組成物
CN107922584B (zh) 封端多异氰酸酯组合物、单液型涂覆组合物、涂膜、及涂装物品
JP6712311B2 (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜、及び塗装物品
JP2011256217A (ja) ブロックポリイソシアネート組成物
WO2016035887A1 (ja) ポリイソシアネート組成物、塗料組成物、塗膜及びその製造方法、並びに湿気安定化方法
JP5562271B2 (ja) ブロックポリイソシアネート組成物の製造方法
JP5777351B2 (ja) 塗料組成物の製造方法
JP2011256232A (ja) 水系塗料組成物
JP6591241B2 (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜、及び塗装物品
JP6849353B2 (ja) ブロックポリイソシアネート組成物、一液型コーティング組成物、塗膜、及び塗装物品
JP6231939B2 (ja) 水系コーティング組成物
JP6969897B2 (ja) ブロックポリイソシアネート組成物、その製造方法、塗料組成物、及び硬化物
JP5762159B2 (ja) 易接着処理剤組成物
JP2009191127A (ja) ブロックポリイソシアネート組成物
JP2018035296A (ja) ブロックポリイソシアネート組成物、その製造方法、塗料組成物及び硬化物
JP2022119424A (ja) 水系樹脂組成物及び樹脂膜
JP2024124766A (ja) ブロックポリイソシアネート組成物、樹脂組成物、樹脂膜及び積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008753.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011739906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13577293

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127020675

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003967

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 7193/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012019717

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012019717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120807