WO2015045882A1 - 周波数可変フィルタ - Google Patents
周波数可変フィルタ Download PDFInfo
- Publication number
- WO2015045882A1 WO2015045882A1 PCT/JP2014/074032 JP2014074032W WO2015045882A1 WO 2015045882 A1 WO2015045882 A1 WO 2015045882A1 JP 2014074032 W JP2014074032 W JP 2014074032W WO 2015045882 A1 WO2015045882 A1 WO 2015045882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- circuit
- inductor
- capacitor
- variable
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 90
- 230000005540 biological transmission Effects 0.000 claims description 45
- 238000010586 diagram Methods 0.000 description 21
- 230000037431 insertion Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 238000009795 derivation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/542—Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/0004—Impedance-matching networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/58—Multiple crystal filters
- H03H9/60—Electric coupling means therefor
- H03H9/605—Electric coupling means therefor consisting of a ladder configuration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6483—Ladder SAW filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2210/00—Indexing scheme relating to details of tunable filters
- H03H2210/01—Tuned parameter of filter characteristics
- H03H2210/012—Centre frequency; Cut-off frequency
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2210/00—Indexing scheme relating to details of tunable filters
- H03H2210/02—Variable filter component
- H03H2210/025—Capacitor
Definitions
- the present invention relates to a frequency variable filter including a piezoelectric resonator and capable of varying a filter characteristic.
- Patent Document 1 discloses a frequency variable filter in which a filter capacitor such as a pass characteristic and an attenuation characteristic is made variable by connecting a variable capacitor in series and in parallel to a piezoelectric resonator. .
- Such a circuit unit including a piezoelectric resonator and a variable capacitor (hereinafter referred to as a frequency variable resonance circuit) adjusts the passband characteristic and the attenuation characteristic by adjusting the capacitance of the variable capacitor.
- the frequency variable resonance circuit including the piezoelectric resonator and the variable capacitor described above has characteristics as shown in FIG. 13 when the capacitance of the variable capacitor is changed.
- FIG. 13 is a diagram illustrating a change in the pass characteristic of the frequency variable resonance circuit when the capacitance of the variable capacitor is changed.
- FIG. 13 shows characteristics when the variable frequency resonance circuit is shunt-connected to the transmission line. Shunt connection refers to a mode in which a connection is made between a transmission line different from the ground and the ground.
- FIG. 13 shows the characteristics in a mode in which an elongated inductor is added to the frequency variable resonance circuit.
- the characteristic indicated by the solid line in FIG. 13 is the case of the capacitance C1
- the characteristic of the dotted line is the case of the capacitance C2
- the characteristic of the broken line is the case of the capacitance C3.
- Each capacitance has a relationship of C3> C2> C1.
- the smaller the capacitance the higher the resonant frequency and antiresonant frequency of the frequency variable resonant circuit.
- the smaller the capacitance the higher the impedance of the frequency variable resonance circuit over the entire frequency band.
- the frequency variable resonance circuit is set so that impedance matching (impedance matching) with the external circuit is performed by the capacitance C3, if the capacitance C3 is changed to the capacitance C1 in order to obtain a desired frequency, the frequency is variable. Impedance mismatch occurs between the resonant circuit and the external circuit.
- the matching circuit is set so that impedance matching with the external circuit is performed with the capacitance C1, when the capacitance C3 is changed to the capacitance C1 in order to obtain a desired frequency, the frequency variable resonance circuit and the external circuit Impedance mismatch between the two.
- the impedance at the resonance frequency or anti-resonance frequency is reduced due to impedance mismatch. It will deteriorate.
- FIG. 14 is a diagram showing pass characteristics (S21 characteristics) of a variable filter using the above-described frequency variable resonance circuit.
- the characteristic indicated by the solid line is the case of the capacitance C1
- the characteristic indicated by the dotted line is the case of the capacitance C2
- the characteristic indicated by the broken line is the case of the capacitance C3.
- Each capacitance has a relationship of C3> C2> C1.
- the pass band can be shifted to the high frequency side, but if the pass band is shifted to a higher frequency side to some extent, the insertion loss of the variable filter increases. .
- an object of the present invention is to provide a variable filter capable of realizing a low-loss passband characteristic even if a passband is set in any frequency region with respect to substantially the entire frequency range that can be adjusted by the frequency variable resonance circuit. There is to do.
- the frequency variable filter of the present invention includes a filter unit including a frequency variable resonance circuit, a plurality of input / output terminals, and a matching circuit.
- the frequency variable resonance circuit includes a piezoelectric resonator and a variable capacitor connected to the piezoelectric resonator.
- the filter unit has a configuration in which at least one frequency variable resonance circuit is connected in series to the transmission line, or connected between the transmission line and the ground.
- the input / output terminals are connected to both ends of the transmission line.
- the matching circuit is connected between at least one input / output terminal and the filter unit.
- the matching circuit includes an inductor and a capacitor, and has a circuit configuration in which the real component of the simultaneous conjugate matching impedance increases as the frequency of the high-frequency signal to be transmitted increases.
- the frequency change of the real component of the simultaneous conjugate matching impedance of the matching circuit is substantially the same as the frequency change of the real component of the simultaneous conjugate matching impedance of the filter unit.
- impedance matching can be realized more accurately in any frequency region.
- the frequency variable filter of the present invention it is preferable to connect an adjustment inductor or an adjustment capacitor between the matching circuit and the filter unit.
- the imaginary number component can be adjusted by the adjusting inductor or the adjusting capacitor without changing the real number component. Thereby, impedance matching can be realized more accurately.
- the frequency variable filter of the present invention may have the following configuration.
- the frequency variable filter includes at least one matching circuit including any of the following circuits.
- the first circuit includes a capacitor connected in series to the transmission line, and an inductor connecting the filter unit side of the capacitor and the ground.
- the second circuit includes an inductor connected in series to the transmission line, and a capacitor connecting the filter side of the inductor and the ground.
- the third circuit is composed of an inductor and a capacitor connected between the transmission line and the ground.
- the matching circuit can be realized by at least two elements of an inductor and a capacitor, the matching circuit can be realized by a small and simple configuration.
- the frequency variable filter of the present invention may have the following configuration.
- the frequency variable filter includes at least one matching circuit composed of one of the following ⁇ -type circuits.
- the first ⁇ -type circuit includes a first inductor connected in series to a transmission line, a capacitor connecting the filter portion side of the first inductor and the ground, an input / output terminal side of the first inductor, and a ground. And a second inductor that connects between the two.
- the second ⁇ -type circuit includes an inductor connected in series to the transmission line and two capacitors that connect both ends of the inductor to the ground.
- the third ⁇ -type circuit is composed of a capacitor connected in series to the transmission line and two inductors that connect both ends of the capacitor to the ground.
- the fourth ⁇ -type circuit includes a first capacitor connected in series to the transmission line, an inductor connecting the filter portion side of the first capacitor and the ground, an input / output terminal side of the first capacitor, and the ground. And a second capacitor connecting between the two.
- the matching circuit can be realized by three elements combining an inductor and a capacitor, and the change characteristic of the real component of the simultaneous conjugate matching impedance can be made steeper than that of the two elements.
- impedance matching can be performed with respect to impedance characteristics of more various frequency variable resonance circuits.
- the frequency variable filter of the present invention preferably has the following configuration.
- the frequency variable resonance circuit includes a first variable capacitor connected in series to the piezoelectric resonator and a second variable capacitor connected in parallel to the piezoelectric resonator. Furthermore, the frequency variable resonance circuit includes a first variable frequency resonance circuit first inductor connected in series between the piezoelectric resonator and the first variable capacitor, and a second variable frequency resonance circuit inductor connected in parallel to the piezoelectric resonator. At least one of the above.
- the frequency variable range of the frequency variable resonance circuit can be widened. Furthermore, even if the frequency variable range is widened as described above, impedance matching can be accurately realized in any frequency region.
- a low-loss pass band characteristic can be obtained regardless of the pass band set in any frequency range with respect to substantially the entire adjustable frequency range of the frequency variable filter constituted by the frequency variable resonance circuit. realizable.
- FIG. 1 is a circuit diagram of a frequency variable filter according to a first embodiment of the present invention. It is a figure which shows the frequency characteristic of the real component of the impedance in the center frequency of the pass band of the frequency variable filter which concerns on this embodiment.
- mold matching circuit which concerns on embodiment of this invention is shown. It is a figure which shows the frequency characteristic of the real component of the impedance of the matching circuit of 2 elements using an inductor and a capacitor. The frequency characteristic of the real component of the impedance of the filter part and matching circuit of the frequency variable filter which concerns on embodiment of this invention is shown.
- FIG. 3 shows a circuit diagram of a three-element ⁇ -type matching circuit according to an embodiment of the present invention. It is a figure which shows the frequency characteristic of the real component of the impedance of the matching circuit of 3 elements using an inductor and a capacitor. It is a passage characteristic of a frequency variable filter using a ⁇ -type matching circuit according to an embodiment of the present invention.
- FIG. 3 shows a circuit diagram of a three-element T-type matching circuit according to an embodiment of the present invention.
- FIG. 1 is a circuit diagram of a frequency variable filter according to a first embodiment of the present invention.
- the filter unit 20 is connected to the input / output terminal P1 through the matching circuit 31, and is connected to the input / output terminal P2 through the matching circuit 32.
- the filter unit 20 includes frequency variable resonance circuits 21 and 22.
- the frequency variable resonance circuit 21 is connected between the matching circuits 31 and 32. That is, the frequency variable resonance circuit 21 is connected in series with the transmission line.
- the frequency variable resonance circuit 22 is connected between a transmission line connecting the frequency variable resonance circuit 21 and the matching circuit 32 and the ground. That is, the frequency variable resonance circuit 22 is shunt connected to the transmission line.
- the frequency variable resonance circuit 21 includes a piezoelectric resonator 211, inductors 212 and 213, and variable capacitors 214 and 215.
- the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in series between the matching circuits 31 and 32. At this time, the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in this order from the matching circuit 31 side.
- the inductor 212 is connected in parallel to the piezoelectric resonator 211.
- the variable capacitor 214 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
- the frequency variable resonance circuit 22 includes a piezoelectric resonator 221, inductors 222 and 223, and variable capacitors 223 and 224.
- the piezoelectric resonator 221, the inductor 223, and the variable capacitor 225 are connected in series between the transmission line and the ground. At this time, the piezoelectric resonator 221, the inductor 223, and the variable capacitor 225 are connected in this order from the ground side.
- the inductor 222 is connected in parallel to the piezoelectric resonator 221.
- the variable capacitor 224 is connected in parallel to the series circuit of the piezoelectric resonator 221 and the inductor 223.
- the piezoelectric resonators 211 and 221 are realized by SAW resonators or BAW resonators.
- SAW resonators it is realized by forming an IDT electrode on the surface of a lithium niobate substrate that has been subjected to a predetermined cut (for example, Y cut).
- the inductors 212, 213, 221, and 223 are realized by, for example, electrode patterns formed on a mounting board on which the piezoelectric resonators 211 and 221 are mounted, and chip parts mounted on the surface of the mounting board.
- the variable capacitors 214, 215, 224, and 225 are realized by, for example, chip parts mounted on the surface of the mounting substrate on which the piezoelectric resonators 211 and 221 are mounted.
- the impedance characteristics that is, the pass characteristics and the attenuation characteristics of the frequency variable resonance circuit 21 are adjusted.
- the filter characteristics that is, the pass characteristics and the attenuation characteristics of the frequency variable resonance circuit 22 are adjusted.
- the inductors 212, 213, 222, and 223 are so-called extension inductors and can be omitted.
- the passband bandwidth of the frequency variable filter that can be adjusted by the frequency variable resonance circuits 21 and 22 can be increased by adjusting the capacitances of the variable capacitors 214, 215, 224, and 225. can do. That is, by providing the inductors 212, 213, 222, and 223, the selectable frequency range of the pass band of the frequency variable filter obtained by adjusting the frequency variable resonance circuits 21 and 22 can be widened. Thereby, the frequency range in which the pass band can be selected as the filter unit 20 can be widened.
- FIG. 2 is a diagram illustrating the frequency characteristics of the real component of the impedance at the center frequency of the pass band of the frequency variable filter according to the present embodiment.
- the solid line is the impedance of the filter section viewed from the input / output terminal P1 side (matching circuit 31 side)
- the broken line is the impedance of the filter section viewed from the input / output terminal P2 side (matching circuit 32 side).
- the horizontal axis in FIG. 2 indicates the center frequency of the passband
- the vertical axis indicates the real component of the impedance.
- FIG. 2 shows a plurality of characteristic curves, but each characteristic curve has a different inductance of the elongated inductor.
- the filter unit 20 if the inductance of the elongated inductor is constant, the real number component of the impedance increases as the passband frequency increases.
- the frequency variable filter 10 of the present embodiment includes matching circuits 31 and 32 having the following configuration.
- the matching circuits 31 and 32 have a circuit configuration in which an inductor and a capacitor are combined, and have a symmetrical arrangement pattern of circuit elements with the filter unit 20 in between.
- the matching circuits 31 and 32 are preferably configured by two elements or three elements.
- the circuit configuration may be a circuit configuration in which the basic configuration is made continuous with this two-element or three-element circuit configuration.
- FIG. 3 shows a circuit diagram of a two-element type matching circuit according to an embodiment of the present invention.
- 3A is a basic block diagram of the matching circuit
- FIGS. 3B and 3C show specific circuit examples of FIG. 3A
- FIG. 3D shows another matching circuit. It is a figure which shows these circuit blocks.
- 3 shows the circuit configuration of the matching circuit 32 (32A), the matching circuit 31 is symmetrical with the matching circuit 32 with the filter unit 20 interposed therebetween as described above. I will explain only.
- the matching circuit 32A includes reactance elements 321 and 322.
- the reactance element 321 is connected between a transmission line connecting the filter unit 20 and the input / output terminal P2 and the ground. That is, the reactance element 321 is shunt-connected to a transmission line that connects the filter unit 20 and the input / output terminal P2.
- the reactance element 322 is connected in series between the filter circuit 20 and the input / output terminal P2. That is, the reactance element 322 is connected in series with the transmission line. At this time, the reactance element 322 is connected between the point where the reactance element 321 is connected to the transmission line and the input / output terminal P2.
- the reactance element 321 is an inductor 321L
- the reactance element 322 is a capacitor 322C.
- the reactance element 321 is a capacitor 321C
- the reactance element 322 is an inductor 322L.
- the first reactance element including the inductor 321L and the second reactance element including the capacitor 321C connect the filter unit 20 and the input / output terminal P2. It may be connected between the transmission line and the ground. That is, the parallel circuit of the inductor 321L and the capacitor 321C may be shunt-connected to the transmission line that connects the filter unit 20 and the input / output terminal P2.
- FIG. 4 is a diagram showing the frequency characteristics of the real component of the impedance of a two-element matching circuit using an inductor and a capacitor.
- FIG. 4 shows the characteristics of the matching circuit 32A1 shown in FIG. 3B, the characteristics of the matching circuit 32B1 shown in FIG. 3C, and the characteristics of the matching circuit having other circuit configurations. Note that the horizontal axis in FIG. 4 indicates the normalized frequency, and the specific frequency is set to 1.0.
- the vertical axis of FIG. 4 shows the real impedance component of the matching circuit viewed from the input / output terminal P2 in a state where a load having an impedance of 1 [ohm] is connected.
- the matching circuit 32A1, 32A2, 32A3 shown in FIGS. 3B, 3C, and 3D has the following characteristics.
- an L-type circuit having a reactance element shunt-connected to the filter unit 20 side, wherein one of the two reactance elements is an inductor, and the other is a capacitor, whereby the impedance of the filter unit 20 is obtained. It is possible to realize a characteristic similar to the frequency characteristic of the real number component.
- FIG. 5 shows the frequency characteristics of the real component of the impedance of the filter section and matching circuit of the frequency variable filter according to the embodiment of the present invention.
- Each solid line in FIG. 5 indicates a characteristic in which each element value of the matching circuit is different.
- Each broken line in FIG. 5 shows the characteristic of the filter part from which the inductor of expansion
- the matching circuits 32 and 31 having the symmetrical circuit configuration are connected to the input / output terminals of the filter unit 20, thereby realizing simultaneous conjugate matching impedance with the matching circuits 32 and 31 with respect to the impedance of the filter unit 20. be able to.
- variable filter 10 can be realized.
- FIG. 6A shows the pass characteristic of the frequency variable filter using the L-type matching circuit according to the embodiment of the present invention
- FIG. 6B shows the pass characteristic of the frequency variable filter not using the conventional matching circuit.
- impedance matching can be achieved even if the impedance of the filter unit is changed by the matching circuit. Therefore, as shown in FIG. 6A, even if the frequency of the pass band of the frequency variable filter 10 is shifted to the high frequency side, an increase in insertion loss can be prevented. Thereby, a low-loss pass characteristic can be realized for any pass band that can be realized by the frequency variable filter 10.
- the imaginary component may not be matched only with the above configuration.
- by additionally providing an inductor or a capacitor connected in series to the transmission line only the imaginary component can be shifted, so that impedance matching can be performed more accurately.
- These inductors and capacitors correspond to “adjusting inductor” and “adjusting capacitor” of the present invention.
- the number of components of the matching circuit can be reduced, so that the matching circuit can be realized simply and compactly, and thus a simple and small frequency variable filter can be realized. can do.
- FIG. 7 is a circuit diagram of a three-element ⁇ -type matching circuit according to an embodiment of the present invention.
- FIG. 7A is a basic block diagram of the matching circuit
- FIGS. 3B, 3C, 3D, and 3E are diagrams showing specific circuit examples.
- FIG. 7 also shows the circuit configuration of the matching circuit 32 (32B).
- the matching circuit 31 is symmetrical with the matching circuit 32 with the filter unit 20 in between, as described above, the matching circuit 32 is used. I will explain only.
- the matching circuit 32B includes reactance elements 321, 322, and 323.
- the reactance elements 321 and 323 are connected between a transmission line connecting the filter unit 20 and the input / output terminal P2 and the ground. That is, the reactance elements 321 and 323 are shunt-connected to a transmission line that connects the filter unit 20 and the input / output terminal P2.
- the reactance element 322 is connected in series between the filter circuit 20 and the input / output terminal P2. That is, the reactance element 322 is connected in series with the transmission line. At this time, the reactance element 322 is connected between a point where the reactance element 321 is connected to the transmission line and a point where the reactance element 323 is connected to the transmission line.
- the matching circuit 32B is a ⁇ -type circuit.
- the reactance element 321 is an inductor 321L
- the reactance element 322 is a capacitor 322C
- the reactance element 323 is an inductor 323L.
- the reactance element 321 is an inductor 321L
- the reactance element 322 is a capacitor 322C
- the reactance element 323 is a capacitor 323C.
- the reactance element 321 is a capacitor 321C
- the reactance element 322 is an inductor 322L
- the reactance element 323 is an inductor 323L.
- the reactance element 321 is a capacitor 321C
- the reactance element 322 is an inductor 322L
- the reactance element 323 is a capacitor 323C.
- FIG. 8 is a diagram showing the frequency characteristics of the real component of the impedance of a three-element matching circuit using an inductor and a capacitor.
- FIG. 8 shows the characteristics of the matching circuits 32B1, 32B2, 32B3, and 32B4 shown in FIGS. 7B to 7E.
- the horizontal axis in FIG. 8 indicates the normalized frequency, and a specific frequency is set to 1.0.
- the vertical axis in FIG. 8 indicates the real impedance component of the matching circuit in a state where a load having an impedance of 1 [ohm] is connected.
- the characteristic that the real number component of the impedance increases sharply as shown in FIG. 8 can be realized.
- the impedance of the piezoelectric resonator changes abruptly between the resonance frequency and the antiresonance frequency. That is, the impedance change between the passband and the attenuation pole becomes steep. Therefore, by using the matching circuits 32B1, 32B2, 32B3, and 32B4 using a three-element ⁇ -type circuit, it is possible to more easily realize a similar characteristic to the frequency characteristic of the real component of the impedance of the filter unit 20. it can.
- FIG. 9 shows pass characteristics of a frequency variable filter using a ⁇ -type matching circuit according to an embodiment of the present invention.
- impedance matching can be performed even when the impedance of the filter unit is changed by the matching circuit. Therefore, even if the frequency of the pass band of the frequency variable filter 10 is shifted to the high frequency side, for example, an extreme increase in insertion loss can be prevented. Thereby, a low-loss pass characteristic can be realized for any pass band that can be realized by the frequency variable filter 10.
- FIG. 10 is a circuit diagram of a three-element T-type matching circuit according to an embodiment of the present invention.
- FIG. 10A is a basic block diagram of the matching circuit
- FIGS. 10B, 10C, 10D, and 10E are diagrams showing specific circuit examples.
- FIG. 10 also shows the circuit configuration of the matching circuit 32 (32C). However, since the matching circuit 31 is symmetrical with the matching circuit 32 with the filter unit 20 in between, as described above, the matching circuit 32 is used. I will explain only.
- the matching circuit 32C includes reactance elements 321, 322, and 323.
- the reactance element 321 is connected between a transmission line connecting the filter unit 20 and the input / output terminal P2 and the ground. That is, the reactance element 321 is shunt-connected to a transmission line that connects the filter unit 20 and the input / output terminal P2.
- the reactance elements 322 and 323 are connected in series between the filter circuit 20 and the input / output terminal P2. That is, the reactance elements 322 and 323 are connected in series to the transmission line.
- the reactance element 322 is connected between the point where the reactance element 321 is connected to the transmission line and the input / output terminal P2.
- the reactance element 323 is connected between the point where the reactance element 321 is connected to the transmission line and the filter unit 20.
- the matching circuit 32C is a T-type circuit.
- the reactance element 321 is an inductor 321L
- the reactance element 322 is a capacitor 322C
- the reactance element 323 is an inductor 323L.
- the reactance element 321 is an inductor 321L
- the reactance element 322 is a capacitor 322C
- the reactance element 323 is a capacitor 323C.
- the reactance element 321 is a capacitor 321C
- the reactance element 322 is an inductor 322L
- the reactance element 323 is an inductor 323L.
- the reactance element 321 is a capacitor 321C
- the reactance element 322 is a capacitor 322C
- the reactance element 323 is an inductor 323L.
- impedance matching can be performed on the filter unit 20 even when the passband frequency is changed, as in the matching circuit 32B of the ⁇ -type circuit.
- FIG. 11 is a circuit diagram illustrating another configuration example of the filter unit of the frequency variable filter according to the embodiment of the present invention.
- the frequency variable filter 10 ⁇ / b> X includes a filter unit only by the frequency variable resonance circuit 21 described above. That is, the filter unit is configured by only the frequency variable resonance circuit 21 connected in series between the input / output terminals P1 and P2.
- a matching circuit 31X is connected between the input / output terminal P1 and the frequency variable resonance circuit 21, and a matching circuit 32X is connected between the input / output terminal P2 and the frequency variable resonance circuit 22.
- the matching circuits 31X and 32X are configured in the same manner as the matching circuits 31 and 32 so as to satisfy the conditions of the characteristics (A) and (B) in the above-described two-element circuit. Thereby, a low-loss pass characteristic can be realized for any pass band that can be realized by the variable frequency filter 10X.
- variable frequency resonance circuit is not limited to the above-described configuration, and may have the configuration shown in FIGS. 12 (A), (B), and (C).
- FIG. 12 is a diagram illustrating a circuit configuration example of the variable frequency resonance circuit according to the embodiment of the present invention. Although FIG. 12 shows a derivation example of the frequency variable resonance circuit 21, a similar derivation example can be realized for the frequency variable resonance circuit 22. Further, the frequency variable resonance circuits 21 and 22 do not have to have the same circuit configuration, and a filter unit can be configured by appropriately combining them including derivatives thereof.
- variable capacitor 214 is connected in parallel to a series circuit of the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215.
- Other configurations are the same as those of the frequency variable resonance circuit 21.
- variable frequency resonance circuit 21B shown in FIG. 12B, the inductor 212 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
- Other configurations are the same as those of the frequency variable resonance circuit 21A.
- variable frequency resonance circuit 21C shown in FIG. 12C, the inductor 212 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
- Other configurations are the same as those of the frequency variable resonance circuit 21.
- Frequency variable filter 20 Filter units 21, 22, 21A, 21B, 21C: Frequency variable resonance circuits 211, 221: Piezoelectric resonators 212, 213, 222, 223: Inductors (extension inductors) 214, 215, 224, 225: variable capacitors 31, 32, 32A, 32A1, 32A2, 32A3, 31X, 32X: matching circuits 321, 322, 323: reactance elements 321L, 322L, 323L: inductors 321C, 322C, 323C: capacitors
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Filters And Equalizers (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
周波数可変フィルタ(10)は、フィルタ部(20)と整合回路(31,32)を備える。フィルタ部(20)は、圧電共振子を有する周波数可変共振回路(21,22)を備える。整合回路(31,32)は、周波数が高くなるのにしたがってインピーダンスの実数成分が増加する回路構成、例えば、フィルタ部(20)側にシャント接続されたリアクタンス素子を有し、インダクタとキャパシタを用いたL型の回路構成を備える。フィルタ部(20)は、圧電共振子を備えることで、通過帯域が高周波数側にシフトするとインピーダンスの実数成分が増加するが、整合回路(31,32)も周波数が高くなるとインピーダンスの実数成分が増加するので、インピーダンス整合が実現される。
Description
本発明は、圧電共振子を含みフィルタ特性を可変できる周波数可変フィルタに関する。
従来、共振周波数と反共振周波数を有する圧電共振子を用いた高周波フィルタが各種考案されている。このような高周波フィルタとして、圧電共振子に可変キャパシタを直列および並列接続することで、通過特性や減衰特性等のフィルタ特性を可変にした周波数可変フィルタが、例えば、特許文献1に記載されている。
このような圧電共振子と可変キャパシタからなる回路ユニット(以下、周波数可変共振回路と称する)は、可変キャパシタのキャパシタンスを調整することで、通過帯域特性や減衰特性を調整している。
しかしながら、上述の圧電共振子と可変キャパシタとからなる周波数可変共振回路は、可変キャパシタのキャパシタンスを変化させると、図13に示すような特性を有する。図13は、可変キャパシタのキャパシタンスを変化させた時の周波数可変共振回路の通過特性の変化を示す図である。なお、図13は、周波数可変共振回路を伝送線路にシャント接続した場合の特性を示している。シャント接続とは、グランドとは異なる伝送線路とグランドとの間に接続する態様を言う。また、図13では、周波数可変共振回路に対して、伸長のインダクタを加えた態様での特性である。
図13の実線で示す特性はキャパシタンスC1の場合であり、点線の特性はキャパシタンスC2の場合であり、破線の特性はキャパシタンスC3の場合である。各キャパシタンスは、C3>C2>C1の関係にある。図Xに示すように、キャパシタンスが小さくなるほど、周波数可変共振回路の共振周波数および反共振周波数は高くなる。また、キャパシタンスが小さくなるほど、全周波数帯域に亘って、周波数可変共振回路のインピーダンスは高くなる。
このため、キャパシタンスC3で外部回路とインピーダンスマッチング(インピーダンス整合)するように周波数可変共振回路のインピーダンスを設定しても、所望の周波数を得るために、キャパシタンスC3をキャパシタンスC1に変化させると、周波数可変共振回路と外部回路との間でインピーダンスの不整合が生じてしまう。逆に、キャパシタンスC1で外部回路とインピーダンス整合するように整合回路を設定しても、所望の周波数を得るために、キャパシタンスC3をキャパシタンスC1に変化させた場合に、周波数可変共振回路と外部回路との間でインピーダンスの不整合が生じてしまう。
すなわち、周波数可変共振回路によって調整可能な周波数範囲においてキャパシタンスを変化させ、周波数可変共振回路の共振周波数または反共振周波数を調整しても、インピーダンスの不整合により、共振周波数または反共振周波数におけるインピーダンスが劣化してしまう。
このため、周波数可変共振回路によって構成される周波数可変フィルタの調整可能な周波数範囲、すなわち、当該周波数可変フィルタの通過帯域となるべき所望の周波数範囲の全域に対して、低損失な通過帯域特性を実現できる周波数領域と、低損失な通過帯域特性が実現できない周波数帯域とが存在してしまう。図14は、上述の周波数可変共振回路を用いた可変フィルタの通過特性(S21特性)を示す図である。図14は、図13と同様に、実線で示す特性はキャパシタンスC1の場合であり、点線の特性はキャパシタンスC2の場合であり、破線の特性はキャパシタンスC3の場合である。各キャパシタンスは、C3>C2>C1の関係にある。
図14に示すように、キャパシタンスを小さくすると、通過帯域を高周波数側にシフトさせることができるが、或程度以上通過帯域を高周波数側にシフトさせると、可変フィルタの挿入損失が増加してしまう。
したがって、本発明の目的は、周波数可変共振回路によって調整可能な周波数範囲の略全域に対していずれの周波数領域に通過帯域を設定しても、低損失な通過帯域特性を実現できる可変フィルタを提供することにある。
この発明の周波数可変フィルタは、周波数可変共振回路を含むフィルタ部、複数の入出力端子、および整合回路を備える。周波数可変共振回路は、圧電共振子と該圧電共振子に接続される可変キャパシタを含む。フィルタ部は、周波数可変共振回路が少なくとも一つ、伝送ラインに直列接続されるか、もしくは、伝送ラインとグランドとの間に接続された構成を有する。入出力端子は、伝送ラインの両端に接続されている。整合回路は、少なくとも一方の入出力端子とフィルタ部との間に接続されている。さらに、整合回路は、インダクタとキャパシタとから構成され、伝送する高周波信号の周波数が高くなるのにしたがって同時共役整合インピーダンスの実数成分が高くなる回路構成を有する。
この構成では、周波数の変化に伴って周波数可変共振回路のインピーダンスの実数成分が高くなっても、整合回路の同時共役整合インピーダンスの実数成分も高くなるので、周波数可変共振回路と入出力端子に接続される外部回路との間でインピーダンス整合される。これにより、周波数可変共振回路で実現可能な周波数範囲において、どの周波数領域であっても通過帯域でのインピーダンス整合を実現できる。
また、この発明の周波数可変フィルタでは、整合回路の同時共役整合インピーダンスの実数成分の周波数変化は、フィルタ部の同時共役整合インピーダンスの実数成分の周波数変化と略同じであることが好ましい。
この構成では、どの周波数領域であってもインピーダンス整合をさらに精確に実現することができる。
また、この発明の周波数可変フィルタでは、整合回路とフィルタ部との間に、調整用インダクタまたは調整用キャパシタを接続することが好ましい。
この構成では、調整用インダクタまたは調整用キャパシタによって、実数成分を変化させることなく、虚数成分を調整できる。これにより、インピーダンス整合をさらに精確に実現することができる。
また、この発明の周波数可変フィルタでは、次の構成であってもよい。
周波数可変フィルタは、次のいずれかの回路からなる整合回路を少なくとも一つ備える。
第1の回路は、伝送線路に直列接続されたキャパシタと、該キャパシタの前記フィルタ部側とグランドとの間を接続するインダクタとから構成される。
第2の回路は、伝送線路に直列接続されたインダクタと、該インダクタの前記フィルタ部側とグランドとの間を接続するキャパシタとから構成される。
第3の回路は、伝送線路とグランドとの間に、それぞれ接続されたインダクタとキャパシタから構成される。
この構成では、整合回路をインダクタとキャパシタの少なくとも二素子で実現できるので、整合回路を小型で簡素な構成によって実現できる。
また、この発明の周波数可変フィルタでは、次の構成であってもよい。
周波数可変フィルタは、次のいずれかのπ型回路からなる整合回路を少なくとも一つ備える。
第1のπ型回路は、伝送線路に直列接続された第1インダクタと、該第1インダクタの前記フィルタ部側とグランドとの間を接続するキャパシタと、第1インダクタの入出力端子側とグランドとの間を接続する第2インダクタとから構成される。
第2のπ型回路は、伝送線路に直列接続されたインダクタと、該インダクタの両端をグランドにそれぞれ接続する二つのキャパシタとから構成される。
第3のπ型回路は、伝送線路に直列接続されたキャパシタと、該キャパシタの両端をグランドにそれぞれ接続する二つのインダクタとから構成される。
第4のπ型回路は、伝送線路に直列接続された第1キャパシタと、該第1キャパシタのフィルタ部側とグランドとの間を接続するインダクタと、第1キャパシタの入出力端子側とグランドとの間を接続する第2キャパシタとから構成される。
この構成では、整合回路をインダクタとキャパシタを組み合わせた三素子で実現でき、同時共役整合インピーダンスの実数成分の変化特性を、二素子よりも急峻にすることができる。これにより、より多様な周波数可変共振回路のインピーダンス特性に対してインピーダンス整合することができる。
また、この発明の周波数可変フィルタでは、次の構成であることが好ましい。
周波数可変共振回路は、圧電共振子に直列接続する第1可変キャパシタと、圧電共振子に並列接続する第2可変キャパシタとを備える。さらに、周波数可変共振回路は、圧電共振子と第1可変キャパシタとの間に直列接続された周波数可変共振回路用第1インダクタと、圧電共振子に並列接続された周波数可変共振回路用第2インダクタの少なくとも一方を備える。
この構成では、周波数可変共振回路の周波数可変範囲を広くすることができる。さらに、このように、周波数可変範囲が広くなっても、どの周波数領域であってもインピーダンス整合を精確に実現することができる。
この発明によれば、周波数可変共振回路によって構成される周波数可変フィルタの調整可能な周波数範囲の略全域に対して、いずれの周波数領域に通過帯域を設定しても、低損失な通過帯域特性を実現できる。
本発明の第1の実施形態に係る周波数可変フィルタについて、図を参照して説明する。図1は、本発明の第1の実施形態に係る周波数可変フィルタの回路図である。
図1に示すように、周波数可変フィルタ10は、フィルタ部20、整合回路31,32、入出力端子P1,P2を備える。
フィルタ部20は、整合回路31を介して入出力端子P1に接続されており、整合回路32を介して入出力端子P2に接続されている。
フィルタ部20は、周波数可変共振回路21,22を備える。周波数可変共振回路21は、整合回路31,32間に接続されている。すなわち、周波数可変共振回路21は、伝送ラインに対してシリーズ接続されている。周波数可変共振回路22は、周波数可変共振回路21と整合回路32とを接続する伝送ラインとグランドとの間に接続されている。すなわち、周波数可変共振回路22は、伝送ラインに対してシャント接続されている。
周波数可変共振回路21は、圧電共振子211、インダクタ212,213、可変キャパシタ214,215を備える。圧電共振子211、インダクタ213、および、可変キャパシタ215は、整合回路31,32間に直列接続されている。この際、整合回路31側から、圧電共振子211、インダクタ213、可変キャパシタ215の順で接続されている。インダクタ212は、圧電共振子211に並列接続されている。可変キャパシタ214は、圧電共振子211とインダクタ213との直列回路に対して、並列接続されている。
周波数可変共振回路22は、圧電共振子221、インダクタ222,223、可変キャパシタ223,224を備える。圧電共振子221、インダクタ223、および可変キャパシタ225は、伝送ラインとグランドとの間に直列接続されている。この際、グランド側から、圧電共振子221、インダクタ223、可変キャパシタ225の順に接続されている。インダクタ222は、圧電共振子221に並列接続されている。可変キャパシタ224は、圧電共振子221とインダクタ223との直列回路に対して、並列接続されている。
圧電共振子211,221は、SAW共振子やBAW共振子によって実現される。例えば、SAW共振子の場合には、所定カット(例えば、Yカット)がなされたニオブ酸リチウム基板の表面に、IDT電極を形成することにより実現される。
インダクタ212,213,221,223は、例えば、圧電共振子211,221を実装する実装基板に形成した電極パターンや、実装基板の表面に実装したチップ部品によって実現される。可変キャパシタ214,215,224,225は、例えば、圧電共振子211,221を実装する実装基板の表面に実装したチップ部品によって実現される。
このような構成では、可変キャパシタ214,215のキャパシタンスを調整することで、周波数可変共振回路21のインピーダンス特性、すなわち、通過特性や減衰特性が調整される。また、可変キャパシタ224,225のキャパシタンスを調整することで、周波数可変共振回路22のフィルタ特性、すなわち、通過特性や減衰特性が調整される。このように調整された周波数可変共振回路21,22のインピーダンス特性を組み合わせることで、フィルタ部20としての所望とするフィルタ特性(通過特性、減衰特性等)が実現される。
なお、インダクタ212,213,222,223は、所謂、伸長のインダクタと呼ばれるものであり、省略することも可能である。インダクタ212,213,222,223を備えた場合、可変キャパシタ214,215,224,225のキャパシタンスを調整することによって周波数可変共振回路21,22が調整できる周波数可変フィルタの通過帯域の帯域幅を広くすることができる。すなわち、インダクタ212,213,222,223を備えることで、周波数可変共振回路21,22を調整することにより得られる周波数可変フィルタの通過帯域の選択可能な周波数範囲を広くすることができる。これにより、フィルタ部20として通過帯域の選択可能な周波数範囲を広くすることができる。
このような構成のフィルタ部20は、圧電共振子211,221を用いているので、通過帯域の周波数を高周波数側にシフトさせると、インピーダンスの実数成分が高くなる。図2は、本実施形態に係る周波数可変フィルタの通過帯域の中心周波数におけるインピーダンスの実数成分の周波数特性を示す図である。図2において、実線は入出力端子P1側(整合回路31側)から見たフィルタ部のインピーダンスであり、破線は入出力端子P2側(整合回路32側)から見たフィルタ部のインピーダンスである。図2における横軸は通過帯域の中心周波数を示し、縦軸はインピーダンスの実数成分を示す。なお、図2には、複数の特性曲線が示しされているが、各特性曲線は、伸長のインダクタのインダクタンスが異なるものである。
図2に示すように、フィルタ部20は、伸長のインダクタのインダクタンスが一定であれば、通過帯域の周波数が高くなるほど、インピーダンスの実数成分が高くなる。
このため、本実施形態の周波数可変フィルタ10では、次に示す構成の整合回路31,32を備える。整合回路31,32はインダクタとキャパシタを組み合わせた回路構成からなり、フィルタ部20を挟んで対称な回路素子の配置パターンを備える。整合回路31,32は、二素子もしくは三素子で構成されることが好ましい。しかしながら、この二素子もしく三素子の回路構成を基本構成として、当該基本構成を連続させる回路構成であってもよい。
(A)二素子(基本回路構成が二素子)の場合
図3は本発明の実施形態に係る二素子型の整合回路の回路図を示す。図3(A)は、整合回路の基本ブロック図であり、図3(B),(C)は図3(A)の具体的な回路例を示し、図3(D)は整合回路の別の回路ブロックを示す図である。なお、図3では、整合回路32(32A)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図3は本発明の実施形態に係る二素子型の整合回路の回路図を示す。図3(A)は、整合回路の基本ブロック図であり、図3(B),(C)は図3(A)の具体的な回路例を示し、図3(D)は整合回路の別の回路ブロックを示す図である。なお、図3では、整合回路32(32A)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図3(A)に示すように、整合回路32Aは、リアクタンス素子321,322を備える。リアクタンス素子321は、フィルタ部20と入出力端子P2とを接続する伝送ラインとグランドとの間に接続されている。すなわち、リアクタンス素子321は、フィルタ部20と入出力端子P2とを接続する伝送ラインに対してシャント接続されている。リアクタンス素子322は、フィルタ回路20と入出力端子P2との間に直列接続されている。すなわち、リアクタンス素子322は、伝送ラインに対してシリーズ接続されている。この際、リアクタンス素子322は、リアクタンス素子321が伝送ラインに接続する点と入出力端子P2との間に接続されている。
具体的な第1例の整合回路32A1として、図3(B)に示すように、リアクタンス素子321はインダクタ321Lであり、リアクタンス素子322はキャパシタ322Cである。
また、具体的な第2例の整合回路32A2として、図3(C)に示すように、リアクタンス素子321はキャパシタ321Cであり、リアクタンス素子322はインダクタ322Lである。
また、図3(D)に示すように、整合回路32A3は、インダクタ321Lからなる第1のリアクタンス素子と、キャパシタ321Cからなる第2のリアクタンス素子がフィルタ部20と入出力端子P2とを接続する伝送ラインとグランドとの間に接続されていてもよい。すなわち、インダクタ321Lとキャパシタ321Cの並列回路は、フィルタ部20と入出力端子P2とを接続する伝送ラインに対してシャント接続されていてもよい。
図4は、インダクタとキャパシタを用いた二素子の整合回路のインピーダンスの実数成分の周波数特性を示す図である。図4は、図3(B)に示す整合回路32A1の特性、図3(C)に示す整合回路32B1の特性、および、その他の回路構成からなる整合回路の特性を示す。なお、図4の横軸は規格化周波数を示しており、特定の周波数を1.0に設定している。図4の縦軸はインピーダンスが1[ohm]の負荷を接続した状態の入出力端子P2から整合回路を見たインピーダンス実数成分を示す。
図4に示すように、図3(B),(C),(D)に示す整合回路32A1,32A2,32A3を用いることで、次の特性を有する。
(A)周波数が高周波数側にシフトするのにしたがって、インピーダンスの実数成分が増加する周波数区間を有する。
(B)インピーダンスの実数成分が増加する周波数区間において周波数特性を線形近似した場合に、周波数が0におけるインピーダンスの実数成分が0にならない。
このような構成とすることで、フィルタ部20のインピーダンスの実数成分の周波数特性と類似する特性を整合回路で実現することができる。
すなわち、フィルタ部20側にシャント接続されるリアクタンス素子を備えたL型回路であって、二つのリアクタンス素子の一方がインダクタであり、他方がキャパシタである構成を備えることで、フィルタ部20のインピーダンスの実数成分の周波数特性と類似する特性を実現することができる。
図5は、本発明の実施形態に係る周波数可変フィルタのフィルタ部と整合回路のインピーダンスの実数成分の周波数特性を示す。図5における各実線は整合回路の各素子値が異なる態様の特性を示す。図5における各破線は、伸長のインダクタが異なるフィルタ部の特性を示す。
図5に示すように、整合回路32A1,32A2の素子値を調整することで、フィルタ部20の通過特性を可変にした時の周波数可変フィルタの通過帯域の中心周波数におけるインピーダンスの実数成分の変化傾向に類似するインピーダンスの実数成分の周波数特性を設定することができる。これにより、整合回路32A1,32A2では、フィルタ部20のインピーダンスに対して、共役整合インピーダンスを実現することができる。そして、この対称な回路構成からなる整合回路32,31をフィルタ部20の入出力端に接続することで、フィルタ部20のインピーダンスに対して、整合回路32,31で同時共役整合インピーダンスを実現することができる。
これにより、フィルタ部20のインピーダンスが周波数によって変化しても、整合回路31,32でインピーダンス整合することができ、当該周波数可変フィルタに他の回路素子を接続しても、優れたフィルタ特性の周波数可変フィルタ10を実現することができる。
図6(A)は本発明の実施形態に係るL型の整合回路を用いた周波数可変フィルタの通過特性であり、図6(B)は従来の整合回路を用いない周波数可変フィルタの通過特性を示す図である。
図6(B)に示すように、従来構成では、通過帯域の周波数が高周波数側にシフトすると、挿入損失が大きくなってしまう。これは、上述のフィルタ部のインピーダンスの実数成分の周波数特性によるものである。
しかしながら、本実施形態の構成を用いることで、整合回路によってフィルタ部のインピーダンスに変化が生じても、インピーダンス整合することができる。したがって、図6(A)に示すように、周波数可変フィルタ10の通過帯域の周波数を高周波数側にシフトさせても、挿入損失が増加することが防止できる。これにより、周波数可変フィルタ10で実現可能ないずれの通過帯域に対しても低損失な通過特性を実現することができる。
なお、上述の構成を用いれば、インピーダンスの実数成分を略一致させることが容易であり、インピーダンス整合を実現することができる。しかしながら、上述の構成だけでは虚数成分を一致させられない場合がある。この場合、伝送ラインに直列接続するインダクタもしくはキャパシタを追加で備えることで、虚数成分だけをシフトさせることができるので、より精確にインピーダンス整合することができる。これらのインダクタ、キャパシタが、本発明の「調整用インダクタ」、「調整用キャパシタ」に相当する。
また、L型の二素子の整合回路を用いる態様では、整合回路の構成素子数を少なくできるので、簡素且つ小型に整合回路を実現することができ、ひいては、簡素且つ小型の周波数可変フィルタを実現することができる。
(B)三素子(基本回路構成が三素子)でπ型回路の場合
図7は本発明の実施形態に係る三素子でπ型の整合回路の回路図を示す。図7(A)は、整合回路の基本ブロック図であり、図3(B),(C),(D),(E)は具体的な回路例を示す図である。なお、図7でも、整合回路32(32B)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図7は本発明の実施形態に係る三素子でπ型の整合回路の回路図を示す。図7(A)は、整合回路の基本ブロック図であり、図3(B),(C),(D),(E)は具体的な回路例を示す図である。なお、図7でも、整合回路32(32B)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図7(A)に示すように、整合回路32Bは、リアクタンス素子321,322,323を備える。リアクタンス素子321,323は、フィルタ部20と入出力端子P2とを接続する伝送ラインとグランドとの間に接続されている。すなわち、リアクタンス素子321,323は、フィルタ部20と入出力端子P2とを接続する伝送ラインに対してシャント接続されている。リアクタンス素子322は、フィルタ回路20と入出力端子P2との間に直列接続されている。すなわち、リアクタンス素子322は、伝送ラインに対してシリーズ接続されている。この際、リアクタンス素子322は、リアクタンス素子321が伝送ラインに接続する点と、リアクタンス素子323が伝送ラインに接続する点との間に接続されている。このように、整合回路32Bはπ型回路である。
具体的な第1例の整合回路32B1として、図7(B)に示すように、リアクタンス素子321はインダクタ321Lであり、リアクタンス素子322はキャパシタ322Cであり、リアクタンス素子323はインダクタ323Lである。
具体的な第2例の整合回路32B2として、図7(C)に示すように、リアクタンス素子321はインダクタ321Lであり、リアクタンス素子322はキャパシタ322Cであり、リアクタンス素子323はキャパシタ323Cである。
具体的な第3例の整合回路32B3として、図7(D)に示すように、リアクタンス素子321はキャパシタ321Cであり、リアクタンス素子322はインダクタ322Lであり、リアクタンス素子323はインダクタ323Lである。
具体的な第4例の整合回路32B4として、図7(E)に示すように、リアクタンス素子321はキャパシタ321Cであり、リアクタンス素子322はインダクタ322Lであり、リアクタンス素子323はキャパシタ323Cである。
図8は、インダクタおよびキャパシタを用いた三素子の整合回路のインピーダンスの実数成分の周波数特性を示す図である。図8は、図7(B)~図7(E)に示す各整合回路32B1,32B2,32B3,32B4の特性を示す。なお、図8の横軸は規格化周波数を示しており、特定の周波数を1.0に設定している。図8の縦軸はインピーダンスが1[ohm]の負荷を接続した状態の整合回路を見たインピーダンス実数成分を示す。
図8に示すように、図7(B)~図7(E)に示す整合回路32B1,32B2,32B3,32B4を用いることで、上述の二素子の回路での特性(A),(B)に示したインピーダンスの実数成分の周波数特性を得ることができる。
このような構成とすることで、フィルタ部20のインピーダンスの実数成分の周波数特性と類似する特性を整合回路で実現することができる。
さらに、三素子のπ型回路による整合回路32B1,32B2,32B3,32B4では、図8に示すように、インピーダンスの実数成分が急峻に増加する特性を実現することができる。圧電共振子は、共振周波数と反共振周波数との間で、インピーダンスが急激に変化する。すなわち、通過帯域と減衰極との間のインピーダンス変化が急峻になる。したがって、三素子のπ型回路による整合回路32B1,32B2,32B3,32B4を用いることで、フィルタ部20のインピーダンスの実数成分の周波数特性に対して、さらに容易に、類似する特性を実現することができる。
図9は本発明の実施形態に係るπ型の整合回路を用いた周波数可変フィルタの通過特性である。図9に示すように、本実施形態の構成を用いることで、整合回路によってフィルタ部のインピーダンスに変化が生じても、インピーダンス整合することができる。したがって、周波数可変フィルタ10の通過帯域の周波数を高周波数側にシフトさせても、例えば、挿入損失の極端な増加を防止できる。これにより、周波数可変フィルタ10で実現可能ないずれの通過帯域に対しても低損失な通過特性を実現することができる。
なお、上述の構成を用いれば、インピーダンスの実数成分を略一致させることが容易であり、インピーダンス整合を実現することができる。しかしながら、上述のπ型回路の構成でも、虚数成分を一致させられない場合がある。この場合、上述のL型回路と同様に、伝送ラインに直列接続するインダクタもしくはキャパシタをフィルタ部20側に追加で備えることで、虚数成分だけをシフトさせることができるので、より精確にインピーダンス整合することができる。
(C)三素子(基本回路構成が三素子)でT型回路の場合
図10は本発明の実施形態に係る三素子でT型の整合回路の回路図を示す。図10(A)は、整合回路の基本ブロック図であり、図10(B),(C),(D),(E)は具体的な回路例を示す図である。なお、図10でも、整合回路32(32C)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図10は本発明の実施形態に係る三素子でT型の整合回路の回路図を示す。図10(A)は、整合回路の基本ブロック図であり、図10(B),(C),(D),(E)は具体的な回路例を示す図である。なお、図10でも、整合回路32(32C)の回路構成を示すが、整合回路31は、上述のように、フィルタ部20を挟んで整合回路32と対称な回路構成であるので、整合回路32のみを説明する。
図10(A)に示すように、整合回路32Cは、リアクタンス素子321,322,323を備える。リアクタンス素子321は、フィルタ部20と入出力端子P2とを接続する伝送ラインとグランドとの間に接続されている。すなわち、リアクタンス素子321は、フィルタ部20と入出力端子P2とを接続する伝送ラインに対してシャント接続されている。リアクタンス素子322,323は、フィルタ回路20と入出力端子P2との間に直列接続されている。すなわち、リアクタンス素子322,323は、伝送ラインに対してシリーズ接続されている。この際、リアクタンス素子322は、リアクタンス素子321が伝送ラインに接続する点と入出力端子P2との間に接続されている。リアクタンス素子323は、リアクタンス素子321が伝送ラインに接続する点とフィルタ部20との間に接続されている。このように、整合回路32CはT型回路である。
具体的な第1例の整合回路32C1として、図10(B)に示すように、リアクタンス素子321はインダクタ321Lであり、リアクタンス素子322はキャパシタ322Cであり、リアクタンス素子323はインダクタ323Lである。
具体的な第2例の整合回路32C2として、図10(C)に示すように、リアクタンス素子321はインダクタ321Lであり、リアクタンス素子322はキャパシタ322Cであり、リアクタンス素子323はキャパシタ323Cである。
具体的な第3例の整合回路32C3として、図10(D)に示すように、リアクタンス素子321はキャパシタ321Cであり、リアクタンス素子322はインダクタ322Lであり、リアクタンス素子323はインダクタ323Lである。
具体的な第4例の整合回路32C4として、図10(E)に示すように、リアクタンス素子321はキャパシタ321Cであり、リアクタンス素子322はキャパシタ322Cであり、リアクタンス素子323はインダクタ323Lである。
これらの構成を用いても、π型回路の整合回路32Bと同様に、通過帯域の周波数が変化しても、フィルタ部20に対してインピーダンス整合を行うことができる。
なお、上述の実施形態では、伝送ラインに対してシリーズ接続された周波数可変共振回路21とシャント接続された周波数可変共振回路22とで、フィルタ部20を構成する例を示した。しかしながら、フィルタ部を図11に示す構成で実現してもよい。図11は、本発明の実施形態に係る周波数可変フィルタのフィルタ部の他の構成例を示す回路図である。
図11に示すように、周波数可変フィルタ10Xは、上述の周波数可変共振回路21のみによってフィルタ部が構成されている。すなわち、入出力端子P1,P2間に直列接続された周波数可変共振回路21のみによってフィルタ部が構成される。入出力端子P1と周波数可変共振回路21との間には整合回路31Xが接続され、入出力端子P2と周波数可変共振回路22との間には、整合回路32Xが接続されている。このような構成であっても、上述の二素子の回路での特性(A),(B)の条件を満たすように、整合回路31,32と同様に、整合回路31X,32Xを構成する。これにより、周波数可変フィルタ10Xで実現可能ないずれの通過帯域に対しても低損失な通過特性を実現することができる。
また、周波数可変共振回路は、上述の構成に限ることなく、図12(A),(B),(C)に示す構成であってもよい。図12は、本発明の実施形態に係る周波数可変共振回路の回路構成例を示す図である。なお、図12では周波数可変共振回路21の派生例を示すが、周波数可変共振回路22に対しても同様の派生例を実現することができる。また、周波数可変共振回路21,22は、同じ回路構成でなくてもよく、これらの派生例を含んで、適宜組み合わせて、フィルタ部を構成することができる。
図12(A)に示す周波数可変共振回路21Aでは、可変キャパシタ214は、圧電共振子211、インダクタ213、可変キャパシタ215の直列回路に並列接続されている。その他の構成は周波数可変共振回路21と同じである。
図12(B)に示す周波数可変共振回路21Bでは、インダクタ212は、圧電共振子211、インダクタ213の直列回路に並列接続されている。その他の構成は周波数可変共振回路21Aと同じである。
図12(C)に示す周波数可変共振回路21Cでは、インダクタ212は、圧電共振子211、インダクタ213の直列回路に並列接続されている。その他の構成は周波数可変共振回路21と同じである。
10,10X:周波数可変フィルタ
20:フィルタ部
21,22,21A,21B,21C:周波数可変共振回路
211,221:圧電共振子
212,213,222,223:インダクタ(伸長のインダクタ)
214,215,224,225:可変キャパシタ
31,32,32A,32A1,32A2,32A3,31X,32X:整合回路
321,322,323:リアクタンス素子
321L,322L,323L:インダクタ
321C,322C,323C:キャパシタ
20:フィルタ部
21,22,21A,21B,21C:周波数可変共振回路
211,221:圧電共振子
212,213,222,223:インダクタ(伸長のインダクタ)
214,215,224,225:可変キャパシタ
31,32,32A,32A1,32A2,32A3,31X,32X:整合回路
321,322,323:リアクタンス素子
321L,322L,323L:インダクタ
321C,322C,323C:キャパシタ
Claims (6)
- 圧電共振子と該圧電共振子に接続される可変キャパシタを含む周波数可変共振回路と、
該周波数可変共振回路が少なくとも一つ、伝送ラインに直列接続されるか、もしくは、伝送ラインとグランドとの間に接続された構成を有するフィルタ部と、
前記伝送ラインの両端に接続された複数の入出力端子と、
少なくとも一方の前記入出力端子と前記フィルタ部との間に接続された整合回路とを備え、
該整合回路は、
インダクタとキャパシタとから構成され、伝送する高周波信号の周波数が高くなるのにしたがって同時共役整合インピーダンスの実数成分が高くなる回路構成を有する、
周波数可変フィルタ。 - 前記整合回路の前記同時共役整合インピーダンスの実数成分の周波数変化は、
前記フィルタ部の同時共役整合インピーダンスの実数成分の周波数変化と略同じである、
請求項1に記載の周波数可変フィルタ。 - 前記整合回路と前記フィルタ部との間に、調整用インダクタまたは調整用キャパシタを接続する、
請求項1または請求項2に記載の周波数可変フィルタ。 - 前記整合回路は、
前記伝送線路に直列接続されたキャパシタと、該キャパシタの前記フィルタ部側と前記グランドとの間を接続するインダクタとから構成されるL型回路、
または、
前記伝送線路に直列接続されたインダクタと、該インダクタの前記フィルタ部側と前記グランドとの間を接続するキャパシタとから構成されるL型回路、
もしくは、
前記伝送線路と前記グランドとの間に、それぞれ接続されたインダクタとキャパシタから構成される回路、
のいずれかを、少なくとも一つ備える、
請求項1乃至請求項3のいずれかに記載の周波数可変フィルタ。 - 前記整合回路は、
前記伝送線路に直列接続された第1インダクタと、該第1インダクタの前記フィルタ部側と前記グランドとの間を接続するキャパシタと、前記第1インダクタの前記入出力端子側と前記グランドとの間を接続する第2インダクタとから構成されるπ型回路、
または、
前記伝送線路に直列接続されたインダクタと、該インダクタの両端を前記グランドにそれぞれ接続する二つのキャパシタとから構成されるπ型回路、
または、
前記伝送線路に直列接続されたキャパシタと、該キャパシタの両端を前記グランドにそれぞれ接続する二つのインダクタとから構成されるπ型回路、
または、
前記伝送線路に直列接続された第1キャパシタと、該第1キャパシタの前記フィルタ部側と前記グランドとの間を接続するインダクタと、前記第1キャパシタの前記入出力端子側と前記グランドとの間を接続する第2キャパシタとから構成されるπ型回路
のいずれかである、
請求項1乃至請求項3のいずれかに記載の周波数可変フィルタ。 - 前記周波数可変共振回路は、
前記圧電共振子に直列接続する第1可変キャパシタと、前記圧電共振子に並列接続する第2可変キャパシタとを備え、
さらに、前記圧電共振子と前記第1可変キャパシタとの間に直列接続された周波数可変共振回路用第1インダクタと、前記圧電共振子に並列接続された周波数可変共振回路用第2インダクタの少なくとも一方を備える、
請求項1乃至請求項5のいずれかに記載の周波数可変フィルタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480053133.3A CN105594123B (zh) | 2013-09-26 | 2014-09-11 | 可变频滤波器 |
JP2015539094A JP6380400B2 (ja) | 2013-09-26 | 2014-09-11 | 周波数可変フィルタ |
US15/078,372 US10250227B2 (en) | 2013-09-26 | 2016-03-23 | Frequency-variable filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013199162 | 2013-09-26 | ||
JP2013-199162 | 2013-09-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/078,372 Continuation US10250227B2 (en) | 2013-09-26 | 2016-03-23 | Frequency-variable filter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045882A1 true WO2015045882A1 (ja) | 2015-04-02 |
Family
ID=52743025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074032 WO2015045882A1 (ja) | 2013-09-26 | 2014-09-11 | 周波数可変フィルタ |
Country Status (4)
Country | Link |
---|---|
US (1) | US10250227B2 (ja) |
JP (1) | JP6380400B2 (ja) |
CN (1) | CN105594123B (ja) |
WO (1) | WO2015045882A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107483073A (zh) * | 2017-09-08 | 2017-12-15 | 上海斐讯数据通信技术有限公司 | 一种射频匹配电路和射频系统 |
CN117517785A (zh) * | 2024-01-08 | 2024-02-06 | 深圳市瀚强科技股份有限公司 | 阻抗检测电路、阻抗检测设备及阻抗检测方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016114662B4 (de) * | 2016-08-08 | 2022-03-03 | Snaptrack, Inc. | Rekonfigurierbares mikroakustisches Filter und Duplexer mit rekonfigurierbarem mikroakustischem Filter |
KR102565276B1 (ko) * | 2016-11-16 | 2023-08-09 | 삼성전자주식회사 | 코일 공유 구조를 가지는 무선 장치 |
CN107565991A (zh) * | 2017-08-29 | 2018-01-09 | 上海斐讯数据通信技术有限公司 | 一种射频匹配模块、用于移动终端的射频系统 |
CN109510207A (zh) * | 2018-11-21 | 2019-03-22 | 中国南方电网有限责任公司超高压输电公司 | 高频谐波隔离装置及其工作方法 |
US11705886B2 (en) * | 2019-09-19 | 2023-07-18 | Skyworks Solutions, Inc. | Multiplexer with reduced phase spreading |
US20220029646A1 (en) * | 2020-07-27 | 2022-01-27 | Corning Research & Development Corporation | Radio frequency transceiver filter circuit having inter-stage impedance matching |
US20230155573A1 (en) * | 2021-11-17 | 2023-05-18 | Intel Corporation | Technologies for impedance matching networks for qubits |
CN114512779B (zh) * | 2021-12-03 | 2022-09-13 | 北京邮电大学 | 一种高选择性宽带ltcc滤波功分器集成芯片 |
EP4447327A1 (en) * | 2023-04-14 | 2024-10-16 | EM Microelectronic-Marin SA | Impedance matching network |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH077366A (ja) * | 1993-06-18 | 1995-01-10 | Advantest Corp | 水晶フィルタによる狭帯域バンドパスフィルタの温度補正回路 |
JP2006135447A (ja) * | 2004-11-02 | 2006-05-25 | Fujitsu Media Device Kk | 分波器 |
WO2011093449A1 (ja) * | 2010-01-28 | 2011-08-04 | 株式会社村田製作所 | チューナブルフィルタ |
JP2012501563A (ja) * | 2008-09-01 | 2012-01-19 | エプコス アクチエンゲゼルシャフト | アンテナ整合回路 |
WO2012079038A2 (en) * | 2010-12-10 | 2012-06-14 | Peregrine Semiconductor Corporation | Method, system, and apparatus for resonator circuits and modulating resonators |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3240907A1 (de) | 1982-11-05 | 1984-05-10 | ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld | Verfahren zur herstellung individueller gussteile |
US6426683B1 (en) * | 1999-11-09 | 2002-07-30 | Motorola, Inc. | Integrated filter with improved I/O matching and method of fabrication |
JP2001313542A (ja) * | 2000-04-28 | 2001-11-09 | Oki Electric Ind Co Ltd | 分波器 |
JP3972810B2 (ja) * | 2002-12-18 | 2007-09-05 | 株式会社村田製作所 | 分波器、および通信機 |
JP4053504B2 (ja) * | 2004-01-30 | 2008-02-27 | 株式会社東芝 | チューナブルフィルタ |
US7274270B2 (en) * | 2005-04-13 | 2007-09-25 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Resonator matching network |
US20070205849A1 (en) * | 2006-03-03 | 2007-09-06 | Brian Otis | Frequency-selective transformer and mixer incorporating same |
JP5081742B2 (ja) * | 2007-06-29 | 2012-11-28 | 日本電波工業株式会社 | アンテナ分波器 |
JP2009130831A (ja) | 2007-11-27 | 2009-06-11 | Samsung Electronics Co Ltd | チューナブルフィルタ |
JP5957816B2 (ja) * | 2011-02-23 | 2016-07-27 | 株式会社村田製作所 | インピーダンス変換デバイス、アンテナ装置および通信端末装置 |
-
2014
- 2014-09-11 JP JP2015539094A patent/JP6380400B2/ja active Active
- 2014-09-11 CN CN201480053133.3A patent/CN105594123B/zh active Active
- 2014-09-11 WO PCT/JP2014/074032 patent/WO2015045882A1/ja active Application Filing
-
2016
- 2016-03-23 US US15/078,372 patent/US10250227B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH077366A (ja) * | 1993-06-18 | 1995-01-10 | Advantest Corp | 水晶フィルタによる狭帯域バンドパスフィルタの温度補正回路 |
JP2006135447A (ja) * | 2004-11-02 | 2006-05-25 | Fujitsu Media Device Kk | 分波器 |
JP2012501563A (ja) * | 2008-09-01 | 2012-01-19 | エプコス アクチエンゲゼルシャフト | アンテナ整合回路 |
WO2011093449A1 (ja) * | 2010-01-28 | 2011-08-04 | 株式会社村田製作所 | チューナブルフィルタ |
WO2012079038A2 (en) * | 2010-12-10 | 2012-06-14 | Peregrine Semiconductor Corporation | Method, system, and apparatus for resonator circuits and modulating resonators |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107483073A (zh) * | 2017-09-08 | 2017-12-15 | 上海斐讯数据通信技术有限公司 | 一种射频匹配电路和射频系统 |
CN107483073B (zh) * | 2017-09-08 | 2021-04-23 | 台州市吉吉知识产权运营有限公司 | 一种射频匹配电路和射频系统 |
CN117517785A (zh) * | 2024-01-08 | 2024-02-06 | 深圳市瀚强科技股份有限公司 | 阻抗检测电路、阻抗检测设备及阻抗检测方法 |
CN117517785B (zh) * | 2024-01-08 | 2024-04-23 | 深圳市瀚强科技股份有限公司 | 阻抗检测电路、阻抗检测设备及阻抗检测方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015045882A1 (ja) | 2017-03-09 |
US10250227B2 (en) | 2019-04-02 |
CN105594123A (zh) | 2016-05-18 |
JP6380400B2 (ja) | 2018-08-29 |
US20160211824A1 (en) | 2016-07-21 |
CN105594123B (zh) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380400B2 (ja) | 周波数可変フィルタ | |
US10211799B2 (en) | High-frequency filter | |
US10965273B2 (en) | Wideband piezoelectric filter with ladder-structure | |
JP6308221B2 (ja) | 周波数可変フィルタ | |
US8576024B2 (en) | Electro-acoustic filter | |
US10009010B2 (en) | Resonator device and high frequency filter | |
WO2014064987A1 (ja) | フィルタ装置 | |
JP6669681B2 (ja) | フィルタ回路、マルチプレクサおよびモジュール | |
US10873318B2 (en) | Filter circuits having acoustic wave resonators in a transversal configuration | |
JP6439862B2 (ja) | 高周波フィルタ、フロントエンド回路、および、通信機器 | |
JP6187593B2 (ja) | 共振回路及び高周波フィルタ | |
WO2018012275A1 (ja) | マルチプレクサ、高周波フロントエンド回路、および、通信端末 | |
JPWO2020054284A1 (ja) | マルチプレクサならびにそれを用いた高周波フロントエンド回路および通信装置 | |
JP2013081068A (ja) | ワンチップ漏洩表面弾性波装置 | |
WO2019150688A1 (ja) | フィルタ装置、高周波フロントエンド回路、および通信装置 | |
WO2019078157A1 (ja) | 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 | |
US20200112299A1 (en) | Acoustic wave filter device, composite filter device, and multiplexer | |
JP2020028013A (ja) | フィルタおよびマルチプレクサ | |
JP6677257B2 (ja) | 周波数可変フィルタ、rfフロントエンド回路、通信装置 | |
CN117559932A (zh) | 滤波器和多工器 | |
CN117614407A (zh) | 滤波器和多工器 | |
KR20210141914A (ko) | 밴드패스 필터 회로 및 멀티 플렉서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847864 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015539094 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847864 Country of ref document: EP Kind code of ref document: A1 |