WO2019078157A1 - 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 - Google Patents
弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 Download PDFInfo
- Publication number
- WO2019078157A1 WO2019078157A1 PCT/JP2018/038319 JP2018038319W WO2019078157A1 WO 2019078157 A1 WO2019078157 A1 WO 2019078157A1 JP 2018038319 W JP2018038319 W JP 2018038319W WO 2019078157 A1 WO2019078157 A1 WO 2019078157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastic wave
- electrode
- electrode finger
- wave filter
- comb
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 27
- 239000003990 capacitor Substances 0.000 claims abstract description 414
- 239000011295 pitch Substances 0.000 claims abstract description 360
- 244000126211 Hericium coralloides Species 0.000 claims description 97
- 238000012545 processing Methods 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 204
- 238000003780 insertion Methods 0.000 description 67
- 230000037431 insertion Effects 0.000 description 67
- 238000010586 diagram Methods 0.000 description 40
- 101000983292 Homo sapiens N-fatty-acyl-amino acid synthase/hydrolase PM20D1 Proteins 0.000 description 27
- 102100026873 N-fatty-acyl-amino acid synthase/hydrolase PM20D1 Human genes 0.000 description 27
- 101100328518 Caenorhabditis elegans cnt-1 gene Proteins 0.000 description 26
- 101100168469 Rattus norvegicus Capns1 gene Proteins 0.000 description 26
- 230000005540 biological transmission Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 23
- 230000004048 modification Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 14
- 238000013459 approach Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 5
- 238000010897 surface acoustic wave method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101150059402 CLSTN2 gene Proteins 0.000 description 1
- 101150115675 Clstn1 gene Proteins 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/006—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6406—Filters characterised by a particular frequency characteristic
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02228—Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02244—Details of microelectro-mechanical resonators
- H03H9/02259—Driving or detection means
- H03H9/02275—Comb electrodes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
- H03H9/14541—Multilayer finger or busbar electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14544—Transducers of particular shape or position
- H03H9/1455—Transducers of particular shape or position constituted of N parallel or series transducers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/542—Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6403—Programmable filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/0057—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0458—Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/703—Networks using bulk acoustic wave devices
- H03H9/706—Duplexers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
- H03H9/725—Duplexers
Definitions
- the present invention relates to an elastic wave filter, a multiplexer, a high frequency front end circuit and a communication device.
- the attenuation amount of the elastic wave filter such as the surface acoustic wave filter is deteriorated.
- the amount of attenuation of the elastic wave filter and the insertion loss in the passband are in a trade-off relationship in which one improves the other and the other deteriorates.
- the attenuation can not be improved while maintaining the insertion loss in the pass band of the elastic wave filter.
- an object of the present invention is to provide an elastic wave filter, a multiplexer, a high frequency front end circuit, and a communication device whose attenuation amount is improved while maintaining the insertion loss in the pass band.
- an elastic wave filter concerning one mode of the present invention is an elastic wave filter provided with the 1st input-output terminal and the 2nd input-output terminal, and the 1st input-output terminal and the 2nd
- the one or more parallel arm circuits and the one or more parallel arm circuits provided on a path connecting input / output terminals, and one or more parallel arm circuits connected to a node on the path and a ground
- At least one of the one or more series arm circuits includes a first elastic wave resonator, and a first comb-teeth capacitive element connected in parallel or in series with the first elastic wave resonator,
- the first comb capacitor has a comb electrode including a plurality of electrode fingers, and the frequency at which the impedance of the first comb capacitor is maximized is disposed outside the pass band of the elastic wave filter.
- the repetition pitch of the plurality of electrode fingers is the electrode finger pitch If the ratio of the width of the plurality of electrode fingers to the added value of the width of the plurality of electrode fingers and the distance between the plurality of electrode fingers is defined as the electrode finger duty ratio, the comb electrode is And / or 2) at least one of at least two different electrode finger pitches and (2) at least two different electrode finger duty ratios.
- the impedance of the first comb capacitor element is maximized because the comb electrodes of the first comb capacitor element constituting the parallel arm circuit have at least two different electrode finger pitches or at least two different duty ratios.
- the impedance value (maximum value of the impedance) at the frequency where the frequency is lower (the frequency at which the impedance is maximized can be dispersed).
- the frequency at which the impedance of the first comb capacitor element is maximized is disposed outside the pass band of the elastic wave filter.
- the frequency at which the impedance of the comb capacitor is minimized by the comb electrodes of the comb capacitor constituting the series arm circuit having at least two different electrode finger pitches or at least two different duty ratios.
- the impedance value (minimum value of the impedance) at can be increased (dispersion of the frequency at which the impedance is minimized). Further, the frequency at which the impedance of the comb capacitor element is minimized is disposed outside the pass band of the elastic wave filter.
- the at least one parallel arm circuit further includes a first switch element connected in parallel to the first comb-tooth capacitor element, and the first comb-tooth capacitor element and the first switch element are connected in parallel.
- the first switch circuit connected to may be connected in series with the first elastic wave resonator.
- the resonance frequency of the parallel arm circuit can be switched by switching between conduction and non-conduction of the first switch element, so that the frequency of the attenuation pole on the lower passband side can be switched (variable) Type elastic wave filter can be provided. Furthermore, when the first switch element is nonconductive, the amount of attenuation can be improved while maintaining the insertion loss in the passband.
- the at least one parallel arm circuit further includes a second elastic wave resonator, and the second elastic wave resonator is configured such that the first elastic wave resonator and the first switch circuit are connected in series.
- the second elastic wave resonator has a resonant frequency different from that of the first elastic wave resonator, and an antiresonant frequency of the second elastic wave resonator is the first elastic wave. It may be different from the antiresonant frequency of the wave resonator.
- the resonance frequency of the second elastic wave resonator is higher than the resonance frequency of the first elastic wave resonator
- the antiresonance frequency of the second elastic wave resonator is higher than the antiresonance frequency of the first elastic wave resonator.
- the resonant frequency of the second elastic wave resonator is lower than the resonant frequency of the first elastic wave resonator
- the antiresonance frequency of the second elastic wave resonator is lower than the antiresonance frequency of the first elastic wave resonator.
- the at least one parallel arm circuit further includes a second switch circuit connected in series to the second elastic wave resonator, and the second elastic wave resonator and the second switch circuit are in series.
- the connected circuit and the circuit in which the first elastic wave resonator and the first switch circuit are connected in series are connected in parallel, and the second switch circuit includes a second comb capacitance element, and
- the second switch element connected in parallel to the second comb capacitor element and the frequency at which the impedance of the second comb capacitor element is maximized is disposed outside the pass band of the elastic wave filter,
- the two-comb capacitive element has a comb electrode composed of a plurality of electrode fingers, and the comb electrode comprises (1) at least two different electrode finger pitches, and (2) at least two different electrode finger duty ratios , At least Who may have.
- the resonance frequency on the low frequency side of the two resonance frequencies of the parallel arm circuit and the anti-resonance side on the low frequency side of the two antiresonance frequencies of the parallel arm circuit The resonant frequency can be switched together.
- the resonance frequency on the high frequency side of the two resonance frequencies of the parallel arm circuit and the antiresonance on the low frequency side of the two antiresonance frequencies of the parallel arm circuit The frequency can be switched together.
- the frequency at which the passband width and the attenuation bandwidth can be varied by independently controlling the switching between the conduction and non-conduction of the first switch element and the switching between the conduction and non-conduction of the second switch element.
- a variable elastic wave filter can be provided. Furthermore, when at least one of the first switch element and the second switch element is nonconductive, the amount of attenuation can be improved.
- the at least one series arm circuit further includes a first switch element connected in series to the first comb-tooth capacitor element, and the first comb-tooth capacitor element and the first switch element are in series.
- the circuit connected to may be connected in parallel with the first elastic wave resonator.
- the resonance frequency of the series arm circuit forms a pass band of the elastic wave filter
- the antiresonance frequency of the series arm circuit forms an attenuation pole on the high band side of the pass band of the elastic wave filter. Therefore, it is possible to realize a variable-frequency elastic wave filter capable of switching (varying) the frequency of the attenuation pole on the higher side of the pass band by switching between conduction and non-conduction of the switch element.
- the at least one parallel arm circuit further includes a second switch element connected in parallel to the first comb-tooth capacitor element, and the first comb-tooth capacitor element and the second switch element are in parallel.
- the first switch circuit may be configured by the connected circuit, and the first switch circuit may be connected in series to the first elastic wave resonator.
- the resonance frequency of the series arm circuit can be switched by switching between conduction and non-conduction of the second switch element, so that the frequency variable type elasticity can switch (change) the frequency at the high end of the pass band.
- the second switch element is nonconductive, the amount of attenuation can be improved while maintaining the insertion loss in the pass band.
- the first elastic wave resonator and the first comb-tooth capacitive element are connected in parallel, and the comb-tooth electrode has a first electrode finger pitch and a pitch of the first electrode finger.
- the pitch difference obtained by dividing the difference between the first electrode finger pitch and the second electrode finger pitch by the first electrode finger pitch is 0.2% or more. It may be.
- the number of electrode fingers arranged at the first electrode finger pitch may be 10% or more and 80% or less of the number of the plurality of electrode fingers.
- the number of electrode fingers arranged at the first electrode finger pitch may be 20% or more and 50% or less with respect to the number of the plurality of electrode fingers.
- the first elastic wave resonator and the first comb-tooth capacitive element are connected in series, and the comb-tooth electrode has a first electrode finger pitch and a first electrode finger pitch
- a pitch difference obtained by dividing the difference between the first electrode finger pitch and the second electrode finger pitch by the second electrode finger pitch is 0.2% or more. It may be 6.3% or less.
- the first elastic wave resonator and the first comb-tooth capacitive element are connected in series, and the comb-tooth electrode has a first electrode finger pitch and a first electrode finger pitch
- the number of the electrode fingers having a large second electrode finger pitch and arranged at the first electrode finger pitch may be 10% or more and 65% or less with respect to the number of the plurality of electrode fingers.
- the first elastic wave resonator and the first comb-tooth capacitive element are connected in series, and the comb-tooth electrode has a first electrode finger pitch and a first electrode finger pitch
- the pitch difference obtained by dividing the difference between the first electrode finger pitch and the second electrode finger pitch by the first electrode finger pitch is 0.2% or more. It may be.
- the first elastic wave resonator and the first comb-tooth capacitive element are connected in series, and the comb-tooth electrode has a first electrode finger pitch and a first electrode finger pitch
- the number of electrode fingers having a large second electrode finger pitch and arranged at the first electrode finger pitch may be 10% or more and 90% or less with respect to the number of the plurality of electrode fingers.
- the comb-tooth electrode has a first electrode finger pitch and a second electrode finger pitch larger than the first electrode finger pitch, and the first electrode finger pitch of the plurality of electrode fingers.
- the film thickness of the electrode finger arranged in the step may be smaller than the film thickness of the electrode finger arranged at the second electrode finger pitch among the plurality of electrode fingers.
- the first elastic wave resonator has an IDT electrode including a plurality of electrode fingers formed on a substrate having a piezoelectric property, the comb electrode is formed on the substrate, and the comb electrode is formed.
- the plurality of electrode finger pitches constituting the may be smaller than the electrode finger pitches constituting the IDT electrode.
- the capacitance Q value of the first comb capacitance element can be increased.
- the capacitance value per unit area is large, the first comb-tooth capacitive element can be miniaturized. Therefore, while being able to reduce the insertion loss in the pass band of an elastic wave filter, an elastic wave filter can be made small.
- the film thickness of the plurality of electrode fingers constituting the comb electrode may be smaller than the film thickness of the plurality of electrode fingers constituting the first elastic wave resonator.
- the electrode finger pitch can be reduced, and hence the capacitance Q value of the first comb capacitor can be increased. Therefore, while being able to reduce the insertion loss in the pass band of an elastic wave filter, an elastic wave filter can be made small.
- the duty ratio of the plurality of electrode fingers constituting the comb electrode may be larger than the duty ratio of the plurality of electrode fingers constituting the IDT electrode.
- the capacitance value per unit area increases, so that the comb-teeth capacitive element can be miniaturized, and the elastic wave filter can be miniaturized.
- a multiplexer includes a plurality of filters including the elastic wave filter described in any of the above, and one of two input / output terminals of each of the plurality of filters is directly connected to a common terminal. Or indirectly connected.
- a high frequency front end circuit is connected to the elastic wave filter according to any one of the above or the multiplexer described above and the elastic wave filter or the multiplexer directly or indirectly. And an amplification circuit.
- the amount of attenuation can be improved while maintaining the insertion loss in the pass band of the elastic wave filter or multiplexer. Therefore, it is possible to improve the communication quality with respect to the disturbance wave while maintaining the gain in the high frequency front end circuit.
- a communication apparatus includes: an RF signal processing circuit processing high frequency signals transmitted and received by an antenna element; and transmitting the high frequency signal between the antenna element and the RF signal processing circuit. And the described high frequency front end circuit.
- the amount of attenuation can be improved while maintaining the insertion loss in the pass band of the elastic wave filter or multiplexer. Therefore, it is possible to provide a communication device in which the communication quality with respect to disturbance waves is improved while maintaining the gain in the high frequency front end circuit.
- an elastic wave filter it is possible to provide an elastic wave filter, a multiplexer, a high frequency front end circuit, and a communication device with improved attenuation while maintaining insertion loss in the passband.
- FIG. 1A is a circuit configuration diagram of an elastic wave filter according to a first embodiment and a schematic view of a comb capacitor element in a parallel arm circuit.
- FIG. 1B is a graph comparing the pass characteristics of the elastic wave filters according to Example 1 and Comparative Example 1.
- FIG. 1C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 1 and Comparative Example 1.
- FIG. 1D is a graph showing the relationship between the electrode finger pitch difference and the attenuation on the lower pass band side when the electrode finger pitch of the capacitor is changed in the elastic wave filter according to the first embodiment.
- FIG. 1E shows the relationship between the ratio of the number of electrode fingers and the amount of attenuation on the lower pass band side when the ratio of the number of electrode fingers having different electrode finger pitches is changed in the elastic wave filter according to Example 1;
- FIG. FIG. 2A is a circuit configuration diagram of an elastic wave filter according to a second embodiment and a schematic view of a comb capacitor element in a series arm circuit.
- FIG. 2B is a graph comparing the pass characteristics of the elastic wave filters according to Example 2 and Comparative Example 2.
- FIG. 2C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 2 and Comparative Example 2.
- FIG. 3A is a circuit configuration diagram of an elastic wave filter according to a third embodiment and a schematic view of a comb capacitor element in a parallel arm circuit.
- FIG. 3B is a graph comparing the pass characteristics of the elastic wave filters according to the third embodiment and the first embodiment.
- FIG. 3C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to the third embodiment and the first embodiment.
- FIG. 4A is a circuit configuration diagram of an elastic wave filter according to a fourth embodiment and a schematic view of a comb capacitor in a parallel arm circuit.
- FIG. 4B is a graph comparing the pass characteristics of the elastic wave filters according to Example 4 and Comparative Example 4.
- FIG. 4C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 4 and Comparative Example 4.
- FIG. 4D is a graph comparing the pass characteristics of the elastic wave filters according to the fourth embodiment and the first embodiment.
- FIG. 5A is a view schematically showing an electrode structure of a resonant circuit of the elastic wave filter according to the first embodiment.
- FIG. 5B is a view schematically showing an electrode structure of a resonant circuit of an elastic wave filter according to a comparative example.
- FIG. 6A is a graph showing, in a typical example, a relationship between an electrode finger pitch of a comb tooth capacitance, a capacitance value, an impedance, and a capacitance Q value.
- FIG. 6B is a graph showing the relationship between the electrode finger pitch of the comb tooth capacity and the capacity per unit area, the capacity Q value, and the self resonance frequency in a typical example.
- FIG. 6C is a graph showing, in a typical example, the relationship between the film thickness of the comb tooth capacitor with respect to the electrode finger pitch, the capacitance per unit area, the capacitance Q value, and the self resonance frequency.
- FIG. 6D is a graph showing the relationship between the duty ratio of the comb tooth capacitance and the capacitance per unit area, the capacitance Q value, and the self resonant frequency in a typical example.
- FIG. 7A is a circuit configuration diagram of an elastic wave filter according to a fifth embodiment and a schematic view of a comb capacitor element in a parallel arm circuit.
- FIG. 7B is a graph comparing the pass characteristics of the elastic wave filters according to Example 5 and Comparative Example 5.
- FIG. 7C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 5 and Comparative Example 5.
- FIG. 7D is a graph comparing the pass characteristics of the elastic wave filters according to the fifth embodiment, the fourth embodiment, and the first embodiment.
- FIG. 8A is a circuit configuration diagram of an elastic wave filter according to a sixth embodiment and a schematic view of a comb capacitor element in a series arm circuit.
- FIG. 8A is a circuit configuration diagram of an elastic wave filter according to a sixth embodiment and a schematic view of a comb capacitor element in a series arm circuit.
- FIG. 8B is a graph showing the passage characteristic and the impedance characteristic of the elastic wave filter according to the sixth embodiment.
- FIG. 8C is a graph showing the comb tooth capacitance characteristic of the elastic wave filter according to the sixth embodiment.
- FIG. 9A is a circuit configuration diagram of an elastic wave filter according to a seventh embodiment and a schematic view of a comb capacitor element in a parallel arm circuit.
- FIG. 9B is a graph comparing the pass characteristics of the elastic wave filters according to Example 7 and Comparative Example 6.
- FIG. 9C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 7 and Comparative Example 6.
- FIG. 10A is a circuit configuration diagram of an elastic wave filter according to an eighth embodiment and a schematic view of a comb capacitor in a parallel arm circuit.
- FIG. 10B is a graph comparing the pass characteristics of the elastic wave filters according to Example 8 and Comparative Example 7.
- FIG. 10C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 8 and Comparative Example 7.
- FIG. 11 is a graph comparing the pass characteristics of the elastic wave filters according to the seventh embodiment and the eighth embodiment.
- FIG. 12A is a circuit configuration diagram of an elastic wave filter according to a ninth embodiment.
- FIG. 12B is a circuit configuration diagram of an elastic wave filter according to a tenth embodiment.
- FIG. 13A is a graph showing the passage characteristic and the impedance characteristic of an elastic wave filter according to a ninth example.
- FIG. 13B is a graph showing the passage characteristic and the impedance characteristic of the elastic wave filter according to the tenth embodiment.
- FIG. 14A is a circuit configuration diagram of an elastic wave filter according to Modification 1 of the embodiment.
- FIG. 14B is a circuit configuration diagram of an elastic wave filter according to Modification 2 of the embodiment.
- FIG. 14C is a circuit configuration diagram of an elastic wave filter according to Modification 3 of the embodiment.
- FIG. 14D is a circuit configuration diagram of an elastic wave filter according to Modification 4 of the embodiment.
- FIG. 14E is a circuit configuration diagram of an elastic wave filter according to Modification 5 of the embodiment.
- FIG. 14A is a graph showing the passage characteristic and the impedance characteristic of an elastic wave filter according to a ninth example.
- FIG. 13B is a graph showing the passage characteristic and the impedance characteristic of the elastic wave filter according to the
- FIG. 14F is a circuit configuration diagram of an elastic wave filter according to Modification 6 of the embodiment.
- FIG. 15A is a circuit configuration diagram of an elastic wave filter according to an eleventh embodiment and a schematic view of a comb capacitor element in a series arm circuit.
- FIG. 15B is a graph comparing the pass characteristics of the elastic wave filters according to Example 11 and Comparative Example 8.
- FIG. 15C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 11 and Comparative Example 8.
- FIG. 16 is a circuit diagram of an elastic wave filter according to a twelfth embodiment.
- FIG. 17 is a graph showing the pass characteristic and the impedance characteristic of the elastic wave filter according to the twelfth embodiment.
- FIG. 18 is a graph showing the relationship between the pitch difference of the comb capacitance and the impedance in a typical example.
- FIG. 19 is a graph showing the relationship between the ratio of the number of comb capacitors and the impedance in a typical example.
- FIG. 20A is a configuration diagram of a communication device according to Embodiment 2.
- FIG. 20B is a block diagram of a communication device according to a modification of the second embodiment.
- passband lower end means “the lowest frequency in the passband”.
- pass band high end means “the highest frequency in the pass band”.
- low pass band side means “outside of pass band and lower frequency side than pass band”.
- high pass side of pass band means “outside of pass band and higher frequency side than pass band”.
- the “low frequency side” may be referred to as the “low frequency side”
- the “high frequency side” may be referred to as the “high frequency side”.
- the resonant frequency in the resonator or circuit is a resonant frequency for forming an attenuation pole in the pass band or near the pass band of the resonator or the filter including the circuit, and the resonator Alternatively, it is the frequency of the “resonance point” which is a singular point at which the impedance of the circuit becomes minimum (ideally, the point at which the impedance is 0).
- the antiresonance frequency in the resonator or the circuit is an antiresonance frequency for forming an attenuation pole in the pass band or near the pass band of the resonator or the filter including the circuit, unless otherwise specified. It is the frequency of the "anti-resonance point" which is a singular point at which the impedance of the resonator or the circuit concerned is maximal (ideally, the point at which the impedance is infinite).
- the series arm circuit and the parallel arm circuit are defined as follows.
- the parallel arm circuit is a circuit disposed between one node on a path connecting the first input / output terminal and the second input / output terminal and the ground.
- a circuit disposed between the first input / output terminal or the second input / output terminal and a node on the above path to which the parallel arm circuit is connected, or one parallel arm circuit is connected.
- the circuit is disposed between one node on the path and another node on the path to which another parallel arm circuit is connected.
- FIG. 1A is a circuit configuration diagram of an elastic wave filter 10A according to a first embodiment and a schematic view of a capacitor Cp1 in a parallel arm circuit 11p.
- the elastic wave filter 10A shown in the figure includes a series arm resonator s1, a parallel arm circuit 11p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 11p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cp1.
- the parallel arm circuit 11p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cp1.
- the parallel arm resonator p1 is a first elastic wave resonator connected in parallel to the capacitor Cp1.
- the capacitor Cp1 is a first comb-teeth capacitive element connected in parallel to the parallel arm resonator p1 and constitutes an impedance circuit.
- the capacitor Cp1 has a comb-like electrode including a plurality of electrode fingers.
- the repetition pitch of the plurality of electrode fingers of the capacitor Cp1 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Cp1 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 > Pc1.
- the frequency at which the impedance of the capacitor Cp1 is maximized is disposed outside the pass band of the elastic wave filter 10A.
- Table 1 shows circuit parameters and filter characteristics of the elastic wave filter 10A according to the first embodiment and the elastic wave filter according to the first comparative example.
- the elastic wave filter according to the first comparative example is different from the elastic wave filter 10A according to the first embodiment only in the configuration of the capacitor of the parallel arm circuit.
- the electrode finger pitch Pc1 of the capacitor Cp1 is 3.00 ⁇ m
- the electrode finger pitch Pc2 is 3.05 ⁇ m.
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 40
- the number of electrode fingers arranged at the electrode finger pitch Pc2 is 81.
- the electrode finger pitches of the capacitors are all 3.00 ⁇ m, and the number of electrode fingers arranged at the electrode finger pitch is 121.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 350 nm
- the crossing width Lc is 20 ⁇ m.
- the electrode finger pitch Pr of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m, and the electrode finger duty ratio of the IDT electrode is 0.5, and the IDT electrode The film thickness is 350 nm.
- the electrode finger pitch of the comb capacitor element is the repetition pitch of a plurality of electrode fingers constituting the comb electrode (the distance between the centers of adjacent electrode fingers).
- the electrode finger duty ratio of the comb-tooth capacitive element is a line width occupancy rate of a plurality of electrode fingers, and is defined as a ratio of the line width to an added value of the line width and the space width of the plurality of electrode fingers. Ru.
- a plurality of electrode fingers connected to one bus bar electrode is defined as a comb-like electrode, and the comb-like electrode is configured of a pair of comb-like electrodes mutually inserted.
- the overlapping electrode finger lengths when viewed from a direction perpendicular to the electrode fingers that configure one of the comb-like electrodes and the electrode fingers that configure the other comb-like electrode.
- the first region (right side region of the comb-tooth electrode in FIG. 1A) in which the electrode fingers arranged at the electrode finger pitch Pc1 are formed and the electrode finger pitch Pc2
- the second region in which the electrode finger is formed (the left region of the comb electrode in FIG. 1A) is divided into two.
- the above two regions are not limited to being divided into two, and may be subdivided into three or more.
- the first area and the second area may be alternately arranged.
- the comb-tooth electrode constituting the capacitor Cp1 may have three or more different electrode finger pitches.
- the capacitance of the parallel arm circuit 11p of the elastic wave filter 10A according to the first embodiment is 7.49 pF
- the capacitance of the parallel arm circuit of the elastic wave filter according to the comparative example 1 is Is 7.47 pF, and both are almost the same value.
- FIG. 1B is a graph comparing the pass characteristics of the elastic wave filters according to Example 1 and Comparative Example 1.
- the comparison of the wide band pass characteristic of the elastic wave filter concerning Example 1 and the comparative example 1 is shown by (a) of the figure. Further, in (b) of the same drawing, comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to Example 1 and Comparative Example 1 is shown. Further, in (c) of the same drawing, comparison of the pass characteristic in the pass band of the elastic wave filter according to the example 1 and the comparative example 1 is shown. Further, (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to Example 1 and Comparative Example 1.
- FIG. 1C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 1 and Comparative Example 1.
- the comparison of the impedance characteristic of the wide band of the circuit and resonator which concern on Example 1 and the comparative example 1 is shown by (a) of the figure.
- comparison of the impedance characteristic of the narrow band (near the pass band) of the circuit and the resonator according to Example 1 and Comparative Example 1 is shown.
- the comparison of the impedance characteristic of the wide band of the capacitor concerning Example 1 and the comparative example 1 is shown by (c) of the figure.
- the comparison of the impedance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 1 and the comparative example 1 is shown by (d) of the figure.
- the comparison of the electrostatic capacitance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 1 and the comparative example 1 is shown by (e) of the figure.
- In (f) of the figure comparison of the capacitance Q value of the narrow band (near the pass band) of the capacitors according to Example 1 and Comparative Example 1 is shown.
- the antiresonance frequency Fap of the parallel arm circuit is the antiresonance frequency of the parallel arm resonator p1. Shift to the low frequency side with respect to fap.
- the vicinity of the resonance frequency Frp in which the impedance of the parallel arm circuit approaches 0 is the low frequency side stop band.
- the impedance of the parallel arm circuit becomes high at the antiresonance frequency Fap, and the impedance of the series arm resonator s1 approaches zero near the resonance frequency frs.
- the signal passband is in the signal path (serial arm) from the input / output terminal T1 to the input / output terminal T2.
- the impedance of the series arm resonator s1 becomes high and it becomes the high frequency side stop band.
- the passband is defined by the antiresonance frequency Fap and the resonance frequency frs
- the pole (attenuation pole) on the low passband side is defined by the resonance frequency Frp.
- the frequency f1max (710 MHz) at which the impedance of the capacitor Cp1 according to the first embodiment is maximized is the passband of the elastic wave filter 10A according to the first embodiment. It is placed in the lower attenuation band.
- the frequency f2max (720 MHz) at which the impedance of the capacitor according to Comparative Example 1 is maximized is disposed in the attenuation band on the low pass side of the passband of the elastic wave filter according to Comparative Example 1.
- the maximum value (56.06 dB from Table 1) of the impedance of the capacitor Cp1 according to the first embodiment at the frequency f1max is the frequency f2max of the capacitor according to the first comparative example. It is smaller than the maximum value of impedance (56.94 dB from Table 1).
- the elastic wave filter 10A according to the first embodiment a part of the electrode finger pitch in the capacitor Cp1 is made to be different.
- the maximum impedance value of the parallel arm circuit 11p is reduced (the frequency at which the impedance is maximized is dispersed), so the high frequency signal at f1max is passed to the parallel arm circuit 11p.
- the amount can be increased. That is, it is possible to solve the problem that the attenuation amount of the elastic wave filter 10A is deteriorated in the attenuation band which is the frequency region in which the impedance peak (maximum point of impedance) is located.
- the elastic wave filter 10A in which the attenuation amount in the attenuation band on the lower side of the pass band is improved while maintaining the insertion loss in the pass band.
- a ladder circuit in which one series arm circuit and one parallel arm circuit are arranged is exemplified, but one or more series arm circuits and one parallel arm circuit may be arranged.
- at least one parallel arm circuit of the plurality of parallel arm circuits may have the configuration of the parallel arm circuit 11p according to the first embodiment. That is, the at least one parallel arm circuit includes a parallel arm resonator and a comb capacitor element connected in parallel to each other, and the comb electrodes of the comb capacitor element have different electrode finger pitches, The frequency at which the impedance of the capacitive element is maximized may be disposed outside the pass band of the elastic wave filter.
- FIG. 1D is a graph showing the relationship between the electrode finger pitch difference and the attenuation in the lower pass band side when the electrode finger pitches Pc1 and Pc2 of the capacitor Cp1 are changed in the elastic wave filter 10A according to the first embodiment. is there. More specifically, in the elastic wave filter 10A according to the first embodiment, the electrode finger pitch Pc1 is fixed at 3.000 ⁇ m and the electrode finger pitch Pc2 is set on the vertical axes of (a) and (b) in FIG. 1D. The amount of attenuation in the lower attenuation band (DC-800 MHz) of the pass band when stepwise changing from 2.750 to 3.000 ⁇ m is shown. In (c) and (d) of FIG.
- the electrode finger pitch Pc1 is fixed at 3.000 ⁇ m, and the electrode finger pitch Pc2 is stepped from 3.000 to 3.250 ⁇ m.
- the amount of attenuation in the attenuation band (DC-800 MHz) on the lower side of the pass band in the case where the values are varied is shown.
- an electrode having a value obtained by dividing the difference between the electrode finger pitch Pc1 and the electrode finger pitch Pc2 by the smaller one of the electrode finger pitches Pc1 and Pc2 The finger pitch difference ⁇ Pc (%) is shown.
- electrode finger duty ratio (0.60), the number of electrode fingers (electrode finger pitch Pc 1: 40, electrode finger pitch Pc 2: 81), electrode finger film thickness (350 nm), and crossover width (20 ⁇ m) are shown in Table 1 It is supposed to be the same as shown in.
- FIG. 1E is a graph showing the ratio of the number of electrode fingers to the amount of attenuation on the lower side of the pass band in the elastic wave filter 10A according to the first embodiment when the ratio of the number of electrode fingers different in electrode finger pitch of the capacitor Cp1 is changed. It is a graph which shows a relation. More specifically, in the elastic wave filter 10A according to the first embodiment, the number of electrode fingers having the electrode finger pitch Pc1 is changed stepwise from 0 to 121 in the vertical axis in FIG. 1E. The attenuation in the lower passband attenuation band (DC-800 MHz) is shown. Further, on the horizontal axis of FIG.
- the ratio (%) of the number of electrode fingers having the electrode finger pitch Pc1 to the total number of electrode fingers is shown.
- the elastic wave filter having the number ratio of 0% and 100% is not included in the elastic wave filter 10A according to the first embodiment.
- the electrode finger pitches Pc1 (3.0000 ⁇ m) and Pc2 (3.050 ⁇ m), the electrode finger duty ratio (0.60), the total number of electrode fingers (121), the electrode finger film thickness (350 nm), the crossing width (20 ⁇ m) Is the same as that shown in Table 1.
- FIG. 2A is a circuit configuration diagram of an elastic wave filter 10B according to a second embodiment and a schematic view of a capacitor Cs1 in a series arm circuit 11s.
- the elastic wave filter 10B shown in the same figure includes a series arm circuit 11s, a parallel arm resonator p1, and input / output terminals T1 and T2.
- the series arm circuit 11s is connected on a path connecting the input / output terminal T1 and the input / output terminal T2, and includes a series arm resonator s1 and a capacitor Cs1.
- the series arm circuit 11s is a resonant circuit composed of a series arm resonator s1 and a capacitor Cs1.
- the series arm resonator s1 is a first elastic wave resonator connected in parallel to the capacitor Cs1.
- the capacitor Cs1 is a first comb-teeth capacitive element connected in parallel to the series arm resonator s1 and constitutes an impedance circuit.
- the capacitor Cs1 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 2A.
- the repetition pitch of the plurality of electrode fingers of the capacitor Cs1 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Cs1 have three different electrode finger pitches Pc1 (first electrode finger pitch), Pc2 A second electrode finger pitch), and Pc3.
- the frequency (the frequency of the conductance peak) at which the impedance of the capacitor Cs1 is minimized is disposed outside the pass band of the elastic wave filter 10B.
- Table 2 shows circuit parameters and filter characteristics of the elastic wave filter 10B according to the second embodiment and the elastic wave filter according to the second comparative example.
- the elastic wave filter according to Comparative Example 2 differs from the elastic wave filter 10B according to the second embodiment only in the configuration of the capacitor of the series arm circuit.
- the electrode finger pitch Pc3 of the capacitor Cs1 is 2.95 ⁇ m
- Pc1 is 3.00 ⁇ m
- Pc2 is 3.05 ⁇ m
- the number of electrode fingers arranged at the electrode finger pitch Pc3 is 40
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 41
- the number of electrode fingers arranged at the electrode finger pitch Pc2 There are 40 books.
- the electrode finger pitches of the capacitors are all 3.00 ⁇ m, and the number of electrode fingers arranged at the electrode finger pitch is 121.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 350 nm
- the crossing width Lc is 20 ⁇ m.
- the electrode finger pitch Pr of the IDT electrode constituting the series arm resonator s1 is 2.1 ⁇ m
- the electrode finger duty ratio of the IDT electrode is 0.5
- the IDT electrode The film thickness is 350 nm.
- the third region (the lower region of the comb-tooth electrode in FIG. 2A) in which the electrode fingers arranged at the electrode finger pitch Pc3 are formed and the electrode finger pitch Pc1
- the first region center region of the comb-tooth electrode in FIG. 2A) in which the curved electrode fingers are formed and the second region (electrode-top region in the comb-tooth electrode of FIG. 2A) in which the electrode fingers arranged at the electrode finger pitch Pc2 are formed
- the above three regions are not limited to being divided into three, and may be divided into two by the electrode finger pitches Pc1 and Pc2, or subdivided into four or more by four or more different electrode finger pitches It may be standardized. Also, for example, the first region, the second region, and the third region may be alternately arranged.
- the capacitance of the capacitor Cs1 of the elastic wave filter 10B according to the second embodiment is 1.47 pF
- the capacitance of the capacitor of the elastic wave filter according to the comparative example 2 is also 1.47 pF. It is.
- FIG. 2B is a graph comparing the pass characteristics of the elastic wave filters according to Example 2 and Comparative Example 2.
- the comparison of the wide band pass characteristic of the elastic wave filter concerning Example 2 and the comparative example 2 is shown by (a) of the figure.
- (b) of the same drawing shows a comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to the second embodiment and the second comparative example.
- (c) of the same drawing shows a comparison of the pass characteristic in the pass band of the elastic wave filter according to the second embodiment and the second comparative example.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to Example 2 and Comparative Example 2.
- the insertion loss in the pass band is not significantly different between Example 2 and Comparative Example 2 (from Table 2, both of 01 dB).
- the elastic wave filter 10B according to the second embodiment in the attenuation band on the lower side of the pass band (the frequency band of 0.7 GHz or less), the elastic wave filter 10B according to the second embodiment.
- the amount of attenuation is improved (the minimum value of insertion loss at 0.7 GHz or less is increased) as compared with the elastic wave filter according to Comparative Example 2 (from Table 2, 2.56 dB in Example 2, Comparative Example 2).
- the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 2C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 2 and Comparative Example 2.
- the comparison of the impedance characteristic of the wide band of the circuit and resonator which concern on Example 2 and the comparative example 2 is shown by (a) of the figure.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to Example 2 and Comparative Example 2 is shown in (b) of the figure.
- the comparison of the impedance characteristic of the wideband of the capacitor concerning Example 2 and comparative example 2 is shown in (c) of the figure.
- the comparison of the impedance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 2 and comparative example 2 is shown in (d) of the figure.
- the comparison of the electrostatic capacitance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 2 and the comparative example 2 is shown by (e) of the figure.
- comparison of the capacitance Q value of the narrow band (near the pass band) of the capacitors according to Example 2 and Comparative Example 2 is shown.
- the anti-resonance frequency Fas of the series arm circuit is the anti-resonance frequency of the series arm resonator s1 by connecting a capacitor in parallel to the series arm resonator s1. Shift to the low frequency side with respect to fas.
- the antiresonance frequency fap of the parallel arm resonator p1 and the resonance frequency Frs of the series arm circuit And close.
- the vicinity of the resonance frequency frp in which the impedance of the parallel arm resonator p1 approaches 0 becomes a low frequency side stop band.
- the impedance of the parallel arm resonator p1 becomes high at the antiresonance frequency fap, and the impedance of the series arm circuit approaches 0 near the resonance frequency Frs.
- a signal passing region in the signal path (serial arm) from the input / output terminal T1 to the input / output terminal T2 is obtained.
- the pass band is defined by the anti-resonance frequency fap and the resonance frequency Frs
- the pole (attenuation pole) on the low pass band side is defined by the resonance frequency frp.
- the frequency f1 min (674 MHz) at which the impedance of the capacitor Cs1 according to the second embodiment is minimized is the passband of the elastic wave filter 10B according to the second embodiment. It is placed in the lower attenuation band.
- the frequency f2min (663 MHz) at which the impedance of the capacitor according to Comparative Example 2 is minimized is disposed in the attenuation band on the lower side of the pass band of the elastic wave filter according to Comparative Example 2.
- the capacitance and the capacitance Q value of the capacitor in the pass band are not significantly different between Example 2 and Comparative Example 2.
- the local minimum value (7.80 dB from Table 2) of the impedance of the capacitor Cs1 according to the second embodiment at the frequency f1 min is the frequency f2 min of the capacitor according to the second comparative example. It is larger than the local minimum value (0.09 dB from Table 2) of the impedance.
- elastic wave filter 10B concerning Example 2 it is mentioned that a part of electrode finger pitch in capacitor Cs1 is changed.
- the impedance minimum value of the series arm circuit 11s is increased (the frequency at which the impedance is minimized is dispersed), so that the high frequency signal is passed to the series arm circuit 11s at f1 min.
- the amount can be reduced. That is, it is possible to solve the problem that the attenuation amount of the elastic wave filter 10B is deteriorated in the attenuation band which is a frequency region where the conductance peak (minimum point of impedance) is located.
- the elastic wave filter 10B in which the attenuation amount in the attenuation band on the low pass band side is improved while maintaining the insertion loss in the pass band.
- FIG. 3A is a circuit configuration diagram of an elastic wave filter 10C according to a third embodiment and a schematic view of a capacitor Cp2 in the parallel arm circuit 12p.
- An elastic wave filter 10C shown in the same figure includes a series arm resonator s1, a parallel arm circuit 12p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 12p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cp2.
- the parallel arm circuit 12p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cp2.
- the parallel arm resonator p1 is a first elastic wave resonator connected in parallel to the capacitor Cp2.
- the capacitor Cp2 is a first comb-teeth capacitive element connected in parallel to the parallel arm resonator p1 and constitutes an impedance circuit.
- the capacitor Cp2 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 3A.
- the comb electrodes of the capacitor Cp2 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- the comb-tooth electrode of the capacitor Cp2 has three different electrode finger duty ratios Duty1, Duty2, and Duty3.
- the electrode fingers arranged at the electrode finger pitch Pc2 have two different electrode finger duty ratios Duty2 and Duty3 and the electrode fingers arranged at the electrode finger pitch Pc1 have one electrode finger duty ratio Duty1.
- the frequency at which the impedance of the capacitor Cp2 is maximized is disposed outside the pass band of the elastic wave filter 10C.
- Table 3 shows circuit parameters and filter characteristics of the elastic wave filter 10C according to the third embodiment and the elastic wave filter 10A according to the first embodiment.
- the elastic wave filter 10C according to the third embodiment is different from the elastic wave filter 10A according to the first embodiment in that the comb-tooth electrode not only has two different electrode finger pitches in the configuration of the capacitor Cp2 of the parallel arm circuit. , Differs in having three different electrode finger duty ratios.
- the electrode finger pitch Pc1 of the capacitor Cp1 is 3.00 ⁇ m, and the electrode finger duty ratio is 0.6.
- the electrode finger pitch Pc1 of the capacitor Cp2 is 3.00 ⁇ m
- the electrode finger pitch Pc2 is 3.05 ⁇ m
- the electrode finger duty ratio Duty1 is 0.
- the electrode finger duty ratio Duty2 is 0.70
- the electrode finger duty ratio Duty3 is 0.40.
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 40
- the number of electrode fingers arranged at the electrode finger pitch Pc2 is 81.
- the number of electrode fingers arranged with the electrode finger duty ratio Duty1 is 40
- the number of electrode fingers arranged with the electrode finger duty ratio Duty2 is 41
- the electrode arranged with the electrode finger duty ratio Duty3 The number of fingers is 40.
- the thickness of the comb-tooth electrode is 350 nm, and the crossing width Lc is 20 ⁇ m.
- the electrode finger pitch Pr of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m
- the electrode finger duty ratio of the IDT electrode is 0.5
- the IDT electrode of the IDT electrode is The film thickness is 350 nm.
- a first region in which the electrode fingers arranged at the electrode finger duty ratio Duty1 are formed and a second region in which the electrode fingers arranged at the electrode finger duty ratio Duty2 are formed The third region where the electrode fingers arranged at the electrode finger duty ratio Duty3 are formed is divided into three.
- the above three regions are not limited to being divided into three, but may be divided into two by electrode finger duty ratios Duty1 and Duty2, or four or more by four or more different electrode finger duty ratios. It may be subdivided. Also, for example, the first region, the second region, and the third region may be alternately arranged.
- FIG. 3B is a graph comparing the pass characteristics of the elastic wave filters according to the third embodiment and the first embodiment.
- the comparison of the wide band pass characteristic of the elastic wave filter concerning Example 3 and Example 1 is shown by (a) of the figure. Further, in (b) of the same drawing, comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to the third embodiment and the first embodiment is shown. Further, (c) of the same drawing shows a comparison of the pass characteristic in the pass band of the elastic wave filter according to the third embodiment and the first embodiment. Further, (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to the third embodiment and the first embodiment.
- the insertion loss in the third embodiment is slightly reduced compared to the first embodiment (see Table 3). 3. From Example 3, 0.91 dB in Example 3, 0.92 dB in Example 1). On the other hand, as shown in (b) and (d) of FIG. 3B, in the attenuation band on the lower side of the pass band (the frequency band of 0.7 GHz or less), the elastic wave filter 10C according to the third embodiment However, the amount of attenuation is improved (the minimum value of insertion loss at 0.7 GHz or less is increased) than the elastic wave filter according to Example 1 (from Table 3, 3.52 dB in Example 3, Example 1 For 3.24 dB). That is, in the elastic wave filter 10C according to the third embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 3C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to the third embodiment and the first embodiment.
- comparison of impedance characteristics of wide bands of the circuit and the resonator according to the third embodiment and the first embodiment is shown.
- comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to the third embodiment and the first embodiment is shown.
- the comparison of the impedance characteristic of the wide band of the capacitor concerning Example 3 and Example 1 is shown by (c) of the figure.
- the comparison of the impedance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 3 and Example 1 is shown by (d) of the figure.
- the comparison of the electrostatic capacitance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 3 and Example 1 is shown by (e) of the figure.
- comparison of the capacitance Q value of the narrow band (near the pass band) of the capacitor according to the third embodiment and the first embodiment is shown.
- the elastic wave filters according to the third embodiment and the first embodiment pass by the antiresonance frequency Fap of the parallel arm circuit and the resonance frequency frs of the series arm resonator.
- the band is defined, and the pole (attenuation pole) of the passband lower side is defined by the resonance frequency Frp of the parallel arm circuit, and the pole (attenuation pole) of the passband high side is defined by the antiresonance frequency fas of the series arm resonator. It is a band pass filter specified.
- the frequency f3max (710 MHz) at which the impedance of the capacitor Cp2 according to the third embodiment is maximized is the passband of the elastic wave filter 10C according to the third embodiment. It is placed in the lower attenuation band.
- the frequency f1max (710 MHz) at which the impedance of the capacitor according to the first embodiment is maximized is disposed in the attenuation band on the lower side of the passband of the elastic wave filter 10A according to the first embodiment.
- the capacitance and the capacitance Q value of the capacitor in the pass band are not significantly different between the third embodiment and the first embodiment.
- the maximum value (55.88 dB according to Table 3) of the impedance of the capacitor Cp2 according to the third embodiment at the frequency f3max is the frequency f1max of the capacitor according to the first embodiment. It is smaller than the maximum value of the impedance (56.06 dB according to Table 3).
- the elastic wave filter 10C according to the third embodiment in addition to the fact that part of the electrode finger pitch in the capacitor Cp2 is made different, part of the electrode finger duty ratio in the capacitor Cp2 is made different. Can be mentioned.
- the impedance maximum value of the parallel arm circuit 12p is reduced (the frequency at which the impedance is maximized is dispersed), so the parallel arm of the high frequency signal at f1max according to the first embodiment
- the passing amount to the parallel arm circuit 12p of the high frequency signal at f3max can be larger than the passing amount to the circuit 11p.
- the attenuation loss in the lower passband of the passband is maintained while maintaining the insertion loss in the passband. It is possible to improve the amount of attenuation in
- FIG. 4A is a circuit configuration diagram of an elastic wave filter 10D according to a fourth embodiment and a schematic view of a capacitor Cp3 in the parallel arm circuit 13p.
- An elastic wave filter 10D shown in the same figure includes a series arm resonator s1, a parallel arm circuit 13p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 13p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cp3.
- the parallel arm circuit 13p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cp3.
- the parallel arm resonator p1 is a first elastic wave resonator connected in parallel to the capacitor Cp3.
- the capacitor Cp3 is a first comb-tooth capacitive element connected in parallel to the parallel arm resonator p1 and constitutes an impedance circuit.
- the capacitor Cp3 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 4A.
- the comb electrodes of the capacitor Cp3 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- the frequency at which the impedance of the capacitor Cp3 is maximized is disposed outside the passband of the elastic wave filter 10D.
- the parallel arm resonator p1 has an IDT electrode including a plurality of electrode fingers formed on a substrate having piezoelectricity.
- the capacitor Cp3 is also formed on the substrate.
- the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp3 are smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1.
- Table 4 shows circuit parameters and filter characteristics of the elastic wave filter 10D according to the fourth embodiment and the elastic wave filter according to the comparative example 4.
- the elastic wave filter according to Comparative Example 4 differs from the elastic wave filter 10D according to the fourth embodiment only in the configuration of the capacitor of the parallel arm circuit.
- the electrode finger pitch Pc1 of the capacitor Cp3 is 1.95 ⁇ m
- the electrode finger pitch Pc2 of the capacitor Cp3 is 2.00 ⁇ m.
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 40
- the number of electrode fingers arranged at the electrode finger pitch Pc2 is 21.
- the electrode finger pitches of the capacitors are all 2.00 ⁇ m, and the number of the electrode fingers arranged at the electrode finger pitch is 61.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 350 nm
- the crossing width Lc is 20 ⁇ m.
- Example 4 the electrode finger pitch of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m, the electrode finger duty ratio of the IDT electrode is 0.5, and the film of the IDT electrode is The thickness is 350 nm.
- the frequency at which the impedance of the comb capacitor (capacitor Cp1) is maximized is arranged on the lower side of the pass band
- the electrode finger pitch of the comb capacitor (capacitor Cp3) is disposed on the high band side of the pass band.
- an elastic wave filter 10D according to the present embodiment will not be described the same as the elastic wave filter 10A according to the first embodiment, and differences will be mainly described.
- FIG. 4B is a graph comparing the pass characteristics of the elastic wave filters according to Example 4 and Comparative Example 4.
- comparison of the wide band pass characteristic of the elastic wave filter concerning Example 4 and comparative example 4 is shown.
- (b) of the same drawing shows comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to Example 4 and Comparative Example 4.
- (c) of the same drawing shows a comparison of the pass characteristic in the pass band of the elastic wave filter according to the fourth embodiment and the fourth comparative example.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to Example 4 and Comparative Example 4.
- Example 4 As shown in (a), (b) and (c) of FIG. 4B, there is no significant difference between Example 4 and Comparative Example 4 in the insertion loss in the passband (from Table 4, Example 4). In the second comparative example, and 0.80 dB in the fourth comparative example). On the other hand, as shown in (b) and (d) of FIG. 4B, the elastic wave filter 10D according to the fourth embodiment in the attenuation band (frequency band of 0.8 GHz or more) on the high band side of the pass band.
- the amount of attenuation is improved (the minimum value of insertion loss at 0.8 GHz or more is increased) as compared with the elastic wave filter according to Comparative Example 4 (from Table 4, 4.90 dB in Example 4, Comparative Example 4 The case is 4.43 dB). That is, in the elastic wave filter 10D according to the fourth embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 4C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 4 and Comparative Example 4.
- the comparison of the impedance characteristic of the wide band of the circuit and resonator which concern on Example 4 and the comparative example 4 is shown by (a) of the figure.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to Example 4 and Comparative Example 4 is shown in FIG.
- the comparison of the impedance characteristic of the wideband of the capacitor concerning Example 4 and comparative example 4 is shown in (c) of the figure.
- the comparison of the impedance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 4 and the comparative example 4 is shown by (d) of the figure.
- comparison of the capacitance characteristic of the narrow band (near the pass band) of the capacitors according to Example 4 and Comparative Example 4 is shown.
- comparison of the capacitance Q value of the narrow band (near the pass band) of the capacitors according to Example 4 and Comparative Example 4 is shown.
- the resonance characteristics of the parallel arm circuit 13p and the series arm resonator s1 that constitute the pass band of the elastic wave filter 10D are the same as the resonance characteristics of the elastic wave filter 10A according to the first embodiment, and thus the description thereof will be omitted.
- the frequency f4max (1085 MHz) at which the impedance of the capacitor Cp3 according to the fourth embodiment is maximized is the passband of the elastic wave filter 10D according to the fourth embodiment. It is disposed in the high frequency side attenuation band.
- the frequency f5max (1070 MHz) at which the impedance of the capacitor according to Comparative Example 4 is maximized is disposed in the attenuation band on the high band side of the pass band of the elastic wave filter according to Comparative Example 4.
- the maximum value (57.15 dB from Table 4) of the impedance of the capacitor Cp3 according to the fourth embodiment at the frequency f4max is the frequency f5max of the capacitor according to the fourth comparative example. It is smaller than the maximum value of impedance (57.48 dB from Table 4).
- the elastic wave filter 10D according to the fourth embodiment a part of the electrode finger pitch in the capacitor Cp3 is made to be different.
- the maximum impedance value of the parallel arm circuit 13p is reduced (the frequency at which the impedance is maximized is dispersed), so that the high frequency signal is passed to the parallel arm circuit 13p at f4max.
- the amount can be increased.
- FIG. 4D is a graph comparing the pass characteristics of the elastic wave filters according to the fourth embodiment and the first embodiment.
- comparison of the passage characteristic near the pass band of elastic wave filter 10D concerning Example 4 and elastic wave filter 10A concerning Example 1 is shown.
- comparison of the pass characteristics in the pass band of the elastic wave filter 10D according to the fourth embodiment and the elastic wave filter 10A according to the first embodiment is shown. As shown in the lower part of FIG.
- the insertion loss in the passband of the elastic wave filter 10D according to the fourth embodiment is reduced compared to the elastic wave filter 10A according to the first embodiment (from Table 4)
- the insertion loss in the passband is 0.79 dB
- the insertion loss in the passband is 0.92 dB.
- FIG. 5A is a view schematically showing an electrode structure of a resonant circuit constituting the elastic wave filter according to the first embodiment.
- FIG. 5A (a) is a plan view of an electrode on the substrate of the parallel arm circuit 11p according to the first embodiment, a cross-sectional view taken along the line AA 'of the plan, and B of the plan. A cross-sectional view taken along the line -B 'is shown, and (b) of FIG. 5A shows an enlarged view of the electrode.
- the electrode structure shown in FIG. 5A is for explaining a typical structure of a parallel arm resonator p1 constituting the parallel arm circuit 11p and a comb capacitance electrode constituting the capacitor Cp1.
- the number and length of the electrode fingers constituting the IDT electrode and the comb capacitor electrode of each resonator are not limited to the number and length of the electrode fingers shown in FIG.
- the electrode structure shown by FIG. 5A is applied not only to Example 1 but to the resonance circuit based on another Example.
- the parallel arm resonator p1 is configured of an IDT electrode formed on the piezoelectric substrate 102.
- the parallel arm resonator p ⁇ b> 1 is configured of an IDT electrode 111, a pair of reflectors 112, and a piezoelectric substrate 102.
- the IDT electrode 111 and the reflector 112 have a plurality of electrode fingers and a pair of bus bar electrodes arranged to face each other with the plurality of electrode fingers interposed therebetween, and the IDT electrodes 111 are a pair that interleaves each other.
- the plurality of electrode fingers are formed along a direction orthogonal to the propagation direction of the elastic wave, and are periodically formed along the propagation direction.
- the wavelength of the elastic wave to be excited is defined by the design parameters and the like of the IDT electrode 111 and the reflector 112.
- design parameters of the IDT electrode 111 will be described.
- electrode parameters of the IDT electrode 111 and the capacitor Cp1 are collectively referred to as P, W1, W2, S, and L.
- the electrode parameters of the IDT 111 are defined as Pr, W1r, W2r, Sr, and Lr
- the electrode parameters of the capacitor Cp1 are Pc1 (or Pc2) and W1c1 (or W1c2), respectively. It is defined as W2c1 (or W2c2), Sc1 (or Sc2), Lc.
- the wavelength of the elastic wave is defined by the repetition period ⁇ r of the electrode fingers connected to one bus bar electrode of the plurality of electrode fingers.
- the electrode finger pitch (the pitch of a plurality of electrode fingers, that is, the electrode finger period) Pr is 1/2 of the repetition period ⁇ r.
- a half of the line width of the left electrode finger of adjacent electrode fingers is W1
- a half of the right electrode finger line width is W2
- the crossover width Lr of the IDT electrode 111 is the overlapping electrode finger length when the electrode finger connected to one of the pair of bus bar electrodes and the electrode finger connected to the other are viewed from the propagation direction of the elastic wave. It is.
- the electrode finger duty ratio is defined by the occupied width (W1r + W2r) of the electrode finger in the electrode finger pitch Pr, that is, (W1r + W2r) / (W1r + W2r + Sr). That is, the electrode finger duty ratio of the IDT electrode 111 is defined by the line width occupancy rate of a plurality of electrode fingers, that is, (W1r + W2r) / Pr.
- ⁇ 0 is the dielectric constant in vacuum
- ⁇ r is the dielectric constant of the piezoelectric substrate 102.
- the capacitor Cp1 is composed of a piezoelectric substrate 102 and a comb-shaped capacitive electrode formed on the piezoelectric substrate 102.
- the comb-tooth capacitance electrode is configured of a plurality of electrode fingers.
- the comb-teeth capacitive electrode is formed of an electrode film in the same manner as the IDT electrode 111. That is, the comb-tooth capacitive electrode constituting the capacitor Cp1 is formed on the same piezoelectric substrate 102 as the IDT electrode 111 constituting the parallel arm resonator p1.
- the comb-tooth capacitance electrode and the IDT electrode 111 may be formed on different piezoelectric substrates.
- the comb-tooth capacitance electrode has a plurality of electrode fingers and a pair of bus bar electrodes arranged to face each other with the plurality of electrode fingers interposed therebetween, and the plurality of electrode fingers are one and the other of the pair bus bar electrodes Are alternately connected to each other.
- the plurality of electrode fingers are formed along the propagation direction of the elastic wave, and are periodically formed along the direction orthogonal to the propagation direction.
- the capacitor Cp1 has two different electrode finger pitches Pc1 and Pc2.
- Pc2 > Pc1.
- characteristics such as a capacitance value and a Q value are defined by design parameters and the like of the comb capacitor electrode.
- design parameters of the comb-tooth capacitor electrode will be described.
- the electrode finger pitch (the pitch of the electrode fingers, that is, the electrode finger cycle) Pc1 and Pc2 of the comb-tooth capacitance electrode is the line width of the left electrode finger among the adjacent electrode fingers as shown in (b) of FIG. 5A.
- a half is W1c1 (or W1c2), a half of the electrode finger line width on the right is W2c1 (or (W2c2)), and a space width between the adjacent electrode fingers (electrode finger gap) is Sc1 (or Sc2)
- Pc1 (W1c1 + W2c1 + Sc1)
- Pc2 (W1c2 + W2c2 + Sc2)
- the electrode finger duty ratio means the occupation width (W1c1 + W2c1) of the electrode finger in the electrode finger pitch Pc1 or the electrode finger in the electrode finger pitch Pc2.
- Occupancy width (W1c2 + W2c2), that is, (W1c1 + W2c1) / (W1c1 + W2c1 + Sc1) Or defined as (W1c2 + W2c2) / (W1c2 + W2c2 + Sc2), that is, the electrode finger duty ratio is defined as the line width occupancy rate of a plurality of electrode fingers, that is, (W1c1 + W2c1) / Pc1 or (W1c2 + W2c2) / Pc2
- the logarithm is the number of electrode fingers forming a pair, which is approximately half of the total number of electrode fingers
- the electrode finger pitch is the thickness Tc of the electrode film forming the fingers. Also, the capacitance C x comb capacitor electrode, the electrode finger pitch The capacitance of the electrode fingers having c1 as Cxc1, when the capacitance of the electrode fingers having the electrode finger pitch Pc2 and Cxc2, shown in equation 2 below, the electrode finger pitch does not contribute to the capacitance.
- the electrode finger pitches Pc1 and Pc2S of the capacitor Cp3 are narrower than the electrode finger pitch Pr at the IDT electrode of the parallel arm resonator p1. According to this, as described above, since the electrode finger pitch does not contribute to the electrostatic capacitance, the electrostatic capacitance per unit area of the capacitor Cp3 is set to the electrostatic capacitance per unit area of the parallel arm resonator p1 (electrostatic capacitance density It is possible to reduce the size of the capacitor Cp3 while making the size larger.
- FIG. 5B is a view schematically showing an electrode structure of a resonant circuit that constitutes an elastic wave filter according to a comparative example.
- (A) and (b) of FIG. 5B show an electrode configuration in which the capacitance of the capacitor is equal to the capacitance of the elastic wave filter ((a) of FIG. 5A) according to the first embodiment. It is done.
- (1) the electrostatic capacitance is equal to that of the elastic wave filter according to the first embodiment ((a) of FIG. 5A); The same as the electrode finger pitch), and (3) crossover width and logarithm are equal.
- (1) electrostatic capacitance is equal
- (2) electrode finger pitch is equal (the same as the electrode finger pitch of the resonator), and (3) 2.)
- the crossover width is large and the logarithm is small (crossover width ⁇ logarithm is equal).
- FIG. 6A is a graph showing the relationship between the electrode finger pitch of the comb capacitor and the capacitance value, the impedance, and the capacitance Q value in a typical example.
- FIG. 6B is a graph showing the relationship between the electrode finger pitch of the comb capacitor element, the capacitance per unit area (capacitance density), the capacitance Q value, and the self-resonant frequency in a typical example. From FIG. 6A and FIG. 6B, when the electrode finger pitch is reduced, the following effects can be obtained. (1) The self resonance frequency shifts to the high frequency side ((c) in FIG. 6B). (2) The capacitance Q value is improved ((b) in FIG. 6B). (3) Capacitance per unit area increases ((a) in FIG. 6B). For this reason, the size of the comb capacitance element is reduced.
- the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp3 are smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1.
- the capacitance Q value of the capacitor Cp3 is improved as compared to the elastic wave filter 10A according to the first embodiment.
- the insertion loss in the passband is reduced as compared to the elastic wave filter 10A according to the first embodiment (in accordance with the fourth embodiment, insertion loss in the passband in the fourth embodiment). Is 0.79 dB, and according to Table 1, the insertion loss in the pass band is 0.92 dB in Example 1.
- the capacitor Cp3 according to the fourth embodiment has a larger capacitance per unit area than the capacitor Cp1 according to the first embodiment, so that the elastic wave filter can be miniaturized.
- the area of the comb electrode portion of the capacitor Cp1 of the elastic wave filter 10A according to the first embodiment is 7293 ⁇ m 2
- the area of the comb electrode portion of the capacitor Cp1 of the elastic wave filter 10D according to the fourth embodiment Is 2368 ⁇ m 2 and it can be seen that the size is reduced.
- the self-resonance frequency is set as in the above (1) by making the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp3 smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1. Shift to high frequency side. From this point of view, in the fourth embodiment, it is easy to arrange the frequency at which the impedance of the capacitor Cp3 is maximized in the attenuation band on the high band side of the pass band of the elastic wave filter 10D.
- FIG. 7A is a circuit configuration diagram of an elastic wave filter 10E according to a fifth embodiment and a schematic view of a capacitor Cp4 in the parallel arm circuit 14p.
- the elastic wave filter 10E shown in the figure includes a series arm resonator s1, a parallel arm circuit 14p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 14p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cp4.
- the parallel arm circuit 14p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cp4.
- the parallel arm resonator p1 is a first elastic wave resonator connected in parallel to the capacitor Cp4.
- the capacitor Cp4 is a first comb-tooth capacitive element connected in parallel to the parallel arm resonator p1 and constitutes an impedance circuit.
- the capacitor Cp4 has a comb-like electrode including a plurality of electrode fingers.
- the repetition pitch of the plurality of electrode fingers of the capacitor Cp4 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Cp4 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 > Pc1.
- the frequency at which the impedance of the capacitor Cp4 is maximized is disposed outside the pass band of the elastic wave filter 10E.
- the parallel arm resonator p1 has an IDT electrode including a plurality of electrode fingers formed on a substrate having piezoelectricity.
- the capacitor Cp4 is also formed on the substrate.
- the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp4 are smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1.
- the film thickness of the plurality of electrode fingers constituting the capacitor Cp4 is smaller than the film thickness of the electrode fingers constituting the IDT electrode of the parallel arm resonator p1.
- Table 5 shows circuit parameters and filter characteristics of the elastic wave filter 10E according to the fifth embodiment and the elastic wave filter according to the comparative example 5.
- the elastic wave filter according to the comparative example 5 is different from the elastic wave filter 10E according to the fifth embodiment only in the configuration of the capacitor of the parallel arm circuit.
- the electrode finger pitch Pc1 of the capacitor Cp4 is 0.725 ⁇ m, and the electrode finger pitch Pc2 is 0.750 ⁇ m.
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 40, and the number of electrode fingers arranged at the electrode finger pitch Pc2 is 21.
- the electrode finger pitches of the capacitors are all 0.750 ⁇ m.
- the electrode finger duty ratio of the capacitor is 0.6, the film thickness of the comb electrode is 150 nm, and the crossing width Lc is 20 ⁇ m.
- Example 5 the electrode finger pitch of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m, the electrode finger duty ratio of the IDT electrode is 0.5, and the film of the IDT electrode is The thickness is 350 nm.
- the film thickness of the capacitor Cp4 of the parallel arm circuit 14p and the electrode finger pitches Pc1 and Pc2 are parallel arm circuit 13p. Only the film thickness of the capacitor Cp3 and the point smaller than the electrode finger pitches Pc1 and Pc2 differ as the configuration.
- an elastic wave filter 10E according to the present embodiment will not be described the same as the elastic wave filter 10D according to the fourth embodiment, and differences will be mainly described.
- Example 5 Comparing Example 5 and Example 4 specifically, in Example 4, the film thickness of the capacitor Cp3 and the film thickness of the IDT electrode were both 350 nm, while in Example 5, the film thickness of the capacitor Cp4 was The film thickness (150 nm) is set smaller than the film thickness (350 nm) of the IDT electrode. Accordingly, the electrode finger pitches Pc1 (0.725 ⁇ m) and Pc2 (0.750 ⁇ m) of Example 5 are made smaller than the electrode finger pitches Pc1 (1.950 ⁇ m) and Pc2 (2.000 ⁇ m) of Example 4. ing.
- FIG. 7B is a graph comparing the pass characteristics of the elastic wave filters according to Example 5 and Comparative Example 5.
- the comparison of the wide band pass characteristic of the elastic wave filter concerning Example 5 and the comparative example 5 is shown by (a) of the figure.
- (b) of the same drawing shows comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to Example 5 and Comparative Example 5.
- (c) of the same drawing shows a comparison of the pass characteristics in the pass band of the elastic wave filters according to the fifth embodiment and the fifth comparative example.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to Example 5 and Comparative Example 5.
- the elastic wave filter 10E according to the fifth embodiment is more effective in the attenuation band on the higher side of the pass band (frequency band of 2 GHz or more), The amount of attenuation is improved (the minimum value of insertion loss at 2 GHz or more is increased) as compared with the elastic wave filter according to Comparative Example 5 (from Table 5, 8.87 dB in Example 5, 8.54 dB in Comparative Example 5) ). That is, in the elastic wave filter 10E according to the fifth embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 7C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 5 and Comparative Example 5.
- the comparison of the impedance characteristic of the wide band of the circuit and resonator which concern on Example 5 and the comparative example 5 is shown by (a) of the figure.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to Example 5 and Comparative Example 5 is shown in FIG.
- the comparison of the impedance characteristic of the wideband of the capacitor concerning Example 5 and comparative example 5 is shown in (c) of the figure.
- the comparison of the impedance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 5 and comparative example 5 is shown in (d) of the figure.
- the comparison of the electrostatic capacitance characteristic of the narrow band (near the pass band) of the capacitor concerning Example 5 and the comparative example 5 is shown by (e) of the figure.
- comparison of the capacitance Q value of the narrow band (near the pass band) of the capacitors according to Example 5 and Comparative Example 5 is shown.
- the resonance characteristics of the parallel arm circuit 14p and the series arm resonator s1 that constitute the pass band of the elastic wave filter 10E are the same as the resonance characteristics of the elastic wave filter 10A according to the first embodiment, and thus the description thereof will be omitted.
- the frequency f6max (2601 MHz) at which the impedance of the capacitor Cp4 according to the fifth embodiment is maximized is the high frequency side of the passband of the elastic wave filter 10E according to the fifth embodiment. It is arranged in the attenuation band.
- the frequency f7max (2695 MHz) at which the impedance of the capacitor according to Comparative Example 5 is maximized is disposed in the attenuation band on the high band side of the pass band of the elastic wave filter according to Comparative Example 5.
- the maximum value (52.53 dB from Table 5) of the impedance of the capacitor Cp4 according to the fifth embodiment at the frequency f6max is the frequency f7max of the capacitor according to the fifth comparative example. It is smaller than the maximum value of impedance (57.43 dB from Table 5).
- the elastic wave filter 10E according to the fifth embodiment a part of the electrode finger pitch in the capacitor Cp4 is made to be different.
- the maximum impedance value of the parallel arm circuit 14p is reduced (the frequency at which the impedance is maximized is dispersed), so the high frequency signal is passed to the parallel arm circuit 14p at f6max.
- the amount can be increased.
- the impedance of the capacitor Cp3 is maximum at the frequency f6max (2601 MHz) at which the impedance of the capacitor Cp4 is maximum.
- the frequency is higher than f4max (1085 MHz). Therefore, in the fifth embodiment, the amount of attenuation in the attenuation band on the higher frequency side is improved compared to the fourth embodiment.
- FIG. 7D is a graph comparing the pass characteristics of the elastic wave filters according to the fifth embodiment, the fourth embodiment, and the first embodiment.
- the upper part of the same drawing shows a comparison of the broadband transmission characteristics of the elastic wave filter 10E according to the fifth embodiment, the elastic wave filter 10D according to the fourth embodiment, and the elastic wave filter 10A according to the first embodiment.
- comparison of the pass characteristics within the passband of the elastic wave filter 10E according to the fifth embodiment, the elastic wave filter 10D according to the fourth embodiment, and the elastic wave filter 10A according to the first embodiment It is shown.
- the elastic wave filter 10E according to the fifth embodiment is inserted in the pass band in comparison with the elastic wave filter 10D according to the fourth embodiment and the elastic wave filter 10A according to the first embodiment. Loss is reduced.
- the film thickness of the capacitor Cp4 according to the fifth embodiment is smaller than the film thickness of the IDT electrode of the parallel arm resonator p1 and smaller than the film thickness of the capacitor Cp3 according to the fourth embodiment.
- FIG. 6C is a graph showing, in a typical example, a relationship between a film thickness of an interdigital transducer element with respect to an electrode finger pitch, a capacitance per unit area (capacitance density), a capacitance Q value and a self resonance frequency. .
- the electrode finger pitch can be narrowed by reducing the film thickness of the electrode finger.
- the upper limit of the film thickness of the electrode finger is about 40% of the electrode finger pitch due to manufacturing limitations. Therefore, by reducing the film thickness of the electrode finger, the electrode finger pitch can be further narrowed, and the effect of reducing the electrode finger pitch of the comb capacitor element can be further enhanced.
- the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp4 are smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1.
- the capacitance Q value of the capacitor Cp4 is improved.
- the insertion loss in the pass band is reduced as compared with the elastic wave filter 10A according to the first embodiment.
- the thickness of the electrode finger of the capacitor Cp4 is made smaller than the thickness of the electrode finger of the IDT electrode of the parallel arm resonator p1. Since the electrode finger pitch of the capacitor Cp4 can be made smaller compared to the elastic wave filter 10D, the capacitance Q value of the capacitor Cp4 is further improved. Thereby, in the elastic wave filter 10E according to the fifth embodiment, the insertion loss in the passband is further reduced as compared to the elastic wave filter 10D according to the fourth embodiment (from Table 5, insertion in the passband in the fifth embodiment) The loss is 0.65 dB, and according to Table 4, the insertion loss in the pass band is 0.79 dB in Example 4.
- the elastic wave filter can be miniaturized.
- the area of the comb electrode portion of the capacitor Cp3 of the elastic wave filter 10D according to the fourth embodiment is 2368 ⁇ m 2
- the area of the comb electrode portion of the capacitor Cp4 of the elastic wave filter 10E according to the fifth embodiment Is 893 ⁇ m 2 and it can be seen that the size is further reduced.
- the self-resonance frequency is set as in the above (1) by making the plurality of electrode finger pitches Pc1 and Pc2 constituting the capacitor Cp4 smaller than the electrode finger pitch Pp1 constituting the IDT electrode of the parallel arm resonator p1. Shift to high frequency side. From this viewpoint, in the fifth embodiment, the frequency at which the impedance of the capacitor Cp 4 is maximized can be easily disposed in the attenuation band on the higher frequency side as compared with the elastic wave filter 10D according to the fourth embodiment.
- the electrode finger film thickness of the capacitor Cp4 is made smaller than the electrode finger film thickness of the IDT electrode, and the electrode finger duty ratio of the capacitor Cp4 is the electrode finger duty of the IDT electrode It may be larger than the ratio.
- FIG. 6D is a graph showing the relationship between the duty ratio of the comb tooth capacitive element, the capacitance per unit area (capacitance density), the capacitance Q value, and the self-resonant frequency in a typical example. As shown in (a) of FIG. 6D, since the capacitance per unit area of the comb capacitor element can be increased, the acoustic wave filter can be further miniaturized.
- the electrode finger pitch, the film thickness, the duty ratio, etc. are not necessarily uniform, and can not be determined due to variations due to manufacturing processes or the like. It may be uniform or uneven due to adjustment of characteristics and the like. For this reason, in each of the above-described elements, there are cases where a part of the comb-tooth capacitive element and the IDT electrode that configure them do not satisfy the above-mentioned relationships such as the electrode finger pitch, film thickness, and electrode finger duty ratio.
- the relationship between the electrode finger pitch, the film thickness, and the electrode finger duty ratio in each of the elements should be substantially satisfied, for example, the electrode finger pitch, the film thickness, and the electrode finger duty ratio in the comb capacitance element and the IDT electrode It suffices to hold the average value of
- FIG. 8A is a circuit configuration diagram of an elastic wave filter 10F according to a sixth embodiment and a schematic view of the capacitor Cs2 in the series arm circuit 12s.
- An elastic wave filter 10F shown in the same figure includes a series arm circuit 12s, a parallel arm resonator p1, and input / output terminals T1 and T2.
- the series arm circuit 12s is connected on a path connecting the input / output terminal T1 and the input / output terminal T2, and includes a series arm resonator s1, a capacitor Cs2, and a switch SW1. It is a resonant circuit.
- the series arm resonator s1 is a first elastic wave resonator connected in parallel to a circuit in which the capacitor Cs2 and the switch SW1 are connected in series.
- the capacitor Cs2 is a first comb-teeth capacitive element, and a circuit in which the capacitor Cs2 and the switch SW1 are connected in series constitutes an impedance circuit.
- the capacitor Cs2 has a comb-like electrode including a plurality of electrode fingers.
- the repetition pitch of the plurality of electrode fingers of the capacitor Cs2 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Cs2 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 > Pc1.
- the frequency at which the impedance of the capacitor Cs2 is minimized is disposed outside the pass band of the elastic wave filter 10F.
- Table 6 shows circuit parameters and filter characteristics of the elastic wave filter 10F according to the sixth embodiment.
- the electrode finger pitch Pc1 of the capacitor Cs2 is 0.725 ⁇ m, and Pc2 is 0.750 ⁇ m. Further, the number of electrode fingers arranged at the electrode finger pitch Pc1 is 21, and the number of electrode fingers arranged at the electrode finger pitch Pc2 is 40.
- the electrode finger duty ratio of the capacitor is 0.6, the film thickness of the comb electrode is 150 nm, and the crossover width Lc is 20 ⁇ m.
- the electrode finger pitch Pr of the IDT electrode constituting the series arm resonator s1 is 2.1 ⁇ m, the electrode finger duty ratio of the IDT electrode is 0.5, and the film thickness of the IDT electrode is 350 nm. That is, the film thickness (150 nm) of the plurality of electrode fingers constituting the capacitor Cs2 is smaller than the film thickness (350 nm) of the electrode fingers constituting the IDT electrode of the series arm resonator s1.
- variable-frequency type in which the frequency of the attenuation pole on the high band side in the pass band formed by the antiresonance frequency of the series arm circuit 12s is switched by switching conduction and non-conduction of the switch SW1.
- the elastic wave filter 10F can be realized.
- FIG. 8B is a graph comparing the pass characteristics of the elastic wave filter 10F according to the sixth embodiment.
- the broad band pass characteristic of the elastic wave filter 10F according to the sixth embodiment is shown in (a) of the same figure, and in (b) of the same figure, comparison of the narrow band (near the pass band) pass characteristic is shown.
- (c) of the figure shows the impedance characteristics of the wide band of the circuit and the resonator
- the impedance of the narrow band (near the passband) of the circuit and the resonator The characteristics are shown.
- a capacitor Cs2 is added to the series arm resonator s1 when the switch SW1 is conductive (ON).
- the antiresonance frequency Fason of the series arm circuit 12s when the switch SW1 is on is shifted to a lower side than the antiresonance frequency fas of the series arm resonator s1.
- the elastic wave filter 10F may shift the attenuation pole on the high frequency side of the pass band to the high frequency side by switching the switch SW1 from the conductive state to the non-conductive state. it can.
- FIG. 8C is a graph showing the comb tooth capacitance characteristic of the elastic wave filter 10F according to the sixth embodiment.
- the wide band impedance characteristic of the capacitor Cs2 is shown in (a) of the figure, and the narrow band impedance characteristic of the capacitor Cs2 is shown in (b) of the same figure. Shows a wide band electrostatic capacity characteristic of the capacitor Cs2, and (d) of the same drawing shows a narrow band electrostatic capacity characteristic of the capacitor Cs2, and (e) of the same drawing.
- the characteristic Q value characteristic of the wide band of the capacitor Cs2 is shown in FIG. 6, and the characteristic value Q characteristic of the narrow band of the capacitor Cs2 is shown in (f) of the same drawing.
- the frequency (2554 MHz) at which the impedance of the capacitor Cs2 is minimized is disposed in the attenuation band on the high band side of the pass band of the elastic wave filter 10F according to the sixth embodiment.
- the local minimum value (2.39 dB according to Table 6) of the impedance at the frequency at which the impedance of the capacitor Cs 2 becomes local is larger than that of the variable-frequency elastic wave filter in which the electrode finger pitch of the capacitor is uniform. ing.
- a part of the electrode finger pitch in the capacitor Cs2 is made to be different.
- the switch SW1 when the switch SW1 is on, the minimum value of the impedance of the series arm circuit 12s is reduced (the frequency at which the impedance is minimized is dispersed) in the attenuation band on the high band side of the pass band. It is possible to realize the variable-frequency elastic wave filter 10F in which the attenuation amount in the attenuation band on the high band side of the pass band is improved while maintaining it.
- FIG. 9A is a circuit configuration diagram of an elastic wave filter 10G according to a seventh embodiment and a schematic view of the capacitor Cps1 in the parallel arm circuit 15p.
- the elastic wave filter 10G shown in the same figure includes a series arm resonator s1, a parallel arm circuit 15p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 15p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cps1.
- the parallel arm circuit 15p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cps1.
- the parallel arm resonator p1 is a first elastic wave resonator connected in series with the capacitor Cps1.
- the capacitor Cps1 is a first comb-tooth capacitive element connected in series with the parallel arm resonator p1, and constitutes an impedance circuit.
- the capacitor Cps1 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 9A.
- the comb electrodes of the capacitor Cps1 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- the frequency at which the impedance of the capacitor Cps1 is maximized is disposed outside the pass band of the elastic wave filter 10G.
- Table 7 shows circuit parameters and filter characteristics of the elastic wave filter 10G according to the seventh example and the elastic wave filter according to the comparative example 6.
- the elastic wave filter according to the comparative example 6 differs from the elastic wave filter 10G according to the seventh embodiment only in the configuration of the capacitor of the parallel arm circuit.
- the electrode finger pitch Pc1 of the capacitor Cps1 is 3.00 ⁇ m, and the electrode finger pitch Pc2 is 3.05 ⁇ m. Further, the number of electrode fingers arranged at the electrode finger pitch Pc1 is 321, and the number of electrode fingers arranged at the electrode finger pitch Pc2 is 280. On the other hand, in the elastic wave filter according to Comparative Example 6, the electrode finger pitches of the capacitors are all 3.00 ⁇ m, and the number of electrode fingers arranged at the electrode finger pitch is 601.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 350 nm
- the crossing width Lc is 20 ⁇ m.
- Example 7 the electrode finger pitch Pr of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m, the electrode finger duty ratio of the IDT electrode is 0.5, and the IDT electrode The film thickness is 350 nm.
- the first region (the right side region of the comb-tooth electrode in FIG. 9A) in which the electrode fingers arranged at the electrode finger pitch Pc1 are formed and the electrode finger pitch Pc2
- the second region (the left region of the comb electrode in FIG. 9A) in which the electrode finger is formed is divided into two.
- the above two regions are not limited to being divided into two, and may be subdivided into three or more.
- the first area and the second area may be alternately arranged.
- the comb-tooth electrode constituting the capacitor Cps1 has two different electrode finger pitches, it may have three or more different electrode finger pitches.
- the capacitance of the parallel arm circuit 15p of the elastic wave filter 10G according to the seventh embodiment is 7.40 pF
- the capacitance of the parallel arm circuit of the elastic wave filter according to the comparative example 6 is Is 7.33 pF, and both are almost the same value.
- FIG. 9B is a graph comparing the pass characteristics of the elastic wave filters according to Example 7 and Comparative Example 6.
- comparison of the broadband pass characteristic of the elastic wave filter concerning Example 7 and comparative example 6 is shown.
- comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to Example 7 and Comparative Example 6 is shown.
- (c) of the same drawing shows a comparison of the pass characteristics in the pass band of the elastic wave filters according to Example 7 and Comparative Example 6.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the lower attenuation band of the elastic wave filters according to Example 7 and Comparative Example 6.
- the elastic wave filter according to the seventh embodiment is in the attenuation band on the lower pass band side (frequency band of 0.6 to 0.8 GHz).
- the amount of attenuation at 10 G is improved (the minimum value of the insertion loss at 0.6 to 0.8 GHz is increased) than the elastic wave filter according to Comparative Example 6 (from Table 7, 2 in Example 7) 90 dB, 2.79 dB in Comparative Example 6). That is, in the elastic wave filter 10G according to the seventh embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 9C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 7 and Comparative Example 6.
- (a) of the same figure comparison of the impedance characteristic of the broadband of the circuit concerning Example 7 and comparative example 6 and a resonator is shown.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to Example 7 and Comparative Example 6 is shown in FIG.
- the comparison of the impedance characteristic of the wideband of the capacitor concerning Example 7 and comparative example 6 is shown by (c) of the figure.
- the resonance frequency Frp of the parallel arm circuit is set to the resonance frequency frp of the parallel arm resonator p1. Shift to the high frequency side.
- the elastic wave filter according to the seventh example and the comparative example 6 in forming a band pass filter by the parallel arm circuit and the series arm resonator s1, the antiresonance frequency Fap of the parallel arm circuit and the resonance frequency frs of the series arm resonator s1. And close.
- the vicinity of the resonance frequency Frp in which the impedance of the parallel arm circuit approaches 0 is the low frequency side stop band.
- the impedance of the parallel arm circuit becomes high at the antiresonance frequency Fap, and the impedance of the series arm resonator s1 approaches zero near the resonance frequency frs.
- the signal passband is in the signal path (serial arm) from the input / output terminal T1 to the input / output terminal T2.
- the impedance of the series arm resonator s1 becomes high and it becomes the high frequency side stop band.
- the pass band is defined by the antiresonance frequency Fap and the resonance frequency frs
- the pole (attenuation pole) on the low pass band side is defined by the resonance frequency Frp.
- the frequency f1max (702 MHz) at which the impedance of the capacitor Cps1 according to the seventh embodiment is maximized is the passband of the elastic wave filter 10G according to the seventh embodiment. It is placed in the lower attenuation band.
- the frequency f2max (720 MHz) at which the impedance of the capacitor according to Comparative Example 6 is maximized is disposed in the attenuation band on the lower side of the pass band of the elastic wave filter according to Comparative Example 6.
- the maximum value (41.10 dB from Table 7) of the impedance of the capacitor Cps1 according to the seventh embodiment at the frequency f1max is the frequency f2max of the capacitor according to the sixth comparative example. It is smaller than the maximum value of impedance (42.33 dB according to Table 7).
- the elastic wave filter 10G according to the seventh embodiment a part of the electrode finger pitch in the capacitor Cps1 is made to be different.
- the maximum impedance value of the parallel arm circuit 15p is reduced (the frequency at which the impedance is maximized is dispersed), so the high frequency signal at f1max is passed to the parallel arm circuit 15p.
- the amount can be increased. That is, it is possible to solve the problem that the attenuation amount of the elastic wave filter 10G is deteriorated in the attenuation band which is a frequency region in which the impedance peak (maximum point of impedance) is located. As described above, it is possible to realize the elastic wave filter 10G in which the attenuation amount in the attenuation band on the low pass band side is improved while maintaining the insertion loss in the pass band.
- FIG. 10A is a circuit configuration diagram of an elastic wave filter 10H according to an eighth embodiment and a schematic view of a capacitor Cps2 in the parallel arm circuit 16p.
- the elastic wave filter 10H shown in the figure includes a series arm resonator s1, a parallel arm circuit 16p, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 16p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1 and a capacitor Cps2.
- the parallel arm circuit 16p is a resonant circuit composed of a parallel arm resonator p1 and a capacitor Cps2.
- the parallel arm resonator p1 is a first elastic wave resonator connected in series with the capacitor Cps2.
- the capacitor Cps2 is a first comb-tooth capacitive element connected in series with the parallel arm resonator p1, and constitutes an impedance circuit.
- the capacitor Cps2 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 10A.
- the comb electrodes of the capacitor Cps2 have three different electrode finger pitches Pc1 (first electrode finger pitch), Pc2 ( A second electrode finger pitch), and Pc3.
- the frequency at which the impedance of the capacitor Cps2 is maximized is disposed outside the pass band of the elastic wave filter 10H.
- Table 8 shows circuit parameters and filter characteristics of the elastic wave filter 10H according to the eighth embodiment and the elastic wave filter according to the comparative example 7.
- the elastic wave filter according to Comparative Example 7 differs from the elastic wave filter 10H according to the eighth embodiment only in the configuration of the capacitor of the parallel arm circuit.
- the electrode finger pitch Pc3 of the capacitor Cps2 is 1.48 ⁇ m, Pc1 is 1.50 ⁇ m, and Pc2 is 1.52 ⁇ m.
- the number of electrode fingers arranged at the electrode finger pitch Pc3 is 100
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 201
- the number of electrode fingers arranged at the electrode finger pitch Pc2 There are 100 books.
- the electrode finger pitches of the capacitors are all 1.50 ⁇ m, and the number of electrode fingers arranged at the electrode finger pitch is 401.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 200 nm
- the crossover width Lc is 20 ⁇ m.
- Example 8 and Comparative Example 7 the electrode finger pitch Pr of the IDT electrode constituting the parallel arm resonator p1 is 2.1 ⁇ m, the electrode finger duty ratio of the IDT electrode is 0.5, and the IDT electrode The film thickness is 350 nm.
- the third region (the right side region of the comb-tooth electrode in FIG. 10A) in which the electrode fingers arranged at the electrode finger pitch Pc3 are formed and the electrode finger pitch Pc1
- a first area in which the electrode fingers are formed (the central area of the comb electrode in FIG. 10A) and a second area in which the electrode fingers arranged at the electrode finger pitch Pc2 are formed (the left area in the comb electrode of FIG. 10A) And are divided into three.
- the above three regions are not limited to being divided into three, and may be divided into two by the electrode finger pitches Pc1 and Pc2, or subdivided into four or more by four or more different electrode finger pitches It may be standardized. Also, for example, the first region, the second region, and the third region may be alternately arranged.
- the capacitance of the capacitor Cps2 of the elastic wave filter 10H according to the eighth embodiment is 6.49 pF
- the capacitance of the capacitor of the elastic wave filter according to the comparative example 7 is also 6.49 pF. It is.
- FIG. 10B is a graph comparing the pass characteristics of the elastic wave filters according to Example 8 and Comparative Example 7.
- comparison of the wide band pass characteristic of the elastic wave filter concerning Example 8 and comparative example 7 is shown.
- (b) of the same drawing shows a comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to Example 8 and Comparative Example 7.
- (c) of the same drawing shows a comparison of the pass characteristics in the pass band of the elastic wave filters according to Example 8 and Comparative Example 7.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the high-pass side attenuation band of the elastic wave filters according to Example 8 and Comparative Example 7.
- the elastic wave filter according to the eighth embodiment is in the attenuation band on the high band side of the pass band (frequency band of 0.9 to 3.0 GHz).
- the attenuation is improved (the minimum value of the insertion loss at 0.9 to 3.0 GHz is increased) as compared with the elastic wave filter according to Comparative Example 7 (from Table 8, 3 in Example 8). .35 dB, 2.37 dB in Comparative Example 7). That is, in the elastic wave filter 10H according to the eighth embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 10C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 8 and Comparative Example 7.
- (a) of the same figure comparison of the impedance characteristic of the broadband of the circuit concerning Example 8 and comparative example 7 and a resonator is shown.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to Example 8 and Comparative Example 7 is shown in FIG.
- the comparison of the impedance characteristic of the wide band of the capacitor concerning Example 8 and the comparative example 7 is shown by (c) of the figure.
- the resonance frequency Frs of the parallel arm circuit is set to the resonance frequency frs of the parallel arm resonator p1. Shift to the high frequency side.
- the vicinity of the resonance frequency Frp in which the impedance of the parallel arm circuit approaches 0 is the low frequency side stop band.
- the impedance of the parallel arm circuit becomes high at the antiresonance frequency Fap, and the impedance of the series arm resonator s1 approaches zero near the resonance frequency frs.
- the signal passband is in the signal path (serial arm) from the input / output terminal T1 to the input / output terminal T2.
- the impedance of the series arm resonator s1 becomes high and it becomes the high frequency side stop band.
- the passband is defined by the antiresonance frequency Fap and the resonance frequency frs
- the pole (attenuation pole) on the low passband side is defined by the resonance frequency Frp.
- the frequency f1max (2700 MHz) at which the impedance of the capacitor Cps2 according to the eighth embodiment is maximal is the passband of the elastic wave filter 10H according to the eighth embodiment. It is disposed in the high frequency side attenuation band.
- the frequency f2max (2695 MHz) at which the impedance of the capacitor according to Comparative Example 7 is maximized is disposed in the attenuation band on the high band side of the pass band of the elastic wave filter according to Comparative Example 7.
- the maximum value (37.81 dB from Table 8) of the impedance of the capacitor Cps2 according to the eighth embodiment at the frequency f1max is the frequency f2max of the capacitor according to the comparative example 7. It is smaller than the maximum value of impedance (42.89 dB according to Table 8).
- the elastic wave filter 10H according to the eighth embodiment a part of the electrode finger pitch in the capacitor Cps2 is different.
- the maximum impedance value of the parallel arm circuit 16p is reduced (the frequency at which the impedance is maximized is dispersed), so the high frequency signal at f1max is passed to the parallel arm circuit 16p.
- the amount can be increased. That is, it is possible to solve the problem that the attenuation amount of the elastic wave filter 10H is deteriorated in the attenuation band which is the frequency region in which the impedance peak (maximum point of impedance) is located.
- the elastic wave filter 10H in which the attenuation amount in the attenuation band on the high band side of the pass band is improved while maintaining the insertion loss in the pass band.
- FIG. 11 is a graph comparing the pass characteristics of the elastic wave filters according to the seventh embodiment and the eighth embodiment.
- the comparison of the wide band pass characteristic of the elastic wave filter concerning Example 7 and Example 8 is shown by (a) of the figure.
- (b) of the same drawing shows a comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to the seventh embodiment and the eighth embodiment.
- (c) of the same drawing shows a comparison of pass characteristics in the pass band of the elastic wave filters according to the seventh embodiment and the eighth embodiment.
- the insertion loss in the pass band is slightly reduced in the eighth embodiment than in the seventh embodiment. This is because the capacitance Q value of the capacitor Cps2 according to the eighth embodiment is higher than the capacitance Q value of the capacitor Cps1 according to the seventh embodiment. Further, in the elastic wave filter 10H according to the eighth embodiment, since the frequency f1max at which the impedance of the capacitor Cps2 is maximized is disposed on the high pass side of the pass band, the attenuation on the high pass side (near 2.5 GHz) of the pass band. The amount is large.
- the frequency f1max at which the impedance of the capacitor Cps1 is maximized is disposed on the lower side of the pass band, so the attenuation amount of the attenuation band on the lower side of the pass band is large. .
- FIG. 12A is a circuit configuration diagram of an elastic wave filter 10J according to a ninth embodiment.
- the elastic wave filter 10J shown in the figure includes a parallel arm circuit 17p, a series arm resonator s1, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 17p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1, a capacitor Cps1, and a switch SW2 to form a resonant circuit.
- the parallel arm resonator p1 is a first elastic wave resonator connected in series to a circuit in which the capacitor Cps1 and the switch SW2 are connected in parallel.
- the capacitor Cps1 is a first comb-teeth capacitive element, and a circuit in which the capacitor Cps1 and the switch SW2 are connected in parallel constitutes an impedance circuit.
- the capacitor Cps1 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 9A.
- the switch SW2 is a first switch element connected in parallel to the capacitor Cps1.
- the comb electrodes of the capacitor Cps1 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- the frequency at which the impedance of the capacitor Cps1 is minimized is disposed outside the pass band of the elastic wave filter 10J.
- the elastic wave filter 10J according to the present embodiment is obtained by adding the switch SW2 to the elastic wave filter 10G according to the seventh embodiment, and a series arm resonator s1, a parallel arm resonator p1, and a capacitor are provided. Each parameter of Cps1 is the same.
- the switch SW2 is an ideal element (the impedance is 0 ⁇ when the switch is on and the impedance is infinite when the switch is off).
- FIG. 13A is a graph showing the pass characteristic and the impedance characteristic of the elastic wave filter 10J according to the ninth embodiment.
- (a) of the figure in the elastic wave filter 10J according to the ninth embodiment, comparison of wide band pass characteristics when the switch SW2 is turned on and off is shown. Further, in the elastic wave filter 10J according to the ninth embodiment, comparison of narrow band (near the pass band) pass characteristics in the case where the switch SW2 is turned on and off is shown in (b) of the same figure. Further, (c) of the same drawing shows a comparison of impedance characteristics when the switch SW2 is turned on and off in the elastic wave filter 10J according to the ninth embodiment.
- the resonance frequency on the low frequency side can be switched among the two resonance frequencies of the parallel arm circuit 17p. Therefore, it is possible to switch (change) the frequency of the attenuation pole on the lower side of the passband, and it is possible to provide the elastic wave filter 10J of variable frequency type in which the attenuation characteristics on the lower side of the passband are improved.
- the elastic wave filter 10K shown in the figure includes a parallel arm circuit 18p, a series arm resonator s1, and input / output terminals T1 and T2.
- the series arm resonator s1 is connected on a path connecting the input / output terminal T1 and the input / output terminal T2 to form a series arm circuit.
- the parallel arm circuit 18p is connected to the node x1 on the path and the ground, and includes a parallel arm resonator p1, a capacitor Cps2, and a switch SW3 to form a resonant circuit.
- the parallel arm resonator p1 is a first elastic wave resonator connected in series to a circuit in which the capacitor Cps3 and the switch SW3 are connected in parallel.
- the capacitor Cps2 is a first comb-teeth capacitive element, and a circuit in which the capacitor Cps2 and the switch SW3 are connected in parallel constitutes an impedance circuit.
- the capacitor Cps2 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right side of FIG. 10A.
- the switch SW3 is a first switch element connected in parallel to the capacitor Cps2.
- the repetition pitch of the plurality of electrode fingers of the capacitor Cps2 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Cps2 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 > Pc1.
- the frequency at which the impedance of the capacitor Cps2 is minimized is disposed outside the passband of the elastic wave filter 10K.
- the elastic wave filter 10K according to the present embodiment is obtained by adding the switch SW3 to the elastic wave filter 10H according to the eighth embodiment, and a series arm resonator s1, a parallel arm resonator p1, and a capacitor are provided. Each parameter of Cps2 is the same.
- the switch SW3 is an ideal element (the impedance is 0 ⁇ when the switch is on and the impedance is infinite when the switch is off).
- FIG. 13B is a graph showing the pass characteristic and the impedance characteristic of the elastic wave filter 10K according to the tenth embodiment.
- (a) of the figure in the elastic wave filter 10K according to the tenth embodiment, comparison of wide band pass characteristics when the switch SW3 is turned on and off is shown. Further, in the elastic wave filter 10K according to the tenth embodiment, comparison of narrow band (near the pass band) pass characteristics in the case where the switch SW3 is turned on and off is shown in (b) of FIG. Further, in (c) of the figure, in the elastic wave filter 10K according to the tenth embodiment, comparison of impedance characteristics when the switch SW3 is turned on and off is shown.
- the resonance frequency on the low frequency side can be switched among the two resonance frequencies of the parallel arm circuit 18p. Therefore, it is possible to switch (change) the frequency of the attenuation pole on the lower side of the pass band, and it is possible to provide an elastic wave filter 10K of variable frequency type in which the attenuation characteristics on the lower side of the pass band are improved.
- FIG. 14A is a circuit configuration diagram of an elastic wave filter 10L according to a first modification of the embodiment.
- the elastic wave filter 10L shown in the same drawing is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
- the impedance circuit is a first switch circuit having a switch and a capacitor connected in parallel with each other. Switching the switch on and off switches the resonant frequency of the parallel arm circuit.
- the elastic wave filter 10L according to the present modification 1 is different from the elastic wave filter 10J according to the ninth embodiment in that the series arm resonator s1 is replaced with a series arm circuit 13s.
- the resonant frequency of the parallel arm circuit can be switched by switching between conduction and non-conduction of the switch. Therefore, it is possible to switch (change) the frequency of the attenuation pole on the lower side of the pass band, and it is possible to provide the elastic wave filter 10L of variable frequency type in which the attenuation characteristics on the lower side of the pass band are improved.
- FIG. 14B is a circuit configuration diagram of an elastic wave filter 10M according to a second modification of the embodiment.
- the elastic wave filter 10M shown in the same drawing is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit includes a parallel arm resonator p1 and a parallel arm resonator p2 and an impedance circuit connected in series with each other.
- the impedance circuit is a first switch circuit having a switch and a capacitor connected in parallel with each other.
- the parallel arm resonator p1 is a second elastic wave resonator
- the parallel arm resonator p2 is a first elastic wave resonator
- the capacitor is connected in parallel or in series with the parallel arm resonator p2.
- a comb capacitor element as shown on the right side of FIG. 9A, has a comb electrode composed of a plurality of electrode fingers.
- the resonance frequency of the parallel arm resonator p2 is lower than the resonance frequency of the parallel arm resonator p1, and the antiresonance frequency of the parallel arm resonator p2 is lower than the antiresonance frequency of the parallel arm resonator p1.
- the parallel arm circuit has two resonant frequencies and two anti-resonant frequencies, and switching between conduction and non-conduction of the switch allows the resonant frequency on the low frequency side of the two resonant frequencies, and Of the two antiresonant frequencies, the antiresonant frequency on the low frequency side is switched together.
- the frequency of the low pass end of the pass band and the frequency of the attenuation pole on the low pass side of the pass band can be switched (changed) together, and the variable frequency elastic wave filter 10M with small insertion loss can be provided. Furthermore, when the switch is nonconductive, the amount of attenuation can be improved.
- the resonance frequency of the parallel arm resonator p2 is higher than the resonance frequency of the parallel arm resonator p1
- the antiresonance frequency of the parallel arm resonator p2 is the parallel arm resonator p1. It may be higher than the antiresonance frequency.
- the parallel arm circuit has two resonance frequencies and two anti-resonance frequencies, and by switching between conduction and non-conduction of the switch, the resonance frequency on the high frequency side of the two resonance frequencies, and Of the two antiresonant frequencies, the antiresonant frequency on the low frequency side is switched together.
- the resonance frequency of the parallel arm resonator p2 is different from the resonance frequency of the parallel arm resonator p1
- the antiresonance frequency of the parallel arm resonator p2 is the parallel arm resonator p1. It may be different from the antiresonance frequency.
- FIG. 14C is a circuit configuration diagram of an elastic wave filter 10N according to a third modification of the embodiment.
- the elastic wave filter 10N shown in the same drawing is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit includes parallel arm resonators p1 and p2, and a first switch circuit and a second switch circuit.
- the first switch circuit includes a switch SW4 (first switch element) and a first capacitor connected in parallel to each other.
- the second switch circuit includes a switch SW5 (second switch element) and a second capacitor connected in parallel to each other.
- the parallel arm resonator p1 is a first elastic wave resonator
- the parallel arm resonator p2 is a second elastic wave resonator
- the parallel arm resonator p1 and the first switch circuit are connected in series.
- the resonator p2 and the second switch circuit are connected in series.
- the first capacitor is a first comb-teeth capacitive element
- the second capacitor is a second comb-teeth capacitive element
- the first capacitor and the second capacitor respectively have a plurality of electrode fingers as shown on the right side of FIG. 9A. And a comb-tooth electrode.
- the resonance frequency of the parallel arm resonator p2 is higher than the resonance frequency of the parallel arm resonator p1, and the antiresonance frequency of the parallel arm resonator p2 is higher than the antiresonance frequency of the parallel arm resonator p1.
- the frequency at which the impedance of the second capacitor is maximal is disposed outside the pass band of the elastic wave filter 10N.
- the comb-tooth electrode has at least one of (1) at least two different electrode finger pitches and (2) at least two different electrode finger duty ratios.
- the resonance frequency on the low frequency side of the two resonance frequencies of the parallel arm circuit and the antiresonance frequency on the low frequency side of the two antiresonance frequencies of the parallel arm circuit And can be switched together.
- the resonance frequency on the high frequency side of the two resonance frequencies of the parallel arm circuit and the antiresonance frequency on the low frequency side of the two antiresonance frequencies of the parallel arm circuit Can be switched together.
- variable-frequency-type elasticity can change the pass bandwidth and the attenuation bandwidth.
- the wave filter 10N can be provided. Furthermore, when at least one of the switches SW4 and SW5 is nonconductive, the amount of attenuation can be improved.
- FIG. 14D is a circuit configuration diagram of an elastic wave filter 10P according to a fourth modification of the embodiment.
- the elastic wave filter 10P shown in the same drawing is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
- the impedance circuit is a first switch circuit having a circuit configuration in which a series circuit of a switch and an inductor and a capacitor are connected in parallel with each other. Switching the on and off of the switch switches the resonant frequency of the parallel arm circuit.
- the frequency of the attenuation pole on the lower side of the passband can be switched (changed), and the attenuation characteristic on the lower side of the passband is improved.
- the elastic wave filter 10P can be provided.
- FIG. 14E is a circuit configuration diagram of an elastic wave filter 10Q according to a fifth modification of the embodiment.
- the elastic wave filter 10Q shown in the same figure is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit has a parallel arm resonator p1 and an impedance circuit connected in series with each other.
- the impedance circuit is a first switch circuit having a circuit configuration in which a series circuit of a switch and a capacitor and an inductor are connected in parallel with each other. Switching the on and off of the switch switches the resonant frequency of the parallel arm circuit.
- the frequency of the attenuation pole on the lower side of the pass band can be switched (varied) by the configuration of the elastic wave filter 10Q according to the present modification, and the frequency variable type in which the attenuation characteristics on the lower side of the pass band is improved.
- Elastic wave filter 10Q can be provided.
- FIG. 14F is a circuit configuration diagram of an elastic wave filter 10R according to the sixth modification of the embodiment.
- the elastic wave filter 10R shown in the same drawing is constituted by a series arm circuit 13s and a parallel arm circuit.
- the parallel arm circuit has a configuration in which a circuit in which parallel arm resonators p1 and p2 are connected in parallel and an impedance circuit are connected in series.
- the resonance frequency of the parallel arm resonator p1 is lower than the resonance frequency of the parallel arm resonator p2, and the antiresonance frequency of the parallel arm resonator p1 is set lower than the antiresonance frequency of the parallel arm resonator p2.
- the impedance circuit comprises switches and capacitors connected in parallel with one another.
- the parallel arm circuit has two resonant frequencies and two antiresonant frequencies, and switching on and off of the switch switches the two resonant frequencies of the parallel arm circuit. Therefore, it is possible to switch (change) both the frequency of the low pass end of the pass band and the frequency of the attenuation pole on the low pass side of the pass band, and it is possible to provide the variable frequency elastic wave filter 10R with a small insertion loss. Furthermore, when the switch is nonconductive, the amount of attenuation can be improved.
- FIG. 15A is a circuit configuration diagram of an elastic wave filter 10S according to an eleventh embodiment and a schematic view of a capacitor Css1 in a series arm circuit 14s.
- the elastic wave filter 10S shown in the figure includes a series arm circuit 14s, a parallel arm resonator p1, and input / output terminals T1 and T2.
- the series arm circuit 14s is connected on a path connecting the input / output terminal T1 and the input / output terminal T2, and includes a series arm resonator s1 and a capacitor Css1.
- the series arm circuit 14s is a resonant circuit composed of a series arm resonator s1 and a capacitor Css1.
- the series arm resonator s1 is a first elastic wave resonator connected in series with the capacitor Css1.
- the capacitor Css1 is a first comb-teeth capacitive element connected in series to the series arm resonator s1 and constitutes an impedance circuit.
- the capacitor Css1 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right of FIG. 15A.
- the repetition pitch of the plurality of electrode fingers of the capacitor Css1 is defined as an electrode finger pitch
- the comb electrodes of the capacitor Css1 have three different electrode finger pitches Pc1 (first electrode finger pitch), Pc2 A second electrode finger pitch), and Pc3.
- the frequency (the frequency of the conductance peak) at which the impedance of the capacitor Css1 is minimized is disposed outside the pass band of the elastic wave filter 10S.
- Table 9 shows circuit parameters and filter characteristics of the elastic wave filter 10S according to the eleventh example and the elastic wave filter according to the comparative example 8.
- the elastic wave filter according to Comparative Example 8 differs from the elastic wave filter 10S according to the eleventh embodiment only in the configuration of the capacitor of the series arm circuit.
- the electrode finger pitch Pc3 of the capacitor Css1 is 1.48 ⁇ m
- Pc1 is 1.50 ⁇ m
- Pc2 is 1.52 ⁇ m.
- the number of electrode fingers arranged at the electrode finger pitch Pc3 is 100
- the number of electrode fingers arranged at the electrode finger pitch Pc1 is 201
- the number of electrode fingers arranged at the electrode finger pitch Pc2 There are 100 books.
- the electrode finger pitches of the capacitors are all 1.50 ⁇ m, and the number of electrode fingers arranged at the electrode finger pitch is 401.
- the electrode finger duty ratio of the capacitor is 0.6
- the film thickness of the comb electrode is 200 nm
- the crossing width Lc is 20 ⁇ m.
- Example 11 and Comparative Example 8 the electrode finger pitch Pr of the IDT electrode constituting the series arm resonator s1 is 2.1 ⁇ m, and the electrode finger duty ratio of the IDT electrode is 0.5, and the IDT electrode The film thickness is 350 nm.
- the third region (the right side region of the comb-tooth electrode in FIG. 15A) in which the electrode fingers arranged at the electrode finger pitch Pc3 are formed and the electrode finger pitch Pc1
- the first region in which the electrode fingers are formed (the central region of the comb electrode in FIG. 15A) and the second region in which the electrode fingers arranged at the electrode finger pitch Pc2 are formed (the left region in the comb electrode of FIG. 15A) And are divided into three.
- the above three regions are not limited to being divided into three, and may be divided into two by the electrode finger pitches Pc1 and Pc2, or subdivided into four or more by four or more different electrode finger pitches It may be standardized. Also, for example, the first region, the second region, and the third region may be alternately arranged.
- the capacitance of the capacitor Css1 of the elastic wave filter 10S according to the eleventh embodiment is 6.50 pF
- the capacitance of the capacitor of the elastic wave filter according to the comparative example 8 is also 6.50 pF. It is.
- FIG. 15B is a graph comparing the pass characteristics of the elastic wave filters according to Example 11 and Comparative Example 8.
- comparison of the broadband pass characteristic of the elastic wave filter concerning Example 11 and comparative example 8 is shown.
- comparison of the pass characteristics of the narrow band (near the pass band) of the elastic wave filters according to the example 11 and the comparative example 8 is shown.
- (c) of the same drawing shows a comparison of the pass characteristics in the pass band of the elastic wave filters according to Example 11 and Comparative Example 8.
- (d) of the same drawing shows a comparison of the pass characteristics (attenuation characteristics) in the high-pass side attenuation band of the elastic wave filters according to Example 11 and Comparative Example 8.
- the elastic wave filter 10S according to the eleventh embodiment is more effective in the attenuation band on the high pass band side (frequency band of 2.5 to 3.0 GHz).
- the attenuation amount is improved (the minimum value of insertion loss at 2.5 to 3.0 GHz is increased) as compared with the elastic wave filter according to Comparative Example 8 (from Table 9, according to Example 11, 10.58 dB, Comparison 10.49 dB in Example 8). That is, in the elastic wave filter 10S according to the eleventh embodiment, the attenuation amount is improved while maintaining the insertion loss in the pass band.
- FIG. 15C is a graph comparing the impedance characteristics and the comb tooth capacitance characteristics of the elastic wave filters according to Example 11 and Comparative Example 8.
- a comparison of wide band impedance characteristics of the circuit and the resonator according to Example 11 and Comparative Example 8 is shown in (a) of the figure.
- a comparison of the impedance characteristics of the narrow band (near the pass band) of the circuit and the resonator according to the example 11 and the comparative example 8 is shown in FIG.
- a comparison of the narrow band impedance characteristics of the circuit and the resonator according to Example 11 and Comparative Example 8 is shown in FIG.
- In (d) of the same figure comparison of the impedance characteristic of the wide band of the capacitor concerning Example 11 and comparative example 8 is shown.
- the resonance frequency Frs of the series arm circuit is equal to the resonance frequency frs of the series arm resonator s1. Shift to the high frequency side.
- the antiresonance frequency fap of the parallel arm resonator p1 and the resonance frequency Frs of the series arm circuit And close.
- the vicinity of the resonance frequency frp in which the impedance of the parallel arm resonator p1 approaches 0 becomes a low frequency side stop band.
- the impedance of the parallel arm resonator p1 becomes high at the antiresonance frequency fap, and the impedance of the series arm circuit approaches 0 near the resonance frequency Frs.
- a signal passing region in the signal path (serial arm) from the input / output terminal T1 to the input / output terminal T2 is obtained.
- the impedance of the series arm circuit becomes high and it becomes the high frequency side stop band.
- the pass band is defined by the anti-resonance frequency fap and the resonance frequency Frs, and the pole (attenuation pole) on the low pass band side is defined by the resonance frequency frp.
- the pole (attenuation pole) on the high band side of the pass band is defined by the resonance frequency Fas.
- the local minimum value of the impedance of the capacitor Css1 according to the eleventh example is larger than the local value of the impedance of the capacitor according to the comparative example 8.
- the frequency f1 min (2553 MHz) at which the impedance of the capacitor Css1 according to the eleventh embodiment is minimized is the passband height of the elastic wave filter 10S according to the eleventh embodiment. It is placed in the area-side attenuation band.
- the frequency f2min (2553 MHz) at which the impedance of the capacitor according to comparative example 8 is minimized is disposed in the attenuation band on the high band side of the pass band of the elastic wave filter according to comparative example 8.
- the local minimum value of the impedance at the frequency f1 min of the capacitor Css1 according to the example 11 is the frequency f2 min of the capacitor according to the comparative example 8. Is larger than the local minimum value of the impedance at (9) (from Table 9).
- the elastic wave filter 10S according to the eleventh embodiment a part of the electrode finger pitch in the capacitor Css1 is different.
- the impedance minimum value of the series arm circuit 14s is increased (the frequency at which the impedance is minimized is dispersed), so the high frequency signal is passed to the series arm circuit 14s at f1 min.
- the amount can be reduced. That is, it is possible to solve the problem that the attenuation amount of the elastic wave filter 10S is deteriorated in the attenuation band which is a frequency region where the conductance peak (minimum point of impedance) is located.
- the elastic wave filter 10S in which the attenuation amount in the attenuation band on the high band side of the pass band is improved while maintaining the insertion loss in the pass band.
- FIG. 16 is a circuit diagram of an elastic wave filter 10T according to a twelfth embodiment.
- the elastic wave filter 10T shown in the figure includes a series arm circuit 15s, a parallel arm resonator p1, and input / output terminals T1 and T2.
- the series arm circuit 15s is connected on a path connecting the input / output terminal T1 and the input / output terminal T2, and includes a series arm resonator s1, a capacitor Css1, and a switch SW6 (second switch element); And a resonant circuit.
- the series arm resonator s1 is a first elastic wave resonator connected in series to a circuit in which the capacitor Css1 and the switch SW6 are connected in parallel.
- the capacitor Css1 is a first comb-teeth capacitive element, and a circuit in which the capacitor Css1 and the switch SW6 are connected in parallel constitutes an impedance circuit.
- the capacitor Css1 has a comb-tooth electrode composed of a plurality of electrode fingers, as shown on the right of FIG. 15A.
- the comb electrodes of the capacitor Cs2 have two different electrode finger pitches Pc1 (first electrode finger pitch) and Pc2 (first electrode finger pitch) A second electrode finger pitch).
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- Pc1 first electrode finger pitch
- Pc2 first electrode finger pitch
- the frequency at which the impedance of the capacitor Css1 is minimized is disposed outside the passband of the elastic wave filter 10T.
- the elastic wave filter 10T according to the present embodiment is obtained by adding the switch SW6 to the elastic wave filter 10S according to the eleventh embodiment, and a series arm resonator s1, a parallel arm resonator p1, and a capacitor are provided. Each parameter of Css1 is the same.
- the switch SW6 is an ideal element (the impedance is 0 ⁇ when the switch is on and the impedance is infinite when the switch is off).
- the resonance frequency of the series arm circuit 15s can be switched by switching between conduction and non-conduction of the switch SW6.
- the elastic wave filter 10T can be realized.
- FIG. 17 is a graph showing the pass characteristic and the impedance characteristic of the elastic wave filter 10T according to the twelfth embodiment.
- a wide band pass characteristic when the switch SW6 in the elastic wave filter 10T according to the twelfth embodiment is on and off is shown in (a) of the same figure, and in (b) of the same figure, the on of the switch SW6 is on
- a comparison of narrow band (near pass band) pass characteristics at time and off is shown, and (c) of the figure shows the impedance characteristics of narrow band (near pass band) of the circuit and the resonator ing.
- the capacitor Css1 is added to the series arm resonator s1 when the switch SW6 is nonconductive (off). Therefore, as shown in (c) of FIG. 17, the resonance frequency Frsoff of the series arm circuit 12s when the switch SW6 is off is shifted to the wider side than the resonance frequency frs of the series arm resonator s1. Therefore, as shown in (b) of FIG. 17, the elastic wave filter 10T can shift the frequency at the high end of the pass band to the high side by switching the switch SW6 from the on state to the off state. .
- the circuit configuration and the passage characteristic are the same as those of the elastic wave filter 10S according to the eleventh embodiment, and the insertion loss in the passband is maintained.
- a variable frequency elastic wave filter 10T with improved attenuation can be realized.
- FIG. 18 is a graph showing the relationship between the pitch difference of the comb capacitance and the impedance in a typical example. More specifically, the electrode finger pitch Pc1 is fixed at 3.000 ⁇ m and the electrode finger pitch Pc2 is stepped stepwise from 1.500 to 6.500 ⁇ m on the vertical axis of (a) and (b) in FIG. The maximum value of the impedance of the comb tooth capacitance is shown when it is changed. In the vertical axis of (c) and (d) of FIG. 18, a comb in the case of fixing the electrode finger pitch Pc1 at 3.000 ⁇ m and changing the electrode finger pitch Pc2 stepwise from 1.500 to 6.500 ⁇ m The minimum value of the impedance of the tooth volume is shown.
- the electrode finger duty ratio is 0.60, the number of electrode fingers is 201 electrode finger pitches Pc 1: 200, and the electrode finger pitch Pc 2: 200 electrodes finger film thickness is 200 nm, and the crossing width is 20 ⁇ m. It is.
- the maximum value of the impedance is low when the pitch difference is 0.2% or more and 6.3% or less. According to this, it is preferable to apply a comb capacitance having a pitch difference of 0.2% or more and 6.3% or less as a first comb capacitance element connected in series with the parallel arm resonator p1 of the parallel arm circuit. By this, the improvement effect of the attenuation amount of the elastic wave filter is increased.
- the minimum value of the impedance is high when the pitch difference is 0.2% or more. According to this, by applying the comb-tooth capacitance having a pitch difference of 0.2% or more as the first comb-tooth capacitance element connected in series with the series arm resonator s1 of the series arm circuit, the elastic wave filter The improvement effect of the attenuation amount becomes large.
- FIG. 19 is a graph showing the relationship between the ratio of the number of comb capacitors and the impedance in a typical example. More specifically, in the vertical axis of (a) of FIG. 19, the maximum impedance of the comb capacitance when the number of electrode fingers having the electrode finger pitch Pc1 is changed stepwise from 0 to 401 The value is shown. The vertical axis in FIG. 19 (b) shows the minimum value of the impedance of the comb capacitance when the number of electrode fingers having the electrode finger pitch Pc1 is changed stepwise from 0 to 401. ing. In FIG. 19, the elastic wave filters having the number ratio of 0% and 100% are not included in the elastic wave filters according to the above-described embodiments.
- the electrode finger duty ratio is 0.60, the electrode finger pitch Pc1 is 1.500 ⁇ m, the electrode finger pitch Pc2 is 1.510 ⁇ m, the electrode finger film thickness is 200 nm, and the crossing width is 20 ⁇ m. is there.
- the maximum value of the impedance is low when the electrode finger number ratio is 10% or more and 65% or less.
- a comb-tooth capacitance having an electrode finger ratio of 10% or more and 65% or less as a first comb-tooth capacitance element connected in series with the parallel arm resonator p1 of the parallel arm circuit, The improvement effect of the attenuation amount of the elastic wave filter is increased.
- the minimum value of the impedance is high when the electrode finger number ratio is 10% or more and 90% or less. According to this, by applying a comb-tooth capacitance having an electrode finger ratio of 10% or more and 90% or less as the first comb-tooth capacitance element connected in series with the series arm resonator s1 of the series arm circuit, The improvement effect of the attenuation amount of the elastic wave filter is increased.
- the elastic wave filter described in the first embodiment can be applied to a multiplexer, a high frequency front end circuit, and a communication device. Therefore, in the present embodiment, such a high frequency front end circuit and communication apparatus will be described.
- FIG. 20A is a block diagram of the communication device 6A according to the second embodiment.
- the communication device 6A includes a high frequency front end circuit 3A, an RF signal processing circuit (RFIC) 4, a baseband signal processing circuit (BBIC) 5, and an antenna element 2.
- RFIC RF signal processing circuit
- BBIC baseband signal processing circuit
- the high frequency front end circuit 3A includes an elastic wave filter 10A according to the first embodiment, a multiplexer 30A, a reception amplifier circuit 51, and switches 41 and 42.
- the high frequency front end circuit 3A is a front end circuit of a reception system that divides the high frequency signal received by the antenna element 2.
- the switch 41 has a common connection terminal and a plurality of selection terminals, the common connection terminal is connected to the antenna element 2, and the elastic wave filter 10A is connected to the first selection terminal of the plurality of selection terminals. Another filter is connected to the second selection terminal of the plurality of selection terminals, and the multiplexer 30A is connected to the third selection terminal of the plurality of selection terminals.
- the switch 42 has a common connection terminal and a plurality of selection terminals, the common connection terminal is connected to the reception amplification circuit 51, and the elastic wave filter 10A is connected to the first selection terminal among the plurality of selection terminals. And another filter is connected to the second selection terminal of the plurality of selection terminals, and one of the filters constituting the multiplexer 30A is connected to the third selection terminal of the plurality of selection terminals. The other one of the filters constituting the multiplexer 30A is connected to the fourth selection terminal among the plurality of selection terminals.
- the switch 42 switches between conduction and non-conduction between the acoustic wave filter 10A, the other filter, one filter of the multiplexer 30A, and the other filter of the multiplexer 30A and the reception amplification circuit 51.
- the multiplexer 30A may include a plurality of filters including any of the elastic wave filters according to the first to twelfth embodiments.
- An impedance matching circuit, a phase shifter, a circulator, or a switch element capable of selecting two or more filters may be connected to the multiplexer 30A between the common terminal and the two filters.
- an impedance matching circuit may be disposed before or after the elastic wave filter 10A and the multiplexer 30A.
- the high frequency front end circuit 3A may not have both of the elastic wave filter 10A and the multiplexer 30A, and may have only one of them.
- the high frequency front end circuit 3A may have any of the elastic wave filters according to the second to twelfth embodiments in place of the elastic wave filter 10A according to the first embodiment.
- the reception amplification circuit 51 is a low noise amplifier that power-amplifies the high frequency reception signal of each pass band of the elastic wave filter 10A, the other filter, and the multiplexer 30A.
- the RF signal processing circuit (RFIC) 4 is a circuit that processes a high frequency signal transmitted and received by the antenna element 2. Specifically, the RF signal processing circuit (RFIC) 4 performs signal processing of a high frequency signal (here, a high frequency received signal) input from the antenna element 2 via the reception side signal path by down conversion or the like, The received signal generated by processing is output to the baseband signal processing circuit (BBIC) 5. Further, the RF signal processing circuit (RFIC) 4 performs signal processing on the transmission signal input from the baseband signal processing circuit (BBIC) 5 by up conversion and the like, and generates a high frequency signal (high frequency in this case) generated by the signal processing. The transmission signal is output to the transmission side signal path (not shown in FIG. 20A).
- a high frequency signal here, a high frequency received signal
- BBIC baseband signal processing circuit
- the size can be reduced while maintaining the insertion loss in the pass band of the elastic wave filter 10A and the multiplexer 30A. Therefore, the gain in the high frequency front end circuit 3A is improved, and the high frequency front end circuit 3A can be miniaturized. In addition, the communication quality of the communication device 6A can be improved and miniaturized.
- FIG. 20B is a block diagram of a communication device 6B according to a modification of the second embodiment.
- the communication device 6B includes a high frequency front end circuit 3B, an RF signal processing circuit (RFIC) 4, a baseband signal processing circuit (BBIC) 5, and an antenna element 2.
- RFIC RF signal processing circuit
- BBIC baseband signal processing circuit
- the high frequency front end circuit 3B includes a multiplexer 30, a transmission amplification circuit 51T, a reception amplification circuit 51R, and switches 43 and 44.
- the high frequency front end circuit 3 B is a front end circuit of a transmission / reception system that demultiplexes the high frequency signal received by the antenna element 2 and multiplexes the high frequency signal generated by the RFIC 4.
- the multiplexer 30 has a first duplexer and a second duplexer connected to a common terminal.
- the first duplexer has a first transmission filter and a first reception filter.
- the second duplexer also has a second transmission filter and a second reception filter. Any of the elastic wave filters according to the first to sixth embodiments is applied to at least one of the first transmission filter, the first reception filter, the second transmission filter, and the second reception filter. Be done.
- An impedance matching circuit, a phase shifter, a circulator, or a switch element capable of selecting two or more filters may be connected to.
- an impedance matching circuit may be disposed before or after the multiplexer 30.
- the multiplexer 30 may not be configured by a duplexer, and may be configured by a single transmission filter and a single reception filter.
- the switch 43 has a common connection terminal and a plurality of selection terminals, the common connection terminal is connected to the transmission amplification circuit 51T, and the first selection terminal of the plurality of selection terminals is used for the first transmission.
- a filter is connected, and a second transmission filter is connected to a second selection terminal of the plurality of selection terminals.
- the switch 44 has a common connection terminal and a plurality of selection terminals, the common connection terminal is connected to the reception amplification circuit 51R, and a first selection terminal of the plurality of selection terminals is used for the first reception.
- a filter is connected, and a second reception filter is connected to a second selection terminal of the plurality of selection terminals.
- the transmission amplifier circuit 51T is a power amplifier that amplifies the power of the high frequency transmission signal in each pass band of the first transmission filter and the second transmission filter.
- the reception amplification circuit 51R is a low noise amplifier that power-amplifies high frequency reception signals in respective pass bands of the first reception filter and the second reception filter.
- the insertion loss in the pass band of the multiplexer 30 can be reduced, and the multiplexer 30 can be miniaturized. Therefore, the gain in the high frequency front end circuit 3B is improved, and the high frequency front end circuit 3B can be miniaturized. Also, the communication quality of the communication device 6B can be improved, and the size can be reduced.
- Each of the series arm resonator and the parallel arm resonator constituting each filter is not limited to one resonator, and may be constituted by a plurality of divided resonators in which one resonator is divided.
- the duplexer in the second embodiment does not refer to only a multiplexer in which the transmission signal flows to one filter in the FDD system and the reception signal flows to the other filter, but the transmission signal flows to one filter in the TDD system. The same applies to a multiplexer in which the received signal flows to the other filter.
- a control unit that switches on and off of switches such as switches 42 and 43 of the high frequency front end circuit 3B may be provided in the RFIC 4.
- it may be provided outside the RFIC 4 and may be provided, for example, in any of the high frequency front end circuits 3A and 3B. That is, the high frequency front end circuits 3A and 3B are not limited to the configuration described above, and include the elastic wave filter according to the first embodiment, and a control unit that controls on and off of switches included in the elastic wave filter. It does not matter.
- an inductor or a capacitor may be connected between each component.
- the inductor may include a wiring inductor formed by wiring connecting the components.
- the switch SW1 of the sixth embodiment, the switch SW2 of the ninth embodiment, the switch SW3 of the tenth embodiment, the switches of the first to sixth modifications, and the switch SW6 of the twelfth embodiment are SPST (Single Pole Single Throw) type switches.
- the element is, for example, a field effect transistor (FET) switch made of GaAs or complementary metal oxide semiconductor (CMOS), or a diode switch, and is configured as a switch IC (Integrated Circuit).
- FET field effect transistor
- CMOS complementary metal oxide semiconductor
- CMOS complementary metal oxide semiconductor
- the switch element is not limited to a semiconductor switch, and may be a mechanical switch configured by MEMS (Micro Electro Mechanical Systems). Since such a switch is compact, the filter device according to the first embodiment can be miniaturized.
- the series arm resonator and the parallel arm resonator provided in the elastic wave filter according to the first embodiment are elastic wave resonators using elastic waves, and for example, use surface acoustic waves (SAW).
- SAW surface acoustic waves
- BAW bulk acoustic wave
- FBAR film bulk acoustic resonator
- SMR solidly mounted resonator
- the surface acoustic wave refers to propagation of an elastic wave to the surface of a piezoelectric body or an interface of a plurality of materials, and refers to various types of elastic waves configured using an IDT electrode.
- the surface acoustic waves include, for example, surface waves, love waves, leaky waves, Rayleigh waves, boundary waves, leaked SAWs, pseudo SAWs, and plate waves.
- ground in the first and second embodiments refers to a reference electrode, and is, for example, an electrode having a potential serving as a reference in the elastic wave filter according to the first embodiment.
- the present invention can be widely used in communication devices such as mobile phones as elastic wave filters, multiplexers, front end circuits and communication devices miniaturized while maintaining filter characteristics.
- RFIC RF signal processing circuit
- BBIC Baseband Signal Processing Circuit
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
弾性波フィルタ(10A)は、入出力端子を結ぶ経路上に設けられた直列腕共振子(s1)と、当該経路上のノードとグランドに接続された並列腕回路(11p)とを備え、並列腕回路(11p)は、互いに並列接続された並列腕共振子(p1)およびキャパシタ(Cp1)を有し、キャパシタ(Cp1)は、複数の電極指からなる櫛歯電極を有し、キャパシタ(Cp1)のインピーダンスが極大となる周波数は、弾性波フィルタ(10A)の通過帯域外に配置され、上記櫛歯電極は、少なくとも2つの異なる電極指ピッチ、または、少なくとも2つの異なる電極指デューティ比を有する。
Description
本発明は、弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置に関する。
弾性波共振子からなる直列腕共振子と、弾性波共振子からなる並列腕共振子とを有するラダー型回路を有する弾性波フィルタにおいて、少なくとも1つの直列腕共振子と櫛歯電極からなる容量素子(櫛歯容量素子)とが並列に構成されることが知られている。このような技術としては特許文献1が挙げられる。
しかしながら、上記従来の構成では、櫛歯容量素子を構成する櫛歯電極の電極指のピッチを全て同じにすると、弾性表面波フィルタ等の弾性波フィルタの減衰量が悪化してしまう。また、一般的には、弾性波フィルタの減衰量と通過帯域内の挿入損失とは、一方を改善すると他方が悪化してしまう、というトレードオフの関係にある。
したがって、櫛歯容量素子を構成する櫛歯電極の電極指のピッチを全て同じにした場合、弾性波フィルタの通過帯域内の挿入損失を維持しつつ、減衰量を改善することが出来ないという問題がある。
そこで、本発明は、通過帯域内の挿入損失を維持しつつ減衰量が向上した弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路、および通信装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、第1入出力端子と第2入出力端子を備える弾性波フィルタであって、前記第1入出力端子と前記第2入出力端子を結ぶ経路上に設けられた1以上の直列腕回路と、前記経路上のノードとグランドに接続された1以上の並列腕回路と、を備え、前記1以上の並列腕回路および前記1以上の直列腕回路のうちの少なくとも1つの回路は、第1弾性波共振子と、前記第1弾性波共振子と並列接続または直列接続された第1櫛歯容量素子と、を有し、前記第1櫛歯容量素子は、複数の電極指からなる櫛歯電極を有し、前記第1櫛歯容量素子のインピーダンスが極大となる周波数は、前記弾性波フィルタの通過帯域外に配置され、前記複数の電極指の繰返しピッチを電極指ピッチと定義し、前記複数の電極指の幅と前記複数の電極指の間隔との加算値に対する前記複数の電極指の幅の割合を電極指デューティ比と定義した場合、前記櫛歯電極は、(1)少なくとも2つの異なる電極指ピッチ、および、(2)少なくとも2つの異なる電極指デューティ比、の少なくとも一方を有する。
並列腕回路を構成する第1櫛歯容量素子の櫛歯電極が、少なくとも2つの異なる電極指ピッチ、または、少なくとも2つの異なるデューティ比を有することで、第1櫛歯容量素子のインピーダンスが極大になる周波数におけるインピーダンス値(インピーダンスの最大値)を下げる(インピーダンスが極大になる周波数を分散させる)ことができる。また、第1櫛歯容量素子のインピーダンスが極大になる周波数は、弾性波フィルタの通過帯域外に配置されている。または、直列腕回路を構成する櫛歯容量素子の櫛歯電極が、少なくとも2つの異なる電極指ピッチ、または、少なくとも2つの異なるデューティ比を有することで、櫛歯容量素子のインピーダンスが極小になる周波数におけるインピーダンス値(インピーダンスの最小値)を上げる(インピーダンスが極小になる周波数を分散させる)ことができる。また、櫛歯容量素子のインピーダンスが極小になる周波数は、弾性波フィルタの通過帯域外に配置されている。
このため、通過帯域内の挿入損失を維持しつつ、減衰量が向上した弾性波フィルタを実現できる。
また、前記少なくとも1つの並列腕回路は、さらに、前記第1櫛歯容量素子に並列に接続された第1スイッチ素子を有し、前記第1櫛歯容量素子と前記第1スイッチ素子とが並列に接続された第1スイッチ回路は、前記第1弾性波共振子と直列に接続されていてもよい。
これにより、第1スイッチ素子の導通および非導通の切り替えによって、並列腕回路の共振周波数を切り替えることができるため、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができる周波数可変型の弾性波フィルタを提供できる。さらに、第1スイッチ素子が非導通の場合において、通過帯域内の挿入損失を維持しつつ、減衰量を向上することができる。
また、前記少なくとも1つの並列腕回路は、さらに、第2弾性波共振子を有し、前記第2弾性波共振子は、前記第1弾性波共振子と前記第1スイッチ回路とが直列接続された回路に並列に接続され、前記第2弾性波共振子の共振周波数は、前記第1弾性波共振子の共振周波数と異なり、前記第2弾性波共振子の反共振周波数は、前記第1弾性波共振子の反共振周波数と異なってもよい。
これにより、第2弾性波共振子の共振周波数が、第1弾性波共振子の共振周波数より高く、第2弾性波共振子の反共振周波数が、第1弾性波共振子の反共振周波数より高い場合には、第1スイッチ素子の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち低周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。そのため、通過帯域低域端の周波数と、通過帯域低域側の減衰極の周波数とを共に切り替える(可変する)ことができ、挿入損失の小さい周波数可変型の弾性波フィルタを提供できる。さらに、第1スイッチ素子が非導通の場合において、減衰量を向上することができる。
また、第2弾性波共振子の共振周波数が、第1弾性波共振子の共振周波数より低く、第2弾性波共振子の反共振周波数が、第1弾性波共振子の反共振周波数より低い場合には、第1スイッチ素子の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち高周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。そのため、通過帯域高域端の周波数と、通過帯域高域側の減衰極の周波数とを共に切り替える(可変する)ことができ、挿入損失の小さい周波数可変型の弾性波フィルタを提供できる。さらに、第1スイッチ素子が非導通の場合において、減衰量を向上することができる。
また、前記少なくとも1つの並列腕回路は、さらに、前記第2弾性波共振子に直列に接続された第2スイッチ回路を有し、前記第2弾性波共振子および前記第2スイッチ回路が直列に接続された回路と、前記第1弾性波共振子および前記第1スイッチ回路が直列に接続された回路とは、並列に接続され、前記第2スイッチ回路は、第2櫛歯容量素子と、前記第2櫛歯容量素子に並列接続された第2スイッチ素子と、を有し前記第2櫛歯容量素子のインピーダンスが極大となる周波数は、前記弾性波フィルタの通過帯域外に配置され、前記第2櫛歯容量素子は、複数の電極指からなる櫛歯電極を有し、前記櫛歯電極は、(1)少なくとも2つの異なる電極指ピッチ、および、(2)少なくとも2つの異なる電極指デューティ比、の少なくとも一方を有してもよい。
これにより、第1スイッチ素子の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち低周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。また、第2スイッチ素子の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち高周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。そのため、第1スイッチ素子の導通および非導通の切り替え、および、第2スイッチ素子の導通および非導通の切り替えとを、それぞれ独立して制御することで、通過帯域幅と減衰帯域幅を可変できる周波数可変型の弾性波フィルタを提供できる。さらに、第1スイッチ素子および第2スイッチ素子の少なくとも一方が非導通の場合において、減衰量を向上することができる。
また、前記少なくとも1つの直列腕回路は、さらに、前記第1櫛歯容量素子に直列に接続された第1スイッチ素子を有し、前記第1櫛歯容量素子と前記第1スイッチ素子とが直列に接続された回路は、前記第1弾性波共振子と並列に接続されていてもよい。
スイッチ素子の導通および非導通の切り替えにより、当該直列腕回路の反共振周波数を切り替えることができる。当該直列腕回路の共振周波数は、弾性波フィルタの通過帯域を形成し、当該直列腕回路の反共振周波数は、弾性波フィルタの通過帯域高域側の減衰極を形成する。そのため、スイッチ素子の導通および非導通の切り替えによって、通過帯域高域側の減衰極の周波数を切り替える(可変する)ことができる周波数可変型の弾性波フィルタが実現できる。
また、前記少なくとも1つの並列腕回路は、さらに、前記第1櫛歯容量素子に並列に接続された第2スイッチ素子を有し、前記第1櫛歯容量素子と第2スイッチ素子とが並列に接続された回路によって第1スイッチ回路を構成し、前記第1スイッチ回路は、前記第1弾性波共振子と直列に接続されていてもよい。
これにより、第2スイッチ素子の導通および非導通の切り替えによって、直列腕回路の共振周波数を切り替えることができるため、通過帯域高域端の周波数を切り替える(可変する)ことができる周波数可変型の弾性波フィルタを提供できる。さらに、第2スイッチ素子が非導通の場合において、通過帯域内の挿入損失を維持しつつ、減衰量を向上することができる。
また、前記第1弾性波共振子と前記第1櫛歯容量素子とは、並列接続されており、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第1の電極指ピッチで除したピッチ差は、0.2%以上であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ80%以下であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して20%以上かつ50%以下であってもよい。
これにより、減衰量を最適化できる。
また、前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第2の電極指ピッチで除したピッチ差は、0.2%以上かつ6.3%以下であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ65%以下であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第1の電極指ピッチで除したピッチ差は、0.2%以上であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ90%以下であってもよい。
これにより、減衰量の改善効果が大きくなる。
また、前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチより大きい第2の電極指ピッチを有し、前記複数の電極指のうち前記第1の電極指ピッチで配置された電極指の膜厚は、前記複数の電極指のうち前記第2の電極指ピッチで配置された電極指の膜厚よりも小さくてもよい。
これにより、ピッチを小さくする電極指の膜厚を小さくするので、電極指ピッチの製造ばらつきを抑制できる。
また、前記第1弾性波共振子は、圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有し、前記櫛歯電極は、前記基板上に形成され、前記櫛歯電極を構成する複数の電極指ピッチは、前記IDT電極を構成する電極指ピッチより小さくてもよい。
これにより、第1櫛歯容量素子の容量Q値を上げることができる。また、単位面積当たりの容量値が大きくなるため、第1櫛歯容量素子を小型にすることができる。そのため、弾性波フィルタの通過帯域内の挿入損失を低減するとともに、弾性波フィルタを小型にすることができる。
また、前記櫛歯電極を構成する複数の電極指の膜厚は、前記第1弾性波共振子を構成する複数の電極指の膜厚より小さくてもよい。
これにより、電極指ピッチを小さくすることができるため、第1櫛歯容量素子の容量Q値を上げることができる。そのため、弾性波フィルタの通過帯域内の挿入損失を低減するとともに、弾性波フィルタを小型にすることができる。
また、前記櫛歯電極を構成する複数の電極指のデューティ比は、前記IDT電極を構成する複数の電極指のデューティ比より大きくてもよい。
これにより、単位面積当たりの容量値が大きくなるため、櫛歯容量素子を小型にすることができ、弾性波フィルタを小型にすることができる。
また、本発明の一態様に係るマルチプレクサは、上記いずれかに記載の弾性波フィルタを含む複数のフィルタを備え、前記複数のフィルタのそれぞれが有する2つの入出力端子の一方は、共通端子に直接的または間接的に接続されている。
これにより、通過帯域内の挿入損失を維持しつつ、減衰量が向上したマルチプレクサを提供できる。
また、本発明の一態様に係る高周波フロントエンド回路は、上記いずれかに記載の弾性波フィルタ、または、上記記載のマルチプレクサと、前記弾性波フィルタまたは前記マルチプレクサに直接的または間接的に接続された増幅回路と、を備える。
これにより、弾性波フィルタまたはマルチプレクサの通過帯域内の挿入損失を維持しつつ、減衰量を向上できる。そのため、高周波フロントエンド回路における利得を維持しつつ、妨害波に対する通信品質を向上できる。
また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記記載の高周波フロントエンド回路と、を備える。
これにより、弾性波フィルタまたはマルチプレクサの通過帯域内の挿入損失を維持しつつ、減衰量を向上できる。そのため、高周波フロントエンド回路における利得を維持しつつ、妨害波に対する通信品質が向上した通信装置を提供できる。
本発明によれば、通過帯域内の挿入損失を維持しつつ減衰量が向上した弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路、および通信装置を提供することが可能となる。
以下、本発明の実施の形態について、実施例および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。
また、以下において、「通過帯域低域端」は、「通過帯域内の最も低い周波数」を意味する。また、「通過帯域高域端」は、「通過帯域内の最も高い周波数」を意味する。また、以下において、「通過帯域低域側」は、「通過帯域外かつ通過帯域より低周波数側」を意味する。また「通過帯域高域側」は、「通過帯域外かつ通過帯域より高周波数側」を意味する。また、以下では、「低周波数側」を「低域側」と称し、「高周波数側」を「高域側」と称する場合がある。
また、共振子または回路における共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための共振周波数であり、当該共振子または当該回路のインピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)である「共振点」の周波数である。
また、共振子または回路における反共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための反共振周波数であり、当該共振子または当該回路のインピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)である「反共振点」の周波数である。
なお、以下の実施の形態において、直列腕回路および並列腕回路は、以下のように定義される。
並列腕回路は、第1入出力端子および第2入出力端子を結ぶ経路上の一のノードと、グランドと、の間に配置された回路である。
直列腕回路は、第1入出力端子または第2入出力端子と、並列腕回路が接続される上記経路上のノードと、の間に配置された回路、または、一の並列腕回路が接続される上記経路上の一のノードと、他の並列腕回路が接続される上記経路上の他のノードと、の間に配置された回路である。
(実施の形態1)
[1.1 実施例1に係る弾性波フィルタ]
図1Aは、実施例1に係る弾性波フィルタ10Aの回路構成図および並列腕回路11pにおけるキャパシタCp1の模式図である。同図に示された弾性波フィルタ10Aは、直列腕共振子s1と、並列腕回路11pと、入出力端子T1およびT2と、を備える。
[1.1 実施例1に係る弾性波フィルタ]
図1Aは、実施例1に係る弾性波フィルタ10Aの回路構成図および並列腕回路11pにおけるキャパシタCp1の模式図である。同図に示された弾性波フィルタ10Aは、直列腕共振子s1と、並列腕回路11pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路11pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCp1とを有している。並列腕回路11pは、並列腕共振子p1とキャパシタCp1とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCp1と並列接続された第1弾性波共振子である。キャパシタCp1は、並列腕共振子p1と並列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCp1は、図1Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCp1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCp1の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCp1のインピーダンスが極大となる周波数は、弾性波フィルタ10Aの通過帯域外に配置されている。
表1に、実施例1に係る弾性波フィルタ10Aおよび比較例1に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表1において、|Z|maxは、櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、櫛歯容量素子のインピーダンスが極大値となる周波数である。
比較例1に係る弾性波フィルタは、実施例1に係る弾性波フィルタ10Aと比較して、並列腕回路のキャパシタの構成のみが異なる。
表1に示すように、実施例1に係る弾性波フィルタ10Aでは、キャパシタCp1の電極指ピッチPc1は3.00μmであり、電極指ピッチPc2は3.05μmである。また、電極指ピッチPc1で配置された電極指の本数は40本であり、電極指ピッチPc2で配置された電極指の本数は81本である。これに対して、比較例1に係る弾性波フィルタでは、キャパシタの電極指ピッチは全て3.00μmであり、当該電極指ピッチで配置された電極指の本数は121本である。
また、実施例1および比較例1の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は350nmであり、交叉幅Lcは20μmである。
また、実施例1および比較例1において、並列腕共振子p1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
なお、弾性波フィルタの電極パラメータについては、図5Aおよび図5Bにて詳細に説明するが、ここで、表1に示された電極パラメータについて簡単に説明しておく。櫛歯容量素子の電極指ピッチとは、櫛歯電極を構成する複数の電極指の繰り返しピッチ(隣り合う電極指の中心同士の距離)である。また、櫛歯容量素子の電極指デューティ比とは、複数の電極指のライン幅占有率であり、当該複数の電極指のライン幅とスペース幅との加算値に対する当該ライン幅の割合で定義される。また、交叉幅とは、1つのバスバー電極に接続された複数の電極指を櫛歯状電極と定義し、櫛歯電極が、互いに間挿し合う1対の櫛歯状電極で構成されているとした場合、一方の櫛歯状電極を構成する電極指と他方の櫛歯状電極を構成する電極指とを、当該電極指に垂直な方向から見た場合の重複する電極指長さである。
本実施例では、図1Aに示すように、電極指ピッチPc1で配置された電極指が形成された第1領域(図1Aの櫛歯電極における右側領域)と、電極指ピッチPc2で配置された電極指が形成された第2領域(図1Aの櫛歯電極における左側領域)とは、2分割されている。
なお、上記2つの領域は、2分割されていることに限定されるものではなく、3分割以上に細分化されていてもよい。例えば、第1領域と第2領域とが交互に配列されていてもよい。
また、上記実施例では、キャパシタCp1を構成する櫛歯電極が、2つの異なる電極指ピッチを有するものとしたが、3つ以上の異なる電極指ピッチを有していてもよい。
なお、表1に示すように、実施例1に係る弾性波フィルタ10Aの並列腕回路11pの静電容量は7.49pFであり、比較例1に係る弾性波フィルタの並列腕回路の静電容量は7.47pFであり、両者はほぼ同じ値である。
図1Bは、実施例1および比較例1に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例1および比較例1に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例1および比較例1に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例1および比較例1に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例1および比較例1に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図1Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例1と比較例1とで大きな差異はない(表1より、ともに0.92dB)。これに対して、図1Bの(b)および(d)に示すように、通過帯域低域側の減衰帯域(0.7GHz以下の周波数帯域)において、実施例1に係る弾性波フィルタ10Aの方が、比較例1に係る弾性波フィルタよりも、減衰量が向上(0.7GHz以下における挿入損失の最小値が増加)している(表1より、実施例1では3.24dB、比較例1では2.16dB)。つまり、実施例1に係る弾性波フィルタ10Aでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例1に係る弾性波フィルタ10Aにおいて、通過帯域低域側の減衰帯域における減衰量が向上した要因を、図1Cを用いて説明する。
図1Cは、実施例1および比較例1に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例1および比較例1に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例1および比較例1に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例1および比較例1に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例1および比較例1に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例1および比較例1に係るキャパシタの狭帯域(通過帯域近傍)の静電容量特性の比較が示されている。同図の(f)には、実施例1および比較例1に係るキャパシタの狭帯域(通過帯域近傍)の容量Q値の比較が示されている。
まず、図1Cの(a)および(b)に示すように、並列腕共振子p1にキャパシタが並列接続されることにより、並列腕回路の反共振周波数Fapは並列腕共振子p1の反共振周波数fapに対して低周波側へシフトする。実施例1および比較例1に係る弾性波フィルタにおいて、並列腕回路および直列腕共振子s1によりバンドパスフィルタを構成するにあたり、並列腕回路の反共振周波数Fapと直列腕共振子s1の共振周波数frsとを近接させる。並列腕回路のインピーダンスが0に近づく共振周波数Frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、反共振周波数Fapで並列腕回路のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子s1のインピーダンスが0に近づく。これにより、反共振周波数Fapおよび共振周波数frsの近傍では、入出力端子T1から入出力端子T2への信号経路(直列腕)における信号通過域となる。さらに、周波数が高くなり、直列腕共振子s1の反共振周波数fas近傍になると、直列腕共振子s1のインピーダンスが高くなり、高周波側阻止域となる。つまり、実施例1および比較例1に係る弾性波フィルタは、反共振周波数Fapおよび共振周波数frsによって通過帯域が規定され、共振周波数Frpによって通過帯域低域側の極(減衰極)が規定され、共振周波数fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図1Cの(c)および(d)に示すように、実施例1に係るキャパシタCp1のインピーダンスが極大となる周波数f1max(710MHz)は、実施例1に係る弾性波フィルタ10Aの通過帯域低域側の減衰帯域に配置されている。同様に、比較例1に係るキャパシタのインピーダンスが極大となる周波数f2max(720MHz)は、比較例1に係る弾性波フィルタの通過帯域低域側の減衰帯域に配置されている。
なお、図1Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例1と比較例1との間で大きな差異はない。
ここで、図1Cの(d)に示すように、実施例1に係るキャパシタCp1の周波数f1maxにおけるインピーダンスの極大値(表1より、56.06dB)は、比較例1に係るキャパシタの周波数f2maxにおけるインピーダンスの極大値(表1より、56.94dB)よりも小さくなっている。この要因として、実施例1に係る弾性波フィルタ10Aでは、キャパシタCp1における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域低域側の減衰帯域において、並列腕回路11pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、f1maxにおける高周波信号の並列腕回路11pへの通過量を大きくできる。つまり、インピーダンスピーク(インピーダンスの極大点)が位置する周波数領域である減衰帯域で、弾性波フィルタ10Aの減衰量が悪化するという課題を解決できる。以上により、通過帯域内の挿入損失を維持しつつ、通過帯域低域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Aを実現できる。
なお、本実施例では、直列腕回路および並列腕回路が各1つ配置されたラダー型回路を例示したが、直列腕回路および並列腕回路は、それぞれ1以上配置されていればよい。複数の並列腕回路が配置されている場合には、当該複数の並列腕回路のうちの少なくとも1つの並列腕回路が、実施例1に係る並列腕回路11pの構成を有していればよい。つまり、上記少なくとも1つの並列腕回路が、互いに並列接続された並列腕共振子および櫛歯容量素子を有し、当該櫛歯容量素子の櫛歯電極が異なる電極指ピッチを有し、当該櫛歯容量素子のインピーダンスが極大となる周波数が、弾性波フィルタの通過帯域外に配置されていればよい。
[1.2 櫛歯容量電極のピッチ差および電極指本数比率]
櫛歯容量素子であるキャパシタCp1の電極指ピッチPc1およびPc2の有為的な差について説明する。
櫛歯容量素子であるキャパシタCp1の電極指ピッチPc1およびPc2の有為的な差について説明する。
図1Dは、実施例1に係る弾性波フィルタ10Aにおいて、キャパシタCp1の電極指ピッチPc1およびPc2を変化させた場合の電極指ピッチ差と通過帯域低域側の減衰量との関係を示すグラフである。より具体的には、図1Dの(a)および(b)の縦軸には、実施例1に係る弾性波フィルタ10Aにおいて、電極指ピッチPc1を3.000μmと固定し、電極指ピッチPc2を2.750~3.000μmまで段階的に変化させた場合の通過帯域低域側の減衰帯域(DC-800MHz)における減衰量が示されている。図1Dの(c)および(d)には、実施例1に係る弾性波フィルタ10Aにおいて、電極指ピッチPc1を3.000μmと固定し、電極指ピッチPc2を3.000~3.250μmまで段階的に変化させた場合の通過帯域低域側の減衰帯域(DC-800MHz)における減衰量が示されている。また、図1Dの(a)~(d)の横軸には、電極指ピッチPc1と電極指ピッチPc2との差分を、電極指ピッチPc1およびPc2のうちの小さい方で除した値である電極指ピッチ差ΔPc(%)が示されている。
なお、電極指デューティ比(0.60)、電極指本数(電極指ピッチPc1:40本、電極指ピッチPc2:81本)、電極指膜厚(350nm)、交叉幅(20μm)は、表1に示されたものと同じとしている。
図1Dの(b)および(d)より、電極指ピッチ差ΔPcが0.2%以上で、比較例1に対して、減衰帯域(DC-800MHz)における減衰量に有為的な差異が見られる。これより、電極指ピッチ差ΔPcは、0.2%以上(図1Dの(b)における範囲A、および、図1Dの(d)における範囲B)であることが望ましい。これにより、減衰量の改善効果が大きくなる。
次に、櫛歯容量素子であるキャパシタCp1の電極指ピッチPc1を有する電極指およびPc2を有する電極指の有為的な本数比率について説明する。
図1Eは、実施例1に係る弾性波フィルタ10Aにおいて、キャパシタCp1の電極指ピッチの異なる電極指の本数比率を変化させた場合の、電極指本数比率と通過帯域低域側の減衰量との関係を示すグラフである。より具体的には、図1Eの縦軸には、実施例1に係る弾性波フィルタ10Aにおいて、電極指ピッチPc1を有する電極指の本数を0本~121本まで段階的に変化させた場合の通過帯域低域側の減衰帯域(DC-800MHz)における減衰量が示されている。また、図1Eの横軸には、電極指ピッチPc1を有する電極指の、電極指総数に対する本数比率(%)が示されている。なお、図1Eにおいて、本数比率が0%および100%を有する弾性波フィルタは、実施例1に係る弾性波フィルタ10Aには含まれない。
なお、電極指ピッチPc1(3.000μm)およびPc2(3.050μm)、電極指デューティ比(0.60)、電極指総数(121本)、電極指膜厚(350nm)、交叉幅(20μm)は、表1に示されたものと同じとしている。
図1Eより、電極指ピッチPc1を有する電極指の本数比率が10%以上かつ80%以下(図1Eにおける範囲C)の場合に、比較例1に対して、減衰帯域(DC-800MHz)における減衰量に有為的な差異が見られる。これより、電極指ピッチPc1を有する電極指の本数比率は、10%以上かつ80%以下であることが望ましい。これにより、減衰量の改善効果が大きくなる。さらに、電極指ピッチPc1を有する電極指の本数比率が20%以上かつ50%以下(図1Eにおける範囲D)の場合に、減衰帯域(DC-800MHz)における減衰量を最適化(最大化)できる。
[1.3 実施例2に係る弾性波フィルタ]
図2Aは、実施例2に係る弾性波フィルタ10Bの回路構成図および直列腕回路11sにおけるキャパシタCs1の模式図である。同図に示された弾性波フィルタ10Bは、直列腕回路11sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
図2Aは、実施例2に係る弾性波フィルタ10Bの回路構成図および直列腕回路11sにおけるキャパシタCs1の模式図である。同図に示された弾性波フィルタ10Bは、直列腕回路11sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕回路11sは、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕共振子s1とキャパシタCs1とを有している。直列腕回路11sは、直列腕共振子s1とキャパシタCs1とで構成された共振回路となっている。直列腕共振子s1は、キャパシタCs1と並列接続された第1弾性波共振子である。キャパシタCs1は、直列腕共振子s1と並列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCs1は、図2Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCs1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCs1の櫛歯電極は、3つの異なる電極指ピッチPc1(第1の電極指ピッチ)、Pc2(第2の電極指ピッチ)、およびPc3を有している。本実施例では、Pc2>Pc1>Pc3となっている。
さらに、キャパシタCs1のインピーダンスが極小となる周波数(コンダクタンスピークの周波数)は、弾性波フィルタ10Bの通過帯域外に配置されている。
表2に、実施例2に係る弾性波フィルタ10Bおよび比較例2に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表2において、|Z|minは、櫛歯容量素子のインピーダンスの極小値であり、f|Z|minは、櫛歯容量素子のインピーダンスが極小値となる周波数である。
比較例2に係る弾性波フィルタは、実施例2に係る弾性波フィルタ10Bと比較して、直列腕回路のキャパシタの構成のみが異なる。
表2に示すように、実施例2に係る弾性波フィルタ10Bでは、キャパシタCs1の電極指ピッチPc3は2.95μmであり、Pc1は3.00μmであり、Pc2は3.05μmである。また、電極指ピッチPc3で配置された電極指の本数は40本であり、電極指ピッチPc1で配置された電極指の本数は41本であり、電極指ピッチPc2で配置された電極指の本数は40本である。これに対して、比較例2に係る弾性波フィルタでは、キャパシタの電極指ピッチは全て3.00μmであり、当該電極指ピッチで配置された電極指の本数は121本である。
また、実施例2および比較例2の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は350nmであり、交叉幅Lcは20μmである。
また、実施例2および比較例2において、直列腕共振子s1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
本実施例では、図2Aに示すように、電極指ピッチPc3で配置された電極指が形成された第3領域(図2Aの櫛歯電極における下側領域)と、電極指ピッチPc1で配置された電極指が形成された第1領域(図2Aの櫛歯電極における中央領域)と、電極指ピッチPc2で配置された電極指が形成された第2領域(図2Aの櫛歯電極における上側領域)とは、3分割されている。
なお、上記3つの領域は、3分割されていることに限定されるものではなく、電極指ピッチPc1およびPc2による2分割でもよく、あるいは、4つ以上の異なる電極指ピッチによる4分割以上に細分化されていてもよい。また、例えば、第1領域、第2領域、および第3領域が交互に配列されていてもよい。
なお、表2に示すように、実施例2に係る弾性波フィルタ10BのキャパシタCs1の静電容量は1.47pFであり、比較例2に係る弾性波フィルタのキャパシタの静電容量も1.47pFである。
図2Bは、実施例2および比較例2に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例2および比較例2に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例2および比較例2に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例2および比較例2に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例2および比較例2に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図2Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例2と比較例2とで大きな差異はない(表2より、ともに1.01dB)。これに対して、図2Bの(b)および(d)に示すように、通過帯域低域側の減衰帯域(0.7GHz以下の周波数帯域)において、実施例2に係る弾性波フィルタ10Bの方が、比較例2に係る弾性波フィルタよりも、減衰量が向上(0.7GHz以下における挿入損失の最小値が増加)している(表2より、実施例2では2.56dB、比較例2では2.22dB)。つまり、実施例2に係る弾性波フィルタ10Bでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例2に係る弾性波フィルタ10Bにおいて、通過帯域低域側の減衰帯域における減衰量が向上した要因を、図2Cを用いて説明する。
図2Cは、実施例2および比較例2に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例2および比較例2に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例2および比較例2に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例2および比較例2に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例2および比較例2に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例2および比較例2に係るキャパシタの狭帯域(通過帯域近傍)の静電容量特性の比較が示されている。同図の(f)には、実施例2および比較例2に係るキャパシタの狭帯域(通過帯域近傍)の容量Q値の比較が示されている。
まず、図2Cの(a)および(b)に示すように、直列腕共振子s1にキャパシタが並列接続されることにより、直列腕回路の反共振周波数Fasは直列腕共振子s1の反共振周波数fasに対して低周波側へシフトする。実施例2および比較例2に係る弾性波フィルタにおいて、直列腕回路および並列腕共振子p1によりバンドパスフィルタを構成するにあたり、並列腕共振子p1の反共振周波数fapと直列腕回路の共振周波数Frsとを近接させる。並列腕共振子p1のインピーダンスが0に近づく共振周波数frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、反共振周波数fapで並列腕共振子p1のインピーダンスが高くなり、かつ、共振周波数Frs近傍で直列腕回路のインピーダンスが0に近づく。これにより、反共振周波数fapおよび共振周波数Frsの近傍では、入出力端子T1から入出力端子T2への信号経路(直列腕)における信号通過域となる。さらに、周波数が高くなり、直列腕回路の反共振周波数Fas近傍になると、直列腕回路のインピーダンスが高くなり、高周波側阻止域となる。つまり、実施例2および比較例2に係る弾性波フィルタは、反共振周波数fapおよび共振周波数Frsによって通過帯域が規定され、共振周波数frpによって通過帯域低域側の極(減衰極)が規定され、反共振周波数Fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図2Cの(c)および(d)に示すように、実施例2に係るキャパシタCs1のインピーダンスが極小となる周波数f1min(674MHz)は、実施例2に係る弾性波フィルタ10Bの通過帯域低域側の減衰帯域に配置されている。同様に、比較例2に係るキャパシタのインピーダンスが極小となる周波数f2min(663MHz)は、比較例2に係る弾性波フィルタの通過帯域低域側の減衰帯域に配置されている。
なお、図2Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例2と比較例2との間で大きな差異はない。
ここで、図2Cの(d)に示すように、実施例2に係るキャパシタCs1の周波数f1minにおけるインピーダンスの極小値(表2より、7.80dB)は、比較例2に係るキャパシタの周波数f2minにおけるインピーダンスの極小値(表2より、0.09dB)よりも大きくなっている。この要因として、実施例2に係る弾性波フィルタ10Bでは、キャパシタCs1における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域低域側の減衰帯域において、直列腕回路11sのインピーダンス最小値が増加(インピーダンスが極小になる周波数が分散)しているので、f1minにおける高周波信号の直列腕回路11sへの通過量を小さくできる。つまり、コンダクタンスピーク(インピーダンスの極小点)が位置する周波数領域である減衰帯域で、弾性波フィルタ10Bの減衰量が悪化するという課題を解決できる。
以上により、通過帯域内の挿入損失を維持しつつ、通過帯域低域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Bを実現できる。
[1.4 実施例3に係る弾性波フィルタ]
図3Aは、実施例3に係る弾性波フィルタ10Cの回路構成図および並列腕回路12pにおけるキャパシタCp2の模式図である。同図に示された弾性波フィルタ10Cは、直列腕共振子s1と、並列腕回路12pと、入出力端子T1およびT2と、を備える。
図3Aは、実施例3に係る弾性波フィルタ10Cの回路構成図および並列腕回路12pにおけるキャパシタCp2の模式図である。同図に示された弾性波フィルタ10Cは、直列腕共振子s1と、並列腕回路12pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路12pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCp2とを有している。並列腕回路12pは、並列腕共振子p1とキャパシタCp2とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCp2と並列接続された第1弾性波共振子である。キャパシタCp2は、並列腕共振子p1と並列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCp2は、図3Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCp2が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCp2の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。また、キャパシタCp2の櫛歯電極は、3つの異なる電極指デューティ比Duty1、Duty2、およびDuty3を有している。本実施例では、電極指ピッチPc2で配置された電極指は、異なる2つの電極指デューティ比Duty2およびDuty3を有し、電極指ピッチPc1で配置された電極指は、1つの電極指デューティ比Duty1を有しており、Duty2>Duty1>Duty3となっている。
さらに、キャパシタCp2のインピーダンスが極大となる周波数は、弾性波フィルタ10Cの通過帯域外に配置されている。
表3に、実施例3に係る弾性波フィルタ10Cおよび実施例1に係る弾性波フィルタ10Aの回路パラメータおよびフィルタ特性を示す。
なお、表3において、|Z|maxは、櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、櫛歯容量素子のインピーダンスが極大値となる周波数である。
実施例3に係る弾性波フィルタ10Cは、実施例1に係る弾性波フィルタ10Aと比較して、並列腕回路のキャパシタCp2の構成において、櫛歯電極が2つの異なる電極指ピッチを有するだけでなく、3つの異なる電極指デューティ比を有する点が異なる。
表3に示すように、実施例1に係る弾性波フィルタ10Aでは、キャパシタCp1の電極指ピッチPc1は3.00μmであり、電極指デューティ比は0.6である。
これに対して、実施例3に係る弾性波フィルタ10Cでは、キャパシタCp2の電極指ピッチPc1は3.00μmであり、電極指ピッチPc2は3.05μmであり、さらに、電極指デューティ比Duty1は0.45であり、電極指デューティ比Duty2は0.70であり、電極指デューティ比Duty3は0.40である。また、電極指ピッチPc1で配置された電極指の本数は40本であり、電極指ピッチPc2で配置された電極指の本数は81本である。また、電極指デューティ比Duty1で配置された電極指の本数は40本であり、電極指デューティ比Duty2で配置された電極指の本数は41本であり、電極指デューティ比Duty3で配置された電極指の本数は40本である。
また、実施例3および実施例1の双方に共通して、櫛歯電極の膜厚は350nmであり、交叉幅Lcは20μmである。
また、実施例3および実施例1において、並列腕共振子p1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
本実施例では、図3Aに示すように、電極指デューティ比Duty1で配置された電極指が形成された第1領域と、電極指デューティ比Duty2で配置された電極指が形成された第2領域と、電極指デューティ比Duty3で配置された電極指が形成された第3領域とは3分割されている。
なお、上記3つの領域は、3分割されていることに限定されるものではなく、電極指デューティ比Duty1およびDuty2による2分割でもよく、あるいは、4つ以上の異なる電極指デューティ比による4分割以上に細分化されていてもよい。また、例えば、第1領域、第2領域、および第3領域が交互に配列されていてもよい。
図3Bは、実施例3および実施例1に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例3および実施例1に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例3および実施例1に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例3および実施例1に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例3および実施例1に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図3Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例3の方が実施例1よりも若干挿入損失が低減されている(表3より、実施例3では0.91dB、実施例1では0.92dB)。これに対して、図3Bの(b)および(d)に示すように、通過帯域低域側の減衰帯域(0.7GHz以下の周波数帯域)において、実施例3に係る弾性波フィルタ10Cの方が、実施例1に係る弾性波フィルタよりも、減衰量が向上(0.7GHz以下における挿入損失の最小値が増加)している(表3より、実施例3では3.52dB、実施例1では3.24dB)。つまり、実施例3に係る弾性波フィルタ10Cでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例3に係る弾性波フィルタ10Cにおいて、通過帯域低域側の減衰帯域における減衰量が向上した要因を、図3Cを用いて説明する。
図3Cは、実施例3および実施例1に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例3および実施例1に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例3および実施例1に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例3および実施例1に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例3および実施例1に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例3および実施例1に係るキャパシタの狭帯域(通過帯域近傍)の静電容量特性の比較が示されている。同図の(f)には、実施例3および実施例1に係るキャパシタの狭帯域(通過帯域近傍)の容量Q値の比較が示されている。
まず、図3Cの(a)および(b)に示すように、実施例3および実施例1に係る弾性波フィルタは、並列腕回路の反共振周波数Fapおよび直列腕共振子の共振周波数frsによって通過帯域が規定され、並列腕回路の共振周波数Frpによって通過帯域低域側の極(減衰極)が規定され、直列腕共振子の反共振周波数fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図3Cの(c)および(d)に示すように、実施例3に係るキャパシタCp2のインピーダンスが極大となる周波数f3max(710MHz)は、実施例3に係る弾性波フィルタ10Cの通過帯域低域側の減衰帯域に配置されている。同様に、実施例1に係るキャパシタのインピーダンスが極大となる周波数f1max(710MHz)は、実施例1に係る弾性波フィルタ10Aの通過帯域低域側の減衰帯域に配置されている。
なお、図3Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例3と実施例1との間で大きな差異はない。
ここで、図3Cの(d)に示すように、実施例3に係るキャパシタCp2の周波数f3maxにおけるインピーダンスの極大値(表3より、55.88dB)は、実施例1に係るキャパシタの周波数f1maxにおけるインピーダンスの極大値(表3より、56.06dB)よりも小さくなっている。この要因として、実施例3に係る弾性波フィルタ10Cでは、キャパシタCp2における電極指ピッチの一部を異ならせていることに加えて、キャパシタCp2における電極指デューティ比の一部を異ならせていることが挙げられる。これにより、通過帯域低域側の減衰帯域において、並列腕回路12pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、実施例1に係るf1maxにおける高周波信号の並列腕回路11pへの通過量よりも、f3maxにおける高周波信号の並列腕回路12pへの通過量を大きくできる。つまり、弾性波フィルタ10Cを構成する並列腕回路12pのキャパシタCp2の電極指のデューティ比の一部を異ならせることで、通過帯域内の挿入損失を維持しつつ、通過帯域低域側の減衰帯域における減衰量を向上させることが可能となる。
[1.5 実施例4に係る弾性波フィルタ]
図4Aは、実施例4に係る弾性波フィルタ10Dの回路構成図および並列腕回路13pにおけるキャパシタCp3の模式図である。同図に示された弾性波フィルタ10Dは、直列腕共振子s1と、並列腕回路13pと、入出力端子T1およびT2と、を備える。
図4Aは、実施例4に係る弾性波フィルタ10Dの回路構成図および並列腕回路13pにおけるキャパシタCp3の模式図である。同図に示された弾性波フィルタ10Dは、直列腕共振子s1と、並列腕回路13pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路13pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCp3とを有している。並列腕回路13pは、並列腕共振子p1とキャパシタCp3とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCp3と並列接続された第1弾性波共振子である。キャパシタCp3は、並列腕共振子p1と並列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCp3は、図4Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCp3が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCp3の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCp3のインピーダンスが極大となる周波数は、弾性波フィルタ10Dの通過帯域外に配置されている。
また、並列腕共振子p1は、圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有する。キャパシタCp3も、上記基板上に形成されている。
ここで、キャパシタCp3を構成する複数の電極指ピッチPc1およびPc2は、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さい。
表4に、実施例4に係る弾性波フィルタ10Dおよび比較例4に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表4において、|Z|maxは、櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、櫛歯容量素子のインピーダンスが極大値となる周波数である。
比較例4に係る弾性波フィルタは、実施例4に係る弾性波フィルタ10Dと比較して、並列腕回路のキャパシタの構成のみが異なる。
表4に示すように、実施例4に係る弾性波フィルタ10Dでは、キャパシタCp3の電極指ピッチPc1は1.95μmであり、キャパシタCp3の電極指ピッチPc2は2.00μmである。また、電極指ピッチPc1で配置された電極指の本数は40本であり、電極指ピッチPc2で配置された電極指の本数は21本である。一方、比較例4に係る弾性波フィルタでは、キャパシタの電極指ピッチは、全て2.00μmであり、当該電極指ピッチで配置された電極指の本数は61本である。また、実施例4および比較例4の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は350nmであり、交叉幅Lcは20μmである。
また、実施例4および比較例4において、並列腕共振子p1を構成するIDT電極の電極指ピッチは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
実施例1では、櫛歯容量素子(キャパシタCp1)のインピーダンスが極大となる周波数を通過帯域低域側に配置したのに対し、実施例4では、櫛歯容量素子(キャパシタCp3)の電極指ピッチを狭くして、櫛歯容量素子(キャパシタCp3)のインピーダンスが極小となる周波数を通過帯域高域側に配置していることが異なる。以下、本実施例に係る弾性波フィルタ10Dについて、実施例1に係る弾性波フィルタ10Aと同じ点は説明を省略し、異なる点を中心に説明する。
図4Bは、実施例4および比較例4に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例4および比較例4に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例4および比較例4に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例4および比較例4に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例4および比較例4に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図4Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例4と比較例4とで大きな差異はない(表4より、実施例4では0.79dBであり、比較例4では0.80dB)。これに対して、図4Bの(b)および(d)に示すように、通過帯域高域側の減衰帯域(0.8GHz以上の周波数帯域)において、実施例4に係る弾性波フィルタ10Dの方が、比較例4に係る弾性波フィルタよりも、減衰量が向上(0.8GHz以上における挿入損失の最小値が増加)している(表4より、実施例4では4.90dB、比較例4では4.43dB)。つまり、実施例4に係る弾性波フィルタ10Dでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例4に係る弾性波フィルタ10Dにおいて、通過帯域高域側の減衰帯域における減衰量が向上した要因を、図4Cを用いて説明する。
図4Cは、実施例4および比較例4に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例4および比較例4に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例4および比較例4に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例4および比較例4に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例4および比較例4に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例4および比較例4に係るキャパシタの狭帯域(通過帯域近傍)の静電容量特性の比較が示されている。同図の(f)には、実施例4および比較例4に係るキャパシタの狭帯域(通過帯域近傍)の容量Q値の比較が示されている。
弾性波フィルタ10Dの通過帯域内を構成する並列腕回路13pおよび直列腕共振子s1の共振特性については、実施例1に係る弾性波フィルタ10Aの共振特性と同様のため、説明を省略する。
次に、図4Cの(c)および(d)に示すように、実施例4に係るキャパシタCp3のインピーダンスが極大となる周波数f4max(1085MHz)は、実施例4に係る弾性波フィルタ10Dの通過帯域高域側の減衰帯域に配置されている。同様に、比較例4に係るキャパシタのインピーダンスが極大となる周波数f5max(1070MHz)は、比較例4に係る弾性波フィルタの通過帯域高域側の減衰帯域に配置されている。
なお、図4Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例4と比較例4との間で大きな差異はない。
ここで、図4Cの(d)に示すように、実施例4に係るキャパシタCp3の周波数f4maxにおけるインピーダンスの極大値(表4より、57.15dB)は、比較例4に係るキャパシタの周波数f5maxにおけるインピーダンスの極大値(表4より、57.48dB)よりも小さくなっている。この要因として、実施例4に係る弾性波フィルタ10Dでは、キャパシタCp3における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域高域側の減衰帯域において、並列腕回路13pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、f4maxにおける高周波信号の並列腕回路13pへの通過量を大きくできる。以上により、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Dを実現できる。
図4Dは、実施例4および実施例1に係る弾性波フィルタの通過特性を比較したグラフである。同図の上段には、実施例4に係る弾性波フィルタ10Dおよび実施例1に係る弾性波フィルタ10Aの、通過帯域近傍における通過特性の比較が示されている。また、同図の下段には、実施例4に係る弾性波フィルタ10Dおよび実施例1に係る弾性波フィルタ10Aの、通過帯域内の通過特性の比較が示されている。図4Dの下段に示すように、実施例4に係る弾性波フィルタ10Dのほうが、実施例1に係る弾性波フィルタ10Aと比較して、通過帯域内の挿入損失が低減されている(表4より実施例4では通過帯域内挿入損失は0.79dB、表1より実施例1では通過帯域内挿入損失は0.92dB)。
以下、実施例4に係る弾性波フィルタ10Dにおいて、通過帯域内の挿入損失が低減されることを説明する。
図5Aは、実施の形態1に係る弾性波フィルタを構成する共振回路の電極構造を模式的に表す図である。具体的には、図5Aの(a)には、実施例1に係る並列腕回路11pの基板上における電極の平面図、当該平面図のA-A’線における断面図、当該平面図のB-B’線における断面図が表され、図5Aの(b)には、電極の拡大図が示されている。なお、図5Aに示された電極構造は、並列腕回路11pを構成する並列腕共振子p1およびキャパシタCp1を構成する櫛歯容量電極の典型的な構造を説明するためのものである。このため、各共振子のIDT電極および櫛歯容量電極を構成する電極指の本数や長さなどは、同図に示す電極指の本数や長さに限定されない。また、実施例1に限らず、その他の実施例に係る共振回路においても、図5Aに示された電極構造が適用される。
図5Aの(a)に示すように、並列腕共振子p1は、圧電基板102に形成されたIDT電極により構成される。並列腕共振子p1は、IDT電極111、1組の反射器112、および圧電基板102によって構成されている。IDT電極111および反射器112は、複数の電極指と、当該複数の電極指を挟んで対向して配置された1組のバスバー電極とを有し、IDT電極111は、互いに間挿し合う1対の櫛歯状電極で構成されている。ここで、複数の電極指は、弾性波の伝搬方向と直交する方向に沿って形成され、当該伝搬方向に沿って周期的に形成されている。
このように構成された並列腕共振子p1では、IDT電極111および反射器112の設計パラメータ等によって、励振される弾性波の波長が規定される。以下、IDT電極111の設計パラメータについて説明する。
なお、以下の説明において、図5Aの(b)を参照する場合、図5Aの(b)では、IDT電極111およびキャパシタCp1の電極パラメータを、P、W1、W2、S、Lと総称しているが、以下の説明では、IDT111の電極パラメータを、それぞれ、Pr、W1r、W2r、Sr、Lrと定義し、キャパシタCp1の電極パラメータを、それぞれ、Pc1(またはPc2)、W1c1(またはW1c2)、W2c1(またはW2c2)、Sc1(またはSc2)、Lcと定義する。
上記弾性波の波長は、複数の電極指のうち1つのバスバー電極に接続された電極指の繰り返し周期λrで規定される。また、電極指ピッチ(複数の電極指のピッチ、すなわち電極指周期)Prとは、当該繰り返し周期λrの1/2である。図5Aの(b)に示すように、隣り合う電極指のうち左側の電極指のライン幅の半分をW1とし、右側の電極指ライン幅の半分をW2とし、当該隣り合う電極指の間のスペース幅(電極指間ギャップ)をSrとした場合、Pr=(W1r+W2r+Sr)で定義される。また、IDT電極111の交叉幅Lrとは、1組のバスバー電極の一方に接続された電極指と他方に接続された電極指とを弾性波の伝搬方向から見た場合の重複する電極指長さである。また、電極指デューティ比とは、電極指ピッチPr内における電極指の占有幅(W1r+W2r)、つまり(W1r+W2r)/(W1r+W2r+Sr)で定義される。すなわち、IDT電極111の電極指デューティ比は、複数の電極指のライン幅占有率、つまり(W1r+W2r)/Prで定義される。また、対数とは、対をなす電極指の数であり、電極指の総数の概ね半数である。例えば、対数をNrとし、電極指の総数をMrとすると、Mr=2Nr+1を満たす。また、IDT電極111の電極指の膜厚とは、当該電極指を形成する電極膜の厚みTrである。また、並列腕共振子p1の静電容量C0は、以下の式1で示される。
なお、ε0は真空中の誘電率、εrは圧電基板102の誘電率である。
次に、キャパシタCp1の構造について、説明する。
キャパシタCp1は、圧電基板102と圧電基板102上に形成された櫛歯容量電極とで構成されている。櫛歯容量電極は、複数の電極指で構成されている。図5Aの(a)に示すように、櫛歯容量電極は、IDT電極111と同様に電極膜によって構成されている。つまり、キャパシタCp1を構成する櫛歯容量電極は、並列腕共振子p1を構成するIDT電極111と同一の圧電基板102上に形成されている。なお、櫛歯容量電極とIDT電極111とは、互いに異なる圧電基板上に形成されていてもかまわない。
櫛歯容量電極は、複数の電極指と、当該複数の電極指を挟んで対向して配置された1組のバスバー電極とを有し、複数の電極指が1組のバスバー電極の一方と他方に対して交互に接続されることにより構成されている。ここで、複数の電極指は、弾性波の伝搬方向に沿って形成され、当該伝搬方向と直交する方向に沿って周期的に形成されている。
ここで、キャパシタCp1は、2つの異なる電極指ピッチPc1およびPc2を有している。実施例1では、Pc2>Pc1となっている。
このように構成されたキャパシタCp1では、櫛歯容量電極の設計パラメータ等によって、容量値およびQ値等の特性が規定される。以下、櫛歯容量電極の設計パラメータについて説明する。
櫛歯容量電極の電極指ピッチ(電極指のピッチ、すなわち電極指周期)Pc1およびPc2とは、図5Aの(b)に示すように、隣り合う電極指のうち左側の電極指のライン幅の半分をW1c1(またはW1c2)とし、右側の電極指ライン幅の半分をW2c1(または(W2c2)とし、当該隣り合う電極指の間のスペース幅(電極指間ギャップ)をSc1(またはSc2)とした場合、Pc1=(W1c1+W2c1+Sc1)、Pc2=(W1c2+W2c2+Sc2)で定義される。また、電極指デューティ比とは、電極指ピッチPc1内における電極指の占有幅(W1c1+W2c1)または電極指ピッチPc2内における電極指の占有幅(W1c2+W2c2)、つまり(W1c1+W2c1)/(W1c1+W2c1+Sc1)または(W1c2+W2c2)/(W1c2+W2c2+Sc2)で定義される。すなわち、電極指デューティ比は、複数の電極指のライン幅占有率、つまり(W1c1+W2c1)/Pc1または(W1c2+W2c2)/Pc2で定義される。また、対数とは、対をなす電極指の数であり、電極指の総数の概ね半数である。例えば、電極指ピッチPc1(またはPc2)を有する電極指の対数をNc1(またはNc2)とし、電極指ピッチPc1(またはPc2)を有する電極指の総数をMc1(またはMc2)とすると、Mc1=2Nc1+1(またはMc2=2Nc2+1)を満たす。また、櫛歯容量電極の電極指の膜厚とは、当該電極指を形成する電極膜の厚みTcである。また、櫛歯容量電極の静電容量Cxは、電極指ピッチPc1を有する電極指の静電容量をCxc1とし、電極指ピッチPc2を有する電極指の静電容量をCxc2とすると、以下の式2で示され、電極指ピッチは静電容量に寄与しない。
次いで、キャパシタCp1を構成する櫛歯容量電極と、キャパシタCp1と並列接続される並列腕共振子p1のIDT電極111の設計パラメータについて、比較して説明する。
本実施例に係る弾性波フィルタ10Dにおいて、キャパシタCp3の電極指ピッチPc1およびPc2Sは、並列腕共振子p1のIDT電極における電極指ピッチPrより狭い。これによれば、上記の通り電極指ピッチは静電容量に寄与しないため、キャパシタCp3の単位面積当たりの静電容量を、並列腕共振子p1の単位面積当たりの静電容量(静電容量密度)よりも大きくしつつ、キャパシタCp3のサイズを小さくすることが可能となる。
図5Bは、比較例に係る弾性波フィルタを構成する共振回路の電極構造を模式的に表す図である。図5Bの(a)および(b)には、キャパシタの静電容量が、実施の形態1に係る弾性波フィルタ(図5Aの(a))の静電容量と等しくなるような電極構成が示されている。図5Bの(a)では、実施の形態1に係る弾性波フィルタ(図5Aの(a))に対して、(1)静電容量が等しい、(2)電極指ピッチが広い(共振子の電極指ピッチと同じ)、および(3)交叉幅および対数が等しい。また、図5Bの(a)では、図5B(a)に対して、(1)静電容量が等しい、(2)電極指ピッチが等しい(共振子の電極指ピッチと同じ)、および(3)交叉幅が大きく、対数が少ない(交叉幅×対数が等しい)。
図5Bの(a)および(b)によれば、キャパシタの電極指ピッチが、共振子の電極指ピッチと同じ、または、大きい場合、キャパシタのサイズを小さくすることは不可能である。
図6Aは、典型例において、櫛歯容量素子の電極指ピッチと、静電容量値、インピーダンスおよび容量Q値との関係を表すグラフである。また、図6Bは、典型例において、櫛歯容量素子の電極指ピッチと、単位面積当たりの静電容量(静電容量密度)、容量Q値および自己共振周波数との関係を表すグラフである。図6Aおよび図6Bより、電極指ピッチを小さくすると、以下の効果が得られる。
(1)自己共振周波数が高周波数側へシフトする(図6Bの(c))。
(2)容量Q値が向上する(図6Bの(b))。
(3)単位面積当たりの静電容量が大きくなる(図6Bの(a))。このため、櫛歯容量素子のサイズが小さくなる。
(1)自己共振周波数が高周波数側へシフトする(図6Bの(c))。
(2)容量Q値が向上する(図6Bの(b))。
(3)単位面積当たりの静電容量が大きくなる(図6Bの(a))。このため、櫛歯容量素子のサイズが小さくなる。
実施例4に係る弾性波フィルタ10Dのように、キャパシタCp3を構成する複数の電極指ピッチPc1およびPc2を、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さくすることで、上記(2)のように、実施例1に係る弾性波フィルタ10Aと比較してキャパシタCp3の容量Q値が向上する。これにより、実施例4に係る弾性波フィルタ10Dは、実施例1に係る弾性波フィルタ10Aと比較して、通過帯域内の挿入損失が低減する(表4より実施例4では通過帯域内挿入損失は0.79dB、表1より実施例1では通過帯域内挿入損失は0.92dB)。
また、上記(3)のように、実施例4に係るキャパシタCp3は、実施例1に係るキャパシタCp1と比較して、単位面積当たりの静電容量が大きくなるため、弾性波フィルタを小型化できる。一例として、実施例1に係る弾性波フィルタ10AのキャパシタCp1の櫛歯電極部の面積が7293μm2であるのに対し、実施例4に係る弾性波フィルタ10DのキャパシタCp1の櫛歯電極部の面積は、2368μm2であり、小型化されていることがわかる。
さらに、キャパシタCp3を構成する複数の電極指ピッチPc1およびPc2を、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さくすることで、上記(1)のように、自己共振周波数が高周波数側へシフトする。この観点から、実施例4では、キャパシタCp3のインピーダンスが極大となる周波数を、弾性波フィルタ10Dの通過帯域高域側の減衰帯域に配置することが容易となる。
[1.6 実施例5に係る弾性波フィルタ]
図7Aは、実施例5に係る弾性波フィルタ10Eの回路構成図および並列腕回路14pにおけるキャパシタCp4の模式図である。同図に示された弾性波フィルタ10Eは、直列腕共振子s1と、並列腕回路14pと、入出力端子T1およびT2と、を備える。
図7Aは、実施例5に係る弾性波フィルタ10Eの回路構成図および並列腕回路14pにおけるキャパシタCp4の模式図である。同図に示された弾性波フィルタ10Eは、直列腕共振子s1と、並列腕回路14pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路14pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCp4とを有している。並列腕回路14pは、並列腕共振子p1とキャパシタCp4とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCp4と並列接続された第1弾性波共振子である。キャパシタCp4は、並列腕共振子p1と並列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCp4は、図7Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCp4が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCp4の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCp4のインピーダンスが極大となる周波数は、弾性波フィルタ10Eの通過帯域外に配置されている。
また、並列腕共振子p1は、圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有する。キャパシタCp4も、上記基板上に形成されている。
ここで、キャパシタCp4を構成する複数の電極指ピッチPc1およびPc2は、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さい。
さらに、キャパシタCp4を構成する複数の電極指の膜厚は、並列腕共振子p1のIDT電極を構成する電極指の膜厚より小さい。
表5に、実施例5に係る弾性波フィルタ10Eおよび比較例5に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表5において、|Z|maxは、櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、櫛歯容量素子のインピーダンスが極大値となる周波数である。
比較例5に係る弾性波フィルタは、実施例5に係る弾性波フィルタ10Eと比較して、並列腕回路のキャパシタの構成のみが異なる。
表5に示すように、実施例5に係る弾性波フィルタ10Eでは、キャパシタCp4の電極指ピッチPc1は0.725μmであり、電極指ピッチPc2は0.750μmである。また、電極指ピッチPc1で配置された電極指の本数は40本であり、電極指ピッチPc2で配置された電極指の本数は21本である。一方、比較例4に係る弾性波フィルタでは、キャパシタの電極指ピッチは、全て0.750μmである。また、実施例4および比較例4の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は150nmであり、交叉幅Lcは20μmである。
また、実施例5および比較例5において、並列腕共振子p1を構成するIDT電極の電極指ピッチは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
また、実施例5に係る弾性波フィルタ10Eは、実施例4に係る弾性波フィルタ10Dと比較して、並列腕回路14pのキャパシタCp4の膜厚ならびに電極指ピッチPc1およびPc2が、並列腕回路13pのキャパシタCp3の膜厚ならびに電極指ピッチPc1およびPc2よりも小さい点のみが構成として異なる。以下、本実施例に係る弾性波フィルタ10Eについて、実施例4に係る弾性波フィルタ10Dと同じ点は説明を省略し、異なる点を中心に説明する。
実施例5および実施例4を具体的に比較すると、実施例4では、キャパシタCp3の膜厚およびIDT電極の膜厚は、ともに350nmであったのに対して、実施例5では、キャパシタCp4の膜厚(150nm)をIDT電極の膜厚(350nm)よりも小さく設定している。これに伴い、実施例5の電極指ピッチPc1(0.725μm)およびPc2(0.750μm)を、実施例4の電極指ピッチPc1(1.950μm)およびPc2(2.000μm)よりも小さくしている。
図7Bは、実施例5および比較例5に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例5および比較例5に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例5および比較例5に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例5および比較例5に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例5および比較例5に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図7Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例5と比較例5とで差異はない(表5より、実施例5では0.65dBであり、比較例5では0.65dB)。これに対して、図7Bの(a)および(d)に示すように、通過帯域高域側の減衰帯域(2GHz以上の周波数帯域)において、実施例5に係る弾性波フィルタ10Eの方が、比較例5に係る弾性波フィルタよりも、減衰量が向上(2GHz以上における挿入損失の最小値が増加)している(表5より、実施例5では8.87dB、比較例5では8.54dB)。つまり、実施例5に係る弾性波フィルタ10Eでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例5に係る弾性波フィルタ10Eにおいて、通過帯域高域側の減衰帯域における減衰量が向上した要因を、図7Cを用いて説明する。
図7Cは、実施例5および比較例5に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例5および比較例5に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例5および比較例5に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例5および比較例5に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例5および比較例5に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例5および比較例5に係るキャパシタの狭帯域(通過帯域近傍)の静電容量特性の比較が示されている。同図の(f)には、実施例5および比較例5に係るキャパシタの狭帯域(通過帯域近傍)の容量Q値の比較が示されている。
弾性波フィルタ10Eの通過帯域内を構成する並列腕回路14pおよび直列腕共振子s1の共振特性については、実施例1に係る弾性波フィルタ10Aの共振特性と同様のため、説明を省略する。
次に、図7Cの(c)に示すように、実施例5に係るキャパシタCp4のインピーダンスが極大となる周波数f6max(2601MHz)は、実施例5に係る弾性波フィルタ10Eの通過帯域高域側の減衰帯域に配置されている。同様に、比較例5に係るキャパシタのインピーダンスが極大となる周波数f7max(2695MHz)は、比較例5に係る弾性波フィルタの通過帯域高域側の減衰帯域に配置されている。
なお、図7Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例5と比較例5との間で大きな差異はない。
ここで、図7Cの(c)に示すように、実施例5に係るキャパシタCp4の周波数f6maxにおけるインピーダンスの極大値(表5より、52.53dB)は、比較例5に係るキャパシタの周波数f7maxにおけるインピーダンスの極大値(表5より、57.43dB)よりも小さくなっている。この要因として、実施例5に係る弾性波フィルタ10Eでは、キャパシタCp4における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域高域側の減衰帯域において、並列腕回路14pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、f6maxにおける高周波信号の並列腕回路14pへの通過量を大きくできる。以上により、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Eを実現できる。
また、実施例5では、実施例4と比較して、キャパシタCp4の電極指ピッチを小さく設定しているため、キャパシタCp4のインピーダンスが極大となる周波数f6max(2601MHz)は、キャパシタCp3のインピーダンスが極大となる周波数f4max(1085MHz)よりも高くなっている。このため、実施例5では、実施例4と比較して、より高周波側の減衰帯域における減衰量を改善している。
図7Dは、実施例5、実施例4および実施例1に係る弾性波フィルタの通過特性を比較したグラフである。同図の上段には、実施例5に係る弾性波フィルタ10E、実施例4に係る弾性波フィルタ10D、および実施例1に係る弾性波フィルタ10Aの、広帯域通過特性の比較が示されている。また、同図の下段には、実施例5に係る弾性波フィルタ10E、実施例4に係る弾性波フィルタ10D、および実施例1に係る弾性波フィルタ10Aの、通過帯域内の通過特性の比較が示されている。図7Dの下段に示すように、実施例5に係る弾性波フィルタ10Eのほうが、実施例4に係る弾性波フィルタ10Dおよび実施例1に係る弾性波フィルタ10Aと比較して、通過帯域内の挿入損失が低減されている。
以下、実施例5に係る弾性波フィルタ10Eにおいて、通過帯域内の挿入損失が低減されることを説明する。
実施例5に係るキャパシタCp4の膜厚は、並列腕共振子p1のIDT電極の膜厚よりも小さく、また、実施例4に係るキャパシタCp3の膜厚よりも小さい。
図6Cは、典型例において、櫛歯容量素子の電極指ピッチに対する膜厚と、単位面積当たりの静電容量(静電容量密度)、容量Q値および自己共振周波数との関係を表すグラフである。同図に示すように、櫛歯容量素子の電極指の膜厚を変化させても、静電容量密度、容量Q値、および自己共振周波数などの容量特性に大きな変化はない。ただし、上記電極指の膜厚を薄くすることで、電極指ピッチを狭くすることが可能となる。製造上の制約より、電極指の膜厚は、電極指ピッチの40%程度が上限である。そのため、上記電極指の膜厚を薄くすることで、電極指ピッチをより狭くすることができ、櫛歯容量素子の電極指ピッチを小さくする効果がより一層大きくなる。
実施例5に係る弾性波フィルタ10Eのように、キャパシタCp4を構成する複数の電極指ピッチPc1およびPc2を、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さくすることで、実施例1に係る弾性波フィルタ10Aと比較してキャパシタCp4の容量Q値が向上する。これにより、実施例5に係る弾性波フィルタ10Eは、実施例1に係る弾性波フィルタ10Aと比較して、通過帯域内の挿入損失が低減する。
さらに、実施例5に係る弾性波フィルタ10Eのように、キャパシタCp4の電極指の膜厚を、並列腕共振子p1のIDT電極の電極指の膜厚より小さくすることで、実施例4に係る弾性波フィルタ10Dと比較して、キャパシタCp4の電極指ピッチをより小さくできるので、キャパシタCp4の容量Q値がさらに向上する。これにより、実施例5に係る弾性波フィルタ10Eは、実施例4に係る弾性波フィルタ10Dと比較して、通過帯域内の挿入損失がさらに低減する(表5より実施例5では通過帯域内挿入損失は0.65dB、表4より実施例4では通過帯域内挿入損失は0.79dB)。
また、実施例5に係るキャパシタCp4は、実施例4に係るキャパシタCp3と比較して、単位面積当たりの静電容量が大きくなるため、弾性波フィルタを小型化できる。一例として、実施例4に係る弾性波フィルタ10DのキャパシタCp3の櫛歯電極部の面積が2368μm2であるのに対し、実施例5に係る弾性波フィルタ10EのキャパシタCp4の櫛歯電極部の面積は、893μm2であり、さらに小型化されていることがわかる。
さらに、キャパシタCp4を構成する複数の電極指ピッチPc1およびPc2を、並列腕共振子p1のIDT電極を構成する電極指ピッチPp1より小さくすることで、上記(1)のように、自己共振周波数が高周波数側へシフトする。この観点から、実施例5では、キャパシタCp4のインピーダンスが極大となる周波数を、実施例4に係る弾性波フィルタ10Dと比較して、より高周波側の減衰帯域に配置することが容易となる。
なお、実施例5に係る弾性波フィルタ10Eのように、キャパシタCp4の電極指膜厚をIDT電極の電極指膜厚よりも小さくするほか、キャパシタCp4の電極指デューティ比をIDT電極の電極指デューティ比よりも大きくしてもよい。
図6Dは、典型例において、櫛歯容量素子のデューティ比と、単位面積当たりの静電容量(静電容量密度)、容量Q値および自己共振周波数との関係を表すグラフである。図6Dの(a)に示すように、櫛歯容量素子の単位面積当たりの静電容量を大きくすることができるので、弾性波フィルタのさらなる小型化が可能となる。
なお、上記実施の形態に係る各素子(直列腕共振子、並列腕共振子、キャパシタ)において、電極指ピッチ、膜厚およびデューティ比等は、均一とは限らず、製造プロセス等によるばらつきによって不均一となっている、あるいは、特性等の調整のために不均一となっている場合がある。このため、上記各素子では、これらを構成する櫛歯容量素子およびIDT電極の一部が、上述した電極指ピッチ、膜厚および電極指デューティ比等の関係を満たさない場合もある。しかし、上記各素子における電極指ピッチ、膜厚および電極指デューティ比の関係は、概ね成立していればよく、例えば、櫛歯容量素子およびIDT電極における電極指ピッチ、膜厚および電極指デューティ比等の平均値で成立していればよい。
[1.7 実施例6に係る弾性波フィルタ]
図8Aは、実施例6に係る弾性波フィルタ10Fの回路構成図および直列腕回路12sにおけるキャパシタCs2の模式図である。同図に示された弾性波フィルタ10Fは、直列腕回路12sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
図8Aは、実施例6に係る弾性波フィルタ10Fの回路構成図および直列腕回路12sにおけるキャパシタCs2の模式図である。同図に示された弾性波フィルタ10Fは、直列腕回路12sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕回路12sは、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕共振子s1と、キャパシタCs2と、スイッチSW1と、を有しており、共振回路となっている。直列腕共振子s1は、キャパシタCs2とスイッチSW1とが直列接続された回路と並列接続された第1弾性波共振子である。キャパシタCs2は、第1櫛歯容量素子であり、キャパシタCs2とスイッチSW1とが直列接続された回路は、インピーダンス回路を構成している。
キャパシタCs2は、図8Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCs2が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCs2の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCs2のインピーダンスが極小となる周波数は、弾性波フィルタ10Fの通過帯域外に配置されている。
表6に、実施例6に係る弾性波フィルタ10Fの回路パラメータおよびフィルタ特性を示す。
なお、表6において、|Z|minは、櫛歯容量素子のインピーダンスの極小値であり、f|Z|minは、櫛歯容量素子のインピーダンスが極小値となる周波数である。
表6に示すように、実施例6に係る弾性波フィルタ10Fでは、キャパシタCs2の電極指ピッチPc1は0.725μmであり、Pc2は0.750μmである。また、電極指ピッチPc1で配置された電極指の本数は21本であり、電極指ピッチPc2で配置された電極指の本数は40本である。また、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は150nmであり、交叉幅Lcは20μmである。
また、直列腕共振子s1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。つまり、キャパシタCs2を構成する複数の電極指の膜厚(150nm)は、直列腕共振子s1のIDT電極を構成する電極指の膜厚(350nm)より小さくなっている。
図8Aに示された回路構成によれば、スイッチSW1の導通および非導通の切り替えにより、直列腕回路12sの反共振周波数によって形成される通過帯域高域側の減衰極の周波数が切り替わる周波数可変型の弾性波フィルタ10Fが実現できる。
図8Bは、実施例6に係る弾性波フィルタ10Fの通過特性を比較したグラフである。同図の(a)には、実施例6に係る弾性波フィルタ10Fの広帯域通過特性が示されており、同図の(b)には、狭帯域(通過帯域近傍)の通過特性の比較が示されており、同図の(c)には、回路および共振子の広帯域のインピーダンス特性が示され、同図の(d)には、回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性が示されている。
本実施例では、直列腕共振子s1に対して、スイッチSW1が導通(オン)時に、キャパシタCs2が付加される。このため、図8Bの(d)に示すように、スイッチSW1オン時の直列腕回路12sの反共振周波数Fasonは、直列腕共振子s1の反共振周波数fasよりも低域側にシフトすることになる。よって、図8Bの(b)に示すように、弾性波フィルタ10Fは、スイッチSW1が導通状態から非導通状態に切り替わることにより、通過帯域高域側の減衰極を高域側にシフトさせることができる。
図8Cは、実施例6に係る弾性波フィルタ10Fの櫛歯容量特性を示すグラフである。同図の(a)には、キャパシタCs2の広帯域のインピーダンス特性が示されており、同図の(b)には、キャパシタCs2の狭帯域のインピーダンス特性が示されており、同図の(c)には、キャパシタCs2の広帯域の静電容量特性が示されており、同図の(d)には、キャパシタCs2の狭帯域の静電容量特性が示されており、同図の(e)には、キャパシタCs2の広帯域の容量Q値特性が示されており、同図の(f)には、キャパシタCs2の狭帯域の容量Q値特性が示されている。
図8Cの(a)および表6に示すように、キャパシタCs2のインピーダンスが極小となる周波数(2554MHz)は、実施例6に係る弾性波フィルタ10Fの通過帯域高域側の減衰帯域に配置されている。ここで、キャパシタCs2のインピーダンスが極小となる周波数におけるインピーダンスの極小値(表6より、2.39dB)は、キャパシタの電極指ピッチが均一である周波数可変型の弾性波フィルタと比較して大きくなっている。この要因として、実施例6に係る弾性波フィルタ10Fでは、キャパシタCs2における電極指ピッチの一部を異ならせていることが挙げられる。これにより、スイッチSW1導通時に、通過帯域高域側の減衰帯域において、直列腕回路12sのインピーダンス最小値が低減(インピーダンスが極小になる周波数が分散)されているので、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、周波数可変型の弾性波フィルタ10Fを実現できる。
[1.8 実施例7に係る弾性波フィルタ]
図9Aは、実施例7に係る弾性波フィルタ10Gの回路構成図および並列腕回路15pにおけるキャパシタCps1の模式図である。同図に示された弾性波フィルタ10Gは、直列腕共振子s1と、並列腕回路15pと、入出力端子T1およびT2と、を備える。
図9Aは、実施例7に係る弾性波フィルタ10Gの回路構成図および並列腕回路15pにおけるキャパシタCps1の模式図である。同図に示された弾性波フィルタ10Gは、直列腕共振子s1と、並列腕回路15pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路15pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCps1とを有している。並列腕回路15pは、並列腕共振子p1とキャパシタCps1とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCps1と直列接続された第1弾性波共振子である。キャパシタCps1は、並列腕共振子p1と直列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCps1は、図9Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCps1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCps1の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCps1のインピーダンスが極大となる周波数は、弾性波フィルタ10Gの通過帯域外に配置されている。
表7に、実施例7に係る弾性波フィルタ10Gおよび比較例6に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表7において、|Z|maxは、第1櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、第1櫛歯容量素子のインピーダンスが極大値となる周波数である。
比較例6に係る弾性波フィルタは、実施例7に係る弾性波フィルタ10Gと比較して、並列腕回路のキャパシタの構成のみが異なる。
表7に示すように、実施例7に係る弾性波フィルタ10Gでは、キャパシタCps1の電極指ピッチPc1は3.00μmであり、電極指ピッチPc2は3.05μmである。また、電極指ピッチPc1で配置された電極指の本数は321本であり、電極指ピッチPc2で配置された電極指の本数は280本である。これに対して、比較例6に係る弾性波フィルタでは、キャパシタの電極指ピッチは全て3.00μmであり、当該電極指ピッチで配置された電極指の本数は601本である。
また、実施例7および比較例6の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は350nmであり、交叉幅Lcは20μmである。
また、実施例7および比較例6において、並列腕共振子p1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
本実施例では、図9Aに示すように、電極指ピッチPc1で配置された電極指が形成された第1領域(図9Aの櫛歯電極における右側領域)と、電極指ピッチPc2で配置された電極指が形成された第2領域(図9Aの櫛歯電極における左側領域)とは、2分割されている。
なお、上記2つの領域は、2分割されていることに限定されるものではなく、3分割以上に細分化されていてもよい。例えば、第1領域と第2領域とが交互に配列されていてもよい。
また、上記実施例では、キャパシタCps1を構成する櫛歯電極が、2つの異なる電極指ピッチを有するものとしたが、3つ以上の異なる電極指ピッチを有していてもよい。
なお、表7に示すように、実施例7に係る弾性波フィルタ10Gの並列腕回路15pの静電容量は7.40pFであり、比較例6に係る弾性波フィルタの並列腕回路の静電容量は7.33pFであり、両者はほぼ同じ値である。
図9Bは、実施例7および比較例6に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例7および比較例6に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例7および比較例6に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例7および比較例6に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例7および比較例6に係る弾性波フィルタの低域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図9Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例7と比較例6とで大きな差異はない(表7より、ともに0.41dB)。これに対して、図9Bの(b)および(d)に示すように、通過帯域低域側の減衰帯域(0.6-0.8GHzの周波数帯域)において、実施例7に係る弾性波フィルタ10Gの方が、比較例6に係る弾性波フィルタよりも、減衰量が向上(0.6-0.8GHzにおける挿入損失の最小値が増加)している(表7より、実施例7では2.90dB、比較例6では2.79dB)。つまり、実施例7に係る弾性波フィルタ10Gでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例7に係る弾性波フィルタ10Gにおいて、通過帯域低域側の減衰帯域における減衰量が向上した要因を、図9Cを用いて説明する。
図9Cは、実施例7および比較例6に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例7および比較例6に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例7および比較例6に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例7および比較例6に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例7および比較例6に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例7および比較例6に係るキャパシタの広帯域の静電容量特性の比較が示されている。同図の(f)には、実施例7および比較例6に係るキャパシタの広帯域の容量Q値の比較が示されている。
まず、図9Cの(a)および(b)に示すように、並列腕共振子p1にキャパシタが直列接続されることにより、並列腕回路の共振周波数Frpは並列腕共振子p1の共振周波数frpに対して高周波側へシフトする。実施例7および比較例6に係る弾性波フィルタにおいて、並列腕回路および直列腕共振子s1によりバンドパスフィルタを構成するにあたり、並列腕回路の反共振周波数Fapと直列腕共振子s1の共振周波数frsとを近接させる。並列腕回路のインピーダンスが0に近づく共振周波数Frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、反共振周波数Fapで並列腕回路のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子s1のインピーダンスが0に近づく。これにより、反共振周波数Fapおよび共振周波数frsの近傍では、入出力端子T1から入出力端子T2への信号経路(直列腕)における信号通過域となる。さらに、周波数が高くなり、直列腕共振子s1の反共振周波数fas近傍になると、直列腕共振子s1のインピーダンスが高くなり、高周波側阻止域となる。つまり、実施例7および比較例6に係る弾性波フィルタは、反共振周波数Fapおよび共振周波数frsによって通過帯域が規定され、共振周波数Frpによって通過帯域低域側の極(減衰極)が規定され、反共振周波数fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図9Cの(c)および(d)に示すように、実施例7に係るキャパシタCps1のインピーダンスが極大となる周波数f1max(702MHz)は、実施例7に係る弾性波フィルタ10Gの通過帯域低域側の減衰帯域に配置されている。同様に、比較例6に係るキャパシタのインピーダンスが極大となる周波数f2max(720MHz)は、比較例6に係る弾性波フィルタの通過帯域低域側の減衰帯域に配置されている。
なお、図9Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例7と比較例6との間で大きな差異はない。
ここで、図9Cの(d)に示すように、実施例7に係るキャパシタCps1の周波数f1maxにおけるインピーダンスの極大値(表7より、41.10dB)は、比較例6に係るキャパシタの周波数f2maxにおけるインピーダンスの極大値(表7より、42.33dB)よりも小さくなっている。この要因として、実施例7に係る弾性波フィルタ10Gでは、キャパシタCps1における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域低域側の減衰帯域において、並列腕回路15pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、f1maxにおける高周波信号の並列腕回路15pへの通過量を大きくできる。つまり、インピーダンスピーク(インピーダンスの極大点)が位置する周波数領域である減衰帯域で、弾性波フィルタ10Gの減衰量が悪化するという課題を解決できる。以上により、通過帯域内の挿入損失を維持しつつ、通過帯域低域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Gを実現できる。
[1.9 実施例8に係る弾性波フィルタ]
図10Aは、実施例8に係る弾性波フィルタ10Hの回路構成図および並列腕回路16pにおけるキャパシタCps2の模式図である。同図に示された弾性波フィルタ10Hは、直列腕共振子s1と、並列腕回路16pと、入出力端子T1およびT2と、を備える。
図10Aは、実施例8に係る弾性波フィルタ10Hの回路構成図および並列腕回路16pにおけるキャパシタCps2の模式図である。同図に示された弾性波フィルタ10Hは、直列腕共振子s1と、並列腕回路16pと、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路16pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1とキャパシタCps2とを有している。並列腕回路16pは、並列腕共振子p1とキャパシタCps2とで構成された共振回路となっている。並列腕共振子p1は、キャパシタCps2と直列接続された第1弾性波共振子である。キャパシタCps2は、並列腕共振子p1と直列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCps2は、図10Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCps2が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCps2の櫛歯電極は、3つの異なる電極指ピッチPc1(第1の電極指ピッチ)、Pc2(第2の電極指ピッチ)、およびPc3を有している。本実施例では、Pc2>Pc1>Pc3となっている。
さらに、キャパシタCps2のインピーダンスが極大となる周波数は、弾性波フィルタ10Hの通過帯域外に配置されている。
表8に、実施例8に係る弾性波フィルタ10Hおよび比較例7に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表8において、|Z|maxは、第1櫛歯容量素子のインピーダンスの極大値であり、f|Z|maxは、第1櫛歯容量素子のインピーダンスが極大値となる周波数である。
比較例7に係る弾性波フィルタは、実施例8に係る弾性波フィルタ10Hと比較して、並列腕回路のキャパシタの構成のみが異なる。
表8に示すように、実施例8に係る弾性波フィルタ10Hでは、キャパシタCps2の電極指ピッチPc3は1.48μmであり、Pc1は1.50μmであり、Pc2は1.52μmである。また、電極指ピッチPc3で配置された電極指の本数は100本であり、電極指ピッチPc1で配置された電極指の本数は201本であり、電極指ピッチPc2で配置された電極指の本数は100本である。これに対して、比較例7に係る弾性波フィルタでは、キャパシタの電極指ピッチは全て1.50μmであり、当該電極指ピッチで配置された電極指の本数は401本である。
また、実施例8および比較例7の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は200nmであり、交叉幅Lcは20μmである。
また、実施例8および比較例7において、並列腕共振子p1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
本実施例では、図10Aに示すように、電極指ピッチPc3で配置された電極指が形成された第3領域(図10Aの櫛歯電極における右側領域)と、電極指ピッチPc1で配置された電極指が形成された第1領域(図10Aの櫛歯電極における中央領域)と、電極指ピッチPc2で配置された電極指が形成された第2領域(図10Aの櫛歯電極における左側領域)とは、3分割されている。
なお、上記3つの領域は、3分割されていることに限定されるものではなく、電極指ピッチPc1およびPc2による2分割でもよく、あるいは、4つ以上の異なる電極指ピッチによる4分割以上に細分化されていてもよい。また、例えば、第1領域、第2領域、および第3領域が交互に配列されていてもよい。
なお、表8に示すように、実施例8に係る弾性波フィルタ10HのキャパシタCps2の静電容量は6.49pFであり、比較例7に係る弾性波フィルタのキャパシタの静電容量も6.49pFである。
図10Bは、実施例8および比較例7に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例8および比較例7に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例8および比較例7に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例8および比較例7に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例8および比較例7に係る弾性波フィルタの高域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図10Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例8と比較例7とで大きな差異はない(表8より、ともに0.40dB)。これに対して、図10Bの(a)および(d)に示すように、通過帯域高域側の減衰帯域(0.9-3.0GHzの周波数帯域)において、実施例8に係る弾性波フィルタ10Hの方が、比較例7に係る弾性波フィルタよりも、減衰量が向上(0.9-3.0GHzにおける挿入損失の最小値が増加)している(表8より、実施例8では3.35dB、比較例7では2.37dB)。つまり、実施例8に係る弾性波フィルタ10Hでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例8に係る弾性波フィルタ10Hにおいて、通過帯域高域側の減衰帯域における減衰量が向上した要因を、図10Cを用いて説明する。
図10Cは、実施例8および比較例7に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例8および比較例7に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例8および比較例7に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例8および比較例7に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例8および比較例7に係るキャパシタの狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(e)には、実施例8および比較例7に係るキャパシタの広帯域の静電容量特性の比較が示されている。同図の(f)には、実施例8および比較例7に係るキャパシタの広帯域の容量Q値の比較が示されている。
まず、図10Cの(a)および(b)に示すように、並列腕共振子p1にキャパシタが直列接続されることにより、並列腕回路の共振周波数Frsは並列腕共振子p1の共振周波数frsに対して高周波側へシフトする。実施例8および比較例7に係る弾性波フィルタにおいて、並列腕回路および直列腕共振子s1によりバンドパスフィルタを構成するにあたり、並列腕回路の反共振周波数Fapと直列腕共振子s1の共振周波数frsとを近接させる。並列腕回路のインピーダンスが0に近づく共振周波数Frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、反共振周波数Fapで並列腕回路のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子s1のインピーダンスが0に近づく。これにより、反共振周波数Fapおよび共振周波数frsの近傍では、入出力端子T1から入出力端子T2への信号経路(直列腕)における信号通過域となる。さらに、周波数が高くなり、直列腕共振子s1の反共振周波数fas近傍になると、直列腕共振子s1のインピーダンスが高くなり、高周波側阻止域となる。つまり、実施例8および比較例7に係る弾性波フィルタは、反共振周波数Fapおよび共振周波数frsによって通過帯域が規定され、共振周波数Frpによって通過帯域低域側の極(減衰極)が規定され、共振周波数fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図10Cの(c)および(d)に示すように、実施例8に係るキャパシタCps2のインピーダンスが極大となる周波数f1max(2700MHz)は、実施例8に係る弾性波フィルタ10Hの通過帯域高域側の減衰帯域に配置されている。同様に、比較例7に係るキャパシタのインピーダンスが極大となる周波数f2max(2695MHz)は、比較例7に係る弾性波フィルタの通過帯域高域側の減衰帯域に配置されている。
なお、図10Cの(e)および(f)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例8と比較例7との間で大きな差異はない。
ここで、図10Cの(d)に示すように、実施例8に係るキャパシタCps2の周波数f1maxにおけるインピーダンスの極大値(表8より、37.81dB)は、比較例7に係るキャパシタの周波数f2maxにおけるインピーダンスの極大値(表8より、42.89dB)よりも小さくなっている。この要因として、実施例8に係る弾性波フィルタ10Hでは、キャパシタCps2における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域高域側の減衰帯域において、並列腕回路16pのインピーダンス最大値が低減(インピーダンスが極大になる周波数が分散)されているので、f1maxにおける高周波信号の並列腕回路16pへの通過量を大きくできる。つまり、インピーダンスピーク(インピーダンスの極大点)が位置する周波数領域である減衰帯域で、弾性波フィルタ10Hの減衰量が悪化するという課題を解決できる。以上により、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Hを実現できる。
図11は、実施例7および実施例8に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例7および実施例8に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例7および実施例8に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例7および実施例8に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。
図11の(c)に示すように、通過帯域内での挿入損失については、実施例8の方が実施例7よりも若干挿入損失が低減されている。これは、実施例8に係るキャパシタCps2の容量Q値が、実施例7に係るキャパシタCps1の容量Q値よりも高いことに起因している。また、実施例8に係る弾性波フィルタ10Hでは、キャパシタCps2のインピーダンスが極大となる周波数f1maxは、通過帯域高域側に配置されているため、通過帯域高域側(2.5GHz付近)の減衰量が大きい。一方、実施例7に係る弾性波フィルタ10Gでは、キャパシタCps1のインピーダンスが極大となる周波数f1maxは、通過帯域低域側に配置されているため、通過帯域低域側の減衰帯域の減衰量が大きい。
[1.10 実施例9および10に係る弾性波フィルタ]
図12Aは、実施例9に係る弾性波フィルタ10Jの回路構成図である。同図に示された弾性波フィルタ10Jは、並列腕回路17pと、直列腕共振子s1と、入出力端子T1およびT2と、を備える。
図12Aは、実施例9に係る弾性波フィルタ10Jの回路構成図である。同図に示された弾性波フィルタ10Jは、並列腕回路17pと、直列腕共振子s1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路17pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1と、キャパシタCps1と、スイッチSW2と、を有しており、共振回路となっている。並列腕共振子p1は、キャパシタCps1とスイッチSW2とが並列接続された回路と直列接続された第1弾性波共振子である。キャパシタCps1は、第1櫛歯容量素子であり、キャパシタCps1とスイッチSW2とが並列接続された回路は、インピーダンス回路を構成している。
キャパシタCps1は、図9Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
スイッチSW2は、キャパシタCps1に並列に接続された第1スイッチ素子である。
ここで、キャパシタCps1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCps1の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCps1のインピーダンスが極小となる周波数は、弾性波フィルタ10Jの通過帯域外に配置されている。
なお、本実施例に係る弾性波フィルタ10Jは、実施例7に係る弾性波フィルタ10Gに対して、スイッチSW2が付加されたものであり、直列腕共振子s1、並列腕共振子p1、およびキャパシタCps1の各パラメータは同じである。なお、スイッチSW2は、理想素子(オン時にはインピーダンスが0Ωであり、オフ時にはインピーダンスが無限大である)としている。
図13Aは、実施例9に係る弾性波フィルタ10Jの通過特性およびインピーダンス特性を示すグラフである。同図の(a)には、実施例9に係る弾性波フィルタ10Jにおいて、スイッチSW2をオンおよびオフとした場合の広帯域通過特性の比較が示されている。また、同図の(b)には、実施例9に係る弾性波フィルタ10Jにおいて、スイッチSW2をオンおよびオフとした場合の狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例9に係る弾性波フィルタ10Jにおいて、スイッチSW2をオンおよびオフとした場合のインピーダンス特性の比較が示されている。
図13Aに示すように、スイッチSW2の導通および非導通の切り替えによって、並列腕回路17pの2つの共振周波数のうち低周波数側の共振周波数を切り替えることができる。そのため、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができ、通過帯域低域側の減衰特性が向上した周波数可変型の弾性波フィルタ10Jを提供できる。
図12Bは、実施例10に係る弾性波フィルタ10Kの回路構成図である。同図に示された弾性波フィルタ10Kは、並列腕回路18pと、直列腕共振子s1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕共振子s1は、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕回路を構成している。
並列腕回路18pは、上記経路上のノードx1およびグランドに接続され、並列腕共振子p1と、キャパシタCps2と、スイッチSW3と、を有しており、共振回路となっている。並列腕共振子p1は、キャパシタCps3とスイッチSW3とが並列接続された回路と直列接続された第1弾性波共振子である。キャパシタCps2は、第1櫛歯容量素子であり、キャパシタCps2とスイッチSW3とが並列接続された回路は、インピーダンス回路を構成している。
キャパシタCps2は、図10Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
スイッチSW3は、キャパシタCps2に並列に接続された第1スイッチ素子である。
ここで、キャパシタCps2が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCps2の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCps2のインピーダンスが極小となる周波数は、弾性波フィルタ10Kの通過帯域外に配置されている。
なお、本実施例に係る弾性波フィルタ10Kは、実施例8に係る弾性波フィルタ10Hに対して、スイッチSW3が付加されたものであり、直列腕共振子s1、並列腕共振子p1、およびキャパシタCps2の各パラメータは同じである。なお、スイッチSW3は、理想素子(オン時にはインピーダンスが0Ωであり、オフ時にはインピーダンスが無限大である)としている。
図13Bは、実施例10に係る弾性波フィルタ10Kの通過特性およびインピーダンス特性を示すグラフである。同図の(a)には、実施例10に係る弾性波フィルタ10Kにおいて、スイッチSW3をオンおよびオフとした場合の広帯域通過特性の比較が示されている。また、同図の(b)には、実施例10に係る弾性波フィルタ10Kにおいて、スイッチSW3をオンおよびオフとした場合の狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例10に係る弾性波フィルタ10Kにおいて、スイッチSW3をオンおよびオフとした場合のインピーダンス特性の比較が示されている。
図13Bに示すように、スイッチSW3の導通および非導通の切り替えによって、並列腕回路18pの2つの共振周波数のうち低周波数側の共振周波数を切り替えることができる。そのため、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができ、通過帯域低域側の減衰特性が向上した周波数可変型の弾性波フィルタ10Kを提供できる。
図14Aは、実施の形態の変形例1に係る弾性波フィルタ10Lの回路構成図である。同図に示された弾性波フィルタ10Lは、直列腕回路13sと並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、互いに並列接続されたスイッチおよびキャパシタを有する第1スイッチ回路である。スイッチのオンおよびオフの切り替えにより、並列腕回路の共振周波数が切り替わる。本変形例1に係る弾性波フィルタ10Lは、実施例9に係る弾性波フィルタ10Jと比較して、直列腕共振子s1が直列腕回路13sに置換されている点が異なる。この構成によっても、スイッチの導通および非導通の切り替えによって、並列腕回路の共振周波数を切り替えることができる。そのため、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができ、通過帯域低域側の減衰特性が向上した周波数可変型の弾性波フィルタ10Lを提供できる。
図14Bは、実施の形態の変形例2に係る弾性波フィルタ10Mの回路構成図である。同図に示された弾性波フィルタ10Mは、直列腕回路13sと、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1と、互いに直列接続された並列腕共振子p2およびインピーダンス回路とを有する。上記インピーダンス回路は、互いに並列接続されたスイッチおよびキャパシタを有する第1スイッチ回路である。並列腕共振子p1は、第2弾性波共振子であり、並列腕共振子p2は第1弾性波共振子であり、上記キャパシタは、並列腕共振子p2と並列接続または直列接続された第1櫛歯容量素子であり、図9Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
並列腕共振子p2の共振周波数は並列腕共振子p1の共振周波数より低く、並列腕共振子p2の反共振周波数は並列腕共振子p1の反共振周波数より低い。この構成により、並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、上記スイッチの導通および非導通の切り替えにより、上記2つの共振周波数のうち低周波数側の共振周波数と、上記2つの反共振周波数のうち低周波数側の反共振周波数とが、ともに切り替わる。そのため、通過帯域低域端の周波数と、通過帯域低域側の減衰極の周波数とを共に切り替える(可変する)ことができ、挿入損失の小さい周波数可変型の弾性波フィルタ10Mを提供できる。さらに、上記スイッチが非導通の場合において、減衰量を向上することができる。
なお、本変形例2に係る弾性波フィルタ10Mにおいて、並列腕共振子p2の共振周波数が並列腕共振子p1の共振周波数より高く、並列腕共振子p2の反共振周波数が並列腕共振子p1の反共振周波数より高くてもよい。この構成により、並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、上記スイッチの導通および非導通の切り替えにより、上記2つの共振周波数のうち高周波数側の共振周波数と、上記2つの反共振周波数のうち低周波数側の反共振周波数とが、ともに切り替わる。そのため、通過帯域高域端の周波数と、通過帯域高域側の減衰極の周波数とを共に切り替える(可変する)ことができ、挿入損失の小さい周波数可変型の弾性波フィルタを提供できる。さらに、上記スイッチが非導通の場合において、減衰量を向上することができる。
つまり、本変形例2に係る弾性波フィルタ10Mにおいて、並列腕共振子p2の共振周波数が並列腕共振子p1の共振周波数と異なり、並列腕共振子p2の反共振周波数が並列腕共振子p1の反共振周波数と異なっていればよい。
図14Cは、実施の形態の変形例3に係る弾性波フィルタ10Nの回路構成図である。同図に示された弾性波フィルタ10Nは、直列腕回路13sと、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1およびp2と、第1スイッチ回路および第2スイッチ回路と、を有する。第1スイッチ回路は、互いに並列接続されたスイッチSW4(第1スイッチ素子)および第1キャパシタを有する。第2スイッチ回路は、互いに並列接続されたスイッチSW5(第2スイッチ素子)および第2キャパシタを有する。並列腕共振子p1は第1弾性波共振子であり、並列腕共振子p2は第2弾性波共振子であり、並列腕共振子p1と第1スイッチ回路とは直列接続されており、並列腕共振子p2と第2スイッチ回路とは直列接続されている。第1キャパシタは第1櫛歯容量素子であり、第2キャパシタは第2櫛歯容量素子であり、第1キャパシタおよび第2キャパシタは、それぞれ、図9Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
並列腕共振子p2の共振周波数は、並列腕共振子p1の共振周波数より高く、並列腕共振子p2の反共振周波数は、並列腕共振子p1の反共振周波数より高い。
また、第2キャパシタのインピーダンスが極大となる周波数は、弾性波フィルタ10Nの通過帯域外に配置されている。
上記構成において、上記櫛歯電極は、(1)少なくとも2つの異なる電極指ピッチ、および、(2)少なくとも2つの異なる電極指デューティ比、の少なくとも一方を有する。
これにより、スイッチSW4の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち低周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。また、スイッチSW5の導通および非導通の切り替えによって、並列腕回路の2つの共振周波数のうち高周波数側の共振周波数と、並列腕回路の2つの反共振周波数のうち低周波数側の反共振周波数とを、ともに切り替えることができる。そのため、スイッチSW4の導通および非導通の切り替え、および、スイッチSW5の導通および非導通の切り替えとを、それぞれ独立して制御することで、通過帯域幅と減衰帯域幅を可変できる周波数可変型の弾性波フィルタ10Nを提供できる。さらに、スイッチSW4およびSW5の少なくとも一方が非導通の場合において、減衰量を向上することができる。
図14Dは、実施の形態の変形例4に係る弾性波フィルタ10Pの回路構成図である。同図に示された弾性波フィルタ10Pは、直列腕回路13sと並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、スイッチおよびインダクタの直列回路と、キャパシタとが互いに並列接続された回路構成を有する第1スイッチ回路である。上記スイッチのオンおよびオフの切り替えにより、並列腕回路の共振周波数が切り替わる。よって、本変形例に係る弾性波フィルタ10Pの構成によっても、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができ、通過帯域低域側の減衰特性が向上した周波数可変型の弾性波フィルタ10Pを提供できる。
図14Eは、実施の形態の変形例5に係る弾性波フィルタ10Qの回路構成図である。同図に示された弾性波フィルタ10Qは、直列腕回路13sと並列腕回路とで構成されている。並列腕回路は、互いに直列接続された並列腕共振子p1およびインピーダンス回路を有する。インピーダンス回路は、スイッチおよびキャパシタの直列回路と、インダクタとが互いに並列接続された回路構成を有する第1スイッチ回路である。上記スイッチのオンおよびオフの切り替えにより、並列腕回路の共振周波数が切り替わる。よって、本変形例に係る弾性波フィルタ10Qの構成によっても、通過帯域低域側の減衰極の周波数を切り替える(可変する)ことができ、通過帯域低域側の減衰特性が向上した周波数可変型の弾性波フィルタ10Qを提供できる。
図14Fは、実施の形態の変形例6に係る弾性波フィルタ10Rの回路構成図である。同図に示された弾性波フィルタ10Rは、直列腕回路13sと、並列腕回路とで構成されている。並列腕回路は、並列腕共振子p1およびp2が並列接続された回路と、インピーダンス回路とが直列接続された構成を有する。並列腕共振子p1の共振周波数は並列腕共振子p2の共振周波数より低く、並列腕共振子p1の反共振周波数は並列腕共振子p2の反共振周波数より低く設定されている。インピーダンス回路は、互いに並列接続されたスイッチおよびキャパシタを有する。並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、スイッチのオンおよびオフの切り替えにより、並列腕回路の2つの共振周波数が切り替わる。そのため、通過帯域低域端の周波数と、通過帯域低域側の減衰極の周波数とを共に切り替える(可変する)ことができ、挿入損失の小さい周波数可変型の弾性波フィルタ10Rを提供できる。さらに、上記スイッチが非導通の場合において、減衰量を向上することができる。
[1.11 実施例11に係る弾性波フィルタ]
図15Aは、実施例11に係る弾性波フィルタ10Sの回路構成図および直列腕回路14sにおけるキャパシタCss1の模式図である。同図に示された弾性波フィルタ10Sは、直列腕回路14sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
図15Aは、実施例11に係る弾性波フィルタ10Sの回路構成図および直列腕回路14sにおけるキャパシタCss1の模式図である。同図に示された弾性波フィルタ10Sは、直列腕回路14sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕回路14sは、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕共振子s1とキャパシタCss1とを有している。直列腕回路14sは、直列腕共振子s1とキャパシタCss1とで構成された共振回路となっている。直列腕共振子s1は、キャパシタCss1と直列接続された第1弾性波共振子である。キャパシタCss1は、直列腕共振子s1と直列接続された第1櫛歯容量素子であり、インピーダンス回路を構成している。
キャパシタCss1は、図15Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCss1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCss1の櫛歯電極は、3つの異なる電極指ピッチPc1(第1の電極指ピッチ)、Pc2(第2の電極指ピッチ)、およびPc3を有している。本実施例では、Pc2>Pc1>Pc3となっている。
さらに、キャパシタCss1のインピーダンスが極小となる周波数(コンダクタンスピークの周波数)は、弾性波フィルタ10Sの通過帯域外に配置されている。
表9に、実施例11に係る弾性波フィルタ10Sおよび比較例8に係る弾性波フィルタの回路パラメータおよびフィルタ特性を示す。
なお、表9において、|Z|minは、第1櫛歯容量素子のインピーダンスの極小値であり、f|Z|minは、第1櫛歯容量素子のインピーダンスが極小値となる周波数である。
比較例8に係る弾性波フィルタは、実施例11に係る弾性波フィルタ10Sと比較して、直列腕回路のキャパシタの構成のみが異なる。
表9に示すように、実施例11に係る弾性波フィルタ10Sでは、キャパシタCss1の電極指ピッチPc3は1.48μmであり、Pc1は1.50μmであり、Pc2は1.52μmである。また、電極指ピッチPc3で配置された電極指の本数は100本であり、電極指ピッチPc1で配置された電極指の本数は201本であり、電極指ピッチPc2で配置された電極指の本数は100本である。これに対して、比較例8に係る弾性波フィルタでは、キャパシタの電極指ピッチは全て1.50μmであり、当該電極指ピッチで配置された電極指の本数は401本である。
また、実施例11および比較例8の双方に共通して、キャパシタの電極指デューティ比は0.6であり、櫛歯電極の膜厚は200nmであり、交叉幅Lcは20μmである。
また、実施例11および比較例8において、直列腕共振子s1を構成するIDT電極の電極指ピッチPrは2.1μm、当該IDT電極の電極指デューティ比は0.5であり、当該IDT電極の膜厚は350nmである。
本実施例では、図15Aに示すように、電極指ピッチPc3で配置された電極指が形成された第3領域(図15Aの櫛歯電極における右側領域)と、電極指ピッチPc1で配置された電極指が形成された第1領域(図15Aの櫛歯電極における中央領域)と、電極指ピッチPc2で配置された電極指が形成された第2領域(図15Aの櫛歯電極における左側領域)とは、3分割されている。
なお、上記3つの領域は、3分割されていることに限定されるものではなく、電極指ピッチPc1およびPc2による2分割でもよく、あるいは、4つ以上の異なる電極指ピッチによる4分割以上に細分化されていてもよい。また、例えば、第1領域、第2領域、および第3領域が交互に配列されていてもよい。
なお、表9に示すように、実施例11に係る弾性波フィルタ10SのキャパシタCss1の静電容量は6.50pFであり、比較例8に係る弾性波フィルタのキャパシタの静電容量も6.50pFである。
図15Bは、実施例11および比較例8に係る弾性波フィルタの通過特性を比較したグラフである。同図の(a)には、実施例11および比較例8に係る弾性波フィルタの広帯域通過特性の比較が示されている。また、同図の(b)には、実施例11および比較例8に係る弾性波フィルタの狭帯域(通過帯域近傍)の通過特性の比較が示されている。また、同図の(c)には、実施例11および比較例8に係る弾性波フィルタの通過帯域における通過特性の比較が示されている。また、同図の(d)には、実施例11および比較例8に係る弾性波フィルタの高域側減衰帯域における通過特性(減衰特性)の比較が示されている。
図15Bの(a)、(b)および(c)に示すように、通過帯域内での挿入損失については、実施例11と比較例8とで大きな差異はない(表9より、ともに0.59dB)。これに対して、図15Bの(d)に示すように、通過帯域高域側の減衰帯域(2.5-3.0GHzの周波数帯域)において、実施例11に係る弾性波フィルタ10Sの方が、比較例8に係る弾性波フィルタよりも、減衰量が向上(2.5-3.0GHzにおける挿入損失の最小値が増加)している(表9より、実施例11では10.58dB、比較例8では10.49dB)。つまり、実施例11に係る弾性波フィルタ10Sでは、通過帯域内の挿入損失を維持しつつ減衰量が向上している。
以下、実施例11に係る弾性波フィルタ10Sにおいて、通過帯域高域側の減衰帯域における減衰量が向上した要因を、図15Cを用いて説明する。
図15Cは、実施例11および比較例8に係る弾性波フィルタのインピーダンス特性および櫛歯容量特性を比較したグラフである。同図の(a)には、実施例11および比較例8に係る回路および共振子の広帯域のインピーダンス特性の比較が示されている。同図の(b)には、実施例11および比較例8に係る回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性の比較が示されている。同図の(c)には、実施例11および比較例8に係る回路および共振子の狭帯域のインピーダンス特性の比較が示されている。同図の(d)には、実施例11および比較例8に係るキャパシタの広帯域のインピーダンス特性の比較が示されている。同図の(e)には、実施例11および比較例8に係るキャパシタの狭帯域のインピーダンス特性の比較が示されている。同図の(f)には、実施例11および比較例8に係るキャパシタの広帯域の静電容量特性の比較が示されている。同図の(g)には、実施例11および比較例8に係るキャパシタの広帯域の容量Q値の比較が示されている。
まず、図15Cの(a)および(b)に示すように、直列腕共振子s1にキャパシタが直列接続されることにより、直列腕回路の共振周波数Frsは直列腕共振子s1の共振周波数frsに対して高周波側へシフトする。実施例11および比較例8に係る弾性波フィルタにおいて、直列腕回路および並列腕共振子p1によりバンドパスフィルタを構成するにあたり、並列腕共振子p1の反共振周波数fapと直列腕回路の共振周波数Frsとを近接させる。並列腕共振子p1のインピーダンスが0に近づく共振周波数frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、反共振周波数fapで並列腕共振子p1のインピーダンスが高くなり、かつ、共振周波数Frs近傍で直列腕回路のインピーダンスが0に近づく。これにより、反共振周波数fapおよび共振周波数Frsの近傍では、入出力端子T1から入出力端子T2への信号経路(直列腕)における信号通過域となる。さらに、周波数が高くなり、直列腕回路の反共振周波数Fas近傍になると、直列腕回路のインピーダンスが高くなり、高周波側阻止域となる。つまり、実施例11および比較例8に係る弾性波フィルタは、反共振周波数fapおよび共振周波数Frsによって通過帯域が規定され、共振周波数frpによって通過帯域低域側の極(減衰極)が規定され、共振周波数Fasによって通過帯域高域側の極(減衰極)が規定される、バンドパスフィルタとなっている。
次に、図15Cの(c)に示すように、実施例11に係るキャパシタCss1のインピーダンスの極小値は、比較例8に係るキャパシタのインピーダンスの極小値よりも大きくなる。
また、図15Cの(d)および(e)に示すように、実施例11に係るキャパシタCss1のインピーダンスが極小となる周波数f1min(2553MHz)は、実施例11に係る弾性波フィルタ10Sの通過帯域高域側の減衰帯域に配置されている。同様に、比較例8に係るキャパシタのインピーダンスが極小となる周波数f2min(2553MHz)は、比較例8に係る弾性波フィルタの通過帯域高域側の減衰帯域に配置されている。
なお、図15Cの(f)および(g)に示すように、通過帯域内におけるキャパシタの静電容量および容量Q値は、実施例11と比較例8との間で大きな差異はない。
ここで、図15Cの(e)に示すように、実施例11に係るキャパシタCss1の周波数f1minにおけるインピーダンスの極小値(表9より、-16.28dB)は、比較例8に係るキャパシタの周波数f2minにおけるインピーダンスの極小値(表9より、-22.28dB)よりも大きくなっている。この要因として、実施例11に係る弾性波フィルタ10Sでは、キャパシタCss1における電極指ピッチの一部を異ならせていることが挙げられる。これにより、通過帯域高域側の減衰帯域において、直列腕回路14sのインピーダンス最小値が増加(インピーダンスが極小になる周波数が分散)しているので、f1minにおける高周波信号の直列腕回路14sへの通過量を小さくできる。つまり、コンダクタンスピーク(インピーダンスの極小点)が位置する周波数領域である減衰帯域で、弾性波フィルタ10Sの減衰量が悪化するという課題を解決できる。
以上により、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、弾性波フィルタ10Sを実現できる。
[1.12 実施例12に係る弾性波フィルタ]
図16は、実施例12に係る弾性波フィルタ10Tの回路構成図である。同図に示された弾性波フィルタ10Tは、直列腕回路15sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
図16は、実施例12に係る弾性波フィルタ10Tの回路構成図である。同図に示された弾性波フィルタ10Tは、直列腕回路15sと、並列腕共振子p1と、入出力端子T1およびT2と、を備える。
本実施例において、直列腕回路15sは、入出力端子T1と入出力端子T2とを結ぶ経路上に接続され、直列腕共振子s1と、キャパシタCss1と、スイッチSW6(第2スイッチ素子)と、を有しており、共振回路となっている。直列腕共振子s1は、キャパシタCss1とスイッチSW6とが並列接続された回路と直列接続された第1弾性波共振子である。キャパシタCss1は、第1櫛歯容量素子であり、キャパシタCss1とスイッチSW6とが並列接続された回路は、インピーダンス回路を構成している。
キャパシタCss1は、図15Aの右側に示すように、複数の電極指からなる櫛歯電極を有している。
ここで、キャパシタCss1が有する上記複数の電極指の繰返しピッチを電極指ピッチと定義した場合、キャパシタCs2の櫛歯電極は、2つの異なる電極指ピッチPc1(第1の電極指ピッチ)およびPc2(第2の電極指ピッチ)を有している。本実施例では、Pc2>Pc1となっている。
さらに、キャパシタCss1のインピーダンスが極小となる周波数は、弾性波フィルタ10Tの通過帯域外に配置されている。
なお、本実施例に係る弾性波フィルタ10Tは、実施例11に係る弾性波フィルタ10Sに対して、スイッチSW6が付加されたものであり、直列腕共振子s1、並列腕共振子p1、およびキャパシタCss1の各パラメータは同じである。なお、スイッチSW6は、理想素子(オン時にはインピーダンスが0Ωであり、オフ時にはインピーダンスが無限大である)としている。
図16に示された回路構成によれば、スイッチSW6の導通および非導通の切り替えにより、直列腕回路15sの共振周波数を切り替えることができるため、通過帯域高域端の周波数が切り替わる周波数可変型の弾性波フィルタ10Tが実現できる。
図17は、実施例12に係る弾性波フィルタ10Tの通過特性およびインピーダンス特性を示すグラフである。同図の(a)には、実施例12に係る弾性波フィルタ10TにおけるスイッチSW6のオン時およびオフ時における広帯域通過特性が示されており、同図の(b)には、スイッチSW6のオン時およびオフ時における狭帯域(通過帯域近傍)の通過特性の比較が示されており、同図の(c)には、回路および共振子の狭帯域(通過帯域近傍)のインピーダンス特性が示されている。
本実施例では、直列腕共振子s1に対して、スイッチSW6が非導通(オフ)時に、キャパシタCss1が付加される。このため、図17の(c)に示すように、スイッチSW6オフ時の直列腕回路12sの共振周波数Frsoffは、直列腕共振子s1の共振周波数frsよりも広域側にシフトすることになる。よって、図17の(b)に示すように、弾性波フィルタ10Tは、スイッチSW6が導通状態から非導通状態に切り替わることにより、通過帯域高域端の周波数を高域側にシフトさせることができる。
スイッチSW6を非導通状態とすることにより、実施例11に係る弾性波フィルタ10Sと同様の回路構成および通過特性となり、通過帯域内の挿入損失を維持しつつ、通過帯域高域側の減衰帯域における減衰量が向上した、周波数可変型の弾性波フィルタ10Tを実現できる。
[1.13 櫛歯容量電極のピッチ差および電極指本数比率]
櫛歯容量素子であるキャパシタCss1の電極指ピッチPc1およびPc2の有為的な差について説明する。
櫛歯容量素子であるキャパシタCss1の電極指ピッチPc1およびPc2の有為的な差について説明する。
図18は、典型例において、櫛歯容量のピッチ差とインピーダンスとの関係を表すグラフである。より具体的には、図18の(a)および(b)の縦軸には、電極指ピッチPc1を3.000μmと固定し、電極指ピッチPc2を1.500~6.500μmまで段階的に変化させた場合の櫛歯容量のインピーダンスの最大値が示されている。図18の(c)および(d)の縦軸には、電極指ピッチPc1を3.000μmと固定し、電極指ピッチPc2を1.500~6.500μmまで段階的に変化させた場合の櫛歯容量のインピーダンスの最小値が示されている。また、図18の(a)~(d)の横軸には、電極指ピッチPc1と電極指ピッチPc2との差分を、電極指ピッチPc1およびPc2のうちの大きい方で除した値であるピッチ差(%)が示されている。
なお、電極指デューティ比は、0.60であり、電極指本数は、電極指ピッチPc1:201本、電極指ピッチPc2:200本であり、電極指膜厚は200nmであり、交叉幅は20μmである。
図18の(b)より、ピッチ差が0.2%以上かつ6.3%以下で、インピーダンスの最大値が低くなっている。これによれば、ピッチ差が0.2%以上かつ6.3%以下である櫛歯容量を、並列腕回路の並列腕共振子p1と直列接続される第1櫛歯容量素子として適用することにより、弾性波フィルタの減衰量の改善効果が大きくなる。
また、図18の(d)より、ピッチ差が0.2%以上で、インピーダンスの最小値が高くなっている。これによれば、ピッチ差が0.2%以上である櫛歯容量を、直列腕回路の直列腕共振子s1と直列接続される第1櫛歯容量素子として適用することにより、弾性波フィルタの減衰量の改善効果が大きくなる。
図19は、典型例において、櫛歯容量の本数比率と、インピーダンスとの関係を表すグラフである。より具体的には、図19の(a)の縦軸には、電極指ピッチPc1を有する電極指の本数を0本~401本まで段階的に変化させた場合の櫛歯容量のインピーダンスの最大値が示されている。また、図19の(b)の縦軸には、電極指ピッチPc1を有する電極指の本数を0本~401本まで段階的に変化させた場合の櫛歯容量のインピーダンスの最小値が示されている。なお、図19において、本数比率が0%および100%を有する弾性波フィルタは、上記実施の形態に係る弾性波フィルタには含まれない。
なお、電極指デューティ比は、0.60であり、電極指ピッチPc1は1.500μmであり、電極指ピッチPc2は1.510μmであり、電極指膜厚は200nmであり、交叉幅は20μmである。
図19の(a)より、電極指本数比率が10%以上かつ65%以下で、インピーダンスの最大値が低くなっている。これによれば、電極指本数比率が10%以上かつ65%以下である櫛歯容量を、並列腕回路の並列腕共振子p1と直列接続される第1櫛歯容量素子として適用することにより、弾性波フィルタの減衰量の改善効果が大きくなる。
また、図19の(b)より、電極指本数比率が10%以上かつ90%以下で、インピーダンスの最小値が高くなっている。これによれば、電極指本数比率が10%以上かつ90%以下である櫛歯容量を、直列腕回路の直列腕共振子s1と直列接続される第1櫛歯容量素子として適用することにより、弾性波フィルタの減衰量の改善効果が大きくなる。
(実施の形態2)
実施の形態1で説明した弾性波フィルタは、マルチプレクサ、高周波フロントエンド回路および通信装置に適用することができる。そこで、本実施の形態では、このような高周波フロントエンド回路および通信装置について説明する。
実施の形態1で説明した弾性波フィルタは、マルチプレクサ、高周波フロントエンド回路および通信装置に適用することができる。そこで、本実施の形態では、このような高周波フロントエンド回路および通信装置について説明する。
図20Aは、実施の形態2に係る通信装置6Aの構成図である。同図に示すように、通信装置6Aは、高周波フロントエンド回路3Aと、RF信号処理回路(RFIC)4と、ベースバンド信号処理回路(BBIC)5と、アンテナ素子2と、を備える。
高周波フロントエンド回路3Aは、実施例1に係る弾性波フィルタ10Aと、マルチプレクサ30Aと、受信増幅回路51と、スイッチ41および42と、を備える。高周波フロントエンド回路3Aは、アンテナ素子2で受信した高周波信号を分波する受信系のフロントエンド回路である。
スイッチ41は、共通接続端子と複数の選択端子とを有し、当該共通接続端子はアンテナ素子2に接続され、当該複数の選択端子のうちの第1の選択端子には弾性波フィルタ10Aが接続され、当該複数の選択端子のうちの第2の選択端子には他のフィルタが接続され、当該複数の選択端子のうちの第3の選択端子にはマルチプレクサ30Aが接続されている。上記構成により、スイッチ41は、アンテナ素子2と、弾性波フィルタ10A、上記他のフィルタ、およびマルチプレクサ30Aとの導通および非導通を切り替える。
スイッチ42は、共通接続端子と複数の選択端子とを有し、当該共通接続端子は受信増幅回路51に接続され、当該複数の選択端子のうち第1の選択端子には弾性波フィルタ10Aが接続され、当該複数の選択端子のうち第2の選択端子には他のフィルタが接続され、当該複数の選択端子のうち第3の選択端子にはマルチプレクサ30Aを構成する一方のフィルタが接続され、当該複数の選択端子のうち第4の選択端子にはマルチプレクサ30Aを構成する他方のフィルタが接続されている。上記構成により、スイッチ42は、弾性波フィルタ10A、上記他のフィルタ、マルチプレクサ30Aの一方のフィルタ、およびマルチプレクサ30Aの他方のフィルタと受信増幅回路51との導通および非導通を切り替える。
マルチプレクサ30Aは、実施例1~12に係る弾性波フィルタのいずれかを含む複数のフィルタを備えていてもよい。
なお、マルチプレクサ30Aには、共通端子と2つのフィルタとの間に、インピーダンス整合回路、移相器、サーキュレータ、または、2以上のフィルタを選択可能なスイッチ素子などが接続されていてもよい。
また、弾性波フィルタ10Aおよびマルチプレクサ30Aの前段または後段に、インピーダンス整合回路が配置されていてもよい。
また、高周波フロントエンド回路3Aは、弾性波フィルタ10Aおよびマルチプレクサ30Aの双方を有していなくてもよく、いずれか一方のみ有していればよい。
また、高周波フロントエンド回路3Aは、実施例1に係る弾性波フィルタ10Aの替わりに、実施例2~12に係る弾性波フィルタのいずれかを有していてもよい。
受信増幅回路51は、弾性波フィルタ10A、上記他のフィルタ、および、マルチプレクサ30Aの各通過帯域の高周波受信信号を電力増幅するローノイズアンプである。
RF信号処理回路(RFIC)4は、アンテナ素子2で送受信される高周波信号を処理する回路である。具体的には、RF信号処理回路(RFIC)4は、アンテナ素子2から受信側信号経路を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC)5へ出力する。また、RF信号処理回路(RFIC)4は、ベースバンド信号処理回路(BBIC)5から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を送信側信号経路(図20Aには図示せず)に出力する。
上記構成によれば、弾性波フィルタ10Aおよびマルチプレクサ30Aの通過帯域内の挿入損失を維持しつつ小型化できる。よって、高周波フロントエンド回路3Aにおける利得が向上するとともに、高周波フロントエンド回路3Aを小型化できる。また、通信装置6Aの通信品質を向上し、小型化できる。
図20Bは、実施の形態2の変形例に係る通信装置6Bの構成図である。同図に示すように、通信装置6Bは、高周波フロントエンド回路3Bと、RF信号処理回路(RFIC)4と、ベースバンド信号処理回路(BBIC)5と、アンテナ素子2と、を備える。
高周波フロントエンド回路3Bは、マルチプレクサ30と、送信増幅回路51Tと、受信増幅回路51Rと、スイッチ43および44と、を備える。高周波フロントエンド回路3Bは、アンテナ素子2で受信した高周波信号を分波、および、RFIC4で生成された高周波信号を合波する送受信系のフロントエンド回路である。
マルチプレクサ30は、第1のデュプレクサおよび第2のデュプレクサが共通端子に接続されている。第1のデュプレクサは、第1の送信用フィルタおよび第1の受信用フィルタを有している。また、第2のデュプレクサは、第2の送信用フィルタおよび第2の受信用フィルタを有している。第1の送信用フィルタ、第1の受信用フィルタ、第2の送信用フィルタ、および第2の受信用フィルタの少なくとも1つには、実施例1~6に係る弾性波フィルタのいずれかが適用される。なお、第1のデュプレクサと第2のデュプレクサとの間、第1の送信用フィルタと第1の受信用フィルタとの間、および、第2の送信用フィルタと第2の受信用フィルタとの間には、インピーダンス整合回路、移相器、サーキュレータ、または、2以上のフィルタを選択可能なスイッチ素子などが接続されていてもよい。
また、マルチプレクサ30の前段または後段に、インピーダンス整合回路が配置されていてもよい。
また、マルチプレクサ30は、デュプレクサで構成されていなくてもよく、送信用フィルタ単体と受信用フィルタ単体とで構成されていてもよい。
スイッチ43は、共通接続端子と複数の選択端子とを有し、当該共通接続端子は送信増幅回路51Tに接続され、当該複数の選択端子のうちの第1の選択端子には第1の送信用フィルタが接続され、当該複数の選択端子のうちの第2の選択端子には第2の送信用フィルタが接続されている。上記構成により、スイッチ43は、送信増幅回路51Tと、第1の送信用フィルタおよび第2の送信用フィルタとの導通および非導通を切り替える。
スイッチ44は、共通接続端子と複数の選択端子とを有し、当該共通接続端子は受信増幅回路51Rに接続され、当該複数の選択端子のうちの第1の選択端子には第1の受信用フィルタが接続され、当該複数の選択端子のうちの第2の選択端子には第2の受信用フィルタが接続されている。上記構成により、スイッチ44は受信増幅回路51Rと、第1の受信用フィルタおよび第2の受信用フィルタとの導通および非導通を切り替える。
送信増幅回路51Tは、第1の送信用フィルタおよび第2の送信用フィルタの各通過帯域の高周波送信信号を電力増幅するパワーアンプである。受信増幅回路51Rは、第1の受信用フィルタおよび第2の受信用フィルタの各通過帯域の高周波受信信号を電力増幅するローノイズアンプである。
上記構成によれば、マルチプレクサ30の通過帯域内の挿入損失を低減するとともに、マルチプレクサ30を小型化できる。よって、高周波フロントエンド回路3Bにおける利得が向上するとともに、高周波フロントエンド回路3Bを小型化できる。また、通信装置6Bの通信品質を向上し、サイズを小型化できる。
(その他の実施の形態)
以上、本発明に係る弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置について、実施の形態1および2を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
以上、本発明に係る弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置について、実施の形態1および2を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
なお、各フィルタを構成する直列腕共振子および並列腕共振子の各々は、1つの共振子に限らず、1つの共振子が分割された複数の分割共振子によって構成されていてもかまわない。
また、実施の形態2におけるデュプレクサとは、FDD方式において一方のフィルタに送信信号が流れ、他方のフィルタに受信信号が流れるマルチプレクサのみを指すのではなく、TDD方式において一方のフィルタに送信信号が流れ、他方のフィルタに受信信号が流れるマルチプレクサにも適用される。
また、例えば、実施例6のスイッチSW1、実施例9のスイッチSW2、実施例10のスイッチSW3、変形例1~6の各スイッチ、実施例12のスイッチSW6、高周波フロントエンド回路3Aのスイッチ41、42、および高周波フロントエンド回路3Bのスイッチ43、44などのスイッチのオンおよびオフを切り替える制御部は、RFIC4に設けられていてもよい。あるいは、RFIC4の外部に設けられていてもよく、例えば、高周波フロントエンド回路3Aおよび3Bのいずれかに設けられていてもかまわない。つまり、高周波フロントエンド回路3Aおよび3Bは、上記説明した構成に限らず、実施の形態1に係る弾性波フィルタと、当該弾性波フィルタが備えるスイッチのオンおよびオフを制御する制御部と、を備えてもかまわない。
また、例えば、高周波フロントエンド回路3A、3B、または、通信装置6A、6Bにおいて、各構成要素の間に、インダクタやキャパシタが接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
また、実施例6のスイッチSW1、実施例9のスイッチSW2、実施例10のスイッチSW3、変形例1~6の各スイッチ、実施例12のスイッチSW6は、SPST(Single Pole Single Throw)型のスイッチ素子であり、例えば、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチであり、スイッチIC(Integrated Circuit)として構成される。なお、上記スイッチ素子は、半導体スイッチに限らず、MEMS(Micro Electro Mechanical Systems)で構成された機械式スイッチであってもかまわない。このようなスイッチは小型であるため、実施の形態1に係るフィルタ装置を小型化することができる。
また、実施の形態1に係る弾性波フィルタが備える直列腕共振子および並列腕共振子は、弾性波を用いた弾性波共振子であり、例えば、弾性表面波(SAW:Surface Acoustic Wave)を利用した共振子、バルク弾性波(BAW:Bulk Acoustic Wave)を利用した共振子、FBAR(Film Bulk Acoustic Resonator)、もしくはSMR(Solidly Mounted Resonator)等である。これにより、選択度が高く、小型の弾性波フィルタを実現できる。なお、弾性表面波は、圧電体の表面、もしくは、複数の材料の界面に弾性波の伝搬を行うことを指し、IDT電極を用いて構成される様々な種類の弾性波を指す。弾性表面波には、例えば、表面波、ラブ波、リーキー波、レイリー波、境界波、漏れSAW、疑似SAW、板波も含まれる。
また、実施の形態1および2における「グランド」とは、基準電極を指し、例えば、実施の形態1に係る弾性波フィルタにおける基準となる電位を有する電極である。
本発明は、フィルタ特性を維持しつつ小型化された弾性波フィルタ、マルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
2 アンテナ素子
3A、3B 高周波フロントエンド回路
4 RF信号処理回路(RFIC)
5 ベースバンド信号処理回路(BBIC)
6A、6B 通信装置
10A、10B、10C、10D、10E、10F、10G、10H、10J、10K、10L、10M、10N、10P、10Q、10R、10S、10T 弾性波フィルタ
11p、12p、13p、14p、15p、16p、17p、18p 並列腕回路
11s、12s、13s、14s、15s 直列腕回路
30、30A マルチプレクサ
41、42、43、44、SW1、SW2、SW3、SW4、SW5、SW6 スイッチ
51、51R 受信増幅回路
51T 送信増幅回路
102 圧電基板
111 IDT電極
112 反射器
Cp1、Cp2、Cp3、Cp4、Cps1、Cps2、Cs1、Cs2、Css1 キャパシタ
p1、p2 並列腕共振子
s1 直列腕共振子
T1、T2 入出力端子
3A、3B 高周波フロントエンド回路
4 RF信号処理回路(RFIC)
5 ベースバンド信号処理回路(BBIC)
6A、6B 通信装置
10A、10B、10C、10D、10E、10F、10G、10H、10J、10K、10L、10M、10N、10P、10Q、10R、10S、10T 弾性波フィルタ
11p、12p、13p、14p、15p、16p、17p、18p 並列腕回路
11s、12s、13s、14s、15s 直列腕回路
30、30A マルチプレクサ
41、42、43、44、SW1、SW2、SW3、SW4、SW5、SW6 スイッチ
51、51R 受信増幅回路
51T 送信増幅回路
102 圧電基板
111 IDT電極
112 反射器
Cp1、Cp2、Cp3、Cp4、Cps1、Cps2、Cs1、Cs2、Css1 キャパシタ
p1、p2 並列腕共振子
s1 直列腕共振子
T1、T2 入出力端子
Claims (20)
- 第1入出力端子と第2入出力端子を備える弾性波フィルタであって、
前記第1入出力端子と前記第2入出力端子を結ぶ経路上に設けられた1以上の直列腕回路と、
前記経路上のノードとグランドに接続された1以上の並列腕回路と、を備え、
前記1以上の並列腕回路および前記1以上の直列腕回路のうちの少なくとも1つの回路は、
第1弾性波共振子と、
前記第1弾性波共振子と並列接続または直列接続された第1櫛歯容量素子と、を有し、
前記第1櫛歯容量素子は、複数の電極指からなる櫛歯電極を有し、
前記第1櫛歯容量素子のインピーダンスが極大となる周波数は、前記弾性波フィルタの通過帯域外に配置され、
前記複数の電極指の繰返しピッチを電極指ピッチと定義し、前記複数の電極指の幅と前記複数の電極指の間隔との加算値に対する前記複数の電極指の幅の割合を電極指デューティ比と定義した場合、
前記櫛歯電極は、(1)少なくとも2つの異なる電極指ピッチ、および、(2)少なくとも2つの異なる電極指デューティ比、の少なくとも一方を有する、
弾性波フィルタ。 - 前記少なくとも1つの並列腕回路は、さらに、
前記第1櫛歯容量素子に並列に接続された第1スイッチ素子を有し、
前記第1櫛歯容量素子と前記第1スイッチ素子とが並列に接続された第1スイッチ回路は、前記第1弾性波共振子と直列に接続されている、
請求項1に記載の弾性波フィルタ。 - 前記少なくとも1つの並列腕回路は、さらに、
第2弾性波共振子を有し、
前記第2弾性波共振子は、
前記第1弾性波共振子と前記第1スイッチ回路とが直列接続された回路に並列に接続され、
前記第2弾性波共振子の共振周波数は、前記第1弾性波共振子の共振周波数と異なり、
前記第2弾性波共振子の反共振周波数は、前記第1弾性波共振子の反共振周波数と異なる、
請求項2に記載の弾性波フィルタ。 - 前記少なくとも1つの並列腕回路は、さらに、
前記第2弾性波共振子に直列に接続された第2スイッチ回路を有し、
前記第2弾性波共振子および前記第2スイッチ回路が直列に接続された回路と、前記第1弾性波共振子および前記第1スイッチ回路が直列に接続された回路とは、並列に接続され、
前記第2スイッチ回路は、
第2櫛歯容量素子と、
前記第2櫛歯容量素子に並列接続された第2スイッチ素子と、を有し
前記第2櫛歯容量素子のインピーダンスが極大となる周波数は、前記弾性波フィルタの通過帯域外に配置され、
前記第2櫛歯容量素子は、複数の電極指からなる櫛歯電極を有し、
前記櫛歯電極は、(1)少なくとも2つの異なる電極指ピッチ、および、(2)少なくとも2つの異なる電極指デューティ比、の少なくとも一方を有する、
請求項3に記載の弾性波フィルタ。 - 前記少なくとも1つの直列腕回路は、さらに、
前記第1櫛歯容量素子に直列に接続された第1スイッチ素子を有し、
前記第1櫛歯容量素子と前記第1スイッチ素子とが直列に接続された回路は、前記第1弾性波共振子と並列に接続されている、
請求項1に記載の弾性波フィルタ。 - 前記少なくとも1つの並列腕回路は、さらに、
前記第1櫛歯容量素子に並列に接続された第2スイッチ素子を有し、
前記第1櫛歯容量素子と第2スイッチ素子とが並列に接続された回路によって第1スイッチ回路を構成し、
前記第1スイッチ回路は、前記第1弾性波共振子と直列に接続されている、
請求項1に記載の弾性波フィルタ。 - 前記第1弾性波共振子と前記第1櫛歯容量素子とは、並列接続されており、
前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、
前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第1の電極指ピッチで除したピッチ差は、0.2%以上である、
請求項1または5に記載の弾性波フィルタ。 - 前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ80%以下である、
請求項7に記載の弾性波フィルタ。 - 前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して20%以上かつ50%以下である、
請求項7に記載の弾性波フィルタ。 - 前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、
前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、
前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第2の電極指ピッチで除したピッチ差は、0.2%以上かつ6.3%以下である、
請求項1~4のいずれか1項に記載の弾性波フィルタ。 - 前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、
前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、
前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ65%以下である、
請求項1~4および10のいずれか1項に記載の弾性波フィルタ。 - 前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、
前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、
前記第1の電極指ピッチと前記第2の電極指ピッチとの差を前記第1の電極指ピッチで除したピッチ差は、0.2%以上である、
請求項1または6に記載の弾性波フィルタ。 - 前記第1弾性波共振子と前記第1櫛歯容量素子とは、直列接続されており、
前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチよりも大きい第2の電極指ピッチを有し、
前記第1の電極指ピッチで配置された電極指の本数は、前記複数の電極指の本数に対して10%以上かつ90%以下である、
請求項1、6および12のいずれか1項に記載の弾性波フィルタ。 - 前記櫛歯電極は、第1の電極指ピッチ、および、前記第1の電極指ピッチより大きい第2の電極指ピッチを有し、
前記複数の電極指のうち前記第1の電極指ピッチで配置された電極指の膜厚は、前記複数の電極指のうち前記第2の電極指ピッチで配置された電極指の膜厚よりも小さい、
請求項1~13のいずれか1項に記載の弾性波フィルタ。 - 前記第1弾性波共振子は、
圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有し、
前記櫛歯電極は、
前記基板上に形成され、
前記櫛歯電極を構成する複数の電極指ピッチは、前記IDT電極を構成する電極指ピッチより小さい、
請求項1~14のいずれか1項に記載の弾性波フィルタ。 - 前記櫛歯電極を構成する複数の電極指の膜厚は、前記第1弾性波共振子を構成する複数の電極指の膜厚より小さい、
請求項15に記載の弾性波フィルタ。 - 前記櫛歯電極を構成する複数の電極指のデューティ比は、前記IDT電極を構成する複数の電極指のデューティ比より大きい、
請求項15または16に記載の弾性波フィルタ。 - 請求項1~17のいずれか1項に記載の弾性波フィルタを含む複数のフィルタを備え、
前記複数のフィルタのそれぞれが有する2つの入出力端子の一方は、共通端子に直接的または間接的に接続されている、
マルチプレクサ。 - 請求項1~17のいずれか1項に記載の弾性波フィルタ、または、請求項18に記載のマルチプレクサと、
前記弾性波フィルタまたは前記マルチプレクサに直接的または間接的に接続された増幅回路と、を備える、
高周波フロントエンド回路。 - アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項19に記載の高周波フロントエンド回路と、を備える、
通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880066281.7A CN111201709B (zh) | 2017-10-16 | 2018-10-15 | 弹性波滤波器、多工器、高频前端电路以及通信装置 |
US16/843,897 US11211917B2 (en) | 2017-10-16 | 2020-04-09 | Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-200155 | 2017-10-16 | ||
JP2017200155 | 2017-10-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/843,897 Continuation US11211917B2 (en) | 2017-10-16 | 2020-04-09 | Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078157A1 true WO2019078157A1 (ja) | 2019-04-25 |
Family
ID=66174203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038319 WO2019078157A1 (ja) | 2017-10-16 | 2018-10-15 | 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11211917B2 (ja) |
CN (1) | CN111201709B (ja) |
WO (1) | WO2019078157A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021068671A1 (zh) * | 2019-10-11 | 2021-04-15 | 天津大学 | 一种滤波电路及提高滤波电路性能的方法和信号处理设备 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065274A1 (ja) * | 2017-09-28 | 2019-04-04 | 株式会社村田製作所 | フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置 |
CN111183585B (zh) * | 2017-10-10 | 2023-09-15 | 株式会社村田制作所 | 多工器 |
US20220247382A1 (en) * | 2021-02-03 | 2022-08-04 | Resonant Inc. | Bandpass filters using transversely-excited film bulk acoustic resonators |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001069031A (ja) * | 1999-08-26 | 2001-03-16 | Hitachi Ltd | 無線端末 |
JP2008271511A (ja) * | 2007-03-28 | 2008-11-06 | Kyocera Corp | 弾性表面波装置及びこれを用いた分波器並びに通信装置 |
US20090251235A1 (en) * | 2008-02-15 | 2009-10-08 | Stmicroelectronics S.A. | Bulk acoustic wave resonator filter being digitally reconfigurable, with process |
JP2010062816A (ja) * | 2008-09-03 | 2010-03-18 | Murata Mfg Co Ltd | 弾性波フィルタ |
US20110299432A1 (en) * | 2009-12-03 | 2011-12-08 | Rf Micro Devices, Inc. | Sub-band duplexer with active frequency tuning |
WO2016104598A1 (ja) * | 2014-12-26 | 2016-06-30 | 京セラ株式会社 | 弾性波装置 |
JP2017135568A (ja) * | 2016-01-27 | 2017-08-03 | 太陽誘電株式会社 | 共振回路、フィルタ回路および弾性波共振器 |
WO2017138540A1 (ja) * | 2016-02-08 | 2017-08-17 | 株式会社村田製作所 | 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479732A (en) | 1987-09-21 | 1989-03-24 | Fuji Photo Film Co Ltd | Crossed comb type electrode pair |
JPH0536906Y2 (ja) | 1987-11-17 | 1993-09-17 | ||
JP2003163575A (ja) * | 2002-09-13 | 2003-06-06 | Murata Mfg Co Ltd | 複合sawフィルタ及びsawフィルタ |
JP2005260833A (ja) | 2004-03-15 | 2005-09-22 | Murata Mfg Co Ltd | 弾性表面波共振子及び弾性表面波フィルタ |
WO2013061694A1 (ja) * | 2011-10-24 | 2013-05-02 | 株式会社村田製作所 | 弾性波分波器 |
JP2015119449A (ja) * | 2013-12-20 | 2015-06-25 | 株式会社村田製作所 | 弾性表面波フィルタ |
JP6766874B2 (ja) | 2016-09-13 | 2020-10-14 | 株式会社村田製作所 | 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置 |
-
2018
- 2018-10-15 CN CN201880066281.7A patent/CN111201709B/zh active Active
- 2018-10-15 WO PCT/JP2018/038319 patent/WO2019078157A1/ja active Application Filing
-
2020
- 2020-04-09 US US16/843,897 patent/US11211917B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001069031A (ja) * | 1999-08-26 | 2001-03-16 | Hitachi Ltd | 無線端末 |
JP2008271511A (ja) * | 2007-03-28 | 2008-11-06 | Kyocera Corp | 弾性表面波装置及びこれを用いた分波器並びに通信装置 |
US20090251235A1 (en) * | 2008-02-15 | 2009-10-08 | Stmicroelectronics S.A. | Bulk acoustic wave resonator filter being digitally reconfigurable, with process |
JP2010062816A (ja) * | 2008-09-03 | 2010-03-18 | Murata Mfg Co Ltd | 弾性波フィルタ |
US20110299432A1 (en) * | 2009-12-03 | 2011-12-08 | Rf Micro Devices, Inc. | Sub-band duplexer with active frequency tuning |
WO2016104598A1 (ja) * | 2014-12-26 | 2016-06-30 | 京セラ株式会社 | 弾性波装置 |
JP2017135568A (ja) * | 2016-01-27 | 2017-08-03 | 太陽誘電株式会社 | 共振回路、フィルタ回路および弾性波共振器 |
WO2017138540A1 (ja) * | 2016-02-08 | 2017-08-17 | 株式会社村田製作所 | 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021068671A1 (zh) * | 2019-10-11 | 2021-04-15 | 天津大学 | 一种滤波电路及提高滤波电路性能的方法和信号处理设备 |
Also Published As
Publication number | Publication date |
---|---|
US11211917B2 (en) | 2021-12-28 |
CN111201709A (zh) | 2020-05-26 |
US20200235720A1 (en) | 2020-07-23 |
CN111201709B (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10630257B2 (en) | Acoustic wave filter device, multiplexer, radio-frequency front-end circuit, and communication apparatus | |
KR100434411B1 (ko) | 탄성 표면파 장치 | |
CN102334291B (zh) | 梯型弹性波滤波器 | |
US7479847B2 (en) | Filter using piezoelectric resonator | |
JP3449352B2 (ja) | 弾性表面波フィルタ | |
US20060164183A1 (en) | Bulk acoustic wave resonator and circuit comprising same | |
KR102358740B1 (ko) | 필터 장치, 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치 | |
WO2019078157A1 (ja) | 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 | |
US10979020B2 (en) | Acoustic wave filter device, multiplexer, radio-frequency front-end circuit, and communication device | |
KR100688885B1 (ko) | 탄성 표면파 필터, 분파기, 통신기 | |
US10958242B2 (en) | Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device | |
US10886892B2 (en) | Filter apparatus, multiplexer, radio-frequency front end circuit, and communication apparatus | |
WO2019044656A1 (ja) | フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置 | |
US10979027B2 (en) | Acoustic wave device, radio frequency front-end circuit, and communication device | |
US11394368B2 (en) | Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device | |
JPH10341135A (ja) | 弾性表面波装置 | |
WO2019044034A1 (ja) | 高周波モジュール、フロントエンドモジュールおよび通信装置 | |
WO2018056224A1 (ja) | 弾性波装置、高周波フロントエンド回路および通信装置 | |
WO2018135538A1 (ja) | 高周波フィルタ、高周波フロントエンド回路、および通信装置 | |
KR20020029922A (ko) | 사다리형 필터, 무선 주파수 대역 통과 필터, 무선 주파수수신기 및/또는 송신기 장치 | |
WO2007066608A1 (ja) | 複合フィルタ | |
WO2018139320A1 (ja) | 高周波フィルタ、高周波フロントエンド回路及び通信装置 | |
JP2014033377A (ja) | アンテナ共用器 | |
CN114365418A (zh) | 弹性波滤波器 | |
WO2005004327A1 (ja) | 弾性表面波フィルタとそれを用いたデバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18868940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18868940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |