WO2011093449A1 - チューナブルフィルタ - Google Patents

チューナブルフィルタ Download PDF

Info

Publication number
WO2011093449A1
WO2011093449A1 PCT/JP2011/051751 JP2011051751W WO2011093449A1 WO 2011093449 A1 WO2011093449 A1 WO 2011093449A1 JP 2011051751 W JP2011051751 W JP 2011051751W WO 2011093449 A1 WO2011093449 A1 WO 2011093449A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
tunable filter
series arm
arm resonator
frs
Prior art date
Application number
PCT/JP2011/051751
Other languages
English (en)
French (fr)
Inventor
門田 道雄
英晃 小林
貴史 小上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011551933A priority Critical patent/JPWO2011093449A1/ja
Priority to KR1020127019443A priority patent/KR101350244B1/ko
Priority to CN201180007211.2A priority patent/CN102725959B/zh
Priority to EP11737159.1A priority patent/EP2530838B1/en
Publication of WO2011093449A1 publication Critical patent/WO2011093449A1/ja
Priority to US13/555,462 priority patent/US8552818B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H2007/386Multiple band impedance matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]
    • H03H2009/02188Electrically tuning
    • H03H2009/02204Electrically tuning operating on an additional circuit element, e.g. applying a tuning DC voltage to a passive circuit element connected to the resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/175Series LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to a tunable filter used as a band filter in a communication system, and more particularly to a tunable filter configured using an acoustic wave resonator.
  • band filters used in communication systems it may be required to be able to adjust the pass band.
  • Various band-pass filters that satisfy such requirements, that is, tunable filters have been proposed.
  • Patent Document 1 discloses a tunable filter using a plurality of surface acoustic wave resonators and a variable capacitor.
  • FIG. 46 is a circuit diagram of a tunable filter described in Patent Document 1.
  • a plurality of series arm resonators 1104 and 1105 are connected in series to a series arm connecting the input end 1102 and the output end 1103.
  • parallel arm resonators 1106 and 1107 are connected to a plurality of parallel arms between the series arm and the ground potential, respectively.
  • Series arm resonators 1104 and 1105 and parallel arm resonators 1106 and 1107 are formed of surface acoustic wave resonators.
  • a ladder type filter circuit having the series arm resonators 1104 and 1105 and the parallel arm resonators 1106 and 1107 is configured. Furthermore, variable capacitors 1108 to 1115 are connected to enable adjustment of the pass band. That is, a variable capacitor 1108 is connected in parallel to the series arm resonator 1104, and a variable capacitor 1110 is connected in series to the series arm resonator 1104 and the variable capacitor 1108. Similarly, a variable capacitor 1109 is connected to the series arm resonator 1105 in parallel, and a variable capacitor 1111 is connected in series.
  • variable capacitor 1112 is connected in parallel to the parallel arm resonator 1106, and a variable capacitor 1114 is connected in series to the parallel arm resonator 1106 and the variable capacitor 1112.
  • a variable capacitor 1113 is connected in parallel to the parallel arm resonator 1107, and a variable capacitor 1115 is connected in series.
  • the resonance frequency FrS in the circuit portion of the series arm can be increased as the capacitances of the variable capacitors 1110 and 1111, that is, the series capacitance decreases. Further, the antiresonance frequency FaS in the series arm can be lowered as the parallel capacitance, that is, the capacitance by the variable capacitors 1108 and 1109 increases.
  • the resonance frequency FrP and anti-resonance frequency FaP of the circuit portion of the parallel arm can be changed by changing the capacitances of the variable capacitors 1112 and 1113 connected in parallel and the variable capacitors 1114 and 1115 connected in series. Can be made. Therefore, the center frequency of the entire tunable filter 1101 can be changed by changing the capacitance of the variable capacitors 1108 to 1115.
  • the surface acoustic wave resonators used for the series arm resonators 1104 and 1105 and the parallel arm resonators 1106 and 1107 have a small electromechanical coupling coefficient and a frequency.
  • the absolute value of the temperature coefficient TCF was large.
  • a specific combination of frequency characteristics of the parallel arm resonator and the series arm resonator is not described.
  • the present invention is to improve a tunable filter having a circuit configuration in which an acoustic wave resonator and a variable capacitor are connected in view of the above-described state of the art.
  • An object of the present invention is to provide a tunable filter capable of expanding the pass bandwidth or changing the pass bandwidth.
  • a tunable filter includes a series circuit arm that connects an input terminal and an output terminal, and a resonator circuit unit provided on at least one of a parallel arm between the series arm and a ground potential; A first variable capacitor connected in series to the resonator circuit unit; and a second variable capacitor connected in parallel to the resonator circuit unit, wherein the resonator circuit unit includes LiNbO 3 or LiTaO 3.
  • An acoustic wave resonator having an electrode formed on the piezoelectric substrate, and a bandwidth expansion inductance connected to the acoustic wave resonator.
  • the resonator circuit unit is a plurality of series arm resonator circuit units provided in a series arm, and the plurality of series arm resonator circuit units And a matching element connected between the input terminal and the ground potential and between the output terminal and the ground potential.
  • a ladder filter is configured by the series arm resonator circuit unit and the parallel arm resonator circuit unit.
  • the resonator circuit unit includes a plurality of parallel resonators, and the inductance for bandwidth expansion is connected to the plurality of parallel resonators.
  • a concave portion is formed on the upper surface of the piezoelectric substrate, the electrode formed on the piezoelectric substrate is an IDT electrode, and the acoustic wave resonator Is a surface acoustic wave resonator, and the IDT electrode is made of a metal filled in the recess.
  • the electromechanical coupling coefficient of the surface acoustic wave resonator can be increased. Therefore, the bandwidth can be expanded and the variable frequency range of the tunable filter can be expanded.
  • the surface acoustic wave resonator further includes a SiO 2 film provided so as to cover an upper surface of the piezoelectric substrate.
  • the absolute value of the frequency temperature coefficient TCF of the surface acoustic wave resonator can be reduced. Therefore, the temperature characteristics of the tunable filter can be improved.
  • the tunable filter further includes a capacitor connected between the input terminal and the output terminal.
  • the impedance of the matching element and the coupling element in the passband of the tunable filter is 20 to 105 ⁇ .
  • the matching impedance is 50 ⁇ or 75 ⁇ . It is desirable to make the impedance close to that in terms of insertion loss, and 20 to 105 ⁇ of ⁇ 30 ⁇ is preferable.
  • the bandwidth expansion inductance is any one of a spiral or meandering conductor pattern and a bonding wire.
  • the bandwidth expansion inductance is a spiral or meandering conductor pattern, further comprising a package, and the spiral or meandering conductor pattern. Is formed on the piezoelectric substrate or the package.
  • the inductance for increasing the bandwidth can be formed by the conductor pattern formed on the piezoelectric substrate or the package, so that the size of the tunable filter can be reduced.
  • the series arm resonator provided in the series arm, the parallel arm resonator provided in the parallel arm, and at least one of the series arm resonator and the parallel arm resonator are connected.
  • the resonance frequency and antiresonance frequency of the series arm resonator are FrS and FaS
  • the resonance frequency and antiresonance frequency of the parallel arm resonator are FrP and FaP.
  • a value obtained by normalizing the frequency variable width of the tunable filter by (FaP + FrS) / 2 is t
  • the series arm resonator and the parallel arm resonator are
  • the ratio of the difference between the resonance frequency FrS of the series arm resonator and the resonance frequency FrP of the parallel arm resonator to the ratio band of the series arm resonator Is the range shown in Table 1 below.
  • the ratio of the difference between the resonance frequency FrS of the series arm resonator and the resonance frequency FrP of the parallel arm resonator to the ratio band of the series arm resonator Is the range shown in Table 2 below. When this range is satisfied, a tunable filter having a large variable width is formed.
  • the minimum 3 dB bandwidth is smaller of (FrS-FrP) ⁇ 0.9 or (FaS-FaP) ⁇ 0.9.
  • the maximum variable frequency range is 140 ⁇ (FaS ⁇ FaP) / (FaS + FaP) (%) to 180 ⁇ (FaS ⁇ FaP) / (FaS + FaP) (%).
  • the specific bandwidth of the series arm resonator and the specific bandwidth of the parallel arm resonator are both 13% or more and 60% or less. In this case, the frequency variable amount can be further increased. More preferably, the specific bandwidth of the series arm resonator and the parallel arm resonator is 15% or more. In that case, the frequency variable amount can be further increased.
  • the electrode normalized film thickness is in the range shown in Table 3 below.
  • LiNbO 3 is abbreviated as LN in some cases.
  • LiTaO 3 is abbreviated as LT.
  • the series arm resonator and the parallel arm resonator are formed of a bulk wave resonator, and the bulk wave resonator is opened on an upper surface.
  • a second excitation electrode provided on the upper surface of the piezoelectric thin film and disposed so as to face the first excitation electrode with the piezoelectric thin film interposed therebetween.
  • the series arm resonator and the parallel arm resonator may be constituted by bulk wave resonators.
  • One of the first excitation electrode and the second excitation electrode may be divided into two, and the other may be a common excitation electrode facing the excitation electrode divided into two via a piezoelectric thin film.
  • a thickness shear vibration resonator or a thickness longitudinal vibration resonator may be used as the bulk wave resonator.
  • a resonator circuit unit provided in at least one of a series arm connecting the input terminal and the output terminal and a parallel arm between the series arm and the ground potential; A first variable capacitor connected in series to the resonator circuit unit; and a second variable capacitor connected in parallel to the resonator circuit unit, wherein the resonator circuit unit includes a bulk wave resonator and And an inductor for expanding the bandwidth connected to the bulk wave resonator, the bulk wave resonator provided on the substrate so as to cover the substrate having a cavity opened on an upper surface and the cavity of the substrate.
  • a thickness shear vibration resonator or a thickness longitudinal vibration resonator may be used as the bulk wave resonator.
  • the bulk wave resonator may be a thickness shear vibration resonator.
  • the thickness-shear vibration resonator is a piezoelectric thin film or a piezoelectric thin plate made of LiNbO 3 , and its Euler angle is in the range shown in Table 4 below.
  • the bulk wave resonator may be a thickness longitudinal vibration resonator.
  • a piezoelectric thin film or a piezoelectric thin plate whose thickness longitudinal vibration resonator is made of LiNbO 3 is used, and its Euler angles are (0 ⁇ 5 °, 107 ° to 137 °, ⁇ ), (10 ⁇ 5 °). , 112 ° to 133 °, ⁇ ), (50 ⁇ 5 °, 47 ° to 69 °, ⁇ ) or (60 ⁇ 5 °, 43 ° to 73 °, ⁇ ).
  • the resonator circuit unit includes an elastic wave resonator having a piezoelectric substrate made of LiNbO 3 or LiTaO 3, and a bandwidth expansion inductance connected to the elastic wave resonator. Therefore, the pass bandwidth can be expanded.
  • FrS ⁇ (FrP + FaP) / 2 FrS and FaP ⁇ FaS are satisfied, so that a variable amount of the passband frequency, for example, the center frequency of the passband can be increased. . Therefore, it is possible to provide a tunable filter having a wide frequency variable range.
  • FIG. 1A is a diagram showing a circuit configuration of a tunable filter according to a first embodiment of the present invention
  • FIG. 1B is a schematic plan view showing a surface acoustic wave resonator used in the embodiment.
  • C is a front sectional view of a portion taken along line II in (b).
  • D is a front sectional view of a structure having no SiO 2 film in (c).
  • FIG. 2 is a diagram showing the frequency characteristics of the surface acoustic wave resonator measured in the first experimental example, and the solid line shows the impedance characteristics and phase characteristics of the surface acoustic wave resonator in which the SiO 2 film is formed.
  • FIG. 3A is a front sectional view showing a surface acoustic wave resonator in which an IDT electrode is formed on an LN substrate and a SiO 2 film is further laminated.
  • (B) is a front sectional view of a structure having no SiO 2 film in (a).
  • FIG. 4 is a diagram showing changes in the reflection coefficient when the normalized film thickness H / ⁇ of the IDT electrode of the surface acoustic wave resonator in 36 ° YX-LiTaO 3 is changed in the second experimental example.
  • FIG. 3A is a front sectional view showing a surface acoustic wave resonator in which an IDT electrode is formed on an LN substrate and a SiO 2 film is further laminated.
  • (B) is a front sectional view of a structure having no SiO 2 film in (a).
  • FIG. 4 is a diagram showing changes in the reflection coefficient when the normalized film thickness H / ⁇ of the IDT electrode of the surface
  • FIG. 5 shows changes in the electromechanical coupling coefficient k 2 when the normalized film thickness H / ⁇ of the IDT electrode of the surface acoustic wave resonator in 36 ° YX-LiTaO 3 is changed in the second experimental example.
  • FIG. FIG. 6 is a circuit diagram of the tunable filter according to the first embodiment, in which the capacitances of the variable capacitor C2 and the variable capacitor C3 are made equal, the capacitances of the variable capacitor CP1 and the variable capacitor CP2 are made equal, It is a figure which shows the change of the filter characteristic of a tunable filter when a capacity
  • FIG. 7 is a circuit diagram of the tunable filter used in FIG.
  • FIG. 8 shows impedance characteristics of a buried electrode type surface acoustic wave resonator in which a groove on a LiNbO 3 substrate is filled with metal and a surface acoustic wave resonator for comparison in which an electrode is formed on a LiNbO 3 substrate.
  • FIG. 9 is a diagram illustrating frequency characteristics of a tunable filter of a comparative example in which embedded electrode type surface acoustic wave resonators are used as the series arm resonators S1 and S2.
  • FIG. 10 is a schematic plan sectional view for explaining the tunable filter according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing the frequency characteristics of the surface acoustic wave resonator measured in the first embodiment, and the solid line shows the impedance characteristics and phase characteristics of the surface acoustic wave resonator to which no bonding wire is connected,
  • the broken line is a diagram showing impedance characteristics and phase characteristics of a surface acoustic wave resonator to which bonding wires are connected.
  • FIG. 12A is a schematic plan view for explaining a bandwidth expansion inductance formed of a meander-like conductor pattern formed in a package in another modification of the first embodiment of the present invention.
  • (B) is a typical top view for demonstrating the bandwidth expansion inductance which consists of a spiral-shaped or meander-shaped conductor pattern formed on the piezoelectric substrate.
  • FIG. 13A is a diagram illustrating a circuit configuration of a tunable filter according to a modification of the first embodiment
  • FIG. 13B is a diagram illustrating frequency characteristics when the capacitance of the capacitor CF is changed.
  • FIG. 14 shows that the capacitor CF is not connected in the tunable filter shown in FIG.
  • FIG. 15A is a circuit diagram of a second tunable filter connected to a tunable filter according to a modification of the present invention
  • FIG. 15B is a diagram in which the capacitance of the variable capacitor in FIG. It is a figure which shows the change of the frequency characteristic in a case.
  • FIG. 16A is a circuit diagram showing a tunable filter of a modification in which the second tunable filter shown in FIG.
  • FIG. 15A is cascade-connected to the tunable filter shown in FIG. 14A.
  • (B) is a figure which shows the frequency characteristic of the tunable filter of this modification.
  • FIG. 17 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Al and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 18 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Mo and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 19 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Cu and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 19 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Cu and having a duty of 0.5 is formed on a 10 °
  • FIG. 20 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Ni and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 21 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Ag and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate, and the IDT electrode It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 22 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Au and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate.
  • FIG. 23 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of W and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate, and the IDT electrode It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 23 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of W and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate, and the IDT electrode It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 23 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of W and having a duty of
  • FIG. 24 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Ta and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 25 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Pt and having a duty of 0.5 is formed on a 10 ° Y-cut X-propagation LN substrate. It is a figure which shows the relationship with the normalized film thickness H / ⁇ .
  • FIG. 25 shows the acoustic velocity of a surface acoustic wave in a surface acoustic wave resonator in which an IDT electrode made of Pt and having a duty of 0.5 is formed on a 10
  • FIG. 26 shows an Euler angle (0 °, 0 °, LN substrate) of a surface acoustic wave resonator in which an IDT electrode having a thickness of 0.05 ⁇ and a duty of 0.5 is formed on a LiNbO 3 substrate. It is a figure which shows the relationship between (theta) of 0, 0 degree), and a reflection coefficient.
  • FIG. 27 shows an Euler angle (0 °, 0 °, LN substrate) of a surface acoustic wave resonator in which an IDT electrode made of Cu, having a thickness of 0.05 ⁇ and a duty of 0.5 is formed on a LiNbO 3 substrate.
  • FIG. 28 is a circuit diagram of a tunable filter according to the second embodiment of the present invention.
  • FIG. 29 is a diagram showing a circuit configuration example of a ladder type filter, (a) is a circuit diagram of a ladder type filter in which a series arm resonator is arranged on the input terminal side, and (b) is an input terminal side. It is a circuit diagram which shows the ladder type filter by which the parallel arm resonator is arrange
  • FIG. 30 is a diagram showing the relationship between the resonance characteristics of the parallel arm resonator and the resonance characteristics of the series arm resonator in the conventional ladder type filter.
  • FIG. 31 is a diagram illustrating the relationship between the resonance characteristics of the parallel arm resonator and the resonance characteristics of the series arm resonator in the tunable filter according to the embodiment of the present invention.
  • FIG. 32 is a diagram illustrating the filter characteristics of the ladder-type tunable filter according to the second embodiment of the present invention, and the frequency can be changed.
  • FIG. 33 is a diagram showing an electrode film thickness where fa coincides with the bulk shear wave velocity when duty changes in an electrode made of Al, Mo, Cu, Ni, Ag, Au, W, Ta, or Pt.
  • FIG. 34 shows the characteristics of the ladder-type tunable filter according to the second embodiment configured such that the difference between FrP and FaS is 45 MHz.
  • FIG. 35 is a front cross-sectional view for explaining a bulk wave resonator used in a ladder-type tunable filter in a modification of the second embodiment of the present invention.
  • FIG. 36 is a schematic plan view of a ladder type tunable filter according to a modification of the second embodiment of the present invention.
  • FIG. 37 is a circuit diagram of a ladder type tunable filter according to a modification of the second embodiment of the present invention.
  • FIG. 38 is a diagram illustrating impedance characteristics of a series arm resonator and a parallel arm resonator in a ladder type tunable filter according to a modified example of the second embodiment.
  • FIG. 39 is a diagram illustrating the attenuation frequency characteristics of the ladder-type tunable filter and the adjustable range in a modification of the second embodiment.
  • FIGS. 40A and 40B are front sectional views showing modifications of the bulk wave resonator used in the present invention.
  • FIG. 41 is a diagram illustrating impedance characteristics of a thickness-shear bulk wave resonator used in a ladder-type tunable filter according to another modification of the second embodiment of the present invention.
  • FIG. 42 shows a band of a ladder-type tunable filter according to another modification of the second embodiment of the present invention when a coil is connected to a bulk wave resonator that is a thickness shear resonator made of LiNbO 3 .
  • FIG. 43 is a thickness shear vibration resonator using LiNbO 3 with Euler angles ( ⁇ , ⁇ , ⁇ ) used in a ladder type tunable filter according to another modification of the second embodiment of the present invention. It is a figure which shows the relationship between (phi) and (theta) of Euler angles in a certain bulk wave resonator, and a bandwidth.
  • FIG. 44 shows a ladder-type tunable filter according to another modification of the second embodiment of the present invention, which is a thickness-shear vibration resonator made of LiNbO 3 having an Euler angle of (30 °, 90 °, ⁇ ).
  • FIG. 45 is a diagram showing the relationship between the Euler angles ⁇ and ⁇ and the bandwidth of a bulk wave resonator that is a thickness longitudinal resonator using a piezoelectric material made of LiNbO 3 .
  • FIG. 46 is a circuit diagram for explaining a conventional tunable filter.
  • FIG. 1A is a circuit diagram of a tunable filter according to the first embodiment of the present invention
  • FIG. 1B is a schematic plan view of a surface acoustic wave resonator used in the tunable filter.
  • C is a front sectional view of a portion taken along line II in (b).
  • D is a front sectional view of a structure having no SiO 2 film in (c).
  • series arm resonator circuit portions S11 and S12 are connected in series with each other at the series arm connecting the input terminal 22 and the output terminal 23.
  • inductances Lx and Lx are connected in series to the series arm resonator S1 on both sides of the series arm resonator S1.
  • inductances Lx and Lx are connected in series to the series arm resonator S2 on both sides of the series arm resonator S2.
  • a variable capacitor C2 is connected in series to the series arm resonator circuit unit S11.
  • a capacitor C1 is provided on the first parallel arm connecting the series arm and the ground potential.
  • An inductance L1 is provided on the second parallel arm connecting the connection point between the series arm resonator circuit portions S11 and S12 and the ground potential.
  • a variable capacitor C3 is connected to the series arm resonator circuit unit S12.
  • a capacitor C4 is provided on the third parallel arm connecting the output terminal 23 and the ground potential.
  • Capacitors C1 and C4 are matching elements for impedance matching between the tunable filter and the front and rear circuits.
  • the inductance L1 is a coupling element for impedance matching between the series arm resonator circuit portions S11 and S12.
  • the matching element is a capacitor and the coupling element is an inductance, but the coupling element may be a capacitor.
  • variable capacitor CP1 is connected in parallel to the series arm resonator circuit unit S11.
  • variable capacitor CP2 is connected in parallel to the series arm resonator circuit unit S12.
  • variable capacitors C2 and C3 connected in series to the series arm resonator circuit portions S11 and S12 are the first variable capacitors in the present invention.
  • the variable capacitors CP1 and CP2 connected in parallel to the series arm resonator circuit portions S11 and S12 are the second variable capacitors in the present invention.
  • the first variable capacitors C2 and C3 and the second variable capacitors CP1 and CP2 are connected to all the series arm resonator circuit units S11 and S12, respectively.
  • the first variable capacitor and the second variable capacitor may be connected to at least one series arm resonator circuit unit.
  • the series arm resonator circuit units S11 and S12 are provided.
  • a similar resonator circuit unit may be provided in the parallel arm. That is, the parallel arm may be provided with a resonator circuit portion to which the bandwidth expansion inductance is connected in series with the parallel arm resonator.
  • the resonator circuit unit may be configured only in the parallel arm without being provided in the series arm.
  • a common bandwidth expansion inductance may be connected to a plurality of resonators provided in the parallel arm. By connecting in this way, the number of bandwidth expansion inductances can be reduced.
  • the parallel arm has a circuit portion for connecting the series arm and the ground potential.
  • the capacitor C1 and the capacitor C4 are provided on the parallel arm.
  • a parallel arm may be formed in the same manner as the provided structure, and the resonator circuit unit may be provided on the parallel arm.
  • the series arm resonators S1 and S2 are surface acoustic wave resonators.
  • the structure of the surface acoustic wave resonator will be described as a representative of the series arm resonator S1.
  • the surface acoustic wave resonator constituting the series arm resonator S ⁇ b> 1 has a piezoelectric substrate 11.
  • the piezoelectric substrate 11 is a LiNbO 3 substrate having Euler angles (0 °, 105 °, 0 °).
  • a plurality of grooves 11b are formed in the upper surface 11a of the piezoelectric substrate 11 as concave portions.
  • An IDT electrode 12 is formed by filling the groove 11b with an electrode material.
  • reflectors 13 and 14 are formed on both sides of the IDT electrode 12 in the surface acoustic wave propagation direction. Therefore, a 1-port surface acoustic wave resonator is formed.
  • the reflectors 13 and 14 are also formed by filling a recess provided on the upper surface 11a of the piezoelectric substrate 11, that is, a plurality of grooves, with an electrode material.
  • the upper surface of the IDT electrode 12, that is, the upper surface of the electrode finger portion, is flush with the upper surface 11a of the piezoelectric substrate 11.
  • the upper surface 11a of the piezoelectric substrate 11 is flat.
  • an SiO 2 film 15 is formed so as to cover the upper surface 11a of the piezoelectric substrate 11.
  • no SiO 2 film is formed.
  • the surface acoustic wave resonators shown in FIGS. 1C and 1D are assumed to be buried electrode type surface acoustic wave resonators.
  • the series arm resonators S1, S2 consists of the embedded electrode type surface acoustic wave resonator, it is possible to increase the electromechanical coupling coefficient k 2 of the surface acoustic wave resonator, Thereby, the specific bandwidth can be increased.
  • the SiO 2 film is formed, the absolute value of the frequency temperature coefficient TCF can be reduced, and the change in characteristics due to the temperature change can be reduced. This will be described with reference to the following first experimental example and second experimental example.
  • the solid line in FIG. 2 shows a 15 ° Y-cut X-propagation LiNbO 3 substrate, that is, an Euler angle (0 °, 105 °, 0 °) LiNbO 3 substrate, Al as an electrode material, and a surface acoustic wave resonator.
  • 8 is a diagram showing impedance characteristics and phase characteristics of a surface acoustic wave resonator when the thickness of the IDT electrode 12 is 0.17 ⁇ and the thickness of the SiO 2 film is 0.22 ⁇ . is there.
  • the impedance-frequency characteristics and phase characteristics of the surface acoustic wave resonator formed in the same manner as shown in FIG. Show.
  • the ratio of the valley and valley which is the ratio of the impedance at the antiresonance point to the impedance at the resonance frequency, was 57.5 dB when the SiO 2 film was not formed, whereas it was SiO 2. In the structure in which the film is formed, it can be increased to 60.2 dB. Further, the frequency temperature coefficient TCF was ⁇ 120 ppm / ° C. when the SiO 2 film was not provided, but the absolute value thereof can be reduced to ⁇ 10 to ⁇ 30 ppm / ° C. by forming the SiO 2 film. It was possible.
  • the electromechanical coupling coefficient k 2 is slightly reduced by the formation of the SiO 2 film, but the ratio of peaks and valleys can be increased. In addition, it can be seen that the temperature characteristics can be improved.
  • First surface acoustic wave resonator A a structure in which an IDT electrode 12 is formed on the upper surface of a piezoelectric substrate 11 and an SiO 2 film 15 is further formed as shown in FIG. On the upper surface of the SiO 2 film, a convex portion having a height corresponding to the thickness of the underlying electrode is formed in a portion where the electrode is positioned below.
  • Second surface acoustic wave resonator B Same as the first surface acoustic wave resonator A except that there is no convex portion on the upper surface of the SiO 2 film. The upper surface of the SiO 2 film is flattened.
  • Third surface acoustic wave resonator C a structure in which an IDT electrode and a reflector are formed by filling a groove provided on an upper surface of a piezoelectric substrate with an electrode material. The upper surface of the electrode and the upper surface of the piezoelectric substrate are flush with each other. A structure in which a convex portion having a height substantially equal to the thickness of the electrode is formed on the upper surface of the SiO 2 film in a portion where the electrode exists below.
  • the fourth surface acoustic wave resonator D not projecting portion on the upper surface of the SiO 2 film is formed, except that a top surface of the SiO 2 film is flat, the third surface acoustic wave resonator Same structure as C.
  • Fifth surface acoustic wave resonator E a structure in which only an electrode is formed on a substrate and SiO 2 is not formed.
  • FIG. 4 in the first to fifth surface acoustic wave resonators A to E, when the normalized film thickness of the SiO 2 film is 0.3, the normalized film thickness H / ⁇ of the Au electrode is changed. Shows the change in reflection coefficient.
  • FIG. 5 in the first to fourth surface acoustic wave resonator, a diagram showing changes in electromechanical coefficient k 2 in the case of changing the standardized thickness H / lambda of the electrodes.
  • the frequency temperature coefficient TCF of the SiO 2 film has a positive value
  • the frequency temperature coefficient TCF of the LiTaO 3 substrate has a negative value. Therefore, in any case, the absolute value of the frequency temperature coefficient TCF can be reduced by forming the SiO 2 film, and the temperature characteristics can be improved.
  • the electromechanical coupling coefficient k 2 becomes small, it can be seen that the electromechanical coupling coefficient k 2 as the normalized thickness H / lambda of the IDT electrode increases decreases.
  • the electromechanical coupling coefficient k 2 is effective by setting the normalized film thickness of the IDT electrode to 0.01 to 0.09. It can be seen that it can be increased. It can be seen that a large electromechanical coupling coefficient k 2 obtained in normalized thickness 0.01-0.04 fifth type IDT electrode in the surface acoustic wave resonator E.
  • the reflection coefficient increases as the film thickness of the IDT electrode increases.
  • the fourth surface acoustic wave resonator D in the third surface acoustic wave resonator C provided with a convex portion on the upper surface. It can be seen that if the normalized film thickness of the IDT electrode is the same, the reflection coefficient can be increased. Therefore, it can be seen that it is desirable to form a protrusion on the upper surface of the SiO 2 film in order to increase the reflection coefficient.
  • the reflection coefficient only needs to be a certain amount (for example, 0.02) or more depending on the application. Therefore, in order to reduce the variation in the reflection coefficient due to the variation in the film thickness of the IDT electrode, or to form a wide-band resonator, the SiO 2 film It can be seen that a fourth type of surface acoustic wave resonator D or E having a flat upper surface is desirable.
  • the present experimental example Au is buried in the groove provided on the upper surface of the LiTaO 3 piezoelectric substrate with Euler angles (0 °, 126 °, 0 °) to form an IDT electrode, and SiO 2
  • the normalized film thickness of the IDT electrode is set to 0.01 to 0.09 to effectively increase the electromechanical coupling coefficient. I know you get. Therefore, it can be seen that the specific bandwidth can be widened. Therefore, it can be seen that the frequency characteristics of the tunable filter can be adjusted more effectively when used for a series arm resonator or a parallel arm resonator of the tunable filter. Similar results are obtained with electrodes other than Au.
  • FIG. 6 shows frequency characteristics of the tunable filter 1 using the surface acoustic wave resonator shown by the solid line in FIG.
  • the inductance value of the bandwidth expansion inductance Lx is 4.5 nH.
  • the configuration was the same as in the above embodiment. That is, the tunable filter 41 of the comparative example shown in FIG. 7 was produced. Even when the third capacitor Cf is not connected, the same result as when the third capacitor Cf is connected is obtained. Therefore, the tunable filter 41 of the comparative example has the third capacitor Cf, but can be used for comparison with the above embodiment.
  • the center frequency can be changed without changing the passband width and without deteriorating the attenuation on the higher frequency side than the passband.
  • the solid line in FIG. 8 shows the impedance-frequency characteristics of an example of a surface acoustic wave resonator in which a groove on the LiNbO 3 substrate is filled with metal, and the broken line is a comparison for forming an electrode on the LiNbO 3 substrate. The impedance characteristic of a surface acoustic wave resonator is shown.
  • FIG. 9 shows frequency characteristics when the buried electrode type surface acoustic wave resonator is used as the series arm resonators S1 and S2 in the tunable filter 41 of the comparative example. Again, the capacitances of the variable capacitor C2 and the variable capacitor C3 are made equal, and the capacitances of the variable capacitor CP1 and the variable capacitor CP2 are made equal.
  • the tunable filter 1 of the present embodiment includes the inductance Lx for expanding the bandwidth, and therefore can achieve a wider band than the tunable filter 41 of the comparative example. .
  • the impedance value when the capacitances of the capacitors C1 and C4 are 2.5 pF is 35 ⁇ at 1800 MHz, which is almost matched with the external impedance of 50 ⁇ , so that the insertion loss can be reduced.
  • the impedance of the inductance L1 (inductance value 4.5 nH) near 1800 MHz is 45 ⁇ .
  • FIG. 8 shows the impedance-frequency characteristics of a surface acoustic wave resonator having an electrode embedded in an LN substrate, and the impedance of a conventional surface acoustic wave resonator in which an electrode is formed on the LN substrate.
  • FIG. 6 is a diagram showing a comparison with frequency characteristics. Cu IDT electrodes and reflectors with a normalized film thickness H / ⁇ of 0.1 are formed in both buried electrode type surface acoustic wave resonators and non-buried electrode type surface acoustic wave resonators. .
  • the surface bandwidth of the surface acoustic wave resonator that is not a buried electrode type has a specific bandwidth of 13%. Therefore, it can be seen that the specific bandwidth of the surface acoustic wave resonator which is not of the buried electrode type is narrower than the specific bandwidth of 17% of the buried electrode type surface acoustic wave resonator. Even in the case of such a surface acoustic wave resonator that is not a buried electrode type with a small specific bandwidth, the specific bandwidth can be expanded by shifting the resonance point by the bandwidth expansion inductance. Accordingly, a large frequency variable amount can be obtained in the tunable filter.
  • the specific bandwidth is a value obtained by dividing the absolute value of the difference between the resonance frequency and the anti-resonance frequency by the resonance frequency.
  • the bandwidth expanding inductance Lx is configured by a bonding wire that electrically connects the surface acoustic wave resonator to the package.
  • an extra component for configuring the bandwidth expansion inductance Lx is not required, and therefore the size can be reduced.
  • An example of a specific structure in which the bandwidth expansion inductance Lx is configured by such a bonding wire will be described with reference to FIGS.
  • FIG. 10 is a schematic plan sectional view for explaining the tunable filter according to the first embodiment.
  • an actual layout of the series arm resonators S1 and S2 on the piezoelectric substrate 200 and a state in which the piezoelectric substrate 200 is housed in a package are shown.
  • a piezoelectric substrate 200 made of a 15 ° Y-cut LiNbO 3 substrate is used.
  • series arm resonators S1 and S2 are configured.
  • the series arm resonator S 1 is a 1-port surface acoustic wave resonator having an IDT electrode 12.
  • the IDT electrode 12 has comb-tooth electrodes 12a and 12b.
  • Reflectors 13 and 14 are formed on both sides of the IDT electrode 12 in the surface acoustic wave propagation direction.
  • the IDT electrode 12 and the reflectors 13 and 14 are provided by embedding an electrode material in a groove formed on the upper surface of the piezoelectric substrate 200.
  • a Cu electrode is used as the electrode material.
  • the normalized film thickness of the electrode fingers of the IDT electrode 12 and the reflectors 13 and 14 is 0.07, and the duty is 0.6.
  • the series arm resonator S2 is configured in the same manner as the series arm resonator S1.
  • terminals 201, 202, and 203 made of electrode films are formed on the piezoelectric substrate 200.
  • the terminal 201 is connected to the comb electrode 12 b of the IDT electrode 12.
  • the terminals 202 and 203 are electrically connected to the comb electrode 12a.
  • one end of the IDT electrode is connected to the terminal 201A.
  • the other end of the IDT electrode is connected to the terminals 202A and 203A.
  • the terminals 201 to 203 and 201A to 203A are made of the same electrode material as that constituting the IDT electrode.
  • the piezoelectric substrate 200 is accommodated in the package 205. Electrodes 206 to 209 are formed on the package 205 side. A terminal 201 is connected to the electrode 206 by a bonding wire 211. Similarly, the terminal 202 is connected to the electrode 207 by a bonding wire 212. In addition, the terminal 201A is connected to the electrode 208 by a bonding wire 213, and the terminal 202A is connected to the electrode 209 by a bonding wire 214. Now, in order to explain the influence of the bonding wires 211 and 212, the series arm resonator S1 will be described as a representative.
  • the solid lines in FIG. 11 indicate the impedance characteristics and phase characteristics of the series arm resonator S1, that is, the surface acoustic wave resonator, before the bonding wires 211 and 212 are connected.
  • measurement is performed by bringing the probe on the signal potential side into contact with the terminal 201 and bringing the tip of the probe on the ground potential side into contact with the terminal 202. It was.
  • broken lines in FIG. 11 indicate impedance characteristics and phase characteristics between the electrodes 206 and 207 after the piezoelectric substrate 200 is mounted on the package 205 and the terminals 201 and 202 are connected to the electrodes 206 and 207 by the bonding wires 211 and 212. Indicates. In this case, after the mother wafer was divided and the piezoelectric substrate 200 was obtained, the measurement was performed after the bonding wires 211 and 212 were connected.
  • the resonance point is shifted to the low frequency side due to the inductance of the bonding wire, and accordingly, the band that is the difference between the anti-resonance frequency and the resonance frequency. It can be seen that the width has expanded. That is, the bonding wire functions as a bandwidth expansion inductance.
  • the bandwidth expansion inductance made of the bonding wire is used.
  • the bandwidth expansion inductance 221 made of the meandering conductor pattern formed in the package 205 is used. May be used.
  • a bandwidth expanding inductance 221A made of a spiral conductor pattern formed on the piezoelectric substrate 200 may be used.
  • the bandwidth expansion inductance may be a spiral or meandering conductor pattern.
  • FIGS. 12A and 12B show a so-called face-up type surface acoustic wave resonator element chip in which the electrode forming surface of the piezoelectric substrate faces upward.
  • a face-down type surface acoustic wave resonator element chip in which the IDT electrode formation surface of the surface acoustic wave resonator blocking chip faces the mounting electrode surface of the package may be used.
  • the third capacitor Cf used in the tunable filter 41 of the comparative example shown in FIG. 7 is not connected.
  • the pass bandwidth can be expanded and the frequency variable amount can be increased.
  • the steepness of the filter characteristics on the high passband side can be increased, but the steepness on the low band side is not so high.
  • the bandpass filter on the relatively high frequency side of the duplexer is required to have high steepness in the filter characteristics on the low frequency side. Therefore, a circuit of a tunable filter that can enhance the steepness of the filter characteristics on the low frequency side has been studied.
  • FIG. 13B shows the frequency characteristics when the capacitance of the third capacitor Cf is changed to 0 pF, 1 pF, 2 pF, 5 pF, or 10 pF in the tunable filter 51.
  • FIG. 13B it can be seen that the steepness of the filter characteristics on the low frequency side can be increased.
  • FIG. 13B shows frequency characteristics of the tunable filter 51 in this case. As can be seen from FIG. 14, even if the capacitance values of the capacitors C2, C3, CP1, and CP2 are changed, the attenuation in the vicinity of 2400 MHz does not change.
  • the frequency can be changed to 1800 MHz, 1700 MHz, and 1530 MHz by changing the capacitance of the variable capacitor as described above. Therefore, the center frequency of the second tunable filter 301 can be made substantially coincident with the center frequency of the tunable filter 51 by adjusting the capacitance of the variable capacitor 303.
  • a second tunable filter 301 configured so that the center frequency substantially matches the center frequency of the tunable filter 51 is cascade-connected to the tunable filter 51 as shown in FIG. 304 was produced.
  • the frequency characteristics of the tunable filter 304 are shown in FIG.
  • variable capacitor in which the variable capacitor is connected to the series arm resonator circuit unit in which the bandwidth expansion inductance is connected to the surface acoustic wave resonator has been described.
  • An appropriate variable capacitor that can change the capacitance mechanically or electrically can be used.
  • the embedded electrode type surface acoustic wave resonator is used.
  • FIGS. 17-25 show 10 ° Y-cut X propagation, ie, from the top of LiNbO 3 with Euler angles (0 °, 100 °, 0 °) from Al, Mo, Cu, Ni, Ag, Au, W, Ta or Pt. It is a figure which shows the characteristic of the surface acoustic wave resonator of the structure of FIG.
  • FIG. 3B shows a structure in which the SiO 2 film in FIG.
  • the standardized film thickness range of the Al electrode where both fr and fa become faster or slower than 4060 m / sec which is the sound velocity of the bulk shear wave which is slow is 0.001 to 0.00. 03 and 0.115 or more.
  • the normalized film thickness range of the electrode made of Mo may be 0.001 to 0.008 and 0.045 or more. Table 5 below summarizes the case of other electrode metals.
  • the film thickness of the IDT electrode may be set so as to be in the normalized film thickness range shown in the second column or the third column.
  • the normalized film thickness range in the second column of Table 5 may be set. Furthermore, in order to eliminate the influence of the leakage component, the normalized film thickness range in the third column of Table 5 may be used.
  • FIG. 33 shows the duty of an electrode made of Al, Mo, Cu, Ni, Ag, Au, W, Ta or Pt and the normalized film thickness (H / ⁇ ) when fa is equal to the bulk wave sound velocity of 4060 m / sec. Shows the relationship.
  • Table 6 shows the conditions that the normalized film thickness (H / ⁇ ) of each electrode should satisfy when the duty is X. That is, fa is 4060 m / sec or less when the line thickness is greater than the line in FIG. 33 or the electrode film thickness range shown in Table 6 below, and therefore is not affected by bulk waves.
  • FIGS. 17 to 25 show the results in the case of LiNbO 3 of 10 ° Y-cut X propagation, that is, Euler angles (0 °, 100 °, 0 °).
  • 70. range reflection coefficient and the electromechanical coupling coefficient of ⁇ 115 ° k 2 does not change much. Therefore, the Euler angle of LiNbO 3 may be in the range of (0 °, 70 ° to 115 °, 0 °).
  • the duty is less than 0.5, more preferably in the range of 0.15 to 0.49.
  • the bandwidth can be expanded by the bandwidth expansion inductance.
  • FIG. 28 is a circuit diagram showing a tunable filter according to the second embodiment of the present invention.
  • the second embodiment is an embodiment of the second invention of the present application.
  • the series arm resonators S1 and S2 are connected in series with each other in the series arm connecting the input terminal 602 and the output terminal 603.
  • a variable capacitor Css is connected to the input side of the series arm resonator S1, and another variable capacitor Css is connected to the output side of the series arm resonator S2.
  • a variable capacitor Csp is connected in parallel to the series arm resonator S1, and a variable capacitor Csp is also connected in parallel to the series arm resonator S2.
  • the parallel arm resonator P1 is provided on the parallel arm connecting the connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential.
  • a capacitor Cps is connected in series to the parallel arm resonator P1 on the ground side of the parallel arm resonator P1.
  • a capacitor Cpp is connected in parallel to the parallel arm resonator P1.
  • the tunable filter 601 according to the second embodiment is a tunable filter having a ladder circuit configuration including a series arm having series arm resonators S1 and S2 and a parallel arm having a parallel arm resonator P1.
  • the resonance frequency and the anti-resonance frequency of the series arm resonators S1 and S2 are FrS and FaS, respectively.
  • the resonance frequency and antiresonance frequency of the parallel arm resonator P1 are FrP and FaP, respectively.
  • FrS, FaS, FrP, and FaP are FrS ⁇ ⁇ (n ⁇ 1) FrP + FaP ⁇ / n, and FaP ⁇ ⁇ (n ⁇ 1) FaS + FrS ⁇ / n, and n Is an integer of 2 or more and 30 or less.
  • a ladder-type tunable filter is configured by connecting to a variable capacitor connected to at least one of the series arm resonator and the parallel arm resonator. Therefore, the frequency variable amount of the tunable filter can be increased. This will be described in detail below.
  • a ladder type filter has a circuit configuration shown in FIG. 29 (a) or (b). That is, in the ladder type filter 701 shown in FIG. 29A, the series arm resonator S1 is connected to the input terminal 702. The parallel arm resonator P1 closest to the input terminal 702 is provided on the parallel arm that connects the connection point between the series arm resonator S1 and the next series arm resonator S2 and the ground potential.
  • the parallel arm resonator P1 is connected to the input terminal 705.
  • FIG. 30 is a diagram illustrating impedance characteristics of the series arm resonator and the parallel arm resonator. As shown by the solid line in FIG. 30, the anti-resonance frequency FaP of the parallel arm resonator and the resonance frequency FrS of the series arm resonator indicated by the broken line are the same. In this way, the insertion loss in the passband is reduced.
  • a tunable filter cannot be configured even if the capacitance is connected in series or in parallel to the series arm resonator or the parallel arm resonator, respectively. This will be described below.
  • a pass band is formed around the frequency at which the anti-resonance frequency FaP of the parallel arm resonator and the resonance frequency FrS of the series arm resonator coincide with each other.
  • the attenuation poles on both sides of the pass band are generated at the resonance frequency FrP of the parallel arm resonator and the anti-resonance frequency FaS of the series arm resonator.
  • the resonance frequency FrP of the parallel arm resonator increases. Accordingly, the frequency of the attenuation pole on the low frequency side of the pass band is increased, but the pass band is not changed.
  • the anti-resonance frequency FaS of the series arm resonator is lowered. Therefore, the frequency of the attenuation pole on the high frequency side of the pass band is lowered, but the pass band is not changed.
  • the anti-resonance frequency FaP of the parallel arm resonator decreases.
  • a filter characteristic that reduces insertion loss at each of the antiresonance frequency FaP of the parallel arm resonator and the resonance frequency FrS of the series arm resonator that is, a so-called bimodal characteristic is obtained. Accordingly, the filter characteristics are deteriorated. If the resonance frequency FrS of the series arm resonator can be lowered, the deterioration of the filter characteristics can be corrected. However, it is impossible to correct the deterioration of the filter characteristics by means of connecting a capacitance.
  • the resonance frequency FrS of the series arm resonator increases.
  • the anti-resonance frequency FaP of the parallel arm resonator and the resonance frequency FrS of the series arm resonator each have a filter characteristic with a small insertion loss, that is, a bimodal characteristic. Accordingly, the filter characteristics are deteriorated. If the anti-resonance frequency FaP of the parallel arm resonator can be increased, the deterioration of the filter characteristics can be corrected. However, it is impossible to correct the deterioration of the filter characteristics by means of connecting a capacitance.
  • the anti-resonance frequency FaP of the parallel arm resonator is decreased, and the capacitance is connected in series to the series arm resonator.
  • the resonance frequency FrS of the series arm resonator is increased.
  • a filter having a center frequency in the frequency band between FrS and FaP before connecting the capacitance can be obtained. Therefore, the filter characteristic does not become a bimodal characteristic. Therefore, a tunable filter that can vary the center frequency of the filter between FrS and FaP can be obtained by adjusting the value of the connected capacitance.
  • n 3, and FrS ⁇ (2FrP + FaP) / 3, FaP> FrS, and FaP ⁇ FaS are set. Since surface acoustic wave resonators having substantially the same ⁇ f, which is the difference between the antiresonance frequency and the resonance frequency, can be used as the series arm and the parallel arm resonator, the design is easy.
  • N may be selected according to the specification of the tunable filter.
  • a broadband resonator is prepared and the frequency of the series arm resonator is provided. It is necessary to devise how to combine the characteristics and the frequency of the parallel arm resonator. Specific examples will be described below.
  • FIG. 31 is a diagram showing impedance characteristics of the parallel arm resonator and the series arm resonator configured using the surface acoustic wave resonator having the embedded electrode described above.
  • the wavelength and the crossing width determined by the pitch of the IDT electrodes were adjusted, and the impedance characteristics of the parallel arm resonator and the series arm resonator were adjusted.
  • the resonance frequency FrP is 1629 MHz and the anti-resonance frequency FaP is 1903 MHz.
  • the resonance frequency FrS of the series arm resonator was set to 1720 MHz, which is 91 MHz higher than 1629 MHz.
  • the specific bandwidth of the series arm resonator was designed to be 17%, similar to the specific bandwidth of the parallel arm resonator.
  • the specific bandwidth of the resonator is a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency by the resonance frequency.
  • the series arm resonators S1 and S2 and the parallel arm resonator P1 in the tunable filter 601 shown in FIG. 28 are configured using the parallel arm resonator and the series arm resonator having impedance characteristics shown in FIG.
  • the antiresonance frequency FaP of the series arm resonators S1 and S2 is set to 2010 MHz as is apparent from FIG.
  • FIG. 32 shows the filter characteristics of the tunable filter 601 when the capacitances of the variable capacitors Css and Csp and the capacitors Cps and Cpp are the following first to third combinations.
  • the result of the first combination is indicated by a broken line
  • the result of the second combination is indicated by a solid line
  • the result of the third combination is indicated by a one-dot chain line.
  • the passband can be changed greatly by adjusting the sizes of Css, Csp, Cps and Cpp. That is, the center frequency could be changed very greatly to about 9%.
  • the 3 dB bandwidth is 92 MHz.
  • the 3 dB bandwidth is the width of the frequency band having an insertion loss that is 3 dB larger than the minimum insertion loss in the passband. If the frequency at one end of this frequency range is F1, and the frequency at the other end is F2, the 3 dB bandwidth is the absolute value of the difference between the frequency F1 and the frequency F2.
  • the center frequency of the tunable filter 601 is represented by (F1 + F2) / 2.
  • the frequency variable amount can be set to 9% as described above.
  • FIG. 34 shows the filter characteristics of the ladder type tunable filter in the same manner as the tunable filter 601 with the difference between FrP and FrS being 45 MHz.
  • the 3 dB bandwidth is 46 MHz.
  • the frequency variable width is also increased to 11.5%.
  • the 3 dB bandwidth and the frequency variable amount when the difference between the resonance frequency FrS of the series arm resonator and the resonance frequency FrP of the parallel arm resonator is variously determined in the same manner.
  • the results are shown in Table 7 below.
  • Table 7 As apparent from Table 7, by changing the difference between the resonance frequency FrS of the series arm resonator and the resonance frequency FrP of the parallel arm resonator, the 3 dB bandwidth of the tunable filter 601 is changed and the frequency variable amount is changed. Can be changed.
  • the center frequency of the tunable filter at this time is about 1820 MHz.
  • the frequency variable amount is the midpoint between the center frequencies of the difference between the center frequency in the first combination with the lowest center frequency and the center frequency in the third combination with the highest center frequency. It shall be the ratio (%) to the frequency.
  • FrS-FrP The ratio of the resonator to the specific bandwidth may be set as shown in Table 8 below.
  • the specific bandwidth of the series arm resonator and the specific bandwidth of the parallel arm resonator are preferably 13% or more. Thereby, as described above, the frequency variable amount can be further increased. More preferably, the specific bandwidth of the series arm resonator and the parallel arm resonator is 15% or more, whereby the frequency variable amount can be further increased. Note that an acoustic wave resonator having a specific bandwidth exceeding 60% is not generally used in a band-pass filter. Therefore, the specific bandwidth is preferably 13% or more and 60% or less.
  • t is a value obtained by normalizing a frequency-variable width (FaP ⁇ FrS) by (FaP + FrS) / 2, and a specific bandwidth y of the series arm resonator and the parallel arm resonator is a specific bandwidth. Is a value normalized at each resonance frequency.
  • the frequency variable width t is experimentally the maximum, t ⁇ 2 ⁇ (FaP ⁇ FrS) / (FaP + FrS) ⁇ 0.9 ⁇ 100 (%) It is. Accordingly, a suitable variable width is between 0.7 ⁇ t and 0.9 ⁇ t in consideration of the obtained filter characteristics. Therefore, the minimum 3 dB bandwidth is (FrS ⁇ FrP) ⁇ 0.9 or (FaS ⁇ FaP) ⁇ 0.9, whichever is smaller, and the maximum frequency variable width is 140 ⁇ (FaP ⁇ FrS) / (FaP + FrS). ) (%) To 180 ⁇ (FaP ⁇ FrS) / (FaP + FrS) (%).
  • the frequency variable width can be increased by combining the frequency characteristics of the series arm resonators S1 and S2 and the parallel arm resonator P1.
  • the frequency variable width can be increased by combining the frequency characteristics of the series arm resonators S1 and S2 and the parallel arm resonator P1 as described above.
  • a ladder-type filter may be configured by providing a series arm resonator circuit unit and a parallel arm resonator circuit unit, and the series arm resonator circuit unit and the parallel arm resonator circuit unit.
  • the frequency position where the spurious due to the Rayleigh wave is between the resonance frequency and the antiresonance frequency or higher than the antiresonance frequency.
  • the spurious due to the Rayleigh wave appears at a frequency position lower than the resonance frequency. Therefore, it is desirable to use a non-embedded surface acoustic wave resonator as a series arm resonator and an embedded electrode type surface acoustic wave resonator as a parallel arm resonator. As a result, a tunable filter that is less prone to spurious within the passband can be obtained.
  • the frequency characteristics of the series arm resonator and the parallel arm resonance are expressed as shown in the above formula (1).
  • the frequency variable width can be increased by combining the frequency characteristics of the children and expanding the bandwidth.
  • the ladder type tunable filter 61 of this embodiment has an input terminal 62, an output terminal 63, and a ground terminal 64 connected to the ground potential.
  • First and second bulk wave resonators 65 and 66 are inserted in series with each other in a series arm connecting the input terminal 62 and the output terminal 63.
  • a first variable capacitor CSs1 is connected between the input terminal 62 and the first bulk wave resonator 65.
  • a variable capacitor CSp1 is connected in parallel to the first bulk wave resonator 65.
  • a variable capacitor CSp2 is connected in parallel to the second bulk wave resonator 66.
  • a variable capacitor CSs ⁇ b> 2 is connected between the bulk wave resonator 66 and the output terminal 63.
  • a third bulk wave resonator 67 as a parallel arm resonator is connected to a parallel arm connecting the connection point N between the first and second bulk wave resonators 65 and 66 and the ground terminal 64.
  • a variable capacitor CPs is connected between the third bulk wave resonator 67 and the connection point N between the first and second bulk wave resonators 65 and 66.
  • a variable capacitor CPp is connected in parallel to the third bulk wave resonator 67.
  • the frequency position of the pass band can be adjusted by adjusting the capacitances of the variable capacitors CSs1, CSs2, CSp1, CSp2, CPs, and CPp.
  • FIG. 35 is a front sectional view of the first bulk wave resonator 65.
  • the bulk wave resonator 65 has a substrate 68 made of an appropriate insulating material such as Si or a semiconductor material.
  • the substrate 68 has a cavity including a through hole 68a.
  • a piezoelectric thin film 69 is laminated on the substrate 68.
  • the piezoelectric thin film 69 is provided so as to cover the through hole 68a.
  • the piezoelectric thin film 69 is made of KNbO 3 in this embodiment.
  • the piezoelectric thin film 69 may be a piezoelectric thin plate or may be formed of another piezoelectric material.
  • the second excitation electrode 70 ⁇ / b> A is formed on the lower surface of the piezoelectric thin film 69 in the portion covering the through hole 68 a of the piezoelectric thin film 69.
  • a first excitation electrode 71A is provided so as to face the second excitation electrode 70A via the piezoelectric thin film 69.
  • the first and second excitation electrodes 71A and 70A are made of Al.
  • the excitation electrodes 70A and 71A can be formed of an appropriate metal such as Cu, Ag, Au, Pt, Mo, Ni or an alloy mainly composed of these.
  • the portions where the first and second excitation electrodes 71A and 70A face each other constitute an excitation unit.
  • a cavity including a through hole 68a is positioned below. Accordingly, the vibration of the piezoelectric thin film 69 is not easily disturbed in the excitation unit.
  • the vibration modes of the bulk wave resonator include thickness shear vibration and thickness longitudinal vibration. What is necessary is just to adjust the dimension of an excitation electrode suitably according to the vibration mode to utilize.
  • thickness shear vibration in FIG. 35, when a voltage is applied between the excitation electrodes 70A and 71A formed on the piezoelectric thin film 69, the propagation direction of the bulk wave, that is, the thickness direction of the piezoelectric thin film and the displacement direction of the bulk wave. Is a vibration mode that is substantially vertical.
  • the propagation direction of the bulk wave that is, the thickness direction of the piezoelectric thin film and the displacement direction of the bulk wave are substantially parallel. There is a vibration mode.
  • the second and third bulk wave resonators 66 and 67 have the same structure.
  • the bulk wave resonator 65 shown in FIG. 37 is connected to the input terminal 62 and the connection point described above, but the first excitation electrode 71A is connected to the input terminal 62 via CSs1 and the second excitation electrode. 70A is connected to the connection point N described above.
  • FIG. 36 is a schematic plan view of the tunable filter.
  • a first excitation electrode 71A is shown on the substrate 68 in a portion where the bulk wave resonator 65 is configured. Since the second excitation electrode 70A is located on the lower surface of the piezoelectric thin film, it is indicated by a broken line. Similarly, in the portion where the second and third bulk wave resonators 66 and 67 are configured, the first excitation electrode 71 ⁇ / b> A is provided on the upper surface of the substrate 68.
  • each variable capacitor can be configured in the same manner as the first and second embodiments described above, that is, a conventionally known variable capacitor.
  • bulk wave resonators may be used as the series arm resonator and the parallel arm resonator.
  • FIG. 38 shows the impedance characteristics of the series arm resonator and the parallel arm resonator in the tunable filter 61. That is, the first and second bulk wave resonators 65 and 66 have impedance characteristics of series arm resonators indicated by broken lines in FIG. On the other hand, the third bulk wave resonator 67 has the impedance characteristic of the parallel arm resonator shown by a solid line in FIG.
  • FIG. 39 shows the attenuation frequency characteristics of the tunable filter 61 using the first to third bulk wave resonators 65 to 67.
  • FIG. 39 shows frequency characteristics when the capacitance of the variable capacitor described above is variously changed.
  • the capacitances of the variable capacitors CSs1 and CSs2 are equal, and this capacitance is S-Cs.
  • the capacitances of the variable capacitor CSp1 and the variable capacitor CSP2 are also equal, and the capacitance of these variable capacitors is S-Cp.
  • FIG. 39 shows frequency characteristics when the capacitance of the variable capacitor is the following three combinations.
  • the passband center frequency is about 1.67 GHz
  • the passband center frequency is about 1.79 GHz.
  • the frequency adjustable range can be expanded according to the present invention. I understand.
  • 40 (a) and 40 (b) are front sectional views showing modifications of the bulk wave resonator.
  • the substrate 68 is provided with a cavity including a through hole 68a.
  • a cavity may be formed by providing a recess 68b which is not a through hole on the upper surface of the substrate 68.
  • the first excitation electrode 71A on the upper surface of the piezoelectric thin film 69 is composed of divided excitation electrodes 71 and 72 opposed to each other with a gap therebetween, and the second excitation electrode 70A is The divided excitation electrodes 71 and 72 may be opposed to each other through the piezoelectric thin film 69.
  • the bulk wave resonators 81 and 82 shown in FIGS. 40A and 40B may be used in place of the bulk wave resonator 65 shown in FIG.
  • FIG. 41 shows impedance characteristics of a bulk wave resonator 65 using thickness shear vibration using LiNbO 3 with Euler angles (0 °, 95 °, ⁇ ) and LiNbO 3 with Euler angles (30 °, 90 ° ⁇ ).
  • the thickness of LiNbO 3 was 1.45 ⁇ m.
  • First and second excitation electrodes 71A and 70A were formed of Al films. The thickness of the first and second excitation electrodes 71A and 70A was 0.1 ⁇ m, and the planar shape was a circle with a radius of 50 ⁇ m.
  • FIG. 42 shows a bulk wave resonator 65 using a piezoelectric thin film made of LiNbO 3 with Euler angles (30 °, 0 °, ⁇ ), and an inductance in series with the bulk wave resonator using the thickness shear vibration mode. It is a figure which shows the magnitude
  • the bandwidth can be expanded by connecting the inductance for bandwidth expansion of the inductance values of 5 nH, 10 nH and 20 nH, compared to the case where the inductance, that is, the bandwidth expansion inductance is not connected. .
  • FIG. 43 shows a bulk wave resonator 65 using a piezoelectric thin film made of LiNbO 3 having the Euler angles ( ⁇ , ⁇ , ⁇ ), and the Euler angles and the bandwidth ⁇ f in the resonator using the thickness shear vibration mode. It is a figure which shows the relationship with / fr.
  • the bandwidth can be made very wide as 20% or more, 25% or more, or 30% or more by selecting the Euler angle within a specific range as follows. Recognize.
  • FIG. 44 shows attenuation frequency characteristics and frequency variable widths when the tunable filter shown in FIG. 37 is configured in the same manner as FIG. 37 using the bulk wave resonator 65 using the thickness shear vibration mode.
  • FIG. Here, in the tunable filter of FIG. 37, a piezoelectric thin film made of LiNbO 3 with Euler angles (30 °, 90 °, ⁇ ) is used as a resonator, and the thickness-shear vibration mode is used.
  • the tunable filter 61 is configured in the same manner as in FIG. FIG. 44 shows frequency characteristics when the capacitance of the variable capacitor is variously changed, as in FIG. FIG. 44 shows frequency characteristics when the capacitance of the variable capacitor is the following three combinations.
  • a thickness longitudinal resonator using a thickness longitudinal vibration mode may be used as the bulk wave resonator 65.
  • FIG. 45 shows a case where the bulk wave resonator 65 is configured using a piezoelectric thin film made of LiNbO 3 with Euler angles ( ⁇ , ⁇ , ⁇ ), and the bandwidth ⁇ f / fr and Euler angles are calculated when the thickness longitudinal vibration mode is used. It is a figure which shows the relationship.
  • the Euler angles of LiNbO 3 are (0 ⁇ 5 °, 107 ° to 137 °, ⁇ ), (10 ⁇ 5 °, 112 ° to 133 °, ⁇ ), (50 ⁇ 5 °, 47 ° to 69 °, ⁇ ) or (60 ⁇ 5 °, 43 ° to 73 °, ⁇ ) It can be seen that the bandwidth can be 10% or more.
  • tunable filter 11 piezoelectric substrate 11a ... upper surface 11b ... groove 12 ... IDT electrodes 12a, 12b ... comb electrodes 13 and 14 ... reflectors 15 ... SiO 2 film 22 ... input terminal 23 ... output terminal 41 ... tunable filter DESCRIPTION OF SYMBOLS 51 ... Tunable filter 61 ... Tunable filter 62 ... Input terminal 63 ... Output terminal 64 ... Ground terminal 65-67 ... 1st-3rd bulk wave resonator 68 ... Board
  • 2nd excitation electrode 71A ... 1st excitation electrode 71, 72 ... Divided excitation electrode 81, 82 ... Bulk wave resonator 200 ... Piezoelectric substrate 201-203 ... Terminal 201A ... Terminal 202A ... Terminal 205 ... Packages 206 to 209 ... Electrodes 211 to 214 ... Bonding wires 221 ... Bandwidth expansion Inductance 221A ... inductance for bandwidth expansion 301 ... second tunable filter 302 ... inductance 303 ... variable capacitor 304 ... tunable filter 601 ... tunable filter 602 ... input terminal 603 ... output terminal 701 ... ladder type filter 702 ... input Terminal 704 ... Ladder type filter 705 ...
  • Input terminal C1 to C4 ... Capacitor CP1, CP2 ... Capacitor L1 ... Inductance P1 ... Parallel arm resonator S1, S2 ... Series arm resonator S11, S12 ... Series arm resonator circuit section

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 通過帯域幅を拡大したり、周波数可変量を大きくしたりすることができるチューナブルフィルタを提供する。 入力端子22と出力端子23とを結ぶ直列腕と、直列腕とグラウンド電位との間を結ぶ並列腕との少なくとも一方に共振子回路部S11,S12が設けられており、共振子回路部S11,S12に直列に第1の可変コンデンサC2,C3が接続されており、共振子回路部S11,S12に並列に第2の可変コンデンサCP1,CP2が接続されており、共振子回路部が、LiNbOまたはLiTaOからなる圧電基板11と、圧電基板11上に形成された電極12とを有する弾性波共振子と、該弾性波共振子に接続された帯域幅拡大用インダクタンスLx,Lxとを備える、チューナブルフィルタ1。

Description

チューナブルフィルタ
 本発明は、通信システムにおける帯域フィルタとして用いられるチューナブルフィルタに関し、より詳細には、弾性波共振子を用いて構成されているチューナブルフィルタに関する。
 通信システムに用いられる帯域フィルタにおいて、通過帯域を調整し得ることが求められることがある。このような要求を満たす帯域フィルタ、すなわちチューナブルフィルタが種々提案されている。
 例えば下記の特許文献1には、複数の弾性表面波共振子と可変コンデンサとを用いたチューナブルフィルタが開示されている。図46は、特許文献1に記載のチューナブルフィルタの回路図である。
 チューナブルフィルタ1101では、入力端1102と出力端1103との間を結ぶ直列腕に、複数の直列腕共振子1104,1105が互いに直列に接続されている。また、直列腕とグラウンド電位との間の複数の並列腕において、それぞれ、並列腕共振子1106,1107が接続されている。直列腕共振子1104,1105及び並列腕共振子1106,1107は、弾性表面波共振子により形成されている。
 上記直列腕共振子1104,1105及び並列腕共振子1106,1107を有するラダー型フィルタ回路が構成されている。さらに、通過帯域を調整することを可能とするために、可変コンデンサ1108~1115が接続されている。すなわち、直列腕共振子1104に並列に、可変コンデンサ1108が接続されており、該直列腕共振子1104及び可変コンデンサ1108に直列に可変コンデンサ1110が接続されている。同様に、直列腕共振子1105にも、並列に可変コンデンサ1109が接続されており、直列に可変コンデンサ1111が接続されている。
 並列腕においても、並列腕共振子1106に並列に可変コンデンサ1112が接続されており、並列腕共振子1106及び可変コンデンサ1112に直列に可変コンデンサ1114が接続されている。同様に、並列腕共振子1107に並列に可変コンデンサ1113が接続されており、直列に可変コンデンサ1115が接続されている。
特開2005-217852号公報
 チューナブルフィルタ1101においては、直列腕の回路部分における共振周波数FrSは、可変コンデンサ1110,1111の容量、すなわち直列容量が小さくなるほど高めることができる。また、並列容量、すなわち可変コンデンサ1108,1109による静電容量が大きくなるほど直列腕における反共振周波数FaSを低めることができる。
 同様に、並列腕の回路部分の共振周波数FrP及び反共振周波数FaPについても、並列に接続される可変コンデンサ1112,1113及び直列に接続される可変コンデンサ1114,1115の容量を変化させることにより、変化させることができる。そのため、チューナブルフィルタ1101全体の中心周波数を、上記可変コンデンサ1108~1115の容量を変化させることにより変化させることができる。
 しかしながら、特許文献1に記載のチューナブルフィルタ1101では、直列腕共振子1104,1105や並列腕共振子1106,1107に用いられている弾性表面波共振子の電気機械結合係数が小さいこと、並びに周波数温度係数TCFの絶対値が大きいという問題があった。また、並列腕共振子及び直列腕共振子の周波数特性の具体的な組み合わせなどは記載されていない。
 本発明は、上述した従来技術の現状に鑑み、弾性波共振子と可変コンデンサとを接続した回路構成を備えるチューナブルフィルタを改良するものである。
 本発明の目的は、通過帯域幅を拡大したり、通過帯域幅を可変し得るチューナブルフィルタを提供することにある。
 本願の第1の発明に係るチューナブルフィルタは、入力端子と出力端子とを接続する直列腕及び該直列腕とグラウンド電位との間の並列腕の少なくとも一方に設けられた共振子回路部と、前記共振子回路部に直列に接続された第1の可変コンデンサと、前記共振子回路部に並列に接続された第2の可変コンデンサとを備え、前記共振子回路部が、LiNbOまたはLiTaOからなる圧電基板と、前記圧電基板上に形成された電極とを有する弾性波共振子と、前記弾性波共振子に接続された帯域幅拡大用インダクタンスとを備える。
 第1の発明に係るチューナブルフィルタのある特定の局面では、前記共振子回路部が、直列腕に設けられた複数の直列腕共振子回路部であり、複数の前記直列腕共振子回路部間の接続点とグラウンド電位との間に接続された結合素子と、入力端子とグラウンド電位間及び出力端子とグラウンド電位間に接続された整合素子とをさらに備える。
 第1の発明に係るチューナブルフィルタの別の特定の局面では、前記共振子回路部として、直列腕と並列腕の両方にそれぞれ設けられた直列腕共振子回路部と並列腕共振子回路部とを有し、前記直列腕共振子回路部と前記並列腕共振子回路部とによりラダー型フィルタが構成されている。
 第1の発明に係るチューナブルフィルタのさらに別の特定の局面では、共振子回路部が、複数の並列共振子からなり、前記複数の並列共振子に前記帯域幅拡大用インダクタンスが接続されている。
 第1の発明に係るチューナブルフィルタのさらに別の特定の局面では、前記圧電基板の上面に凹部が形成されており、圧電基板上に形成された電極がIDT電極であり、前記弾性波共振子が弾性表面波共振子であって、前記IDT電極が前記凹部に充填された金属からなる。この場合には、弾性表面波共振子の電気機械結合係数を高めることができる。従って、帯域幅を広げることができ、かつチューナブルフィルタの可変周波数範囲を広げることができる。
 第1の発明に係るチューナブルフィルタのさらに他の特定の局面では、前記弾性表面波共振子が、前記圧電基板の上面を覆うように設けられたSiO膜をさらに備える。この場合には、弾性表面波共振子の周波数温度係数TCFの絶対値を小さくすることができる。従って、チューナブルフィルタの温度特性を改善することができる。
 第1の発明に係るチューナブルフィルタのさらに他の特定の局面では、入力端子と出力端子との間に接続されているコンデンサをさらに備えている。
 第1の発明に係るチューナブルフィルタのさらに他の特定の局面では、前記整合素子及び前記結合素子のチューナブルフィルタの通過帯域におけるインピーダンスが20~105Ωである。一般に、マッチングインピーダンスは50Ωまたは75Ωが用いられる。挿入損失的にそれに近い値のインピーダンスにすることが望ましく、±30Ωの20~105Ωが好ましい。
 第1の発明に係るチューナブルフィルタのさらに他の特定の局面では、前記帯域幅拡大用インダクタンスがスパイラル状もしくはミアンダ状の導体パターン及びボンディングワイヤのうちのいずれか1つである。
 第1の発明に係るチューナブルフィルタのさらに別の特定の局面では、前記帯域幅拡大用インダクタンスがスパイラル状もしくはミアンダ状の導体パターンであり、パッケージをさらに備え、前記スパイラル状またはミアンダ状の導体パターンが前記圧電基板上または前記パッケージに形成されている。この場合には、帯域幅拡大用インダクタンスを圧電基板上またはパッケージに形成された導体パターンにより形成することができるので、チューナブルフィルタの小型化を図ることができる。
 第2の発明に係るチューナブルフィルタでは、直列腕に設けられた直列腕共振子と、並列腕に設けられた並列腕共振子と、直列腕共振子及び並列腕共振子の少なくとも一方に接続された可変コンデンサとを備えるラダー型回路構成のチューナブルフィルタにおいて、前記直列腕共振子の共振周波数及び反共振周波数をFrS、FaS、前記並列腕共振子の共振周波数及び反共振周波数をFrP、FaPとしたときに、FrS≦{(n-1)FrP+FaP}/nかつFaP≦{(n-1)FaS+FrS}/nであり、nが2以上、30以下の整数である。
 第2の発明に係るチューナブルフィルタのある特定の局面では、FrS≦(FrP+FaP)/2、FaP>FrS及びFaP<FaSである。
 第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、FrS≦(2FrP+FaP)/3、FaP>FrS及びFaP<FaSである。
 第2の発明に係るチューナブルフィルタのさらに別の特定の局面では、チューナブルフィルタの周波数可変幅を(FaP+FrS)/2で規格化してなる値をt、直列腕共振子及び並列腕共振子の比帯域幅をそれぞれの共振周波数で規格化した値をyとしたときに、Δfr=FrS-FrPのFrPに対する比であるΔfr/FrPを比帯域幅yで規格化した値が、以下の式(1)で示す値以下とされている。
 {(2-t/0.9)×(1+y)-(2+t/0.9)}/{(2+t/0.9)×y}×100(%)   ・・・(1)
 第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、前記直列腕共振子の共振周波数FrSと、前記並列腕共振子の共振周波数FrPの差の直列腕共振子の比帯域に対する割合の最大値が下記の表1に示す範囲とされている。
Figure JPOXMLDOC01-appb-T000005
 第2の発明に係るチューナブルフィルタのさらに別の特定の局面では、前記直列腕共振子の共振周波数FrSと、前記並列腕共振子の共振周波数FrPの差の直列腕共振子の比帯域に対する割合の最大値が下記の表2に示す範囲とされている。この範囲とされたとき可変幅の大きいチューナブルフィルタが構成される。
Figure JPOXMLDOC01-appb-T000006
 第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、最小の3dB帯域幅が、(FrS-FrP)×0.9あるいは(FaS-FaP)×0.9のいずれか小さいほうで、最大周波数可変幅が140×(FaS-FaP)/(FaS+FaP)(%)から180×(FaS-FaP)/(FaS+FaP)(%)の範囲とされている。
 第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、直列腕共振子の比帯域幅及び並列腕共振子の比帯域幅がいずれも13%以上、60%以下である。この場合には、周波数可変量をより一層大きくすることができる。より好ましくは、直列腕共振子及び並列腕共振子の比帯域幅は、いずれも15%以上である。その場合には、周波数可変量をより一層大きくすることができる。
 第1,第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、LiNbOのオイラー角が(0°,70°~115°,0°)であり、デューティ比をXとしたときに、電極規格化膜厚が下記の表3に示す範囲である。
Figure JPOXMLDOC01-appb-T000007
 なお、本明細書及び添付の図面においては、LiNbOを、場合によってはLNと略すこととする。またLiTaOを場合によってはLTと略すこととする。
 また、第2の発明に係るチューナブルフィルタのさらに他の特定の局面では、前記直列腕共振子及び並列腕共振子が、バルク波共振子からなり、該バルク波共振子が、上面に開いたキャビティを有する基板と、前記基板のキャビティを覆うように基板上に設けられた圧電薄膜あるいは圧電薄板と、前記圧電薄膜の下面であって前記キャビティに臨む部分に設けられた第1の励振電極と、前記圧電薄膜の上面に設けられており、かつ前記第1の励振電極と圧電薄膜を介して対向するように配置されている第2の励振電極とを有する。このように、第2の発明においては、上記直列腕共振子及び並列腕共振子は、バルク波共振子により構成されてもよい。
 上記第1の励振電極及び第2の励振電極の一方は2分割されていてもよく、他方が2分割された励振電極と圧電薄膜を介して対向している共通励振電極であってもよい。
 また、上記バルク波共振子としては、厚みすべり振動共振子を用いてもよく、厚み縦振動共振子を用いてもよい。
 本願の第3の発明に係るチューナブルフィルタでは、入力端子と出力端子とを接続する直列腕および該直列腕とグラウンド電位との間の並列腕の少なくとも一方に設けられた共振子回路部と、前記共振子回路部に直列に接続された第1の可変コンデンサと、前記共振子回路部に並列に接続された第2の可変コンデンサとを備え、前記共振子回路部が、バルク波共振子と、該バルク波共振子に接続された帯域幅拡大用インダクタンスとを備え、前記バルク波共振子が、上面に開いたキャビティを有する基板と、前記基板のキャビティを覆うように基板上に設けられた圧電薄膜あるいは圧電薄板と、前記圧電薄膜の下面であって前記キャビティに臨む部分に設けられた第1の励振電極と、前記圧電薄膜の上面に設けられており、かつ前記第1の励振電極と圧電薄膜を介して対向するように配置されている第2の励振電極とを有する、チューナブルフィルタが提供される。ここでも、バルク波共振子としては、厚みすべり振動共振子を用いてもよく、厚み縦振動共振子を用いてもよい。
 第3の発明に係るチューナブルフィルタでは、上記バルク波共振子が厚みすべり振動共振子であってもよい。この場合、好ましくは、厚みすべり振動共振子がLiNbOからなる圧電薄膜あるいは圧電薄板を用いており、そのオイラー角が以下の表4の範囲である。
Figure JPOXMLDOC01-appb-T000008
 第3の発明に係るチューナブルフィルタでは、上記バルク波共振子が厚み縦振動共振子であってもよい。この場合、好ましくは、厚み縦振動共振子がLiNbOからなる圧電薄膜あるいは圧電薄板を用いており、そのオイラー角が(0±5°、107°~137°、ψ)、(10±5°、112°~133°、ψ)、(50±5°、47°~69°、ψ)または(60±5°、43°~73°、ψ)の範囲内である。
 第1の発明に係るチューナブルフィルタでは、共振子回路部が、LiNbOまたはLiTaOからなる圧電基板を有する弾性波共振子と、弾性波共振子に接続された帯域幅拡大用インダクタンスとを備えるため、通過帯域幅を拡大することができる。
 第2の発明に係るチューナブルフィルタでは、FrS≦(FrP+FaP)/2、FaP>FrS及びFaP<FaSを満たすので、通過帯域の周波数、例えば通過帯域の中心周波数の可変量を大きくすることができる。よって、周波数可変範囲の広いチューナブルフィルタを提供することが可能となる。
図1(a)は、本発明の第1の実施形態に係るチューナブルフィルタの回路構成を示す図であり、(b)は、実施形態で用いられる弾性表面波共振子を示す模式的平面図であり、(c)は、(b)中のI-I線に沿う部分の正面断面図である。(d)は、(c)中のSiO膜が存在しない構造の正面断面図である。 図2は、第1の実験例で測定された弾性表面波共振子の周波数特性を示す図であり、実線がSiO膜が形成されている弾性表面波共振子のインピーダンス特性及び位相特性を示し、破線がSiO膜が形成されていない弾性表面波共振子のインピーダンス特性及び位相特性を示す図である。 図3(a)は、LN基板上にIDT電極が形成されており、かつSiO膜がさらに積層されている弾性表面波共振子を示す正面断面図である。(b)は、(a)中のSiO膜が存在しない構造の正面断面図である。 図4は、第2の実験例において、36°YX-LiTaOにおける弾性表面波共振子のIDT電極の規格化膜厚H/λを変化させた場合の反射係数の変化を示す図である。 図5は、第2の実験例において、36°YX-LiTaOにおける弾性表面波共振子のIDT電極の規格化膜厚H/λを変化させた場合の電気機械結合係数kの変化を示す図である。 図6は、第1の実施形態に係るチューナブルフィルタの回路において、可変コンデンサC2と可変コンデンサC3との容量を等しくし、可変コンデンサCP1と可変コンデンサCP2との容量を等しくし、可変コンデンサC2の容量を0.7pF、1pFまたは2pFとした場合のチューナブルフィルタのフィルタ特性の変化を示す図である。 図7は、図6で用いたチューナブルフィルタの回路図である。 図8は、LiNbO基板上の溝に金属を充填してなる埋め込み電極型の弾性表面波共振子及びLiNbO基板上に電極が形成されている比較のための弾性表面波共振子のインピーダンス特性を示す図である。 図9は、直列腕共振子S1,S2として埋め込み電極型の弾性表面波共振子を用いた場合の比較例のチューナブルフィルタの周波数特性を示す図である。 図10は、本発明の第1の実施形態に係るチューナブルフィルタを説明するための略図的平面断面図であり、ここでは、直列腕共振子S1,S2の圧電基板上における実際のレイアウトと、圧電基板がパッケージに収納されている状態が示されている。 図11は、第1の実施形態で測定された弾性表面波共振子の周波数特性を示す図であり、実線がボンディングワイヤが接続されていない弾性表面波共振子のインピーダンス特性及び位相特性を示し、破線がボンディングワイヤが接続されている弾性表面波共振子のインピーダンス特性及び位相特性を示す図である。 図12(a)は、本発明の第1の実施形態の他の変形例において、パッケージに形成されたミアンダ状の導体パターンからなる帯域幅拡大用インダクタンスを説明するための模式的平面図であり、(b)は、圧電基板上に形成されたスパイラル状またはミアンダ状の導体パターンからなる帯域幅拡大用インダクタンスを説明するための模式的平面図である。 図13(a)は第1の実施形態の変形例に係るチューナブルフィルタの回路構成を示す図であり、(b)はコンデンサCFの容量を変化させた場合の周波数特性を示す図である。 図14は、図13(a)に示したチューナブルフィルタにおいてコンデンサCFを接続せず、コンデンサC2,C3の容量を0.7pF、1pFまたは2pFとし、コンデンサCP1,CP2の静電容量を0または2pFとした場合の周波数特性を示す図である。 図15(a)は本発明の変形例に係るチューナブルフィルタに接続される第2のチューナブルフィルタの回路図であり、(b)は(a)の可変コンデンサの静電容量を変化させた場合の周波数特性の変化を示す図である。 図16(a)は図14(a)に示したチューナブルフィルタに図15(a)に示した第2のチューナブルフィルタを縦続接続してなる変形例のチューナブルフィルタを示す回路図であり、(b)は本変形例のチューナブルフィルタの周波数特性を示す図である。 図17は、Alからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図18は、Moからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図19は、Cuからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図20は、Niからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図21は、Agからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図22は、Auからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図23は、Wからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図24は、Taからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図25は、Ptからなり、デューティが0.5であるIDT電極が、10°YカットX伝搬のLN基板上に形成されている弾性表面波共振子における弾性表面波の音速と、IDT電極の規格化膜厚H/λとの関係を示す図である。 図26は、Cuからなり、厚みが0.05λであり、デューティが0.5であるIDT電極がLiNbO基板上に形成されている弾性表面波共振子のLN基板のオイラー角(0°,θ,0°)のθと、反射係数との関係を示す図である。 図27は、Cuからなり、厚みが0.05λであり、デューティが0.5であるIDT電極がLiNbO基板上に形成されている弾性表面波共振子のLN基板のオイラー角(0°,θ,0°)のθと、電気機械結合係数kとの関係を示す図である。 図28は、本発明の第2の実施形態のチューナブルフィルタの回路図である。 図29は、ラダー型フィルタの回路構成例を示す図であり、(a)は入力端子側に直列腕共振子が配置されているラダー型フィルタの回路図であり、(b)は入力端子側に並列腕共振子が配置されているラダー型フィルタを示す回路図である。 図30は、従来のラダー型フィルタにおける並列腕共振子の共振特性と、直列腕共振子の共振特性との関係を示す図である。 図31は、本発明の一実施形態のチューナブルフィルタにおける並列腕共振子の共振特性と、直列腕共振子の共振特性との関係を示す図である。 図32は、本発明の第2の実施形態のラダー型チューナブルフィルタのフィルタ特性を示し、周波数を変化させ得ることを示す図である。 図33は、Al,Mo,Cu,Ni,Ag,Au,W,TaまたはPtからなる電極においてデューティが変わったときのfaがバルク横波音速に一致する電極膜厚を示す図である。 図34は、FrPとFaSの差が45MHzとして構成された第2の実施形態のラダー型チューナブルフィルタの特性である。 図35は、本発明の第2の実施形態の変形例における、ラダー型チューナブルフィルタに用いられているバルク波共振子を説明するための正面断面図である。 図36は、本発明の第2の実施形態の変形例におけるラダー型チューナブルフィルタの模式的平面図である。 図37は、本発明の第2の実施形態の変形例におけるラダー型チューナブルフィルタの回路図である。 図38は、第2の実施形態の変形例におけるラダー型チューナブルフィルタにおける直列腕共振子及び並列腕共振子のインピーダンス特性を示す図である。 図39は、第2の実施形態の変形例におけるラダー型チューナブルフィルタの減衰量周波数特性と、調整可能範囲を示す図である。 図40(a)及び(b)は、本発明で用いられるバルク波共振子の変形例を示す各正面断面図である。 図41は、本発明の第2の実施形態の他の変形例に係るラダー型チューナブルフィルタに用いられている厚みすべりバルク波共振子のインピーダンス特性を示す図である。 図42は、本発明の第2の実施形態の他の変形例に係るラダー型チューナブルフィルタにおいて、LiNbOからなる厚みすべり振動共振子であるバルク波共振子にコイルを接続した場合の帯域の変化を示すインピーダンス-周波数特性図である。 図43は、本発明の第2の実施形態の他の変形例に係るラダー型チューナブルフィルタに用いられているオイラー角(φ,θ,ψ)のLiNbOを用いた厚みすべり振動共振子であるバルク波共振子におけるオイラー角のφおよびθと、帯域幅との関係を示す図である。 図44は、本発明の第2の実施形態の他の変形例に係るラダー型チューナブルフィルタであって、(30°,90°,ψ)のオイラー角のLiNbOからなる厚みすべり振動共振子であるバルク波共振子を用いた場合の減衰量周波数特性を示す図である。 図45は、LiNbOからなる圧電材料を用いた厚み縦共振子であるバルク波共振子のオイラー角のθ及びφと帯域幅との関係を示す図である。 図46は、従来のチューナブルフィルタを説明するための回路図である。
 以下、図面を参照しつつ、本発明の実施形態を説明することにより、本発明を明らかにする。
 (第1の実施形態)
 図1(a)は、本発明の第1の実施形態に係るチューナブルフィルタの回路図であり、(b)は、該チューナブルフィルタに用いられる弾性表面波共振子の模式的平面図であり、(c)は、(b)中のI-I線に沿う部分の正面断面図である。(d)は、(c)中のSiO膜が存在しない構造の正面断面図である。
 図1(a)のチューナブルフィルタ1では、入力端子22と出力端子23とを結ぶ直列腕において、直列腕共振子回路部S11,S12が互いに直列に接続されている。直列腕共振子回路部S11では、直列腕共振子S1の両側に、直列腕共振子S1に直列にインダクタンスLx,Lxが接続されている。同様に、直列腕共振子回路部S12では、直列腕共振子S2の両側に、直列腕共振子S2に直列にインダクタンスLx,Lxが接続されている。直列腕共振子回路部S11の入力側において、直列腕共振子回路部S11に直列に可変コンデンサC2が接続されている。また、直列腕共振子回路部S11の入力側においては、直列腕とグラウンド電位とを結ぶ第1の並列腕に、コンデンサC1が設けられている。
 直列腕共振子回路部S11及びS12間の接続点とグラウンド電位とを結ぶ第2の並列腕に、インダクタンスL1が設けられている。直列腕共振子回路部S12の出力側においては、可変コンデンサC3が直列腕共振子回路部S12に接続されている。出力端子23とグラウンド電位との間を結ぶ第3の並列腕にコンデンサC4が設けられている。
 コンデンサC1及びC4は、チューナブルフィルタと前後の回路とのインピーダンスマッチングを図るための整合素子である。
 インダクタンスL1は直列腕共振子回路部S11及びS12間のインピーダンスマッチングを図るための結合素子である。
 本実施形態では整合素子がコンデンサ、結合素子がインダクタンスで構成されているが、結合素子はコンデンサで構成されていてもよい。
 さらに、直列腕共振子回路部S11に並列に可変コンデンサCP1が接続されている。直列腕共振子回路部S12に並列に可変コンデンサCP2が接続されている。
 すなわち、直列腕共振子回路部S11,S12に直列に接続されている可変コンデンサC2,C3が本発明における第1の可変コンデンサである。また、直列腕共振子回路部S11及びS12にそれぞれ並列に接続されている可変コンデンサCP1,CP2が、本発明における第2の可変コンデンサである。本実施形態では、全ての直列腕共振子回路部S11,S12に、それぞれ、第1の可変コンデンサC2,C3及び第2の可変コンデンサCP1,CP2がそれぞれ接続されている。
 本発明においては、少なくとも1つの直列腕共振子回路部に第1の可変コンデンサ及び第2の可変コンデンサが接続されておればよい。また、本実施形態では、上記直列腕共振子回路部S11,S12が設けられていたが、並列腕に同様の共振子回路部が設けられていてもよい。すなわち、並列腕共振子と直列に帯域幅拡大用インダクタンスが接続されている共振子回路部が並列腕に設けられていてもよい。また、直列腕に設けずに、並列腕にのみ上記共振子回路部を構成してもよい。また、並列腕に設けられた複数の共振子に共通に帯域幅拡大用インダクタンスが接続されていてもよい。このように接続することで、帯域幅拡大用インダクタンスの個数を減らすことができる。ここで、並列腕とは、上記直列腕とグラウンド電位とを接続する回路部を有し、図1では、並列腕に上記コンデンサC1やコンデンサC4が設けられていたが、このコンデンサC1やC4が設けられている構成と同様にして並列腕を構成し、該並列腕に上記共振子回路部を設ければよい。
 本実施形態では、上記直列腕共振子S1,S2は、弾性表面波共振子からなる。この弾性表面波共振子の構造を、直列腕共振子S1を代表して説明する。図1(b)、(c)及び(d)に示すように、直列腕共振子S1を構成している弾性表面波共振子は、圧電基板11を有する。圧電基板11は、本実施形態では、オイラー角で(0°,105°,0°)のLiNbO基板が圧電基板11として用いられている。
 圧電基板11の上面11aには、凹部として複数本の溝11bが形成されている。この溝11b内に電極材料を充填することにより、IDT電極12が形成されている。図1(b)に示すように、本実施形態では、IDT電極12の弾性表面波伝搬方向両側に、反射器13,14が形成されている。従って、1ポート型弾性表面波共振子が構成されている。
 反射器13,14もまた、圧電基板11の上面11a上に設けられた凹部、すなわち複数本の溝に電極材料を充填することにより形成されている。
 図1(c)、(d)に示すように、上記IDT電極12の上面すなわち電極指部分の上面は、圧電基板11の上面11aと面一とされている。
 従って、上記IDT電極12及び反射器13,14を形成した後に、圧電基板11の上面11aは平坦とされている。図1(c)の構造では、この圧電基板11の上面11aを覆うようにSiO膜15が形成されている。図1(d)の構造では、SiO膜を形成しない。
 以下、図1(c)や(d)に示す弾性表面波共振子を、埋め込み電極型の弾性表面波共振子とする。
 本実施形態のチューナブルフィルタ1では、直列腕共振子S1,S2が上記埋め込み電極型の弾性表面波共振子からなるため、弾性表面波共振子の電気機械結合係数kを高めることができ、それによって、比帯域幅を広げることが可能となる。加えて、SiO膜が成膜されているため、周波数温度係数TCFの絶対値を小さくし、温度変化による特性の変化を小さくすることが可能となる。これを、以下の第1の実験例及び第2の実験例により説明する。
 (第1の実験例)
 図2の実線は、15°YカットX伝搬のLiNbO基板、すなわちオイラー角で(0°,105°,0°)のLiNbO基板を用い、電極材料としてAlを用い、弾性表面波共振子の波長をλとしたときに、IDT電極12の膜厚を0.17λとし、SiO膜の膜厚を0.22λとしたときの弾性表面波共振子のインピーダンス特性及び位相特性を示す図である。比較のために、SiO膜が形成されていないことを除いては、同様に形成された図1(d)に示す弾性表面波共振子のインピーダンス-周波数特性及び位相特性を図2に破線で示す。
 図2から明らかなように、反共振点におけるインピーダンスの共振周波数におけるインピーダンスに対する比である山谷比は、SiO膜を形成しなかった場合には、57.5dBであったのに対し、SiO膜を形成した構造では、60.2dBと大きくすることが可能であった。さらに、周波数温度係数TCFについては、SiO膜を有しない場合には-120ppm/℃であったが、SiO膜の形成により、-10~-30ppm/℃とその絶対値を小さくすることが可能であった。
 従って、SiO膜の形成により電気機械結合係数kは多少小さくなるが、山谷比を大きくすることができることがわかる。加えて、温度特性を改善することができることがわかる。
 (第2の実験例)
 オイラー角が(0°,126°,0°)のLiTaO基板を圧電基板として用い、電極材料としてAuを用い、圧電基板を覆うようにSiO膜を成膜し、種々の構造の弾性表面波共振子を作製した。弾性表面波共振子のIDT電極の電極指ピッチで定まる波長をλとしたときに、SiO膜の厚みhを波長λで規格化してなる規格化厚みh/λは0.3とした。用意した弾性表面波共振子としては、以下の第1~第5の弾性表面波共振子A~Eを用意した。
 第1の弾性表面波共振子A:図3(a)に示すように、圧電基板11の上面にIDT電極12を形成し、SiO膜15をさらに形成した構造。SiO膜の上面には、電極が下方に位置している部分に下地の電極の厚みに相当する高さの凸部が形成されている。
 第2の弾性表面波共振子B:SiO膜の上面の凸部が存在しないことを除いては第1の弾性表面波共振子Aと同様。SiO膜の上面は平坦化されている。
 第3の弾性表面波共振子C:圧電基板の上面に設けられた溝に電極材料を充填することによりIDT電極及び反射器が形成されている構造。電極の上面と圧電基板の上面が面一とされている。SiO膜の上面には、電極が下方に存在する部分において、電極の厚みとほぼ等しい高さの凸部が形成されている構造。
 第4の弾性表面波共振子D:SiO膜の上面に凸部が形成されておらず、SiO膜の上面が平坦とされていることを除いては、第3の弾性表面波共振子Cと同一の構造。
 第5の弾性表面波共振子E:基板上に電極のみが形成されSiOが形成されていない構造。
 図4に、上記第1~第5の弾性表面波共振子A~Eにおいて、SiO膜の規格化膜厚が0.3のときの、Au電極の規格化膜厚H/λを変化させた場合の反射係数の変化を示す。また、図5は、上記第1~第4の弾性表面波共振子において、電極の規格化膜厚H/λを変化させた場合の電気機械結合係数kの変化を示す図である。周知のように、SiO膜の周波数温度係数TCFは正の値を有し、LiTaO基板の周波数温度係数TCFは負の値を有する。従って、いずれの場合においても、SiO膜の成膜により、周波数温度係数TCFの絶対値を小さくすることができ、温度特性を改善することが可能である。
 もっとも、図4及び図5から明らかなように、SiO膜を形成した場合、第1の弾性表面波共振子A、第2の弾性表面波共振子B及び第3の弾性表面波共振子Cでは、電気機械結合係数kが小さくなり、IDT電極の規格化膜厚H/λが増加するにつれて電気機械結合係数kが小さくなることがわかる。
 これに対して、第4及び第5のタイプの弾性表面波共振子D及びEでは、IDT電極の規格化膜厚を特定の範囲とすることにより、電気機械結合係数kを高め得ることがわかる。SiO膜の上面が平坦である第4のタイプの弾性表面波共振子Dでは、IDT電極の規格化膜厚を0.01~0.09とすることにより電気機械結合係数kを効果的に高め得ることがわかる。第5のタイプの弾性表面波共振子EではIDT電極の規格化膜厚0.01~0.04で大きな電気機械結合係数kが得られることがわかる。
 また、図4から明らかなように、第1~第4のいずれのタイプの弾性表面波共振子A~Eにおいても、IDT電極の膜厚が厚くなるにつれて、反射係数が高くなることがわかる。
 第3~第4の弾性表面波共振子C~Dの結果を比較すれば、上面に凸部が設けられている第3の弾性表面波共振子Cにおいて、第4の弾性表面波共振子Dよりも、IDT電極の規格化膜厚が同じであれば、反射係数を高め得ることがわかる。従って、反射係数を高めるには、SiO膜の上面に凸部を形成することが望ましいことがわかる。
 もっとも、反射係数は用途によりある程度(たとえば0.02)以上あればよいのでIDT電極の膜厚のばらつきによる反射係数のばらつきを低めたり、広い帯域の共振子を構成する上では、SiO膜の上面が平坦化された第4のタイプの弾性表面波共振子DあるいはEが望ましいことがわかる。
 上記のように、本実験例によれば、オイラー角(0°,126°,0°)のLiTaOの圧電基板の上面に設けられた溝にAuを埋め込み、IDT電極を形成し、SiO膜を形成した構造においては、SiO膜の表面が平坦である場合には、IDT電極の規格化膜厚を0.01~0.09とすることにより、電気機械結合係数を効果的に高め得ることがわかる。従って、比帯域幅を広げ得ることがわかる。よって、チューナブルフィルタの直列腕共振子や並列腕共振子に用いた場合、より一層効果的にチューナブルフィルタの周波数特性を調整し得ることがわかる。またAu以外の電極でも同じような結果が得られている。
 (チューナブルフィルタ1の周波数特性)
 後述の図8の実線で示した弾性表面波共振子を用いた上記チューナブルフィルタ1の周波数特性を図6に示す。ここでは、可変コンデンサC2と可変コンデンサC3との容量を等しくし、可変コンデンサCP1と可変コンデンサCP2との容量を等しくした構造において、静電容量を図6に示すように変化させた場合の周波数特性を図6に示す。なお、帯域幅拡大用インダクタンスLxのインダクタンス値は4.5nHとした。
 図6から明らかなように、可変コンデンサC2及びCP1の容量の大きさを、C2=0.7pF及びCP1=0(CP1を接続しない)、C2=1pFかつCP1=0並びに、C2=2pFかつCP1=4pFと変化させた場合、中心周波数を1790MHz、1680MHz及び1460MHzと20%変化させることができる。従って、周波数可変量を極めて大きくすることができる。
 次に、図1(a)における帯域幅拡大用インダクタンスLxを接続しなかったこと並びに以下に述べる第3のコンデンサCfを接続したことを除いては、上記実施形態と同様にして構成された、すなわち図7に示す比較例のチューナブルフィルタ41を作製した。なお、第3のコンデンサCfを接続しない場合にも、第3のコンデンサCfを接続した場合と同様の結果が得られている。従って、比較例のチューナブルフィルタ41は第3のコンデンサCfを有するが、上記実施形態との対比に用いることができるものである。
 この比較例のチューナブルフィルタ41では、通過帯域幅を変化させずかつ通過帯域よりも高域側における減衰量を劣化させることなく、中心周波数を変化させることができる。図8及び図9を参照してこれを説明する。図8の実線は、LiNbO基板上の溝に金属を充填した弾性表面波共振子の一例のインピーダンス-周波数特性を示し、破線は、LiNbO基板上に電極が形成されている比較のための弾性表面波共振子のインピーダンス特性を示す。
 上記比較例のチューナブルフィルタ41において、直列腕共振子S1,S2として上記埋め込み電極型の弾性表面波共振子を用いた場合の周波数特性を図9に示す。ここでも、可変コンデンサC2と可変コンデンサC3との容量を等しくし、可変コンデンサCP1と可変コンデンサCP2との容量を等しくした。
 図9から明らかなように、C2=0.5pF及びCP1=0(CP1を接続しない)、C2=0.75pFかつCP1=1pF並びに、C2=1.0pFかつCP1=3pFと変化させた場合、中心周波数を1858MHz、1798MHz及び1733MHzと周波数を7%しか変化させることができない。
 また、図6と図9の比較から明らかなように、本実施形態のチューナブルフィルタ1は帯域幅拡大用インダクタンスLxを備えているので、比較例のチューナブルフィルタ41よりも広帯域化を図り得る。
 なお、コンデンサC1、C4の静電容量が2.5pFである場合のインピーダンス値は1800MHzにおいて35Ωとなり、外部からのインピーダンス50Ωとほぼ整合するので、挿入損失を小さくすることができる。また、上記インダクタンスL1(インダクタンス値4.5nH)の1800MHz付近におけるインピーダンスは45Ωである。
 なお、図7の回路から第3のコンデンサCfを省略しても、第3のコンデンサCfを有する場合と同様の結果が得られる。
 前述のように、図8は、LN基板に埋め込まれた電極を有する弾性表面波共振子のインピーダンス-周波数特性と、LN基板上に電極が形成されている従来型の弾性表面波共振子のインピーダンス-周波数特性との比較を示す図である。埋め込み電極型の弾性表面波共振子と、埋め込み電極型ではない弾性表面波共振子とのいずれにおいても規格化膜厚H/λが0.1のCuのIDT電極及び反射器が形成されている。
 図8から明らかなように、埋め込み電極型ではない弾性表面波共振子では比帯域幅13%である。従って、埋め込み電極型の弾性表面波共振子の比帯域幅17%に比べて埋め込み電極型ではない弾性表面波共振子では比帯域幅が狭くなっていることがわかる。このような比帯域幅の小さい埋め込み電極型ではない弾性表面波共振子であっても、帯域幅拡大用インダクタンスにより共振点をシフトすれば比帯域幅を拡大することができる。従って、チューナブルフィルタにおいて大きな周波数可変量を得ることができる。なお、ここで比帯域幅とは、共振周波数と反共振周波数の差の絶対値を共振周波数で除算して得られた値である。
 (帯域幅拡大用インダクタンスLxの構成例)
 本実施形態のチューナブルフィルタ1では、弾性表面波共振子をパッケージと電気的に接続するボンディングワイヤにより帯域幅拡大用インダクタンスLxが構成されている。この場合には、帯域幅拡大用インダクタンスLxを構成するための余分な部品を必要としないので、小型化を図ることができる。このようなボンディングワイヤにより帯域幅拡大用インダクタンスLxを構成した具体的な構造の例を、図10及び図11を参照して説明する。
 図10は、第1の実施形態に係るチューナブルフィルタを説明するための略図的平面断面図である。ここでは、直列腕共振子S1,S2の圧電基板200上における実際のレイアウトと、該圧電基板200がパッケージに収納されている状態とが示されている。
 より具体的には、15°YカットLiNbO基板からなる圧電基板200が用いられている。圧電基板200上において、直列腕共振子S1,S2が構成されている。
 直列腕共振子S1は、IDT電極12を有する1ポート型弾性表面波共振子である。IDT電極12は、くし歯電極12a,12bを有する。IDT電極12の弾性表面波伝搬方向両側に反射器13,14が形成されている。IDT電極12及び反射器13,14は、圧電基板200の上面に形成された溝に電極材料を埋め込むことにより設けられている。電極材料としては、Cu電極が用いられている。IDT電極12及び反射器13,14の電極指の規格化膜厚は0.07、デューティは0.6とされている。
 直列腕共振子S2も直列腕共振子S1と同様に構成されている。
 また、圧電基板200上には、電極膜からなる端子201,202,203が形成されている。端子201がIDT電極12のくし歯電極12bに接続されている。端子202,203は、くし歯電極12aに電気的に接続されている。
 直列腕共振子S2においても、IDT電極の一端が端子201Aに接続されている。IDT電極の他端が端子202A及び203Aに接続されている。端子201~203及び201A~203Aは、IDT電極を構成する材料と同じ電極材料で形成されている。
 上記圧電基板200がパッケージ205内に収納されている。パッケージ205側には、電極206~209が形成されている。端子201がボンディングワイヤ211により電極206に接続されている。同様に、端子202がボンディングワイヤ212により電極207に接続されている。また、端子201Aがボンディングワイヤ213により電極208に接続されており、端子202Aがボンディングワイヤ214により電極209に接続されている。いま、ボンディングワイヤ211,212による影響を説明するために、直列腕共振子S1を代表して説明する。
 図11の実線は、ボンディングワイヤ211,212が接続される前の直列腕共振子S1すなわち弾性表面波共振子のインピーダンス特性及び位相特性を示す。なお、実際には、個々の圧電基板200に分割する前のマザーのウエハにおいて、端子201にシグナル電位側のプローブを接触させ、端子202にグラウンド電位側のプローブの先端を接触させて測定を行った。
 また、図11の破線は、上記パッケージ205に圧電基板200を搭載し、ボンディングワイヤ211,212により端子201,202を電極206,207に接続した後の電極206,207間のインピーダンス特性及び位相特性を示す。この場合には、マザーのウエハを分割し、圧電基板200を得た後、ボンディングワイヤ211,212による接続を行った後に測定を行った。
 図11の破線から明らかなように、電極206,207の間のインピーダンス特性ではボンディングワイヤのインダクタンスにより共振点が低周波数側へシフトされており、従って、反共振周波数と共振周波数の差である帯域幅が拡大していることがわかる。すなわち、ボンディングワイヤが帯域幅拡大用インダクタンスとして機能している。
 (帯域幅拡大用インダクタンスの変形例)
 上記第1の実施形態では、ボンディングワイヤからなる帯域幅拡大用インダクタンスを用いたが、図12(a)に示すようにパッケージ205に形成されたミアンダ状の導体パターンからなる帯域幅拡大用インダクタンス221を用いてもよい。
 また、図12(b)に示すように、パッケージ205ではなく、圧電基板200上に形成されたスパイラル状の導体パターンからなる帯域幅拡大用インダクタンス221Aを用いてもよい。
 図12(a),(b)に示したように、帯域幅拡大用インダクタンスはスパイラル状またはミアンダ状の導体パターンであってもよい。
 図12(a),(b)では圧電基板の電極形成面が上方に向いた、いわゆるフェイスアップタイプの弾性表面波共振子素子チップが示されていた。本発明では、弾性表面波共振子阻止チップのIDT電極形成面がパッケージの実装電極面に対向されているフェイスダウンタイプの弾性表面波共振子素子チップを用いてもよい。
 フェイスダウンタイプの弾性表面波共振子の帯域幅拡大用インダクタンスLxとしては図12(a),(b)に示したようなスパイラル状またはミアンダ状の導体パターンが用いられる。
 (第1の実施形態の変形例)
 以下、図13~16を参照しつつ、第1の実施形態のチューナブルフィルタにおける変形例を説明する。
 上記のように、第1の実施形態では、図7に示した比較例のチューナブルフィルタ41で用いられていた第3のコンデンサCfは接続されていない。この場合、第3のコンデンサCfを接続した場合と同様に、通過帯域幅を拡大することができ、かつ周波数可変量を大きくすることができる。しかしながら、図6に示した第1の実施形態の周波数特性では、通過帯域高域側におけるフィルタ特性の急峻性は高くすることはできるが、低域側における急峻性はあまり高くなっていない。
 一方、デュプレクサの相対的に高周波数側の帯域通過フィルタにおいては、低域側におけるフィルタ特性の急峻性の高いことが要求される。そこで、低域側におけるフィルタ特性の急峻性を高めることのできるチューナブルフィルタの回路を検討した。
 すなわち、図1の回路に第3のコンデンサCfを追加し、図13(a)に示すチューナブルフィルタ51を設計した。このチューナブルフィルタ51において、第3のコンデンサCfの容量を、0pF、1pF、2pF、5pFまたは10pFと変化させた場合の周波数特性を図13(b)に示す。図13(b)から明らかなように、低域側におけるフィルタ特性の急峻性を高くすることができることがわかる。
 また、チューナブルフィルタ51では図13(b)に示したように、減衰極の高域側での跳ね返りが大きく、2400MHz近傍の減衰量が悪化する。コンデンサC2,C3の静電容量を等しくし、コンデンサC2の容量を0.7pF、1pFまたは2pFとし、かつ、コンデンサCP1,CP2の静電容量を等しくし、コンデンサCP1の容量を0または2pFとした場合のチューナブルフィルタ51の周波数特性を図14に示す。図14から明らかなように、コンデンサC2,C3、CP1及びCP2の容量値を変化させたとしても、2400MHz近傍の減衰量が悪化することに変わりはないことがわかる。
 そこで、チューナブルフィルタ51に、図15(a)に示す回路の第2のチューナブルフィルタ301を縦続接続することにより、帯域外減衰量の改善を検討した。この第2のチューナブルフィルタ301では、インダクタンス302と、可変コンデンサ303とが直列に接続されている。
 第2のチューナブルフィルタ301において、インダクタンス302のインダクタンス値を60nHに固定し、可変コンデンサ303の静電容量を、0.13pF、0.15pF及び0.19pFと変化させた場合の周波数特性の変化を図15(b)に示す。図15(b)から明らかなように、可変コンデンサの静電容量を上記のように変化させることにより、中心周波数を1800MHz、1700MHz及び1530MHzと周波数を変化させ得ることがわかる。従って、可変コンデンサ303の静電容量を調整することにより第2のチューナブルフィルタ301の中心周波数をチューナブルフィルタ51の中心周波数にほぼ一致させることができる。中心周波数がチューナブルフィルタ51の中心周波数にほぼ一致されるように構成された第2のチューナブルフィルタ301を、図16(a)に示すようにチューナブルフィルタ51に縦続接続し、チューナブルフィルタ304を作製した。該チューナブルフィルタ304の周波数特性を図16(b)に示す。
 図14と図16(b)との比較から明らかなように、第2のチューナブルフィルタ301をチューナブルフィルタ1に縦続接続した場合、通過帯域から高域側に離れた位置である2400MHz近傍の減衰量を大きくし得ることがわかる。
 上述した各実験例では、弾性表面波共振子に帯域幅拡大用インダクタンスが接続された直列腕共振子回路部に可変コンデンサが接続されているチューナブルフィルタにつき説明したが、可変コンデンサの構造については特に限定されない。機械的あるいは電気的に静電容量を変化させ得る適宜の可変コンデンサを用いることができる。
 また、第1の実施形態では、埋め込み電極型の弾性表面波共振子を用いたが、図3(b)に示したように、圧電基板の上面にIDT電極が形成されている弾性表面波共振子を用いてもよい。図17~25は、10°YカットX伝搬すなわちオイラー角で(0°,100°,0°)のLiNbOの上面にAl,Mo,Cu,Ni,Ag,Au,W,TaまたはPtからなり、デューティが0.5のIDT電極を形成した図13の構造の弾性表面波共振子の特性を示す図である。図17~図25では、IDT電極の規格化膜厚H/λと、電極開放時のストップバンドの上端及び下端、並びに電極短絡時のストップバンドの上端及び下端における各弾性表面波の音速との関係が示されている。図17~図25において、共振周波数に相当する音速をfr、反共振周波数に相当する音速をfaの記号を付して示す。
 図3(b)は、(a)中のSiO膜が存在しない構造である。
 図17に示すように、電極がAlからなる場合、fr及びfaの双方が遅いバルク横波の音速である4060m/秒より速くあるいは遅くなるAl電極の規格化膜厚範囲は0.001~0.03及び0.115以上である。また、図18に示すように、Moからなる電極の場合には、Moからなる電極の規格化膜厚範囲は、0.001~0.008及び0.045以上であればよい。他の電極金属の場合も含めてまとめると下記の表5に示す通りとなる。
 すなわち、表5の第1欄に示されている金属からなる電極の場合、第2欄または第3欄に示す規格化膜厚範囲となるようにIDT電極の膜厚を設定すればよい。
Figure JPOXMLDOC01-appb-T000009
 共振周波数と反共振周波数とに相当する音速frとfaとの間に、遅いバルク横波音速が位置しないようにするためには、表5の第2欄の規格化膜厚範囲とすればよい。さらに漏洩成分の影響をなくすためには表5の第3欄の規格化膜厚範囲を用いればよい。
 図33にfaがバルク波音速4060m/秒に一致するときのAl,Mo,Cu,Ni,Ag,Au,W,TaまたはPtからなる電極のデューティと電極の規格化膜厚(H/λ)との関係を示す。またこのデューティをXとしたときの各電極の規格化膜厚(H/λ)が満たすべき条件を表6に示す。すなわち図33の線以上あるいは下記の表6に示す電極膜厚範囲のときfaが4060m/秒以下になり、従って、バルク波の影響を受けない。
Figure JPOXMLDOC01-appb-T000010
 図26及び図27に、LN基板を用い、CuからなるIDT電極の規格化膜厚が0.05であり、デューティが0.5である場合の弾性表面波共振子のオイラー角(0°,θ,0°)のθと、反射係数及び電気機械結合係数kとの関係を示す。図17~25では、10°YカットX伝搬すなわちオイラー角で(0°,100°,0°)のLiNbOの場合の結果を示したが、図26及び図27からわかるようにθ=70~115°の範囲で反射係数や電気機械結合係数kはあまり変化しない。よって、LiNbOのオイラー角は(0°,70°~115°,0°)の範囲であればよい。
 デューティ0.5を中心に示したが、高周波になると耐電力性に優れていることが求められる。従って、耐電力性を高めることができるので、デューティは0.5未満、より好ましくは、0.15~0.49の範囲とするのが有利である。
 この場合においても、帯域幅拡大用インダクタンスにより帯域幅を広げることができる。
 (第2の実施形態)
 図28は、本発明の第2の実施形態のチューナブルフィルタを示す回路図である。第2の実施形態は、本願の第2の発明の実施形態である。第2の実施形態のチューナブルフィルタ601では、入力端子602と出力端子603とを結ぶ直列腕において、直列腕共振子S1及びS2が互いに直列に接続されている。直列腕共振子S1の入力側には、可変コンデンサCssが接続されており、直列腕共振子S2の出力側には、他の可変コンデンサCssが接続されている。また、直列腕共振子S1に並列に可変コンデンサCspが接続されており、直列腕共振子S2にも並列に可変コンデンサCspが接続されている。
 直列腕共振子S1と直列腕共振子S2との間の接続点とグラウンド電位とを結ぶ並列腕に並列腕共振子P1が設けられている。並列腕共振子P1のグラウンド側には、並列腕共振子P1に直列にコンデンサCpsが接続されている。また、並列腕共振子P1に並列にコンデンサCppが接続されている。第2の実施形態のチューナブルフィルタ601では、直列腕共振子S1,S2を有する直列腕と、並列腕共振子P1を有する並列腕とを備えるラダー型回路構成のチューナブルフィルタである。
 ラダー型回路構成のチューナブルフィルタ601において、直列腕共振子S1,S2の共振周波数及び反共振周波数をそれぞれFrS及びFaSとする。また、並列腕共振子P1の共振周波数及び反共振周波数をそれぞれFrP及びFaPとする。この場合、第2の発明では、FrS、FaS、FrP及びFaPが、FrS≦{(n-1)FrP+FaP}/nであり、かつFaP≦{(n-1)FaS+FrS}/nであり、nが2以上、30以下の整数であるように構成されている。直列腕共振子及び並列腕共振子の少なくとも一方に接続された可変コンデンサと接続してラダー型のチューナブルフィルタが構成されている。そのため、チューナブルフィルタの周波数可変量を大きくすることができる。これを以下において詳細に説明する。
 一般に、ラダー型フィルタは、図29(a)または(b)に示す回路構成を有する。すなわち、図29(a)に示すラダー型フィルタ701では、入力端子702に直列腕共振子S1が接続されている。また、入力端子702に最も近い並列腕共振子P1は、直列腕共振子S1と、次の直列腕共振子S2との間の接続点とグラウンド電位とを結ぶ並列腕に設けられている。
 他方、図29(b)に示すラダー型フィルタ704では、入力端子705に、並列腕共振子P1が接続されている。
 上記ラダー型フィルタ701及び704のいずれにおいても、直列腕共振子の周波数特性及び並列腕共振子の周波数特性は以下のようにして設定されている。図30は、直列腕共振子及び並列腕共振子のインピーダンス特性を示す図である。図30の実線で示すように、並列腕共振子の反共振周波数FaPと、破線で示す直列腕共振子の共振周波数FrSとが一致されている。このようにして、通過帯域内の挿入損失の低減が図られている。
 しかしながら、このような構成では、直列腕共振子や並列腕共振子に、それぞれ静電容量を直列または並列に接続したとしても、チューナブルフィルタを構成することはできない。以下で説明する。
 上記のように、並列腕共振子の反共振周波数FaPと、直列腕共振子の共振周波数FrSとが一致された周波数を中心にして通過帯域が形成される。通過帯域両側の減衰極は、並列腕共振子の共振周波数FrPと、直列腕共振子の反共振周波数FaSとに発生する。
 並列腕共振子に静電容量を直列に接続すると、並列腕共振子の共振周波数FrPが上昇する。従って、通過帯域の低周波数側の減衰極の周波数は高くなるが、通過帯域は変化しない。
 また、直列腕共振子に静電容量を並列に接続すると、直列腕共振子の反共振周波数FaSが低下する。従って、通過帯域の高周波数側の減衰極の周波数が低くなるが、通過帯域は変化しない。
 一方、並列腕共振子に静電容量を並列に接続すると、並列腕共振子の反共振周波数FaPが低下する。その結果、並列腕共振子の反共振周波数FaPと直列腕共振子の共振周波数FrSそれぞれで挿入損失が小さくなるフィルタ特性、いわゆる双峰特性となる。従って、フィルタ特性が劣化する。直列腕共振子の共振周波数FrSを低くすることができれば上記フィルタ特性の劣化を是正できるが、静電容量を接続する手段では上記フィルタ特性の劣化を是正することは不可能である。
 また、直列腕共振子に静電容量を直列に接続すると、直列腕共振子の共振周波数FrSが上昇する。そして、並列腕共振子の反共振周波数FaPと直列腕共振子の共振周波数FrSそれぞれで挿入損失が小さいフィルタ特性、すなわち双峰特性となる。従って、フィルタ特性が劣化する。並列腕共振子の反共振周波数FaPを高くすることができれば上記フィルタ特性の劣化を是正できるが、静電容量を接続する手段では上記フィルタ特性の劣化を是正することは不可能である。
 本実施形態でn=2の場合には、FrS≦(FrP+FaP)/2、FaP>FrS及びFaP<FaSを満たすように設定されることが好ましい。
 この場合、並列腕共振子に静電容量を並列に接続されているので、並列腕共振子の反共振周波数FaPが低下し、直列腕共振子に静電容量が直列に接続されているので、直列腕共振子の共振周波数FrSが上昇されている。また、並列腕共振子の反共振周波数FaPと直列腕共振子の共振周波数FrSとを一致させることにより、静電容量を接続する前のFrSとFaPとの間の周波数帯域に中心周波数を持つフィルタ特性を得ることができる。従って、フィルタ特性が双峰特性とはならない。よって、接続される静電容量の値を調整することにより、FrSとFaPの間でフィルタの中心周波数を可変できるチューナブルフィルタが得られる。
 この状態で並列腕共振子に静電容量を直列に接続すると、並列腕共振子の共振周波数FrPが上昇する。よって、通過帯域の低周波数側の減衰極が通過帯域に近づき、従って、チューナブルフィルタの通過帯域低域側の急峻性を良くすることができる。直列腕共振子に静電容量を並列に接続すると、直列腕共振子の反共振周波数FaSが低くなる。よって、通過帯域の高周波数側の減衰極が通過帯域に近づき、従って、チューナブルフィルタの通過帯域高域側の急峻性を良くすることができる。
 n=2の場合には、反共振周波数と共振周波数の差であるΔfが略同じ弾性表面波共振子を直列腕及び並列腕共振子として用いることができるので、設計が容易である。
 より好ましくは、n=3であり、FrS≦(2FrP+FaP)/3、FaP>FrS及びFaP<FaSを満たすように設定される。反共振周波数と共振周波数の差であるΔfが略同じ弾性表面波共振子を直列腕及び並列腕共振子として用いることができるので、設計が容易である。
 一般的に示すと、前述のように、FrS≦{(n-1)FrP+FaP}/nであり、かつFaP≦{(n-1)FaS+FrS}/nであり、nが2以上、30以下の整数である。
 上記の説明から明らかなように、並列腕共振子に静電容量を直列に接続しないで、かつ直列腕共振子に静電容量を並列に接続しない場合に、通過帯域両側の減衰極が最も通過帯域から遠ざかり、かつ最も広い3dB帯域幅が得られる。このときの3dB帯域幅は|FrP-FrS|である。従って、nが大きくなるほど実現できる3dB帯域幅が狭くなる。チューナブルフィルタの仕様によってnを選択すればよい。
 以上のように、周波数可変範囲を大きくすることができ、かつ通過帯域の幅を広くすることができるチューナブルフィルタを実現するには、広帯域の共振子を用意し、かつ直列腕共振子の周波数特性と、並列腕共振子の周波数との組み合わせ方を工夫しなければならない。以下において具体例を説明する。
 図31は、前述した埋め込み型電極を有する弾性表面波共振子を用いて構成された並列腕共振子及び直列腕共振子のインピーダンス特性を示す図である。ここでは、IDT電極のピッチで定まる波長と交差幅とを調整し、並列腕共振子及び直列腕共振子のインピーダンス特性を調整した。
 図31から明らかなように、実線で示す並列腕共振子のインピーダンス特性では、共振周波数FrPは1629MHzであり、反共振周波数FaPは、1903MHzである。これに対して、直列腕共振子の共振周波数FrSを、1629MHzよりも91MHz高い1720MHzとした。そして、直列腕共振子の比帯域幅を並列腕共振子の比帯域幅と同様に17%となるように設計した。なお、共振子の比帯域幅とは、反共振周波数と共振周波数との差を共振周波数で除算した値である。
 図31に示すインピーダンス特性を有する並列腕共振子及び直列腕共振子を用いて、図28に示したチューナブルフィルタ601における直列腕共振子S1,S2及び並列腕共振子P1を構成した。この場合、直列腕共振子S1,S2の反共振周波数FaPは、図31から明らかなように、2010MHzとした。
 図32は、可変コンデンサCss,Csp、コンデンサCps,Cppの静電容量を以下の第1~第3の組み合わせとした場合のチューナブルフィルタ601のフィルタ特性を示す。
 第1の組み合わせ:Css=0pF、Csp=2pF、Cpp=8pF、Cps=17pF
 第2の組み合わせ:Css=1.5pF、Csp=0.5pF、Cps=7pF、Cpp=2.3pF
 第3の組み合わせ:Css=0.5pF、Csp=0pF、Cps=2.3pF、Cpp=0pF
 図32では、第1の組み合わせの結果を破線で、第2の組み合わせの結果を実線で、第3の組み合わせの結果を一点鎖線で示す。
 図32から明らかなように、Css、Csp、Cps及びCppの大きさを調節することにより、通過帯域を大きく変化させ得ることがわかる。すなわち、中心周波数を約9%と非常に大きく変化させることができた。また、第1~第3の組み合わせのいずれの場合においても、3dB帯域幅は92MHzである。
 3dB帯域幅とは、通過帯域内における最小挿入損失より3dB大きい挿入損失を有する周波数域の幅である。この周波数域の一端の周波数をF1、他端の周波数をF2とすると、3dB帯域幅は、周波数F1と周波数F2との差の絶対値である。チューナブルフィルタ601の中心周波数とは、(F1+F2)/2で表わされる。
 ここでは、3dB帯域幅が92MHzの場合、上記のように、周波数可変量を9%とすることが可能であった。
 また図34は、FrPとFrSとの差を45MHzにして上記チューナブルフィルタ601と同様にしてラダー型チューナブルフィルタのフィルタ特性を示す。ここでは3dB帯域幅が46MHzとされている。また、周波数可変幅も11.5%と大きくされている。
 そこで、本実施形態において、直列腕共振子の共振周波数FrSと並列腕共振子の共振周波数FrPとの差を種々変化させた場合の、3dB帯域幅と周波数可変量とを同様にして求めた。結果を下記の表7に示す。表7から明らかなように、直列腕共振子の共振周波数FrSと並列腕共振子の共振周波数FrPとの差を変化させることにより、チューナブルフィルタ601の3dB帯域幅を変化させるとともに、周波数可変量を変化させることができる。このときのチューナブルフィルタの中心周波数は約1820MHzである。
Figure JPOXMLDOC01-appb-T000011
 なお、周波数可変量とは、最も中心周波数が低い第1の組み合わせの場合の中心周波数と、最も中心周波数が高い第3の組み合わせの場合の中心周波数との差の両中心周波数間の中点の周波数に対する割合(%)をいうものとする。
 表2から明らかなように、直列腕共振子の共振周波数FrSと、並列腕共振子の共振周波数FrPとの差を変更することにより、3dB帯域幅及び周波数可変量を大きく変化させ得ることがわかる。なお、直列腕共振子の反共振周波数FaSと、並列腕共振子の反共振周波数FaPの差は、FrSとFrPの差と略同等とした。
 上記のように、例えば直列腕共振子及び並列腕共振子の比帯域幅が17%である場合、チューナブルフィルタの周波数可変範囲を6.2%以上とするには、FrSとFrPの共振周波数差を137MHz以下とすればよいことがわかる。すなわち、共振周波数差Δfr=FrS-FrPを、並列腕共振子及び直列腕共振子の比帯域幅である17%=274MHzの1/2である137MHz以下とすればよいことがわかる。また、このときのΔfrはチューナブルフィルタの3dB帯域幅にほぼ近い値となる。
 また、言い方を換えると、周波数可変幅6.8%以上を実現するには、弾性表面波共振子の比帯域幅が13~25%の場合、下記の表8に示すように、FrS-FrPの共振子の比帯域幅に対する割合を下記の表8に示すように設定すればよい。
Figure JPOXMLDOC01-appb-T000012
 また、周波数可変幅を9%以上とした場合には、下記の表9に示すように、FrS-FrPの共振子の比帯域幅に対する割合を表9に示す値以下とすればよいことがわかる。
Figure JPOXMLDOC01-appb-T000013
 従って、直列腕共振子の比帯域幅及び並列腕共振子の比帯域幅は、好ましくは、13%以上である。それによって、上記のように、周波数可変量をより一層大きくすることができる。より好ましくは、直列腕共振子及び並列腕共振子の比帯域幅は、15%以上であり、それによって周波数可変量をより一層大きくすることができる。なお、比帯域幅60%を超える弾性波共振子は帯域通過フィルタでは一般に用いられていない。よって、比帯域幅は、好ましくは、13%以上、60%以下である。
 上記表7~表9の値を式で表わすと、以下の通りとなる。すなわち、実現したいチューナブルフィルタの周波数可変幅をt、直列腕共振子及び並列腕共振子の比帯域幅をyとする。
 tは、周波数が変動可能な幅(FaP-FrS)を(FaP+FrS)/2で規格化してなる値であり、また、直列腕共振子及び並列腕共振子の比帯域幅yは、比帯域幅をそれぞれの共振周波数で規格化した値とする。このとき、Δfr=FrS-FrPのFrPに対する比であるΔfr/FrPを比帯域幅yで規格化した値が、以下の式(1)で示す値以下とすればよいことがわかる。すなわち、
 {(2-t/0.9)×(1+y)-(2+t/0.9)}/{(2+t/0.9)×y}×100(%)   ・・・(1)
 なお、周波数可変幅tは、実験的に最大で、
 t≒2×(FaP-FrS)/(FaP+FrS)×0.9×100(%)
である。従って、適した可変幅は、得られるフィルタ特性を考慮すると、0.7×t~0.9×tの間である。よって、最小の3dB帯域幅は、(FrS-FrP)×0.9あるいは(FaS-FaP)×0.9のいずれか小さいほうで、最大周波数可変幅は140×(FaP-FrS)/(FaP+FrS)(%)から180×(FaP-FrS)/(FaP+FrS)(%)、が得られる。
 上記のように、チューナブルフィルタ601において、直列腕共振子S1,S2及び並列腕共振子P1の周波数特性を組み合わせることにより、周波数可変幅を大きくし得ることがわかる。
 埋め込み型電極を有する弾性表面波共振子を用いて構成された直列腕及び並列腕の共振子を用いたラダー型のチューナブルフィルタについて説明したが、LN基板上にIDT電極が形成されている弾性表面波共振子を用いて構成された直列腕及び並列腕の共振子を用いてもよい。この場合も上記のように、直列腕共振子S1,S2及び並列腕共振子P1の周波数特性を組み合わせることにより、周波数可変幅を大きくし得る。
 ラダー型のチューナブルフィルタでは、直列腕共振子の共振周波数及び反共振周波数をFrS、FaS、並列腕共振子の共振周波数及び反共振周波数をFrP、FaPとしたときに|FrS-FaS|と|FrP-FaP|とが大きいほど、チューナブルフィルタの通過帯域の可変量を大きくすることができるので好ましい。上記実施形態では、図31に示すインピーダンス特性を有する並列腕共振子及び直列腕共振子を用いて説明したが、並列腕共振子及び直列腕共振子に代えて直列腕と並列腕の両方にそれぞれ直列腕共振子回路部と並列腕共振子回路部とを設けて、直列腕共振子回路部と並列腕共振子回路部とによりラダー型フィルタを構成してもよい。
 なお、図3に示したように圧電基板11上にIDT電極12が形成されている場合には、レイリー波によるスプリアスが共振周波数と反共振周波数との間、あるいは反共振周波数よりも高い周波数位置に現れる。これに対して、前述した埋め込み型電極を用いた構造では、レイリー波によるスプリアスは共振周波数よりも低い周波数位置に出現する。従って、埋め込み型ではない弾性表面波共振子を直列腕共振子とし、埋め込み電極型弾性表面波共振子を並列腕共振子として用いることが望ましい。それによって、通過帯域内にスプリアスが生じ難いチューナブルフィルタを得ることができる。
 また、第1の実施形態のように、ボンディングワイヤなどを用いて帯域幅拡大用インダクタンスが形成されている場合にも上記式(1)に示すように直列腕共振子の周波数特性及び並列腕共振子の周波数特性を組み合わせて帯域幅を拡大することにより、周波数可変幅を大きくすることができる。
 (第2の実施形態の変形例)
 図35~図39を参照して、第2の実施形態の変形例に係るラダー型チューナブルフィルタを説明する。図37に回路図で示すように、本実施形態のラダー型チューナブルフィルタ61は、入力端子62と出力端子63と、グラウンド電位に接続されるグラウンド端子64とを有する。入力端子62と出力端子63とを結ぶ直列腕に、第1,第2のバルク波共振子65,66が互いに直列に挿入されている。また、入力端子62と第1のバルク波共振子65との間に、第1の可変コンデンサCSs1が接続されている。第1のバルク波共振子65に並列に可変コンデンサCSp1が接続されている。
 第2のバルク波共振子66に並列に可変コンデンサCSp2が接続されている。バルク波共振子66と出力端子63との間に可変コンデンサCSs2が接続されている。他方、第1,第2のバルク波共振子65,66間の接続点Nとグラウンド端子64とを結ぶ並列腕に、並列腕共振子として第3のバルク波共振子67が接続されている。
 第3のバルク波共振子67と第1,第2のバルク波共振子65,66間の接続点Nとの間には、可変コンデンサCPsが接続されている。また、第3のバルク波共振子67に並列に、可変コンデンサCPpが接続されている。本実施形態のチューナブルフィルタ61では、上記可変コンデンサCSs1,CSs2、CSp1,CSp2、CPs及びCPpの静電容量を調整することにより通過帯域の周波数位置を調整することができる。
 上記バルク波共振子65~67は、圧電薄膜あるいは圧電薄板を励振することにより発生したバルク波による共振を利用するものである。図35は、第1のバルク波共振子65の正面断面図である。バルク波共振子65は、Siなどの適宜の絶縁材料または半導体材料からなる基板68を有する。基板68は、貫通孔68aからなるキャビティを有する。基板68上に、圧電薄膜69が積層されている。圧電薄膜69は、貫通孔68aを覆うように設けられている。この圧電薄膜69は、本実施形態では、KNbOからなる。もっとも、圧電薄膜69は圧電薄板でもよいし、他の圧電材料により形成されていてもよい。
 圧電薄膜69の貫通孔68aを覆っている部分において、圧電薄膜69の下面に第2の励振電極70Aが形成されている。また、第2の励振電極70Aと、圧電薄膜69を介して対向するように、第1の励振電極71Aが設けられている。第1,第2の励振電極71A,70Aは、本実施形態では、Alからなる。もっとも、励振電極70A,71Aは、Cu、Ag、Au,Pt、Mo,Niまたはこれらを主体とする合金などの適宜の金属により形成することができる。
 第1,第2の励振電極71A,70Aが対向している部分が励振部を構成している。励振部では、下方に貫通孔68aからなるキャビティが位置している。従って、圧電薄膜69は励振部においてその振動が妨げられ難い。
 バルク波共振子の振動モードとしては、厚みすべり振動と厚み縦振動がある。利用する振動モードに応じて、励振電極の寸法を適宜調整すればよい。厚みすべり振動は、図35で言えば、圧電薄膜69に形成された励振電極70Aと71A間に電圧を印加した際、バルク波の伝搬方向、すなわち圧電薄膜の厚み方向とバルク波の変位の方向が略垂直である、振動モードである。一方、厚み縦振動は、圧電薄膜69に形成された励振電極70Aと71A間に電圧を印加した際、バルク波の伝搬方向、すなわち圧電薄膜の厚み方向とバルク波の変位の方向が略平行である、振動モードである。
 バルク波共振子65につき説明したが、第2,第3のバルク波共振子66,67も同様の構造を有する。
 図37に示すバルク波共振子65は、入力端子62と、前述した接続点とに接続されているが、上記第1の励振電極71AがCSs1を介して入力端子62に、第2の励振電極70Aが前述した接続点Nに接続されている。
 図36は、上記チューナブルフィルタの模式的平面図である。図36では、基板68上に、上記バルク波共振子65が構成されている部分において、第1の励振電極71Aが図示されている。第2の励振電極70Aは圧電薄膜の下面に位置しているので、破線で示す。第2,第3のバルク波共振子66,67が構成されている部分においても、同様に第1の励振電極71Aが基板68の上面に設けられている。
 なお、図36においては、可変コンデンサCSs1,CSp1、CSp2,CSs2、CPs及びCPpが設けられている部分を矩形のブロックで略図的に示すこととする。このような各可変コンデンサの構造は、前述した第1,第2の実施形態と同様にして、すなわち、従来より公知の可変コンデンサにより構成することができる。
 本実施形態のように、本発明のチューナブルフィルタでは、直列腕共振子及び並列腕共振子として、バルク波共振子を用いてもよい。
 図38は、上記チューナブルフィルタ61における直列腕共振子及び並列腕共振子の各インピーダンス特性を示す。すなわち、第1,第2のバルク波共振子65,66は、図38に破線で示す直列腕共振子のインピーダンス特性を有する。他方、第3のバルク波共振子67は、図38に実線で示す並列腕共振子のインピーダンス特性を有する。
 このような第1~第3のバルク波共振子65~67を用いたチューナブルフィルタ61の減衰量周波数特性を図39に示す。
 なお、図39においては、上述した可変コンデンサの静電容量を種々変更した場合の周波数特性を示す。本実施形態では、可変コンデンサCSs1及びCSs2の静電容量は等しくしており、このような静電容量を、S-Csとする。また、可変コンデンサCSp1及び可変コンデンサCSP2の静電容量も等しくされており、これらの可変コンデンサの静電容量を、S-Cpとする。
 また、並列腕に接続されている可変コンデンサCPsの静電容量をP-Csとし、可変コンデンサCPpの静電容量をP-Cpとする。図39では、可変コンデンサの静電容量を以下の3通りの組み合わせとした場合の周波数特性を示す。
 第1の組み合わせ:S-Cs=0pF、S-Cp=5pF、P-Cs=0pF、P-Cp=22pF。
 第2の組み合わせ:S-Cs=0.6pF、S-Cp=0.6pF、P-Cs=4.0pF、P-Cp=3.0pF。
 第3の組み合わせ:S-Cs=0.2pF、S-Cp=0pF,P-Cs=0.8pF、P-Cp=0pF。
 図39から明らかなように、第1の組み合わせの場合、通過帯域の中心周波数は、約1.67GHzにあり、第2の組み合わせの場合通過帯域中心周波数は約1.79GHzにあり、第3の組み合わせの場合、通過帯域中心周波数は約1.91GHzにあることがわかる。すなわち、可変コンデンサの静電容量を調整することにより、通過帯域の中心周波数を、1.91-1.67=0.24GHz=240MHzに変化させ得ることがわかる。従って、設計中心周波数1.8GHzに対し、周波数調整可能範囲は14%と非常に大きいことがわかる。
 すなわち、本発明においては、弾性表面波共振子に限らず、上記のようなバルク波共振子65~67を用いてもよく、その場合においても、本発明に従って、周波数調整可能範囲を広げ得ることがわかる。
 図40(a)及び(b)は、バルク波共振子の変形例を示す各正面断面図である。図35に示したバルク波共振子65では、基板68に貫通孔68aからなるキャビティが設けられていた。これに対して、図40(a)に示すように、基板68の上面に貫通孔ではない凹部68bを設けることによりキャビティを形成してもよい。
 また、図40(b)に示すように、圧電薄膜69の上面の第1の励振電極71Aが、ギャップを隔てて対向された分割励振電極71,72からなり、第2の励振電極70Aが、上記分割励振電極71,72と圧電薄膜69を介して対向されていてもよい。
 すなわち、図35に示したバルク波共振子65に代えて、図40(a)及び(b)に示したバルク波共振子81,82をそれぞれ用いてもよい。
 次に、図35に示したバルク波共振子65の他の変形例として、LiNbOからなる圧電薄膜69を用い、さらにバルク波として厚みすべり振動を用いた共振子につき説明する。
 図41は、オイラー角(0°,95°,ψ)のLiNbO及びオイラー角(30°,90°ψ)のLiNbOをそれぞれ用い、厚みすべり振動を利用したバルク波共振子65のインピーダンス特性を示す図である。ここでは、LiNbOの厚みをそれぞれ1.45μmとした。第1,第2の励振電極71A,70AをAl膜により形成した。第1,第2の励振電極71A,70Aの厚みは0.1μmとし、平面形状は半径50μmの円形とした。
 図41から明らかなように、LiNbOからなる圧電薄膜のオイラー角が(30°,90°,ψ)では、30%の帯域幅の得られることがわかる。他方、オイラー角(0°,95°,ψ)のLiNbOからなる圧電薄膜を用いた場合、厚みすべり振動子では、21%の帯域の得られることがわかる。このように、バルク波共振子65において厚みすべり振動モードを利用した場合に、圧電薄膜としてLiNbOを用いかつそのオイラー角を変更することにより帯域幅を制御し得ることがわかる。
 図42は、オイラー角(30°,0°,ψ)のLiNbOからなる圧電薄膜を用いたバルク波共振子65であって、厚みすべり振動モードを利用したバルク波共振子に直列にインダクタンスを接続した場合のインダクタンスの大きさと、インピーダンス特性の変化とを示す図である。
 図42から明らかなように、インダクタンスすなわち帯域幅拡大用インダクタンスを接続しない場合に比べ、5nH、10nH及び20nHのインダクタンス値の帯域幅拡大用インダクタンスを接続することにより、帯域幅を広げ得ることがわかる。
 図43は、上記オイラー角(φ,θ,ψ)のLiNbOからなる圧電薄膜を用いたバルク波共振子65であって、厚みすべり振動モードを利用した共振子におけるオイラー角と、帯域幅Δf/frとの関係を示す図である。
 図43より、厚みすべりモードを利用した場合、オイラー角を以下のように特定の範囲に選択することにより、帯域幅を20%以上、25%以上または30%以上と非常に広くし得ることがわかる。
Figure JPOXMLDOC01-appb-T000014
 図44は、上記厚みすべり振動モードを利用したバルク波共振子65を用いて、図37に示したチューナブルフィルタを図37と同様にして構成した場合の減衰量周波数特性及び周波数可変幅を示す図である。ここでは、図37のチューナブルフィルタにおいて、共振子として、オイラー角(30°,90°,ψ)のLiNbOからなる圧電薄膜を用い、厚みすべり振動モードを利用したことを除いては、図37と同様にしてチューナブルフィルタ61を構成する。なお、図44では、図39の場合と同様に、可変コンデンサの静電容量を種々変更した場合の周波数特性を示す。図44では、可変コンデンサの静電容量を下記の3通りの組み合わせとした場合の周波数特性を示す。
 第1の組み合わせ:S-Cs=0pF、S-Cp=2pF、P-Cs=0pF、P-Cp=8pF。
 第2の組み合わせ:S-Cs=0.2pF、S-Cp=0.26pF、P-Cs=0.8pF、P-Cp=1.0pF。
 第3の組み合わせ:S-Cs=0.08pF、S-Cp=0.2pF、P-Cs=0.3pF、P-Cp=0pF。
 図44から明らかなように、第1の組み合わせの場合、通過帯域の中心周波数は約1.25GHzに位置しており、第2の組み合わせの場合、中心周波数は約1.38GHz付近にあり、第3の組み合わせの場合、中心周波数は約1.54GHz付近に位置していることがわかる。従って、1.54~1.25=0.29GHzの範囲で中心周波数を変化させ得ることがわかる。よって、設計中心周波数1.395GHzに対し、周波数調整可能範囲は21%と非常に大きいことがわかる。
 なお、本発明では、バルク波共振子65として厚み縦振動モードを利用した厚み縦共振子を用いてもよい。図45は、オイラー角(φ,θ,ψ)のLiNbOからなる圧電薄膜を用いてバルク波共振子65を構成し、厚み縦振動モードを利用した場合、帯域幅Δf/frとオイラー角との関係を示す図である。
 図45から明らかなように、厚み縦振動モードを利用したバルク波共振子を用いた場合においても、LiNbOのオイラー角を、(0±5°、107°~137°、ψ)、(10±5°、112°~133°、ψ)、(50±5°、47°~69°、ψ)または(60±5°、43°~73°、ψ)のいずれかの範囲とすれば帯域幅を10%以上とし得ることがわかる。
 1…チューナブルフィルタ
 11…圧電基板
 11a…上面
 11b…溝
 12…IDT電極
 12a,12b…くし歯電極
 13,14…反射器
 15…SiO
 22…入力端子
 23…出力端子
 41…チューナブルフィルタ
 51…チューナブルフィルタ
 61…チューナブルフィルタ
 62…入力端子
 63…出力端子
 64…グラウンド端子
 65~67…第1~第3のバルク波共振子
 68…基板
 68a…貫通孔
 68b…凹部
 69…圧電薄膜
 70…共通励振電極
 70A…第2の励振電極
 71A…第1の励振電極
 71,72…分割励振電極
 81,82…バルク波共振子
 200…圧電基板
 201~203…端子
 201A…端子
 202A…端子
 205…パッケージ
 206~209…電極
 211~214…ボンディングワイヤ
 221…帯域幅拡大用インダクタンス
 221A…帯域幅拡大用インダクタンス
 301…第2のチューナブルフィルタ
 302…インダクタンス
 303…可変コンデンサ
 304…チューナブルフィルタ
 601…チューナブルフィルタ
 602…入力端子
 603…出力端子
 701…ラダー型フィルタ
 702…入力端子
 704…ラダー型フィルタ
 705…入力端子
 C1~C4…コンデンサ
 CP1,CP2…コンデンサ
 L1…インダクタンス
 P1…並列腕共振子
 S1,S2…直列腕共振子
 S11,S12…直列腕共振子回路部

Claims (25)

  1.  入力端子と出力端子とを接続する直列腕および該直列腕とグラウンド電位との間の並列腕の少なくとも一方に設けられた共振子回路部と、
     前記共振子回路部に直列に接続された第1の可変コンデンサと、
     前記共振子回路部に並列に接続された第2の可変コンデンサとを備え、
     前記共振子回路部が、LiNbOまたはLiTaOからなる圧電基板と、前記圧電基板上に形成された電極とを有する弾性波共振子と、前記弾性波共振子に接続された帯域幅拡大用インダクタンスとを備える、チューナブルフィルタ。
  2.  前記共振子回路部が、直列腕に設けられた複数の直列腕共振子回路部であり、
     複数の前記直列腕共振子回路部間の接続点とグラウンド電位との間に接続された結合素子と、
     入力端子とグラウンド電位間及び出力端子とグラウンド電位間に接続された整合素子とをさらに備える、請求項1に記載のチューナブルフィルタ。
  3.  前記共振子回路部として、直列腕と並列腕の両方にそれぞれ設けられた直列腕共振子回路部と並列腕共振子回路部とを有し、
     前記直列腕共振子回路部と前記並列腕共振子回路部とによりラダー型フィルタが構成されている、請求項1に記載のチューナブルフィルタ。
  4.  前記共振子回路部が、複数の並列共振子からなり、前記複数の並列共振子に前記帯域幅拡大用インダクタンスが接続されている、請求項3に記載のチューナブルフィルタ。
  5.  前記圧電基板の上面に凹部が形成されており、前記圧電基板上に形成された電極がIDT電極であり、前記弾性波共振子が弾性表面波共振子であって、さらに前記IDT電極が前記凹部に充填された金属からなる、請求項1~4のいずれか1項に記載のチューナブルフィルタ。
  6.  前記弾性表面波共振子が、前記圧電基板の上面を覆うように設けられたSiO膜をさらに備える、請求項1~5のいずれか1項に記載のチューナブルフィルタ。
  7.  入力端子と出力端子との間に接続されているコンデンサをさらに備えている、請求項2~6のいずれか1項に記載のチューナブルフィルタ。
  8.  前記整合素子及び前記結合素子のチューナブルフィルタの通過帯域におけるインピーダンスが20~105Ωである、請求項2に記載のチューナブルフィルタ。
  9.  前記帯域幅拡大用インダクタンスがスパイラル状もしくはミアンダ状の導体パターン及びボンディングワイヤのうちのいずれか1つである、請求項1~8のいずれか1項に記載のチューナブルフィルタ。
  10.  前記帯域幅拡大用インダクタンスがスパイラル状もしくはミアンダ状の導体パターンであり、パッケージをさらに備え、前記スパイラル状またはミアンダ状の導体パターンが前記圧電基板上または前記パッケージに形成されている、請求項9に記載のチューナブルフィルタ。
  11.  直列腕に設けられた直列腕共振子と、並列腕に設けられた並列腕共振子と、直列腕共振子及び並列腕共振子の少なくとも一方に接続された可変コンデンサとを備えるラダー型回路構成のチューナブルフィルタにおいて、前記直列腕共振子の共振周波数及び反共振周波数をFrS、FaS、前記並列腕共振子の共振周波数及び反共振周波数をFrP、FaPとしたときに、FrS≦{(n-1)FrP+FaP}/nかつFaP≦{(n-1)FaS+FrS}/nであり、nが2以上、30以下の整数である、チューナブルフィルタ。
  12.  FrS≦(FrP+FaP)/2、FaP>FrS及びFaP<FaSを満たす、請求項11に記載のチューナブルフィルタ。
  13.  FrS≦(2FrP+FaP)/3、FaP>FrS及びFaP<FaSである、請求項11に記載のチューナブルフィルタ。
  14.  チューナブルフィルタの周波数可変幅を(FaP+FrS)/2で規格化してなる値をt、直列腕共振子及び並列腕共振子の比帯域幅をそれぞれの共振周波数で規格化した値をyとしたときに、Δfr=FrS-FrPのFrPに対する比であるΔfr/FrPを比帯域幅yで規格化した値が、以下の式(1)で示す値以下とされている、請求項11に記載のチューナブルフィルタ。
     {(2-t/0.9)×(1+y)-(2+t/0.9)}/{(2+t/0.9)×y}×100(%)   ・・・(1)
  15.  前記直列腕共振子の共振周波数FrSと、前記並列腕共振子の共振周波数FrPの差の直列腕共振子の比帯域に対する割合の最大値が下記の表1に示す範囲とされている、請求項11に記載のチューナブルフィルタ。
    Figure JPOXMLDOC01-appb-T000001
  16.  前記直列腕共振子の共振周波数FrSと、前記並列腕共振子の共振周波数FrPの差の直列腕共振子の比帯域に対する割合の最大値が下記の表2に示す範囲とされている、請求項11に記載のチューナブルフィルタ。
    Figure JPOXMLDOC01-appb-T000002
  17.  最小の3dB帯域幅が、(FrS-FrP)×0.9あるいは(FaS-FaP)×0.9のいずれか小さいほうで、最大周波数可変幅が140×(FaP-FrS)/(FaP+FrS)(%)から180×(FaP-FrS)/(FaP+FrS)(%)の範囲とされている、請求項15または16に記載のチューナブルフィルタ。
  18.  直列腕共振子の比帯域幅及び並列腕共振子の比帯域幅がいずれも13%以上、60%以下である、請求項11~16のいずれか1項に記載のチューナブルフィルタ。
  19.  LiNbOのオイラー角が(0°,70°~115°,0°)であり、デューティ比をXとしたときに、電極規格化膜厚が下記の表3に示す範囲である、弾性表面波共振子を用いた、請求項11~18のいずれか1項に記載のチューナブルフィルタ。
    Figure JPOXMLDOC01-appb-T000003
  20.  前記直列腕共振子及び並列腕共振子が、バルク波共振子からなり、該バルク波共振子が、上面に開いたキャビティを有する基板と、前記基板のキャビティを覆うように基板上に設けられた圧電薄膜あるいは圧電薄板と、前記圧電薄膜の下面であって前記キャビティに臨む部分に設けられた第1の励振電極と、
     前記圧電薄膜の上面に設けられており、かつ前記第1の励振電極と圧電薄膜を介して対向するように配置されている第2の励振電極とを有する、請求項11~18のいずれか1項に記載のチューナブルフィルタ。
  21.  前記バルク波共振子が厚みすべり振動共振子である、請求項20に記載のチューナブルフィルタ。
  22.  前記バルク波共振子が厚み縦振動共振子である、請求項20に記載のチューナブルフィルタ。
  23.  入力端子と出力端子とを接続する直列腕および該直列腕とグラウンド電位との間の並列腕の少なくとも一方に設けられた共振子回路部と、
     前記共振子回路部に直列に接続された第1の可変コンデンサと、
     前記共振子回路部に並列に接続された第2の可変コンデンサとを備え、
     前記共振子回路部が、バルク波共振子と、該バルク波共振子に接続された帯域幅拡大用インダクタンスとを備え、前記バルク波共振子が、上面に開いたキャビティを有する基板と、前記基板のキャビティを覆うように基板上に設けられた圧電薄膜あるいは圧電薄板と、前記圧電薄膜の下面であって前記キャビティに臨む部分に設けられた第1の励振電極と、
     前記圧電薄膜の上面に設けられており、かつ前記第1の励振電極と圧電薄膜を介して対向するように配置されている第2の励振電極とを有する、チューナブルフィルタ。
  24.  前記バルク波共振子が、LiNbOからなる圧電薄膜あるいは圧電薄板を用いた厚みすべり振動共振子であって、そのオイラー角が以下の表4に示すいずれかの範囲内にある、請求項21または請求項23に記載のチューナブルフィルタ。
    Figure JPOXMLDOC01-appb-T000004
  25.  前記バルク波共振子が、LiNbOからなる圧電薄膜あるいは圧電薄板を用いた厚み縦振動共振子であって、そのオイラー角が(0±5°、107°~137°、ψ)、(10±5°、112°~133°、ψ)、(50±5°、47°~69°、ψ)または(60±5°、43°~73°、ψ)の範囲内である、請求項22または請求項23に記載のチューナブルフィルタ。
PCT/JP2011/051751 2010-01-28 2011-01-28 チューナブルフィルタ WO2011093449A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011551933A JPWO2011093449A1 (ja) 2010-01-28 2011-01-28 チューナブルフィルタ
KR1020127019443A KR101350244B1 (ko) 2010-01-28 2011-01-28 튜너블 필터
CN201180007211.2A CN102725959B (zh) 2010-01-28 2011-01-28 可调谐滤波器
EP11737159.1A EP2530838B1 (en) 2010-01-28 2011-01-28 Tunable filter
US13/555,462 US8552818B2 (en) 2010-01-28 2012-07-23 Tunable filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-016715 2010-01-28
JP2010016715 2010-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/555,462 Continuation US8552818B2 (en) 2010-01-28 2012-07-23 Tunable filter

Publications (1)

Publication Number Publication Date
WO2011093449A1 true WO2011093449A1 (ja) 2011-08-04

Family

ID=44319429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051751 WO2011093449A1 (ja) 2010-01-28 2011-01-28 チューナブルフィルタ

Country Status (6)

Country Link
US (1) US8552818B2 (ja)
EP (2) EP2530838B1 (ja)
JP (2) JPWO2011093449A1 (ja)
KR (1) KR101350244B1 (ja)
CN (1) CN102725959B (ja)
WO (1) WO2011093449A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225717A (ja) * 2013-05-15 2014-12-04 株式会社村田製作所 圧電バルク波共振子
WO2014192754A1 (ja) * 2013-05-28 2014-12-04 株式会社村田製作所 チューナブルフィルタ
WO2015019794A1 (ja) * 2013-08-06 2015-02-12 株式会社村田製作所 高周波モジュール
WO2015025651A1 (ja) * 2013-08-21 2015-02-26 株式会社村田製作所 チューナブルフィルタ
WO2015045793A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 共振回路及び高周波フィルタ
WO2015045794A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 共振器及び高周波フィルタ
WO2015045882A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 周波数可変フィルタ
JP2015144418A (ja) * 2013-12-28 2015-08-06 山之内 和彦 可変周波数弾性波変換器とこれを用いた電子装置
WO2015119179A1 (ja) * 2014-02-10 2015-08-13 株式会社村田製作所 可変フィルタ回路および無線通信装置
JP2015228638A (ja) * 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ 可変周波数弾性波変換器とこれを用いた電子装置
JPWO2015099105A1 (ja) * 2013-12-27 2017-03-23 株式会社村田製作所 高周波フィルタ
US10476478B2 (en) 2014-08-20 2019-11-12 Snaptrack, Inc. Tunable HF filter having series resonators
WO2021221162A1 (ja) * 2020-04-30 2021-11-04 株式会社村田製作所 弾性波装置
WO2021246446A1 (ja) * 2020-06-03 2021-12-09 株式会社村田製作所 弾性波装置
WO2021246447A1 (ja) * 2020-06-04 2021-12-09 株式会社村田製作所 弾性波装置

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300038B2 (en) 2010-12-10 2016-03-29 Peregrine Semiconductor Corporation Method, system, and apparatus for resonator circuits and modulating resonators
JP6000969B2 (ja) * 2010-12-10 2016-10-05 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
KR101919115B1 (ko) * 2012-02-29 2018-11-15 삼성전자주식회사 Bawr 을 이용한 필터
FR3002345A1 (fr) 2013-02-15 2014-08-22 St Microelectronics Sa Procede et dispositif d'emission d'un signal radiofrequence
US9628045B2 (en) 2013-08-01 2017-04-18 Qorvo Us, Inc. Cooperative tunable RF filters
US9780756B2 (en) 2013-08-01 2017-10-03 Qorvo Us, Inc. Calibration for a tunable RF filter structure
US9774311B2 (en) 2013-03-15 2017-09-26 Qorvo Us, Inc. Filtering characteristic adjustments of weakly coupled tunable RF filters
US9871499B2 (en) 2013-03-15 2018-01-16 Qorvo Us, Inc. Multi-band impedance tuners using weakly-coupled LC resonators
US9705478B2 (en) 2013-08-01 2017-07-11 Qorvo Us, Inc. Weakly coupled tunable RF receiver architecture
US9755671B2 (en) 2013-08-01 2017-09-05 Qorvo Us, Inc. VSWR detector for a tunable filter structure
US9685928B2 (en) 2013-08-01 2017-06-20 Qorvo Us, Inc. Interference rejection RF filters
WO2014145633A1 (en) 2013-03-15 2014-09-18 Rf Micro Devices, Inc. Weakly coupled based harmonic rejection filter for feedback linearization power amplifier
US9825656B2 (en) 2013-08-01 2017-11-21 Qorvo Us, Inc. Weakly coupled tunable RF transmitter architecture
US9484879B2 (en) 2013-06-06 2016-11-01 Qorvo Us, Inc. Nonlinear capacitance linearization
US9859863B2 (en) 2013-03-15 2018-01-02 Qorvo Us, Inc. RF filter structure for antenna diversity and beam forming
US9899133B2 (en) 2013-08-01 2018-02-20 Qorvo Us, Inc. Advanced 3D inductor structures with confined magnetic field
US9800282B2 (en) 2013-06-06 2017-10-24 Qorvo Us, Inc. Passive voltage-gain network
US9780817B2 (en) 2013-06-06 2017-10-03 Qorvo Us, Inc. RX shunt switching element-based RF front-end circuit
US9966981B2 (en) 2013-06-06 2018-05-08 Qorvo Us, Inc. Passive acoustic resonator based RF receiver
US9705542B2 (en) * 2013-06-06 2017-07-11 Qorvo Us, Inc. Reconfigurable RF filter
US9178487B2 (en) 2013-06-28 2015-11-03 Nokia Technologies Oy Methods and apparatus for signal filtering
JP5874718B2 (ja) * 2013-12-06 2016-03-02 株式会社村田製作所 周波数可変共振回路および周波数可変フィルタ
JP6308221B2 (ja) * 2013-12-13 2018-04-11 株式会社村田製作所 周波数可変フィルタ
DE112014006059B4 (de) * 2013-12-27 2023-05-04 Murata Manufacturing Co., Ltd. Abzweigvorrichtung
DE102014102707A1 (de) 2014-02-28 2015-09-03 Epcos Ag Abstimmbares elektroakustisches HF-Filter mit verbesserten elektrischen Eigenschaften und Verfahren zum Betrieb eines solchen Filters
JP6564448B2 (ja) * 2014-06-30 2019-08-21 スナップトラック・インコーポレーテッド RFフィルタ回路、減衰が改善されたrfフィルタおよび分離度が改善されたデュプレクサ
DE102014111904A1 (de) * 2014-08-20 2016-02-25 Epcos Ag Abstimmbares HF-Filter mit Parallelresonatoren
DE102014111912B4 (de) * 2014-08-20 2024-06-13 Snaptrack, Inc. HF-Filter
DE102014111901B4 (de) 2014-08-20 2019-05-23 Snaptrack, Inc. Duplexer
JP6344161B2 (ja) * 2014-09-03 2018-06-20 株式会社村田製作所 ラダー型フィルタ及びデュプレクサ
CN105471404A (zh) * 2014-09-11 2016-04-06 北京北方微电子基地设备工艺研究中心有限责任公司 阻抗匹配网络及等离子体处理设备
CN104333346A (zh) * 2014-11-27 2015-02-04 王少夫 一种新型超宽带压电滤波器
WO2017006867A1 (ja) * 2015-07-06 2017-01-12 株式会社村田製作所 高周波モジュール
FR3039708B1 (fr) * 2015-07-31 2019-08-09 Senseor Resonateur a ondes elastiques de surface simple port sur substrat a forte permittivite
US10796835B2 (en) 2015-08-24 2020-10-06 Qorvo Us, Inc. Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff
CN108028635B (zh) * 2015-09-09 2021-04-20 株式会社村田制作所 频率可变lc滤波器、高频前端电路
CN108028641B (zh) * 2015-09-09 2021-04-20 株式会社村田制作所 频率可变滤波器、高频前端电路
WO2017069048A1 (ja) * 2015-10-19 2017-04-27 株式会社村田製作所 周波数可変フィルタ、rfフロントエンド回路、通信装置
WO2017068877A1 (ja) * 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US9608595B1 (en) * 2015-11-13 2017-03-28 Resonant Inc. Acoustic wave filter with enhanced rejection
US10305447B2 (en) 2015-11-13 2019-05-28 Resonant Inc. Acoustic wave filter with enhanced rejection
US11025223B2 (en) * 2016-01-15 2021-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Miniature tunable filters
JP6879291B2 (ja) * 2016-02-18 2021-06-02 日本電気株式会社 周波数選択板、アンテナ、無線通信装置、およびレーダ装置
KR102588800B1 (ko) * 2016-02-22 2023-10-13 삼성전기주식회사 음향파 필터 장치 및 이의 제조방법
JP6708250B2 (ja) * 2016-03-08 2020-06-10 株式会社村田製作所 弾性波装置
EP3229359A1 (en) * 2016-04-06 2017-10-11 Neumüller Elektronik GmbH Resonant converter and power device with such a converter
WO2017176593A1 (en) * 2016-04-08 2017-10-12 Resonant Inc. Radio frequency filter, high selectivity triplexer, and communications device
KR102115113B1 (ko) * 2016-05-27 2020-05-25 가부시키가이샤 무라타 세이사쿠쇼 고주파 필터 회로, 고주파 프런트 엔드 회로 및 통신 장치
DE102016114662B4 (de) * 2016-08-08 2022-03-03 Snaptrack, Inc. Rekonfigurierbares mikroakustisches Filter und Duplexer mit rekonfigurierbarem mikroakustischem Filter
JP6773128B2 (ja) * 2016-11-25 2020-10-21 株式会社村田製作所 弾性波フィルタ装置
US11139238B2 (en) 2016-12-07 2021-10-05 Qorvo Us, Inc. High Q factor inductor structure
WO2018132314A1 (en) * 2017-01-10 2018-07-19 Wispry, Inc. Tunable filter systems, devices, and methods
WO2018151218A1 (ja) 2017-02-20 2018-08-23 株式会社村田製作所 フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置
WO2018168655A1 (ja) * 2017-03-15 2018-09-20 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路、および通信装置
CN107192601A (zh) * 2017-05-23 2017-09-22 中国科学院重庆绿色智能技术研究院 一种岩石细观裂纹及声力学同步检测系统
CN111034041B (zh) * 2017-05-24 2023-10-31 安乐泰克有限公司 用于控制谐振器的装置和方法
JP6708177B2 (ja) * 2017-07-21 2020-06-10 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
CN111133678B (zh) * 2017-09-28 2023-08-22 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置
CN110100290A (zh) * 2017-11-28 2019-08-06 野田士克林股份有限公司 Lc谐振元件和谐振元件阵列
EP3496281A1 (en) 2017-12-07 2019-06-12 Infineon Technologies AG System and method for a radio frequency filter
JP6950751B2 (ja) * 2018-01-12 2021-10-13 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
KR101993141B1 (ko) * 2018-05-17 2019-06-26 (주)에드모텍 반사손실 특성 및 주파수억제 특성을 개선한 가변필터
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US10826462B2 (en) * 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US20210044275A1 (en) 2018-06-15 2021-02-11 Resonant Inc. Transversely-excited film bulk acoustic resonator package
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
KR102066959B1 (ko) 2018-07-17 2020-01-16 삼성전기주식회사 필터
JP2020014104A (ja) 2018-07-18 2020-01-23 株式会社村田製作所 フィルタおよびマルチプレクサ
CN109672013B (zh) * 2018-11-27 2020-09-29 京信通信技术(广州)有限公司 双工器及其滤波器
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
DE112020001227T5 (de) 2019-03-14 2022-02-10 Resonant Inc. Transversal angeregter akustischer Filmresonator mit Lambda-Halbe-Dielektrikumschicht
WO2020203092A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 弾性波装置
DE112020001765T5 (de) 2019-04-05 2021-12-23 Resonant Inc. Packung eines transversal angeregten akustischen Filmvolumenresonators und Verfahren
CN110011311A (zh) * 2019-05-16 2019-07-12 中国测试技术研究院电子研究所 一种谐波控制装置
US10911021B2 (en) 2019-06-27 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with lateral etch stop
US12034423B2 (en) 2019-06-27 2024-07-09 Murata Manufacturing Co., Ltd XBAR frontside etch process using polysilicon sacrificial layer
JP7527604B2 (ja) 2019-08-08 2024-08-05 国立大学法人東北大学 弾性波デバイス
JP7378723B2 (ja) * 2019-09-30 2023-11-14 国立大学法人東北大学 弾性波デバイス
JP7215413B2 (ja) * 2019-12-27 2023-01-31 株式会社村田製作所 弾性波フィルタ
CN111200419B (zh) * 2020-01-16 2021-08-10 诺思(天津)微系统有限责任公司 一种滤波器、双工器、高频前端电路及通信装置
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US12074584B2 (en) 2020-05-28 2024-08-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes
US11482981B2 (en) 2020-07-09 2022-10-25 Resonanat Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US20220060174A1 (en) * 2020-08-21 2022-02-24 RF360 Europe GmbH Baw resonator with improved performance
CN112087218B (zh) * 2020-08-27 2023-11-17 中国科学技术大学 一种基于声表面波谐振器的连续可调双带带阻滤波器
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
CN112865744A (zh) * 2021-01-11 2021-05-28 武汉大学 一种基于超高带宽声波谐振器的带宽调节方法
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
US12075700B2 (en) 2021-05-07 2024-08-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator fabrication using polysilicon pillars
US12057823B2 (en) 2021-05-07 2024-08-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with concentric interdigitated transducer fingers
CN113541635B (zh) * 2021-06-30 2024-02-06 中国电子科技集团公司第五十五研究所 基于相位扰动层的高线性相位薄膜体声波滤波器
US20230006640A1 (en) 2021-06-30 2023-01-05 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced substrate to contact bump thermal resistance
CN114553184A (zh) * 2022-02-16 2022-05-27 北京超材信息科技有限公司 一种梯形声表面波滤波器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183380A (ja) * 1991-10-28 1993-07-23 Fujitsu Ltd 弾性表面波フィルタ
JPH06236815A (ja) * 1992-09-14 1994-08-23 Hitachi Ltd 高周波回路装置および無線機
JPH06260876A (ja) * 1993-03-09 1994-09-16 Mitsubishi Electric Corp 弾性表面波フィルタ
JPH09162684A (ja) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd 圧電共振子
JP2005033246A (ja) * 2003-07-07 2005-02-03 Matsushita Electric Ind Co Ltd Sawフィルタとそれを用いた電子デバイス
JP2005045475A (ja) * 2003-07-28 2005-02-17 Murata Mfg Co Ltd 弾性表面波装置、通信機
JP2005217852A (ja) * 2004-01-30 2005-08-11 Toshiba Corp チューナブルフィルタ
JP2007243587A (ja) * 2006-03-08 2007-09-20 Ngk Insulators Ltd 圧電薄膜デバイス
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
WO2009090715A1 (ja) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. 弾性表面波装置
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
WO2010058570A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2037171A (en) * 1933-06-23 1936-04-14 Bell Telephone Labor Inc Wave filter
US2222417A (en) * 1938-09-24 1940-11-19 Bell Telephone Labor Inc Wave filter
DE730124C (de) * 1941-01-04 1943-01-07 Telefunken Gmbh Kristallbrueckenfilter mit veraenderbarer Bandbreite
JPH01157108A (ja) * 1987-12-14 1989-06-20 Victor Co Of Japan Ltd 圧電薄膜共振子
US5291159A (en) * 1992-07-20 1994-03-01 Westinghouse Electric Corp. Acoustic resonator filter with electrically variable center frequency and bandwidth
US5422615A (en) 1992-09-14 1995-06-06 Hitachi, Ltd. High frequency circuit device
US5471178A (en) * 1994-02-03 1995-11-28 Motorola, Inc. Ladder filter and method for producing conjugately matched impedance
JPH08148968A (ja) * 1994-11-24 1996-06-07 Mitsubishi Electric Corp 薄膜圧電素子
JPH1013187A (ja) * 1996-06-19 1998-01-16 Oki Electric Ind Co Ltd はしご型フィルタ
US5933062A (en) * 1997-11-04 1999-08-03 Motorola Inc. Acoustic wave ladder filter with effectively increased coupling coefficient and method of providing same
WO1999056391A1 (fr) * 1998-04-28 1999-11-04 Tdk Corporation Vibreur volumique piezoelectrique
JP2000151356A (ja) * 1998-11-11 2000-05-30 Oki Electric Ind Co Ltd 共振器型弾性表面波フィルタ
JP2002299997A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 弾性表面波フィルタ
US7030718B1 (en) * 2002-08-09 2006-04-18 National Semiconductor Corporation Apparatus and method for extending tuning range of electro-acoustic film resonators
FR2864727B1 (fr) * 2003-12-29 2007-05-11 St Microelectronics Sa Circuit electronique comportant un resonateur destine a etre integre dans un produit semi-conducteur
JP2006135921A (ja) * 2004-10-06 2006-05-25 Epson Toyocom Corp ラダー型フィルタとこれを用いた装置
WO2007052483A1 (ja) * 2005-11-01 2007-05-10 Murata Manufacturing Co., Ltd. 弾性波フィルタ装置
JP4963193B2 (ja) * 2006-03-07 2012-06-27 日本碍子株式会社 圧電薄膜デバイス
JP4877966B2 (ja) * 2006-03-08 2012-02-15 日本碍子株式会社 圧電薄膜デバイス
DE112007001405B4 (de) * 2006-06-16 2013-12-24 Murata Manufacturing Co., Ltd. Oberflächenschallwellenvorrichtung
WO2008004408A1 (fr) * 2006-07-05 2008-01-10 Murata Manufacturing Co., Ltd. Dispositif d'onde de surface élastique
FR2904492A1 (fr) * 2006-07-28 2008-02-01 St Microelectronics Sa Circuit de filtrage dote de resonateurs acoustiques
JP4963229B2 (ja) * 2006-12-26 2012-06-27 日本碍子株式会社 圧電薄膜デバイス
US7646265B2 (en) * 2007-04-11 2010-01-12 Maxim Integrated Products, Inc. BAW resonator filter bandwidth and out-of-band frequency rejection
JP2009005143A (ja) * 2007-06-22 2009-01-08 Ngk Insulators Ltd 圧電薄膜デバイス
WO2009025057A1 (ja) * 2007-08-23 2009-02-26 Fujitsu Limited 分波器、および分波器を含むモジュール、通信機器
WO2009081651A1 (ja) * 2007-12-25 2009-07-02 Murata Manufacturing Co., Ltd. 複合圧電基板の製造方法
WO2009119007A1 (ja) * 2008-03-27 2009-10-01 株式会社村田製作所 弾性波フィルタ装置
WO2010001522A1 (ja) * 2008-06-30 2010-01-07 株式会社村田製作所 帯域阻止フィルタ
US8339220B2 (en) * 2009-09-16 2012-12-25 Lojack Operating Company, Lp Surface acoustic wave resonator filter

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183380A (ja) * 1991-10-28 1993-07-23 Fujitsu Ltd 弾性表面波フィルタ
JPH06236815A (ja) * 1992-09-14 1994-08-23 Hitachi Ltd 高周波回路装置および無線機
JPH06260876A (ja) * 1993-03-09 1994-09-16 Mitsubishi Electric Corp 弾性表面波フィルタ
JPH09162684A (ja) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd 圧電共振子
JP2005033246A (ja) * 2003-07-07 2005-02-03 Matsushita Electric Ind Co Ltd Sawフィルタとそれを用いた電子デバイス
JP2005045475A (ja) * 2003-07-28 2005-02-17 Murata Mfg Co Ltd 弾性表面波装置、通信機
JP2005217852A (ja) * 2004-01-30 2005-08-11 Toshiba Corp チューナブルフィルタ
JP2007243587A (ja) * 2006-03-08 2007-09-20 Ngk Insulators Ltd 圧電薄膜デバイス
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
WO2009090715A1 (ja) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. 弾性表面波装置
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
WO2010058570A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530838A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225717A (ja) * 2013-05-15 2014-12-04 株式会社村田製作所 圧電バルク波共振子
JPWO2014192754A1 (ja) * 2013-05-28 2017-02-23 株式会社村田製作所 チューナブルフィルタ
WO2014192754A1 (ja) * 2013-05-28 2014-12-04 株式会社村田製作所 チューナブルフィルタ
US9755614B2 (en) 2013-05-28 2017-09-05 Murata Manufacturing Co., Ltd. Tunable filter
WO2015019794A1 (ja) * 2013-08-06 2015-02-12 株式会社村田製作所 高周波モジュール
US9917569B2 (en) 2013-08-06 2018-03-13 Murata Manufacturing Co., Ltd. High-frequency module
JPWO2015019794A1 (ja) * 2013-08-06 2017-03-02 株式会社村田製作所 高周波モジュール
WO2015025651A1 (ja) * 2013-08-21 2015-02-26 株式会社村田製作所 チューナブルフィルタ
US9882547B2 (en) 2013-08-21 2018-01-30 Murata Manufacturing Co., Ltd. Tunable filter
JPWO2015025651A1 (ja) * 2013-08-21 2017-03-02 株式会社村田製作所 チューナブルフィルタ
JPWO2015045793A1 (ja) * 2013-09-26 2017-03-09 株式会社村田製作所 共振回路及び高周波フィルタ
US10250227B2 (en) 2013-09-26 2019-04-02 Murata Manufacturing Co., Ltd. Frequency-variable filter
US10187038B2 (en) 2013-09-26 2019-01-22 Murata Manufacturing Co., Ltd. Resonant circuit and high-frequency filter
JPWO2015045882A1 (ja) * 2013-09-26 2017-03-09 株式会社村田製作所 周波数可変フィルタ
US10009010B2 (en) 2013-09-26 2018-06-26 Murata Manufacturing Co., Ltd. Resonator device and high frequency filter
JPWO2015045794A1 (ja) * 2013-09-26 2017-03-09 株式会社村田製作所 共振器及び高周波フィルタ
WO2015045793A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 共振回路及び高周波フィルタ
WO2015045794A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 共振器及び高周波フィルタ
WO2015045882A1 (ja) * 2013-09-26 2015-04-02 株式会社村田製作所 周波数可変フィルタ
JPWO2015099105A1 (ja) * 2013-12-27 2017-03-23 株式会社村田製作所 高周波フィルタ
US10211799B2 (en) 2013-12-27 2019-02-19 Murata Manufacturing Co., Ltd. High-frequency filter
JP2015144418A (ja) * 2013-12-28 2015-08-06 山之内 和彦 可変周波数弾性波変換器とこれを用いた電子装置
JP2015228638A (ja) * 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ 可変周波数弾性波変換器とこれを用いた電子装置
JPWO2015119179A1 (ja) * 2014-02-10 2017-03-23 株式会社村田製作所 可変フィルタ回路および無線通信装置
JP2018029378A (ja) * 2014-02-10 2018-02-22 株式会社村田製作所 可変フィルタ回路および無線通信装置
WO2015119179A1 (ja) * 2014-02-10 2015-08-13 株式会社村田製作所 可変フィルタ回路および無線通信装置
US10193517B2 (en) 2014-02-10 2019-01-29 Murata Manufacturing Co., Ltd. Variable filter circuit and radio communication device
US10476478B2 (en) 2014-08-20 2019-11-12 Snaptrack, Inc. Tunable HF filter having series resonators
WO2021221162A1 (ja) * 2020-04-30 2021-11-04 株式会社村田製作所 弾性波装置
WO2021246446A1 (ja) * 2020-06-03 2021-12-09 株式会社村田製作所 弾性波装置
WO2021246447A1 (ja) * 2020-06-04 2021-12-09 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
KR101350244B1 (ko) 2014-01-13
US20120286900A1 (en) 2012-11-15
CN102725959A (zh) 2012-10-10
KR20120096108A (ko) 2012-08-29
CN102725959B (zh) 2016-05-25
JPWO2011093449A1 (ja) 2013-06-06
EP2530838A1 (en) 2012-12-05
EP2533422A2 (en) 2012-12-12
EP2533422A3 (en) 2013-07-17
EP2530838B1 (en) 2018-11-07
JP2013225945A (ja) 2013-10-31
JP5799990B2 (ja) 2015-10-28
EP2530838A4 (en) 2015-05-06
US8552818B2 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
JP5799990B2 (ja) チューナブルフィルタ
JP5942740B2 (ja) ラダー型フィルタ及び分波器
JP3227649B2 (ja) 弾性表面波フィルタ
US7626475B2 (en) Saw filter device
JP5120461B2 (ja) チューナブルフィルタ
WO2016121818A1 (ja) フィルタ,分波器および通信装置
WO2010058570A1 (ja) チューナブルフィルタ
US7623009B2 (en) Boundary acoustic wave filter device
US7868716B2 (en) Acoustic wave filter apparatus
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
JP7363952B2 (ja) 弾性波フィルタ
JP2011146768A (ja) ラダー型弾性波フィルタと、これを用いたアンテナ共用器
JP5018894B2 (ja) 弾性波フィルタ装置
WO2022158470A1 (ja) 弾性波フィルタおよびマルチプレクサ
JP3856428B2 (ja) 弾性表面波素子および弾性表面波装置
JP4023730B2 (ja) 弾性表面波装置および分波器
US8339221B2 (en) Elastic wave filter device having narrow-pitch electrode finger portions
JP2006135921A (ja) ラダー型フィルタとこれを用いた装置
JP3948550B2 (ja) 弾性表面波装置
JP2010252254A (ja) 弾性波フィルタ及び分波器
JPWO2003096533A1 (ja) 弾性表面波素子、弾性表面波装置及び分波器
JP3327433B2 (ja) 弾性表面波フィルタ
CN116210155A (zh) 多工器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007211.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551933

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127019443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011737159

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE