WO2017138540A1 - 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置 - Google Patents

高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置 Download PDF

Info

Publication number
WO2017138540A1
WO2017138540A1 PCT/JP2017/004462 JP2017004462W WO2017138540A1 WO 2017138540 A1 WO2017138540 A1 WO 2017138540A1 JP 2017004462 W JP2017004462 W JP 2017004462W WO 2017138540 A1 WO2017138540 A1 WO 2017138540A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
arm resonator
parallel arm
filter circuit
switch
Prior art date
Application number
PCT/JP2017/004462
Other languages
English (en)
French (fr)
Inventor
浩司 野阪
和田 貴也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780010257.7A priority Critical patent/CN108604893B/zh
Publication of WO2017138540A1 publication Critical patent/WO2017138540A1/ja
Priority to US16/056,851 priority patent/US10644673B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter

Definitions

  • the present invention relates to a high-frequency filter circuit having a resonator, a duplexer, a high-frequency front-end circuit, and a communication device.
  • an elastic wave filter using an elastic wave is widely used as a band pass filter disposed in a front end portion of a mobile communication device.
  • a high-frequency front-end circuit including a plurality of elastic wave filters has been put into practical use in order to cope with the combination of multimode / multiband.
  • Patent Document 1 discloses a configuration of a front-end circuit including a duplexer that can handle a combination of many frequency bands.
  • FIG. 13 is a block diagram of a front end circuit described in Patent Document 1.
  • the front end circuit shown in FIG. 1 includes a duplexer 601, SPDT (Single Pole Double Throw) type switches 651 and 652, duplexers 661 to 664, and an antenna 609.
  • the duplexer 601 includes an LPF (low pass filter) 610, BPF (band pass filters) 620 and 630, and an HPF (high pass filter) 640.
  • a common terminal of the switch 651 is connected to the LPF 610 via a terminal 603, and duplexers 661 and 662 corresponding to two frequency bands assigned to the low frequency side are connected to a selection terminal of the switch 651. Further, a common terminal of the switch 652 is connected to the HPF 640 via a terminal 604, and duplexers 663 and 664 corresponding to two frequency bands assigned to the high frequency side are connected to a selection terminal of the switch 652.
  • the circuit that exclusively switches the two frequency bands on the low frequency side and the circuit that exclusively switches the two frequency bands on the high frequency side include the two duplexers and the SPDT, respectively. Need a type switch. Even when the transmission path is limited to the transmission path or the reception path, two band pass filters and an SPDT type switch are required. For this reason, the circuit configuration becomes complicated and the circuit size increases.
  • the present invention has been made to solve the above-described problems, and a high-frequency filter circuit, a duplexer, and a duplexer, which are capable of switching signal paths in two frequency bands with a simplified and miniaturized circuit configuration.
  • An object is to provide a high-frequency front-end circuit and a communication device.
  • a high-frequency filter circuit includes a series arm resonator connected between an input terminal and an output terminal, the input terminal, the series arm resonator, and the A first parallel arm resonator connected between a node on the path connecting the output terminal and a ground terminal; a second parallel arm resonator connected between the node and the ground terminal; A switching element that is disposed between the node and the ground terminal and switches between conduction and non-conduction of a path connecting the node, the second parallel arm resonator, and the ground terminal,
  • the parallel arm resonator of the second parallel arm resonator and the series circuit in which the second parallel arm resonator and the switch element are connected in series are connected in parallel between the node and the ground terminal, and the first parallel arm resonance Resonant circumference of the child Number, the lower the resonant frequency of the series arm resonators, the resonant frequency of the second parallel arm resonator is higher than the resonance frequency of the
  • the band-pass filter circuit including the series arm resonator and the parallel arm resonator
  • the switch element when the switch element is in the non-conductive state, the series arm resonator and the first parallel arm A first band pass characteristic is formed by the resonator.
  • a second band pass characteristic different from the first band pass characteristic is obtained by the combined resonator of the series arm resonator and the first and second parallel arm resonators. It is formed.
  • the resonance point of the second parallel arm resonator is higher than the resonance point of the first parallel arm resonator and is opposite to that of the series arm resonator. Present on the low frequency side of the resonance point.
  • the first antiresonance point reflecting the first parallel arm resonator has a lower frequency than the antiresonance point of the first parallel arm resonator. Therefore, it is possible to narrow the bandwidth in the second band pass characteristic than in the first band pass characteristic. That is, the pass band of the filter circuit can be adjusted by switching the switch element.
  • a filter circuit applied to a system that exclusively selects two bands from each other requires two filter circuits and an SPDT type switch that switches between the two filters.
  • this configuration can be configured with one filter circuit and an SPST (Single Pole Single Throw) type switch element. Therefore, the filter circuit can be simplified and downsized.
  • the resonance frequency of the second parallel arm resonator may be higher than the resonance frequency of the series arm resonator and lower than the anti-resonance frequency of the series arm resonator.
  • the resonance frequency of the second parallel arm resonator is higher than the resonance frequency of the series arm resonator that affects the insertion loss in the vicinity of the center frequency in the pass band, and the high frequency side outside the pass band. It is lower than the antiresonance frequency of the series arm resonator corresponding to the attenuation pole.
  • the high-frequency filter circuit uses the series arm resonator and the first parallel arm resonator to generate a high frequency in a first frequency band from the input terminal to the output terminal.
  • the output from the input terminal by the combined resonance circuit of the series arm resonator, the first parallel arm resonator, and the second parallel arm resonator is passed through the terminal, and a high-frequency end of the second frequency band may be lower than a high-frequency end of the first frequency band.
  • first frequency band and the second frequency band may partially overlap or be close to each other.
  • a simplified and miniaturized filter circuit can be applied to a system that exclusively uses two frequency bands whose frequency bands partially overlap or are close to each other. It becomes.
  • a plurality of resonant circuits configured in series connection of the second parallel arm resonator and the switch element are connected in parallel between the node and the ground terminal, and the plurality of resonant circuits have The resonance frequencies of the second parallel arm resonators may be different from each other.
  • the high-frequency filter circuit has a plurality of stages of filter structures each composed of one series arm resonator and one first parallel arm resonator, and two or more stages of the plurality of stages of filter structures.
  • the filter structure may include the second parallel arm resonator and the switch element.
  • an inductor connected in series may be provided between the second parallel arm resonator and the switch element.
  • the resonance frequency of the resonance circuit including the second parallel arm resonator is lowered.
  • the resonant frequency of the parallel arm resonator can be designed high. As a result, the second parallel arm resonator can be reduced in size and space can be saved.
  • the capacitance when the switch element is non-conductive may be 0.8 pF or less.
  • the characteristic impedance of the wiring connecting the second parallel arm resonator and the switch element may be 20 ⁇ or more.
  • a longitudinally coupled filter circuit disposed between the input terminal and the output terminal may be further provided.
  • the series arm resonator, the first parallel arm resonator, and the second parallel arm resonator may be a surface acoustic wave resonator or an acoustic wave resonator using a BAW.
  • the high frequency filter circuit can be constituted by a piezoelectric element using elastic waves, a small high frequency filter circuit having a high steep passage characteristic can be realized.
  • the series arm resonator, the first parallel arm resonator, and the second parallel arm resonator may have IDT electrodes formed on the same piezoelectric substrate.
  • the high-frequency filter circuit can be constituted by IDT electrodes using surface acoustic waves, a small and low-profile high-frequency filter circuit having a high steep passage characteristic can be realized.
  • the switch element may be a FET switch made of GaAs or CMOS, or a diode switch.
  • the switch element can be constituted by one FET switch or a diode switch, a small high-frequency filter circuit can be realized.
  • either the transmission-side filter circuit or the reception-side filter circuit may include the above-described high-frequency filter circuit.
  • the duplexer can be simplified and miniaturized.
  • the high-frequency front-end circuit includes a control unit that controls conduction and non-conduction of the plurality of switch elements, and the high-frequency filter circuit described above, and the control unit includes the plurality of the switching elements. You may control separately the conduction
  • the pass characteristics corresponding to three or more frequency bands can be selected by individually selecting a plurality of switch elements. Can be selected accurately.
  • the high-frequency front-end circuit includes a control unit that controls conduction and non-conduction of the switch element, a power amplifier that amplifies a high-frequency transmission signal, and a high-frequency transmission signal that is amplified by the power amplifier.
  • the above-described high-frequency filter circuit or duplexer may be provided.
  • a high-frequency front-end circuit includes a control unit that controls conduction and non-conduction of the switch element, and the high-frequency filter circuit or duplexer described above that passes a high-frequency reception signal received by an antenna element.
  • a low-noise amplifier that amplifies a high-frequency reception signal output from the high-frequency filter circuit or the duplexer.
  • the communication device includes an RF signal processing circuit that processes a baseband signal or a high-frequency signal and the above-described high-frequency front-end circuit.
  • the high frequency filter circuit of the present invention it is possible to exclusively switch the signal paths in the two frequency bands with a simplified and miniaturized circuit configuration.
  • FIG. 1 is a circuit configuration diagram of a communication apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining the relationship between the pass characteristic and the frequency assignment of the high frequency filter circuit according to the first embodiment.
  • FIG. 3 is a circuit configuration diagram illustrating an example of the high frequency filter circuit according to the first embodiment.
  • FIG. 4 is an example of a plan view and a cross-sectional view schematically showing the resonator of the high frequency filter circuit according to the first embodiment.
  • FIG. 5A is a graph showing impedance characteristics and pass characteristics when the high-frequency filter circuit according to Embodiment 1 is switched off.
  • FIG. 5B is a graph showing impedance characteristics and pass characteristics when the high-frequency filter circuit according to Embodiment 1 is switched on.
  • FIG. 5A is a graph showing impedance characteristics and pass characteristics when the high-frequency filter circuit according to Embodiment 1 is switched off.
  • FIG. 5B is a graph showing impedance characteristics and pass characteristics when the high-frequency filter circuit
  • FIG. 5C is a graph showing a comparison of impedance characteristics and pass characteristics when the high-frequency filter circuit according to Embodiment 1 is switched off and when the switch is on.
  • FIG. 6A is a diagram illustrating an equivalent circuit model of one resonator and its resonance characteristics.
  • FIG. 6B is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and its resonance characteristics.
  • FIG. 7 is a circuit configuration diagram of a high-frequency filter circuit according to a comparative example.
  • 8A is a circuit configuration diagram of a high-frequency filter circuit according to Modification 1 of Embodiment 1.
  • FIG. FIG. 8B is a circuit configuration diagram of the high-frequency filter circuit according to the second modification of the first embodiment.
  • FIG. 9 is a diagram illustrating an equivalent circuit model and its resonance characteristics when an impedance element is connected in series to the resonator.
  • FIG. 10 is a circuit configuration diagram of a high frequency filter circuit according to a third modification of the first embodiment.
  • FIG. 11A is a circuit configuration diagram of a high-frequency filter circuit according to Embodiment 2.
  • FIG. 11B is a graph showing pass characteristics of the high-frequency filter circuit according to Embodiment 2.
  • FIG. 12A is a circuit configuration diagram of a high frequency filter circuit according to a modification of the second embodiment.
  • FIG. 12B is a graph showing pass characteristics of the high-frequency filter circuit according to the modification of the second embodiment.
  • FIG. 13 is a circuit configuration diagram showing the high frequency filter circuit according to the third embodiment.
  • FIG. 11A is a circuit configuration diagram of a high-frequency filter circuit according to Embodiment 2.
  • FIG. 11B is a graph showing pass characteristics of the high-frequency filter circuit according to Embodiment 2.
  • FIG. 14 is a graph showing a comparison of impedance characteristics and pass characteristics when the high-frequency filter circuit according to the third embodiment is switched off and when the switch is on.
  • FIG. 15A is an equivalent circuit diagram when the high-frequency filter circuit according to Embodiment 3 is switched off.
  • FIG. 15B is a graph showing a comparison between impedance characteristics and pass characteristics when the off-capacitance of the high-frequency filter circuit according to Embodiment 3 is changed.
  • FIG. 15C is a graph showing the relationship between the off-capacitance, the resonance frequency, and the impedance of the high-frequency filter circuit according to Embodiment 3.
  • FIG. 16A is a circuit configuration diagram showing a high-frequency filter circuit according to a modification of the third embodiment.
  • FIG. 16B is a plan view and a cross-sectional view illustrating the structure of a high-frequency filter circuit according to a modification of the third embodiment.
  • FIG. 16C is a graph showing a comparison of impedance characteristics and pass characteristics when the wiring impedance of the high-frequency filter circuit according to the modification of Embodiment 3 is changed.
  • FIG. 16D is a graph showing a relationship between the wiring impedance, the resonance frequency, and the impedance of the high frequency filter circuit according to the modification of the third embodiment.
  • FIG. 17 is a circuit configuration diagram of a high-frequency filter circuit according to the fourth embodiment.
  • FIG. 18 is a circuit configuration diagram of a duplexer according to the fifth embodiment.
  • FIG. 19 is a block diagram of a front-end circuit described in Patent Document 1.
  • FIG. 1 is a circuit configuration diagram of a communication apparatus according to the first embodiment.
  • an antenna element 1, an RF front-end circuit 2, and an RF signal processing circuit (RFIC) 3 are shown.
  • the antenna element 1, the RF front end circuit 2, and the RFIC 3 are disposed, for example, in a front end portion of a mobile phone that supports multimode / multiband.
  • the RFIC 3 processes a baseband transmission signal input from a baseband signal processing circuit (not shown) by up-conversion, and the high-frequency transmission signal generated by the signal processing is supplied to the RF front-end circuit 2. Output.
  • the RFIC 3 functions as a control unit that controls conduction and non-conduction of each switch included in the RF front-end circuit 2 based on the frequency band to be used.
  • the RF front end circuit 2 includes switches 21A, 21B, 21C, and 23, a high frequency filter circuit 22A, high frequency filters 22B and 22C, and a power amplifier 24.
  • the RF front-end circuit 2 has a plurality of signal paths through which a high-frequency signal in a predetermined frequency band is selectively passed. Specifically, a high-frequency transmission signal in the frequency band (band) A1 or frequency band (band) A2 is output to the antenna element 1 through a signal path that passes through the power amplifier 24, the switch 23, the high-frequency filter circuit 22A, and the switch 21A. Is done.
  • the high-frequency transmission signal of band B is output to the antenna element 1 through a signal path that passes through the power amplifier 24, the switch 23, the high-frequency filter 22B, and the switch 21B.
  • the high-frequency transmission signal of band C is output to the antenna element 1 through a signal path that passes through the power amplifier 24, the switch 23, the high-frequency filter 22C, and the switch 21C.
  • the high-frequency filter circuit 22A is a main configuration of the present invention, and the pass characteristic for transmitting the high-frequency transmission signal of the band A1 and the pass characteristic for transmitting the high-frequency transmission signal of the band A2 select the frequency band.
  • This is a filter element that is switched by a control signal S1.
  • the high frequency filter 22B is a filter element having pass characteristics for transmitting a high frequency transmission signal of band B.
  • the high frequency filter 22C is a filter element having pass characteristics for transmitting a high frequency transmission signal of band C.
  • the switch 23 is an SP3T (Single Pole Triple Throw) type switch, and is a switch element whose connection is switched by a control signal S2 for selecting a frequency band.
  • the switch 23 may be an SPnT (Single Pole n Throw) type switch in which the number n of selected terminals is set according to the set number of bands.
  • the high frequency received signal is output from the antenna element 1 to the RFIC 3 via each received signal path of the RF front end circuit 2.
  • the high-frequency received signal in band A1 or band A2 is output to RFIC 3 through a signal path that passes through antenna element 1, switch 21A, reception-side filter circuit (not shown), and low-noise amplifier (not shown). Is done.
  • the high-frequency received signal in band B is output to the RFIC 3 through a signal path that passes through the antenna element 1, the switch 21B, a reception-side filter circuit (not shown), and a low-noise amplifier (not shown).
  • the high-frequency received signal in band C is output to the RFIC 3 through a signal path that passes through the antenna element 1, the switch 21C, a receiving filter circuit (not shown), and a low noise amplifier (not shown).
  • the power amplifier 24 amplifies high frequency signals of all bands, but individual power amplifiers corresponding to the respective bands may be arranged.
  • switches 21A to 21C are arranged assuming a time division duplex (TDD) system as a switch between the transmission path (Tx) and the reception path (Rx).
  • TDD time division duplex
  • Rx reception path
  • the present invention is not limited to this. Absent.
  • a duplexer including a high frequency filter 22B that selectively passes a high frequency transmission signal of band B and a high frequency filter circuit that selectively passes a high frequency reception signal of band B is disposed.
  • the switch 21B is not required before the duplexer.
  • the bands A1 / A2 and C are arranged assuming a time division duplex (TDD) system as a switch between the transmission path (Tx) and the reception path (Rx).
  • FDD frequency division duplex
  • a duplexer including a high frequency filter 22B that selectively passes a high frequency transmission signal of band B and a high frequency filter circuit that selectively passes a high frequency reception signal of band B is disposed.
  • the switch 21B is not required
  • switches 21A, 21B and 21C are not limited to be arranged between the high frequency filters 22A, 22B and 22C and the antenna element. Switches 21A, 21B, and 21C may be disposed between the high frequency filters 22A, 22B, and 22C and the power amplifier 24, or switches are disposed at both the front stage and the rear stage of the high frequency filters 22A, 22B, and 22C. May be.
  • the RF front end circuit 2 selects at least one of the signal paths of the band A1 / A2, the band B, and the band C according to the control signals S1 and S2 from the RFIC 3, and selects the selected signal path. It functions as a high-frequency front-end circuit for wireless communication that can be used to transmit a high-frequency signal with low loss.
  • FIG. 2 is a diagram for explaining the relationship between the pass characteristic and the frequency allocation of the high frequency filter circuit 22A according to the first embodiment.
  • the transmission band of the band A1 is f T1L to f T1H
  • the transmission band of the band A2 is f T2L to f T2H .
  • the transmission band of the band A1 and the transmission band of the band A2 overlap in f T2L to f T1H .
  • the high frequency end f T2H of the transmission band of the band A2 is higher than the high frequency end f T1H of the transmission band of the band A1.
  • the reception band of the band A1 is f R1L to f R1H
  • the reception band of the band A2 is f R2L to f R2H
  • the reception band of the band A1 and the reception band of the band A2 overlap in f R2L to f R1H
  • the frequency interval between the high frequency end f T2H of the transmission band of the band A2 and the low frequency end f R1L of the reception band of the band A1 is very small or overlaps.
  • the band A1 and the band A2 are exclusively used.
  • the pass as shown in FIG. Characteristics are required. That is, as the pass characteristic of the transmission filter of the band A1, the characteristic of the solid line in FIG. 2 is required, and as the pass characteristic of the transmission filter of the band A2, the characteristic of the broken line in FIG. Specifically, it is necessary to narrow the bandwidth by shifting the high-frequency side of the in-band pass characteristic of the transmission filter in the band A1 to the low frequency side with respect to the in-band pass characteristic of the transmission filter in the band A2. .
  • the high frequency filter circuit 22A has a pass characteristic 22A1 (second frequency band) required for the band A1 and a pass characteristic 22A2 required for the band A2 ( The first frequency band) is switched to achieve a simple and small configuration.
  • the frequency bands are close or partially overlapping” in the two bands is not limited to the case where the pass bands partially overlap as in the bands A1 and A2 shown in FIG. Even when the two bands are separated from each other, for example, the frequency relationship between the two bands is within a few percent of the center frequency of each of the two bands (the average frequency of each center frequency). Cases are also included.
  • FIG. 3 is a circuit configuration diagram of the high-frequency filter circuit 22A according to the first embodiment.
  • the high frequency filter circuit 22A shown in the figure includes a series arm resonator 22s, parallel arm resonators 22p1 and 22p2, a switch 22SW, an input terminal 22m, and an output terminal 22n.
  • the series arm resonator 22s is connected between the input terminal 22m and the output terminal 22n.
  • the parallel arm resonator 22p1 is a first parallel arm resonator connected between a node x1 on a path connecting the input terminal 22m, the series arm resonator 22s, and the output terminal 22n and a ground (reference) terminal. .
  • the parallel arm resonator 22p2 is a second parallel arm resonator connected between the node x1 and the ground terminal.
  • the switch 22SW is a switch element that is disposed between the node x1 and the ground terminal and switches between conduction and non-conduction of a path connecting the node x1, the parallel arm resonator 22p2, and the ground terminal.
  • the switch 22SW is connected to the parallel arm resonator 22p2 and the ground terminal.
  • the resonance frequency of the parallel arm resonator 22p2 is higher than the resonance frequency of the parallel arm resonator 22p1.
  • the resonance frequency of the parallel arm resonator 22p2 is higher than the resonance frequency of the series arm resonator 22s and lower than the antiresonance frequency of the series arm resonator 22s.
  • the parallel arm resonator 22p1 and the frequency variable parallel arm resonator 22p2 and A circuit in which the switches 22SW are connected in series is connected in parallel between the node x1 and the ground terminal.
  • the switch 22SW may be, for example, a FET (Field Effect Transistor) switch made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), or a diode switch. Thereby, since the switch 22SW can be configured by one FET switch or diode switch, a small high-frequency filter circuit 22A can be realized.
  • FET Field Effect Transistor
  • CMOS Complementary Metal Oxide Semiconductor
  • the series arm resonator 22s and the parallel arm resonators 22p1 and 22p2 are resonators using surface acoustic waves.
  • the high frequency filter circuit 22A can be configured by an IDT (InterDigital Transducer) electrode formed on the piezoelectric substrate, so that a small and low-profile high frequency filter circuit 22A having a high steepness of passing characteristics can be realized.
  • IDT InterDigital Transducer
  • FIG. 4 is an example of a plan view and a cross-sectional view schematically showing the resonator of the high-frequency filter circuit 22A according to the first embodiment.
  • the figure illustrates a schematic plan view and a cross-sectional schematic diagram showing the structure of the series arm resonator 22s among the series arm resonator 22s and the parallel arm resonators 22p1 and 22p2 constituting the high frequency filter circuit 22A.
  • the series arm resonator shown in FIG. 4 is for explaining a typical structure of the plurality of resonators, and the number and length of electrode fingers constituting the electrode are the same. It is not limited.
  • Each resonator of the high-frequency filter circuit 22A includes a piezoelectric substrate 50 and comb-shaped IDT electrodes 11a and 11b.
  • the IDT electrode 11a includes a plurality of electrode fingers 110a that are parallel to each other and a bus bar electrode 111a that connects the plurality of electrode fingers 110a.
  • the IDT electrode 11b includes a plurality of electrode fingers 110b that are parallel to each other and a bus bar electrode 111b that connects the plurality of electrode fingers 110b.
  • the plurality of electrode fingers 110a and 110b are formed along a direction orthogonal to the X-axis direction.
  • the IDT electrode 54 composed of the plurality of electrode fingers 110a and 110b and the bus bar electrodes 111a and 111b has a laminated structure of the adhesion layer 541 and the main electrode layer 542 as shown in the cross-sectional view of FIG. ing.
  • the adhesion layer 541 is a layer for improving the adhesion between the piezoelectric substrate 50 and the main electrode layer 542, and, for example, Ti is used as a material.
  • the film thickness of the adhesion layer 541 is, for example, 12 nm.
  • the main electrode layer 542 is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 542 is, for example, 162 nm.
  • the protective layer 55 is formed so as to cover the IDT electrodes 11a and 11b.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting the frequency temperature characteristics, and improving the moisture resistance.
  • the protective layer 55 is a film mainly composed of silicon dioxide. is there.
  • each resonator included in the high-frequency filter circuit 22A is not limited to the structure shown in FIG.
  • the IDT electrode 54 may not be a laminated structure of metal films but may be a single layer of metal films.
  • the materials constituting the adhesion layer 541, the main electrode layer 542, and the protective layer 55 are not limited to the materials described above.
  • the IDT electrode 54 does not have to have the above laminated structure.
  • the IDT electrode 54 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, Pd, or NiCr, or from a plurality of laminates made of the above metals or alloys. It may be configured.
  • the protective layer 55 may not be formed.
  • the piezoelectric substrate 50 is, for example, a 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 50 ° from the Y axis with the X axis as the central axis) Or ceramics, which are single crystals or ceramics in which surface acoustic waves propagate in the X-axis direction).
  • a 50 ° Y-cut X-propagation LiTaO 3 single crystal is exemplified as the piezoelectric substrate 50, but the single crystal material constituting the piezoelectric substrate 50 is not limited to LiTaO 3, and the cut angle of the single crystal material Is not limited to this.
  • the wavelength ⁇ of the surface acoustic wave resonator is defined by twice the pitch of the plurality of electrode fingers 110a and 110b constituting the IDT electrodes 11a and 11b shown in the middle of FIG.
  • the crossing width L of the IDT electrode is an overlapping electrode finger length when viewed from the X-axis direction of the electrode finger 110a of the IDT electrode 11a and the electrode finger 110b of the IDT electrode 11b. It is.
  • the logarithm is (Mp-1) / 2, where Mp is the total number of electrode fingers 110a and 110b.
  • the wavelength ⁇ , the crossing width L, and the logarithm of the series arm resonator 22s and the parallel arm resonators 22p1 and 22p2 are determined according to the required specifications of the pass bands in the bands A1 and A2.
  • the series arm resonator 22s and the parallel arm resonators 22p1 and 22p2 are preferably formed on the same piezoelectric substrate 50 from the viewpoint of miniaturization of the high-frequency filter circuit 22A, but are formed on different substrates. May be.
  • the series arm resonator 22s and the parallel arm resonators 22p1 and 22p2 may not be a surface acoustic wave resonator but may be a resonator using a BAW (Bulk Acoustic Wave).
  • BAW Bulk Acoustic Wave
  • FIG. 5A is a graph showing impedance characteristics and pass characteristics when the switch 22SW of the high frequency filter circuit 22A according to Embodiment 1 is off (non-conduction).
  • FIG. 5B is a graph showing impedance characteristics and pass characteristics when the high frequency filter circuit 22A according to Embodiment 1 is turned on (conductive).
  • FIG. 5C is a graph showing a comparison of impedance characteristics and pass characteristics when the switch 22SW is off and the switch 22SW is on of the high frequency filter circuit 22A according to the first embodiment.
  • the high-frequency filter circuit 22A has a ladder-type single-stage filter structure including a series arm resonator 22s, a parallel arm resonator 22p1, and a parallel arm resonator 22p2. Since the parallel arm resonator 22p2 does not function when the switch 22SW is in the off state, a ladder type one-stage filter structure constituted by the series arm resonator 22s and the parallel arm resonator 22p1 is obtained.
  • FIG. 5A shows impedance characteristics and pass characteristics of the ladder-type surface acoustic wave filter when the switch 22SW is in the OFF state.
  • the parallel arm resonator 22p1 shown in FIG. 5A has a resonance frequency frp1 and an anti-resonance frequency fap1 (> frp1).
  • Each of the series arm resonators 22s has a resonance frequency frs and an anti-resonance frequency fas (> frs> frp1).
  • the anti-resonance frequency fap1 of the parallel arm resonator 22p1 and the resonance frequency frs of the series arm resonator 22s are brought close to each other. As a result, the vicinity of the resonance frequency frp1 in which the impedance of the parallel arm resonator 22p1 approaches 0 becomes a low-frequency side blocking region.
  • the impedance of the parallel arm resonator 22p1 increases near the antiresonance frequency fap1
  • the impedance of the series arm resonator 22s approaches 0 near the resonance frequency frs.
  • the signal path is in the signal path from the input terminal 22m to the output terminal 22n.
  • the impedance of the series arm resonator 22s becomes high and becomes a high-frequency side blocking region.
  • the high-frequency filter circuit 22A of FIG. 5A when a high-frequency signal is input from the input terminal 22m, a potential difference is generated between the input terminal 22m and the ground terminal, which causes the piezoelectric substrate 50 to be distorted and propagate in the X direction. Surface acoustic waves are generated.
  • the wavelength ⁇ of the IDT electrode of the series arm resonator 22s is made to correspond to the wavelength of the resonance frequency frs
  • the wavelength ⁇ of the IDT electrode of the parallel arm resonator 22p1 is made to correspond to the wavelength of the resonance frequency frp1 to pass through. Only a high-frequency signal having a frequency component passes through the high-frequency filter circuit 22A.
  • FIG. 5B shows impedance characteristics and pass characteristics of the ladder-type surface acoustic wave filter when the switch 22SW is in the ON state.
  • the parallel resonance circuit of the ladder-type elastic wave filter has the parallel arm resonators 22p1 and 22p2 connected in parallel.
  • the resonance points of the parallel resonance circuit in which the parallel arm resonators 22p1 and 22p2 are connected in parallel are the two points of the resonance frequencies frp3 and frp4 (upper graph in FIG. 5B) from the low frequency side.
  • the resonance frequency frp3 is a resonance point reflecting the resonance characteristics of the parallel arm resonator 22p1, and is a low frequency in the pass band in the one-stage ladder filter composed of the series arm resonator 22s and the parallel arm resonator 22p1. It corresponds to the attenuation pole formed on the side.
  • the resonance frequency frp4 is a resonance point reflecting the resonance characteristics of the parallel arm resonator 22p2, and corresponds to an attenuation pole formed on the high frequency side of the pass band in the ladder filter structure.
  • the resonance frequency frp2 of the parallel arm resonator 22p2 (reflected in the resonance frequency frp4 of the parallel resonance circuit) is reflected in the resonance frequency frp1 of the parallel arm resonator 22p1 (resonance frequency frp3 of the parallel resonance circuit). ) Is set higher.
  • the resonance frequency frp2 of the parallel arm resonator 22p2 is set to be higher than the resonance frequency frs of the series arm resonator 22s and lower than the anti-resonance frequency fas of the series arm resonator 22s.
  • the antiresonance points of the parallel resonance circuit in which the parallel arm resonators 22p1 and 22p2 are connected in parallel are two points of the antiresonance frequencies fap3 and fap4 (upper graph in FIG. 5B) from the low frequency side.
  • the anti-resonance frequency fap3 is an anti-resonance point on the lower frequency side of the anti-resonance frequencies fap3 and fap4, and is a pass band in a one-stage ladder filter composed of the series arm resonator 22s and the parallel arm resonator 22p1. Located in.
  • the antiresonance frequency fap4 is an antiresonance point on the high frequency side of the antiresonance frequencies fap3 and fap4, and is located on the higher frequency side than the pass band in the ladder filter structure.
  • the antiresonance frequency fap3 of the parallel resonance circuit of the parallel arm resonators 22p1 and 22p2 is lower than the antiresonance frequency fap1 of the parallel arm resonator 22p1
  • the antiresonance frequency fap4 of the parallel resonance circuit is equal to the parallel arm resonator. It becomes lower than the anti-resonance frequency fap2 of 22p2.
  • FIG. 6A is a diagram illustrating an equivalent circuit model of one resonator and its resonance characteristics.
  • the resonator can be represented by a parallel circuit of the series circuit and the capacitor C 0 of the capacitor C 1 and the inductor L 1.
  • the capacitor C 0 is the capacitance of the resonator.
  • the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C 1 and the inductor L 1 and is expressed by Equation 1.
  • the antiresonance frequency fa of the resonator is a frequency at which the admittance Y of the equivalent circuit becomes 0, the equation 2 is obtained by solving the equation 2.
  • the anti-resonance frequency fa appears on the higher frequency side than the resonance frequency fr.
  • FIG. 6B is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and its resonance characteristics.
  • This figure shows a model in which the resonators res1 and res2 are connected in parallel.
  • Resonator res1 is represented by a parallel circuit of the series circuit and the capacitor C 01 of the capacitor C 1 and the inductor L 1
  • resonator res2 is parallel with the series circuit and the capacitor C 02 of the capacitor C 2 and the inductor L 2 It can be represented by a circuit.
  • the capacitors C 01 and C 02 are the capacitances of the resonators res1 and res2, respectively.
  • the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C 1 and the inductor L 1 and is expressed by Equation 1.
  • the two resonance points are defined, the resonance frequency fr1 and fr2, respectively, the series circuit of the capacitor C 1 and the inductor L 1, and is defined by a series circuit of the capacitor C 2 and the inductor L 2 , Represented by Equation 4.
  • the two resonance points fr1 and fr2 represented by the equivalent circuit are substantially equal to the resonance point fr_res1 of the resonator res1 and the resonance point fr_res2 of the resonator res2, respectively.
  • the anti-resonance point of the equivalent circuit is a frequency at which the admittance Y of the equivalent circuit becomes 0, by solving Equation 5, two anti-resonance frequencies (fa1 and fa2) are obtained as shown in Equation 6. I understand that I have it.
  • the anti-resonance frequencies fa1 and fa2 obtained by the above equation 6 are different from the anti-resonance frequencies of the single resonator obtained by the equation 3 (shown as fa_res1 and fa_res2 in the graph of FIG. 6B). Further, the anti-resonance frequency fa1 derived from Expression 6 is lower than the anti-resonance frequency fa_res1 of the resonator res1 alone, and the anti-resonance frequency fa2 is lower than the anti-resonance frequency fa_res2 of the resonator res2 alone.
  • the impedance characteristics and the pass characteristics when the switch 22SW of the high frequency filter circuit 22A is off and when the switch 22SW is on are compared in detail.
  • the impedance characteristic of the high frequency filter circuit 22A is the impedance characteristic of the series arm resonator 22s (solid line in the upper graph of FIG. 5C).
  • the impedance characteristic is a combination of the impedance characteristic of the parallel arm resonator 22p1 (the thin broken line in the upper graph of FIG. 5C). Therefore, the high-frequency filter circuit 22A when the switch 22SW is off uses the resonance frequency frp1 of the parallel arm resonator 22p1 as a low-frequency attenuation pole and the anti-resonance frequency fas of the series arm resonator 22s as a high-frequency attenuation pole.
  • a band-pass filter (broken line in the lower graph of FIG. 5C) that forms a pass band with the anti-resonance frequency fap1 of the parallel arm resonator 22p1 and the resonance frequency frs of the series arm resonator 22s.
  • the impedance characteristic of the high frequency filter circuit 22A is the parallel characteristic in which the impedance characteristic of the series arm resonator 22s (solid line in the upper graph of FIG. 5C) and the parallel arm resonators 22p1 and 22p2 are connected in parallel.
  • the impedance characteristic is the combined impedance characteristic of the resonance circuit (thick broken line in the upper graph of FIG. 5C).
  • the impedance characteristics of the parallel resonant circuit are the impedance characteristics of the parallel arm resonator 22p1 (thin broken line in the upper graph in FIG.
  • the high frequency filter circuit 22A when the switch 22SW is on uses the resonance frequency frp3 of the parallel resonance circuit (reflecting the resonance frequency frp1 of the parallel arm resonator 22p1) as the attenuation pole on the low frequency side, and the resonance of the parallel resonance circuit.
  • a band-pass filter (solid line in the lower graph of FIG. 5C) having the frequency frp4 (reflecting the resonance frequency frp2 of the parallel arm resonator 22p2) as the attenuation pole on the high frequency side is obtained.
  • the resonance frequency frp2 of the parallel arm resonator 22p2 exists on the higher frequency side than the resonance frequency frp1 of the parallel arm resonator 22p1. Therefore, the anti-resonance frequency fap3 of the parallel resonance circuit is shifted to a lower frequency side than the anti-resonance frequency fap1 of the parallel arm resonator 22p1, and the anti-resonance frequency fap4 of the parallel resonance circuit is anti-resonance frequency of the parallel arm resonator 22p2. Shift to a lower frequency side than fap2.
  • the antiresonance frequency fap3 of the parallel resonance circuit is lower than the antiresonance frequency fap1 of the parallel arm resonator 22p1, and the resonance frequency frp4 of the parallel resonance circuit is higher than the antiresonance frequency fas of the series arm resonator 22s.
  • the pass band width is narrower on the low frequency side than when the switch 22SW is off, and the attenuation band is also shifted to the low frequency side.
  • the resonance frequency frp2 of the parallel arm resonator 22p2 is higher than the resonance frequency frs of the series arm resonator 22s that affects the insertion loss in the vicinity of the center frequency in the passband and out of the passband.
  • the resonance frequency frp2 of the parallel arm resonator 22p2 is higher than the resonance frequency frs of the series arm resonator 22s and lower than the antiresonance frequency fas of the series arm resonator 22s. It is not limited to. That is, the resonance frequency frp2 of the parallel arm resonator 22p2 may be higher than the antiresonance frequency fas of the series arm resonator 22s. Even in this case, as described above, the resonance frequency frp2 of the parallel arm resonator 22p2 is set to be higher than the resonance frequency frp1 of the parallel arm resonator 22p1, so that at the passband high band end of the parallel resonance circuit.
  • the bandwidth of the high frequency filter circuit 22A when the switch 22SW is on can be narrower than the bandwidth of the high frequency filter circuit 22A when the switch 22SW is off.
  • the high-frequency filter circuit 22A according to the present embodiment is compared with the conventional high-frequency filter circuit.
  • FIG. 7 is a circuit configuration diagram of a high-frequency filter circuit 522A according to a comparative example.
  • the high-frequency filter circuit 522A shown in the figure is a conventional high-frequency filter circuit, and includes a transmission filter 522A1 for the band A1, a transmission filter 522A2 for the band A2, and SPDT type switches 523 and 524.
  • switch 23 is connected to the front stage of high frequency filter circuit 522A
  • switch 21A is connected to the rear stage, similar to high frequency filter circuit 22A according to the present embodiment.
  • a circuit that exclusively selects two frequency bands of the adjacent band A1 and band A2 includes two independent filter circuits and two SPDT type circuits.
  • the high frequency filter circuit 22A includes one filter circuit composed of a series arm resonator 22s and parallel arm resonators 22p1 and 22p2, and one SPST type. Switch 22SW. Therefore, the high frequency filter circuit can be simplified and downsized.
  • FIG. 8A is a circuit configuration diagram of a high-frequency filter circuit 22D according to Modification 1 of Embodiment 1.
  • FIG. 8B is a circuit configuration diagram of a high-frequency filter circuit 22E according to the second modification of the first embodiment.
  • the high-frequency filter circuits 22D and 22E according to the first and second modifications are similar to the high-frequency filter circuit 22A according to the first embodiment as compared to the parallel arm resonator and the ground terminal.
  • the circuit configuration is different in that an inductor is additionally inserted in series.
  • description of the same points as the high-frequency filter circuit 22A according to the first embodiment will be omitted, and different points will be mainly described.
  • the high-frequency filter circuit 22D includes a series arm resonator 22s, parallel arm resonators 22p1 and 22p2, a switch 22SW, an inductor 22L, and an input terminal 22m. And an output terminal 22n.
  • the inductor 22L is connected to the parallel arm resonator 22p1 and the ground terminal.
  • the parallel arm resonator 22p1 and the inductor 22L are connected in series between the node on the path connecting the input terminal 22m and the output terminal 22n and the ground terminal.
  • the connection order of 22p1 and inductor 22L may be any. However, as shown in FIG. 8A, among the parallel arm resonator 22p1 and the inductor 22L, it is desirable that the parallel arm resonator 22p1 is arranged on the node side. By adding the inductor 22L, the resonance point of the parallel arm resonance circuit including the parallel arm resonator 22p1 shifts to the low frequency side.
  • the inductor 22L when the inductor 22L is arranged on the node side, the resistance component of the inductor 22L The loss of the high frequency filter circuit 22D increases. This is because the antiresonance point (impedance ⁇ ) of the parallel arm resonator 22p1 is arranged in the pass band, but when the inductor 22L is arranged on the node side, the high frequency input signal passes through the inductor 22L in the pass band. This is because they are reflected.
  • the high-frequency filter circuit 22E according to the second modification of the first embodiment includes a series arm resonator 22s, parallel arm resonators 22p1 and 22p2, a switch 22SW, an inductor 22L, and an input. A terminal 22m and an output terminal 22n are provided.
  • the inductor 22L is connected to the parallel arm resonator 22p2 and the switch 22SW.
  • the inductor 22L may be connected to the switch 22SW and the ground terminal.
  • the parallel arm resonator 22p2, the inductor 22L, and the switch 22SW are connected in series between a node on the path connecting the input terminal 22m and the output terminal 22n and the ground terminal.
  • the connection order may be any.
  • the parallel arm resonator 22p2 is arranged on the node side.
  • the inductor 22L is disposed on the node side
  • the loss of the high frequency filter circuit 22E increases due to the resistance component of the inductor 22L.
  • the switch SW is disposed on the node side, the loss of the high frequency filter circuit 22E increases due to the resistance component of the switch SW when the switch is turned on.
  • Figure 9 is a diagram showing an equivalent circuit model and its resonant characteristics when the impedance element X 1 to resonators are connected in series.
  • the resonator can be represented by a parallel circuit of the series circuit and the capacitor C 0 of the capacitor C 1 and the inductor L 1.
  • the capacitor C 0 is the capacitance of the resonator.
  • a parallel circuit of the impedance element X 1 and the switch SW is connected.
  • the resonance frequency fr_on and the anti-resonance frequency fa_on when the switch SW is on are the same as the resonance frequency fr and the anti-resonance frequency fa in FIG. 6A, respectively, and are expressed by Expression 7 and Expression 8.
  • the impedance elements X 1 be a capacitor, and will be described separately in the case of (2) the impedance element X 1 is an inductor.
  • the anti-resonance frequency fa_off1 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Expression 11.
  • the anti-resonance frequency fa_off2 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Expression 14.
  • the inductor 22L is connected in series with the parallel arm resonator 22p1, so that the resonance frequency of the parallel arm resonator 22p1 is shifted to the low frequency side, and thus the bandwidth of the high frequency filter circuit 22D. Can be widened.
  • the resonance frequency due to the combination of the inductor 22L and the parallel arm resonator 22p2 is lowered. Therefore, the parallel arm resonator 22p2 is expected in anticipation of this frequency reduction.
  • FIG. 10 is a circuit configuration diagram of a high-frequency filter circuit 22F according to Modification 3 of Embodiment 1.
  • the high frequency filter circuit 22F according to the modified example 3 has a series connection of a parallel arm resonator for bandwidth adjustment and a switch element, as compared with the high frequency filter circuit 22A according to the first embodiment.
  • the circuit configuration is different in that a plurality of configured circuits are connected in parallel to the parallel arm resonator 22p1.
  • description of the same points as the high-frequency filter circuit 22A according to the first embodiment will be omitted, and different points will be mainly described.
  • the high frequency filter circuit 22F includes a series arm resonator 22s, parallel arm resonators 22p1, 22p21, 22p22, 22p23 and 22p24, switches SW1, SW2, SW3 and SW4, an input terminal 22m, And an output terminal 22n.
  • the parallel arm resonators 22p21 to 22p24 are second parallel arm resonators connected between the node x1 and the ground terminal, respectively.
  • the switches SW1 to SW4 are switch elements that are arranged between the node x1 and the ground terminal, and switch between conduction and non-conduction of the path connecting the node x1, the parallel arm resonators 22p21 to 22p24, and the ground terminal.
  • the switches SW1 to SW4 are connected to the parallel arm resonators 22p21 to 22p24 and the ground terminal, respectively.
  • the high-frequency filter circuit 22F includes a resonator circuit configured by series connection of the parallel arm resonator 22p21 and the switch SW1, a resonator circuit configured by series connection of the parallel arm resonator 22p22 and the switch SW2, and a parallel arm.
  • a resonator circuit configured by connecting the resonator 22p23 and the switch SW3 in series and a resonator circuit configured by connecting the parallel arm resonator 22p24 and the switch SW4 in series are connected in parallel between the node x1 and the ground terminal. It is connected.
  • connection order of the parallel arm resonator 22p21 and the switch SW1 the connection order of the parallel arm resonator 22p22 and the switch SW2, the connection order of the parallel arm resonator 22p23 and the switch SW3, and the parallel arm
  • the connection order of the resonator 22p24 and the switch SW4 may be any.
  • it is desirable that the parallel arm resonators 22p21, 22p22, 22p23 and 22p24 are arranged on the node x1 side with respect to the switches SW1, SW2, SW3 and SW4, respectively. This is because if the switches SW1 to SW4 are arranged on the node x1 side, the loss of the high frequency filter circuit 22F increases due to the resistance components of the switches SW1 to SW4 when the switches are turned on.
  • the resonance frequencies of the parallel arm resonators 22p21 to 22p24 are different from each other.
  • the resonance frequencies of the parallel arm resonators 22p21 to 22p24 may all be the same. In this case, since the resistance when the switch is turned on can be reduced, the loss in the passband can be reduced.
  • FIG. 11A is a circuit configuration diagram of a high-frequency filter circuit 22G according to Embodiment 2.
  • description of the same points as the high-frequency filter circuit 22A according to the first embodiment will be omitted, and different points will be mainly described.
  • the high-frequency filter circuit 22G includes series arm resonators 221s, 222s, 223s, and 2224s, and parallel arm resonators (first parallel arm resonators) 221p, 222p1, 223p1, and 224p1. It is a ladder type filter circuit.
  • the high-frequency filter circuit 22G further includes parallel arm resonators (second parallel arm resonators) 222p2, 223p2, and 224p2 for changing pass characteristics, and switches (switch elements) 222SW, 223SW, and 224SW.
  • a circuit in which the parallel arm resonator 222p2 and the switch 222SW are connected in series is connected in parallel to the parallel arm resonator 222p1.
  • a circuit in which the parallel arm resonator 223p2 and the switch 223SW are connected in series is connected in parallel to the parallel arm resonator 223p1.
  • a circuit in which the parallel arm resonator 224p2 and the switch 224SW are connected in series is connected in parallel to the parallel arm resonator 224p1. That is, three parallel arm circuits among the plurality of parallel arm circuits have the second parallel arm resonator and the switch element.
  • the resonance frequency of the parallel arm resonator 222p2 is higher than the resonance frequency of the parallel arm resonator 222p1
  • the resonance frequency of the parallel arm resonator 223p2 is higher than the resonance frequency of the parallel arm resonator 223p1.
  • the resonance frequency of the child 224p2 is higher than the resonance frequency of the parallel arm resonator 224p1.
  • FIG. 11B is a graph showing pass characteristics of the high-frequency filter circuit 22G according to Embodiment 2.
  • the graph of the figure shows the pass characteristic of the high frequency filter 22 circuit G between the input terminal 22m and the output terminal 22n.
  • the pass characteristic (broken line) when all the switches 222SW to 224SW are turned off and the switch 222SW are shown.
  • the pass characteristics (solid line) when all of 224 SW are turned on are shown.
  • the resonance frequency of the parallel arm resonator 222p2 exists on the higher frequency side than the resonance frequency of the parallel arm resonator 222p1. Further, the resonance frequency of the parallel arm resonator 223p2 exists on the higher frequency side than the resonance frequency of the parallel arm resonator 223p1. Further, the resonance frequency of the parallel arm resonator 224p2 exists on the higher frequency side than the resonance frequency of the parallel arm resonator 224p1.
  • each parallel resonance circuit including the parallel arm resonators 222p2 to 224p2 is shifted to a lower frequency side than the antiresonance frequency of the parallel arm resonators 222p1 to 224p1.
  • the impedance at the high band end of the pass band of each parallel resonant circuit including the parallel arm resonators 222p2 to 224p2 is lower than the impedance at the high band end of the pass band of the parallel arm resonators 222p1 to 224p1, respectively.
  • the switches 222SW to 224SW are turned on, the attenuation on the high frequency side of the passband becomes larger than when the switches 222SW to 224SW are turned off. Therefore, the high frequency end of the pass band of the high frequency filter circuit 22G when the switches 222SW to 224SW are turned on is shifted to the lower frequency side than the high frequency end of the pass band of the high frequency filter circuit 22G when the switches 222SW to 224SW are turned off. , The bandwidth becomes narrower.
  • the parallel arm resonators 222p2 to 224p2 all have the same resonance frequency, and the switches 222SW to 224SW are turned on or off all at once. Thereby, compared with the high frequency filter circuit 22A according to the first embodiment, it is possible to narrow the bandwidth when the switch is turned on.
  • the high-frequency filter circuit 22H according to the present modification is different from the high-frequency filter circuit 22G according to the second embodiment in that the plurality of second parallel arm resonators have different resonance frequencies, and the plurality of switch elements are individually turned on / off.
  • the circuit configuration is different.
  • description of the same points as those of the high-frequency filter circuit 22G according to the second embodiment will be omitted, and different points will be mainly described.
  • FIG. 12A is a circuit configuration diagram of a high-frequency filter circuit 22H according to a modification of the second embodiment.
  • the high frequency filter circuit 22H includes series arm resonators 221s, 222s, 223s, and 224s, and parallel arm resonators (first parallel arm resonators) 221p, 225p1, 226p1, and 227p1. It is a ladder type filter circuit.
  • the series arm resonator 221s and the parallel arm resonator 221p have a one-stage filter structure.
  • the series arm resonator 222s and the parallel arm resonator 225p1 form a one-stage filter structure
  • the series arm resonator 223s and the parallel arm resonator 226p1 form a one-stage filter structure
  • the series arm resonator 224s form a one-stage filter structure
  • the parallel arm resonator 227p1 forms a one-stage filter structure. That is, the high frequency filter circuit 22H has a four-stage filter structure.
  • the high-frequency filter circuit 22H further includes parallel arm resonators (second parallel arm resonators) 225p2, 226p2, and 227p2 and switches (switch elements) 225SW, 226SW, and 227SW for varying the pass characteristics.
  • a circuit in which the parallel arm resonator 225p2 and the switch 225SW are connected in series is connected in parallel to the parallel arm resonator 225p1.
  • a circuit in which the parallel arm resonator 226p2 and the switch 226SW are connected in series is connected in parallel to the parallel arm resonator 226p1.
  • a circuit in which the parallel arm resonator 227p2 and the switch 227SW are connected in series is connected in parallel to the parallel arm resonator 227p1.
  • the three-stage filter structure among the plurality of stages of filter structures has the second parallel arm resonator and the switch element.
  • the resonance frequency of the parallel arm resonator 225p2 is higher than the resonance frequency of the parallel arm resonator 225p1
  • the resonance frequency of the parallel arm resonator 226p2 is higher than the resonance frequency of the parallel arm resonator 226p1.
  • the resonance frequency of the child 227p2 is higher than the resonance frequency of the parallel arm resonator 227p1.
  • the resonance frequency of the parallel arm resonator 225p2 is lower than the resonance frequency of the parallel arm resonator 226p2, and the resonance frequency of the parallel arm resonator 226p2 is lower than the resonance frequency of the parallel arm resonator 227p2 (the parallel arm resonator 225p2 Resonance frequency ⁇ resonance frequency of parallel arm resonator 226p2 ⁇ resonance frequency of parallel arm resonator 227p2.
  • the parallel arm resonator having a low resonance frequency is arranged on the output terminal 22n side, but the arrangement order of the resonators is not limited to this.
  • FIG. 12B is a graph showing pass characteristics of the high-frequency filter circuit 22H according to the second embodiment.
  • the graph in the figure shows the pass characteristic when all of the switches 225SW to 227SW are turned off (broken line), the pass characteristic when only the switch 225SW is turned on (two-dot chain line), and when the switches 225SW and 226SW are turned on. And the pass characteristics (solid line) when all the switches 225SW to 227SW are turned on are shown.
  • the number of parallel arm circuits and series arm circuits of the high frequency filter circuits 22G and 22H is not limited to four.
  • the filter is based on the off-capacitance of the switch connected to the parallel arm resonator and the characteristic impedance of the wiring connecting the parallel arm resonator and the switch. The change in characteristics will be described.
  • FIG. 13 is a circuit configuration diagram showing a high-frequency filter circuit 23A according to the third embodiment.
  • FIG. 14 is a graph showing a comparison of impedance characteristics and pass characteristics when the high-frequency filter circuit 23A according to Embodiment 3 is switched off and switched on.
  • the high-frequency filter circuit 23A according to the present embodiment has the same circuit configuration as the high-frequency filter circuit 22A according to the first embodiment, and the filter characteristics also substantially match.
  • the impedance characteristic of the high-frequency filter circuit 23A is the impedance characteristic of the series arm resonator 23s (solid line in the upper graph in FIG. 14).
  • the impedance characteristic of the parallel arm resonator 23p1 (rough broken line in the upper graph of FIG. 14) is combined.
  • the high frequency filter circuit 23A when the switch 23SW is off uses the resonance frequency frp1 of the parallel arm resonator 23p1 as the attenuation pole on the low frequency side and the antiresonance frequency fas of the series arm resonator 23s as the attenuation pole on the high frequency side.
  • a band-pass filter (broken line in the lower graph of FIG. 14) that forms a pass band with the anti-resonance frequency fap1 of the parallel arm resonator 23p1 and the resonance frequency frs of the series arm resonator 23s.
  • the impedance characteristic of the high-frequency filter circuit 23A is the parallel characteristic in which the impedance characteristic of the series arm resonator 23s (solid line in the upper graph of FIG. 14) and the parallel arm resonators 23p1 and 23p2 are connected in parallel.
  • the impedance characteristic is a combination of the impedance characteristics of the resonance circuit (the thin broken line in the upper graph of FIG. 14).
  • the impedance characteristics of the parallel resonant circuit are the impedance characteristics of the parallel arm resonator 23p1 (rough broken line in the upper graph in FIG.
  • the high-frequency filter circuit 23A when the switch 23SW is on uses the resonance frequency frp3 of the parallel resonance circuit (reflecting the resonance frequency frp1 of the parallel arm resonator 23p1) as the attenuation pole on the low frequency side, and the resonance of the parallel resonance circuit.
  • a band-pass filter (solid line in the lower graph of FIG. 14) having the frequency frp4 (reflecting the resonance frequency frp2 of the parallel arm resonator 23p2) as an attenuation pole on the high frequency side is obtained.
  • the resonance frequency frp2 of the parallel arm resonator 23p2 exists on the higher frequency side than the resonance frequency frp1 of the parallel arm resonator 23p1. Therefore, the anti-resonance frequency fap3 of the parallel resonance circuit is shifted to a lower frequency side than the anti-resonance frequency fap1 of the parallel arm resonator 23p1, and the anti-resonance frequency fap4 of the parallel resonance circuit is the anti-resonance frequency of the parallel arm resonator 23p2. Shift to a lower frequency side than fap2.
  • the antiresonance frequency fap3 of the parallel resonance circuit is lower than the antiresonance frequency fap1 of the parallel arm resonator 23p1, and the resonance frequency frp4 of the parallel resonance circuit is higher than the antiresonance frequency fas of the series arm resonator 23s.
  • the pass band width is narrower on the low frequency side than when the switch 23SW is off, and the attenuation band is also shifted to the low frequency side.
  • the resonance frequency frp2 of the parallel arm resonator 23p2 is higher than the resonance frequency frs of the series arm resonator 23s that affects the insertion loss in the vicinity of the center frequency in the passband and out of the passband.
  • the switch 23SW ideally has an infinite impedance when turned off, but actually has an off capacitance (Coff) that is a capacitance component.
  • FIG. 15A is an equivalent circuit diagram when the switch 23SW of the high-frequency filter circuit 23A according to Embodiment 3 is off.
  • FIG. 15B is a graph showing a comparison of impedance characteristics and pass characteristics when the off-capacitance of the high-frequency filter circuit 23A according to Embodiment 3 is changed. More specifically, the upper graph in FIG. 15B shows the change in the combined characteristics of the parallel arm resonator 23p2 and the off capacitance Coff when the off-capacitance Coff of the switch 23SW is changed, and the lower graph in FIG. 15B. These show changes in the filter characteristics of the high-frequency filter circuit 23A when the switch 23SW is off when the off-capacitance Coff of the switch 23SW is changed.
  • the resonance frequency (frp2) of the combined characteristic of the parallel arm resonator 23p2 and the off capacitance Coff is shifted to a low frequency by increasing the off capacitance Coff.
  • the attenuation pole (frp4) on the high passband side is also shifted to the low frequency side. Note that the change in the off-capacitance Coff does not affect the anti-resonance frequency (fap2) of the combined characteristics of the parallel arm resonator 23p2 and the off-capacitance Coff.
  • FIG. 15C is a graph showing the relationship between the off-capacitance of the high-frequency filter circuit 23A according to Embodiment 3, the resonance frequency, and the impedance at the resonance frequency.
  • the impedance of the switch 23SW is infinite when the switch 23SW is turned off.
  • the impedance decreases as the off-capacitance Coff increases. Therefore, a new attenuation pole (frp4) is generated by the combined characteristic of the parallel arm resonator 23p2 and the off-capacitance Coff, and the resonance frequency (frp2) of the combined characteristic is defined by the value of the off-capacitance Coff.
  • the attenuation pole (frp4) formed by the parallel arm resonator 23p2 (without capacitance Coff in the upper graph of FIG. 15B) when the switch 23SW is on is 780 MHz
  • the frequency variable width becomes narrow.
  • the frequency variable filter as described above requires a frequency variable width of 20 MHz or more, the off-capacitance Coff needs to be set to 0.8 pF or less.
  • the required frequency variable width described above is such that, for example, when a filter that varies the band 28Tx (703-748 MHz) and the band 68Tx (698-728 MHz) is configured, the frequency difference at the high end of the passband is 20 MHz. It is set because it is.
  • FIG. 16A is a circuit configuration diagram showing a high-frequency filter circuit 23B according to a modification of the third embodiment.
  • the high-frequency filter circuit 23B according to the present modification has the same circuit configuration as the high-frequency filter circuit 22A according to the first embodiment and the high-frequency filter circuit 23A according to the third embodiment, and the filter characteristics also substantially match. Description of basic filter characteristics at the time of turning on / off will be omitted.
  • the “wiring impedance” means the characteristic impedance of the wiring, and in this embodiment, the characteristic impedance of the wiring is described as “wiring impedance” for convenience.
  • FIG. 16B is a plan view and a cross-sectional view illustrating the structure of a high-frequency filter circuit 23B according to a modification of the third embodiment. More specifically, the top view of the high-frequency filter circuit 23B is shown in the upper part of FIG. 16B, the plan view seen through the wiring board is shown in the middle part, and the sectional view is shown in the lower part. ing.
  • the surface arm resonator (23saw) including the series arm resonator 23s, the parallel arm resonators 23p1 and 23p2, and the switch 23SW are configured by individual packages (chips) and mounted on the wiring board 100.
  • the surface acoustic wave resonator (23 saw) and the switch 23SW are covered with a resin member 101.
  • As the wiring substrate 100 an LTCC substrate or a PCB substrate is exemplified.
  • the surface acoustic wave resonator (23saw) and the switch 23SW are connected by the via wiring and the wiring pattern in the wiring substrate 100.
  • the parallel arm resonator 23p2 and the switch 23SW are connected by a wiring 23k disposed on or in the wiring board 100.
  • the wiring 23k is not ideal (a state where the parallel arm resonator 23p2 and the switch 23SW are directly connected)
  • the surface acoustic wave resonator (23saw) and the switch 23SW are configured in separate packages. Wiring 23k is required.
  • FIG. 16C is a graph showing a comparison of impedance characteristics and pass characteristics when the wiring impedance of the high-frequency filter circuit 23B according to the modification of the third embodiment is changed. More specifically, the upper left graph of FIG. 16C shows a change in the combined characteristics of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the characteristic impedance of the wiring 23k is changed when the switch 23SW is off. Yes. The upper right graph in FIG. 16C shows a change in the combined characteristics of the parallel arm resonator 23p2 and the switch 23SW when the characteristic impedance of the wiring 23k is changed when the switch 23SW is on. Further, the lower left graph of FIG.
  • 16C shows a change in the filter characteristics of the high frequency filter circuit 23B when the characteristic impedance of the wiring 23k is changed when the switch 23SW is off. Further, the lower right graph of FIG. 16C shows a change in the filter characteristics of the high-frequency filter circuit 23B when the characteristic impedance of the wiring 23k is changed when the switch 23SW is on.
  • the switch 23SW when the switch 23SW is turned off, the characteristic impedance approaches the ideal state as the wiring 23k increases, and the attenuation pole (frp4) on the high passband side shifts to a lower frequency as the characteristic impedance of the wiring 23k decreases.
  • the attenuation pole (frp4) on the higher passband side shifts to a lower frequency as the characteristic impedance of the wiring 23k increases, and approaches the ideal state as the characteristic impedance of the wiring 23k decreases.
  • FIG. 16D is a graph showing the relationship between the wiring impedance, the resonance frequency, and the impedance of the high-frequency filter circuit 23B according to the modification of the third embodiment. More specifically, the upper part of FIG. 16D shows the relationship between the characteristic impedance of the wiring 23k and the combined resonance frequency and impedance of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the switch 23SW is off. Has been. 16D shows the relationship between the impedance of the wiring 23k and the resonance frequency and impedance of the combined characteristics of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the switch 23SW is turned on. The lower part of FIG. 16D shows the relationship between the characteristic impedance of the wiring 23k and the frequency variable width when the switch 23SW is turned on / off.
  • the frequency variable width that is the frequency difference of the attenuation pole (frp4) on the high side of the passband when the switch 23SW is turned on / off
  • the higher the characteristic impedance of the wiring 23k The frequency variable width becomes large.
  • the frequency variable width becomes smaller as the characteristic impedance of the wiring 23k is lowered.
  • the characteristic impedance of the wiring 23k needs to be set to 20 ⁇ or more.
  • the relative dielectric constant of the wiring board 100 is set to 15 or less.
  • the distance from the upper and lower ground patterns of the wiring 23k is set to 100 ⁇ m or more.
  • the vias constituting the wiring 23k are made thinner than other interlayer vias.
  • the wiring 23k is arranged above 1/2 (upper half area) in the thickness direction of the wiring board 100.
  • FIG. 17 is a circuit configuration diagram of the high-frequency filter circuit 22J according to the fourth embodiment.
  • the high-frequency filter circuit 22J according to the present embodiment differs from the high-frequency filter circuit 22A according to the first embodiment in terms of the circuit configuration in that a longitudinally coupled filter structure is added.
  • description of the same points as the high-frequency filter circuit 22A according to the first embodiment will be omitted, and different points will be mainly described.
  • the high frequency filter circuit 22J includes series arm resonators 221s, 222s, and 223s, parallel arm resonators 221p, 222p1, and 222p2, a switch 222SW, and a longitudinally coupled resonator 250.
  • the high-frequency filter circuit 22J includes a ladder-type filter circuit including the series arm resonators 221s to 223s and the parallel arm resonators 221p and 222p1. Further, a longitudinally coupled resonator 250 is added to the ladder type filter circuit in the high frequency filter circuit 22J.
  • the longitudinally coupled resonator 250 is composed of three IDTs and reflectors disposed at both ends thereof. By adding the longitudinally coupled resonator 250, it becomes possible to adapt to the required filter characteristics such as wide band and enhanced attenuation.
  • a parallel arm resonator 222p2 is connected between the node x1 and the ground terminal.
  • the switch 222SW is arranged between the node x2 and the ground terminal, and switches between conduction and non-conduction of a path connecting the node x2, the parallel arm resonator 222p2, and the ground terminal.
  • the resonance frequency of the parallel arm resonator 222p2 is set higher than the resonance frequency of the parallel arm resonator 221p1.
  • the switch 222SW when the switch 222SW is on, the attenuation on the high frequency side of the pass band is greater than when the switch 222SW is off. Therefore, the high frequency end of the pass band of the high frequency filter circuit 22J when the switch 222SW is on is shifted to a lower frequency side than the high frequency end of the pass band of the high frequency filter circuit 22J when the switch 222SW is off, and the bandwidth is narrowed. That is, the pass band of the filter circuit can be adjusted by switching the switch element.
  • FIG. 18 is a circuit configuration diagram of the duplexer 22K according to the fifth embodiment.
  • the duplexer 22K shown in the figure includes a transmission filter Tx and a reception filter Rx.
  • the transmission side filter Tx is connected to the input terminal 220t and the common terminal 220c, and the reception side filter Rx is connected to the common terminal 220c and the output terminal 220r.
  • the transmission filter Tx is a ladder type filter circuit including series arm resonators 221s to 224s and parallel arm resonators (first parallel arm resonators) 221p to 224p1.
  • the transmission filter Tx has a four-stage filter structure.
  • the transmission filter Tx further includes parallel arm resonators (second parallel arm resonators) 222p2 to 224p2 and switches (switch elements) 222SW to 224SW for varying the pass characteristics.
  • a three-stage filter structure includes a second parallel arm resonator and a switch element.
  • the resonance frequency of the parallel arm resonator 222p2 is higher than the resonance frequency of the parallel arm resonator 222p1
  • the resonance frequency of the parallel arm resonator 223p2 is higher than the resonance frequency of the parallel arm resonator 223p1.
  • the resonance frequency of the child 224p2 is higher than the resonance frequency of the parallel arm resonator 224p1.
  • the reception filter Rx is a ladder type filter circuit including series arm resonators 261s to 264s and parallel arm resonators (first parallel arm resonators) 261p to 264p1.
  • the reception side filter Rx has a four-stage filter structure.
  • the reception-side filter Rx further includes parallel arm resonators (second parallel arm resonators) 262p2 to 264p2 and switches (switch elements) 262SW to 264SW for varying the pass characteristics.
  • a three-stage filter structure includes a second parallel arm resonator and a switch element.
  • the resonance frequency of the parallel arm resonator 262p2 is higher than the resonance frequency of the parallel arm resonator 262p1
  • the resonance frequency of the parallel arm resonator 263p2 is higher than the resonance frequency of the parallel arm resonator 263p1.
  • the resonance frequency of the child 264p2 is higher than the resonance frequency of the parallel arm resonator 264p1.
  • the transmission passband of the duplexer 22K and the switches 222SW to 224SW and the switches 262SW to 264SW are switched. It is possible to adjust the reception passband. Further, the duplexer 22K can be simplified and downsized.
  • duplexer according to the present invention is not limited to the above configuration, and any of the high-frequency filter circuits according to Embodiments 1 to 4 can be applied to the transmission-side filter and the reception-side filter.
  • the high-frequency filter circuit of Embodiments 1 to 4 may be applied to only one of the transmission side filter and the reception side filter.
  • the high frequency filter circuit and the duplexer according to the embodiment of the present invention have been described with reference to the first to fifth embodiments and the modifications.
  • the high frequency filter circuit and the duplexer according to the present invention are not limited to the above embodiment and the modification. It is not limited to.
  • the high-frequency filter circuit 22F according to the third modification of the first embodiment and a control unit that controls conduction and non-conduction of the plurality of switches 22p21 to 22p24 are provided, and the control unit conducts the plurality of switches 22p21 to 22p24.
  • Also included in the present invention are RF front-end circuits that individually control the non-conduction.
  • the plurality of switching elements are individually selected to obtain three or more frequency bands (bands). Corresponding pass characteristics can be appropriately selected.
  • the power amplifier 24 that amplifies the high-frequency transmission signal, the high-frequency filter circuit according to any of Embodiments 1 to 4 and the modification thereof that passes the high-frequency transmission signal that is amplified by the power amplifier 24, and one or more An RF front-end circuit including a control unit that controls conduction and non-conduction of the switch elements is also included in the present invention.
  • the front end circuit of the transmission system having the power amplifier 24 can be simplified and miniaturized.
  • a high-frequency filter circuit according to any of Embodiments 1 to 4 and its modification, which allows a control unit that controls conduction and non-conduction of one or a plurality of switch elements and a high-frequency reception signal received by the antenna element to pass therethrough
  • An RF front-end circuit comprising: a high-frequency filter circuit according to any one of claims 1 to 13; and a low-noise amplifier that amplifies a high-frequency reception signal output from the high-frequency filter circuit.
  • This makes it possible to simplify and reduce the size of the reception front end circuit having a low noise amplifier.
  • a communication apparatus including the RFIC 3 for processing a baseband signal or a high frequency signal and the RF front end circuit is also included in the present invention.
  • the communication device can be simplified and downsized.
  • the control unit included in the RF front end circuit may be the RFIC 3.
  • the high frequency filter circuits according to the first to fourth embodiments and the modifications thereof have been described as being applied to a system that exclusively switches frequency bands that are close to each other, but are allocated within one frequency band.
  • the present invention can also be applied to a system that exclusively switches a plurality of channels close to each other.
  • the piezoelectric substrate 50 constituting the surface acoustic wave filter includes a high-sonic support substrate, a low-sonic film, and a piezoelectric film. It may be a laminated structure laminated in order.
  • the piezoelectric film may be, for example, a 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 50 ° from the Y axis with the X axis as the central axis, Alternatively, it is made of ceramic and is made of a single crystal or ceramic in which surface acoustic waves propagate in the X-axis direction.
  • the piezoelectric film has a thickness of 600 nm, for example.
  • the high sound velocity support substrate is a substrate that supports the low sound velocity film, the piezoelectric film, and the IDT electrode 54.
  • the high-sonic support substrate is a substrate in which the acoustic velocity of the bulk wave in the high-sonic support substrate is higher than that of the surface wave or boundary wave that propagates through the piezoelectric film. It functions in such a way that it is confined in the portion where the sonic film is laminated and does not leak below the high sonic support substrate.
  • the high sound speed support substrate is, for example, a silicon substrate, and has a thickness of, for example, 200 ⁇ m.
  • the low acoustic velocity film is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than the bulk wave propagating through the piezoelectric membrane, and is disposed between the piezoelectric membrane and the high acoustic velocity support substrate. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the low acoustic velocity film is, for example, a film mainly composed of silicon dioxide and has a thickness of, for example, 670 nm.
  • the Q value at the resonance frequency and the anti-resonance frequency can be significantly increased as compared with a structure in which the piezoelectric substrate 50 is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
  • the high sound velocity support substrate has a structure in which a support substrate and a high sound velocity film in which the velocity of the bulk wave propagating is higher than that of the surface wave and boundary wave propagating in the piezoelectric film are stacked. It may be.
  • the support substrate is a piezoelectric material such as sapphire, lithium tantalate, lithium niobate, crystal, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, forsterite, etc.
  • Various ceramics, dielectrics such as glass, semiconductors such as silicon and gallium nitride, resin substrates, and the like can be used.
  • the high sound velocity film includes various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, a medium mainly composed of the above materials, and a medium mainly composed of a mixture of the above materials. High sound velocity material can be used.
  • an inductance element and a capacitance element may be further connected between the input terminal, the output terminal, and the common terminal.
  • the description has been made with one resonator for convenience, but the resonator may be composed of a plurality of resonators divided in series.
  • the present invention can be widely used for communication devices such as mobile phones as small filters, duplexers, front-end circuits and communication devices that can be applied to multiband and multimode systems that exclusively use bands close to each other.
  • RF front end circuit 3 RF signal processing circuit (RFIC) 11a, 11b, 54 IDT electrodes 21A, 21B, 21C, 22SW, 23, 23SW, 222SW, 223SW, 224SW, 225SW, 226SW, 227SW, 262SW, 263SW, 264SW, 523, 524, 651, 652, SW1, SW2, SW3 SW4 switch 22A, 22D, 22E, 22F, 22G, 22H, 22J, 23A, 23B, 522A High frequency filter circuit 22A1, 22A2 Pass characteristics 22B, 22C High frequency filter 22K, 661, 662, 663, 664 Duplexer 22L Inductor 22m, 23m 220t Input terminal 22n, 23n, 220r Output terminal 22p1, 22p2, 22p21, 22p22, 22p23, 22p24, 23p1, 23p2, 221p, 222p1 222p2, 223p1, 223

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transceivers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

高周波フィルタ回路(22A)は、直列腕共振子(22s)と、並列腕共振子(22p1)と、ノードx1とグランド端子との間に接続された並列腕共振子(22p2)と、ノードx1とグランド端子との間に配置され、ノードx1、並列腕共振子(22p2)、およびグランド端子を結ぶ経路の導通および非導通を切り替えるスイッチ(22SW)とを備え、並列腕共振子(22p1)と、並列腕共振子(22p2)およびスイッチ(22SW)が直列接続された直列回路とは、ノードx1とグランド端子との間に並列接続され、並列腕共振子(22p1)の共振周波数(frp)は直列腕共振子(22s)の共振周波数(frs)よりも低く、並列腕共振子(22p2)の共振周波数(frp2)は並列腕共振子(22p1)の共振周波数(frp)よりも高い。

Description

高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置
 本発明は、共振子を有する高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置に関する。
 従来、移動体通信機のフロントエンド部に配置される帯域通過フィルタなどに、弾性波を使用した弾性波フィルタが広く用いられている。また、マルチモード/マルチバンドなどの複合化に対応すべく、複数の弾性波フィルタを備えた高周波フロントエンド回路が実用化されている。
 特許文献1には、多くの周波数帯域の組み合わせに対応可能な分波器を含むフロントエンド回路の構成が開示されている。図13は、特許文献1に記載されたフロントエンド回路のブロック図である。同図に記載されたフロントエンド回路は、分波器601と、SPDT(Single Pole Double Throw)型のスイッチ651および652と、デュプレクサ661~664と、アンテナ609とを備える。分波器601は、LPF(ローパスフィルタ)610と、BPF(バンドパスフィルタ)620および630と、HPF(ハイパスフィルタ)640とを備える。LPF610には端子603を介してスイッチ651の共通端子が接続され、スイッチ651の選択端子には低周波側に割り当てられた2つの周波数帯域に対応したデュプレクサ661および662が接続されている。また、HPF640には端子604を介してスイッチ652の共通端子が接続され、スイッチ652の選択端子には高周波側に割り当てられた2つの周波数帯域に対応したデュプレクサ663および664が接続されている。上記構成により、近接する低周波側の2つの周波数帯域の選択は、スイッチ651の切り替えによりなされ、デュプレクサ661または662が排他的に導通状態となる。また、近接する高周波側の2つの周波数帯域の選択は、スイッチ652の切り替えによりなされ、デュプレクサ663または664が排他的に導通状態となる。
特開2015-115866号公報
 しかしながら、上述した従来のフロントエンド回路では、低周波側の2つの周波数帯域を排他的に切り替える回路、および、高周波側の2つの周波数帯域を排他的に切り替える回路は、それぞれ、2つのデュプレクサおよびSPDT型のスイッチを要している。送信側経路または受信側経路に限定した場合であっても、2つの帯域通過フィルタおよびSPDT型のスイッチが必要となる。このため、回路構成が煩雑となり、また、回路サイズが大型化してしまう。
 そこで、本発明は、上記課題を解決するためになされたものであって、簡素化かつ小型化された回路構成で、2つの周波数帯域の信号経路を切り替えることが可能な高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波フィルタ回路は、入力端子と出力端子との間に接続された直列腕共振子と、前記入力端子、前記直列腕共振子、および前記出力端子とを結ぶ経路上のノードと、グランド端子との間に接続された第1の並列腕共振子と、前記ノードと前記グランド端子との間に接続された第2の並列腕共振子と、前記ノードと前記グランド端子との間に配置され、前記ノード、前記第2の並列腕共振子、および前記グランド端子を結ぶ経路の導通および非導通を切り替えるスイッチ素子と、を備え、前記第1の並列腕共振子と、前記第2の並列腕共振子および前記スイッチ素子が直列接続された直列回路とは、前記ノードと前記グランド端子との間に並列接続され、前記第1の並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも低く、前記第2の並列腕共振子の共振周波数は、前記第1の並列腕共振子の共振周波数よりも高い。
 上記構成によれば、直列腕共振子と並列腕共振子とで構成される帯域通過型のフィルタ回路において、スイッチ素子が非導通状態である場合には、直列腕共振子と第1の並列腕共振子とにより、第1の帯域通過特性が形成される。また、スイッチ素子が導通状態である場合には、直列腕共振子と第1および第2の並列腕共振子の合成共振器とにより、第1の帯域通過特性と異なる第2の帯域通過特性が形成される。
 第1および第2の並列腕共振子の合成特性において、第2の並列腕共振子の共振点は、第1の並列腕共振子の共振点の高周波数側、かつ、直列腕共振子の反共振点の低周波数側に存在する。また、第1および第2の並列腕共振子の合成特性において、第1並列腕共振子を反映した第1の反共振点は、第1の並列腕共振子の反共振点よりも低周波数になることから、第1の帯域通過特性よりも第2の帯域通過特性のほうが、帯域幅を狭くすることが可能となる。つまり、スイッチ素子の切り替えにより、上記フィルタ回路の通過帯域を調整することが可能となる。従来では、互いに2つの帯域を排他的に選択するシステムに適用されるフィルタ回路には、2つのフィルタ回路および当該2つのフィルタを切り替えるSPDT型のスイッチを必要としていた。これに対して、本構成では、1つのフィルタ回路およびSPST(Single Pole Single Throw)型のスイッチ素子で構成できる。よって、フィルタ回路を簡素化および小型化することが可能となる。
 また、前記第2の並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも高く、かつ、前記直列腕共振子の反共振周波数よりも低くてもよい。
 この構成によれば、第2の並列腕共振子の共振周波数が、通過帯域内の中心周波数近傍の挿入損失に影響する直列腕共振子の共振周波数よりも高く、かつ、通過帯域外の高周波側の減衰極に対応する直列腕共振子の反共振周波数よりも低い。これにより、スイッチ素子を導通させた場合に、通過帯域内の低損失性を維持したまま、通過帯域外の高周波側の減衰極を低周波側へとシフトさせることが可能となる。よって、スイッチ素子を導通させた場合には、通過帯域の高域端を低周波側へシフトできるので、通過特性の急峻性を損なうことなく通過帯域幅を狭くすることが可能となる。
 また、前記高周波フィルタ回路は、前記経路が非導通の場合には、前記直列腕共振子と前記第1の並列腕共振子とにより、前記入力端子から前記出力端子へ第1の周波数帯域の高周波信号を通過させ、前記経路が導通の場合には、前記直列腕共振子と前記第1の並列腕共振子および前記第2の並列腕共振子の合成共振回路とにより、前記入力端子から前記出力端子へ第1の周波数帯域と異なる第2の周波数帯域の高周波信号を通過させ、前記第2の周波数帯域の高周波端は、前記第1の周波数帯域の高周波端よりも低くてもよい。
 この構成によれば、2つの周波数帯域を排他的に選択使用するようなシステムに対して、簡素化および小型化されたフィルタ回路を適用することが可能となる。
 また、前記第1の周波数帯域と前記第2の周波数帯域とは、一部重複または近接していてもよい。
 この構成によれば、周波数帯域が一部重複または近接している2つの周波数帯域を排他的に選択使用するようなシステムに対して、簡素化および小型化されたフィルタ回路を適用することが可能となる。
 また、前記第2の並列腕共振子と前記スイッチ素子との直列接続で構成された共振回路が、前記ノードと前記グランド端子との間に、複数並列接続され、複数の前記共振回路が有する前記第2の並列腕共振子の共振周波数は、それぞれ異なってもよい。
 これにより、直列腕共振子と第1の並列腕共振子とで規定される第1の通過帯域特性において、第2の並列腕共振子とスイッチ素子とで構成された複数の共振回路のうち、導通させる共振回路のスイッチ素子を任意に選択することにより、細かな帯域幅の調整をすることが可能となる。
 また、前記高周波フィルタ回路は、1つの前記直列腕共振子と1つの前記第1の並列腕共振子とで構成されるフィルタ構造を複数段有し、前記複数段のフィルタ構造のうち2段以上のフィルタ構造が、前記第2の並列腕共振子と前記スイッチ素子とを有してもよい。
 これにより、複数段のラダー型のフィルタ構造で規定される通過帯域特性において、導通させるスイッチ素子および個数を任意に選択することにより、細かな帯域幅の調整をすることが可能となる。
 また、さらに、前記第2の並列腕共振子と前記スイッチ素子との間に直列接続されたインダクタを備えてもよい。
 第2の並列腕共振子とスイッチ素子との間にインダクタを直列挿入することにより、第2の並列腕共振子を含む共振回路の共振周波数が低くなるため、この周波数低下を見越して第2の並列腕共振子の共振周波数を高く設計することができる。これにより、第2の並列腕共振子を小型化でき省スペース化が可能となる。
 また、前記スイッチ素子の非導通時の容量は、0.8pF以下であってもよい。
 これにより、周波数可変幅を大きくすることができる。
 また、前記第2の並列腕共振子と前記スイッチ素子とを接続する配線の特性インピーダンスは、20Ω以上であってもよい。
 これにより、周波数可変幅を大きくすることができる。
 また、さらに、前記入力端子と前記出力端子との間に配置された縦結合型フィルタ回路を備えてもよい。
 これにより、縦結合型フィルタ回路で規定される帯域通過特性を、スイッチ素子の切り替えにより、調整することが可能となる。
 また、前記直列腕共振子、前記第1の並列腕共振子、および前記第2の並列腕共振子は、弾性表面波共振子、または、BAWを用いた弾性波共振子であってもよい。
 これにより、高周波フィルタ回路を、弾性波を用いた圧電素子により構成できるので、急峻度の高い通過特性を有する小型の高周波フィルタ回路を実現できる。
 また、前記直列腕共振子、前記第1の並列腕共振子、および前記第2の並列腕共振子は、同一の圧電基板上に形成されたIDT電極を有してもよい。
 これにより、高周波フィルタ回路を、弾性表面波を用いたIDT電極により構成できるので、急峻度の高い通過特性を有する小型かつ低背の高周波フィルタ回路を実現できる。
 また、前記スイッチ素子は、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチであってもよい。
 これにより、スイッチ素子を、1つのFETスイッチまたはダイオードスイッチにより構成できるので、小型の高周波フィルタ回路を実現できる。
 また、本発明の一態様に係るデュプレクサは、送信側フィルタ回路および受信側フィルタ回路のいずれかは、上記記載の高周波フィルタ回路を含んでもよい。
 これにより、互いに近接する2つの帯域を排他的に選択するシステムに適用されるチューナブルなデュプレクサにおいて、当該デュプレクサを簡素化および小型化することが可能となる。
 また、本発明の一態様に係る高周波フロントエンド回路は、複数の前記スイッチ素子の導通および非導通を制御する制御部と、上記記載の高周波フィルタ回路とを備え、前記制御部は、前記複数のスイッチ素子の導通および非導通を個別に制御してもよい。
 これにより、直列腕共振子と第1の並列腕共振子とで規定される第1の通過帯域特性において、複数のスイッチ素子を個別に選択することにより、3以上の周波数帯域に対応した通過特性を的確に選択することが可能となる。
 また、本発明の一態様に係る高周波フロントエンド回路は、前記スイッチ素子の導通および非導通を制御する制御部と、高周波送信信号を増幅するパワーアンプと、前記パワーアンプで増幅された高周波送信信号を通過させる上記記載の高周波フィルタ回路またはデュプレクサと、を備えてもよい。
 これにより、パワーアンプを有する送信系のフロントエンド回路を簡素化および小型化することが可能となる。
 また、本発明の一態様に係る高周波フロントエンド回路は、前記スイッチ素子の導通および非導通を制御する制御部と、アンテナ素子で受信した高周波受信信号を通過させる上記記載の高周波フィルタ回路またはデュプレクサと、前記高周波フィルタ回路または前記デュプレクサから出力された高周波受信信号を増幅するローノイズアンプと、を備えてもよい。
 これにより、ローノーズアンプを有する受信系のフロントエンド回路を簡素化および小型化することが可能となる。
 また、本発明の一態様に係る通信装置は、ベースバンド信号または高周波信号を処理するRF信号処理回路と、上記記載の高周波フロントエンド回路とを備える。
 これにより、通信装置を簡素化および小型化することが可能となる。
 本発明に係る高周波フィルタ回路によれば、簡素化かつ小型化された回路構成で、2つの周波数帯域の信号経路を排他的に切り替えることが可能となる。
図1は、実施の形態1に係る通信装置の回路構成図である。 図2は、実施の形態1に係る高周波フィルタ回路の通過特性と周波数割り当てとの関係を説明する図である。 図3は、実施の形態1に係る高周波フィルタ回路の一例を示す回路構成図である。 図4は、実施の形態1に係る高周波フィルタ回路の共振子を模式的に表す平面図および断面図の一例である。 図5Aは、実施の形態1に係る高周波フィルタ回路のスイッチオフ時のインピーダンス特性および通過特性を表すグラフである。 図5Bは、実施の形態1に係る高周波フィルタ回路のスイッチオン時のインピーダンス特性および通過特性を表すグラフである。 図5Cは、実施の形態1に係る高周波フィルタ回路のスイッチオフ時およびスイッチオン時のインピーダンス特性および通過特性の比較を表すグラフである。 図6Aは、1つの共振子の等価回路モデルおよびその共振特性を表す図である。 図6Bは、並列接続された2つの共振子の等価回路モデルおよびその共振特性を表す図である。 図7は、比較例に係る高周波フィルタ回路の回路構成図である。 図8Aは、実施の形態1の変形例1に係る高周波フィルタ回路の回路構成図である。 図8Bは、実施の形態1の変形例2に係る高周波フィルタ回路の回路構成図である。 図9は、共振子にインピーダンス素子が直列接続された場合の等価回路モデルおよびその共振特性を表す図である。 図10は、実施の形態1の変形例3に係る高周波フィルタ回路の回路構成図である。 図11Aは、実施の形態2に係る高周波フィルタ回路の回路構成図である。 図11Bは、実施の形態2に係る高周波フィルタ回路の通過特性を表すグラフである。 図12Aは、実施の形態2の変形例に係る高周波フィルタ回路の回路構成図である。 図12Bは、実施の形態2の変形例に係る高周波フィルタ回路の通過特性を表すグラフである。 図13は、実施の形態3に係る高周波フィルタ回路を示す回路構成図である。 図14は、実施の形態3に係る高周波フィルタ回路のスイッチオフ時およびスイッチオン時のインピーダンス特性および通過特性の比較を表すグラフである。 図15Aは、実施の形態3に係る高周波フィルタ回路のスイッチオフ時の等価回路図である。 図15Bは、実施の形態3に係る高周波フィルタ回路のオフ容量を変化させた場合のインピーダンス特性および通過特性の比較を表すグラフである。 図15Cは、実施の形態3に係る高周波フィルタ回路のオフ容量と共振周波数およびインピーダンスと関係を表すグラフである。 図16Aは、実施の形態3の変形例に係る高周波フィルタ回路を示す回路構成図である。 図16Bは、実施の形態3の変形例に係る高周波フィルタ回路の構造を説明する平面図および断面図である。 図16Cは、実施の形態3の変形例に係る高周波フィルタ回路の配線インピーダンスを変化させた場合のインピーダンス特性および通過特性の比較を表すグラフである。 図16Dは、実施の形態3の変形例に係る高周波フィルタ回路の配線インピーダンスと共振周波数およびインピーダンスとの関係を表すグラフである。 図17は、実施の形態4に係る高周波フィルタ回路の回路構成図である。 図18は、実施の形態5に係るデュプレクサの回路構成図である。 図19は、特許文献1に記載されたフロントエンド回路のブロック図である。
 以下、本発明の実施の形態について、実施例および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1.1 RFフロントエンド回路の構成]
 図1は、実施の形態1に係る通信装置の回路構成図である。同図には、アンテナ素子1と、RFフロントエンド回路2と、RF信号処理回路(RFIC)3とが示されている。アンテナ素子1、RFフロントエンド回路2、およびRFIC3は、例えば、マルチモード/マルチバンド対応の携帯電話のフロントエンド部に配置される。
 RFIC3は、例えば、ベースバンド信号処理回路(図示せず)から入力されたベースバンド送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波送信信号をRFフロントエンド回路2へ出力する。また、RFIC3は、使用される周波数帯域に基づいて、RFフロントエンド回路2が有する各スイッチの導通および非導通を制御する制御部として機能する。
 RFフロントエンド回路2は、スイッチ21A、21B、21C、および23と、高周波フィルタ回路22Aと、高周波フィルタ22Bおよび22Cと、パワーアンプ24とを備える。これにより、RFフロントエンド回路2は、所定の周波数帯域の高周波信号を選択的に通過させる信号経路を複数有する。具体的には、周波数帯域(バンド)A1または周波数帯域(バンド)A2の高周波送信信号は、パワーアンプ24、スイッチ23、高周波フィルタ回路22A、およびスイッチ21Aを経由する信号経路によりアンテナ素子1へ出力される。また、バンドBの高周波送信信号は、パワーアンプ24、スイッチ23、高周波フィルタ22B、およびスイッチ21Bを経由する信号経路によりアンテナ素子1へ出力される。また、バンドCの高周波送信信号は、パワーアンプ24、スイッチ23、高周波フィルタ22C、およびスイッチ21Cを経由する信号経路によりアンテナ素子1へ出力される。
 高周波フィルタ回路22Aは、本発明の要部構成であり、バンドA1の高周波送信信号を伝達するための通過特性とバンドA2の高周波送信信号を伝達するための通過特性とが、周波数帯域を選択するための制御信号S1により切り替わるフィルタ素子である。
 高周波フィルタ22Bは、バンドBの高周波送信信号を伝達するための通過特性を有するフィルタ素子である。
 高周波フィルタ22Cは、バンドCの高周波送信信号を伝達するための通過特性を有するフィルタ素子である。
 スイッチ23は、SP3T(Single Pole Triple Throw)型のスイッチであり、周波数帯域を選択するための制御信号S2により接続が切り替わるスイッチ素子である。なお、スイッチ23は、設定されるバンド数に応じて選択端子数nが設定されるSPnT(Single Pole n Throw)型のスイッチであってもよい。
 なお、図1では受信信号経路の詳細表示を省略しているが、高周波受信信号は、アンテナ素子1から、RFフロントエンド回路2が有する各受信信号経路を経由してRFIC3へと出力される。具体的には、バンドA1またはバンドA2の高周波受信信号は、アンテナ素子1、スイッチ21A、受信側フィルタ回路(図示せず)、およびローノイズアンプ(図示せず)を経由する信号経路によりRFIC3へ出力される。また、バンドBの高周波受信信号は、アンテナ素子1、スイッチ21B、受信側フィルタ回路(図示せず)、およびローノイズアンプ(図示せず)を経由する信号経路によりRFIC3へ出力される。また、バンドCの高周波受信信号は、アンテナ素子1、スイッチ21C、受信側フィルタ回路(図示せず)、およびローノイズアンプ(図示せず)を経由する信号経路によりRFIC3へ出力される。
 また、図1では、パワーアンプ24は、全てのバンドの高周波信号を増幅するものとしているが、各バンドに応じた個別のパワーアンプが配置されていてもよい。
 また、図1では、送信経路(Tx)と受信経路(Rx)とを切り替えるものとして、時分割複信(TDD)方式を想定してスイッチ21A~21Cが配置されているが、これに限られない。例えば、周波数分割複信(FDD)方式を想定して、バンドBの高周波送信信号を選択通過させる高周波フィルタ22BとバンドBの高周波受信信号を選択通過させる高周波フィルタ回路とを備えたデュプレクサが配置される場合には、当該デュプレクサの前段にはスイッチ21Bは不要である。バンドA1/A2およびバンドCについても同様である。
 また、時分割複信(TDD)方式の場合には、高周波フィルタ22A、22Bおよび22Cとアンテナ素子との間にスイッチ21A、21Bおよび21Cが配置されていることに限定されない。高周波フィルタ22A、22Bおよび22Cとパワーアンプ24との間にスイッチ21A、21Bおよび21Cが配置されていてもよく、あるいは、高周波フィルタ22A、22Bおよび22Cの前段および後段の双方にスイッチが配置されていてもよい。
 上記構成により、RFフロントエンド回路2は、RFIC3からの制御信号S1およびS2により、バンドA1/A2、バンドB、およびバンドCの信号経路の少なくとも1つを選択し、当該選択された信号経路を用いて高周波信号を低損失で伝達することが可能な無線通信用の高周波フロントエンド回路として機能する。
 [1.2 高周波フィルタ回路の構成]
 マルチモード/マルチバンド対応のシステムにおいて、周波数帯域が近接または一部重複する2以上のバンドを排他的に選択使用する場合がある。図1に示されたRFフロントエンド回路2では、バンドA1およびバンドA2がこれに該当する。以下、バンドA1とバンドA2との関係および要求される通過特性について説明する。
 図2は、実施の形態1に係る高周波フィルタ回路22Aの通過特性と周波数割り当てとの関係を説明する図である。同図に示すように、バンドA1の送信帯域は、fT1L~fT1Hであり、バンドA2の送信帯域は、fT2L~fT2Hである。ここで、バンドA1の送信帯域とバンドA2の送信帯域とは、fT2L~fT1Hにおいて重複している。また、バンドA2の送信帯域の高周波端fT2Hは、バンドA1の送信帯域の高周波端fT1Hよりも高い。一方、バンドA1の受信帯域は、fR1L~fR1Hであり、バンドA2の受信帯域は、fR2L~fR2Hである。ここで、バンドA1の受信帯域とバンドA2の受信帯域とは、fR2L~fR1Hにおいて重複している。さらに、バンドA2の送信帯域の高周波端fT2Hと、バンドA1の受信帯域の低周波端fR1Lとの周波数間隔は非常に小さい、もしくは重なっている。上記周波数割り当てにおいて、バンドA1とバンドA2とは、排他的に選択使用される。
 以上のようなバンドA1およびバンドA2の周波数仕様において送信側フィルタを構成する場合、各送信帯域の低損失性および各受信帯域の減衰量を確保するには、図2で示されたような通過特性が要求される。つまり、バンドA1の送信側フィルタの通過特性としては、図2の実線の特性が要求され、バンドA2の送信側フィルタの通過特性としては、図2の破線の特性が要求される。具体的には、バンドA2の送信側フィルタの帯域内通過特性に対して、バンドA1の送信側フィルタの帯域内通過特性の高周波側を低周波側へシフトさせて帯域幅を狭くする必要がある。
 上記のようなフィルタ要求特性の観点から、本実施の形態に係る高周波フィルタ回路22Aは、バンドA1に要求される通過特性22A1(第2の周波数帯域)とバンドA2に要求される通過特性22A2(第1の周波数帯域)とを、切り替えることで、簡素かつ小型な構成で実現したものである。
 ここで、2つのバンドにおいて「周波数帯域が近接または一部重複する」とは、図2に示されたバンドA1およびバンドA2のように、通過帯域が一部重複する場合に限られない。2つのバンドが離間している場合であっても、例えば、2つのバンドの周波数間隔が、2つのバンドの中心周波数(各中心周波数の平均周波数)の数パーセント以内であるような周波数関係を有する場合も含まれる。
 図3は、実施の形態1に係る高周波フィルタ回路22Aの回路構成図である。同図に示された高周波フィルタ回路22Aは、直列腕共振子22sと、並列腕共振子22p1および22p2と、スイッチ22SWと、入力端子22mと、出力端子22nとを備える。
 直列腕共振子22sは、入力端子22mと出力端子22nとの間に接続されている。
 並列腕共振子22p1は、入力端子22m、直列腕共振子22s、および出力端子22nを結ぶ経路上のノードx1とグランド(基準)端子との間に接続された第1の並列腕共振子である。
 並列腕共振子22p2は、ノードx1とグランド端子との間に接続された第2の並列腕共振子である。
 スイッチ22SWは、ノードx1とグランド端子との間に配置され、ノードx1、並列腕共振子22p2、およびグランド端子を結ぶ経路の導通および非導通を切り替えるスイッチ素子である。本実施の形態では、スイッチ22SWは、並列腕共振子22p2およびグランド端子に接続されている。
 ここで、並列腕共振子22p2の共振周波数は、並列腕共振子22p1の共振周波数よりも高い。また、並列腕共振子22p2の共振周波数は、直列腕共振子22sの共振周波数よりも高く、かつ、直列腕共振子22sの反共振周波数よりも低い。
 つまり、本実施の形態に係る高周波フィルタ回路22Aでは、ラダー型フィルタを構成する直列腕共振子22sおよび並列腕共振子22p1のうち並列腕共振子22p1と、周波数可変用の並列腕共振子22p2およびスイッチ22SWを直列接続した回路とが、ノードx1とグランド端子との間に並列に接続されている。
 また、スイッチ22SWは、例えば、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチが挙げられる。これにより、スイッチ22SWを、1つのFETスイッチまたはダイオードスイッチにより構成できるので、小型の高周波フィルタ回路22Aを実現できる。
 本実施の形態では、直列腕共振子22s、ならびに並列腕共振子22p1および22p2は、弾性表面波を用いた共振子である。これにより、高周波フィルタ回路22Aを、圧電基板上に形成されたIDT(InterDigital Transducer)電極により構成できるので、急峻度の高い通過特性を有する小型かつ低背の高周波フィルタ回路22Aを実現できる。ここで、弾性表面波共振子の構造を説明する。
 図4は、実施の形態1に係る高周波フィルタ回路22Aの共振子を模式的に表す平面図および断面図の一例である。同図には、高周波フィルタ回路22Aを構成する直列腕共振子22s、ならびに並列腕共振子22p1および22p2のうち、直列腕共振子22sの構造を表す平面摸式図および断面模式図が例示されている。なお、図4に示された直列腕共振子は、上記複数の共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
 高周波フィルタ回路22Aの各共振子は、圧電基板50と、櫛形形状を有するIDT電極11aおよび11bとで構成されている。
 図4の平面図に示すように、圧電基板50の上には、互いに対向する一対のIDT電極11aおよび11bが形成されている。IDT電極11aは、互いに平行な複数の電極指110aと、複数の電極指110aを接続するバスバー電極111aとで構成されている。また、IDT電極11bは、互いに平行な複数の電極指110bと、複数の電極指110bを接続するバスバー電極111bとで構成されている。複数の電極指110aおよび110bは、X軸方向と直交する方向に沿って形成されている。
 また、複数の電極指110aおよび110b、ならびに、バスバー電極111aおよび111bで構成されるIDT電極54は、図4の断面図に示すように、密着層541と主電極層542との積層構造となっている。
 密着層541は、圧電基板50と主電極層542との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層541の膜厚は、例えば、12nmである。
 主電極層542は、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層542の膜厚は、例えば162nmである。
 保護層55は、IDT電極11aおよび11bを覆うように形成されている。保護層55は、主電極層542を外部環境から保護するとともに、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。
 なお、本発明に係る高周波フィルタ回路22Aが有する各共振子の構造は、図4に記載された構造に限定されない。例えば、IDT電極54は、金属膜の積層構造でなく、金属膜の単層であってもよい。
 また、密着層541、主電極層542および保護層55を構成する材料は、上述した材料に限定されない。さらに、IDT電極54は、上記積層構造でなくてもよい。IDT電極54は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pd,NiCrなどの金属又は合金から構成されてもよく、また、上記の金属又は合金から構成される複数の積層体から構成されてもよい。また、保護層55は、形成されていなくてもよい。
 圧電基板50は、例えば、50°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。なお、本実施の形態では、圧電基板50として50°YカットX伝搬LiTaO単結晶を例示したが、圧電基板50を構成する単結晶材料はLiTaOに限定されないし、単結晶材料のカット角もこれに限定されない。
 ここで、IDT電極の設計パラメータについて説明する。弾性表面波共振子の波長λとは、図4の中段に示すIDT電極11aおよび11bを構成する複数の電極指110aおよび110bのピッチの2倍で規定される。また、IDT電極の交叉幅Lは、図4の上段に示すように、IDT電極11aの電極指110aとIDT電極11bの電極指110bとのX軸方向から見た場合の重複する電極指長さである。また、対数は、電極指110aおよび110bの総数をMpとすると、(Mp-1)/2である。バンドA1およびバンドA2における通過帯域の要求仕様に応じて、直列腕共振子22s、ならびに並列腕共振子22p1および22p2の波長λ、交叉幅L、および対数が決定される。
 なお、直列腕共振子22s、並列腕共振子22p1および22p2は、高周波フィルタ回路22Aの小型化の観点から、同じ圧電基板50上に形成されていることが好ましいが、それぞれ別の基板上に形成されていてもよい。
 また、直列腕共振子22s、ならびに並列腕共振子22p1および22p2は、弾性表面波共振子でなくてもよく、BAW(Bulk Acoustic Wave)を用いた共振子であってもよい。これにより、高周波フィルタ回路22Aを、弾性波を用いた圧電素子により構成できるので、急峻度の高い通過特性を有する小型の高周波フィルタ回路を実現できる。
 [1.3 高周波フィルタ回路の通過特性]
 図5Aは、実施の形態1に係る高周波フィルタ回路22Aのスイッチ22SWオフ(非導通)時のインピーダンス特性および通過特性を表すグラフである。また、図5Bは、実施の形態1に係る高周波フィルタ回路22Aのスイッチ22SWオン(導通)時のインピーダンス特性および通過特性を表すグラフである。また、図5Cは、実施の形態1に係る高周波フィルタ回路22Aのスイッチ22SWオフ時およびスイッチ22SWオン時のインピーダンス特性および通過特性の比較を表すグラフである。
 本実施の形態に係る高周波フィルタ回路22Aは、直列腕共振子22sおよび並列腕共振子22p1、並列腕共振子22p2により構成されたラダー型の1段のフィルタ構造を有している。スイッチ22SWがオフ状態では、並列腕共振子22p2は機能しないため、直列腕共振子22sおよび並列腕共振子22p1により構成されたラダー型の1段のフィルタ構造となる。図5Aには、スイッチ22SWがオフ状態である場合のラダー型弾性表面波フィルタのインピーダンス特性および通過特性が示されている。
 まず、図5Aを用いて、直列腕共振子22sおよび並列腕共振子22p1で構成されるラダー型弾性表面波フィルタの動作原理を説明しておく。
 図5Aに示された並列腕共振子22p1は、共振周波数frp1および反共振周波数fap1(>frp1)を有している。また、直列腕共振子22sは、それぞれ、共振周波数frsおよび反共振周波数fas(>frs>frp1)を有している。ラダー型の共振子によりバンドパスフィルタを構成するにあたり、並列腕共振子22p1の反共振周波数fap1と直列腕共振子22sの共振周波数frsとを近接させる。これにより、並列腕共振子22p1のインピーダンスが0に近づく共振周波数frp1近傍は、低周波側阻止域となる。また、これより周波数が増加すると、反共振周波数fap1近傍で並列腕共振子22p1のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子22sのインピーダンスが0に近づく。これにより、反共振周波数fap1~共振周波数frsの近傍では、入力端子22mから出力端子22nへの信号経路において信号通過域となる。さらに、周波数が高くなり、反共振周波数fas近傍になると、直列腕共振子22sのインピーダンスが高くなり、高周波側阻止域となる。
 図5Aの高周波フィルタ回路22Aにおいて、入力端子22mから高周波信号が入力されると、入力端子22mとグランド端子との間で電位差が生じ、これにより、圧電基板50が歪むことでX方向に伝搬する弾性表面波が発生する。ここで、直列腕共振子22sのIDT電極の波長λを共振周波数frsの波長に対応させ、並列腕共振子22p1のIDT電極の波長λを共振周波数frp1の波長に対応させることにより、通過させたい周波数成分を有する高周波信号のみが高周波フィルタ回路22Aを通過する。
 一方、図5Bには、スイッチ22SWがオン状態である場合のラダー型弾性表面波フィルタのインピーダンス特性および通過特性が示されている。スイッチ22SWがオン状態となることで、ラダー型弾性波フィルタの並列共振回路は、並列腕共振子22p1および22p2が並列接続されたものとなる。これにより、並列腕共振子22p1および22p2が並列接続された並列共振回路の共振点は、低周波側から、共振周波数frp3およびfrp4の2点(図5Bの上段グラフ)となる。なお、共振周波数frp3は、並列腕共振子22p1の共振特性を反映した共振点であり、直列腕共振子22sと並列腕共振子22p1で構成される1段のラダー型フィルタにおける通過帯域の低周波側に形成される減衰極に対応する。また、共振周波数frp4は、並列腕共振子22p2の共振特性を反映した共振点であり、上記ラダー型フィルタ構造における通過帯域の高周波側に形成される減衰極に対応する。ここで、並列腕共振子22p2の共振周波数frp2(並列共振回路の共振周波数frp4に反映されている)は、並列腕共振子22p1の共振周波数frp1(並列共振回路の共振周波数frp3に反映されている)よりも高く設定されている。また、並列腕共振子22p2の共振周波数frp2は、直列腕共振子22sの共振周波数frsよりも高く、かつ、直列腕共振子22sの反共振周波数fasよりも低く設定されている。
 また、並列腕共振子22p1および22p2が並列接続された並列共振回路の反共振点は、低周波側から、反共振周波数fap3およびfap4の2点(図5Bの上段グラフ)となる。なお、反共振周波数fap3は、反共振周波数fap3およびfap4のうち低周波数側の反共振点であり、直列腕共振子22sと並列腕共振子22p1で構成される1段のラダー型フィルタにおける通過帯域内に位置する。また、反共振周波数fap4は、反共振周波数fap3およびfap4のうち高周波数側の反共振点であり、上記ラダー型フィルタ構造における通過帯域よりも高周波側に位置する。ここで、並列腕共振子22p1および22p2の並列共振回路の反共振周波数fap3は、並列腕共振子22p1の反共振周波数fap1より低くなり、上記並列共振回路の反共振周波数fap4は、並列腕共振子22p2の反共振周波数fap2より低くなる。
 以下、共振子の共振特性について、等価回路モデルを用いて説明する。まず、図5Aに示された、スイッチ22SWがオフ状態である場合の並列腕共振回路の共振特性について説明する。
 図6Aは、1つの共振子の等価回路モデルおよびその共振特性を表す図である。同図に示すように、共振子は、コンデンサCおよびインダクタLの直列回路とコンデンサCとの並列回路で表すことができる。ここで、コンデンサCは、共振子の静電容量である。
 上記等価回路において、共振子の共振周波数frは、コンデンサCとインダクタLとの直列回路で規定され、式1で示される。
Figure JPOXMLDOC01-appb-M000001
 また、共振子の反共振周波数faは、上記等価回路のアドミッタンスYが0となる周波数であることから、式2を解くことにより、式3で示される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記式1および式3より、図6Aの右側グラフに示すように、反共振周波数faは、共振周波数frよりも高周波数側に出現する。
 つまり、図5Aに示された、スイッチ22SWがオフ状態である場合の並列腕共振回路は、並列腕共振子22p1のみ共振特性となり、共振点と当該共振点よりも高周波数側に位置する反共振点とが各1点ずつ出現することが解る。
 次に、図5Bに示された、スイッチ22SWがオン状態である場合の並列腕共振回路の共振特性について説明する。
 図6Bは、並列接続された2つの共振子の等価回路モデルおよびその共振特性を表す図である。同図には、共振子res1およびres2が並列接続されたモデルが示されている。共振子res1は、コンデンサCおよびインダクタLの直列回路とコンデンサC01との並列回路で表わされ、共振子res2は、コンデンサCおよびインダクタLの直列回路とコンデンサC02との並列回路で表すことができる。ここで、コンデンサC01およびC02は、それぞれ、共振子res1およびres2の静電容量である。これら2つの共振子res1およびres2で構成された共振回路は、図6B左下に示された等価回路で表される。つまり、上記共振回路は、コンデンサCおよびインダクタLの直列回路と、コンデンサCおよびインダクタLの直列回路と、コンデンサC(=C01+C02)との並列回路で表わされる。
 上記等価回路において、共振子の共振周波数frは、コンデンサCとインダクタLとの直列回路で規定され、式1で示される。
 上記等価回路において、2つの共振点が規定され、共振周波数fr1およびfr2は、それぞれ、コンデンサCとインダクタLとの直列回路、および、コンデンサCとインダクタLとの直列回路で規定され、式4で示される。
Figure JPOXMLDOC01-appb-M000004
 つまり、上記等価回路で表される2つの共振点fr1およびfr2は、それぞれ、共振子res1の共振点fr_res1および共振子res2の共振点fr_res2と略等しい。
 また、上記等価回路の反共振点は、上記等価回路のアドミッタンスYが0となる周波数であることから、式5を解くことにより、式6のように2つの反共振周波数(fa1およびfa2)を有することが解る。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記式6により得られる反共振周波数fa1およびfa2は、式3により得られる共振子単体の反共振周波数(図6Bのグラフではfa_res1およびfa_res2として表示)と異なることが解る。また、式6から導出される反共振周波数fa1は、共振子res1単体の反共振周波数fa_res1よりも低く、反共振周波数fa2は、共振子res2単体の反共振周波数fa_res2よりも低くなる。
 図5Cを参照して、高周波フィルタ回路22Aのスイッチ22SWオフ時およびスイッチ22SWオン時のインピーダンス特性および通過特性を詳細に比較する。
 スイッチ22SWオフ時の場合には、並列腕共振子22p2のインピーダンスは概ね無限大であるため、高周波フィルタ回路22Aのインピーダンス特性は、直列腕共振子22sのインピーダンス特性(図5C上段グラフの実線)と並列腕共振子22p1のインピーダンス特性(図5C上段グラフの細破線)とが合成されたインピーダンス特性となる。このため、スイッチ22SWオフ時の場合の高周波フィルタ回路22Aは、並列腕共振子22p1の共振周波数frp1を低周波側の減衰極とし、直列腕共振子22sの反共振周波数fasを高周波側の減衰極とし、並列腕共振子22p1の反共振周波数fap1と直列腕共振子22sの共振周波数frsとで通過帯域を構成するバンドパスフィルタ(図5C下段グラフの破線)となる。
 一方、スイッチ22SWオン時の場合には、高周波フィルタ回路22Aのインピーダンス特性は、直列腕共振子22sのインピーダンス特性(図5C上段グラフの実線)と並列腕共振子22p1および22p2が並列接続された並列共振回路のインピーダンス特性(図5C上段グラフの太破線)とが合成されたインピーダンス特性となる。なお、並列共振回路のインピーダンス特性(図5C上段グラフの太破線)は、並列腕共振子22p1のインピーダンス特性(図5C上段グラフの細破線)と並列腕共振子22p2のインピーダンス特性(図5C上段グラフの一点鎖線)との合成特性となる。このため、スイッチ22SWオン時の場合の高周波フィルタ回路22Aは、並列共振回路の共振周波数frp3(並列腕共振子22p1の共振周波数frp1を反映)を低周波側の減衰極とし、並列共振回路の共振周波数frp4(並列腕共振子22p2の共振周波数frp2を反映)を高周波側の減衰極とするバンドパスフィルタ(図5C下段グラフの実線)となる。
 ここで、スイッチ22SWオン時には、並列腕共振子22p1の共振周波数frp1よりも高周波側に、並列腕共振子22p2の共振周波数frp2が存在する。このため、並列共振回路の反共振周波数fap3が並列腕共振子22p1の反共振周波数fap1よりも低周波側へシフトするとともに、並列共振回路の反共振周波数fap4が並列腕共振子22p2の反共振周波数fap2よりも低周波数側へシフトする。つまり、並列共振回路の反共振周波数fap3は並列腕共振子22p1の反共振周波数fap1よりも低周波数側となり、かつ、並列共振回路の共振周波数frp4は直列腕共振子22sの反共振周波数fasよりも低周波数側となる。よって、スイッチ22SWオン時には、スイッチ22SWオフ時よりも通過帯域幅が低周波数側に狭くなると共に、減衰帯域も低周波数側にシフトする。
 つまり、上記構成によれば、並列腕共振子22p2の共振周波数frp2が、通過帯域内の中心周波数近傍の挿入損失に影響する直列腕共振子22sの共振周波数frsよりも高く、かつ、通過帯域外の高周波側の減衰極に対応する直列腕共振子の反共振周波数fasよりも低い。これにより、スイッチ22SWオン時に、通過帯域内の低損失性を維持したまま、通過帯域外の高周波側の減衰極を低周波側へとシフトさせることが可能となる。よって、スイッチ22SWオン時には、通過帯域の高域端を低周波側へシフトできるので、通過帯域の高周波端の急峻性を損なうことなく通過帯域幅を狭くすることが可能となる。
 なお、本発明に係る高周波フィルタ回路は、並列腕共振子22p2の共振周波数frp2が直列腕共振子22sの共振周波数frsよりも高く、かつ、直列腕共振子22sの反共振周波数fasよりも低いことに限定されない。つまり、並列腕共振子22p2の共振周波数frp2は、直列腕共振子22sの反共振周波数fasより高くてもよい。この場合であっても、上述したように、並列腕共振子22p2の共振周波数frp2が並列腕共振子22p1の共振周波数frp1よりも高く設定されることにより、並列共振回路の通過帯域高域端でのインピーダンスが並列腕共振子22p1の通過帯域高域端でのインピーダンスよりも低くなる。よって、スイッチ22SWオン時の高周波フィルタ回路22Aの帯域幅を、スイッチ22SWオフ時の高周波フィルタ回路22Aの帯域幅よりもが狭くすることが可能となる。
 [1.4 従来との比較]
 ここで、本実施の形態に係る高周波フィルタ回路22Aと従来の高周波フィルタ回路とを比較する。
 図7は、比較例に係る高周波フィルタ回路522Aの回路構成図である。同図に記載された高周波フィルタ回路522Aは、従来の高周波フィルタ回路であり、バンドA1用の送信側フィルタ522A1と、バンドA2用の送信側フィルタ522A2と、SPDT型のスイッチ523および524とを備える。なお、高周波フィルタ回路522Aの前段にはスイッチ23が接続され、および、後段にはスイッチ21Aが接続されている点については、本実施の形態に係る高周波フィルタ回路22Aと同様である。図7に示すように、比較例に係る高周波フィルタ回路522Aでは、近接するバンドA1およびバンドA2の2つの周波数帯域を排他的に選択する回路は、2つの独立したフィルタ回路および2つのSPDT型のスイッチを要する。1つのSPDT型のスイッチを構成するには、例えば4つのFETスイッチが必要となる。つまり、比較例に係る高周波フィルタ回路522Aの回路構成では、2つの独立したフィルタ回路および8つのFETスイッチが必要となる。このため、回路構成が煩雑となり、また、回路サイズが大型化してしまう。
 これに対して、本実施の形態に係る高周波フィルタ回路22Aは、図3に示すように、直列腕共振子22s、並列腕共振子22p1および22p2で構成される1つのフィルタ回路と1つのSPST型のスイッチ22SWとで構成できる。よって、高周波フィルタ回路を簡素化および小型化することが可能となる。
 [1.5 変形例1および2に係る高周波フィルタ回路の構成]
 図8Aは、実施の形態1の変形例1に係る高周波フィルタ回路22Dの回路構成図である。また、図8Bは、実施の形態1の変形例2に係る高周波フィルタ回路22Eの回路構成図である。図8Aおよび図8Bに示すように、変形例1および変形例2に係る高周波フィルタ回路22Dおよび22Eは、実施の形態1に係る高周波フィルタ回路22Aと比較して、並列腕共振子とグランド端子との間に、インダクタが直列付加挿入されている点が回路構成として異なる。以下、実施の形態1に係る高周波フィルタ回路22Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図8Aに示すように、実施の形態1の変形例1に係る高周波フィルタ回路22Dは、直列腕共振子22sと、並列腕共振子22p1および22p2と、スイッチ22SWと、インダクタ22Lと、入力端子22mと、出力端子22nとを備える。変形例1では、インダクタ22Lは、並列腕共振子22p1およびグランド端子に接続されている。
 なお、高周波フィルタ回路22Dにおいて、入力端子22mと出力端子22nとを結ぶ経路上のノードとグランド端子との間に、並列腕共振子22p1およびインダクタ22Lが直列接続されているが、並列腕共振子22p1およびインダクタ22Lの接続順序はいずれでもよい。ただし、図8Aに示すように、並列腕共振子22p1およびインダクタ22Lのうち、並列腕共振子22p1が上記ノード側に配置されているほうが望ましい。インダクタ22Lが付加されることにより並列腕共振子22p1を含む並列腕共振回路の共振点は低周波数側にシフトするが、インダクタ22Lが上記ノード側に配置されると、インダクタ22Lの抵抗成分により、高周波フィルタ回路22Dのロスが増大してしまう。これは、通過帯域では並列腕共振子22p1の反共振点(インピーダンス∞)が配置されるが、インダクタ22Lが上記ノード側に配置されると、当該通過帯域で高周波入力信号がインダクタ22Lを経由して反射してしまうためである。
 また、図8Bに示すように、実施の形態1の変形例2に係る高周波フィルタ回路22Eは、直列腕共振子22sと、並列腕共振子22p1および22p2と、スイッチ22SWと、インダクタ22Lと、入力端子22mと、出力端子22nとを備える。変形例2では、インダクタ22Lは、並列腕共振子22p2およびスイッチ22SWに接続されている。なお、変形例2において、インダクタ22Lは、スイッチ22SWおよびグランド端子に接続されていてもよい。
 なお、高周波フィルタ回路22Eにおいて、入力端子22mと出力端子22nとを結ぶ経路上のノードとグランド端子との間に、並列腕共振子22p2、インダクタ22Lおよびスイッチ22SWが直列接続されているが、これらの接続順序はいずれでもよい。ただし、図8Bに示すように、並列腕共振子22p2、インダクタ22Lおよびスイッチ22SWのうち、並列腕共振子22p2が上記ノード側に配置されているほうが望ましい。インダクタ22Lが上記ノード側に配置されると、インダクタ22Lの抵抗成分により、高周波フィルタ回路22Eのロスが増大してしまう。また、スイッチSWが上記ノード側に配置されると、スイッチオン時におけるスイッチSWの抵抗成分により、高周波フィルタ回路22Eのロスが増大してしまう。
 ここで、並列腕共振子にインダクタが直列接続された場合の共振特性について、等価回路モデルを用いて説明する。
 図9は、共振子にインピーダンス素子Xが直列接続された場合の等価回路モデルおよびその共振特性を表す図である。同図に示すように、共振子は、コンデンサCおよびインダクタLの直列回路とコンデンサCとの並列回路で表すことができる。ここで、コンデンサCは、共振子の静電容量である。また、共振子に対して、インピーダンス素子XとスイッチSWとの並列回路が接続されている。
 まず、スイッチSWがオンの場合について、上記等価回路の共振特性を説明する。スイッチSWがオンの場合の共振周波数fr_onおよび反共振周波数fa_onは、それぞれ、図6Aにおける共振周波数frおよび反共振周波数faと同じとなり、式7および式8で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 次に、スイッチSWがオフの場合については、(1)インピーダンス素子Xがコンデンサである場合、および、(2)インピーダンス素子Xがインダクタである場合に分けて説明する。
 (1)インピーダンス素子XがコンデンサCtである場合
 スイッチSWがオフの場合の共振周波数fr_off1は、上記等価回路のインピーダンスZが0となる周波数であることから、式9を解くことにより、式10で示される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 一方、スイッチSWがオフの場合の反共振周波数fa_off1は、スイッチSWがオンの場合の反共振周波数fa_onと同じであり、式11で表される。
Figure JPOXMLDOC01-appb-M000011
 式7、式8、式10、および式11より、インピーダンス素子Xがコンデンサである場合、図9の右側グラフに示すように、スイッチSWのオンオフによらず、反共振周波数fa_onおよびfa_off1は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off1)には、高周波数側へシフトすることが解る。
 (2)インピーダンス素子XがインダクタLtである場合
 スイッチSWがオフの場合の共振周波数fr_off2は、上記等価回路のインピーダンスZが0となる周波数であることから、式12を解くことにより、式13で示される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 一方、スイッチSWがオフの場合の反共振周波数fa_off2は、スイッチSWがオンの場合の反共振周波数fa_onと同じであり、式14で表される。
Figure JPOXMLDOC01-appb-M000014
 式7、式8、式13、および式14より、インピーダンス素子Xがインダクタである場合、図9の右側グラフに示すように、スイッチSWのオンオフによらず、反共振周波数fa_onおよびfa_off2は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off2)には、低周波数側へシフトすることが解る。
 変形例1の構成によれば、インダクタ22Lが、並列腕共振子22p1と直列接続されることにより、並列腕共振子22p1の共振周波数が低周波数側へシフトするので、高周波フィルタ回路22Dの帯域幅を広帯域化することが可能となる。また、変形例2の構成によれば、インダクタ22Lを直列挿入することにより、インダクタ22Lと並列腕共振子22p2との合成による共振周波数が低くなるため、この周波数低下を見越して並列腕共振子22p2の共振周波数を高く設計することができる。これにより、ラダー型フィルタ回路に付加される並列腕共振子22p2を小型化でき省スペース化が可能となる。
 [1.6 変形例3に係る高周波フィルタ回路の構成]
 図10、実施の形態1の変形例3に係る高周波フィルタ回路22Fの回路構成図である。同図に示すように、変形例3に係る高周波フィルタ回路22Fは、実施の形態1に係る高周波フィルタ回路22Aと比較して、帯域幅調整用の並列腕共振子とスイッチ素子との直列接続で構成される回路が、並列腕共振子22p1に複数個並列接続されている点が回路構成として異なる。以下、実施の形態1に係る高周波フィルタ回路22Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図10に示すように、高周波フィルタ回路22Fは、直列腕共振子22sと、並列腕共振子22p1、22p21、22p22、22p23および22p24と、スイッチSW1、SW2、SW3およびSW4と、入力端子22mと、出力端子22nとを備える。
 並列腕共振子22p21~22p24は、それぞれ、ノードx1とグランド端子との間に接続された第2の並列腕共振子である。
 スイッチSW1~SW4は、それぞれ、ノードx1とグランド端子との間に配置され、ノードx1、並列腕共振子22p21~22p24、およびグランド端子を結ぶ経路の導通および非導通を切り替えるスイッチ素子である。本実施の形態では、スイッチSW1~SW4は、それぞれ、並列腕共振子22p21~22p24およびグランド端子に接続されている。つまり、高周波フィルタ回路22Fは、並列腕共振子22p21とスイッチSW1との直列接続で構成された共振子回路、並列腕共振子22p22とスイッチSW2との直列接続で構成された共振子回路、並列腕共振子22p23とスイッチSW3との直列接続で構成された共振子回路、および並列腕共振子22p24とスイッチSW4との直列接続で構成された共振子回路が、ノードx1とグランド端子との間に並列接続されている。
 なお、高周波フィルタ回路22Fにおいて、並列腕共振子22p21とスイッチSW1との接続順序、並列腕共振子22p22とスイッチSW2との接続順序、並列腕共振子22p23とスイッチSW3との接続順序、および並列腕共振子22p24とスイッチSW4との接続順序はいずれでもよい。ただし、図10に示すように、並列腕共振子22p21、22p22、22p23および22p24が、それぞれ、スイッチSW1、SW2、SW3およびSW4よりもノードx1側に配置されているほうが望ましい。スイッチSW1~SW4がノードx1側に配置されると、スイッチオン時におけるスイッチSW1~SW4の抵抗成分により、高周波フィルタ回路22Fのロスが増大してしまうからである。
 さらに、並列腕共振子22p21~22p24の共振周波数は、それぞれ異なっている。
 上記構成により、直列腕共振子22sと並列腕共振子22p1とで規定される通過帯域特性において、導通させるスイッチSW1~SW4を任意に選択することにより、細かな帯域幅の調整をすることが可能となる。
 なお、並列腕共振子22p21~22p24の共振周波数は、全て同じでもよい。この場合には、スイッチオン時の抵抗を低減できるため、通過帯域内のロスを低減できる。
 (実施の形態2)
 実施の形態1では、1つの直列腕共振子22sおよび1つの並列腕共振子22p1に対して、通過特性を可変するための並列腕共振子22p2およびスイッチ22SWを付加した構成について説明した。これに対して、実施の形態2では、1つの直列腕共振子と1つの並列腕共振子との組み合わせである1段のフィルタ構造を複数段有する高周波フィルタ回路について説明する。
 [2.1 高周波フィルタ回路の構成]
 図11Aは、実施の形態2に係る高周波フィルタ回路22Gの回路構成図である。以下、実施の形態1に係る高周波フィルタ回路22Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図11Aに示すように、高周波フィルタ回路22Gは、直列腕共振子221s、222s、223sおよび2224sと、並列腕共振子(第1の並列腕共振子)221p、222p1、223p1および224p1とを備えたラダー型のフィルタ回路である。
 高周波フィルタ回路22Gは、さらに、通過特性を可変させるための並列腕共振子(第2の並列腕共振子)222p2、223p2および224p2と、スイッチ(スイッチ素子)222SW、223SWおよび224SWとを備える。並列腕共振子222p2とスイッチ222SWとが直列接続された回路が、並列腕共振子222p1と並列接続されている。また、並列腕共振子223p2とスイッチ223SWとが直列接続された回路が、並列腕共振子223p1と並列接続されている。また、並列腕共振子224p2とスイッチ224SWとが直列接続された回路が、並列腕共振子224p1と並列接続されている。つまり、複数の並列腕回路のうち3つの並列腕回路が、第2の並列腕共振子とスイッチ素子とを有している。
 ここで、並列腕共振子222p2の共振周波数は、並列腕共振子222p1の共振周波数よりも高く、並列腕共振子223p2の共振周波数は、並列腕共振子223p1の共振周波数よりも高く、並列腕共振子224p2の共振周波数は、並列腕共振子224p1の共振周波数よりも高い。
 [2.2 高周波フィルタ回路の通過特性]
 図11Bは、実施の形態2に係る高周波フィルタ回路22Gの通過特性を表すグラフである。同図のグラフには、入力端子22mと出力端子22nとの間の高周波フィルタ22回路Gの通過特性が表され、スイッチ222SW~224SWの全てをオフした場合の通過特性(破線)と、スイッチ222SW~224SWの全てをオンした場合の通過特性(実線)とが示されている。
 スイッチ222SW~224SWの全てをオンした場合には、並列腕共振子222p1の共振周波数よりも高周波側に並列腕共振子222p2の共振周波数が存在する。また、並列腕共振子223p1の共振周波数よりも高周波側に並列腕共振子223p2の共振周波数が存在する。また、並列腕共振子224p1の共振周波数よりも高周波側に並列腕共振子224p2の共振周波数が存在する。このため、並列腕共振子222p2~224p2を含む各並列共振回路の反共振周波数が、それぞれ、並列腕共振子222p1~224p1の反共振周波数よりも低周波側へシフトする。これとともに、並列腕共振子222p2~224p2を含む各並列共振回路の通過帯域の高域端でのインピーダンスが、それぞれ、並列腕共振子222p1~224p1の通過帯域の高域端でのインピーダンスよりも低くなる。これにより、スイッチ222SW~224SWをオンした場合には、スイッチ222SW~224SWをオフした場合よりも、通過帯域の高周波側の減衰が大きくなる。よって、スイッチ222SW~224SWをオンした場合の高周波フィルタ回路22Gの通過帯域の高周波端は、スイッチ222SW~224SWをオフした場合の高周波フィルタ回路22Gの通過帯域の高周波端よりも低周波側へシフトし、帯域幅が狭くなる。
 なお、本実施の形態に係る高周波フィルタ回路22Gにおいて、並列腕共振子222p2~224p2の共振周波数は、全て同じであり、スイッチ222SW~224SWは一斉にオンまたはオフされる。これにより、実施の形態1に係る高周波フィルタ回路22Aと比較して、スイッチオン時の帯域幅をより狭くすることが可能となる。
 [2.3 変形例に係る高周波フィルタ回路の構成]
 本変形例に係る高周波フィルタ回路22Hは、実施の形態2に係る高周波フィルタ回路22Gと比較して、複数の第2の並列腕共振子の共振周波数が異なり、複数のスイッチ素子が個別にオンオフされる点が回路構成として異なる。以下、実施の形態2に係る高周波フィルタ回路22Gと同じ点は説明を省略し、異なる点を中心に説明する。
 図12Aは、実施の形態2の変形例に係る高周波フィルタ回路22Hの回路構成図である。同図に示すように、高周波フィルタ回路22Hは、直列腕共振子221s、222s、223sおよび224sと、並列腕共振子(第1の並列腕共振子)221p、225p1、226p1および227p1とを備えたラダー型のフィルタ回路である。直列腕共振子と当該直列腕共振子に接続された並列腕共振子との構成を1段のフィルタ構造と定義した場合、直列腕共振子221sおよび並列腕共振子221pは1段のフィルタ構造を構成し、直列腕共振子222sおよび並列腕共振子225p1は1段のフィルタ構造を構成し、直列腕共振子223sおよび並列腕共振子226p1は1段のフィルタ構造を構成し、直列腕共振子224sおよび並列腕共振子227p1は1段のフィルタ構造を構成している。つまり、高周波フィルタ回路22Hは、4段のフィルタ構造を有している。
 高周波フィルタ回路22Hは、さらに、通過特性を可変させるための並列腕共振子(第2の並列腕共振子)225p2、226p2および227p2と、スイッチ(スイッチ素子)225SW、226SWおよび227SWとを備える。並列腕共振子225p2とスイッチ225SWとが直列接続された回路が、並列腕共振子225p1と並列接続されている。また、並列腕共振子226p2とスイッチ226SWとが直列接続された回路が、並列腕共振子226p1と並列接続されている。また、並列腕共振子227p2とスイッチ227SWとが直列接続された回路が、並列腕共振子227p1と並列接続されている。つまり、複数段のフィルタ構造のうち3段のフィルタ構造が、第2の並列腕共振子とスイッチ素子とを有している。
 ここで、並列腕共振子225p2の共振周波数は、並列腕共振子225p1の共振周波数よりも高く、並列腕共振子226p2の共振周波数は、並列腕共振子226p1の共振周波数よりも高く、並列腕共振子227p2の共振周波数は、並列腕共振子227p1の共振周波数よりも高い。
 また、並列腕共振子225p2の共振周波数は並列腕共振子226p2の共振周波数よりも低く、並列腕共振子226p2の共振周波数は並列腕共振子227p2の共振周波数よりも低い(並列腕共振子225p2の共振周波数<並列腕共振子226p2の共振周波数<並列腕共振子227p2の共振周波数)。なお、図10Aでは、共振周波数が低い並列腕共振子を、出力端子22n側に配置しているが、各共振子の配置順はこれに限られない。
 [2.4 変形例に係る高周波フィルタ回路の通過特性]
 図12Bは、実施の形態2に係る高周波フィルタ回路22Hの通過特性を表すグラフである。同図のグラフには、スイッチ225SW~227SWの全てをオフした場合の通過特性(破線)と、スイッチ225SWのみをオンした場合の通過特性(二点鎖線)と、スイッチ225SWおよび226SWをオンした場合の通過特性(一点鎖線)と、スイッチ225SW~227SWの全てをオンした場合の通過特性(実線)とが示されている。
 これにより、スイッチ225SW~227SWのうち、オン状態とするスイッチが増えるほど、通過帯域の高周波側の減衰が大きくなる。よって、スイッチ225SW~227SWのうちオンするスイッチが増えるほど、高周波フィルタ回路22Hの通過帯域の高周波端は、低周波側へシフトし、帯域幅が狭くなる。
 本変形例の構成によれば、スイッチ素子の選択により、より細かな帯域幅の調整をすることが可能となる。
 なお、実施の形態2およびその変形例において、高周波フィルタ回路22Gおよび22Hの並列腕回路および直列腕回路の個数は4個に限定されない。
 (実施の形態3)
 本実施の形態では、実施の形態1および2に係る高周波フィルタ回路において、並列腕共振子と接続されるスイッチのオフ容量、および、当該並列腕共振子とスイッチとを結ぶ配線の特性インピーダンスによるフィルタ特性の変化を説明する。
 [3.1 高周波フィルタ回路の構成]
 図13は、実施の形態3に係る高周波フィルタ回路23Aを示す回路構成図である。また、図14は、実施の形態3に係る高周波フィルタ回路23Aのスイッチオフ時およびスイッチオン時のインピーダンス特性および通過特性の比較を表すグラフである。本実施の形態に係る高周波フィルタ回路23Aは、実施の形態1に係る高周波フィルタ回路22Aと回路構成は同じであり、フィルタ特性も略一致する。
 スイッチ23SWオフ時の場合には、並列腕共振子23p2のインピーダンスは概ね無限大であるため、高周波フィルタ回路23Aのインピーダンス特性は、直列腕共振子23sのインピーダンス特性(図14上段グラフの実線)と並列腕共振子23p1のインピーダンス特性(図14上段グラフの粗破線)とが合成されたインピーダンス特性となる。このため、スイッチ23SWオフ時の場合の高周波フィルタ回路23Aは、並列腕共振子23p1の共振周波数frp1を低周波側の減衰極とし、直列腕共振子23sの反共振周波数fasを高周波側の減衰極とし、並列腕共振子23p1の反共振周波数fap1と直列腕共振子23sの共振周波数frsとで通過帯域を構成するバンドパスフィルタ(図14下段グラフの破線)となる。
 一方、スイッチ23SWオン時の場合には、高周波フィルタ回路23Aのインピーダンス特性は、直列腕共振子23sのインピーダンス特性(図14上段グラフの実線)と並列腕共振子23p1および23p2が並列接続された並列共振回路のインピーダンス特性(図14上段グラフの細破線)とが合成されたインピーダンス特性となる。なお、並列共振回路のインピーダンス特性(図14上段グラフの細破線)は、並列腕共振子23p1のインピーダンス特性(図14上段グラフの粗破線)と並列腕共振子23p2のインピーダンス特性(図14上段グラフの一点鎖線)との合成特性となる。このため、スイッチ23SWオン時の場合の高周波フィルタ回路23Aは、並列共振回路の共振周波数frp3(並列腕共振子23p1の共振周波数frp1を反映)を低周波側の減衰極とし、並列共振回路の共振周波数frp4(並列腕共振子23p2の共振周波数frp2を反映)を高周波側の減衰極とするバンドパスフィルタ(図14下段グラフの実線)となる。
 ここで、スイッチ23SWオン時には、並列腕共振子23p1の共振周波数frp1よりも高周波側に、並列腕共振子23p2の共振周波数frp2が存在する。このため、並列共振回路の反共振周波数fap3が並列腕共振子23p1の反共振周波数fap1よりも低周波側へシフトするとともに、並列共振回路の反共振周波数fap4が並列腕共振子23p2の反共振周波数fap2よりも低周波数側へシフトする。つまり、並列共振回路の反共振周波数fap3は並列腕共振子23p1の反共振周波数fap1よりも低周波数側となり、かつ、並列共振回路の共振周波数frp4は直列腕共振子23sの反共振周波数fasよりも低周波数側となる。よって、スイッチ22SWオン時には、スイッチ23SWオフ時よりも通過帯域幅が低周波数側に狭くなると共に、減衰帯域も低周波数側にシフトする。
 つまり、上記構成によれば、並列腕共振子23p2の共振周波数frp2が、通過帯域内の中心周波数近傍の挿入損失に影響する直列腕共振子23sの共振周波数frsよりも高く、かつ、通過帯域外の高周波側の減衰極に対応する直列腕共振子の反共振周波数fasよりも低い。これにより、スイッチ23SWオン時に、通過帯域内の低損失性を維持したまま、通過帯域外の高周波側の減衰極を低周波側へとシフトさせることが可能となる。よって、スイッチ23SWオン時には、通過帯域の高域端を低周波側へシフトできるので、通過帯域の高周波端の急峻性を損なうことなく通過帯域幅を狭くすることが可能となる。
 [3.2 オフ容量による高周波フィルタ回路の特性]
 ここで、スイッチ23SWはオフ時に、理想的にはインピーダンス無限大となるが、実際には、容量成分であるオフ容量(Coff)を有する。
 図15Aは、実施の形態3に係る高周波フィルタ回路23Aのスイッチ23SWオフ時の等価回路図である。また、図15Bは、実施の形態3に係る高周波フィルタ回路23Aのオフ容量を変化させた場合のインピーダンス特性および通過特性の比較を表すグラフである。より具体的には、図15Bの上段グラフは、スイッチ23SWのオフ容量Coffを変化させた場合の並列腕共振子23p2とオフ容量Coffとの合成特性の変化を示しており、図15Bの下段グラフは、スイッチ23SWのオフ容量Coffを変化させた場合のスイッチ23SWオフ時の高周波フィルタ回路23Aのフィルタ特性の変化を示している。
 図15Bの上段グラフに示すように、オフ容量Coffを大きくすることで、並列腕共振子23p2とオフ容量Coffとの合成特性の共振周波数(frp2)は低周波数にシフトする。また、図15Bの下段グラフに示すように、オフ容量Coffを大きくすることで、通過帯域高域側の減衰極(frp4)も低周波側にシフトする。なお、オフ容量Coffの変化は、並列腕共振子23p2とオフ容量Coffとの合成特性の反共振周波数(fap2)には影響しない。
 図15Cは、実施の形態3に係る高周波フィルタ回路23Aのオフ容量と共振周波数および共振周波数におけるインピーダンスとの関係を表すグラフである。
 スイッチ23SWのオフ時には、理想的には、スイッチ23SWのインピーダンスは無限大であることが望ましいが、実際にはオフ容量Coffが大きくなることで、上記インピーダンスは低下する。このため、並列腕共振子23p2とオフ容量Coffとの合成特性により、新たな減衰極(frp4)が発生し、オフ容量Coffの値により上記合成特性の共振周波数(frp2)が規定される。
 ここで、スイッチ23SWオン時の並列腕共振子23p2(図15B上段グラフにおける容量Coffなし)によって形成される減衰極(frp4)は780MHzであるため、オフ容量Coffが大きくなるほど、スイッチ23SWのオンオフによる周波数可変幅が狭くなってしまう。また、上記のような周波数可変フィルタでは、20MHz以上の周波数可変幅が必要となるため、オフ容量Coffは、0.8pF以下に設定する必要がある。
 これにより、スイッチ23SWのオン時とオフ時との周波数可変幅を大きく確保することが可能となる。なお、上述した必要とされる周波数可変幅は、例えば、バンド28Tx(703-748MHz)とバンド68Tx(698-728MHz)とを可変させるフィルタを構成する場合において通過帯域高域端の周波数差が20MHzであることからも設定される。
 [3.3 配線インピーダンスによる高周波フィルタ回路の特性]
 図16Aは、実施の形態3の変形例に係る高周波フィルタ回路23Bを示す回路構成図である。本変形例に係る高周波フィルタ回路23Bは、実施の形態1に係る高周波フィルタ回路22Aおよび実施の形態3に係る高周波フィルタ回路23Aと回路構成は同じであり、フィルタ特性も略一致するため、スイッチ23SWのオンオフ時における基本的なフィルタ特性については、説明を省略する。
 図16Aに示された高周波フィルタ回路23Bでは、並列腕共振子23p2とスイッチ23SWとを接続する配線23kを明示している。
 なお、「配線インピーダンス」とは、配線の特性インピーダンスを意味しており、本実施の形態では、配線の特性インピーダンスを、便宜上、「配線インピーダンス」と記している。
 [3.4 高周波フィルタ回路の構造]
 図16Bは、実施の形態3の変形例に係る高周波フィルタ回路23Bの構造を説明する平面図および断面図である。より具体的には、図16Bの上段には高周波フィルタ回路23Bの上方から見た平面図が示され、中段には配線基板内を透視した平面図が示され、下段には断面図が示されている。直列腕共振子23s、並列腕共振子23p1および23p2を含む弾性表面波共振子(23saw)と、スイッチ23SWとは、個々のパッケージ(チップ)で構成され、配線基板100上に搭載されている。また、弾性表面波共振子(23saw)とスイッチ23SWとは、樹脂部材101で覆われている。配線基板100としては、LTCC基板またはPCB基板が例示される。配線基板100内のビア配線および配線パターンにより、弾性表面波共振子(23saw)とスイッチ23SWとが接続される。特に、並列腕共振子23p2とスイッチ23SWとは、配線基板100上または内部に配置された配線23kにより接続されている。配線23kは、理想的には無いこと(並列腕共振子23p2とスイッチ23SWとが直結された状態)が望ましいが、弾性表面波共振子(23saw)とスイッチ23SWとは別パッケージで構成されるため、配線23kが必要となる。
 [3.5 配線インピーダンスによる高周波フィルタ回路の特性]
 ここで、配線23kの特性インピーダンスは、高周波フィルタ回路23Bのフィルタ特性に影響する。
 図16Cは、実施の形態3の変形例に係る高周波フィルタ回路23Bの配線インピーダンスを変化させた場合のインピーダンス特性および通過特性の比較を表すグラフである。より具体的には、図16Cの左上段グラフは、スイッチ23SWオフ時において配線23kの特性インピーダンスを変化させた場合の並列腕共振子23p2と配線23kとスイッチ23SWとの合成特性の変化を示している。また、図16Cの右上段グラフは、スイッチ23SWオン時において配線23kの特性インピーダンスを変化させた場合の並列腕共振子23p2とスイッチ23SWとの合成特性の変化を示している。また、図16Cの左下段グラフは、スイッチ23SWオフ時において配線23kの特性インピーダンスを変化させた場合の高周波フィルタ回路23Bのフィルタ特性の変化を示している。また、図16Cの右下段グラフは、スイッチ23SWオン時において配線23kの特性インピーダンスを変化させた場合の高周波フィルタ回路23Bのフィルタ特性の変化を示している。
 まず、スイッチ23SWオフ時において、配線23kの特性インピーダンスが高くなるほど理想状態の特性に近づき、配線23kの特性インピーダンスが低くなるほど、通過帯域高域側の減衰極(frp4)が低周波数にシフトする。
 一方、スイッチ23SWオン時において、配線23kの特性インピーダンスが高くなるほど通過帯域高域側の減衰極(frp4)は低周波数にシフトし、配線23kの特性インピーダンスが低くなるほど、理想状態の特性に近づく。
 図16Dは、実施の形態3の変形例に係る高周波フィルタ回路23Bの配線インピーダンスと共振周波数およびインピーダンスとの関係を表すグラフである。より具体的には、図16Dの上段には、スイッチ23SWオフ時における、配線23kの特性インピーダンスと、並列腕共振子23p2、配線23kおよびスイッチ23SWの合成特性の共振周波数およびインピーダンスとの関係が示されている。また、図16Dの中段には、スイッチ23SWオン時における、配線23kインピーダンスと、並列腕共振子23p2、配線23kおよびスイッチ23SWの合成特性の共振周波数およびインピーダンスとの関係が示されている。また、図16Dの下段には、スイッチ23SWオンオフ時における、配線23kの特性インピーダンスと、周波数可変幅との関係が示されている。
 ここで、図16Dの下段に示すように、スイッチ23SWオンオフでの通過帯域高域側の減衰極(frp4)の周波数差である周波数可変幅に注目すると、配線23kの特性インピーダンスを高くするほど、周波数可変幅は大きくなる。また逆に、配線23kの特性インピーダンスを低くするほど周波数可変幅は小さくなる。また、実施の形態3で示した通り、周波数可変フィルタでは、20MHz以上の周波数可変幅の確保が必要となるため、配線23kの特性インピーダンスは、20Ω以上に設定する必要がある。
 これにより、スイッチ23SWのオン時とオフ時との周波数可変幅を大きく確保することが可能となる。
 ここで、配線23kの特性インピーダンスを高く設計するには、以下の手法が挙げられる。
 (1)配線基板100の比誘電率を15以下とする。
 (2)配線23kの上下のグランドパターンとの距離を100μm以上とする。
 (3)配線23kの上部にグランドが無い構成とする。
 (4)配線23kを構成するビアを、他の層間ビアよりも細くする。
 (5)配線23kを、配線基板100の厚み方向において、1/2より上側(上半分の領域)に配置する。
 (実施の形態4)
 実施の形態1~3に係る高周波フィルタ回路は、ラダー型のフィルタ構造を有するものであるのに対して、本実施の形態では縦結合型のフィルタ構造を有する高周波フィルタ回路について説明する。
 図17は、実施の形態4に係る高周波フィルタ回路22Jの回路構成図である。本実施の形態に係る高周波フィルタ回路22Jは、実施の形態1に係る高周波フィルタ回路22Aと比較して、縦結合型のフィルタ構造が付加されている点が回路構成として異なる。以下、実施の形態1に係る高周波フィルタ回路22Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図17に示すように、高周波フィルタ回路22Jは、直列腕共振子221s、222sおよび223sと、並列腕共振子221p、222p1および222p2と、スイッチ222SWと、縦結合共振器250とを備える。
 高周波フィルタ回路22Jは、直列腕共振子221s~223sと、並列腕共振子221pおよび222p1とで、ラダー型のフィルタ回路を構成している。さらに、高周波フィルタ回路22Jには、このラダー型のフィルタ回路に縦結合共振器250が付加されている。縦結合共振器250は、3つのIDTとその両端に配置された反射器とで構成されている。縦結合共振器250が付加されることにより、広帯域化および減衰強化など要求されるフィルタ特性に適応することが可能となる。
 上記基本構成に対して、並列腕共振子222p2が、ノードx1とグランド端子との間に接続されている。また、スイッチ222SWが、ノードx2とグランド端子との間に配置され、ノードx2、並列腕共振子222p2、およびグランド端子を結ぶ経路の導通および非導通を切り替える。
 ここで、並列腕共振子222p2の共振周波数は、並列腕共振子221p1の共振周波数よりも高く設定されている。これにより、スイッチ222SWオン時には、スイッチ222SWオフ時よりも、通過帯域の高周波側の減衰が大きくなる。よって、スイッチ222SWオン時の高周波フィルタ回路22Jの通過帯域の高周波端は、スイッチ222SWオフ時の高周波フィルタ回路22Jの通過帯域の高周波端よりも低周波側へシフトし、帯域幅が狭くなる。つまり、スイッチ素子の切り替えにより、上記フィルタ回路の通過帯域を調整することが可能となる。
 (実施の形態5)
 本実施の形態では、実施の形態1~4に係る高周波フィルタ回路を、送信側フィルタおよび受信側フィルタに適用したデュプレクサについて説明する。
 図18は、実施の形態5に係るデュプレクサ22Kの回路構成図である。同図に示されたデュプレクサ22Kは、送信側フィルタTxと受信側フィルタRxとを備える。送信側フィルタTxは、入力端子220tおよび共通端子220cに接続され、受信側フィルタRxは、共通端子220cおよび出力端子220rに接続されている。
 送信側フィルタTxは、直列腕共振子221s~224sと、並列腕共振子(第1の並列腕共振子)221p~224p1とを備えたラダー型のフィルタ回路である。送信側フィルタTxは、4段のフィルタ構造を有している。送信側フィルタTxは、さらに、通過特性を可変させるための並列腕共振子(第2の並列腕共振子)222p2~224p2と、スイッチ(スイッチ素子)222SW~224SWとを備える。複数段のフィルタ構造のうち3段のフィルタ構造が、第2の並列腕共振子とスイッチ素子とを有している。
 ここで、並列腕共振子222p2の共振周波数は、並列腕共振子222p1の共振周波数よりも高く、並列腕共振子223p2の共振周波数は、並列腕共振子223p1の共振周波数よりも高く、並列腕共振子224p2の共振周波数は、並列腕共振子224p1の共振周波数よりも高い。
 受信側フィルタRxは、直列腕共振子261s~264sと、並列腕共振子(第1の並列腕共振子)261p~264p1とを備えたラダー型のフィルタ回路である。受信側フィルタRxは、4段のフィルタ構造を有している。受信側フィルタRxは、さらに、通過特性を可変させるための並列腕共振子(第2の並列腕共振子)262p2~264p2と、スイッチ(スイッチ素子)262SW~264SWとを備える。複数段のフィルタ構造のうち3段のフィルタ構造が、第2の並列腕共振子とスイッチ素子とを有している。
 ここで、並列腕共振子262p2の共振周波数は、並列腕共振子262p1の共振周波数よりも高く、並列腕共振子263p2の共振周波数は、並列腕共振子263p1の共振周波数よりも高く、並列腕共振子264p2の共振周波数は、並列腕共振子264p1の共振周波数よりも高い。
 上記構成によれば、互いに近接する2つの帯域を排他的に選択するシステムに適用されるチューナブルなデュプレクサにおいて、スイッチ222SW~224SW、およびスイッチ262SW~264SWの切り替えにより、デュプレクサ22Kの送信通過帯域および受信通過帯域を調整することが可能となる。また、デュプレクサ22Kを簡素化および小型化することが可能となる。
 なお、本発明に係るデュプレクサは、上記構成に限定されず、実施の形態1~4に係る高周波フィルタ回路のいずれかを送信側フィルタおよび受信側フィルタに適用することができる。
 また、本発明に係るデュプレクサは、送信側フィルタおよび受信側フィルタのうち、いずれか一方のみに、実施の形態1~4の高周波フィルタ回路が適用されていてもよい。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る高周波フィルタ回路およびデュプレクサについて、実施の形態1~5および変形例を挙げて説明したが、本発明の高周波フィルタ回路およびデュプレクサは、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波フィルタ回路およびデュプレクサを内蔵した各種機器も本発明に含まれる。
 例えば、実施の形態1の変形例3に係る高周波フィルタ回路22Fと、複数のスイッチ22p21~22p24の導通および非導通を制御する制御部とを備え、当該制御部が複数のスイッチ22p21~22p24の導通および非導通を個別に制御するRFフロントエンド回路も、本発明に含まれる。これにより、直列腕共振子22sと並列腕共振子22p1とのラダー型フィルタ構造で規定される通過特性において、上記複数のスイッチ素子を個別に選択することにより、3以上の周波数帯域(バンド)に対応した通過特性を適宜選択することが可能となる。
 あるいは、高周波送信信号を増幅するパワーアンプ24と、パワーアンプ24で増幅された高周波送信信号を通過させる、実施の形態1~4およびその変形例のいずれかに係る高周波フィルタ回路と、単数または複数のスイッチ素子の導通および非導通を制御する制御部とを備えるRFフロントエンド回路も、本発明に含まれる。これにより、パワーアンプ24を有する送信系のフロントエンド回路を簡素化および小型化することが可能となる。
 あるいは、単数または複数のスイッチ素子の導通および非導通を制御する制御部と、アンテナ素子で受信した高周波受信信号を通過させる、実施の形態1~4およびその変形例のいずれかに係る高周波フィルタ回路を受信側フィルタ回路として適用した、請求項1~13のいずれか1項に記載の高周波フィルタ回路と、当該高周波フィルタ回路から出力された高周波受信信号を増幅するローノイズアンプとを備えるRFフロントエンド回路も、本発明に含まれる。これにより、ローノイズアンプを有する受信系のフロントエンド回路を簡素化および小型化することが可能となる。
 さらには、ベースバンド信号または高周波信号を処理するRFIC3と上記RFフロントエンド回路とを備える通信装置も、本発明に含まれる。これにより、通信装置を簡素化および小型化することが可能となる。なお、上記RFフロントエンド回路が備える制御部は、RFIC3であってもよい。
 なお、上記実施の形態1~4およびその変形例に係る高周波フィルタ回路は、互いに近接する周波数帯域を排他的に切り替えるシステムに適用されるものとして説明したが、1つの周波数帯域内に割り当てられた、互いに近接する複数のチャネルを排他的に切り替えるシステムにも適用することが可能である。
 また、上記実施の形態1~5およびその変形例に係る高周波フィルタ回路およびデュプレクサにおいて、弾性表面波フィルタを構成する圧電基板50は、高音速支持基板と、低音速膜と、圧電膜とがこの順で積層された積層構造であってもよい。圧電膜は、例えば、50°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。圧電膜は、例えば、厚みが600nmである。高音速支持基板は、低音速膜、圧電膜ならびにIDT電極54を支持する基板である。高音速支持基板は、さらに、圧電膜を伝搬する表面波や境界波の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜および低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板であり、厚みは、例えば200μmである。低音速膜は、圧電膜を伝搬するバルク波よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電膜と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素を主成分とする膜であり、厚みは、例えば670nmである。この積層構造によれば、圧電基板50を単層で使用している構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板は、支持基板と、圧電膜を伝搬する表面波や境界波の弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、サファイア、リチウムタンタレート、リチュウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体及び樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
 また、上記実施の形態1~5およびその変形例に係る高周波フィルタ回路およびデュプレクサにおいて、さらに、入力端子、出力端子、および共通端子の間に、インダクタンス素子やキャパシタンス素子が接続されていてもよい。
 また、上記実施の形態1~5およびその変形例に係る高周波フィルタ回路およびデュプレクサにおいて、便宜上1つの共振子で説明したが、直列分割した複数の共振子から構成されていても良い。
 本発明は、互いに近接するバンドを排他的に使用するマルチバンドおよびマルチモードシステムに適用できる小型のフィルタ、デュプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
 1  アンテナ素子
 2  RFフロントエンド回路
 3  RF信号処理回路(RFIC)
 11a、11b、54  IDT電極
 21A、21B、21C、22SW、23、23SW、222SW、223SW、224SW、225SW、226SW、227SW、262SW、263SW、264SW、523、524、651、652、SW1、SW2、SW3、SW4  スイッチ
 22A、22D、22E、22F、22G、22H、22J、23A、23B、522A  高周波フィルタ回路
 22A1、22A2  通過特性
 22B、22C  高周波フィルタ
 22K、661、662、663、664  デュプレクサ
 22L  インダクタ
 22m、23m、220t  入力端子
 22n、23n、220r  出力端子
 22p1、22p2、22p21、22p22、22p23、22p24、23p1、23p2、221p、222p1、222p2、223p1、223p2、224p1、224p2、225p1、225p2、226p1、226p2、227p1、227p2、261p1、262p1、262p2、263p1、263p2、264p1、264p2  並列腕共振子
 22s、23s、221s、222s、223s、224s、261s、262s、263s、264s  直列腕共振子
 23k  配線
 24  パワーアンプ
 50  圧電基板
 55  保護層
 100  配線基板
 101  樹脂部材
 110a、110b  電極指
 111a、111b  バスバー電極
 220c  共通端子
 250  縦結合共振器
 522A1、522A2  送信側フィルタ
 541  密着層
 542  主電極層
 601  分波器
 603、604  端子
 609  アンテナ
 610  LPF(ローパスフィルタ)
 620、630  BPF(バンドパスフィルタ)
 640  HPF(ハイパスフィルタ)

Claims (18)

  1.  入力端子と出力端子との間に接続された直列腕共振子と、
     前記入力端子、前記直列腕共振子、および前記出力端子とを結ぶ経路上のノードと、グランド端子との間に接続された第1の並列腕共振子と、
     前記ノードと前記グランド端子との間に接続された第2の並列腕共振子と、
     前記ノードと前記グランド端子との間に配置され、前記ノード、前記第2の並列腕共振子、および前記グランド端子を結ぶ経路の導通および非導通を切り替えるスイッチ素子と、を備え、
     前記第1の並列腕共振子と、前記第2の並列腕共振子および前記スイッチ素子が直列接続された直列回路とは、前記ノードと前記グランド端子との間に並列接続され、
     前記第1の並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも低く、
     前記第2の並列腕共振子の共振周波数は、前記第1の並列腕共振子の共振周波数よりも高い、
     高周波フィルタ回路。
  2.  前記第2の並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも高く、かつ、前記直列腕共振子の反共振周波数よりも低い、
     請求項1に記載の高周波フィルタ回路。
  3.  前記高周波フィルタ回路は、
     前記経路が非導通の場合には、前記直列腕共振子と前記第1の並列腕共振子とにより、前記入力端子から前記出力端子へ第1の周波数帯域の高周波信号を通過させ、
     前記経路が導通の場合には、前記直列腕共振子と前記第1の並列腕共振子および前記第2の並列腕共振子の合成共振回路とにより、前記入力端子から前記出力端子へ第1の周波数帯域と異なる第2の周波数帯域の高周波信号を通過させ、
     前記第2の周波数帯域の高周波端は、前記第1の周波数帯域の高周波端よりも低い、
     請求項1または2に記載の高周波フィルタ回路。
  4.  前記第1の周波数帯域と前記第2の周波数帯域とは、一部重複または近接している、
     請求項3に記載の高周波フィルタ回路。
  5.  前記第2の並列腕共振子と前記スイッチ素子との直列接続で構成された共振回路が、前記ノードと前記グランド端子との間に、複数並列接続され、
     複数の前記共振回路が有する前記第2の並列腕共振子の共振周波数は、それぞれ異なる、
     請求項1~4のいずれか1項に記載の高周波フィルタ回路。
  6.  前記高周波フィルタ回路は、1つの前記直列腕共振子と1つの前記第1の並列腕共振子とで構成されるフィルタ構造を複数段有し、
     前記複数段のフィルタ構造のうち2段以上のフィルタ構造が、前記第2の並列腕共振子と前記スイッチ素子とを有する、
     請求項1~5のいずれか1項に記載の高周波フィルタ回路。
  7.  さらに、
     前記第2の並列腕共振子と前記スイッチ素子との間に直列接続されたインダクタを備える、
     請求項1~6のいずれか1項に記載の高周波フィルタ回路。
  8.  前記スイッチ素子の非導通時の容量は、0.8pF以下である、
     請求項1~7のいずれか1項に記載の高周波フィルタ回路。
  9.  前記第2の並列腕共振子と前記スイッチ素子とを接続する配線の特性インピーダンスは、20Ω以上である、
     請求項1~8のいずれか1項に記載の高周波フィルタ回路。
  10.  さらに、
     前記入力端子と前記出力端子との間に配置された縦結合型フィルタ回路を備える、
     請求項1~9のいずれか1項に記載の高周波フィルタ回路。
  11.  前記直列腕共振子、前記第1の並列腕共振子、および前記第2の並列腕共振子は、弾性表面波共振子、または、BAWを用いた弾性波共振子である、
     請求項1~10のいずれか1項に記載の高周波フィルタ回路。
  12.  前記直列腕共振子、前記第1の並列腕共振子、および前記第2の並列腕共振子は、同一の圧電基板上に形成されたIDT電極を有する、
     請求項11に記載の高周波フィルタ回路。
  13.  前記スイッチ素子は、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチである、
     請求項1~12のいずれか1項に記載の高周波フィルタ回路。
  14.  送信側フィルタ回路および受信側フィルタ回路のいずれかは、請求項1~13のいずれか1項に記載の高周波フィルタ回路を含む、
     デュプレクサ。
  15.  複数の前記スイッチ素子の導通および非導通を制御する制御部と、
     請求項5または6に記載の高周波フィルタ回路とを備え、
     前記制御部は、前記複数のスイッチ素子の導通および非導通を個別に制御する、
     高周波フロントエンド回路。
  16.  前記スイッチ素子の導通および非導通を制御する制御部と、
     高周波送信信号を増幅するパワーアンプと、
     前記パワーアンプで増幅された高周波送信信号を通過させる、請求項1~13のいずれか1項に記載の高周波フィルタ回路または請求項14に記載のデュプレクサと、を備える、
     高周波フロントエンド回路。
  17.  前記スイッチ素子の導通および非導通を制御する制御部と、
     アンテナ素子で受信した高周波受信信号を通過させる、請求項1~13のいずれか1項に記載の高周波フィルタ回路または請求項14に記載のデュプレクサと、
     前記高周波フィルタ回路または前記デュプレクサから出力された高周波受信信号を増幅するローノイズアンプと、を備える、
     高周波フロントエンド回路。
  18.  ベースバンド信号または高周波信号を処理するRF信号処理回路と、
     請求項15~17のいずれか1項に記載の高周波フロントエンド回路とを備える、
     通信装置。
PCT/JP2017/004462 2016-02-08 2017-02-07 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置 WO2017138540A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010257.7A CN108604893B (zh) 2016-02-08 2017-02-07 高频滤波电路、双工器、高频前端电路以及通信装置
US16/056,851 US10644673B2 (en) 2016-02-08 2018-08-07 Radio frequency filter circuit, duplexer, radio frequency front end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016022211 2016-02-08
JP2016-022211 2016-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/056,851 Continuation US10644673B2 (en) 2016-02-08 2018-08-07 Radio frequency filter circuit, duplexer, radio frequency front end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2017138540A1 true WO2017138540A1 (ja) 2017-08-17

Family

ID=59563142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004462 WO2017138540A1 (ja) 2016-02-08 2017-02-07 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置

Country Status (3)

Country Link
US (1) US10644673B2 (ja)
CN (1) CN108604893B (ja)
WO (1) WO2017138540A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037967A1 (ja) * 2016-08-23 2018-03-01 株式会社村田製作所 フィルタ装置、高周波フロントエンド回路および通信装置
WO2018037968A1 (ja) * 2016-08-26 2018-03-01 株式会社村田製作所 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018186227A1 (ja) * 2017-04-03 2018-10-11 株式会社村田製作所 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
WO2019049545A1 (ja) * 2017-09-08 2019-03-14 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019073899A1 (ja) * 2017-10-10 2019-04-18 株式会社村田製作所 マルチプレクサおよび高周波フィルタ
WO2019078157A1 (ja) * 2017-10-16 2019-04-25 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
CN111034042A (zh) * 2017-08-28 2020-04-17 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置
US11894828B2 (en) 2018-04-18 2024-02-06 Skyworks Solutions, Inc. Boundary acoustic wave device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659086B2 (en) * 2018-06-13 2020-05-19 Qorvo Us, Inc. Multi-mode radio frequency circuit
CN109831177A (zh) * 2018-12-20 2019-05-31 天津大学 一种多阻带滤波器及其实现方法
US11405018B2 (en) * 2019-07-22 2022-08-02 Murata Manufacturing Co., Ltd. Filter and multiplexer
CN110798166A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
US11616485B2 (en) 2019-11-08 2023-03-28 Skyworks Solutions, Inc. Out-of-band rejection using saw-based integrated balun and a differential low noise amplifier
CN112886942B (zh) * 2019-11-29 2023-07-07 华为技术有限公司 滤波电路、双工器、通信装置
US11469503B2 (en) * 2020-02-28 2022-10-11 T-Mobile Usa, Inc. Self-optimizing wide band array antennas
JP2021164141A (ja) * 2020-04-03 2021-10-11 株式会社村田製作所 高周波モジュール及び通信装置
WO2022147312A1 (en) * 2020-12-31 2022-07-07 Skyworks Solutions, Inc. Conglomerating transmission contours to improve transmission performance for radio-frequency communications
KR20220123934A (ko) * 2021-03-02 2022-09-13 삼성전기주식회사 음향 공진기 필터
TWI802086B (zh) * 2021-11-17 2023-05-11 啟碁科技股份有限公司 通訊裝置與射頻構件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323961A (ja) * 1999-03-10 2000-11-24 Matsushita Electric Ind Co Ltd 弾性表面波共振器を用いた帯域切替フィルタとそれを用いたアンテナ共用器
JP2001160766A (ja) * 1999-09-21 2001-06-12 Murata Mfg Co Ltd デュプレクサ及び通信機装置
JP2005051656A (ja) * 2003-07-31 2005-02-24 Sharp Corp スイッチ機能付フィルタ回路および高周波通信装置
JP2008124556A (ja) * 2006-11-08 2008-05-29 Nec Electronics Corp スイッチ回路および半導体装置
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
WO2015099105A1 (ja) * 2013-12-27 2015-07-02 株式会社村田製作所 高周波フィルタ
JP2015179982A (ja) * 2014-03-19 2015-10-08 日本電波工業株式会社 デュプレクサ用の送信側フィルタ、デュプレクサ及び電子部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035648A3 (en) 1999-03-10 2000-12-27 Matsushita Electric Industrial Co., Ltd. A band switching filter using a surface acoustic wave resonator and an antenna duplexer using the same
JP3704442B2 (ja) * 1999-08-26 2005-10-12 株式会社日立製作所 無線端末
CN1148087C (zh) 1999-09-21 2004-04-28 株式会社村田制作所 双工器和通信设备
JP4725537B2 (ja) 2007-03-07 2011-07-13 株式会社村田製作所 減衰特性可変フィルタ
JP5441095B2 (ja) * 2008-01-31 2014-03-12 太陽誘電株式会社 弾性波デバイス、デュープレクサ、通信モジュール、および通信装置
JP2010109894A (ja) * 2008-10-31 2010-05-13 Fujitsu Ltd 弾性波フィルタ、デュープレクサ、通信モジュール、および通信装置
JP5183459B2 (ja) * 2008-12-26 2013-04-17 太陽誘電株式会社 分波器、分波器用基板および電子装置
CN102362431B (zh) * 2009-03-30 2015-07-22 株式会社村田制作所 弹性波滤波器
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
JP2015115866A (ja) 2013-12-13 2015-06-22 Tdk株式会社 分波器
DE102014111909B3 (de) * 2014-08-20 2016-02-04 Epcos Ag Abstimmbares HF-Filter mit Serienresonatoren

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323961A (ja) * 1999-03-10 2000-11-24 Matsushita Electric Ind Co Ltd 弾性表面波共振器を用いた帯域切替フィルタとそれを用いたアンテナ共用器
JP2001160766A (ja) * 1999-09-21 2001-06-12 Murata Mfg Co Ltd デュプレクサ及び通信機装置
JP2005051656A (ja) * 2003-07-31 2005-02-24 Sharp Corp スイッチ機能付フィルタ回路および高周波通信装置
JP2008124556A (ja) * 2006-11-08 2008-05-29 Nec Electronics Corp スイッチ回路および半導体装置
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
WO2015099105A1 (ja) * 2013-12-27 2015-07-02 株式会社村田製作所 高周波フィルタ
JP2015179982A (ja) * 2014-03-19 2015-10-08 日本電波工業株式会社 デュプレクサ用の送信側フィルタ、デュプレクサ及び電子部品

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715112B2 (en) 2016-08-23 2020-07-14 Murata Manufacturing Co., Ltd. Filter device, radio-frequency front-end circuit, and communication apparatus
WO2018037967A1 (ja) * 2016-08-23 2018-03-01 株式会社村田製作所 フィルタ装置、高周波フロントエンド回路および通信装置
WO2018037968A1 (ja) * 2016-08-26 2018-03-01 株式会社村田製作所 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
US10862456B2 (en) 2016-08-26 2020-12-08 Murata Manufacturing Co., Ltd. Acoustic wave filter device, multiplexer, radio frequency front-end circuit, and communication device
US11031921B2 (en) 2017-04-03 2021-06-08 Murata Manufacturing Co., Ltd. Acoustic wave filter device, duplexer, radio frequency front end circuit and communication apparatus
WO2018186227A1 (ja) * 2017-04-03 2018-10-11 株式会社村田製作所 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
CN111034042A (zh) * 2017-08-28 2020-04-17 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置
CN111034042B (zh) * 2017-08-28 2023-06-02 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置
US10873351B2 (en) 2017-09-08 2020-12-22 Murata Manufacturing Co., Ltd. Multiplexer, radio frequency front-end circuit, and communication device
WO2019049545A1 (ja) * 2017-09-08 2019-03-14 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
JPWO2019073899A1 (ja) * 2017-10-10 2020-09-03 株式会社村田製作所 マルチプレクサおよび高周波フィルタ
WO2019073899A1 (ja) * 2017-10-10 2019-04-18 株式会社村田製作所 マルチプレクサおよび高周波フィルタ
CN111183585A (zh) * 2017-10-10 2020-05-19 株式会社村田制作所 多工器以及高频滤波器
CN111183585B (zh) * 2017-10-10 2023-09-15 株式会社村田制作所 多工器
US11881841B2 (en) 2017-10-10 2024-01-23 Murata Manufacturing Co., Ltd. Multiplexer and high-frequency filter
WO2019078157A1 (ja) * 2017-10-16 2019-04-25 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
US11211917B2 (en) 2017-10-16 2021-12-28 Murata Manufacturing Co., Ltd. Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
US11894828B2 (en) 2018-04-18 2024-02-06 Skyworks Solutions, Inc. Boundary acoustic wave device
TWI841558B (zh) * 2018-04-18 2024-05-11 美商天工方案公司 具有多層壓電基板的聲波裝置

Also Published As

Publication number Publication date
US10644673B2 (en) 2020-05-05
CN108604893B (zh) 2022-06-17
CN108604893A (zh) 2018-09-28
US20190097606A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2017138540A1 (ja) 高周波フィルタ回路、デュプレクサ、高周波フロントエンド回路、および通信装置
CN108604890B (zh) 高频前端电路以及通信装置
CN109417379B (zh) 多工器、高频前端电路及通信装置
JP6222406B2 (ja) マルチプレクサ、送信装置、受信装置、高周波フロントエンド回路、通信装置、およびマルチプレクサのインピーダンス整合方法
JP6822299B2 (ja) 高周波フロントエンド回路および通信装置
JP6790907B2 (ja) マルチプレクサ、送信装置および受信装置
US9998097B2 (en) Radio-frequency front-end circuit and communication device
WO2018037968A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
US10812050B2 (en) Multiplexer, radio-frequency (RF) front-end circuit, and communication apparatus
CN109196777B (zh) 高频滤波电路、多工器、高频前端电路以及通信装置
WO2017159834A1 (ja) 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置
WO2018168655A1 (ja) マルチプレクサ、高周波フロントエンド回路、および通信装置
CN108111143B (zh) 高频前端电路以及通信装置
WO2018061950A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
CN109417380B (zh) 多工器、高频前端电路及通信装置
WO2018052073A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6798456B2 (ja) 高周波フロントエンド回路及び通信装置
WO2018186227A1 (ja) 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
JP6669252B2 (ja) 高周波フィルタ回路、高周波フロントエンド回路及び通信装置
WO2018151218A1 (ja) フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置
US11394368B2 (en) Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
KR102307312B1 (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
CN109792240B (zh) 高频前端电路以及通信装置
WO2018139320A1 (ja) 高周波フィルタ、高周波フロントエンド回路及び通信装置
CN112640304B (zh) 滤波器装置以及多工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP