WO2018012275A1 - マルチプレクサ、高周波フロントエンド回路、および、通信端末 - Google Patents

マルチプレクサ、高周波フロントエンド回路、および、通信端末 Download PDF

Info

Publication number
WO2018012275A1
WO2018012275A1 PCT/JP2017/023482 JP2017023482W WO2018012275A1 WO 2018012275 A1 WO2018012275 A1 WO 2018012275A1 JP 2017023482 W JP2017023482 W JP 2017023482W WO 2018012275 A1 WO2018012275 A1 WO 2018012275A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
multiplexer
inductor
arm resonator
parallel arm
Prior art date
Application number
PCT/JP2017/023482
Other languages
English (en)
French (fr)
Inventor
将和 谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780044010.7A priority Critical patent/CN109478882B/zh
Publication of WO2018012275A1 publication Critical patent/WO2018012275A1/ja
Priority to US16/246,822 priority patent/US10700659B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • H03H7/465Duplexers having variable circuit topology, e.g. including switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/075Ladder networks, e.g. electric wave filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezo-electric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Definitions

  • the present invention relates to a multiplexer including a frequency variable filter, a high-frequency front-end circuit including the multiplexer, and a communication terminal.
  • the multiplexer includes a plurality of filters having different filter characteristics such as passband frequencies.
  • a filter there is a ladder type frequency variable filter as shown in Patent Document 1.
  • the frequency variable filter has variable filter characteristics and can handle a plurality of communication bands.
  • the frequency variable filter shown in Patent Document 1 has a configuration in which a plurality of series arm resonators and a plurality of parallel arm resonators are connected in a ladder shape.
  • a variable capacitor is connected to at least one of the plurality of parallel arm resonators. By changing the capacitance of the variable capacitor, the passband frequency changes. Attenuation characteristics change with this passband and change.
  • the ladder-type frequency variable filter described in Patent Document 1 is realized by a circuit board or the like on which a conductor pattern is formed, at least a floating inductor is connected to the parallel arm resonator between the parallel arm resonator and the ground. It will be connected in series.
  • an inductor may be connected in series with the parallel arm resonator in order to obtain a desired attenuation characteristic at both ends of the passband.
  • the parallel arm and the inductor are arranged in the harmonic region (high frequency side region) of the passband formed by the ladder type filter.
  • An attenuation pole is generated due to the secondary resonance of the series circuit.
  • the sub-resonance in the present invention refers to a resonator in which the capacitive capacitance of the resonator and the inductance of the inductor undergo LC series resonance, or an inductive inductance of the resonator and the capacitance of the capacitor in series LC resonance.
  • variable impedance element such as a variable capacitor or a variable inductor
  • the capacitance of the variable capacitor or the variable inductor for changing the passband frequency The frequency of the sub-resonance also changes due to the change in inductance. For example, as shown in FIG. 2B described later, the frequency of the attenuation pole due to the secondary resonance changes. For this reason, as shown in FIG. 2B, which will be described later, a necessary attenuation amount may not be obtained for a specific frequency band outside the pass band.
  • an object of the present invention is to provide a multiplexer capable of obtaining a necessary attenuation for a specific frequency band outside the pass band even when the sub-resonance frequency of the parallel arm resonator is changed by the variable impedance element. Is to realize.
  • the multiplexer includes a first filter, a second filter, and a common connection point.
  • the common connection point is connected to the antenna side end of the first filter and the antenna side end of the second filter.
  • the first filter includes a plurality of resonators including a first parallel arm resonator, and a variable capacitor connected in series to the first parallel arm resonator.
  • the second filter includes a resonator having a capacitive component.
  • a first inductor for forming an attenuation pole is provided between the antenna side end of the second filter and the common connection point.
  • the frequency of the attenuation pole formed by the first inductor for forming the attenuation pole is close to or coincides with the frequency of the harmonic of the communication signal using the pass band of the first filter. Preferably it is.
  • the second filter may include a longitudinally coupled resonator.
  • the impedance can be lowered by the first inductor, impedance matching is facilitated even if the impedance of the longitudinally coupled resonator is increased. Therefore, the electrode width of the filter of the longitudinally coupled resonator can be reduced, and the shape of the longitudinally coupled resonator is reduced.
  • the multiplexer of the present invention preferably has the following configuration.
  • the first filter includes a ladder-type connected series arm resonator, a first parallel arm resonator, and a second parallel arm resonator connected to a parallel arm different from the first parallel arm resonator.
  • a variable impedance element having a variable impedance and connected in series to the first parallel arm resonator, and a second fixed inductor having a fixed inductance.
  • a variable impedance element is not connected to the second parallel arm resonator, and a second fixed inductor is connected in series.
  • a second attenuation pole having a desired frequency is formed by a series circuit of the second parallel arm resonator and the second inductor.
  • a high-frequency front-end circuit includes any of the multiplexers described above, a transmission-side amplifier circuit connected to the first filter, a reception-side amplifier circuit connected to the second filter, and a transmission And a RFIC connected to the receiving side amplifying circuit.
  • the present invention provides any of the multiplexers described above, a transmission side amplification circuit connected to the second filter, a reception side amplification circuit connected to the first filter, a transmission side amplification circuit, and reception. And an RFIC connected to the side amplifier circuit.
  • This configuration realizes a high-frequency front-end circuit with good characteristics outside the pass band as well as the pass band of the transmission filter or the reception filter.
  • the communication terminal of the present invention includes a high-frequency front end circuit and a baseband IC connected to the RFIC.
  • the ladder-type frequency variable filter constituting a part of the multiplexer, even if the sub-resonance frequency of the parallel arm resonator is changed by the variable impedance element, the specific frequency band outside the pass band is obtained. Therefore, the necessary attenuation can be obtained.
  • FIG. 1 is a circuit diagram of a multiplexer according to a first embodiment of the present invention.
  • (A) is a filter characteristic diagram of the transmission filter of the multiplexer according to the first embodiment of the present invention
  • (B) is a filter characteristic diagram of the transmission filter of the multiplexer to be compared. It is a filter characteristic view by the side of the receiving circuit of the multiplexer concerning the 1st Embodiment of this invention. It is a circuit diagram of the multiplexer which concerns on the 2nd Embodiment of this invention. It is a circuit diagram of the multiplexer which concerns on the 3rd Embodiment of this invention. It is a circuit diagram of the multiplexer which concerns on the 4th Embodiment of this invention.
  • FIG. 1 is a circuit diagram of a multiplexer according to the first embodiment of the present invention.
  • the multiplexer 1 includes a transmission filter 10, a reception filter 60, and an inductor 80 for forming an attenuation pole.
  • the transmission filter 10 corresponds to the “first filter” of the present invention
  • the reception filter 60 corresponds to the “second filter” of the present invention.
  • the multiplexer 1 includes a transmission terminal Ptx, a reception terminal Prx, and an antenna terminal Pant.
  • the transmission filter 10 is connected between the transmission terminal Ptx and the antenna terminal Pant.
  • the reception filter 60 is connected between the reception terminal Prx and the antenna terminal Pant.
  • the antenna side end of the transmission filter 10 and the antenna side end of the reception filter 60 are connected to a common connection point PC, and the common connection point PC is connected to the antenna terminal Pant.
  • the inductor 80 is connected between the common connection point PC and the reception filter 60.
  • the inductance of the inductor 80 is fixed.
  • the inductor 80 corresponds to a “first inductor” of the present invention.
  • a series circuit of the inductor 80 and the reception filter 60 is connected to a transmission path connecting the transmission terminal Ptx and the antenna terminal Pant, that is, a transmission path via the transmission filter 10.
  • the transmission filter 10 and the reception filter 60 are each provided with a plurality of resonators. Specific circuit configurations of the transmission filter 10 and the reception filter 60 will be described later.
  • the transmission filter 10 and the reception filter 60 can be set to have a capacitive property by connecting a plurality of resonators or the like. Capacitance means that it can be seen as capacitance from the outside in a high-frequency signal manner.
  • a series resonance circuit of the inductor 80 and the capacitive reception filter 60 that is, an LC series resonance circuit is connected to the transmission line via the transmission filter 10.
  • an attenuation pole by the LC series resonance circuit is added to the filter characteristic of the transmission line through the transmission filter 10.
  • the frequency of the attenuation pole is appropriately adjusted. Therefore, the attenuation amount with respect to a specific frequency increases by making the frequency of the attenuation pole close to or coincide with a specific frequency outside the pass band in the filter characteristics of the transmission filter 10.
  • the characteristics outside the pass band of the first filter connected to the antenna terminal Pant via the common connection point PC are the second filter connected to the common connection point PC, the common connection point PC, and the second filter. This is improved by the attenuation pole of the LC series resonance circuit with the inductor 80 having a fixed inductance connected between the two filters.
  • the second filter may be a frequency variable filter.
  • FIG. 2A is a filter characteristic diagram of the transmission filter of the multiplexer according to the first embodiment of the present invention
  • FIG. 2B is a filter characteristic diagram of the transmission filter of the multiplexer to be compared.
  • FIGS. 2A and 2B show the transmission characteristics of the transmission path from the transmission terminal Ptx to the antenna terminal Pant. 2A and 2B, the solid line indicates the filter characteristic of the communication band CH1, and the broken line indicates the filter characteristic of the communication band CH2.
  • the transmission filter of the multiplexer having the filter characteristics shown in FIG. 2 (B) has no inductor 80 compared to the multiplexer 1 according to this embodiment, and has a conventional circuit configuration.
  • the transmission filter 10 includes a plurality of resonators, and as shown in the above-described problem, a sub-resonance point is generated by an inductor or a parasitic inductor connected to a resonator in which a variable capacitor is connected in series.
  • the sub-resonance point when the communication band is switched, the sub-resonance point also changes between the setting for the communication band CH2 and the setting for the communication band CH1, and when the setting for the communication band CH2 is switched to the setting for the communication band CH1, the attenuation pole The frequency fsr211 changes to the attenuation pole frequency fsr212.
  • the attenuation amount deteriorates at the frequency of the attenuation pole frequency fsr211.
  • the setting for the communication band CH2 is switched to the setting for the communication band CH1.
  • the attenuation pole frequency fsr211 changes from the attenuation pole frequency fsr211.
  • the multiplexer 1 includes an LC series resonance circuit including a reception filter 60 and an inductor 80. Therefore, the characteristic between the transmission terminal Ptx and the antenna terminal Pant of the multiplexer 1 has the attenuation pole frequency fsr80 by this LC series resonance circuit.
  • the attenuation pole frequency fsr80 is set to be substantially the same as the attenuation pole frequency fsr211. Here, “substantially the same” indicates that they are coincident or close to each other.
  • the multiplexer 1 can always secure an attenuation amount for a specific frequency outside the pass band with respect to the transmission path connecting the transmission terminal Ptx and the antenna terminal Pant. That is, when the transmission filter 10 filters transmission signals (communication signals) of a plurality of communication bands, it is possible to secure an attenuation amount of a specific frequency in any communication band.
  • the use frequency band of the communication band 28A and the use frequency band of the communication band 28B are close to each other. That is, the pass band for the communication band 28A and the pass band for the communication band 28B in the transmission filter 10 are close to each other. In this case, the frequency of the second harmonic is also close between the communication band 28A and the communication band 28B.
  • the attenuation pole frequency fsr211 set for the communication band 28A is close to or coincides with the frequency of the second harmonic of the communication band 28A and the communication band 28B.
  • the multiplexer to be compared shifts to the attenuation pole frequency fsr212, and the attenuation amount at the frequency of the second harmonic is deteriorated, and the attenuation effect of the second harmonic is reduced. Will fall.
  • the transmission filter 10 according to the present embodiment has the fixed attenuation pole frequency fsr31, it is possible to secure a sufficient attenuation amount for the second harmonic in both the communication band 28A and the communication band 28B.
  • the configuration of the present invention can also be applied to a plurality of communication bands using frequency bands close to each other.
  • the configuration of the present invention can also be applied to a combination of a plurality of communication bands in which the frequency of the second harmonic and the frequency of the third harmonic are close to or coincide with each other.
  • the transmission filter 10 includes a plurality of resonators.
  • the plurality of resonators include a plurality of series arm resonators 111, 112, 113, 114, 115 and a plurality of parallel arm resonators 121, 122, 123, 124, 125.
  • the transmission filter 10 includes a plurality of switch elements 211 and 212, a plurality of capacitors 41 and 42 each having a fixed capacitance, and an inductor 51 having a fixed inductance.
  • the plurality of series arm resonators 111, 112, 113, 114, 115 and the plurality of parallel arm resonators 121, 122, 123, 124, 125 are connected in a ladder shape.
  • the serial arm resonators 111, 112, 113, 114, and 115 are connected in series between the antenna side end of the transmission filter 10 and the transmission terminal Ptx.
  • the series arm resonators 111, 112, 113, 114, and 115 are connected in this order from the antenna side end side.
  • the inductor 51 is connected between the series arm resonator 115 and the transmission terminal Ptx.
  • One end of the parallel arm resonator 121 is connected to a connection line between the series arm resonator 111 and the series arm resonator 112, and the other end of the parallel arm resonator 121 is connected to a common terminal of the switch element 211. ing.
  • a first selection terminal of the switch element 211 is connected to the ground via the capacitor 42, and a second selection terminal is connected to the ground.
  • the switch element 211 selectively connects the first selection terminal or the second selection terminal to the common terminal.
  • the switch element 211 and the capacitor 42 form a variable capacitor.
  • the parallel arm resonator 122 and the parallel arm resonator 123 are connected in parallel.
  • One end of the parallel circuit is connected to a connection line between the series arm resonator 112 and the series arm resonator 113, and the other end of the parallel circuit is connected to the ground.
  • One end of the capacitor 41 is connected to a connection line between the series arm resonator 113 and the series arm resonator 114, and the other end of the capacitor 41 is connected to the ground.
  • One end of the parallel arm resonator 124 is connected to a connection line between the series arm resonator 114 and the series arm resonator 115, and the other end of the parallel arm resonator 124 is connected to the ground.
  • the common terminal of the switch element 212 is connected to the inductor 51 and the transmission terminal Ptx, and the first selection terminal of the switch element 212 is connected to the ground via the parallel arm resonator 125. A second selection terminal of the switch element 212 is connected to the ground.
  • the reception filter 60 includes a plurality of resonators.
  • the plurality of resonators include a longitudinally coupled resonator 611, series arm resonators 621 and 622, and parallel arm resonators 631 and 632.
  • the reception filter 60 includes an inductor 641.
  • serial arm resonators 621 and 622 and the longitudinally coupled resonator 611 are connected in series between the antenna side end of the reception filter 60 and the reception terminal Prx.
  • the series arm resonators 621 and 622 and the longitudinally coupled resonator 611 are connected in this order from the antenna side end.
  • One end of the parallel arm resonator 631 is connected to a connection line between the series arm resonator 621 and the series arm resonator 622.
  • the other end of the parallel arm resonator 631 is connected to the ground.
  • One end of the parallel arm resonator 632 is connected to a connection line between the longitudinally coupled resonator 611 and the receiving terminal Prx.
  • the other end of the parallel arm resonator 632 is connected to the ground.
  • One end of the inductor 641 is connected to a connection line between the longitudinally coupled resonator 611 and the receiving terminal Prx.
  • the other end of the inductor 641 is connected to the ground.
  • the inductor 641 is connected in parallel to the parallel arm resonator 632.
  • the reception filter 60 can be regarded as a capacitive circuit.
  • the inductor 80 and the reception filter 60 form an LC series resonance circuit.
  • the multiplexer 1 has a structure in which a parasitic inductor is connected in series to each resonator.
  • a parasitic inductor is connected in series to the parallel arm resonator 121, a sub-resonance point is generated for the parallel arm resonator 121.
  • the parallel arm resonator 121 is connected to a variable capacitor (a circuit including a switch element 211 and a capacitor 42 that is selectively connected), and the frequency of the sub-resonance point is shifted by the capacitance of the variable capacitor.
  • the frequency of the attenuation pole due to the secondary resonance point is separated from the passband.
  • the frequency shift width of the attenuation pole is also large.
  • the multiplexer 1 forms an LC series resonance circuit with the inductor 80 and the reception filter 60 as described above. Then, by appropriately setting the element values of the inductor 80 and the reception filter 60, even if the frequency of the attenuation pole due to the sub-resonance point of the parallel arm resonator 121 is far from the pass band, the attenuation pole of the LC series resonance circuit can be set. The frequency of the sub-resonance point before the frequency shift of the parallel arm resonator 121 can be made substantially the same.
  • the attenuation amount of the predetermined frequency band including the frequency of the attenuation pole can be secured by the attenuation pole of the LC series resonance circuit of the inductor 80 and the reception filter 60.
  • the reception filter 60 includes a longitudinally coupled resonator 611.
  • the longitudinally coupled resonator 611 when the longitudinally coupled resonator 611 is provided, the following effects can be obtained.
  • the electrode width is reduced.
  • the impedance of the reception filter 60 is increased.
  • the impedance can be lowered as compared with the case of the reception filter 60 alone. This facilitates impedance matching on the reception filter 60 side in the frequency band of the reception signal of the communication signal. Therefore, the loss with respect to the received signal is small, and the small receiving filter 60 and the multiplexer 1 can be realized.
  • FIG. 3 is a filter characteristic diagram on the receiving circuit side of the multiplexer according to the first embodiment of the present invention.
  • FIG. 3 shows reflection characteristics with respect to a transmission path from the antenna terminal Pant to the receiving terminal Prx. 3 indicates the characteristic of the multiplexer 1 according to the first embodiment of the present invention, and the broken line in FIG. 3 indicates the characteristic of the comparison configuration.
  • the multiplexer 1 by using the multiplexer 1, it is possible to reduce the reflection loss in the frequency band (reception band) of the received signal and to reduce the loss with respect to the received signal.
  • FIG. 4 is a circuit diagram of a multiplexer according to the second embodiment of the present invention.
  • the multiplexer 1A according to the present embodiment differs from the multiplexer 1 according to the first embodiment in the circuit configurations of the transmission filter 10A and the reception filter 60.
  • the basic configuration of the transmission filter 10A, the reception filter 60A, and the inductor 80A, such as the connection mode with respect to the common connection point PC, is the same, and the description of the same parts is omitted.
  • the multiplexer 1A includes a transmission filter 10A, a reception filter 60A, and an inductor 80A.
  • the inductance of the inductor 80A is set based on the same concept as the inductor 80.
  • the transmission filter 10A corresponds to the “first filter” of the present invention
  • the reception filter 60A corresponds to the “second filter” of the present invention
  • the inductor 80A corresponds to the “first inductor” of the present invention.
  • the transmission filter 10A has a configuration in which the variable capacitor 21 is added to the transmission filter 10 by omitting the plurality of switch elements 211 and 212, the capacitor 42, and the parallel arm resonator 125. One end of the variable capacitor 21 is connected to the parallel arm resonator 121, and the other end of the variable capacitor 21 is connected to the ground.
  • the reception filter 60A includes a plurality of resonators.
  • the plurality of resonators include a plurality of series arm resonators 621A, 622A, 623A, 624A, 625A and a plurality of parallel arm resonators 631A, 632A, 633A, 634A.
  • the reception filter 60A includes a capacitor 42 and an inductor 52.
  • the circuit configuration of the reception filter 60A is the same as that of the transmission filter 10A that does not include the variable capacitor 21.
  • the plurality of series arm resonators 621A, 622A, 623A, 624A, 625A and the plurality of parallel arm resonators 631A, 632A, 633A, 634A are connected in a ladder shape.
  • the serial arm resonators 621A, 622A, 623A, 624A, and 625A are connected in series between the antenna side end of the reception filter 60A and the reception terminal Prx.
  • the series arm resonators 621A, 622A, 623A, 624A, 625A are connected in this order from the antenna side end side.
  • the inductor 52 is connected between the series arm resonator 625A and the receiving terminal Prx.
  • One end of the parallel arm resonator 631A is connected to a connection line between the series arm resonator 621A and the series arm resonator 622A, and the other end of the parallel arm resonator 631A is connected to the ground.
  • the parallel arm resonator 632A and the parallel arm resonator 633A are connected in parallel.
  • One end of the parallel circuit is connected to a connection line between the series arm resonator 622A and the series arm resonator 623A, and the other end of the parallel circuit is connected to the ground.
  • One end of the capacitor 42 is connected to a connection line between the series arm resonator 623A and the series arm resonator 624A, and the other end of the capacitor 41 is connected to the ground.
  • One end of the parallel arm resonator 634A is connected to a connection line between the series arm resonator 624A and the series arm resonator 625A, and the other end of the parallel arm resonator 634A is connected to the ground.
  • the multiplexer 1A having such a configuration, it is possible to secure an attenuation amount at a specific frequency outside the pass band of the transmission signal, similarly to the multiplexer 1 according to the first embodiment.
  • FIG. 5 is a circuit diagram of a multiplexer according to the third embodiment of the present invention.
  • the multiplexer 1B according to the present embodiment differs from the multiplexer 1A according to the second embodiment in the connection position of the variable capacitor 21B and the inductor 80B.
  • the other configuration of the multiplexer 1B is the same as that of the multiplexer 1A, and the description of the same portion is omitted.
  • the multiplexer 1B includes a transmission filter 10B, a reception filter 60B, and an inductor 80B.
  • the transmission filter 10B has a configuration in which the variable capacitor 21 of the transmission filter 10A is omitted.
  • the reception filter 60B has a configuration in which a variable capacitor 21B is added to the reception filter 60A.
  • the transmission filter 10B corresponds to the “second filter” of the present invention
  • the reception filter 60B corresponds to the “first filter” of the present invention.
  • variable capacitor 21B The one end of the variable capacitor 21B is connected to the parallel arm resonator 631A of the reception filter 60B, and the other end is connected to the ground.
  • the inductor 80B has an inductance different from that of the inductor 80A.
  • the inductor 80B is connected between the transmission filter 10B and the common connection point PC.
  • an LC series resonance circuit of the inductor 80B and the capacitive transmission filter 10B is formed. Therefore, the LC series resonance circuit of the inductor 80B and the capacitive transmission filter 10B is connected to the reception filter 60B.
  • the element values of the inductor 80B and the capacitive transmission filter 10B are appropriately set, and the frequency of the attenuation pole by the LC series resonance circuit of the inductor 80B and the capacitive transmission filter 10B is included in the reception filter 60B.
  • the frequency of the attenuation pole outside the passband due to the secondary resonance point of the parallel arm resonator connected in series to the variable capacitor is made close to or coincident with. Thereby, the attenuation amount at a specific frequency outside the passband of the received signal can be secured.
  • FIG. 6 is a circuit diagram of a multiplexer according to the fourth embodiment of the present invention.
  • the multiplexer 1C according to the present embodiment differs from the multiplexer 1A according to the second embodiment in the configuration of the transmission filter 10C.
  • the other configuration of the multiplexer 1C is the same as that of the multiplexer 1A, and the description of the same portion is omitted.
  • the multiplexer 1C includes a transmission filter 10C, a reception filter 60, and an inductor 80.
  • the transmission filter 10C has a configuration in which an inductor 31 is added to the transmission filter 10A. One end of the inductor 31 is connected to the parallel arm resonator 124, and the other end is connected to the ground.
  • the transmission filter 10C corresponds to the “first filter” of the present invention
  • the reception filter 60 corresponds to the “second filter” of the present invention
  • the inductor 31 corresponds to a “second inductor” of the present invention.
  • the filter characteristic of the transmission filter 10C has an attenuation pole at the frequency of the sub-resonance point. Therefore, the attenuation amount of the specific frequency can be secured by making the attenuation pole close to or coincide with the specific frequency. That is, a more reliable and large attenuation amount can be realized by using the attenuation effect by the inductor 80 and the attenuation effect by the inductor 31. Further, by making the frequency of the attenuation pole due to the inductor 80 different from the frequency of the attenuation pole due to the inductor 31, it is possible to secure attenuation amounts for two specific frequencies, respectively.
  • the attenuation of the second harmonic (1406 to 1496 MHz) and the third harmonic (2109 to 2244 MHz) harmonics is also important.
  • the attenuation effect by the inductor 80 and the attenuation effect by the inductor 31 to the frequency near the second harmonic, a large attenuation can be secured near the second harmonic.
  • the attenuation effect of the inductor 80 to the frequency near the second harmonic, and applying the attenuation effect of the inductor 31 to the frequency near the third harmonic the attenuation in two frequency bands near the third harmonic and the third harmonic is obtained. Can be secured.
  • FIG. 7 is a circuit diagram of a multiplexer according to the fifth embodiment of the present invention.
  • the multiplexer 1D omits the parallel arm resonator 125, the plurality of switch elements 211 and 212, and the capacitor 42 from the multiplexer 1 according to the first embodiment. It is different in point.
  • the other configuration of the multiplexer 1D is the same as that of the multiplexer 1, and the description of the same portion is omitted.
  • the multiplexer 1D includes a transmission filter 10D, a reception filter 60, and an inductor 80.
  • the transmission filter 10D corresponds to the “first filter” of the present invention
  • the reception filter 60 corresponds to the “second filter” of the present invention.
  • the transmission filter 10D includes a plurality of resonators.
  • the plurality of resonators include a plurality of series arm resonators 111, 112, 113, 114, 115 and a plurality of parallel arm resonators 121, 122, 123, 124.
  • the transmission filter 10D includes a capacitor 41 having a fixed capacitance and an inductor 51 having a fixed inductance.
  • the plurality of series arm resonators 111, 112, 113, 114, and 115 and the plurality of parallel arm resonators 121, 122, 123, and 124 are connected in a ladder shape.
  • One end of the parallel arm resonator 121 is connected to a connection line between the series arm resonator 111 and the series arm resonator 112, and the other end of the parallel arm resonator 121 is connected to the ground.
  • the parallel arm resonator 122 and the parallel arm resonator 123 are connected in parallel.
  • One end of the parallel circuit is connected to a connection line between the series arm resonator 112 and the series arm resonator 113, and the other end of the parallel circuit is connected to the ground.
  • One end of the capacitor 41 is connected to a connection line between the series arm resonator 113 and the series arm resonator 114, and the other end of the capacitor 41 is connected to the ground.
  • One end of the parallel arm resonator 124 is connected to a connection line between the series arm resonator 114 and the series arm resonator 115, and the other end of the parallel arm resonator 124 is connected to the ground.
  • the filter characteristics of the transmission filter 10D are not variable but fixed. Even in such a transmission filter 10D, when a desired attenuation is required at a specific frequency outside the pass band, the attenuation pole of the LC series resonance circuit of the inductor 80 and the capacitive reception filter 60 is set. Can be used.
  • FIG. 8 is a diagram showing filter characteristics of the multiplexer according to the fifth embodiment of the present invention and the multiplexer of the comparison configuration.
  • the filter characteristic shown in FIG. 8 is a transmission characteristic of a transmission path from the transmission terminal Ptx to the antenna terminal Pant.
  • the solid line shown in FIG. 8 is the filter characteristic of the present configuration (multiplexer 1D), and the broken line shown in FIG. 8 is the filter characteristic of the comparative configuration.
  • the comparison configuration is a configuration in which the inductor 80 is omitted from the configuration of the multiplexer 1D.
  • an additional attenuation pole as shown in FIG. 8 can be formed. Therefore, by making the additional attenuation pole close to or coincide with a specific frequency outside the pass band, the attenuation amount of the specific frequency can be secured as shown in FIG.
  • FIG. 9 is a circuit diagram of a multiplexer according to the sixth embodiment of the present invention.
  • the multiplexer 1E according to the present embodiment is different from the multiplexer 1A according to the second embodiment in that the variable capacitor 21 is omitted and the arrangement position of the inductor 80E.
  • the other structure of the multiplexer 1E is the same as that of the multiplexer 1A, and the description of the same part is omitted.
  • the multiplexer 1E includes a transmission filter 10E, a reception filter 60A, and an inductor 80E.
  • the transmission filter 10E corresponds to the “second filter” of the present invention
  • the reception filter 60A corresponds to the “first filter” of the present invention.
  • the transmission filter 10E has a configuration in which the variable capacitor 21 is omitted from the transmission filter 10A.
  • the inductor 80E is connected between the transmission filter 10E and the common connection point PC.
  • the filter characteristics of the reception filter 60A are not variable but fixed. Even in such a reception filter 60A, when a desired attenuation amount is required at a specific frequency outside the pass band, the attenuation pole of the LC series resonance circuit of the inductor 80E and the capacitive transmission filter 10E is set. Can be used.
  • FIG. 10 is a diagram showing filter characteristics of the multiplexer according to the sixth embodiment of the present invention and the multiplexer of the comparison configuration.
  • the filter characteristic shown in FIG. 10 is a transmission characteristic of the transmission path from the antenna terminal Pant to the reception terminal Prx.
  • the solid line shown in FIG. 10 is the filter characteristic of the present configuration (multiplexer 1E), and the broken line shown in FIG. 10 is the filter characteristic of the comparative configuration.
  • the comparative configuration is a configuration in which the inductor 80E is omitted from the multiplexer 1E.
  • an additional attenuation pole as shown in FIG. 10 can be formed. Therefore, by making the additional attenuation pole close to or coincide with a specific frequency outside the pass band, it is possible to secure an attenuation amount of the specific frequency as shown in FIG.
  • FIG. 11 is a functional block diagram of a communication terminal according to the seventh embodiment of the present invention.
  • the communication terminal 900 includes a multiplexer 70, a BBIC 91, an RFIC 92, a transmission side amplification circuit 93, a reception side amplification circuit 94, an antenna matching circuit 95, and an antenna 96.
  • the antenna terminal Pant of the multiplexer 70 is connected to the antenna 96 via the antenna matching circuit 95.
  • the transmission terminal Ptx of the multiplexer 70 is connected to the transmission side amplification circuit 93.
  • the reception terminal Prx of the multiplexer 70 is connected to the reception side amplification circuit 94.
  • the transmission side amplification circuit 93 and the reception side amplification circuit 94 are connected to the RFIC 92.
  • the RFIC 92 is connected to the BBIC 91.
  • the multiplexer 70 is one of the multiplexers 1, 1A, 1B, 1C, 1D, and 1E shown in the above-described embodiments.
  • the BBIC 91 executes various processes at the baseband frequency.
  • the RFIC 92 executes high-frequency processing related to wireless communication.
  • the RFIC 92 generates a transmission signal, demodulates a reception signal, and the like.
  • the RFIC 92 demodulates communication band information from the received signal.
  • the variable impedance control signal is generated and output by either the BBIC 91 or the RFIC 92.
  • the transmission signal output from the RFIC 92 is amplified by the transmission side amplification circuit 93.
  • the transmission side amplification circuit 93 includes a PA and the like, and amplifies the transmission signal.
  • the amplified transmission signal is input to the transmission terminal Ptx of the multiplexer 70.
  • the transmission signal is filtered by the transmission filter 10 which is a transmission filter, and is output from the antenna terminal Pant.
  • the transmission signal is transmitted to the antenna 96 via the antenna matching circuit 95 and transmitted from the antenna 96 to the outside.
  • the received signal received by the antenna 96 is input to the antenna matching circuit 95 and the antenna terminal Pant of the multiplexer 70.
  • the reception filter of the multiplexer 70 filters the reception signal and outputs it from the reception terminal Prx.
  • the received signal is input to the receiving side amplifier circuit 94.
  • the reception side amplification circuit 94 includes an LNA and the like, amplifies the reception signal, and outputs the amplified signal to the RFIC 92.
  • the communication terminal 90 includes the multiplexer 70 having the circuit configuration shown in each of the above-described embodiments, so that the communication terminal 90 is out of the pass band with respect to each of the transmission signal or the reception signal of the plurality of communication bands, and A common specific frequency attenuation can be secured.
  • the number of series arm resonators and parallel arm resonators in the multiplexers of the above-described embodiments may be a ladder type circuit.
  • the multiplexers of the above-described embodiments have shown the duplexer mode, but may be more than a triplexer.
  • the multiplexer may be composed of only a plurality of transmission filters, or may be composed of only a plurality of reception filters, and may be configured by appropriately combining a transmission filter and a reception filter.
  • variable impedance element such as a variable inductor

Abstract

複数の通信バンドに対応して周波数特性を変化させても、通過帯域外の特定の周波数帯域に対して必要な減衰量を得る。マルチプレクサ(1)は、送信フィルタ(10)と、受信フィルタ(60)と、共通接続点(PC)と、を備える。共通接続点(PC)は、送信フィルタ(10)のアンテナ側端と受信フィルタ(60)のアンテナ側端とが接続されている。送信フィルタ(10)は、並列腕共振子(121)を含む複数の共振子と、並列腕共振子(121)に直列接続された可変キャパシタと、を備える。受信フィルタ(60)のアンテナ側端と共通接続点(PC)との間に、減衰極形成用のインダクタ(80)を備える。減衰極形成用のインダクタ(80)と容量性の受信フィルタ(60)とによって、送信信号の通過帯域外の特定の周波数に近接または一致する周波数の減衰極を形成する。

Description

マルチプレクサ、高周波フロントエンド回路、および、通信端末
 本発明は、周波数可変フィルタを備えるマルチプレクサ、該マルチプレクサを備える高周波フロントエンド回路および通信端末に関する。
 マルチプレクサは、通過帯域の周波数等のフィルタ特性が異なる複数のフィルタを備えている。このようなフィルタには、特許文献1に示すようなラダー型周波数可変フィルタがある。周波数可変フィルタは、フィルタ特性が可変であり、複数の通信バンドに対応できる。
 特許文献1に示す周波数可変フィルタは、複数の直列腕共振子と複数の並列腕共振子とがラダー型に接続された構成を有する。
 複数の並列腕共振子の少なくとも1つには、可変キャパシタが接続されている。可変キャパシタのキャパシタンスを変化させることによって、通過帯域の周波数は変化する。この通過帯域と変化とともに、減衰特性も変化する。
国際公開第2015/099105号パンフレット
 しかしながら、特許文献1に記載のラダー型周波数可変フィルタを、導体パターンが形成された回路基板等によって実現する場合、並列腕共振子とグランドとの間に、少なからず浮遊インダクタが並列腕共振子に直列接続されてしまう。また、通過帯域の両端の減衰特性を所望の特性にするために、並列腕共振子にインダクタを直列接続することもある。
 このように、並列腕共振子とインダクタとの直列回路を備えるラダー型フィルタの構成では、ラダー型フィルタによって形成された通過帯域の高調波領域(高周波数側の領域)に、並列腕とインダクタの直列回路の副共振による減衰極が生じてしまう。本発明における副共振とは、共振子の容量性のキャパシタンスと、インダクタのインダクタンスがLC直列共振したもの、もしくは、共振子の誘導性のインダクタンスと、キャパシタのキャパシタンスがLC直列共振したものである。そして、並列腕共振子とインダクタとの直列回路に対して、可変キャパシタや可変インダクタ等の可変インピーダンス素子が直列接続されていると、通過帯域の周波数を変化させるための可変キャパシタのキャパシタンスや可変インダクタのインダクタンスの変化によって、副共振の周波数も変化する。例えば、後述の図2(B)に示すように、副共振による減衰極の周波数が変化する。このため、後述の図2(B)に示すように、通過帯域外の特定の周波数帯域に対して、必要な減衰量を得られなくなってしまうことがある。
 したがって、本発明の目的は、可変インピーダンス素子によって並列腕共振子の副共振の周波数が変化した場合であっても、通過帯域外の特定の周波数帯域に対して必要な減衰量を得られる、マルチプレクサを実現することにある。
 この発明のマルチプレクサは、第1のフィルタと、第2のフィルタと、共通接続点と、を備える。共通接続点は、第1のフィルタのアンテナ側端と第2のフィルタのアンテナ側端とが接続されている。第1のフィルタは、第1の並列腕共振子を含む複数の共振子と、第1の並列腕共振子に直列接続された可変キャパシタと、を備える。第2のフィルタは、容量成分をもつ共振子を備える。第2のフィルタのアンテナ側端と共通接続点との間に、減衰極形成用の第1のインダクタを備える。
 この構成では、第1のフィルタを介する通信信号の伝送経路として、第2のフィルタの容量性と第1のインダクタとからなるLC直列共振回路が第1のフィルタに接続された回路構成が実現される。したがって、第1のフィルタのフィルタ特性に対して、所望の周波数の減衰極が追加される。
 また、この発明のマルチプレクサでは、減衰極形成用の第1のインダクタによって形成される減衰極の周波数は、第1のフィルタの通過帯域を利用する通信信号の高調波の周波数に近接または一致していることが好ましい。
 この構成では、通信信号の高調波周波数に対して、所望の減衰量が得られる。
 また、この発明のマルチプレクサでは、第2のフィルタは、縦結合型の共振子を含んでいてもよい。
 この構成では、第1のインダクタによって、インピーダンスを低くできるので、縦結合型の共振子のインピーダンスが高くなってもインピーダンス整合が容易になる。したがって、縦結合型共振子のフィルタの電極幅を狭くでき、縦結合型の共振子の形状は小さくなる。
 また、この発明のマルチプレクサでは、次の構成であることが好ましい。第1のフィルタは、ラダー型に接続された、直列腕共振子、第1の並列腕共振子、および、第1の並列腕共振子と異なる並列腕に接続された第2の並列腕共振子と、第1の並列腕共振子に直列接続された、インピーダンスが可変の可変インピーダンス素子と、インダクタンスが固定の第2の固定インダクタと、を備える。第2の並列腕共振子には、可変インピーダンス素子が接続されておらず、第2の固定インダクタが直列接続されている。
 この構成では、第2の並列腕共振子と第2のインダクタとの直列回路によって、所望の周波数の第2の減衰極が形成される。
 また、この発明の高周波フロントエンド回路は、上述のいずれかに記載のマルチプレクサと、第1のフィルタに接続される送信側増幅回路と、第2のフィルタに接続される受信側増幅回路と、送信側増幅回路と受信側増幅回路に接続されるRFICと、を備える。もしくは、この発明は、上述のいずれかに記載のマルチプレクサと、第2のフィルタに接続される送信側増幅回路と、第1のフィルタに接続される受信側増幅回路と、送信側増幅回路と受信側増幅回路に接続されるRFICと、を備える。
 この構成では、送信フィルタまたは受信フィルタの通過帯域のみでなく、通過帯域外の特性が良好な高周波フロントエンド回路が実現される。
 また、この発明の通信端末は、高周波フロントエンド回路と、RFICに接続されるベースバンドICと、を備える。
 この構成では、送信フィルタまたは受信フィルタの通過帯域のみでなく、通過帯域外の特性が良好な通信端末が実現される。
 この発明によれば、マルチプレクサの一部を構成するラダー型周波数可変フィルタにおいて、可変インピーダンス素子によって並列腕共振子の副共振の周波数が変化した場合であっても、通過帯域外の特定の周波数帯域に対して必要な減衰量を得ることができる。
本発明の第1の実施形態に係るマルチプレクサの回路図である。 (A)は、本発明の第1の実施形態に係るマルチプレクサの送信フィルタのフィルタ特性図であり、(B)は、比較対象のマルチプレクサの送信フィルタのフィルタ特性図である。 本発明の第1の実施形態に係るマルチプレクサの受信回路側のフィルタ特性図である。 本発明の第2の実施形態に係るマルチプレクサの回路図である。 本発明の第3の実施形態に係るマルチプレクサの回路図である。 本発明の第4の実施形態に係るマルチプレクサの回路図である。 本発明の第5の実施形態に係るマルチプレクサの回路図である。 本発明の第5の実施形態に係るマルチプレクサと比較構成のマルチプレクサとのフィルタ特性を示す図である。 本発明の第6の実施形態に係るマルチプレクサの回路図である。 本発明の第6の実施形態に係るマルチプレクサと比較構成のマルチプレクサとのフィルタ特性を示す図である。 本発明の第7の実施形態に係る通信端末の機能ブロック図である。
 本発明の第1の実施形態に係るマルチプレクサについて、図を参照して説明する。図1は、本発明の第1の実施形態に係るマルチプレクサの回路図である。
 図1に示すように、マルチプレクサ1は、送信フィルタ10、受信フィルタ60、および、減衰極形成用のインダクタ80を備える。本実施形態において、送信フィルタ10は、本発明の「第1のフィルタ」に対応し、受信フィルタ60は、本発明の「第2のフィルタ」に対応する。マルチプレクサ1は、送信端子Ptx、受信端子Prx、および、アンテナ端子Pantを備える。
 送信フィルタ10は、送信端子Ptxとアンテナ端子Pantとの間に接続されている。受信フィルタ60は、受信端子Prxとアンテナ端子Pantとの間に接続されている。送信フィルタ10のアンテナ側端と受信フィルタ60のアンテナ側端とは、共通接続点PCに接続されており、共通接続点PCは、アンテナ端子Pantに接続されている。
 インダクタ80は、共通接続点PCと受信フィルタ60との間に接続されている。インダクタ80のインダクタンスは、固定である。インダクタ80は、本発明の「第1のインダクタ」に対応する。
 このような構成では、送信端子Ptxとアンテナ端子Pantとを接続する伝送経路、すなわち、送信フィルタ10を介する伝送経路に対して、インダクタ80と受信フィルタ60との直列回路が接続される。
 送信フィルタ10および受信フィルタ60は、それぞれに複数の共振子を備えている。送信フィルタ10および受信フィルタ60の具体的な回路構成は、後述する。送信フィルタ10および受信フィルタ60は、複数の共振子の接続等によって、容量性を有するように設定できる。容量性とは、外部から高周波信号的にキャパシタンスに視えることを意味する。
 これにより、送信フィルタ10を介する伝送線路に対して、インダクタ80と容量性の受信フィルタ60との直列共振回路、すなわち、LC直列共振回路が接続される。このLC直列共振回路を備えることによって、送信フィルタ10を介する伝送線路のフィルタ特性に対して、LC直列共振回路による減衰極が追加される。インダクタ80のインダクタンスおよび受信フィルタ60のキャパシタンスを適宜設定することによって、この減衰極の周波数は、適宜調整される。したがって、送信フィルタ10のフィルタ特性における通過帯域外の特定の周波数に、減衰極の周波数を近接または一致させることで、特定の周波数に対する減衰量は、増加する。
 すなわち、共通接続点PCを介してアンテナ端子Pantに接続される第1のフィルタの通過帯域外の特性は、共通接続点PCに接続される第2のフィルタと、該共通接続点PCと第2のフィルタとの間に接続される固定インダクタンスのインダクタ80とのLC直列共振回路の減衰極によって改善される。また、第2のフィルタは、周波数可変フィルタであってもよい。
 図2(A)は、本発明の第1の実施形態に係るマルチプレクサの送信フィルタのフィルタ特性図であり、図2(B)は、比較対象のマルチプレクサの送信フィルタのフィルタ特性図である。図2(A)、図2(B)は、送信端子Ptxからアンテナ端子Pantへの伝送経路の通過特性を示している。図2(A)、図2(B)において、実線は、通信バンドCH1のフィルタ特性を示し、破線は、通信バンドCH2のフィルタ特性を示す。図2(B)に示すフィルタ特性を有するマルチプレクサの送信フィルタは、本実施形態に係るマルチプレクサ1に対して、インダクタ80がないものであり、従来の回路構成となるものである。
 図2(B)に示すように、比較対象のマルチプレクサの送信端子Ptxとアンテナ端子Pantとの間の特性では、通信バンドの切り替えのため、送信フィルタのキャパシタンスを変化させると、通過帯域が通信バンドCH2の利用周波数帯域から通信バンドCH1の利用周波数帯域にシフトする。ここで、送信フィルタ10は、複数の共振子を備えており、上述の課題に示すように、可変キャパシタが直列接続される共振子に接続されるインダクタまたは寄生インダクタによって、副共振点が生じる。したがって、通信バンドの切り替えによって、副共振点も通信バンドCH2用の設定と通信バンドCH1用の設定とで変化し、通信バンドCH2用の設定から、通信バンドCH1用の設定に切り替わると、減衰極周波数fsr211から減衰極周波数fsr212に変化する。減衰極周波数fsr212の場合、減衰極周波数fsr211の周波数では、減衰量が悪化してしまう。
 図2(A)に示すように、本願の実施形態に係るマルチプレクサ1の送信端子Ptxとアンテナ端子Pantとの間の特性では、通信バンドCH2用の設定から、通信バンドCH1用の設定に切り替わると、減衰極周波数fsr211から減衰極周波数fsr212に変化する。しかしながら、マルチプレクサ1は、受信フィルタ60とインダクタ80とのLC直列共振回路を備えている。したがって、マルチプレクサ1の送信端子Ptxとアンテナ端子Pantとの間の特性は、このLC直列共振回路による減衰極周波数fsr80を有する。減衰極周波数fsr80は、減衰極周波数fsr211と略同じに設定されている。ここで、略同じとは、一致または近接していることを示す。
 これにより、マルチプレクサ1は、送信端子Ptxとアンテナ端子Pantとを接続する伝送経路に対する通過帯域外の特定の周波数に対する減衰量を常に確保できる。すなわち、送信フィルタ10によって、複数の通信バンドの送信信号(通信信号)をフィルタ処理する場合に、どの通信バンドにおいても、特定の周波数の減衰量を確保できる。
 例えば、通信バンドCH1が通信バンド28B、通信バンドCH2が通信バンド28Aの場合、これらの通信バンド28Aの利用周波数帯域と通信バンド28Bの利用周波数帯域とは近接している。すなわち、送信フィルタ10における通信バンド28A用の通過帯域と通信バンド28B用の通過帯域とは近接している。この場合、2倍高調波の周波数も、通信バンド28Aと通信バンド28Bとで近接する。
 マルチプレクサ1および比較対象(従来)のマルチプレクサにおいて、通信バンド28A用の設定による減衰極周波数fsr211は通信バンド28Aおよび通信バンド28Bの2倍高調波の周波数に近接または一致したとする。
 この場合、通信バンド28B用の設定に切り替えると、比較対象のマルチプレクサでは、減衰極周波数fsr212にシフトしてしまい、2倍高調波の周波数での減衰量が悪化し、2倍高調波の減衰効果が低下してしまう。しかしながら、本実施形態に係る送信フィルタ10では、周波数固定の減衰極周波数fsr31を有するので、通信バンド28Aおよび通信バンド28Bの両方において2倍高調波に対する十分な減衰量を確保できる。
 なお、上述の説明では、複数の通信バンド28A、28Bの場合を示したが、互いに近接した周波数帯域を利用する複数の通信バンドにも、本願発明の構成を適用できる。また、2倍高調波の周波数と3倍高調波の周波数とが近接または一致する複数の通信バンドの組合せに対しても、本願発明の構成を適用できる。
 次に、送信フィルタ10の具体的な構成について、説明する。図1に示すように、送信フィルタ10は、複数の共振子を備える。複数の共振子は、複数の直列腕共振子111、112、113、114、115と、複数の並列腕共振子121、122、123、124、125を備える。送信フィルタ10は、複数のスイッチ素子211、212、それぞれにキャパシタンスが固定の複数のキャパシタ41、42、および、インダクタンスが固定のインダクタ51を備える。
 複数の直列腕共振子111、112、113、114、115と、複数の並列腕共振子121、122、123、124、125とは、ラダー型に接続されている。
 直列腕共振子111、112、113、114、115は、送信フィルタ10のアンテナ側端と送信端子Ptxと間に直列接続されている。直列腕共振子111、112、113、114、115は、アンテナ側端の側から、この順に接続されている。インダクタ51は、直列腕共振子115と送信端子Ptxとの間に接続されている。
 並列腕共振子121の一方端は、直列腕共振子111と直列腕共振子112との接続ラインに接続されており、並列腕共振子121の他方端は、スイッチ素子211の共通端子に接続されている。スイッチ素子211の第1選択端子は、キャパシタ42を介してグランドに接続されており、第2選択端子は、グランドに接続されている。スイッチ素子211は、第1選択端子または第2選択端子を共通端子に選択的に接続する。このスイッチ素子211とキャパシタ42とによって可変キャパシタが形成される。
 並列腕共振子122と並列腕共振子123とは、並列接続されている。この並列回路の一方端は、直列腕共振子112と直列腕共振子113との接続ラインに接続されており、この並列回路の他方端は、グランドに接続されている。
 キャパシタ41の一方端は、直列腕共振子113と直列腕共振子114との接続ラインに接続されており、キャパシタ41の他方端は、グランドに接続されている。
 並列腕共振子124の一方端は、直列腕共振子114と直列腕共振子115との接続ラインに接続されており、並列腕共振子124の他方端は、グランドに接続されている。
 スイッチ素子212の共通端子は、インダクタ51と送信端子Ptxとに接続されており、スイッチ素子212の第1選択端子は、並列腕共振子125を介して、グランドに接続されている。スイッチ素子212の第2選択端子は、グランドに接続されている。
 受信フィルタ60は、複数の共振子を備える。複数の共振子は、縦結合型の共振子611、直列腕共振子621、622、および、並列腕共振子631、632を備える。受信フィルタ60は、インダクタ641を備える。
 直列腕共振子621、622および縦結合型の共振子611は、受信フィルタ60のアンテナ側端と受信端子Prxと間に直列接続されている。直列腕共振子621、622、および縦結合型の共振子611は、アンテナ側端の側から、この順に接続されている。
 並列腕共振子631の一方端は、直列腕共振子621と直列腕共振子622との接続ラインに接続されている。並列腕共振子631の他方端は、グランドに接続されている。
 並列腕共振子632の一方端は、縦結合型の共振子611と受信端子Prxとの接続ラインに接続されている。並列腕共振子632の他方端は、グランドに接続されている。
 インダクタ641の一方端は、縦結合型の共振子611と受信端子Prxとの接続ラインに接続されている。インダクタ641の他方端は、グランドに接続されている。言い換えれば、インダクタ641は、並列腕共振子632に並列接続されている。
 このように、受信フィルタ60は、容量性の回路としてみなせる。これにより、インダクタ80と受信フィルタ60とによって、LC直列共振回路が形成される。
 上述のように、マルチプレクサ1は、構造上、各共振子に対して寄生インダクタが直列接続されてしまうことがある。並列腕共振子121に寄生インダクタが直列接続されると、並列腕共振子121に対して副共振点が生じる。並列腕共振子121には、可変キャパシタ(スイッチ素子211と、選択的に接続されるキャパシタ42とを含む回路)が接続されており、可変キャパシタのキャパシタンスによって、副共振点の周波数はシフトする。特に、マルチプレクサ1を構成する周波数可変フィルタのような複数の直列腕共振子と複数の並列腕共振子とをラダー型に接続した回路では、副共振点による減衰極の周波数は通過帯域から離間しており、減衰極の周波数のシフト幅も大きい。
 しかしながら、マルチプレクサ1は、上述のように、インダクタ80と受信フィルタ60とで、LC直列共振回路を構成する。そして、インダクタ80と受信フィルタ60との素子値を適宜設定することによって、並列腕共振子121の副共振点による減衰極の周波数が通過帯域から離れていても、LC直列共振回路の減衰極を、この並列腕共振子121の周波数シフト前の副共振点の周波数と略同じにできる。
 これにより、送信フィルタ10の通信バンドを切り替えても、インダクタ80と受信フィルタ60とのLC直列共振回路の減衰極によって、この減衰極の周波数を含む所定の周波数帯域の減衰量を確保できる。
 さらに、受信フィルタ60は、縦結合型の共振子611を備えている。このように、縦結合型の共振子611を備える場合、次の効果も得られる。縦結合型の共振子611を小型化する場合、電極幅を狭くする。電極幅が狭くなると、受信フィルタ60のインピーダンスが高くなる。
 しかしながら、受信フィルタ60にインダクタ80が接続されることによって、受信フィルタ60のみの場合を比較して、インピーダンスを低くできる。これにより、通信信号の受信信号の周波数帯域における受信フィルタ60側のインピーダンス整合が容易になる。したがって、受信信号に対する損失が少なく、小型の受信フィルタ60およびマルチプレクサ1を実現できる。
 図3は、本発明の第1の実施形態に係るマルチプレクサの受信回路側のフィルタ特性図である。図3は、アンテナ端子Pantから受信端子Prxへの伝送経路に対する反射特性を示している。図3の実線は、本発明の第1の実施形態に係るマルチプレクサ1の特性を示し、図3の破線は、比較構成の特性を示す。図3に示すように、マルチプレクサ1を用いることによって、受信信号の周波数帯域(受信帯域)において、反射損失を低減でき、受信信号に対する損失を小さくできる。
 次に、本発明の第2の実施形態に係るマルチプレクサについて、図を参照して説明する。図4は、本発明の第2の実施形態に係るマルチプレクサの回路図である。
 本実施形態に係るマルチプレクサ1Aは、第1の実施形態に係るマルチプレクサ1に対して、送信フィルタ10Aおよび受信フィルタ60の回路構成において異なる。送信フィルタ10A、受信フィルタ60A、インダクタ80Aの共通接続点PCに対する接続態様等の基本的な構成は同様であり、同様の箇所の説明は省略する。
 図4に示すように、マルチプレクサ1Aは、送信フィルタ10A、受信フィルタ60A、および、インダクタ80Aを備える。インダクタ80Aは、インダクタ80と同様の概念によってインダクタンスが設定されている。本実施形態において、送信フィルタ10Aは、本発明の「第1のフィルタ」に対応し、受信フィルタ60Aは、本発明の「第2のフィルタ」に対応する。また、インダクタ80Aは、本発明の「第1のインダクタ」に対応する。
 送信フィルタ10Aは、送信フィルタ10に対して、複数のスイッチ素子211、212、キャパシタ42、および並列腕共振子125を省略して、可変キャパシタ21を追加した構成を備える。可変キャパシタ21の一方端は、並列腕共振子121に接続されており、可変キャパシタ21の他方端は、グランドに接続されている。
 受信フィルタ60Aは、複数の共振子を備える。複数の共振子は、複数の直列腕共振子621A、622A、623A、624A、625Aと、複数の並列腕共振子631A、632A、633A、634Aを備える。受信フィルタ60Aは、キャパシタ42、および、インダクタ52を備える。受信フィルタ60Aの回路構成は、可変キャパシタ21を含まない送信フィルタ10Aと同様である。
 複数の直列腕共振子621A、622A、623A、624A、625Aと、複数の並列腕共振子631A、632A、633A、634Aとは、ラダー型に接続されている。
 直列腕共振子621A、622A、623A、624A、625Aは、受信フィルタ60Aのアンテナ側端と受信端子Prxと間に直列接続されている。直列腕共振子621A、622A、623A、624A、625Aは、アンテナ側端の側から、この順に接続されている。インダクタ52は、直列腕共振子625Aと受信端子Prxとの間に接続されている。
 並列腕共振子631Aの一方端は、直列腕共振子621Aと直列腕共振子622Aとの接続ラインに接続されており、並列腕共振子631Aの他方端は、グランドに接続されている。
 並列腕共振子632Aと並列腕共振子633Aとは、並列接続されている。この並列回路の一方端は、直列腕共振子622Aと直列腕共振子623Aとの接続ラインに接続されており、この並列回路の他方端は、グランドに接続されている。
 キャパシタ42の一方端は、直列腕共振子623Aと直列腕共振子624Aとの接続ラインに接続されており、キャパシタ41の他方端は、グランドに接続されている。
 並列腕共振子634Aの一方端は、直列腕共振子624Aと直列腕共振子625Aとの接続ラインに接続されており、並列腕共振子634Aの他方端は、グランドに接続されている。
 このような構成のマルチプレクサ1Aであっても、第1の実施形態に係るマルチプレクサ1と同様に、送信信号の通過帯域外の特定の周波数での減衰量を確保できる。
 次に、本発明の第3の実施形態に係るマルチプレクサについて、図を参照して説明する。図5は、本発明の第3の実施形態に係るマルチプレクサの回路図である。
 図5に示すように、本実施形態に係るマルチプレクサ1Bは、第2の実施形態に係るマルチプレクサ1Aに対して、可変キャパシタ21Bおよびインダクタ80Bの接続位置において異なる。マルチプレクサ1Bの他の構成は、マルチプレクサ1Aと同様であり、同様の箇所の説明は省略する。
 マルチプレクサ1Bは、送信フィルタ10B、受信フィルタ60B、および、インダクタ80Bを備える。送信フィルタ10Bは、送信フィルタ10Aの可変キャパシタ21を省略した構成を備える。受信フィルタ60Bは、受信フィルタ60Aに対して可変キャパシタ21Bを追加した構成を備える。本実施形態において、送信フィルタ10Bは、本発明の「第2のフィルタ」に対応し、受信フィルタ60Bは、本発明の「第1のフィルタ」に対応する。
 可変キャパシタ21Bの一方端は、受信フィルタ60Bの並列腕共振子631Aに接続されており、他方端は、グランドに接続されている。
 インダクタ80Bは、インダクタ80Aに対してインダクタンスが異なる。インダクタ80Bは、送信フィルタ10Bと共通接続点PCとの間に接続されている。この構成では、インダクタ80Bと容量性の送信フィルタ10BとのLC直列共振回路が形成される。したがって、受信フィルタ60Bに、インダクタ80Bと容量性の送信フィルタ10BとのLC直列共振回路が接続された構成となる。
 ここで、インダクタ80Bと容量性の送信フィルタ10Bとの素子値を適宜設定して、インダクタ80Bと容量性の送信フィルタ10BとのLC直列共振回路による減衰極の周波数を、受信フィルタ60Bに含まれる可変キャパシタに直列接続された並列腕共振子の副共振点による通過帯域外の減衰極の周波数に近接または一致させる。これにより、受信信号の通過帯域外の特定の周波数での減衰量を確保できる。
 次に、本発明の第4の実施形態に係るマルチプレクサについて、図を参照して説明する。図6は、本発明の第4の実施形態に係るマルチプレクサの回路図である。
 図6に示すように、本実施形態に係るマルチプレクサ1Cは、第2の実施形態に係るマルチプレクサ1Aに対して、送信フィルタ10Cの構成において異なる。マルチプレクサ1Cの他の構成は、マルチプレクサ1Aと同様であり、同様の箇所の説明は省略する。
 マルチプレクサ1Cは、送信フィルタ10C、受信フィルタ60、および、インダクタ80を備える。送信フィルタ10Cは、送信フィルタ10Aに対して、インダクタ31を追加した構成を備える。インダクタ31の一方端は、並列腕共振子124に接続され、他方端は、グランドに接続されている。本実施形態において、送信フィルタ10Cは、本発明の「第1のフィルタ」に対応し、受信フィルタ60は、本発明の「第2のフィルタ」に対応する。インダクタ31は、本発明の「第2のインダクタ」に対応する。
 並列腕共振子124とインダクタンスが固定のインダクタ31とが直列接続されることによって、並列腕共振子124には、周波数固定の副共振点が発生する。これにより、送信フィルタ10Cのフィルタ特性は、この副共振点の周波数に減衰極を有する。したがって、この減衰極を特定の周波数に近接または一致させることによって、当該特定の周波数の減衰量を確保できる。すなわち、インダクタ80による減衰効果と、インダクタ31による減衰効果とを用いて、より確実且つ大きな減衰量を実現できる。また、インダクタ80による減衰極の周波数と、インダクタ31による減衰極の周波数とを異ならせることによって、2つの特定の周波数に対する減衰量をそれぞれに確保できる。
 例えば、通信バンド28の送信(703~748MHz)フィルタにおいては、2倍波(1406~1496MHz)、3倍波(2109~2244MHz)の高調波の減衰も重要になる。インダクタ80による減衰効果とインダクタ31による減衰効果の両方を2倍波付近の周波数に当てることで、2倍波付近で大きな減衰を確保できる。また、インダクタ80の減衰効果を2倍波付近の周波数に、インダクタ31の減衰効果を3倍波付近の周波数に当てることで、3倍波付近と3倍波付近の2つ周波数帯域の減衰量を確保できる。
 次に、本発明の第5の実施形態に係るマルチプレクサについて、図を参照して説明する。図7は、本発明の第5の実施形態に係るマルチプレクサの回路図である。
 図7に示すように、本実施形態に係るマルチプレクサ1Dは、第1の実施形態に係るマルチプレクサ1に対して、並列腕共振子125、複数のスイッチ素子211、212、および、キャパシタ42を省略した点において異なる。マルチプレクサ1Dの他の構成は、マルチプレクサ1と同様であり、同様の箇所の説明は省略する。
 マルチプレクサ1Dは、送信フィルタ10D、受信フィルタ60、および、インダクタ80を備える。本実施形態において、送信フィルタ10Dは、本発明の「第1のフィルタ」に対応し、受信フィルタ60は、本発明の「第2のフィルタ」に対応する。
 送信フィルタ10Dは、複数の共振子を備える。複数の共振子は、複数の直列腕共振子111、112、113、114、115と、複数の並列腕共振子121、122、123、124とを備える。送信フィルタ10Dは、キャパシタンスが固定のキャパシタ41、および、インダクタンスが固定のインダクタ51を備える。
 複数の直列腕共振子111、112、113、114、115と、複数の並列腕共振子121、122、123、124とは、ラダー型に接続されている。
 並列腕共振子121の一方端は、直列腕共振子111と直列腕共振子112との接続ラインに接続されており、並列腕共振子121の他方端は、グランドに接続されている。
 並列腕共振子122と並列腕共振子123とは、並列接続されている。この並列回路の一方端は、直列腕共振子112と直列腕共振子113との接続ラインに接続されており、この並列回路の他方端は、グランドに接続されている。
 キャパシタ41の一方端は、直列腕共振子113と直列腕共振子114との接続ラインに接続されており、キャパシタ41の他方端は、グランドに接続されている。
 並列腕共振子124の一方端は、直列腕共振子114と直列腕共振子115との接続ラインに接続されており、並列腕共振子124の他方端は、グランドに接続されている。
 このように、送信フィルタ10Dのフィルタ特性は、可変でなく、固定である。このような送信フィルタ10Dであっても、通過帯域外において特定の周波数で所望の減衰量を必要とする場合には、インダクタ80と容量性の受信フィルタ60とのLC直列共振回路の減衰極を用いることができる。
 図8は、本発明の第5の実施形態に係るマルチプレクサと比較構成のマルチプレクサとのフィルタ特性を示す図である。図8に示すフィルタ特性は、送信端子Ptxからアンテナ端子Pantへの伝送経路の通過特性である。図8に示す実線は、本願構成(マルチプレクサ1D)のフィルタ特性であり、図8に示す破線は、比較構成のフィルタ特性である。比較構成は、マルチプレクサ1Dの構成からインダクタ80を省略した構成である。
 本実施形態に係るマルチプレクサ1Dの構成を用いることによって、図8に示すような追加減衰極を形成できる。したがって、追加減衰極を通過帯域外の特定の周波数に近接または一致させることで、図8に示すように、特定の周波数の減衰量を確保できる。
 次に、本発明の第6の実施形態に係るマルチプレクサについて、図を参照して説明する。図9は、本発明の第6の実施形態に係るマルチプレクサの回路図である。
 図9に示すように、本実施形態に係るマルチプレクサ1Eは、第2の実施形態に係るマルチプレクサ1Aに対して、可変キャパシタ21を省略した点、および、インダクタ80Eの配置位置において異なる。マルチプレクサ1Eの他の構成は、マルチプレクサ1Aと同様であり、同様の箇所の説明は、省略する。
 マルチプレクサ1Eは、送信フィルタ10E、受信フィルタ60A、および、インダクタ80Eを備える。本実施形態において、送信フィルタ10Eは、本発明の「第2のフィルタ」に対応し、受信フィルタ60Aは、本発明の「第1のフィルタ」に対応する。送信フィルタ10Eは、送信フィルタ10Aに対して可変キャパシタ21を省略した構成を備える。
 インダクタ80Eは、送信フィルタ10Eと共通接続点PCとの間に接続されている。
 このように、受信フィルタ60Aのフィルタ特性は、可変でなく、固定である。このような受信フィルタ60Aであっても、通過帯域外において特定の周波数で所望の減衰量を必要とする場合には、インダクタ80Eと容量性の送信フィルタ10EとのLC直列共振回路の減衰極を用いることができる。
 図10は、本発明の第6の実施形態に係るマルチプレクサと比較構成のマルチプレクサとのフィルタ特性を示す図である。図10に示すフィルタ特性は、アンテナ端子Pantから受信端子Prxへの伝送経路の通過特性である。図10に示す実線は、本願構成(マルチプレクサ1E)のフィルタ特性であり、図10に示す破線は、比較構成のフィルタ特性である。比較構成は、マルチプレクサ1Eからインダクタ80Eを省略した構成である。
 本実施形態に係るマルチプレクサ1Eの構成を用いることによって、図10に示すような追加減衰極を形成できる。したがって、追加減衰極を通過帯域外の特定の周波数に近接または一致させることで、図10に示すように、特定の周波数の減衰量を確保できる。
 次に、本発明の第7の実施形態に係る通信端末について、図を参照して説明する。図11は、本発明の第7の実施形態に係る通信端末の機能ブロック図である。
 通信端末900は、マルチプレクサ70、BBIC91、RFIC92、送信側増幅回路93、受信側増幅回路94、アンテナ整合回路95、および、アンテナ96を備える。マルチプレクサ70のアンテナ端子Pantは、アンテナ整合回路95を介してアンテナ96に接続されている。マルチプレクサ70の送信端子Ptxは、送信側増幅回路93に接続されている。マルチプレクサ70の受信端子Prxは、受信側増幅回路94に接続されている。送信側増幅回路93および受信側増幅回路94は、RFIC92に接続されている。RFIC92は、BBIC91に接続されている。マルチプレクサ70は、上述の複数の実施形態に示したマルチプレクサ1、1A、1B、1C、1D、1Eのいずれかである。
 BBIC91は、ベースバンド周波数での各種処理を実行する。RFIC92は、無線通信に関する高周波処理を実行し、具体的な例としては、送信信号の生成、受信信号の復調等を実行する。また、RFIC92は、受信信号から通信バンド情報を復調する。なお、可変インピーダンスの制御信号は、BBIC91またはRFIC92のいずれかが生成して出力する。
 RFIC92から出力された送信信号は、送信側増幅回路93で増幅される。送信側増幅回路93は、PA等を備え、送信信号を増幅する。増幅された送信信号は、マルチプレクサ70の送信端子Ptxに入力される。送信信号は、送信フィルタである送信フィルタ10でフィルタ処理され、アンテナ端子Pantから出力される。送信信号は、アンテナ整合回路95を介して、アンテナ96に伝送され、アンテナ96から外部へ送信される。
 アンテナ96で受信された受信信号は、アンテナ整合回路95、マルチプレクサ70のアンテナ端子Pantに入力される。マルチプレクサ70の受信フィルタは、受信信号をフィルタ処理して、受信端子Prxから出力する。受信信号は、受信側増幅回路94に入力される。受信側増幅回路94は、LNA等を備え、受信信号を増幅して、RFIC92に出力する。
 通信端末90は、上述の各実施形態に示した回路構成を有するマルチプレクサ70を備えることによって、複数の通信バンドの送信信号または受信信号のそれぞれに対して通過帯域外であり、複数の通信バンドに共通の特定の周波数の減衰量を確保できる。
 また、上述の各実施形態のマルチプレクサにおける直列腕共振子と並列腕共振子の個数は、ラダー型の回路を形成できればよい。
 また、上述の各実施形態のマルチプレクサは、デュプレクサの態様を示したが、トリプレクサ以上であってもよい。また、マルチプレクサは、複数の送信フィルタのみから構成されても、複数の受信フィルタのみから構成されてもよく、送信フィルタと受信フィルタとを適宜組み合わせて構成すればよい。
 また、上述の各実施形態では、可変キャパシタを用いる態様を示したが、可変インダクタ等の可変インピーダンス素子を用いてもよい。
1、1A、1B、1C、1D、1E:マルチプレクサ
10、10A、10B、10C、10D、10E:送信フィルタ
21、21B:可変キャパシタ
31:インダクタ
41、42:キャパシタ
51、52:インダクタ
60、60A、60B:受信フィルタ
70:マルチプレクサ
80、80A、80B、80E:インダクタ
90:通信端末
91:BBIC
92:RFIC
93:送信側増幅回路
94:受信側増幅回路
95:アンテナ整合回路
96:アンテナ
111、112、113、114、115、621、621A、622、622A、623A、624A、625A:直列腕共振子
121、122、123、124、125、631、631A、632、632A、633A、634A:並列腕共振子
211、212:スイッチ素子
611:縦結合型の共振子
641:インダクタ
900:通信端末
CH1、CH2:通信バンド
fsr211、fsr212、fsr31、fsr80 :減衰極周波数
Pant:アンテナ端子
PC:共通接続点
Prx:受信端子
Ptx:送信端子

Claims (6)

  1.  第1のフィルタと、
     第2のフィルタと、
     前記第1のフィルタのアンテナ側端と前記第2のフィルタのアンテナ側端とが接続される共通接続点と、
     を備え、
     前記第1のフィルタは、
      第1の並列腕共振子を含む複数の共振子と、
      前記第1の並列腕共振子に直列接続された可変キャパシタと、
     を備え、
     前記第2のフィルタは、容量成分をもつ共振子を備え、
     前記第2のフィルタのアンテナ側端と前記共通接続点との間に、第1のインダクタを備える、
     マルチプレクサ。
  2.  減衰極形成用の第1のインダクタによって形成される減衰極の周波数は、前記第1のフィルタの通過帯域を利用する通信信号の高調波の周波数に近接または一致している、
     請求項1に記載のマルチプレクサ。
  3.  前記第2のフィルタは、縦結合型の共振子を含む、
     請求項1または請求項2に記載のマルチプレクサ。
  4.  前記第1のフィルタは、
     ラダー型に接続された、直列腕共振子、第1の並列腕共振子、および、前記第1の並列腕共振子と異なる並列腕に接続された第2の並列腕共振子と、
     前記第1の並列腕共振子に直列接続された、インピーダンスが可変の可変インピーダンス素子と、
     インダクタンスが固定の第2の固定インダクタと、を備え、
     前記第2の並列腕共振子には、可変インピーダンス素子が接続されておらず、前記第2の固定インダクタが直列接続されている、
     請求項1乃至請求項3のいずれかに記載のマルチプレクサ。
  5.  請求項1乃至請求項4のいずれかに記載のマルチプレクサと、
     前記第1のフィルタに接続される送信側増幅回路と、
     前記第2のフィルタに接続される受信側増幅回路と、
     前記送信側増幅回路と前記受信側増幅回路に接続されるRFICと、
     を備える、高周波フロントエンド回路。
  6.  請求項5に記載の高周波フロントエンド回路と、
     前記RFICに接続されるベースバンドICと、
     を備える、通信端末。
PCT/JP2017/023482 2016-07-15 2017-06-27 マルチプレクサ、高周波フロントエンド回路、および、通信端末 WO2018012275A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780044010.7A CN109478882B (zh) 2016-07-15 2017-06-27 多工器、高频前端电路以及通信终端
US16/246,822 US10700659B2 (en) 2016-07-15 2019-01-14 Multiplexer, radio-frequency front end circuit, and communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-139908 2016-07-15
JP2016139908 2016-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/246,822 Continuation US10700659B2 (en) 2016-07-15 2019-01-14 Multiplexer, radio-frequency front end circuit, and communication terminal

Publications (1)

Publication Number Publication Date
WO2018012275A1 true WO2018012275A1 (ja) 2018-01-18

Family

ID=60952991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023482 WO2018012275A1 (ja) 2016-07-15 2017-06-27 マルチプレクサ、高周波フロントエンド回路、および、通信端末

Country Status (3)

Country Link
US (1) US10700659B2 (ja)
CN (1) CN109478882B (ja)
WO (1) WO2018012275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172032A1 (ja) * 2018-03-08 2019-09-12 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203919A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
DE102018102891A1 (de) * 2017-02-13 2018-08-16 Murata Manufacturing Co., Ltd. Multiplexierer, Übertragungsvorrichtung und Empfangsvorrichtung
CN111183585B (zh) * 2017-10-10 2023-09-15 株式会社村田制作所 多工器
JP2021027369A (ja) * 2019-07-31 2021-02-22 株式会社村田製作所 フィルタ装置
CN110661508A (zh) * 2019-09-17 2020-01-07 天津大学 一种双工器、多工器、高频前端电路以及通信装置
CN115347910B (zh) * 2021-04-27 2024-01-26 诺思(天津)微系统有限责任公司 调整多工器电路的方法和多工器、通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2010021914A (ja) * 2008-07-14 2010-01-28 Murata Mfg Co Ltd 分波器
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2014511626A (ja) * 2011-03-03 2014-05-15 エプコス アクチエンゲゼルシャフト 増幅器モジュール
US20140355497A1 (en) * 2013-05-29 2014-12-04 Nokia Corporation Band grouping combinations for tunable umts multi-band filters
JP2016504872A (ja) * 2012-12-18 2016-02-12 エプコス アクチエンゲゼルシャフトEpcos Ag 回路装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0865095B1 (en) * 1997-03-12 2006-05-31 Matsushita Electric Industrial Co., Ltd. Antenna duplexer
JP3403669B2 (ja) * 1999-06-04 2003-05-06 富士通株式会社 アンテナ分波器
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
JP5203389B2 (ja) * 2007-12-03 2013-06-05 パナソニック株式会社 高周波フィルタ
JP5453120B2 (ja) * 2009-01-30 2014-03-26 株式会社Nttドコモ マルチバンド整合回路、およびマルチバンド電力増幅器
US9160304B2 (en) * 2011-01-31 2015-10-13 Kyocera Corporation Branching filter and communication module component
JPWO2013005264A1 (ja) * 2011-07-07 2015-02-23 富士通株式会社 可変フィルタ装置および通信装置
CN105210292B (zh) * 2013-03-15 2018-03-23 维斯普瑞公司 调谐系统、装置以及方法
GB2514843B (en) * 2013-06-07 2015-10-07 Broadcom Corp Transceiver reconfiguration mechanism
JP5910593B2 (ja) * 2013-09-19 2016-04-27 株式会社村田製作所 分波器
CN105850041B (zh) 2013-12-27 2018-11-13 株式会社村田制作所 高频滤波器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207116A (ja) * 2008-01-31 2009-09-10 Fujitsu Ltd 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2010021914A (ja) * 2008-07-14 2010-01-28 Murata Mfg Co Ltd 分波器
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
JP2014502803A (ja) * 2010-12-10 2014-02-03 ペレグリン セミコンダクター コーポレイション 共振器回路及び共振器の調整のための方法、システム、及び装置
JP2014511626A (ja) * 2011-03-03 2014-05-15 エプコス アクチエンゲゼルシャフト 増幅器モジュール
JP2016504872A (ja) * 2012-12-18 2016-02-12 エプコス アクチエンゲゼルシャフトEpcos Ag 回路装置
US20140355497A1 (en) * 2013-05-29 2014-12-04 Nokia Corporation Band grouping combinations for tunable umts multi-band filters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172032A1 (ja) * 2018-03-08 2019-09-12 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
US11777473B2 (en) 2018-03-08 2023-10-03 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device

Also Published As

Publication number Publication date
CN109478882A (zh) 2019-03-15
US20190149121A1 (en) 2019-05-16
US10700659B2 (en) 2020-06-30
CN109478882B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2018012275A1 (ja) マルチプレクサ、高周波フロントエンド回路、および、通信端末
US10200012B2 (en) High-frequency filter, front-end circuit, and communication apparatus
JP6414600B2 (ja) 分波装置
KR101980032B1 (ko) 고주파 필터, 프론트엔드 회로 및 통신 기기
US10250227B2 (en) Frequency-variable filter
JP6965581B2 (ja) 高周波モジュール及び通信装置
US10128796B2 (en) Power amplification module and front end circuit
US20180198433A1 (en) Frequency-variable lc filter and high-frequency front end circuit
US10651821B2 (en) Multiplexer, high-frequency front-end circuit, and communication apparatus
US10886895B2 (en) Ladder-type frequency-variable filter, multiplexer, radio-frequency front end circuit, and communication terminal
US10476535B2 (en) High-frequency front end circuit and communication apparatus
KR20190015128A (ko) 복합형 필터 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP6673467B2 (ja) 周波数可変フィルタ、rfフロントエンド回路、および、通信端末
US10547337B2 (en) Radio frequency front-end circuit and communication device
US9722574B2 (en) Acoustic wave device
KR102323572B1 (ko) 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
CN108028641B (zh) 频率可变滤波器、高频前端电路
JP6822444B2 (ja) 複合型フィルタ装置、高周波フロントエンド回路および通信装置
JPWO2017221548A1 (ja) 弾性波フィルタ装置
US10763824B2 (en) High-frequency filter and multiplexer
WO2015125637A1 (ja) 高周波フロントエンド回路
JP2021072563A (ja) マルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP