WO2018139320A1 - 高周波フィルタ、高周波フロントエンド回路及び通信装置 - Google Patents
高周波フィルタ、高周波フロントエンド回路及び通信装置 Download PDFInfo
- Publication number
- WO2018139320A1 WO2018139320A1 PCT/JP2018/001247 JP2018001247W WO2018139320A1 WO 2018139320 A1 WO2018139320 A1 WO 2018139320A1 JP 2018001247 W JP2018001247 W JP 2018001247W WO 2018139320 A1 WO2018139320 A1 WO 2018139320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- switch
- circuit
- capacitor
- parallel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/006—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6406—Filters characterised by a particular frequency characteristic
- H03H9/6413—SAW comb filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6403—Programmable filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
- H03H9/6423—Means for obtaining a particular transfer characteristic
- H03H9/6433—Coupled resonator filters
- H03H9/6483—Ladder SAW filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/0057—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2210/00—Indexing scheme relating to details of tunable filters
- H03H2210/03—Type of tuning
- H03H2210/036—Stepwise
Definitions
- the present invention relates to a high-frequency filter having a resonator, a high-frequency front-end circuit, and a communication device.
- variable-frequency high-frequency filter (tunable filter) has been proposed as a high-frequency filter compatible with multiband.
- a series arm circuit of such a frequency variable type high frequency filter for example, a configuration in which a series connection circuit of a capacitor and a switch is connected in parallel to a series arm resonator is known.
- the anti-resonance frequency of the series arm circuit can be shifted in frequency by switching the switch on (conductive state) and off (non-conductive state).
- the attenuation pole is defined by the anti-resonance frequency of the series arm circuit, and the frequency of the attenuation pole of the high-frequency filter can be varied (see, for example, Patent Document 1).
- the resonance frequency of the series arm circuit does not change even when the switch is switched on (conductive state) and off (non-conductive state).
- the passband is defined by the resonance frequency of the series arm circuit and the parallel arm circuit, and the antiresonance of the series arm circuit
- a high frequency filter in which an attenuation pole on the high side of the passband is defined by the frequency is configured.
- the high-frequency filter can vary the frequency of the attenuation pole on the high pass band side by switching the switch on (conductive state) and off (non-conductive state).
- an object of the present invention is to provide a high-frequency filter, a high-frequency front-end circuit, and a communication device that can change the frequency of the attenuation pole on the high-frequency side of the passband while suppressing loss at the high-frequency end of the passband. To do.
- a high-frequency filter includes a series arm circuit provided on a path connecting a first input / output terminal and a second input / output terminal, a node on the path, A parallel arm circuit connected to a ground, wherein the series arm circuit is connected in parallel to a first series connection circuit having a series arm resonator and a first capacitor, and the first series connection circuit.
- a first frequency variable circuit that varies an anti-resonance frequency of the series arm circuit, and the first frequency variable circuit includes a second capacitor and a first switch connected in series to the second capacitor. The series arm resonator and the first capacitor are connected in series.
- the resonance frequency of the first series connection circuit of the series arm resonator and the first capacitor is the resonance of the series arm resonator alone.
- the frequency shifts to the high frequency side (hereinafter, simply “shift”). That is, the series connection circuit can reduce the frequency difference between the resonance frequency and the anti-resonance frequency as compared with the series arm resonator alone. Therefore, according to this aspect, since the frequency difference of the series arm circuit is small, the cutoff frequency on the high frequency side of the pass band (hereinafter referred to as “pass band high frequency side”) is shifted to the high frequency side. Thus, the attenuation pole on the high pass band side can be shifted.
- an attenuation pole on the high pass side of the pass band (hereinafter, “attenuation pole on the high pass band side”). ) Of the frequency variable type can be realized.
- the series arm circuit includes a parallel connection circuit, and the parallel connection circuit includes the first capacitor and a second switch connected in parallel to the first capacitor, and the parallel connection circuit includes: A second frequency variable circuit that varies the resonance frequency of the series arm circuit may be configured.
- the resonance frequency of the series arm circuit shifts in accordance with switching of the second switch on and off. Therefore, since the resonance frequency and anti-resonance frequency of the series arm circuit can be shifted, the cut-off frequency on the high side of the passband and the frequency of the attenuation pole on the high side of the passband can be varied independently. Is possible. That is, the variation of the cutoff frequency on the high side of the passband and the frequency of the attenuation pole on the high side of the passband can be increased by switching the first switch and the second switch on and off.
- the second switch when the first switch is on, the second switch may be on, and when the first switch is off, the second switch may be off.
- the resonance frequency and the antiresonance frequency of the series arm circuit can be simultaneously shifted to the low frequency side or the high frequency side.
- the cutoff frequency and the attenuation pole on the high side of the passband can be simultaneously shifted to the low frequency side or the high frequency side, so that the loss on the high side of the passband is suppressed while suppressing the loss at the high end of the passband.
- the frequency of the pole can be varied.
- the control circuit for the first switch and the second switch can be shared, the high-frequency filter can be downsized.
- the series arm resonator has an IDT electrode composed of a plurality of electrode fingers formed on a substrate having piezoelectricity at least in part, and at least one of the first capacitor and the second capacitor is The comb-teeth capacitive electrode comprising a plurality of electrode fingers formed on the substrate, and the pitch of the plurality of electrode fingers constituting the comb-teeth capacitive electrode is determined by the series arm resonator.
- the self-resonance point of the at least one capacitor may be formed higher than the pass band of the high-frequency filter.
- the capacitor composed of comb-teeth capacitance electrodes has a self-resonance point that shifts to the higher frequency side as the electrode finger pitch is narrower.
- the self-resonance point is a frequency at a singular point where the Q value (capacitance Q) of the capacitive element locally decreases.
- the pitch of the electrode fingers is made narrower than the pitch of the electrode fingers of the series arm resonator, and the self-resonance point is driven to the higher frequency side than the pass band of the high frequency filter.
- the Q value of the at least one capacitor can be increased in the vicinity of the high band side. Thereby, the loss in a pass band can be suppressed.
- the film thickness of the plurality of electrode fingers in the comb-tooth capacitive electrode may be equal to or less than the film thickness of the plurality of electrode fingers in the series arm resonator.
- the pitch of the electrode fingers is limited by the film thickness of the electrode fingers.
- the pitch of the electrode fingers in the capacitor can be made narrower by making the film thickness of the electrode fingers in the capacitor composed of comb-teeth capacitive electrodes smaller than the film thickness of the electrode fingers in the series arm resonator. It becomes easy to secure both the Q value of the resonator and the Q value of the capacitor. Therefore, by securing both the Q value of the series arm resonator and the Q value of the at least one capacitor, the loss in the pass band can be further suppressed and / or the steepness of the attenuation slope on the high pass band side can be improved. can do.
- the high-frequency filter further includes one or more other series arm circuits provided on the path, and the series arm circuit does not go through the other series arm circuits, and the first input / output terminal And it may be connected to one input / output terminal of the second input / output terminal.
- the series arm circuit since the series arm circuit includes the first and second capacitors, the input signal is signal-distributed (power distribution) between the series-arm resonator and the first and second capacitors. . For this reason, bulk wave loss when viewed as the whole series arm circuit is reduced. And, such a series arm circuit is connected closest to one input / output terminal, so that the center frequency is high in a multiplexer including a low center frequency filter in which the one input / output terminal is connected to the common terminal. Loss in the passband of the filter can be suppressed.
- the first switch may have one terminal connected to the one input / output terminal and the other terminal connected to the second capacitor.
- the number of terminals of the resonator chip can be reduced.
- a terminal connected to the one input / output terminal and a terminal connected to the other chip can be shared.
- tip for resonators can be reduced, and size reduction of a high frequency filter is achieved.
- the parallel arm circuit includes a first parallel arm resonator connected between the node and the ground, and a third frequency variable circuit connected in parallel to the first parallel arm resonator,
- the third frequency variable circuit includes a second series connection circuit having a second parallel arm resonator and a third switch, and a resonance frequency of the first parallel arm resonator is greater than a resonance frequency of the series arm resonator.
- the resonance frequency of the second parallel arm resonator is higher than the resonance frequency of the first parallel arm resonator
- the anti-resonance frequency of the second parallel arm resonator is the resonance frequency of the first parallel arm resonator. It may be higher than the antiresonance frequency.
- the third frequency variable circuit is connected in parallel to the first parallel arm resonator, when the third switch is off, the impedance of the third switch is ideally infinite and Since the two parallel arm resonators are disabled, the parallel arm circuit has a resonance frequency and an anti-resonance frequency configured by the first parallel arm resonator.
- the parallel arm circuit is a parallel connection circuit of the first parallel arm resonator and the second parallel arm resonator, and the first parallel arm It has two resonance frequencies that are the same as the resonance frequencies of the resonator and the second parallel arm resonator, and two anti-resonance frequencies lower than the anti-resonance frequencies of the first parallel arm resonator and the second parallel arm resonator, respectively.
- the resonance frequency and anti-resonance frequency of the parallel arm circuit can be switched by switching the third switch on and off. Specifically, when the third switch is on, the cutoff frequency on the high side of the passband is shifted to the low frequency side and the second side is on the high side of the passband when compared to the case where the third switch is off. A new attenuation pole defined by the resonance frequency of the parallel arm resonator is formed.
- the frequency of the pass band and the attenuation band can be varied by switching the third switch on and off.
- the third switch since the third switch has an off-capacitance when it is off, the second parallel arm resonator is effective even when the third switch is off, and the parallel arm circuit has the first parallel arm resonance. And the second parallel arm resonator and the third switch off-capacitance series connection circuit having two resonance frequencies and two anti-resonance frequencies. It is located on the higher frequency side than the attenuation pole composed of the anti-resonance frequency.
- the off-capacitance of the switch is generally very small (about 0.3 pF).
- the anti-resonance frequency on the low frequency side of the two anti-resonance frequencies is located slightly lower than the anti-resonance frequency of the first parallel arm resonator, and the third It is located at a higher frequency than when the switch is on.
- the resonance frequency on the high frequency side of the two resonance frequencies is located slightly lower than the antiresonance frequency of the second parallel arm resonator, and is located at a higher frequency than when the third switch is on. Therefore, by switching the third switch on and off, the anti-resonance frequency on the low frequency side and the resonance frequency on the high frequency side of the parallel arm circuit can be simultaneously shifted to the low frequency side or the high frequency side.
- the cut-off frequency and the attenuation pole on the high side of the passband can be shifted simultaneously to the low frequency side or the high frequency side.
- the frequency of the attenuation pole on the high side of the passband can be varied while suppressing the deterioration.
- the third frequency variable circuit may further include an impedance element connected in parallel to the third switch.
- the parallel arm circuit has two resonance frequencies and two anti-resonance frequencies regardless of whether the third switch is on or off. Even when the third switch is OFF, an attenuation pole constituted by the resonance frequency on the high frequency side of the parallel arm circuit is formed in the vicinity of the attenuation pole constituted by the anti-resonance frequency of the series arm circuit.
- the attenuation bandwidth can be widened even when is off, and the anti-resonance frequency on the low frequency side and the resonance frequency on the high frequency side can be simultaneously set to the low frequency side or high frequency by switching the third switch on and off. Can be shifted to the side.
- the cut-off frequency and the attenuation pole on the high side of the passband can be shifted simultaneously to the low frequency side or the high frequency side.
- the frequency of the attenuation pole on the high passband side can be varied while suppressing the above.
- the series arm circuit includes a second switch connected in parallel to the first capacitor, the impedance element is a third capacitor, and when the first switch is on, the second switch and When both of the third switches are on and the first switch is off, both the second switch and the third switch may be off.
- the impedance element is the third capacitor
- the anti-resonance frequency on the low frequency side and the resonance frequency on the high frequency side of the parallel arm circuit can be simultaneously shifted to the low frequency side or the high frequency side.
- the cutoff frequency and the attenuation pole on the high side of the passband can be simultaneously shifted to the low frequency side or the high frequency side, so that the loss on the high side of the passband is suppressed while suppressing the loss at the high end of the passband.
- the frequency of the pole can be varied.
- the control circuit for the first switch, the second switch, and the third switch can be shared, the high-frequency filter can be downsized.
- the first switch may be a FET switch made of GaAs or CMOS, or a diode switch.
- the resistance of the first switch can be reduced, and the loss in the passband can be suppressed.
- the first switch can be reduced in size, the high-frequency filter can be reduced in size and cost.
- a high frequency front end circuit includes any one of the high frequency filters described above and a control unit that controls on and off of the first switch.
- a communication device includes an RF signal processing circuit that processes a high-frequency signal transmitted and received by an antenna element, and the high-frequency signal that is transmitted between the antenna element and the RF signal processing circuit. And a high-frequency front-end circuit.
- the high frequency filter According to the high frequency filter, the high frequency front end circuit, and the communication device according to the present invention, it is possible to vary the frequency of the attenuation pole on the high frequency side of the pass band while suppressing the loss at the high frequency end of the pass band.
- FIG. 1A is a circuit configuration diagram of a high-frequency filter according to an example (Example 1) of the first embodiment.
- FIG. 1B is a graph illustrating various characteristics related to the high-frequency filter according to the first embodiment.
- FIG. 2A is a circuit configuration diagram of a high-frequency filter according to a comparative example.
- FIG. 2B is a graph illustrating various characteristics related to the high-frequency filter according to the comparative example.
- FIG. 3A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 1 and the comparative example.
- FIG. 3B is a graph comparing the characteristics of the high-frequency filter according to Example 1 and the comparative example at the time of high frequency shift.
- FIG. 1A is a circuit configuration diagram of a high-frequency filter according to an example (Example 1) of the first embodiment.
- FIG. 1B is a graph illustrating various characteristics related to the high-frequency filter according to the first embodiment.
- FIG. 2A is a
- FIG. 4 is a graph illustrating changes in filter characteristics when the on / off states of the switches of the high-frequency filter according to the first embodiment are changed.
- FIG. 5A is a diagram illustrating an equivalent circuit model of a resonator and a resonance characteristic thereof.
- FIG. 5B is a diagram illustrating an equivalent circuit model and its resonance characteristics when an impedance element is connected in series to the resonator.
- FIG. 6 is a diagram schematically illustrating the electrode structure of the high frequency filter according to the first embodiment.
- FIG. 7A is a graph showing the relationship between the electrode finger pitch of the capacitor, the capacitance value, the capacitance Q value, the impedance of the series arm circuit, and the filter characteristics.
- FIG. 7B is an enlarged graph showing the vicinity of the wavy frame in FIG.
- FIG. 8 is a circuit configuration diagram of a high-frequency filter according to an example (Example 2) of the second embodiment.
- FIG. 9A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 2 and the comparative example.
- FIG. 9B is a graph comparing the characteristics of the high-frequency filter according to Example 2 and the comparative example at the time of high frequency shift.
- FIG. 10A is a circuit configuration diagram of a high-frequency filter according to an example (Example 3) of the third embodiment.
- FIG. 10B is a graph illustrating various characteristics related to the high-frequency filter according to the third embodiment.
- FIG. 11A is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1 during low frequency shift.
- FIG. 11B is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1 during high frequency shift.
- FIG. 12 is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and the resonance characteristics thereof.
- FIG. 13A is a circuit configuration diagram of a high-frequency filter according to Typical Example 1.
- FIG. 13B is a graph showing a comparison of impedance characteristics and pass characteristics when the high-frequency filter according to the typical example 1 is switched off and when it is switched on.
- FIG. 14A is an equivalent circuit diagram when the high-frequency filter according to Typical Example 1 is switched off.
- FIG. 14B is a graph showing a comparison between impedance characteristics and pass characteristics when the off-capacitance of the high-frequency filter according to Typical Example 1 is changed.
- FIG. 14C is a graph showing the relationship between the off-capacitance of the high-frequency filter according to Typical Example 1, the resonance frequency, and the impedance at the resonance frequency.
- FIG. 15A is a circuit configuration diagram of a high-frequency filter according to Typical Example 2.
- FIG. 15B is a plan view and a cross-sectional view illustrating the structure of the high-frequency filter according to Typical Example 2.
- FIG. 15C is a graph showing a comparison of impedance characteristics and pass characteristics when the wiring impedance of the high-frequency filter according to Typical Example 2 is changed.
- FIG. 15D is a graph showing the relationship between the wiring impedance, the resonance frequency, and the impedance of the high-frequency filter according to Typical Example 2.
- FIG. 15A is a circuit configuration diagram of a high-frequency filter according to Typical Example 2.
- FIG. 15B is a plan view and a cross-sectional view illustrating the structure of the high-frequency filter according to Typical Example 2.
- FIG. 16A is a circuit configuration diagram of a high-frequency filter according to an example (Example 4) of the fourth embodiment.
- FIG. 16B is a graph illustrating various characteristics relating to the high-frequency filter according to the fourth embodiment.
- FIG. 17A is a graph comparing the characteristics of the high frequency filters according to Example 4 and Example 1 during low frequency shift.
- FIG. 17B is a graph comparing the characteristics of the high frequency filters according to Example 4 and Example 1 during high frequency shift.
- FIG. 18A is a circuit configuration diagram of a high-frequency filter according to an example (Example 5) of the fifth embodiment.
- FIG. 18B is a plan view illustrating the structure of the high-frequency filter according to the fifth embodiment.
- FIG. 19 is a circuit diagram of a multiplexer according to the fifth embodiment.
- FIG. 20 is a configuration diagram of a communication apparatus according to the sixth embodiment.
- the resonance frequency in the resonator or circuit is a resonance frequency for forming an attenuation pole in the pass band of the filter including the resonator or the circuit or in the vicinity of the pass band unless otherwise specified.
- it is the frequency of a “resonance point” that is a singular point where the impedance of the circuit is minimized (ideally a point where the impedance is 0).
- the anti-resonance frequency in the resonator or circuit is an anti-resonance frequency for forming an attenuation pole near the passband or the passband of the filter including the resonator or the circuit, unless otherwise specified.
- This is the frequency of the “anti-resonance point”, which is a singular point where the impedance of the resonator or the circuit becomes maximum (ideally, the point where the impedance becomes infinite).
- the series arm circuit and the parallel arm circuit are defined as follows.
- the parallel arm circuit is a circuit arranged between one node on the path connecting the first input / output terminal and the second input / output terminal and the ground.
- the serial arm circuit is a circuit arranged between the first input / output terminal or the second input / output terminal and the node on the path to which the parallel arm circuit is connected, or one parallel arm circuit is connected.
- a circuit arranged between one node on the path and another node on the path to which another parallel arm circuit is connected.
- FIG. 1A is a circuit configuration diagram of the high-frequency filter 10 according to the first embodiment.
- the high frequency filter 10 shown in the figure includes a series arm circuit 11 and a parallel arm circuit 12.
- the serial arm circuit 11 is a resonance circuit provided on a path (series arm) connecting the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input / output terminal).
- the series arm circuit 11 includes a series arm resonator s1, a capacitor C1 (first capacitor), a capacitor C2 (second capacitor), a switch SW1 (first switch), and a switch SW2 (second switch). Switch).
- the series arm circuit 11 includes the series arm resonator s1 having the resonance frequency (resonance point) at which the impedance is minimized and the antiresonance frequency (antiresonance point) at which the impedance is maximized. It has a resonance frequency and an anti-resonance frequency depending on the anti-resonance frequency. Details of this will be described later.
- the series arm resonator s1 and the capacitor C1 are connected in series to form a series connection circuit 11e (first series connection circuit).
- the capacitor C2 and the switch SW1 are connected in series, and this series connection circuit constitutes the first frequency variable circuit 11a.
- the capacitor C1 and the switch SW1 are connected in parallel, and this parallel connection circuit constitutes the second frequency variable circuit 11b.
- the series arm resonator s1 is a resonator provided on a series arm connecting the input / output terminal 11m and the input / output terminal 11n, and the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input). Input / output terminal).
- the first frequency variable circuit 11a is a series connection circuit of a capacitor C2 (second capacitor) and a switch SW1 (first switch), and is a series connection circuit of a series arm resonator s1 and a capacitor C1 (first capacitor). 11e is connected in parallel.
- the first frequency variable circuit 11a varies the anti-resonance frequency of the series arm circuit 11, and more specifically, the switch SW1 is turned on (conductive state) in accordance with a control signal from a control unit (not shown) such as an RFIC. And the anti-resonance frequency is varied by switching off (non-conduction state).
- the capacitor C2 and the switch SW1 constituting the first frequency variable circuit 11a are connected in this order from the input / output terminal 11m side, but may be connected in the reverse order.
- the second frequency variable circuit 11b is a parallel connection circuit of a capacitor C1 (first capacitor) and a switch SW2 (second switch), and is connected in series to the series arm resonator s1.
- the second frequency variable circuit 11b varies the resonance frequency of the series arm circuit 11, and specifically switches the switch SW2 on and off according to a control signal from a control unit (not shown) such as an RFIC.
- a control unit not shown
- the resonance frequency is varied.
- the second frequency variable circuit 11b is connected between the series arm resonator s1 and the input / output terminal 11n, but is connected between the input / output terminal 11m and the series arm resonator s1. It doesn't matter. That is, the capacitor C1 is not limited to being connected between the series arm resonator s1 and the input / output terminal 11n, but may be connected between the input / output terminal 11m and the series arm resonator s1.
- the switch SW1 in the first frequency variable circuit 11a and the second frequency variable circuit 11b, when the switch SW1 (first switch) is on (conductive state), the switch SW2 (second switch) is on, and the switch SW1 Is off (non-conducting state), the switch SW2 is off. That is, the switch SW2 and the switch SW1 are turned on simultaneously or turned off simultaneously.
- the switches SW1 and SW2 are SPST (Single Pole Single Throw) type switch elements, for example, FET (Field Effect Transistor) switches or diodes made of GaAs or CMOS (Complementary Metal Oxide Semiconductor), or diodes.
- FET Field Effect Transistor
- CMOS Complementary Metal Oxide Semiconductor
- the switches SW1 and SW2 are not limited to semiconductor switches formed on a semiconductor substrate, and may be mechanical switches configured by MEMS (Micro Electro Mechanical Systems).
- the parallel arm circuit 12 is a resonance circuit connected to the node x1 on the path (series arm) connecting the input / output terminal 11m and the input / output terminal 11n and the ground (reference terminal).
- the parallel arm circuit 12 includes a parallel arm resonator p1 that is a resonator connected between the node x1 and the ground.
- the parallel arm circuit 12 includes the parallel arm resonator p1 having the resonance frequency (resonance point) at which the impedance is minimized and the antiresonance frequency (antiresonance point) at which the impedance is maximized. It has a resonance frequency and an anti-resonance frequency depending on the anti-resonance frequency.
- the high frequency filter 10 configured as described above can vary the frequency of the attenuation pole on the high side of the passband while suppressing loss at the high end of the passband.
- the filter characteristics (pass characteristics) of the high frequency filter 10 of the present embodiment will be described while also describing the impedance characteristics (resonance characteristics) that define the filter characteristics.
- Table 1 shows circuit constants of the high-frequency filter 10 of Example 1.
- FIG. 1B is a graph showing various characteristics related to the high-frequency filter 10. Specifically, the upper stage of FIG. 2 shows two-state filter characteristics when both the switch SW1 and the switch SW2 are on, and when both the switch SW1 and the switch SW2 are off. In the lower part of the figure, impedance characteristics of the series arm resonator s1, the series arm circuit 11, and the parallel arm resonator p1 are shown. The series arm circuit 11 shows two-state impedance characteristics when both the switch SW1 and the switch SW2 are on and when the switch SW1 and the switch SW2 are off.
- the series arm circuit 11 includes a first frequency variable circuit 11a in which the switch SW1 is turned off in parallel with the series connection circuit 11e (first series connection circuit) of the series arm resonator s1 and the capacitor C1. It will be connected to.
- the antiresonance frequency of the series arm circuit 11 is affected by the combined capacitance of the capacitor C2 of the first frequency variable circuit 11a and the off capacitance (Coff1) of the switch SW1. , The frequency shifts slightly lower than the antiresonance frequency of the series arm resonator s1.
- the off-capacitance (Coff1) of the switch SW1 is a capacitance component when the switch SW1 is off. That is, when the switch SW1 is off, the capacitance component is ideally zero (ie, infinite impedance), but actually has an off capacitance (Coff1) that is a minute capacitance component. Since the off capacitance is sufficiently smaller than the capacitance value of the capacitor C2 (about 0.3 pF), the combined capacitance of the capacitor C2 and the off capacitance of the switch SW1 is sufficiently smaller than the capacitance value of the capacitor C2. Become. Therefore, there is a frequency difference in the anti-resonance frequency of the series arm circuit 11 between when the switch SW1 is off and when it is on.
- the resonance frequency of the series arm circuit 11 is shifted to a higher frequency side than the resonance frequency of the series arm resonator s1 due to the influence of the capacitor C1.
- the series arm circuit 11 is in a state where the first frequency variable circuit 11a in which the switch SW1 is turned on is connected in parallel to the series connection circuit of the series arm resonator s1 and the switch SW2. That is, the series arm circuit 11 is a parallel connection circuit of the series arm resonator s1 and the capacitor C2.
- the antiresonance frequency of the series arm circuit 11 is lower than the antiresonance frequency of the series arm resonator s1 due to the influence of the capacitor C2 of the first frequency variable circuit 11a. Shift to the frequency side.
- the resonance frequency of the series arm circuit 11 becomes the same as the resonance frequency of the series arm resonator s1 when the capacitor C1 is short-circuited by the switch SW2.
- the anti-resonance frequency and the resonance frequency of the series arm circuit 11 are shifted in accordance with the on / off switching of the switches SW1 and SW2.
- the resonance frequency of the series arm circuit 11 and the anti-resonance frequency of the parallel arm circuit 12 define the pass band of the high-frequency filter 10, and the anti-resonance frequency of the series arm circuit 11 is attenuated on the high-pass side of the pass band of the high-frequency filter 10.
- the resonance frequency of the parallel arm circuit 12 defines the attenuation pole on the low pass band side of the high-frequency filter 10.
- the antiresonance frequency and the resonance frequency of the parallel arm circuit 12 are constant regardless of whether the switches SW1 and SW2 are turned on or off, and the antiresonance frequency is the same as the antiresonance frequency of the parallel arm resonator p1.
- the resonance frequency is the same as the resonance frequency of the parallel arm resonator p2.
- the attenuation pole on the high pass band side shifts to the high frequency side when the switch SW1 is off, and shifts to the low frequency side when the switch SW1 is on.
- the cut-off frequency on the high pass band side shifts to the high frequency side when the switch SW2 is off, and shifts to the low frequency side when the switch SW2 is on.
- the pass band of the high frequency filter 10 is shifted to the low frequency side when both the switches SW1 and SW2 are on (low frequency shift), and both the switches SW1 and SW2 are off. Shift to the high frequency side (high frequency shift).
- FIG. 2A is a circuit configuration diagram of a high-frequency filter 10X according to a comparative example.
- the high frequency filter 10X shown in the figure is different from the high frequency filter 10 according to the first embodiment only in that the second frequency variable circuit 11b configured by the capacitor C1 and the switch SW2 is not provided.
- the frequency of the attenuation pole on the high side of the passband can be varied according to the on / off state of the switch SW1.
- FIG. 2B is a graph showing various characteristics related to the high-frequency filter 10X. Specifically, in the upper part of the figure, two-state filter characteristics are shown when the switch SW1 is on and when the switch SW1 is off. In the lower part of the figure, impedance characteristics of the series arm resonator s1, the series arm circuit 11X, and the parallel arm resonator p1 are shown. In the series arm circuit 11X, two-state impedance characteristics are shown when the switch SW1 is on and when the switch SW1 is off.
- the circuit constants of the high-frequency filter 10X of the comparative example are the same as those in the first embodiment.
- the series arm circuit 11X is in a state where the first frequency variable circuit 11a in which the switch SW1 is turned off is connected in parallel to the series arm resonator s1.
- the anti-resonance frequency of the series arm circuit 11X is affected by the combined capacitance of the capacitor C2 and the off capacitance (Coff1) of the switch SW1, thereby causing the series arm resonator s1 to The frequency shifts slightly lower than the antiresonance frequency.
- the resonance frequency of the series arm circuit 11X is the same as the resonance frequency of the series arm resonator s1.
- the series arm circuit 11X is in a state where the first frequency variable circuit 11a in which the switch SW1 is turned on is connected in parallel to the series arm resonator s1. That is, the series arm circuit 11X is a parallel connection circuit of the series arm resonator s1 and the capacitor C2.
- the antiresonance frequency of the series arm circuit 11X is lower than the antiresonance frequency of the series arm resonator s1 due to the influence of the capacitor C2 of the first frequency variable circuit 11a. Shift to the frequency side.
- the resonance frequency of the series arm circuit 11X is the same as the resonance frequency of the series arm resonator s1.
- the pass band of the comparative example shifts to the low frequency side or the high frequency side by shifting only the attenuation pole on the high side of the pass band.
- FIG. 3A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 1 and the comparative example.
- FIG. 3B is a graph comparing the characteristics of the high-frequency filter according to Example 1 and the comparative example at the time of high frequency shift.
- the switch SW2 may be appropriately selected according to required specifications such as the loss in the passband and the size of the high-frequency filter 10.
- a switch has a trade-off relationship that when the on-resistance is decreased, both the off-capacitance and the size are increased.
- the inventor of the present application has found the following regarding the switches SW1 and SW2 in consideration of this relationship and the influence of the characteristics of the switches SW1 and SW2 (on resistance, off capacitance, etc.) on the filter characteristics.
- the characteristic of the switch SW1 affects the anti-resonance frequency of the series arm circuit 11. That is, this characteristic affects the attenuation pole on the high-pass side of the high-frequency filter 10. Therefore, even if the on-resistance of the switch SW2 increases, the loss in the pass band of the high frequency filter 10 is hardly deteriorated.
- the off-capacitance of the switch SW1 increases, the capacitance difference of the first frequency variable circuit 11a due to the switching of SW1 on and off becomes small, so the frequency variable width becomes narrow. Therefore, it is preferable to reduce the off-capacitance (that is, increase the on-resistance) of the switch SW1.
- the switch SW2 since the switch SW2 is connected in series with the series arm resonator s1, the characteristics of the switch SW2 affect the resonance frequency of the series arm circuit 11. That is, the characteristic affects the pass band of the high frequency filter 10. Therefore, when the on-resistance of the switch SW2 increases, the loss in the pass band of the high-frequency filter 10 when the switch SW2 is on deteriorates. On the other hand, even if the off-capacitance of the switch SW2 increases, there is no problem because the combined capacitance of the off-capacitance and the capacitor C1 can be maintained by appropriately adjusting the capacitance value of the capacitor C1. Therefore, for the switch SW2, it is preferable to reduce the ON resistance (that is, increase the OFF capacitance) with respect to SW2.
- Example 1 the loss at the high end of the passband is improved (suppressed) in Example 1 as compared with the comparative example at the time of high frequency shift.
- the anti-resonance frequency of the series arm circuit 11X of the comparative example only the anti-resonance frequency is changed by switching the switch SW1 on and off, and the resonance frequency is not changed. Therefore, the anti-resonance frequency of the series arm circuit 11X when the frequency shift is performed.
- the frequency difference between resonance frequencies is large. In other words, since the change in the cut-off frequency accompanying the change of the attenuation pole on the high side of the passband is small and the steepness is inferior, the loss at the high end of the passband becomes worse.
- the series arm resonator s1 and the capacitor C1 are connected in series, whereby the series arm circuit s1 and the capacitor C1 are connected in series.
- the resonance frequency of the first series connection circuit is shifted to a higher frequency side than the resonance frequency of the series arm resonator s1 alone. That is, the series connection circuit 11e can reduce the frequency difference between the resonance frequency and the anti-resonance frequency as compared to the series arm resonator s1 alone. Therefore, according to this aspect, since the frequency difference of the series arm circuit 11 is small, the attenuation pole on the high passband side is shifted in the state where the cutoff frequency on the high passband side is shifted to the high frequency side. Can be made. That is, it is possible to realize a variable frequency type high frequency filter capable of varying the frequency of the attenuation pole on the high side of the passband while suppressing the loss at the high end of the passband.
- the switch SW2 (second switch) is connected in parallel to the capacitor C1, so that the resonance frequency of the series arm circuit 11 is shifted according to the on / off of the switch SW2. Therefore, since each of the resonance frequency and the anti-resonance frequency of the series arm circuit 11 can be shifted, the cut-off frequency on the high side of the passband and the frequency of the attenuation pole on the high side of the passband can be varied independently. It becomes possible.
- variable-frequency high-frequency filter used for this has either the Tx band or the Rx band as a pass band and the other as an attenuation band, and simultaneously shifts the pass band and the attenuation band to the low frequency side or the high frequency side.
- the switch SW1 and the switch SW2 are turned on (conducting state) and off (nonconducting state) in the same state, so that the resonance frequency and the anti-resonance frequency of the series arm circuit 11 are simultaneously set to the low frequency side or It can be shifted to the high frequency side.
- the cutoff frequency and the attenuation pole on the high side of the passband can be simultaneously shifted to the low frequency side or the high frequency side, so that the loss on the high side of the passband is suppressed while suppressing the loss at the high end of the passband.
- the frequency of the pole can be varied.
- the resonance frequency and anti-resonance frequency of the series arm circuit 11X can be simultaneously shifted to the low frequency side or the high frequency side. Since the frequency difference between the frequency and the anti-resonance frequency is maintained, the steepness on the high side of the passband is maintained. Therefore, according to the present embodiment, the loss at the high end of the pass band can be suppressed by improving the steepness on the high side of the pass band as compared with the comparative example.
- the frequency variable width of the pass band of the high-frequency filter 10 depends on the constants of the capacitors C1 and C2. For example, the frequency variable width becomes wider as the constant of the capacitor C1 is smaller and the constant of the capacitor C2 is larger. For this reason, the constant of the capacitor C1 can be appropriately determined according to the frequency specification required for the high-frequency filter 10.
- the capacitors C1 and C2 may be variable capacitors such as varicaps and DTCs (Digitally Tunable Capacitors).
- the mode in which the switches SW1 and SW2 are simultaneously turned on or the switches SW1 and SW2 are simultaneously turned off has been described, but other modes may be selected. That is, a mode in which the switch SW1 is on and the switch SW2 is off, and a mode in which the switch SW1 is off and the switch SW2 is on may be selected.
- FIG. 4 is a graph showing changes in filter characteristics when the switches SW1 and SW2 of the high-frequency filter 10 according to the first embodiment are turned on and off.
- four filter characteristics can be formed by individually switching on and off the switch SW1 and the switch SW2.
- the parallel connection circuit of the capacitor C1 (first capacitor) and the switch SW2 (second switch) is connected in series to the series arm resonator s1, so that the switch SW2 can be turned on and off.
- the resonance frequency of the series arm circuit 11 is shifted. Therefore, since each of the resonance frequency and the antiresonance frequency of the series arm circuit 11 can be shifted, fine adjustment of the filter characteristics (particularly, the filter characteristics on the high frequency side) becomes possible. That is, the variation of the switchable pass band can be increased.
- FIG. 5A is a diagram illustrating an equivalent circuit model of one resonator and its resonance characteristics.
- the resonator can be represented by a series circuit of a capacitor C 1 and the inductor L 1 parallel circuit of the (series connection circuit) and a capacitor C 0 (parallel connection circuit).
- the capacitor C 0 is the capacitance of the resonator.
- the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C1 and the inductor L1, and is the frequency at which the impedance of the equivalent circuit becomes 0. Indicated by
- the anti-resonance frequency fa of the resonator is a frequency at which the admittance Y of the equivalent circuit becomes 0, the equation 3 is expressed by solving the equation 3.
- the anti-resonance frequency fa appears on the higher frequency side than the resonance frequency fr.
- the resonator has one resonance frequency and one anti-resonance frequency positioned higher than the resonance frequency.
- Figure 5B is a diagram showing an equivalent circuit model and its resonant characteristics when the impedance element X 1 to resonators are connected in series.
- the resonator can be represented by a parallel circuit of a capacitor C 1 and a series circuit of an inductor L 1 and a capacitor C 0 .
- the capacitor C 0 is the capacitance of the resonator.
- a parallel circuit of the impedance element X 1 and the switch SW is connected.
- the switch SW is ideal in which the capacitance component is zero (that is, the impedance is infinite) when it is off and the resistance component is zero (that is, the impedance is zero) when it is on. Treat as a switch.
- the resonance characteristics of the equivalent circuit will be described for the case where the switch SW is on. If the switch SW is on, the impedance element X 1 becomes a short circuit, the resonance frequency fr_on and anti-resonance frequency fa_on, respectively, becomes the same as the resonant frequency fr and anti-resonant frequency fa in Fig. 5A, in Formula 5 and Formula 6 expressed.
- the impedance elements X 1 be a capacitor, and will be described separately in the case of (2) the impedance element X 1 is an inductor.
- the anti-resonance frequency fa_off1 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Equation 9.
- fr_off2L is a resonance frequency on the low frequency side when the switch SW is off
- fr_off2H is a resonance frequency on the high frequency side when the switch SW is off.
- the anti-resonance frequency fa_off2 when the switch SW is off is the same as the anti-resonance frequency fa_on when the switch SW is on, and is expressed by Expression 12.
- Equation 5 Equation 6, Equation 11, and Equation 12 if the impedance element X 1 is an inductor, as shown on the right side graph of FIG. 5B, regardless of the switching of the switch SW on and off, the anti-resonant frequency fa_on And fa_off2 match.
- the resonance frequency shifts to a lower frequency side when the switch SW is off (fr_off2L) than when the switch SW is on (fr_on).
- Impedance element X 1 is the case of the capacitor Ct has a configuration in which capacitor Ct in the capacitor C 0 in the equivalent circuit model shown in FIG. 5A are connected in parallel. Therefore, the resonance frequency in this case is represented by an expression in which C 0 in Expression 5 is replaced with a combined capacitance (C 0 + Ct) of the capacitor C 0 and the capacitor Ct, and matches the resonance frequency of the single resonator. I understand that. Further, it can be seen from Equation 6 that the antiresonance frequency in this case shifts to a lower frequency side than the antiresonance frequency of the single resonator.
- FIG. 6 is a diagram schematically illustrating an electrode structure (electrode layout) of the high-frequency filter 10 according to the first embodiment. Specifically, (a) in the figure is a plan view, (b) in the figure is a cross-sectional view taken along the line AA ′ in (a), and (c) in the figure is the same. It is sectional drawing in the BB 'line
- the electrode structure shown in FIG. 6 is for explaining a typical structure of each resonator constituting the high-frequency filter 10 and comb-teeth capacitive electrodes constituting the capacitors C1 and C2.
- the number and the length of the electrode fingers constituting the IDT electrode and the comb-teeth capacitive electrode of each resonator of the high frequency filter 10 are not limited to the number and the length of the electrode fingers shown in FIG. 6 also schematically shows the switches SW1 and SW2, but the arrangement and structure of the switches SW1 and SW2 are not particularly limited.
- the switches SW1 and SW2 include the resonators and comb teeth. It may be configured on a chip different from the capacitor electrode.
- each resonator (series arm resonator s1 and parallel arm resonator p1) constituting the high frequency filter 10 is, for example, an elastic wave resonator using an elastic wave.
- the high frequency filter 10 can be constituted by an IDT electrode formed on the piezoelectric substrate 102 which is a substrate having piezoelectricity at least in part, thereby realizing a small and low-profile filter circuit having a high steep passage characteristic. it can.
- the series arm resonator s1 includes an IDT electrode 111 including a plurality of electrode fingers 111a, a pair of reflectors 112, and a piezoelectric substrate 102.
- the IDT electrode 111 of the series arm resonator s1 is constituted by an electrode film 101, and the electrode film 101 is formed on the piezoelectric substrate 102.
- the IDT electrode 111 has a plurality of electrode fingers 111a and a pair of bus bar electrodes arranged to face each other across the plurality of electrode fingers 111a, and the plurality of electrode fingers 111a is one of the set of bus bar electrodes. And are alternately connected to the other.
- the plurality of electrode fingers 111a are formed along a direction orthogonal to the propagation direction of the elastic wave, and are periodically formed along the propagation direction.
- the wavelength of the elastic wave to be excited is defined by the design parameters of the IDT electrode 111 and the like.
- design parameters of the IDT electrode 111 will be described.
- the wavelength of the elastic wave is defined by the repetition period ⁇ s1 of the electrode finger 111a connected to one bus bar electrode among the plurality of electrode fingers 111a.
- the electrode duty is the line width occupation ratio of the plurality of electrode fingers 111a, and the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 111a, that is, Ws1 / ( Ws1 + Ss1). That is, the electrode duty is defined by the ratio of the width of the plurality of electrode fingers 111a to the electrode finger pitch (the pitch of the plurality of electrode fingers 111a), that is, Ws1 / Ps1.
- the number of pairs is the number of electrode fingers 111a that make a pair, and is approximately half of the total number of electrode fingers 111a.
- the capacitance C 0 of the acoustic wave resonator is expressed by the following Expression 13.
- ⁇ 0 is a dielectric constant in a vacuum
- ⁇ r is a dielectric constant of the piezoelectric substrate 102.
- Capacitor C1 and capacitor C2 have equivalent structures except for design parameters based on required specifications. Therefore, hereinafter, the structure of the capacitor C2 will be described, and the description of the structure of the capacitor C1 will be omitted.
- the capacitor C2 includes a piezoelectric substrate 102 and a comb-teeth capacitive electrode 104 formed on the piezoelectric substrate 102.
- the comb-tooth capacitive electrode 104 is composed of a plurality of electrode fingers 141a. As shown in FIGS. 6A and 6B, the comb-teeth capacitive electrode 104 is configured by the electrode film 101 similarly to the IDT electrode 111. That is, the comb-teeth capacity electrode 104 constituting the capacitor C2 is formed on the same piezoelectric substrate 102 as the IDT electrode 111 constituting the series arm resonator s1.
- the comb-teeth capacitive electrode 104 and the IDT electrode 111 may be formed on different substrates.
- the comb-teeth capacitive electrode 104 has a plurality of electrode fingers 141a and a set of bus bar electrodes arranged to face each other with the plurality of electrode fingers 141a interposed therebetween, and the plurality of electrode fingers 141a is a set of bus bar electrodes. Are alternately connected to one and the other.
- the plurality of electrode fingers 141a are formed along the propagation direction of the elastic wave, and are periodically formed along a direction orthogonal to the propagation direction.
- characteristics such as a capacitance value and a Q value are defined by design parameters of the comb-teeth capacitance electrode 104 and the like.
- design parameters of the comb-tooth capacitive electrode 104 will be described.
- the electrode duty (duty ratio) is the line width occupation ratio of the plurality of electrode fingers 141a, and the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 141a, that is, Wc2 / ( Wc2 + Sc2).
- the electrode duty is defined by the ratio of the width of the plurality of electrode fingers 141a to the pitch of the plurality of electrode fingers 141a, that is, Wc2 / Pc2.
- the film thickness of the electrode finger 141a is the thickness Tc2 of the electrode film 101 that forms the electrode finger 141a.
- the electrode finger pitch of the capacitor C2 is narrower than the electrode finger pitch of the series arm resonator s1. That is, Pc2 ⁇ Ps1 is satisfied.
- the film thickness of the plurality of electrode fingers 141a in the capacitor C2 is thinner than the film thickness of the plurality of electrode fingers 111a in the series arm resonator s1. That is, Tc2 ⁇ Ts1 is satisfied.
- the film thickness Tc2 of the electrode finger 141a is preferably 40% or less (that is, Tc2 ⁇ 0.40 ⁇ Pc2) with respect to the electrode finger pitch Pc2.
- the film thickness Ts1 of the electrode finger 111a is preferably 40% or less (that is, Ts1 ⁇ 0.40 ⁇ Ps1) with respect to the electrode finger pitch Ps1.
- the lower limit of the film thickness Tc2 of the electrode finger 141a is not particularly limited, but is, for example, 15% or more of the electrode finger pitch Pc2 (that is, 0.15 ⁇ Pc2 ⁇ Tc2).
- the lower limit of the film thickness Ts1 of the electrode finger 111a is not particularly limited. For example, it is 15% or more of the electrode finger pitch Ps1 (that is, 0.15 ⁇ Ps1 ⁇ Ts1).
- the electrode duty of the capacitor C2 is preferably larger than the electrode duty of the series arm resonator s1. That is, the capacitor C2 and the series arm resonator s1 preferably satisfy Wc2 / Pc2> Ws1 / Ps1.
- the capacitance value per unit area of the comb-teeth capacitive electrode 104 can be increased, so that downsizing and space saving can be achieved.
- the electrode finger pitch, the film thickness, the electrode duty, etc. are not necessarily uniform, and are not uniform due to variations due to manufacturing processes. Or may be non-uniform due to adjustment of characteristics or the like. For this reason, in the capacitor C2 and the series arm resonator s1, a part of the comb-teeth capacity electrode and the IDT electrode constituting the capacitor C2 and the IDT electrode may not satisfy the relationship such as the electrode finger pitch, the film thickness, and the electrode duty described above.
- the above-described relationship between the electrode finger pitch, the film thickness, and the electrode duty between the capacitor C2 and the series arm resonator s1 only needs to be substantially established.
- the average value of the capacitor C2 and the series arm resonator s1 As long as it is established with the average value of.
- the relationship between the electrode finger pitch, the film thickness, and the electrode duty has been described by taking the relationship between the capacitor C2 and the series arm resonator s1 as an example, but the same relationship is the relationship between the capacitor C1 and the series arm resonator s1. It does not matter if this is true. The same relationship may be established in at least one of the relationship between the capacitor C1 and the series arm resonator s1, and the relationship between the capacitor C2 and the series arm resonator s1.
- FIG. 7A is a graph showing the relationship between the electrode finger pitch of the capacitor C2, the capacitance value, the capacitance Q value, the impedance of the series arm circuit 11, and the filter characteristics in a typical example. Specifically, the frequency characteristics when the electrode finger pitch Pc2 is set to 0.75, 1.75, 2.50, 4.00 (all in ⁇ m) are shown. The characteristics shown in the figure are those when the switch SW1 is turned on and SW2 is turned off. That is, the series arm circuit 11 is a series circuit of the series arm resonator s1 and the capacitor C2.
- the capacitance value hardly changes even when the electrode finger pitch Pc2 is changed.
- the capacitance value referred to here is a capacitance value (capacitance value) in a low frequency range in which the influence of self-resonance of the comb-tooth capacitance can be almost ignored.
- the electrode finger pitch Pc2 is narrower, the self-resonant point of the capacitor C2 shifts to the higher frequency side.
- the Q value (capacitance Q) of the capacitor C2 generally decreases as the frequency increases, but locally decreases at the self-resonance point. For this reason, by narrowing the electrode finger pitch Pc2 and driving the self-resonance point of the comb-tooth capacitance to a higher frequency side than the pass band of the high-frequency filter 10, the Q value of the comb-tooth capacitance in the pass band can be increased.
- the frequency of the self-resonance point may coincide with the frequency of the resonance point or anti-resonance point of the series arm resonator s1 connected to the capacitor C2 without passing through another elastic wave resonator. That is, the frequency at the resonance point or antiresonance point of the series arm resonator s1 may coincide with the frequency at which the capacitance Q locally decreases.
- the resonance point or antiresonance point obtained by the combined characteristic of the series arm resonator s1 and the capacitor C2 is decreased in Q value due to the decrease in the Q value of the capacitor C2. It becomes difficult.
- the electrode finger pitch Pc2 is narrowed to drive the self-resonance point of the capacitor C2 to a higher frequency side than the resonance point and the antiresonance point of the series arm resonator s1, thereby combining the series arm resonator s1 and the capacitor C2.
- the required Q value can be ensured by suppressing the deterioration of the Q value of the characteristic.
- the size of the comb-teeth capacitance can be reduced while maintaining the capacitance value, so that the high-frequency filter including the capacitor C2 can be reduced in size and space.
- FIG. 7B is an enlarged graph showing the vicinity of the wavy line in FIG. 7A (c), and specifically shows the impedance characteristic of the series arm circuit 11 near the anti-resonance frequency.
- the electrode finger pitch of the capacitor C2 is narrower than the electrode finger pitch of the series arm resonator s1, and the film thickness of the capacitor C2 needs to be set smaller than the film thickness of the series arm resonator s1.
- the relationship between the electrode finger pitch and the characteristics has been described by taking the capacitor C2 as an example, but the same relationship also holds for the capacitor C1.
- the electrode finger pitch of the capacitor C1 increases, the self-resonance point frequency shifts to the lower frequency side, and the capacitance Q value is deteriorated.
- the switch SW1 is off, the Q value at the resonance point of the series arm circuit 11 deteriorates due to the deterioration of the capacitance Q value as the electrode finger pitch of the capacitor C1 approaches the electrode finger pitch of the series arm resonator s1. To do. For this reason, in this case, the loss in the passband high band end and the loss in the passband is caused. Therefore, the electrode finger pitch of the capacitor C1 is narrower than the electrode finger pitch of the series arm resonator s1, and the film thickness of the capacitor C1 needs to be set smaller than the film thickness of the series arm resonator s1.
- the self-resonance point shifts to the higher frequency side as the pitch of the electrode fingers is narrower.
- the pitch of the electrode fingers is made narrower than the pitch of the electrode fingers 111a of the series arm resonator s1, and the self-resonance point is driven to the higher frequency side than the pass band of the high frequency filter 10.
- the Q values of the capacitors C1 and C2 can be increased in the passband and in the vicinity of the high passband side. Thereby, it is possible to suppress loss in the passband and / or improve the steepness of the attenuation slope on the high passband side. Specifically, the loss in the pass band can be suppressed by increasing the Q value of the capacitor C1, and the attenuation band near the high side of the pass band is widened by increasing the Q value of the capacitor C2. be able to.
- the pitch of the electrode fingers is limited by the film thickness of the electrode fingers.
- the pitch of the electrode fingers in the capacitor can be made narrower by making the film thickness of the electrode fingers in the capacitor composed of comb-teeth capacitive electrodes smaller than the film thickness of the electrode fingers in the series arm resonator. It becomes easy to secure both the Q value of the child s1 and the Q value of the capacitor. Therefore, by securing both the Q value of the series arm resonator s1 and the Q values of the capacitors C1 and C2, the loss in the passband is further suppressed and / or the steepness of the attenuation slope on the high side of the passband is improved. can do.
- the switch SW2 (second switch) is connected in parallel to the capacitor C1 (first capacitor).
- the switch SW2 may not be provided. Therefore, in the present embodiment, the high-frequency filter configured as described above will be described using an example (Example 2).
- FIG. 8 is a circuit configuration diagram of a high-frequency filter 10A according to the second embodiment.
- the series arm circuit 11A in the present embodiment does not have the switch SW2 as compared with the series arm circuit 11 in the first embodiment. That is, the series arm circuit 11A includes a series arm resonator s1, a capacitor C1 (first capacitor) connected in series to the series arm resonator s1, and a first anti-resonance frequency of the series arm circuit 11A. Frequency variable circuit 11a.
- the switch SW1 on and off by switching the switch SW1 on and off, the loss at the high end of the passband is suppressed, and the high pass filter on the passband high band side is suppressed.
- the frequency of the attenuation pole can be varied.
- FIG. 9A is a graph comparing characteristics at the time of low frequency shift of the high frequency filter according to Example 2 and the comparative example.
- FIG. 9B is a graph comparing the characteristics of the high-frequency filter according to Example 2 and the comparative example at the time of high frequency shift.
- Example 2 the loss at the high end of the passband is improved in Example 2 compared to the comparative example in both the low frequency shift and the high frequency shift.
- the series arm resonator s1 and the capacitor C1 are connected in series, so that the series arm resonator s1 and the capacitor C1 are connected.
- the resonance frequency of the series connection circuit 11e (first series connection circuit) is shifted to a higher frequency side than the resonance frequency of the series arm resonator s1 alone. That is, the series connection circuit 11e can reduce the frequency difference between the resonance frequency and the anti-resonance frequency compared to the series arm resonator s1 alone. Therefore, the present embodiment can achieve the same effects as the first embodiment. That is, according to the present embodiment, it is possible to vary the frequency of the attenuation pole on the high passband side while suppressing the loss at the high end of the passband.
- the resonance frequency or anti-resonance frequency of the parallel arm circuit is fixed. However, as with the series arm circuit, the resonance frequency or anti-resonance frequency of the parallel arm circuit may be variable. .
- one parallel arm resonator is provided in the parallel arm circuit. However, a plurality of parallel arm resonators may be provided. Therefore, in the present embodiment, such a high-frequency filter will be described using an example (Example 3).
- FIG. 10A is a circuit configuration diagram of a high-frequency filter 10B according to the third embodiment.
- the parallel arm circuit 12B in this embodiment includes a parallel arm resonator p1a (first parallel arm resonator), a parallel arm resonator p1b (second parallel arm resonator), and a switch SW3 ( A third switch).
- the parallel arm resonator p1b and the switch SW3 are connected in series, and this series connection circuit constitutes the third frequency variable circuit 11c.
- the parallel arm resonator p1a is a resonator (first parallel arm resonator) provided on the parallel arm that connects the node x1 and the ground, and is connected between the node x1 and the ground.
- the third frequency variable circuit 11c is a series connection circuit of a parallel arm resonator p1b (second parallel arm resonator) and a switch SW3 (third switch), and includes a parallel arm resonator p1a (first parallel arm resonator). ) And connected in parallel.
- the third frequency variable circuit 11c varies the resonance frequency and the antiresonance frequency of the parallel arm circuit 12B.
- the third frequency variable circuit 11c is controlled by a control unit (not shown) such as an RFIC.
- the switch SW3 is turned on and off in accordance with the signal to change the switch SW3.
- the parallel arm resonator p1b and the switch SW3 constituting the third frequency variable circuit 11c are connected in this order from the node x1 side, but may be connected in the reverse order.
- the switch SW3 is arranged closer to the node x1 than the parallel arm resonator p1b, the loss of the high-frequency filter 10B deteriorates due to the resistance component (ON resistance) of the switch SW3 when the switch SW3 is on.
- the switch SW3 is arranged on the ground side from the parallel arm resonator p1b.
- the switch SW1 when the switch SW1 (first switch) is on (conductive state), the switch SW2 (second switch).
- the switch SW3 (third switch) when the switch SW3 (third switch) is on and the switch SW1 is off (non-conducting state), both the switch SW2 and the switch SW3 are off. That is, the switches SW1 to SW3 are turned on simultaneously or turned off simultaneously.
- the number of control lines for controlling the switches SW1 to SW3 can be reduced, thereby simplifying the configuration. That is, since the control circuit for the switches SW1 to SW3 can be shared, the high-frequency filter 10B can be downsized. Note that the switches SW1 to SW3 may be individually turned on or off.
- the switch SW3 is an SPST type switch element, and is configured similarly to the switches SW1 and SW2, for example.
- the switch SW1 first switch
- the switch SW2 second switch
- the switch SW3 third switch
- the parallel arm resonator p1a first parallel arm resonator
- the parallel arm resonator p1b second parallel arm resonator
- the switch SW3 third switch
- the parallel arm circuit 12B is switched according to the switching on and off of the switch SW3.
- the resonance frequency and antiresonance frequency can be varied.
- Table 3 shows circuit constants of the high-frequency filter 10B of Example 3.
- the resonance frequency of the parallel arm resonator p1a (first parallel arm resonator) is lower than the resonance frequency of the series arm resonator s1, and the parallel arm resonator p1b (second parallel arm resonator). Is higher than the resonance frequency of the parallel arm resonator p1a.
- the anti-resonance frequency of the parallel arm resonator p1b is higher than the anti-resonance frequency of the parallel arm resonator p1a.
- FIG. 10B is a graph showing various characteristics related to the high-frequency filter 10B. Specifically, in the upper part of the figure, two-state filter characteristics are superimposed when the switches SW1 to SW3 are both on (low frequency shift) and when both the switches SW1 to SW3 are off (high frequency shift). A combined graph and a graph individually showing the filter characteristics of the two states are shown. Further, the middle part of the figure shows the impedance characteristics of the series arm circuit 11 corresponding to each upper part. In the lower part of the figure, impedance characteristics of the parallel arm circuit 12B corresponding to each upper part are shown.
- the impedance characteristics of the series arm circuit 11 As the impedance characteristics of the series arm circuit 11, the characteristics of the series arm resonator s1 alone, the characteristics of the series arm circuit 11 when both the switches SW1 and SW2 are on, and both the switches SW1 and SW2 are off. The characteristics of the series arm circuit 11 in this case are shown.
- the impedance characteristics of the parallel arm circuit 12B include the characteristics of the parallel arm resonator p1a alone, the characteristics of the parallel arm resonator p1b alone, the characteristics of the parallel arm circuit 12B when the switch SW3 is on, and the switch The characteristic of the parallel arm circuit 12B when SW3 is OFF is shown. Moreover, these matters are the same also in the graph (refer FIG. 16B) which shows the various characteristics regarding the high frequency filter of Example 4 mentioned later.
- the characteristics of the series arm circuit 11 are the same as the characteristics when both SW1 and SW2 are OFF in the first embodiment. Therefore, as shown in the middle graph in the right column of FIG. 10B, the antiresonance frequency of the series arm circuit 11 is shifted slightly lower than the antiresonance frequency of the series arm resonator s1, and the resonance frequency of the series arm circuit 11 is shifted. Shifts to a higher frequency side than the resonance frequency of the series arm resonator s1.
- the parallel arm circuit 12B is in a state where the third frequency variable circuit 11c in which the switch SW3 is turned off is connected in parallel to the parallel arm resonator p1a.
- the parallel arm circuit 12B has two resonance frequencies and two anti-resonance frequencies.
- the parallel arm circuit 12B includes a first resonance frequency that is equal to the resonance frequency of the parallel arm resonator p1a, a second resonance frequency that is positioned higher than the resonance frequency of the parallel arm resonator p1b, and , A first anti-resonance frequency located between the first resonance frequency and the second resonance frequency, and a second anti-resonance frequency located on the lower frequency side than the anti-resonance frequency of the parallel arm resonator p1b. This will be described in detail next.
- the parallel arm circuit 12B when the switch SW3 is off, the impedance of the switch SW3 is ideally infinite and the parallel arm resonator p1b is disabled, so that the resonance frequency constituted by the parallel arm resonator p1a And has an anti-resonance frequency.
- the parallel arm circuit 12B is a parallel connection circuit of the parallel arm resonator p1a and the parallel arm resonator p1b because the parallel arm resonator p1b is effective when the switch SW3 is on.
- the parallel arm circuit 12B includes the first resonance frequency equal to the resonance frequency of the parallel arm resonator p1a, the second resonance frequency equal to the resonance frequency of the parallel arm resonator p1b, and the parallel arm higher than the first resonance frequency.
- the first anti-resonance frequency is lower than the anti-resonance frequency of the resonator p1a
- the second anti-resonance frequency is higher than the second resonance frequency and lower than the anti-resonance frequency of the parallel arm resonator p1b.
- the parallel arm circuit 12B can vary the number and frequency of resonance points and the number and frequency of anti-resonance points by switching the switch SW3 on and off. Therefore, ideally, when the switch SW3 is switched from OFF to ON, the cutoff frequency on the high passband side shifts to the low frequency side and the resonance of the parallel arm resonator p1b on the high passband side. A new attenuation pole defined by the frequency is formed. That is, since a new attenuation pole is formed on the high side of the passband during the low frequency shift, the amount of attenuation near the high side of the passband can be improved.
- the switch SW3 has an off-capacitance (Coff3) that is a minute capacitance component when it is off. For this reason, even when the switch SW3 is off, the parallel arm resonator p1b is effective, and the parallel arm circuit 12B includes the parallel arm resonator p1a and the parallel arm as shown in the lower graph in the right column of FIG. 10B. It has two resonance frequencies and two anti-resonance frequencies by the series connection circuit of the off-capacitance of the resonator p1b and the switch SW3.
- Coff3 off-capacitance
- the off-capacitance of the switch is generally very small (about 0.3 pF). Therefore, since the off-capacitance of the switch SW3 is sufficiently smaller than the capacitance of the parallel arm resonator p1b, the combined capacitance of the capacitance of the parallel arm resonator p1b and the off-capacitance of the switch SW3 (Coff3) is The capacitance is sufficiently smaller than the capacitance value of the parallel arm resonator p1b.
- the first anti-resonance frequency is positioned slightly lower than the anti-resonance frequency of the parallel arm resonator p1a
- the second anti-resonance frequency is the anti-resonance of the parallel arm resonator p1b.
- the second resonance frequency is located at a frequency that is higher than the resonance frequency of the parallel arm resonator p1b and slightly higher than the second anti-resonance frequency. For this reason, when the switch SW3 is off, the second resonance frequency and the second anti-resonance frequency are located on the higher frequency side than the attenuation pole formed by the anti-resonance frequency of the series arm circuit 11.
- the characteristics of the series arm circuit 11 are the same as the characteristics when both SW1 and SW2 are on in the first embodiment. Therefore, as shown in the middle graph of FIG. 10B, the antiresonance frequency of the series arm circuit 11 is shifted to a lower frequency side than the antiresonance frequency of the series arm resonator s1, and the resonance frequency of the series arm circuit 11 is The resonance frequency of the series arm resonator s1 is the same.
- the parallel arm circuit 12B is in a state where the third frequency variable circuit 11c in which the switch SW3 is turned on is connected in parallel to the parallel arm resonator p1a. That is, the parallel arm circuit 12B is a parallel connection circuit of the parallel arm resonator p1a and the parallel arm resonator p1b.
- the parallel arm circuit 12B includes the first resonance frequency equal to the resonance frequency of the parallel arm resonator p1a and the second resonance equal to the resonance frequency of the parallel arm resonator p1b. And a first anti-resonance frequency positioned between the first resonance frequency and the second resonance frequency, and a second anti-resonance frequency positioned higher than the second resonance frequency. As a result, the first anti-resonance frequency is shifted to a lower frequency side than the anti-resonance frequency of the parallel arm resonator p1a.
- the resonance frequency of the parallel arm resonator p1b is higher than the resonance frequency of the series arm resonator s1
- the first anti-resonance frequency defines the passband of the high-frequency filter 10B
- the second resonance frequency is high in the passband. Specifies the attenuation pole on the band side.
- the parallel arm circuit 12B has a low frequency side anti-resonance frequency (that is, the first anti-resonance frequency) and a high frequency by switching the switch SW3 on and off.
- the side resonance frequency (that is, the second resonance frequency) can be simultaneously shifted to the low frequency side or the high frequency side.
- the attenuation pole defined by the second resonance frequency shifts to the low frequency side, so the vicinity of the passband high band side.
- the amount of attenuation can be improved.
- the cutoff frequency and the attenuation pole on the high side of the passband can be simultaneously shifted to the low frequency side or the high frequency side, so that the loss at the high end of the passband is deteriorated.
- the frequency can be varied while suppressing the above.
- FIG. 11A is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1 during low frequency shift.
- FIG. 11B is a graph comparing the characteristics of the high frequency filters according to Example 3 and Example 1 during high frequency shift.
- the pass band is suppressed while suppressing the loss at the high end of the pass band, similarly to the high frequency filter 10 according to the first embodiment.
- the frequency of the high-frequency attenuation pole can be varied.
- the high frequency filter 10B according to the third embodiment improves the attenuation near the high side of the passband during the low frequency shift compared to the high frequency filter 10 according to the first embodiment. Can do.
- FIG. 12 is a diagram illustrating an equivalent circuit model of two resonators connected in parallel and the resonance characteristics thereof.
- a model in which the resonators res1 and res2 are connected in parallel is shown.
- Resonator res1 is represented by a parallel circuit of the series circuit and the capacitor C 01 of the capacitor C 1 and the inductor L 1
- resonator res2 is parallel with the series circuit and the capacitor C 02 of the capacitor C 2 and the inductor L 2 It can be represented by a circuit.
- the capacitors C 01 and C 02 are capacitances of the resonators res 1 and res 2, respectively.
- the resonance frequency fr of the resonator is defined by a series circuit of the capacitor C 1 and the inductor L 1 and is expressed by Equation 1.
- the two resonance frequencies are defined, the resonance frequency fr1, fr2, respectively, a series circuit of a capacitor C 1 and the inductor L 1, and is defined by a series circuit of a capacitor C 2 and the inductor L 2 , Expressed by Equation 14.
- the two resonance frequencies fr1 and fr2 represented by the equivalent circuit are substantially equal to the resonance frequency fr_res1 of the resonator res1 and the resonance frequency fr_res2 of the resonator res2, respectively.
- the anti-resonance frequency of the equivalent circuit is a frequency at which the admittance Y of the equivalent circuit becomes 0, by solving Equation 15, two anti-resonance frequencies (fa1, fa2) are obtained as shown in Equation 16. I understand that I have it.
- the anti-resonance frequencies fa1 and fa2 obtained by the above equation 15 are different from the anti-resonance frequencies of the single resonator obtained by the equation 3 (shown as fa_res1 and fa_res2 in the graph of FIG. 12). Further, the antiresonance frequency fa1 derived from Expression 15 is lower than the antiresonance frequency fa_res1 of the resonator res1 alone, and the antiresonance frequency fa2 is lower than the antiresonance frequency fa_res2 of the resonator res2 alone.
- the resonance characteristic of the parallel arm circuit 12B shifts in response to switching of SW3 on and off.
- the parallel arm circuit 12B has two resonance frequencies (first resonance frequency and second resonance frequency) and two anti-resonance frequencies (first anti-resonance frequency and second anti-resonance frequency). That is, the first resonance frequency and the second resonance frequency of the parallel arm circuit 12B are the same as the resonance frequency of the parallel arm resonator p1a and the resonance frequency of the parallel arm resonator p1b, respectively.
- the first anti-resonance frequency of the parallel arm circuit 12B is lower than the anti-resonance frequency of the parallel arm resonator p1a, and the second anti-resonance frequency of the parallel arm circuit 12B is lower than the anti-resonance frequency of the parallel arm resonator p1a. Also lower.
- the switch SW3 (third switch) is off
- a combined capacitance of the capacitance of the parallel arm resonator p1b and the off capacitance of the switch SW3 is connected in parallel to the parallel arm resonator p1a.
- the off-capacitance of the switch SW3 is sufficiently smaller than the capacitance of the parallel arm resonator p1b. Therefore, the combined capacitance of the capacitance of the parallel arm resonator p1b and the off-capacitance of the switch SW3 (Coff3). Is a value sufficiently smaller than the capacitance value of the capacitance of the parallel arm resonator p1b.
- the first resonance frequency of the parallel arm circuit 12B is the same as the resonance frequency of the parallel arm resonator p1a, and the first antiresonance frequency of the parallel arm circuit 12B is slightly lower than the antiresonance frequency of the parallel arm resonator p1a. Shift to.
- the first anti-resonance frequency of the parallel arm circuit 12B is shifted slightly lower than the anti-resonance frequency of the parallel arm resonator p1b.
- the second resonance frequency of the parallel arm circuit 12B is shifted to a frequency that is higher than the resonance frequency of the parallel arm resonator p1b and slightly higher than the second antiresonance frequency.
- the influence on the filter characteristics by the third frequency variable circuit 11c is the same regardless of the configuration of the series arm circuit. Therefore, in the following, for the sake of simplicity, the influence on the filter characteristics will be described using a high-frequency filter in which the series arm circuit is configured by only one series arm resonator as an example.
- FIG. 13A is a circuit configuration diagram showing a high-frequency filter 23A according to Typical Example 1 for explaining the influence of the third frequency variable circuit 11c on the characteristics.
- 13B is a graph showing a comparison of impedance characteristics and pass characteristics when the high-frequency filter 23A according to the typical example 1 is switched off and when it is switched on.
- the impedance of the parallel arm resonator 23p2 is almost infinite. Therefore, the impedance characteristic of the high-frequency filter 23A is parallel to the impedance characteristic of the series arm resonator 23s (solid line in the upper graph of FIG. 13B). The impedance characteristic of the arm resonator 23p1 (rough broken line in the upper graph of FIG. 13B) is combined. Therefore, the high-frequency filter 23A when the switch 23SW is off uses the resonance frequency frp1 of the parallel arm resonator 23p1 as a low-frequency attenuation pole and the anti-resonance frequency fas of the series arm resonator 23s as a high-frequency attenuation pole.
- a band-pass filter (broken line in the lower graph of FIG. 13B) that forms a pass band with the anti-resonance frequency fap1 of the parallel arm resonator 23p1 and the resonance frequency frs of the series arm resonator 23s.
- the impedance characteristic of the high frequency filter 23A is the parallel resonance in which the impedance characteristic of the series arm resonator 23s (solid line in the upper graph of FIG. 13B) and the parallel arm resonators 23p1 and 23p2 are connected in parallel.
- the impedance characteristic of the circuit (the thin broken line in the upper graph of FIG. 13B) is synthesized.
- the impedance characteristics of the parallel resonance circuit (thin broken line in the upper graph of FIG. 13B) are the impedance characteristics of the parallel arm resonator 23p1 (rough broken line in the upper graph of FIG. 13B) and the impedance characteristics of the parallel arm resonator 23p2 (upper graph of FIG. 13B).
- the high-frequency filter 23A when the switch 23SW is on uses the resonance frequency frp3 of the parallel resonance circuit (reflecting the resonance frequency frp1 of the parallel arm resonator 23p1) as the attenuation pole on the low frequency side, and the resonance frequency of the parallel resonance circuit.
- This is a bandpass filter (solid line in the lower graph of FIG. 13B) having frp4 (reflecting the resonance frequency frp2 of the parallel arm resonator 23p2) as an attenuation pole on the high frequency side.
- the resonance frequency frp2 of the parallel arm resonator 23p2 exists on the higher frequency side than the resonance frequency frp1 of the parallel arm resonator 23p1. Therefore, the anti-resonance frequency fap3 of the parallel resonance circuit is shifted to a lower frequency side than the anti-resonance frequency fap1 of the parallel arm resonator 23p1, and the anti-resonance frequency fap4 of the parallel resonance circuit is the anti-resonance frequency of the parallel arm resonator 23p2. Shift to a lower frequency side than fap2.
- the antiresonance frequency fap3 of the parallel resonance circuit is lower than the antiresonance frequency fap1 of the parallel arm resonator 23p1, and the resonance frequency frp4 of the parallel resonance circuit is higher than the antiresonance frequency fas of the series arm resonator 23s.
- the pass band width is narrower on the low frequency side than when the switch 23SW is off, and the attenuation band is also shifted to the low frequency side.
- the resonance frequency frp2 of the parallel arm resonator 23p2 is higher than the resonance frequency frs of the series arm resonator 23s that affects the insertion loss in the vicinity of the center frequency in the passband and out of the passband. Is lower than the anti-resonance frequency fas of the series arm resonator corresponding to the attenuation pole on the high frequency side of. As a result, when the switch 23SW is turned on, the attenuation pole on the high frequency side outside the pass band can be shifted to the low frequency side while maintaining the low loss in the pass band.
- the switch 23SW when the switch 23SW is on, the high band end of the pass band can be shifted to the low frequency side, so that the pass band width can be narrowed without impairing the steepness of the high frequency end (pass band high band end) of the pass band. It becomes.
- the switch 23SW ideally has an infinite impedance when turned off, but actually has an off capacitance (Coff) that is a capacitance component.
- FIG. 14A is an equivalent circuit diagram when the switch 23SW of the high-frequency filter 23A according to the typical example 1 is off.
- 14B is a graph showing a comparison between impedance characteristics and pass characteristics when the off-capacitance of the high-frequency filter 23A according to the typical example 1 is changed. More specifically, the upper graph in FIG. 14B shows the change in the combined characteristics of the parallel arm resonator 23p2 and the off capacitance Coff when the off-capacitance Coff of the switch 23SW is changed, and the lower graph in FIG. 14B. These show changes in the filter characteristics of the high-frequency filter 23A when the switch 23SW is off when the off-capacitance Coff of the switch 23SW is changed.
- the resonance frequency (frp2) of the combined characteristics of the parallel arm resonator 23p2 and the off-capacitance Coff is shifted to the lower frequency side.
- the attenuation pole (frp4) on the high side of the passband is also shifted to the low frequency side. Note that the change in the off-capacitance Coff does not affect the anti-resonance frequency (fap2) of the combined characteristics of the parallel arm resonator 23p2 and the off-capacitance Coff.
- FIG. 14C is a graph showing the relationship between the off-capacitance of the high-frequency filter 23A according to the typical example 1, the resonance frequency, and the impedance at the resonance frequency.
- the impedance of the switch 23SW is infinite when the switch 23SW is turned off.
- the impedance decreases as the off-capacitance Coff increases. Therefore, a new attenuation pole (frp4) is generated by the combined characteristic of the parallel arm resonator 23p2 and the off-capacitance Coff, and the resonance frequency (frp2) of the combined characteristic is defined by the value of the off-capacitance Coff.
- the attenuation pole (frp4) formed by the parallel arm resonator 23p2 (without the capacitance Coff in the upper graph of FIG. 14B) when the switch 23SW is on is 780 MHz, as the off-capacitance Coff increases, the switch 23SW is turned on and off.
- the frequency variable width by switching off is narrowed.
- the frequency variable filter as described above requires a frequency variable width of 20 MHz or more, the off-capacitance Coff needs to be set to 0.8 pF or less.
- the required frequency variable width described above is such that, for example, when a filter that varies the band 28Tx (703-748 MHz) and the band 68Tx (698-728 MHz) is configured, the frequency difference at the high end of the passband is 20 MHz. It is set because it is.
- FIG. 15A is a circuit configuration diagram showing a high-frequency filter 23B according to Typical Example 2 for explaining the influence of the third frequency variable circuit 11c on the characteristics.
- the high frequency filter 23B according to the present typical example has the same circuit configuration as the high frequency filter 23A according to the typical example 1 and substantially matches the filter characteristics. Therefore, the basic filter characteristics when the switch 23SW is on and off are described. The description is omitted.
- the “wiring impedance” means the characteristic impedance of the wiring.
- the characteristic impedance of the wiring is indicated as “wiring impedance” for convenience.
- FIG. 15B is a plan view and a cross-sectional view illustrating the structure of the high-frequency filter 23B according to the typical example 2. More specifically, a plan view seen from above the high frequency filter 23B is shown in the upper part of FIG. 15B, a plan view seen through the wiring board is shown in the middle part, and a sectional view is shown in the lower part. Yes.
- a surface acoustic wave resonator (23saw) including a series arm resonator 23s, parallel arm resonators 23p1 and 23p2, and a switch 23SW are configured by individual packages (chips) and mounted on the wiring board 100.
- the surface acoustic wave resonator (23 saw) and the switch 23SW are covered with a resin member 101a.
- As the wiring substrate 100 an LTCC substrate or a PCB substrate is exemplified.
- the surface acoustic wave resonator (23saw) and the switch 23SW are connected by the via and the wiring pattern in the wiring substrate 100.
- the parallel arm resonator 23p2 and the switch 23SW are connected by a wiring 23k disposed on or in the wiring board 100.
- the wiring 23k is not ideal (a state where the parallel arm resonator 23p2 and the switch 23SW are directly connected)
- the surface acoustic wave resonator (23saw) and the switch 23SW are configured in separate packages. Wiring 23k is required.
- FIG. 15C is a graph showing a comparison of impedance characteristics and pass characteristics when the wiring impedance of the high-frequency filter 23B according to the typical example 2 is changed. More specifically, the upper left graph of FIG. 15C shows the change in the combined characteristics of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the characteristic impedance of the wiring 23k is changed when the switch 23SW is off. Yes. Further, the upper right graph in FIG. 15C shows a change in the combined characteristics of the parallel arm resonator 23p2 and the switch 23SW when the characteristic impedance of the wiring 23k is changed when the switch 23SW is on. The lower left graph of FIG.
- 15C shows the change in the filter characteristics of the high-frequency filter 23B when the characteristic impedance of the wiring 23k is changed when the switch 23SW is off. Further, the lower right graph of FIG. 15C shows a change in the filter characteristics of the high frequency filter 23B when the characteristic impedance of the wiring 23k is changed when the switch 23SW is on.
- the characteristic impedance approaches the ideal state as the characteristic impedance of the wiring 23k increases, and the attenuation pole (frp4) on the high passband side shifts to the low frequency side as the characteristic impedance of the wiring 23k decreases. .
- the attenuation pole (frp4) on the high passband side shifts to the lower frequency side as the characteristic impedance of the wiring 23k increases, and approaches the ideal state as the characteristic impedance of the wiring 23k decreases. .
- FIG. 15D is a graph showing a relationship between the wiring impedance, the resonance frequency, and the impedance of the high-frequency filter 23B according to the typical example 2. More specifically, the upper part of FIG. 15D shows the relationship between the characteristic impedance of the wiring 23k and the resonance frequency and impedance of the combined characteristics of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the switch 23SW is off. Has been. 15D shows the relationship between the impedance of the wiring 23k and the resonance frequency and impedance of the combined characteristics of the parallel arm resonator 23p2, the wiring 23k, and the switch 23SW when the switch 23SW is on. The lower part of FIG. 15D shows the relationship between the characteristic impedance of the wiring 23k and the frequency variable width when the switch 23SW is on and off.
- the characteristic impedance of the wiring 23k is The higher the frequency, the larger the frequency variable width. Conversely, the frequency variable width becomes smaller as the characteristic impedance of the wiring 23k is lowered. Further, as shown in the typical example 3, since the frequency variable filter needs to secure a frequency variable width of 20 MHz or more, the characteristic impedance of the wiring 23k needs to be set to 20 ⁇ or more.
- the relative dielectric constant of the wiring board 100 is set to 15 or less.
- the distance from the upper and lower ground patterns of the wiring 23k is set to 100 ⁇ m or more.
- the vias constituting the wiring 23k are made thinner than other interlayer vias.
- the wiring 23k is arranged above 1/2 (upper half area) in the thickness direction of the wiring board 100.
- FIG. 16A is a circuit configuration diagram of a high-frequency filter 10C according to the fourth embodiment.
- the parallel arm circuit 12C in the present embodiment is further compared to the parallel arm circuit 12B in the third embodiment, and further includes a capacitor C3 (impedance element connected in parallel to the switch SW3 (third switch)).
- a third capacitor A third capacitor. That is, in this embodiment, the parallel connection circuit of the capacitor C3 and the switch SW3 is connected in series to the parallel arm resonator p1b, and this series connection circuit constitutes the third frequency variable circuit 11d.
- Table 4 shows circuit constants of the high-frequency filter 10C of Example 4.
- FIG. 16B is a graph showing various characteristics related to the high-frequency filter 10C.
- the parallel arm impedance characteristics include the characteristics of the parallel arm resonator p1a alone, the characteristics of the parallel arm resonator p1b alone, the characteristics of the parallel arm circuit 12C when the switch SW3 is on, and the switch SW3. The characteristic of the parallel arm circuit 12C in the off state is shown.
- the characteristics of the series arm circuit 11 are the same as the characteristics when both SW1 and SW2 are OFF in the first embodiment. Accordingly, as shown in the middle graph in the right column of FIG. 16B, the antiresonance frequency of the series arm circuit 11 is shifted slightly lower than the antiresonance frequency of the series arm resonator s1, and the resonance frequency of the series arm circuit 11 is shifted. Shifts to a higher frequency side than the resonance frequency of the series arm resonator s1.
- the parallel arm circuit 12C is in a state where the third frequency variable circuit 11d in which the switch SW3 is turned off is connected in parallel to the parallel arm resonator p1a. That is, the parallel arm circuit 12C is a parallel connection circuit of the parallel arm resonator p1a and the parallel arm resonator p1b loaded with the combined capacitance of the capacitor C3 and the switch SW3.
- the combined capacitance is a combined capacitance of the capacitor C3 and the off capacitance of the switch SW3.
- the parallel arm circuit 12C has a first resonance frequency equal to the resonance frequency of the parallel arm resonator p1a and a higher frequency side than the resonance frequency of the parallel arm resonator p1b.
- the second resonance frequency positioned, the first anti-resonance frequency positioned between the first resonance frequency and the second resonance frequency, and the second anti-resonance frequency positioned higher than the second resonance frequency.
- the characteristics of the series arm circuit 11 are the same as the characteristics when both SW1 and SW2 are on in the first embodiment. Therefore, as shown in the graph in the middle row of FIG. 16B, the antiresonance frequency of the series arm circuit 11 is shifted to a lower frequency side than the antiresonance frequency of the series arm resonator s1, and the resonance frequency of the series arm circuit 11 is The resonance frequency of the series arm resonator s1 is the same.
- the parallel arm circuit 12C is in a state where the third frequency variable circuit 11d in which the switch SW3 is turned on is connected in parallel to the parallel arm resonator p1a. That is, the parallel arm circuit 12C is a parallel connection circuit of the parallel arm resonator p1a and the parallel arm resonator p1b.
- the parallel arm circuit 12C includes the first resonance frequency equal to the resonance frequency of the parallel arm resonator p1a and the second resonance equal to the resonance frequency of the parallel arm resonator p1b.
- both the second resonance frequency and the first anti-resonance frequency shift to the lower frequency side.
- the first anti-resonance frequency when the switch SW3 is on is located on the lower frequency side than the first anti-resonance frequency when the switch SW3 is off. Even if the switch SW3 is off, the second resonance frequency is located in the vicinity of the anti-resonance frequency of the series arm circuit 11.
- the first anti-resonance frequency of the parallel arm circuit 12C defines the pass band of the high-frequency filter 10C
- the second resonance frequency of the parallel arm circuit 12C and the anti-resonance frequency of the series arm circuit 11 are attenuated on the high side of the pass band. Define the poles.
- the impedance element (capacitor C3 in this embodiment) is connected in parallel to the switch SW3, so that the antiresonance of the series arm circuit 11 is achieved even when the switch SW3 is off.
- the attenuation pole constituted by the second resonance frequency (resonance frequency on the high frequency side) of the parallel arm circuit 12C can be positioned in the vicinity of the attenuation pole constituted by the frequency. Accordingly, the attenuation bandwidth can be widened not only when the switch SW3 is turned on but also when it is turned off, and the cut-off frequency on the high side of the passband and the high side of the passband can be changed by switching the switch SW3 on and off. Therefore, it is possible to change the frequency of the attenuation pole on the high side of the passband while suppressing the loss at the high end of the passband and maintaining the attenuation bandwidth.
- FIG. 17A is a graph comparing the characteristics of the high frequency filters according to Example 4 and Example 1 during low frequency shift.
- FIG. 17B is a graph comparing the characteristics of the high frequency filters according to Example 4 and Example 1 during high frequency shift.
- the high-frequency filter 10C according to the fourth embodiment similarly to the high-frequency filter 10 according to the first embodiment, the loss of the passband high-frequency end is suppressed and the passband is reduced.
- the frequency of the high-frequency attenuation pole can be varied.
- the high frequency filter 10C according to the fourth embodiment can improve the attenuation near the high side of the passband compared to the high frequency filter 10 according to the first embodiment.
- the Tx band (transmission band) is on the low frequency side and the Rx band (reception band) is on the high frequency side.
- the width is different. Therefore, the variable-frequency high-frequency filter used for this has either the Tx band or the Rx band as a pass band and the other as an attenuation band, and simultaneously shifts the pass band and the attenuation band to the low frequency side or the high frequency side. There is a need.
- the impedance element connected in parallel to the switch SW3 is the capacitor C3 (third capacitor).
- the switch arm SW1, the switch SW2 and the switch SW3 are turned on (conducting state) and off (nonconducting state) so that the resonance frequency and anti-resonance frequency of the series arm circuit 11 and the parallel arm circuit 12C are the same.
- the anti-resonance frequency on the low frequency side and the resonance frequency on the high frequency side can be simultaneously shifted to the low frequency side or the high frequency side.
- the cut-off frequency and attenuation pole on the high side of the passband can be simultaneously shifted to the low frequency side or the high frequency side, so that the frequency can be varied while suppressing the deterioration of the loss at the high end of the passband.
- the capacitor C3 (third capacitor) is described as an example of the impedance element connected in parallel to the switch SW3 (third switch).
- the impedance element is not limited to a capacitor, and may be an inductor.
- the second resonance frequency when the switch SW3 is on is located on the lower frequency side than the second resonance frequency when the switch SW3 is off.
- the first anti-resonance frequency when the switch SW3 is on is located on the higher frequency side than the first anti-resonance frequency when the switch SW3 is off. That is, in this case, the shift directions of the second resonance frequency and the first anti-resonance frequency of the parallel arm circuit 12C by switching the switch SW3 on and off are opposite to those of the present embodiment.
- the third switch is turned off when the first switch and the second switch are turned on, and the third switch is turned on when the first switch and the second switch are turned off. Similar to the example, the frequency can be varied while suppressing the deterioration of the loss at the high end of the passband.
- FIG. 18A is a circuit configuration diagram of the high-frequency filter 40 according to the fifth embodiment.
- the high frequency filter 40 shown in the figure includes a plurality of series arm circuits (this embodiment) provided on a path connecting the input / output terminal 11m (first input / output terminal) and the input / output terminal 11n (second input / output terminal).
- the high frequency filter 40 includes four series arm resonators s1 to s4, and further includes parallel arm resonators p1a, p1b, p2a, p2b, and p3, and switches SW11 to SW13, SW23, SW41, and SW42. And a frequency variable type band-pass filter having a plurality of bands as a pass band, and capacitors C11 to C13, C23, C41, and C42.
- the numbers of series arm circuits and parallel arm circuits are not limited to the above numbers.
- the series arm circuit 210s provided closest to the input / output terminal 11m and the series arm circuit 240s provided closest to the input / output terminal 11n are: This corresponds to the series arm circuit 11 of the high-frequency filter according to any one of Embodiments 1 to 4 (here, Embodiment 1). Therefore, the switches SW11 and SW41 correspond to the switch SW1 of the series arm circuit 11, the switches SW12 and SW42 correspond to the switch SW2 of the series arm circuit 11, the capacitors C11 and C41 correspond to the capacitor C1 of the series arm circuit 11, The capacitors C12 and C42 correspond to the capacitor C2 of the series arm circuit 11.
- the parallel arm circuits 210p and 220p correspond to the parallel arm circuit 12C of the high frequency filter 10C according to the fourth embodiment
- the parallel arm circuit 230p corresponds to the parallel arm circuit 12 of the high frequency filter 10 according to the first embodiment.
- the parallel arm resonators p1a and p1b correspond to the parallel arm resonator p1a of the parallel arm circuit 12C
- the switches SW13 and SW23 correspond to the switch SW3 of the parallel arm circuit 12C
- the parallel arm resonator p3 is the parallel arm circuit. This corresponds to twelve parallel arm resonators p1.
- the high frequency filter 40 is provided with a configuration corresponding to the high frequency filter 10C according to the fourth embodiment closest to the input / output terminal 11m, and corresponds to the high frequency filter 10 according to the first embodiment closest to the input / output terminal 11n.
- a configuration is provided.
- the configuration of the high frequency filter 40 is not limited to this.
- at least one of the plurality of series arm circuits may correspond to the series arm circuit of any of the first to fourth embodiments, and only the series arm circuit provided closest to one input / output terminal is the above-described one. It may correspond to any of the series arm circuits of the first to fourth embodiments, and only the series arm circuit different from the series arm circuit provided closest to the input / output terminal is any of the first to fourth embodiments. It may be equivalent to such a series arm circuit.
- a parallel arm circuit is provided for connecting a node on the path between the input / output terminal (the input / output terminal 11m or the input / output terminal 11n) and the series arm circuit provided closest to the input / output terminal to the ground. It doesn't matter.
- the attenuation pole on the high side of the passband is suppressed while suppressing the loss at the high end of the passband. Can be varied.
- FIG. 18B is a plan view illustrating the structure of the high-frequency filter 40 according to the fifth embodiment.
- a plurality of resonators (series arm resonators s1 to s4 and parallel arm resonators p1a, p1b, p2a, p2b, p3) are included in one resonator package 41 (chip).
- the other elements (switches SW11 to SW13, SW23, SW41, and SW42 and capacitors C11 to C13, C23, C41, and C42) are composed of packages 42a to 42c that are different from the resonator package 41.
- the packages 41 and 42a to 42c are mounted on the wiring board 43. That is, the resonator and the switch are formed in separate packages.
- the packages 41, 42a to 42c have surface electrodes (also referred to as circles, “lands” or “pads” in FIG. 18B) for mounting the packages 41, 42a to 42c on the wiring board 43 on the bottom surface.
- surface electrodes also referred to as circles, “lands” or “pads” in FIG. 18B
- circuit elements and wirings configured in each package are schematically shown, and the surface electrodes on the bottom surface of the packages 41 and 42a to 42c are illustrated.
- the wiring board 43 has external connection electrodes (circles in FIG. 18B) constituting the input / output terminals 11m and 11n, respectively.
- This external connection electrode is, for example, a surface electrode for mounting the wiring board 43 on a mother board or the like, a connector for connecting the wiring board 43 and another electronic component, or another electronic component mounted on the wiring board 43 If it is, it is a part of the pattern wiring that connects the other electronic component and the package 42a or the package 42c.
- the switch SW11 and the switch SW12 are connected to the input / output terminal 11m as the common terminal 421 of the package 42a.
- the other terminal of the switch SW11 is connected to the first terminal 422 of the package 42a via the capacitor C12. Furthermore, the other terminal of the switch SW12 is connected to the second terminal 423 of the package 42a.
- the capacitor C11 is connected in parallel with the switch SW12.
- the package 42c is connected to the input / output terminal 11n as the common terminal 431 of the package 42c after sharing one terminal of the switch SW41 and the switch SW42.
- the other terminal of the switch SW41 is connected to the first terminal 432 of the package 42c via the capacitor C42. Further, the other terminal of the switch SW42 is connected to the second terminal 433 of the package 42c.
- the capacitor C41 is connected in parallel with the switch SW42.
- the series arm resonator s 1 is connected between the first terminal 411 and the second terminal 412 of the package 41.
- the series arm resonator s4 is connected between the third terminal 413 and the fourth terminal 414 of the package 41.
- the parallel arm circuits 210p, 220p, 230p and the serial arm circuits 220s, 230s of FIG. 18A are connected.
- the wiring board 43 connects the second terminal 423 of the package 42a and the first terminal 411 of the package 41, connects the first terminal 422 of the package 42a and the second terminal 412 of the package 41, and the first terminal 432 of the package 42c. And the third terminal 413 of the package 41 is connected, and the second terminal 433 of the package 42c and the fourth terminal 414 of the package 41 are connected.
- one terminal of the switch provided in the series arm when one terminal of the switch provided in the series arm is connected to one of the input / output terminals 11m and 11n, it is divided into the packages 42a and 42c including the switch and the package 41 including the resonator group. Since the switch is closer to one of the input / output terminals than the resonator group, the number of terminals of the resonator package 41 and the switch packages 42a and 42c can be reduced, and the high frequency filter 40 can be reduced. Can be reduced in size.
- At least one of the capacitors C11, C12, C41, and C42 may be incorporated in the resonator package 41. Further, when the switch SW12 and the capacitor C12 are connected in reverse order, the switch SW12 may be incorporated in the resonator package 41. Further, when the switch SW42 and the capacitor C42 are connected in reverse order, the switch SW42 may be incorporated in the resonator package 41.
- the at least one parallel arm resonator p1a, p1b, p2a, p2b, p3 may be provided separately from the resonator package, and the switches SW11 to SW13, SW23, SW41, SW42, and the capacitor C11.
- C13, C23, C41, and C42 may be packaged in a combination different from the above.
- Such a high frequency filter 40 can be applied to a multiplexer.
- FIG. 19 is a circuit configuration diagram of a multiplexer (duplexer) 200 according to the fifth embodiment.
- the multiplexer 200 shown in the figure includes a transmission filter 60, a reception filter 50, and a matching inductor 70.
- the transmission filter 60 is connected to the input terminal 200T and the common terminal 200c
- the reception filter 50 is connected to the common terminal 200c and the output terminal 200R.
- the transmission-side filter 60 is a band-pass filter having a transmission band as a pass band, and the circuit configuration is not particularly limited.
- the reception-side filter 50 corresponds to the high-frequency filter 40 according to the fifth embodiment, and is a frequency variable type band-pass filter having a plurality of bands as pass bands.
- the frequency of the attenuation pole on the high side of the passband is varied while suppressing loss at the high end of the passband. be able to. That is, it is possible to realize a high-performance duplexer that can switch the pass band and the attenuation band while suppressing the loss at the high end of the pass band.
- the multiplexer can be downsized since a filter corresponding to each frequency band is not arranged and the filter can be applied to a plurality of frequency bands by one filter circuit having a switch, the multiplexer can be downsized.
- reception-side filter 50 is not limited to the configuration of the fifth embodiment, and may have any configuration of the first to fourth embodiments.
- the high frequency filters according to the first to fifth embodiments are not limited to reception side filters, and may be applied to transmission side filters. Further, these high frequency filters are not limited to duplexers, and may be applied to a multiplexer including a plurality of transmission side filters or a plurality of reception side filters.
- Bulk wave loss means that mechanical energy is radiated into the substrate in the high-frequency stopband region of the anti-resonance frequency of the surface acoustic wave resonator, and the equivalent DC resistance of the surface acoustic wave resonator is large. Refers to the loss that occurs.
- the series arm circuit includes the capacitor C1 (first capacitor) and the capacitor C2 (second capacitor), so that the input signal is the series arm resonator s1 and the capacitor C1. , C2 and signal distribution (power distribution). For this reason, bulk wave loss when viewed as the whole series arm circuit is reduced.
- Such series arm circuits of the first to fifth embodiments are connected closest to one of the input / output terminals (the input / output terminal 11m or the input / output terminal 11n), so that the one input / output terminal becomes a common terminal. In a multiplexer including a connected filter having a low center frequency, loss in the passband of the filter having a high center frequency can be suppressed.
- FIG. 20 is a configuration diagram of the communication apparatus 300 according to the sixth embodiment.
- the communication device 300 includes a switch group 310 composed of a plurality of switches, a filter group 320 composed of a plurality of filters, transmission side switches 331 and 332, reception side switches 351 and 352, and 353, transmission amplification circuits 341 and 342 and reception amplification circuits 361 and 362, an RF signal processing circuit (RFIC), a baseband signal processing circuit (BBIC), and an antenna element (ANT). Note that the antenna element (ANT) may not be built in the communication device 300.
- RFIC RF signal processing circuit
- BBIC baseband signal processing circuit
- ANT antenna element
- the antenna element (ANT) may not be built in the communication device 300.
- the switch group 310 connects the antenna element (ANT) and a signal path corresponding to a predetermined band in accordance with a control signal from a control unit (not shown), and is configured by a plurality of SPST type switches, for example. .
- the number of signal paths connected to the antenna element (ANT) is not limited to one, and a plurality of signal paths may be used. That is, the communication apparatus 300 may support carrier aggregation.
- the filter group 320 is composed of, for example, a plurality of filters (including a duplexer) having the following band in the pass band.
- the band includes (i) Band 12 transmission band, (ii) Band 13 transmission band, (iii) Band 14 transmission band, (iv) Band 27 transmission band, (v) Band 26 transmission band, ( vi) Band 29 and Band 14 (or Band 12, Band 67 and Band 13) reception band, (vii-Tx) Band 68 (or Band 28a or Band 28b) transmission band, (vii-Rx) Band 68 (or Band 28a or Band 28b) reception band, Viii-TxBand20 transmission band, (viii-Rx) Band20 reception band, (ix-Tx) Band27 (or Band26) transmission band, (x-Tx) Band8 transmission band, and (x-Rx) Band8 Reception band , It is.
- the transmission-side switch 331 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission signal paths on the low band side and a common terminal connected to the transmission amplifier circuit 341.
- the transmission side switch 332 is a switch circuit having a plurality of selection terminals connected to a plurality of transmission side signal paths on the high band side and a common terminal connected to the transmission amplification circuit 342.
- These transmission-side switches 331 and 332 are switch circuits that are provided in the previous stage of the filter group 320 (here, the previous stage in the transmission-side signal path) and the connection state is switched in accordance with a control signal from a control unit (not shown). . Thereby, the high frequency signals (here, the high frequency transmission signals) amplified by the transmission amplifier circuits 341 and 342 are output to the antenna element (ANT) through the predetermined filter of the filter group 320.
- ANT antenna element
- the reception side switch 351 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths on the low band side and a common terminal connected to the reception amplification circuit 361.
- the reception side switch 352 has a common terminal connected to the reception side signal path of a predetermined band (here, Band 20), and two selection terminals connected to the common terminal of the reception side switch 351 and the common terminal of the reception side switch 352. And a switch circuit.
- the reception side switch 353 is a switch circuit having a plurality of selection terminals connected to a plurality of reception side signal paths on the high band side and a common terminal connected to the reception amplification circuit 362.
- reception-side switches 351 to 353 are provided in the subsequent stage of the filter group 320 (here, the subsequent stage in the reception-side signal path), and the connection state is switched according to a control signal from a control unit (not shown).
- the high-frequency signal here, the high-frequency reception signal
- the antenna element ANT
- the RF signal processing circuit RFIC
- an RF signal processing circuit (RFIC) corresponding to the low band and an RF signal processing circuit (RFIC) corresponding to the high band may be provided separately.
- the transmission amplification circuit 341 is a power amplifier that amplifies the power of the low-band high-frequency transmission signal
- the transmission amplification circuit 342 is a power amplifier that amplifies the power of the high-band high-frequency transmission signal.
- the reception amplification circuit 361 is a low noise amplifier that amplifies the power of the low-band high-frequency reception signal
- the reception amplification circuit 362 is a low-noise amplifier that amplifies the power of the high-band high-frequency reception signal.
- the RF signal processing circuit is a circuit that processes a high-frequency signal transmitted and received by the antenna element (ANT). Specifically, the RF signal processing circuit (RFIC) processes a high-frequency signal (here, a high-frequency reception signal) input from the antenna element (ANT) via the reception-side signal path by down-conversion, etc. A reception signal generated by the signal processing is output to a baseband signal processing circuit (BBIC).
- the RF signal processing circuit (RFIC) processes the transmission signal input from the baseband signal processing circuit (BBIC) by up-conversion and the like, and generates a high-frequency signal (here, a high-frequency transmission signal) generated by the signal processing. ) To the transmitting side signal path.
- the communication device 300 configured as described above includes (vi) a filter having a reception band of Band29 and Band14 (or Band12, Band67 and Band13) in a passband, and a transmission band of (vii-Tx) Band68 (or Band28a or Band28b).
- a filter having a reception band of (vii-Rx) Band 68 (or Band 28a or Band 28b) in the pass band, and a filter having a transmission band of (ix-Tx) Band 27 (or Band 26) in the pass band As one, the high frequency filter according to any of Embodiments 1 to 5 is provided. That is, the filter switches the pass band according to the control signal.
- the control unit constitutes a high frequency front end circuit.
- control unit may be included in an RF signal processing circuit (RFIC), or may constitute a switch IC together with each switch controlled by the control unit. Good.
- RFIC RF signal processing circuit
- the high-frequency front-end circuit and communication device 300 configured as described above, by including the high-frequency filter according to any of Embodiments 1 to 5, while suppressing the loss at the high end of the passband,
- the frequency of the attenuation pole on the high side of the pass band can be varied. That is, it is possible to realize a high-performance high-frequency front-end circuit and communication device that can switch the pass band and the attenuation band while suppressing the loss at the high band end of the pass band. Further, since the number of filters can be reduced as compared with the case where a filter is provided for each band, the size can be reduced.
- the transmission-side switches 331 and 332 and the reception-side switches 351 to 353 switch circuits provided before or after the filter group 320 (a plurality of high-frequency filters). Is provided.
- a part of the signal path through which the high-frequency signal is transmitted can be shared. Therefore, for example, it is possible to share transmission amplifier circuits 341 and 242 or reception amplifier circuits 361 and 362 (amplifier circuits) corresponding to a plurality of high frequency filters. Therefore, the high-frequency front end circuit can be reduced in size and cost.
- the transmission side switches 331 and 332 and the reception side switches 351 to 353 may be provided. Further, the number of transmission side switches 331 and 332 and the number of reception side switches 351 to 353 are not limited to the above-described numbers, and, for example, one transmission side switch and one reception side switch are provided. It doesn't matter. Further, the number of selection terminals and the like of the transmission side switch and the reception side switch is not limited to this embodiment, and may be two each.
- the high frequency filter, the high frequency front end circuit, and the communication device according to the embodiment of the present invention have been described with reference to Embodiments 1 to 6.
- the high frequency filter, the high frequency front end circuit, and the communication device of the present invention have been described. Is not limited to the above embodiment.
- Examples and various devices incorporating the high-frequency filter, high-frequency front-end circuit, and communication device of the present disclosure are also included in the present invention.
- a high-frequency filter realized by combining the serial arm circuit 11A of the second embodiment and the parallel arm circuit 12B of the third embodiment or the parallel arm circuit 12C of the fourth embodiment is also included in the present invention.
- the impedance element connected in parallel to the third switch is a capacitor, and when the first switch is on, the third switch is on, and when the first switch is off, the third switch The switch may be off.
- the anti-resonance frequency of the series arm circuit and the resonance frequency on the high frequency side of the parallel arm circuit can be simultaneously shifted to the low frequency side or the high frequency side.
- the attenuation pole formed by the series arm circuit and the attenuation pole formed by the parallel arm circuit can be simultaneously shifted to the low frequency side or the high frequency side for the passband high band side, The frequency can be varied while maintaining the attenuation bandwidth on the side.
- the control circuit for the first switch and the third switch can be shared, the high-frequency filter can be downsized.
- the high frequency filters according to Embodiments 1 to 5 are not limited to being applied to a system that exclusively switches frequency bands that are close to each other, but a plurality of channels that are close to each other assigned within one frequency band. It is also applicable to a system that switches exclusively.
- the series arm resonator and the parallel arm resonator are not limited to the acoustic wave resonator using the surface acoustic wave, and for example, a bulk wave or a boundary acoustic wave is used. It may be configured by an elastic wave resonator.
- Each of the series arm resonator and the parallel arm resonator is not limited to one elastic wave resonator, and includes a plurality of divided resonators in which one elastic wave resonator is divided in series.
- At least one of the first capacitor and the second capacitor may not be formed of a comb-teeth capacitance electrode.
- an insulating layer or a dielectric layer is formed on the substrate. It may be composed of electrode films arranged to face each other.
- the parallel arm circuit may be formed of an LC resonance circuit instead of an elastic wave resonator.
- the parallel arm circuit is not limited to a resonance circuit, and may be an inductance element or a capacitance element.
- the configuration of the series arm circuit described in the first to fourth embodiments can be applied to a ladder type filter circuit including a plurality of series arm circuits including the series arm circuit and one or more parallel arm circuits. it can.
- the configuration of the series arm circuit different from the series arm circuit described in the first to fourth embodiments is not particularly limited.
- the filter circuit is a resonance circuit such as a longitudinally coupled resonator or an LC resonance circuit. It may be an inductance element or a capacitance element.
- the configuration of the series arm circuit may be appropriately selected according to the required specification. For example, when the attenuation enhancement is required, a longitudinally coupled resonator may be selected.
- the configuration of the ladder-type filter circuit including a plurality of series arm circuits including the series arm circuit described in the first to fourth embodiments and one or more parallel arm circuits is used.
- the configuration in which the series arm circuit described in the first to fourth embodiments is provided closest to the input / output terminal 11m or the input / output terminal 11n has been described.
- the configuration of the ladder type filter circuit is not limited to this.
- a series arm circuit different from the series arm circuit described in the first to fourth embodiments is provided closest to the input / output terminal 11m or the input / output terminal 11n. It does not matter even if it is done. That is, the series arm circuit described in the first to fourth embodiments may be provided at a portion other than the ends of the plurality of series arm circuits.
- the piezoelectric substrate 102 in the case of forming the surface acoustic wave filter has a high sound speed support substrate, a low sound speed film, and a piezoelectric film laminated in this order.
- a laminated structure may be used.
- the piezoelectric film may be, for example, a 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 50 ° from the Y axis with the X axis as the central axis, Alternatively, it is made of ceramic and is made of a single crystal or ceramic in which surface acoustic waves propagate in the X-axis direction.
- the thickness of the piezoelectric film is 3.5 ⁇ or less, where ⁇ is a wavelength determined by the electrode finger pitch of the IDT electrode.
- the high sound velocity support substrate is a substrate that supports the low sound velocity film, the piezoelectric film, and the electrode film 101.
- the high-sonic support substrate is a substrate in which the acoustic velocity of the bulk wave in the high-sonic support substrate is higher than that of elastic waves such as surface waves and boundary waves propagating through the piezoelectric film. It functions in such a way that it is confined in the part where the low sound velocity film is laminated and does not leak below the high sound velocity support substrate.
- the high sound speed support substrate is, for example, a silicon substrate and has a thickness of, for example, 120 ⁇ m.
- the low acoustic velocity film is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than that of the elastic wave propagating through the piezoelectric membrane, and is disposed between the piezoelectric membrane and the high acoustic velocity support substrate. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed.
- the low acoustic velocity film is, for example, a film mainly composed of silicon dioxide and has a thickness of, for example, 670 nm.
- the Q value at the resonance frequency and the anti-resonance frequency can be significantly increased as compared with a structure in which the piezoelectric substrate 102 is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
- the high-sonic support substrate has a structure in which a support substrate and a high-sonic film in which the acoustic velocity of the propagating bulk wave is higher than that of elastic waves such as surface waves and boundary waves propagating through the piezoelectric film are laminated. You may do it.
- the support substrate is a piezoelectric material such as sapphire, lithium tantalate, lithium niobate, crystal, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, forsterite, etc.
- the high sound velocity film includes various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, a medium mainly composed of the above materials, and a medium mainly composed of a mixture of the above materials. High sound velocity material can be used.
- an inductance element and a capacitance element may be connected between the input / output terminals and the common terminal. Furthermore, an inductance component due to wiring connecting each circuit element may be included.
- the present invention is widely used in communication devices such as mobile phones as small high-frequency filters, high-frequency front-end circuits, and communication devices that can be applied to multiband and multimode systems that use a plurality of adjacent bands simultaneously or exclusively. it can.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Filters And Equalizers (AREA)
Abstract
高周波フィルタ(10)は、入出力端子(11m)と入出力端子(11n)とを結ぶ経路上に設けられた直列腕回路(11)と、当該経路上のノード(x1)とグランドとに接続された並列腕回路(12)と、を備え、直列腕回路(11)は、直列腕共振子(s1)と、キャパシタ(C1)と、を有する直列接続回路(11e)と、直列接続回路(11e)に並列接続され、直列腕回路(11)の反共振周波数を可変する、第1周波数可変回路(11a)と、を有し、第1周波数可変回路(11a)は、キャパシタ(C2)と、キャパシタ(C2)と直列接続されたスイッチ(SW1)と、を有し、直列腕共振子(s1)とキャパシタ(C1)とは、直列接続されている。
Description
本発明は、共振子を有する高周波フィルタ、高周波フロントエンド回路及び通信装置に関する。
従来、マルチバンド化に対応する高周波フィルタとして、周波数可変型の高周波フィルタ(チューナブルフィルタ)が提案されている。このような周波数可変型の高周波フィルタの直列腕回路としては、例えば、キャパシタとスイッチとの直列接続回路を直列腕共振子に対して並列に接続した構成が知られている。
そして、このような構成において、スイッチのオン(導通状態)とオフ(非導通状態)との切り換えをすることによって、直列腕回路の反共振周波数を周波数シフトさせることができる。その結果、直列腕回路の反共振周波数によって減衰極が規定され、高周波フィルタの減衰極の周波数を可変することができる(例えば、特許文献1参照)。
しかしながら、上記従来の構成では、スイッチのオン(導通状態)及びオフ(非導通状態)の切り換えによっても、直列腕回路の共振周波数は変化していない。
そして、上記従来の構成を直列腕回路及び並列腕回路を備えるラダー型のフィルタ回路に適用することにより、直列腕回路の共振周波数と並列腕回路によって通過帯域が規定され、直列腕回路の反共振周波数によって通過帯域高域側の減衰極が規定される高周波フィルタが構成される。そして、該高周波フィルタは、スイッチのオン(導通状態)とオフ(非導通状態)との切り換えによって、通過帯域高域側の減衰極の周波数を可変することができる。
しかしながら、上記高周波フィルタでは、スイッチのオンとオフとの切り換えによって、直列腕回路の共振周波数は変化していないため、直列腕回路の反共振周波数と共振周波数の周波数差が大きくなってしまい、通過帯域高域端のロスが悪い(ロスが大きい)という問題がある。
そこで、本発明は、通過帯域の高域端におけるロスを抑制しつつ、通過帯域の高域側における減衰極の周波数を可変できる高周波フィルタ、高周波フロントエンド回路及び通信装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る高周波フィルタは、第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた直列腕回路と、前記経路上のノードとグランドとに接続された並列腕回路と、を備え、前記直列腕回路は、直列腕共振子と、第1キャパシタと、を有する第1直列接続回路と、前記第1直列接続回路に並列接続され、前記直列腕回路の反共振周波数を可変する、第1周波数可変回路と、を有し、前記第1周波数可変回路は、第2キャパシタと、前記第2キャパシタと直列接続された第1スイッチと、を有し、前記直列腕共振子と前記第1キャパシタとは、直列接続されている。
これによれば、直列腕共振子と第1キャパシタとが直列接続されていることにより、直列腕共振子と第1キャパシタとの第1直列接続回路の共振周波数が、直列腕共振子単体の共振周波数に比べて、高周波数側に周波数シフト(以下、単に「シフト」)する。つまり、当該直列接続回路は、直列腕共振子単体に比べて、共振周波数と反共振周波数との周波数差を小さくすることができる。したがって、本態様によれば、直列腕回路の上記周波数差が小さいことにより、通過帯域の高域側(以下、「通過帯域高域側」)のカットオフ周波数を高周波数側にシフトさせた状態で通過帯域高域側の減衰極をシフトさせることができる。すなわち、通過帯域の高域端におけるロス(以下、「通過帯域高域端のロス」)を抑制しつつ、通過帯域の高域側における減衰極(以下、「通過帯域高域側の減衰極」)の周波数を可変できる周波数可変型の高周波フィルタを実現することができる。
また、前記直列腕回路は、並列接続回路を有し、前記並列接続回路は、前記第1キャパシタと、前記第1キャパシタに並列接続された第2スイッチと、を有し、前記並列接続回路は、前記直列腕回路の共振周波数を可変する第2周波数可変回路を構成することにしてもよい。
これによれば、第1キャパシタに第2スイッチが並列接続されていることにより、第2スイッチのオンとオフとの切り換えに応じて直列腕回路の共振周波数がシフトする。したがって、直列腕回路の共振周波数及び反共振周波数の各々をシフトさせることができるため、通過帯域高域側のカットオフ周波数および通過帯域高域側の減衰極の周波数をそれぞれ独立して可変することが可能となる。すなわち、第1スイッチ及び第2スイッチのオンとオフとの切り換えによって通過帯域高域側のカットオフ周波数及び通過帯域高域側の減衰極の周波数のバリエーションを増やすことができる。
また、前記第1スイッチがオンの場合、前記第2スイッチはオンであり、前記第1スイッチがオフの場合、前記第2スイッチはオフであることにしてもよい。
本態様によれば、第1スイッチと第2スイッチのオン及びオフを同じ状態とすることにより、直列腕回路の共振周波数と反共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができる。このため、通過帯域高域側のカットオフ周波数及び減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスを抑制しつつ通過帯域高域側の減衰極の周波数を可変することができる。
また、第1スイッチと第2スイッチの制御回路を共通化できるため、高周波フィルタの小型化が可能になる。
また、前記直列腕共振子は、少なくとも一部に圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有し、前記第1キャパシタ及び前記第2キャパシタの少なくとも一方のキャパシタは、前記基板と、当該基板上に形成された複数の電極指からなる櫛歯容量電極とで構成されており、前記櫛歯容量電極を構成する複数の電極指のピッチは、前記直列腕共振子を構成する複数の電極指のピッチより狭く、前記少なくとも一方のキャパシタの自己共振点は、前記高周波フィルタの通過帯域より高域側に形成されていることにしてもよい。
櫛歯容量電極で構成されるキャパシタは、電極指のピッチが狭いほど、自己共振点が高周波数側にシフトする。ここで、自己共振点とは、容量素子のQ値(容量Q)が局所的に低下する特異点の周波数である。このため、櫛歯容量電極について、電極指のピッチを直列腕共振子の電極指のピッチより狭くして自己共振点を高周波フィルタの通過帯域より高周波数側に追いやることにより、通過帯域内及び通過帯域高域側近傍において上記少なくとも一方のキャパシタのQ値を高めることができる。これにより、通過帯域内のロスを抑制できる。
また、前記櫛歯容量電極における複数の電極指の膜厚は、前記直列腕共振子における複数の電極指の膜厚以下であることにしてもよい。
製造上の理由から、電極指のピッチは上記電極指の膜厚によって制限される。このため、櫛歯容量電極で構成されるキャパシタにおける電極指の膜厚を直列腕共振子における電極指の膜厚より薄くすることによって、上記キャパシタにおける電極指のピッチをより狭くできるので、直列腕共振子のQ値及びキャパシタのQ値の双方を確保しやすくなる。よって、直列腕共振子のQ値及び上記少なくとも一方のキャパシタのQ値の双方を確保することにより、通過帯域内のロスのさらなる抑制及び/または通過帯域高域側の減衰スロープの急峻性を向上することができる。
また、前記高周波フィルタは、さらに、前記経路上に設けられた1以上の他の直列腕回路を備え、前記直列腕回路は、前記他の直列腕回路を介することなく、前記第1入出力端子及び前記第2入出力端子の一方の入出力端子に接続されていることにしてもよい。
直列腕共振子として弾性表面波共振子を用いた場合、直列腕共振子の反共振周波数の高周波数側にバルク波損失が発生する。したがって、複数のフィルタそれぞれの一方の端子が共通接続された共通端子を有するマルチプレクサにおいて、中心周波数の低いフィルタに上記直列腕共振子を有する高周波フィルタを適用した場合、バルク波損失により、中心周波数の高いフィルタの通過帯域内のロスが悪化する。このようなロスの悪化は、共通端子に最も近く接続された直列腕回路(すなわち他の直列腕回路を介することなく共通端子に接続された直列腕回路)のバルク波損失による影響が支配的である。
これに関し、本態様によれば、直列腕回路が第1及び第2キャパシタを有することにより、入力された信号が直列腕共振子と第1及び第2キャパシタとで信号分配(電力分配)される。このため、直列腕回路全体とした見たときのバルク波損失が低減される。そして、このような直列腕回路が一方の入出力端子の最も近く接続されることで、当該一方の入出力端子が共通端子に接続された中心周波数の低いフィルタを備えるマルチプレクサにおいて、中心周波数が高いフィルタの通過帯域内のロスを抑制することができる。
また、前記第1スイッチは、一方の端子が前記一方の入出力端子に接続され、他方の端子が前記第2キャパシタに接続されていることにしてもよい。
これにより、複数の直列腕共振子が共振子用のチップに設けられ、第1スイッチが別のチップに設けられた場合に、共振子用のチップの端子数を削減することができる。具体的には、この場合、共振子用のチップにおいて、上記一方の入出力端子に接続される端子と上記別のチップに接続される端子とを共通化することができる。このため、本態様によれば、これらの端子を個別に設けた構成に比べて、共振子用のチップの端子数を削減することができ、高周波フィルタの小型化が図られる。
また、前記並列腕回路は、前記ノードと前記グランドとの間に接続された第1並列腕共振子と、前記第1並列腕共振子に並列接続された第3周波数可変回路と、を備え、前記第3周波数可変回路は、第2並列腕共振子と第3スイッチとを有する第2直列接続回路を含み、前記第1並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも低く、前記第2並列腕共振子の共振周波数は、前記第1並列腕共振子の共振周波数よりも高く、前記第2並列腕共振子の反共振周波数は、前記第1並列腕共振子の反共振周波数よりも高いことにしてもよい。
このように、第1並列腕共振子に第3周波数可変回路が並列接続していることにより、第3スイッチがオフの場合、理想的には、第3スイッチのインピーダンスが無限大となって第2並列腕共振子が無効となるため、並列腕回路は、第1並列腕共振子で構成される共振周波数と反共振周波数を有する。一方、第3スイッチがオンの場合、第2並列腕共振子が有効となるため、並列腕回路は、第1並列腕共振子と第2並列腕共振子の並列接続回路となり、第1並列腕共振子と第2並列腕共振子それぞれの共振周波数と同じ2つの共振周波数と、第1並列腕共振子と第2並列腕共振子それぞれの反共振周波数より低い2つの反共振周波数を有する。
したがって、第3スイッチのオンとオフとの切り換えによって、並列腕回路の共振周波数及び反共振周波数を切り換えることができる。具体的には、第3スイッチがオフである場合と比較して、オンである場合は、通過帯域高域側のカットオフ周波数が低周波数側にシフトするとともに、通過帯域高域側に第2並列腕共振子の共振周波数によって規定される減衰極が新たに形成される。
これにより、本態様によれば、理想的には、第3スイッチのオンとオフとの切り換えによって、通過帯域と減衰帯域の周波数を可変することができる。
ただし、実際には、第3スイッチがオフ時にオフ容量を有するため、第3スイッチがオフの場合であっても、第2並列腕共振子が有効となり、並列腕回路は、第1並列腕共振子と、第2並列腕共振子および第3スイッチのオフ容量の直列接続回路による2つの共振周波数と2つの反共振周波数を有し、高周波数側の反共振周波数と共振周波数は、直列腕回路の反共振周波数で構成される減衰極より高周波数側に位置する。
これに関し、一般的にスイッチのオフ容量は微小(0.3pF程度)である。このため、第3スイッチがオフである場合には、2つの反共振周波数のうち低周波数側の反共振周波数は、第1並列腕共振子の反共振周波数より若干低い周波数に位置し、第3スイッチがオンである場合よりも高い周波数に位置する。また、2つの共振周波数のうち高周波数側の共振周波数は、第2並列腕共振子の反共振周波数より若干低い周波数に位置し、第3スイッチがオンである場合よりも高い周波数に位置する。したがって、第3スイッチのオンとオフとの切り換えによって、並列腕回路の低周波数側の反共振周波数及び高周波数側の共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができる。
よって、第3スイッチのオンとオフとの切り換えによって、通過帯域高域側のカットオフ周波数と減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスの悪化を抑制しつつ通過帯域高域側の減衰極の周波数を可変できる。
また、前記第3周波数可変回路は、さらに、前記第3スイッチに並列接続されたインピーダンス素子を有することにしてもよい。
このように、第3スイッチに対してインピーダンス素子が並列接続されていることにより、第3スイッチのオン及びオフに関わらず、並列腕回路は、2つの共振周波数と2つの反共振周波数を有し、第3スイッチがオフである場合においても直列腕回路の反共振周波数で構成される減衰極の近傍に、並列腕回路の高周波数側の共振周波数によって構成される減衰極ができ、第3スイッチがオフである場合においても減衰帯域幅を広帯域化できるとともに、第3スイッチのオンとオフとの切り換えによって、低周波数側の反共振周波数と高周波数側の共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができる。よって、第3スイッチのオンとオフとの切り換えによって、通過帯域高域側のカットオフ周波数と減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスを抑制しつつ通過帯域高域側の減衰極の周波数を可変できる。
また、前記直列腕回路は、前記第1キャパシタに並列接続された第2スイッチを有し、前記インピーダンス素子は、第3キャパシタであり、前記第1スイッチがオンである場合、前記第2スイッチ及び前記第3スイッチのいずれもオンであり、前記第1スイッチがオフである場合、前記第2スイッチ及び前記第3スイッチのいずれもオフであることにしてもよい。
このように、インピーダンス素子が第3キャパシタであるため、第1スイッチ、第2スイッチ及び第3スイッチのオン及びオフを同じ状態とすることにより、直列腕回路の共振周波数及び反共振周波数、ならびに、並列腕回路の低周波数側の反共振周波数及び高周波数側の共振周波数、を同時に低周波数側もしくは高周波数側にシフトすることができる。このため、通過帯域高域側のカットオフ周波数及び減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスを抑制しつつ通過帯域高域側の減衰極の周波数を可変することができる。
また、第1スイッチ、第2スイッチ及び第3スイッチの制御回路を共通化できるため、高周波フィルタの小型化が可能になる。
また、前記第1スイッチは、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチであることにしてもよい。
これにより、第1スイッチの低抵抗化を図ることができるので、通過帯域内のロスを抑制できる。また、第1スイッチを小型化できるので、高周波フィルタの小型化及び低コスト化が可能となる。
また、本発明の一態様に係る高周波フロントエンド回路は、上記いずれかの高周波フィルタと、前記第1スイッチのオン及びオフを制御する制御部と、を備える。
これにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変できる小型の高周波フロントエンド回路を実現できる。
また、本発明の一態様に係る通信装置は、アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記の高周波フロントエンド回路と、を備える。
これにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変できる小型の通信装置を実現できる。
本発明に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置によれば、通過帯域の高域端のロスを抑制しつつ、通過帯域の高域側における減衰極の周波数を可変することができる。
以下、本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、共振子等の回路素子については要求仕様等に応じて定数が適宜調整され得る。このため、回路素子については、同一の符号であっても定数が異なる場合もある。
また、共振子または回路における共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための共振周波数であり、当該共振子または当該回路のインピーダンスが極小となる特異点(理想的にはインピーダンスが0となる点)である「共振点」の周波数である。
また、共振子または回路における反共振周波数とは、特に断りの無い限り、当該共振子または当該回路を含むフィルタの通過帯域または通過帯域近傍の減衰極を形成するための反共振周波数であり、当該共振子または当該回路のインピーダンスが極大となる特異点(理想的にはインピーダンスが無限大となる点)である「反共振点」の周波数である。
なお、以下の実施の形態において、直列腕回路および並列腕回路は、以下のように定義される。
並列腕回路は、第1入出力端子および第2入出力端子を結ぶ経路上の一のノードと、グランドと、の間に配置された回路である。
直列腕回路は、第1入出力端子または第2入出力端子と、並列腕回路が接続される上記経路上のノードと、の間に配置された回路、または、一の並列腕回路が接続される上記経路上の一のノードと、他の並列腕回路が接続される上記経路上の他のノードと、の間に配置された回路である。
(実施の形態1)
以下、本実施の形態に係る高周波フィルタについて、実施例(実施例1)を用いて説明する。
以下、本実施の形態に係る高周波フィルタについて、実施例(実施例1)を用いて説明する。
[1-1. 構成]
図1Aは、実施例1に係る高周波フィルタ10の回路構成図である。同図に示された高周波フィルタ10は、直列腕回路11と、並列腕回路12と、を備える。
図1Aは、実施例1に係る高周波フィルタ10の回路構成図である。同図に示された高周波フィルタ10は、直列腕回路11と、並列腕回路12と、を備える。
直列腕回路11は、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)とを結ぶ経路(直列腕)上に設けられた共振回路である。具体的には、直列腕回路11は、直列腕共振子s1と、キャパシタC1(第1キャパシタ)と、キャパシタC2(第2キャパシタ)と、スイッチSW1(第1スイッチ)と、スイッチSW2(第2スイッチ)と、を有する。このように、直列腕回路11は、インピーダンスが極小となる共振周波数(共振点)及びインピーダンスが極大となる反共振周波数(反共振点)を持つ直列腕共振子s1を有するため、当該共振周波数及び当該反共振周波数に依存する共振周波数及び反共振周波数を持つ。なお、この詳細については、後述する。
ここで、直列腕共振子s1とキャパシタC1とは直列接続されており、直列接続回路11e(第1直列接続回路)を構成する。また、キャパシタC2とスイッチSW1とは直列接続されており、この直列接続回路は第1周波数可変回路11aを構成する。また、キャパシタC1とスイッチSW1とは並列に接続されており、この並列接続回路は、第2周波数可変回路11bを構成する。
直列腕共振子s1は、入出力端子11mと入出力端子11nとを結ぶ直列腕上に設けられた共振子であり、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)との間に接続されている。
第1周波数可変回路11aは、キャパシタC2(第2キャパシタ)とスイッチSW1(第1スイッチ)との直列接続回路であって、直列腕共振子s1とキャパシタC1(第1キャパシタ)との直列接続回路11eに対して並列に接続されている。この第1周波数可変回路11aは、直列腕回路11の反共振周波数を可変し、具体的には、RFIC等の制御部(図示せず)からの制御信号にしたがってスイッチSW1のオン(導通状態)及びオフ(非導通状態)が切り換わることにより当該反共振周波数を可変する。
本実施例では、第1周波数可変回路11aを構成するキャパシタC2及びスイッチSW1は、入出力端子11m側からこの順に接続されているが、この逆の順序で接続されていてもかまわない。
第2周波数可変回路11bは、キャパシタC1(第1キャパシタ)とスイッチSW2(第2スイッチ)との並列接続回路であって、直列腕共振子s1に対して直列に接続されている。この第2周波数可変回路11bは、直列腕回路11の共振周波数を可変し、具体的には、RFIC等の制御部(図示せず)からの制御信号にしたがってスイッチSW2のオン及びオフが切り換わることにより当該共振周波数を可変する。
本実施例では、第2周波数可変回路11bは、直列腕共振子s1と入出力端子11nとの間に接続されているが、入出力端子11mと直列腕共振子s1との間に接続されていてもかまわない。つまり、キャパシタC1は、直列腕共振子s1と入出力端子11nとの間に限らず、入出力端子11mと直列腕共振子s1との間に接続されていてもかまわない。
本実施例では、第1周波数可変回路11a及び第2周波数可変回路11bにおいて、スイッチSW1(第1スイッチ)がオン(導通状態)の場合、スイッチSW2(第2スイッチ)はオンであり、スイッチSW1がオフ(非導通状態)の場合、スイッチSW2はオフである。つまり、スイッチSW2とスイッチSW1とは、同時にオンまたは同時にオフとなる。
ここで、スイッチSW1、SW2は、SPST(Single Pole Single Throw)型のスイッチ素子であり、例えば、GaAsもしくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、または、ダイオードスイッチであり、例えばスイッチIC(Integrated Circuit)として構成される。なお、スイッチSW1、SW2は、半導体基板に形成された半導体スイッチに限らず、MEMS(Micro Electro Mechanical Systems)で構成された機械式スイッチであってもかまわない。
並列腕回路12は、入出力端子11mと入出力端子11nとを結ぶ経路(直列腕)上のノードx1とグランド(基準端子)とに接続された共振回路である。具体的には、並列腕回路12は、ノードx1とグランドとの間に接続された共振子である並列腕共振子p1を有する。このように、並列腕回路12は、インピーダンスが極小となる共振周波数(共振点)及びインピーダンスが極大となる反共振周波数(反共振点)を持つ並列腕共振子p1を有するため、当該共振周波数及び当該反共振周波数に依存する共振周波数及び反共振周波数を持つ。
[1-2. 特性]
以上のように構成された高周波フィルタ10は、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。以下、本実施例の高周波フィルタ10のフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
以上のように構成された高周波フィルタ10は、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。以下、本実施例の高周波フィルタ10のフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
実施例1の高周波フィルタ10の回路定数を、表1に示す。
図1Bは、高周波フィルタ10に関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSW1及びスイッチSW2がともにオンの場合、ならびに、スイッチSW1及びスイッチSW2がともにオフの場合の2状態のフィルタ特性が示されている。また、同図下段には、直列腕共振子s1と、直列腕回路11と、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路11においては、スイッチSW1及びスイッチSW2がともにオンの場合、ならびに、スイッチSW1及びスイッチSW2がオフの場合の2状態のインピーダンス特性が示されている。
まず、図1Aに示された回路構成において、スイッチSW1がオフであり、かつ、スイッチSW2がオフである場合(スイッチSW1、2ともにオフの場合)の特性について説明する。
この場合、直列腕回路11は、直列腕共振子s1とキャパシタC1との直列接続回路11e(第1直列接続回路)に対して、スイッチSW1がオフとなっている第1周波数可変回路11aが並列に接続された状態となる。
したがって、図1B下段のグラフに示すように、直列腕回路11の反共振周波数は、第1周波数可変回路11aのキャパシタC2とスイッチSW1のオフ容量(Coff1)との合成容量の影響を受けることにより、直列腕共振子s1の反共振周波数よりも若干低周波数側にシフトする。
ここで、スイッチSW1のオフ容量(Coff1)とは、スイッチSW1がオフの場合における容量成分である。つまり、スイッチSW1は、オフの場合、理想的には容量成分がゼロ(すなわちインピーダンス無限大)となるが、実際には微小な容量成分であるオフ容量(Coff1)を有する。このオフ容量は、キャパシタC2の容量値に比べて十分に小さい(0.3pF程度)ため、キャパシタC2とスイッチSW1のオフ容量との合成容量は、キャパシタC2の容量値に比べて十分小さい値となる。よって、スイッチSW1がオフの場合とオンの場合とでは、直列腕回路11の反共振周波数に周波数差が生じる。
また、直列腕回路11の共振周波数は、キャパシタC1の影響を受けることにより、直列腕共振子s1の共振周波数よりも高周波数側にシフトする。
次に、図1Aに示された回路構成において、スイッチSW1がオンであり、かつ、スイッチSW2がオンである場合(スイッチSW1、2ともにオンの場合)の特性について説明する。
この場合、直列腕回路11は、直列腕共振子s1とスイッチSW2との直列接続回路に対して、スイッチSW1がオンとなっている第1周波数可変回路11aが並列に接続された状態となる。つまり、直列腕回路11は、直列腕共振子s1とキャパシタC2との並列接続回路となる。
したがって、図1B下段のグラフに示すように、直列腕回路11の反共振周波数は、第1周波数可変回路11aのキャパシタC2の影響を受けることにより、直列腕共振子s1の反共振周波数よりも低周波数側にシフトする。一方、直列腕回路11の共振周波数は、スイッチSW2によってキャパシタC1が短絡されることにより、直列腕共振子s1の共振周波数と同じになる。
このように、本実施例では、スイッチSW1、2のオン及びオフの切り換えに応じて、直列腕回路11の反共振周波数及び共振周波数がシフトする。
ここで、直列腕回路11の共振周波数及び並列腕回路12の反共振周波数は高周波フィルタ10の通過帯域を規定し、直列腕回路11の反共振周波数は高周波フィルタ10の通過帯域高域側の減衰極を規定し、並列腕回路12の共振周波数は高周波フィルタ10の通過帯域低域側の減衰極を規定する。また、並列腕回路12の反共振周波数及び共振周波数は、スイッチSW1、2のオン及びオフの切り換えに関わらず一定であり、当該反共振周波数は並列腕共振子p1の反共振周波数と同じであり、当該共振周波数は並列腕共振子p2の共振周波数と同じである。
よって、通過帯域高域側の減衰極は、スイッチSW1がオフの場合に高周波数側にシフトし、スイッチSW1がオンの場合に低周波数側にシフトする。また、通過帯域高域側のカットオフ周波数は、スイッチSW2がオフの場合に高周波数側にシフトし、スイッチSW2がオンの場合に低周波数側にシフトする。
したがって、図1B上段のグラフに示すように、高周波フィルタ10の通過帯域は、スイッチSW1、2がともにオンの場合に低周波数側にシフトし(低周波数シフト)、スイッチSW1、2がともにオフの場合に高周波数側にシフトする(高周波数シフト)。
[1-3. 効果等]
以下、本実施例によって奏される効果について、本実施の形態の比較例に係る高周波フィルタと比較して説明する。
以下、本実施例によって奏される効果について、本実施の形態の比較例に係る高周波フィルタと比較して説明する。
図2Aは、比較例に係る高周波フィルタ10Xの回路構成図である。同図に示された高周波フィルタ10Xは、実施例1に係る高周波フィルタ10に比べて、キャパシタC1及びスイッチSW2によって構成される第2周波数可変回路11bを有さない点のみが異なる。
このように構成された高周波フィルタ10Xであっても、スイッチSW1のオン及びオフに応じて通過帯域高域側の減衰極の周波数を可変することができる。
図2Bは、高周波フィルタ10Xに関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSW1がオンの場合、ならびに、スイッチSW1がオフの場合の2状態のフィルタ特性が示されている。また、同図下段には、直列腕共振子s1と、直列腕回路11Xと、並列腕共振子p1と、のインピーダンス特性が示されている。なお、直列腕回路11Xにおいては、スイッチSW1がオンの場合、ならびに、スイッチSW1がオフの場合の2状態のインピーダンス特性が示されている。
なお、比較例の高周波フィルタ10Xの回路定数は、実施例1と同様である。
まず、図2Aに示された回路構成において、スイッチSW1がオフである場合の特性について説明する。
この場合、直列腕回路11Xは、直列腕共振子s1に対して、スイッチSW1がオフとなっている第1周波数可変回路11aが並列に接続された状態となる。
したがって、図2B下段のグラフに示すように、直列腕回路11Xの反共振周波数は、キャパシタC2とスイッチSW1のオフ容量(Coff1)との合成容量の影響を受けることにより、直列腕共振子s1の反共振周波数よりも若干低周波数側にシフトする。一方、直列腕回路11Xの共振周波数は、直列腕共振子s1の共振周波数と同じになる。
次に、図2Aに示された回路構成において、スイッチSW1がオンである場合の特性について説明する。
この場合、直列腕回路11Xは、直列腕共振子s1に対して、スイッチSW1がオンとなっている第1周波数可変回路11aが並列に接続された状態となる。つまり、直列腕回路11Xは、直列腕共振子s1とキャパシタC2との並列接続回路となる。
したがって、図2B下段のグラフに示すように、直列腕回路11Xの反共振周波数は、第1周波数可変回路11aのキャパシタC2の影響を受けることにより、直列腕共振子s1の反共振周波数よりも低周波数側にシフトする。一方、直列腕回路11Xの共振周波数は、直列腕共振子s1の共振周波数と同じになる。
したがって、比較例の通過帯域は、図2B上段のグラフに示すように、通過帯域高域側の減衰極のみがシフトすることにより、低周波数側あるいは高周波数側にシフトする。
図3Aは、実施例1及び比較例に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図3Bは、実施例1及び比較例に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。
図3Aから明らかなように、低周波数シフト時において、実施例1では、比較例に比べて、通過帯域内のロスが若干悪化するものの同程度に抑制できている。
ここで、当該ロスの若干の悪化は、スイッチSW2のオン時の抵抗成分(オン抵抗)の影響による。このため、スイッチSW2のオン抵抗を小さくすることにより当該ロスの悪化を抑制することは可能である。ただし、スイッチSW2のオン抵抗を小さくするとスイッチSW2の大型化につながるため、スイッチSW2は、高周波フィルタ10の通過帯域内ロス及びサイズ等の要求仕様により適宜選択されればよい。
これに関し、一般的に、スイッチは、オン抵抗を小さくすると、オフ容量及びサイズがともに大きくなるというトレードオフの関係を有する。本願発明者は、この関係とスイッチSW1、SW2の特性(オン抵抗、オフ容量、等)がフィルタ特性に及ぼす影響とを考慮して、スイッチSW1、SW2に関して次のことを見出した。
具体的には、スイッチSW1は直列腕共振子s1をバイパスするように接続されているため、スイッチSW1の特性は、直列腕回路11の反共振周波数に影響する。つまり、当該特性は、高周波フィルタ10の通過帯域高域側の減衰極に影響する。したがって、スイッチSW2のオン抵抗が増加しても、高周波フィルタ10の通過帯域内のロスの悪化は殆どない。一方、スイッチSW1のオフ容量が増加すると、SW1のオン及びオフの切り換えによる第1周波数可変回路11aの容量差が小さくなるため、周波数可変幅が狭くなる。よって、スイッチSW1については、オフ容量を小さく(すなわちオン抵抗を大きく)することが好ましい。
また、スイッチSW2は直列腕共振子s1と直列接続されているため、スイッチSW2の特性は、直列腕回路11の共振周波数に影響する。つまり、当該特性は、高周波フィルタ10の通過帯域内に影響する。したがって、スイッチSW2のオン抵抗が増加すると、スイッチSW2がオンの場合における高周波フィルタ10の通過帯域内のロスが悪化する。一方、スイッチSW2のオフ容量が増加しても、キャパシタC1の容量値を適宜調整することにより、当該オフ容量とキャパシタC1との合成容量を維持することができるため、問題にならない。よって、スイッチSW2については、SW2に対して、オン抵抗を小さく(すなわちオフ容量を大きく)することが好ましい。
また、図3Bから明らかなように、高周波数シフト時において、実施例1では、比較例に比べて、通過帯域高域端のロスが改善(抑制)されている。
つまり、比較例の直列腕回路11Xでは、スイッチSW1のオン及びオフの切り換えによって、反共振周波数のみ可変し、共振周波数が可変しないため、高周波数シフトした場合の直列腕回路11Xの反共振周波数と共振周波数の周波数差が大きい。言い換えると、通過帯域高域側の減衰極の可変に伴うカットオフ周波数の変化が小さく、急峻性が劣るため、通過帯域高域端のロスが悪くなる。
これに対して、本実施例によれば、直列腕共振子s1とキャパシタC1(第1キャパシタ)とが直列接続されていることにより、直列腕共振子s1とキャパシタC1との直列接続回路11e(第1直列接続回路)の共振周波数が、直列腕共振子s1単体の共振周波数に比べて、高周波数側にシフトする。つまり、当該直列接続回路11eは、直列腕共振子s1単体に比べて、共振周波数と反共振周波数との周波数差を小さくすることができる。したがって、本態様によれば、直列腕回路11の上記周波数差が小さいことにより、通過帯域高域側のカットオフ周波数を高周波数側にシフトさせた状態で通過帯域高域側の減衰極をシフトさせることができる。すなわち、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変できる周波数可変型の高周波フィルタを実現することができる。
また、本実施例によれば、キャパシタC1にスイッチSW2(第2スイッチ)が並列接続されていることにより、スイッチSW2のオン及びオフに応じて直列腕回路11の共振周波数がシフトする。したがって、直列腕回路11の共振周波数及び反共振周波数の各々をシフトさせることができるため、通過帯域高域側のカットオフ周波数および通過帯域高域側の減衰極の周波数をそれぞれ独立して可変することが可能となる。
ここで、例えば、3GPP(Third Generation Partnership Project)で規定されるバンドの多くは、Tx帯域(送信帯域)が低周波数側、Rx帯域(受信帯域)が高周波数側になり、各バンドの中心周波数及び帯域幅が異なる。そのため、これに使用する周波数可変型の高周波フィルタは、Tx帯域およびRx帯域のいずれか一方を通過帯域、他方を減衰帯域とし、通過帯域と減衰帯域を同時に低周波数側もしくは高周波数側にシフトする必要がある。
本実施例によれば、スイッチSW1とスイッチSW2のオン(導通状態)及びオフ(非導通状態)を同じ状態とすることにより、直列腕回路11の共振周波数と反共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができる。このため、通過帯域高域側のカットオフ周波数及び減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスを抑制しつつ通過帯域高域側の減衰極の周波数を可変することができる。
つまり、比較例では、高周波数シフトした場合に、直列腕回路11Xの共振周波数と反共振周波数との周波数差が大きくなるため、通過帯域高域側の急峻性が劣ることで通過帯域高域端のロスが悪くなった。これに対し、本実施例では、直列腕回路11の共振周波数と反共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができるので、高周波数シフトした場合に、直列腕回路11の共振周波数と反共振周波数との周波数差が維持されるため、通過帯域高域側の急峻性が維持される。よって、本実施例によれば、比較例に比べて、通過帯域高域側の急峻性が向上することにより、通過帯域高域端のロスを抑制することができる。
なお、高周波フィルタ10の通過帯域の周波数可変幅はキャパシタC1、C2の定数に依存し、例えば、キャパシタC1の定数が小さくキャパシタC2の定数が大きいほど周波数可変幅が広くなる。このため、キャパシタC1の定数は、高周波フィルタ10に要求される周波数仕様に応じて、適宜決定され得る。また、キャパシタC1、C2は、バリキャップ及びDTC(Digitally Tunable Capacitor)等の可変キャパシタであってもかまわない。
なお、本実施の形態に係る高周波フィルタ10において、スイッチSW1、SW2を同時にオン、または、スイッチSW1、SW2を同時にオフするモードについて説明したが、その他のモードを選択してもよい。すなわち、スイッチSW1がオンかつスイッチSW2がオフであるモード、及び、スイッチSW1がオフかつスイッチSW2がオンであるモードを選択してもよい。
図4は、実施例1に係る高周波フィルタ10のスイッチSW1、SW2のオン及びオフを変化させた場合のフィルタ特性の変化を表すグラフである。
同図に示すように、スイッチSW1及びスイッチSW2のオン及びオフを個別に切り換えることにより、4つのフィルタ特性を形成することができる。
つまり、直列腕共振子s1に対してキャパシタC1(第1キャパシタ)とスイッチSW2(第2スイッチ)との並列接続回路が直列に接続されていることにより、スイッチSW2のオン及びオフの切り換えに応じて直列腕回路11の共振周波数がシフトする。したがって、直列腕回路11の共振周波数及び反共振周波数の各々をシフトさせることができるため、フィルタ特性(特に高域側のフィルタ特性)について細かな調整が可能となる。すなわち、切り換え可能な通過帯域のバリエーションを増やすことができる。
[1-4. 共振解析]
ここで、上記高周波フィルタ10の共振特性について、等価回路を用いて説明しておく。
ここで、上記高周波フィルタ10の共振特性について、等価回路を用いて説明しておく。
[1-4-1. 共振子単体]
まず、共振子単体の共振特性について説明する。
まず、共振子単体の共振特性について説明する。
図5Aは、1つの共振子の等価回路モデル及びその共振特性を表す図である。同図に示すように、共振子は、キャパシタC1及びインダクタL1の直列回路(直列接続回路)とキャパシタC0との並列回路(並列接続回路)で表すことができる。ここで、キャパシタC0は、共振子の静電容量である。
上記等価回路において、共振子の共振周波数frは、キャパシタC1とインダクタL1との直列回路で規定され、上記等価回路のインピーダンスが0となる周波数であることから、式1を解くことにより、式2で示される。
また、共振子の反共振周波数faは、上記等価回路のアドミッタンスYが0となる周波数であることから、式3を解くことにより、式4で示される。
上記式2及び式4より、図5Aの右側グラフに示すように、反共振周波数faは、共振周波数frよりも高周波数側に出現する。
つまり、共振子は、1つの共振周波数と、当該共振周波数よりも高周波数側に位置する1つの反共振周波数と、を持つ。
[1-4-2. 共振子にインピーダンス素子を直列接続]
次に、共振子にインピーダンス素子が直列接続された場合の共振特性について、等価回路モデルを用いて説明しておく。
次に、共振子にインピーダンス素子が直列接続された場合の共振特性について、等価回路モデルを用いて説明しておく。
図5Bは、共振子にインピーダンス素子X1が直列接続された場合の等価回路モデル及びその共振特性を表す図である。同図に示すように、共振子は、キャパシタC1及びインダクタL1の直列回路とキャパシタC0との並列回路で表すことができる。ここで、キャパシタC0は、共振子の静電容量である。また、共振子に対して、インピーダンス素子X1とスイッチSWとの並列回路が接続されている。なお、共振解析での等価回路モデルにおいて、スイッチSWは、オフの場合に容量成分がゼロ(すなわちインピーダンスが無限大)となり、オンの場合に抵抗成分がゼロ(すなわちインピーダンスがゼロ)となる理想的なスイッチとして扱う。
まず、スイッチSWがオンの場合について、上記等価回路の共振特性を説明する。スイッチSWがオンの場合、インピーダンス素子X1は短絡となるため、共振周波数fr_on及び反共振周波数fa_onは、それぞれ、図5Aにおける共振周波数fr及び反共振周波数faと同じとなり、式5及び式6で表される。
次に、スイッチSWがオフの場合については、(1)インピーダンス素子X1がキャパシタである場合、及び、(2)インピーダンス素子X1がインダクタである場合に分けて説明する。
(1)インピーダンス素子X1がキャパシタCtである場合
スイッチSWがオフの場合の共振周波数fr_off1は、上記等価回路のインピーダンスZが0となる周波数であることから、式7を解くことにより、式8で示される。
スイッチSWがオフの場合の共振周波数fr_off1は、上記等価回路のインピーダンスZが0となる周波数であることから、式7を解くことにより、式8で示される。
一方、スイッチSWがオフの場合の反共振周波数fa_off1は、スイッチSWがオンの場合の反共振周波数fa_onと同じであり、式9で表される。
式5、式6、式8、及び式9より、インピーダンス素子X1がキャパシタである場合、図5Bの右側グラフに示すように、スイッチSWのオン及びオフの切り換えによらず、反共振周波数fa_on及びfa_off1は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off1)には、高周波数側へシフトすることが解る。
(2)インピーダンス素子X1がインダクタLtである場合
スイッチSWがオフの場合の共振周波数fr_off2は、上記等価回路のインピーダンスZが0となる周波数であることから、式10を解くことにより、式11で示される。
スイッチSWがオフの場合の共振周波数fr_off2は、上記等価回路のインピーダンスZが0となる周波数であることから、式10を解くことにより、式11で示される。
式11において、fr_off2LはスイッチSWがオフの場合の低周波数側の共振周波数であり、fr_off2HはスイッチSWがオフの場合の高周波数側の共振周波数である。
一方、スイッチSWがオフの場合の反共振周波数fa_off2は、スイッチSWがオンの場合の反共振周波数fa_onと同じであり、式12で表される。
式5、式6、式11、及び式12より、インピーダンス素子X1がインダクタである場合、図5Bの右側グラフに示すように、スイッチSWのオン及びオフの切り換えによらず、反共振周波数fa_on及びfa_off2は一致している。一方、共振周波数については、スイッチSWのオン時(fr_on)に比べて、スイッチSWのオフ時(fr_off2L)には、低周波数側へシフトすることが解る。
[1-4-3. 共振子にインピーダンス素子を並列接続]
次に、共振子にインピーダンス素子が並列接続された場合の共振特性について、説明しておく。なお、ここでは、インピーダンス素子がキャパシタCtである場合について説明し、インピーダンス素子がインダクタである場合については、説明を省略する。また、この場合の等価回路モデルは、図5Aに示した共振子の等価回路モデルに対してキャパシタCtを並列接続するに過ぎないため、簡略化して詳細する。
次に、共振子にインピーダンス素子が並列接続された場合の共振特性について、説明しておく。なお、ここでは、インピーダンス素子がキャパシタCtである場合について説明し、インピーダンス素子がインダクタである場合については、説明を省略する。また、この場合の等価回路モデルは、図5Aに示した共振子の等価回路モデルに対してキャパシタCtを並列接続するに過ぎないため、簡略化して詳細する。
インピーダンス素子X1がキャパシタCtである場合には、図5Aに示した等価回路モデルにおいてキャパシタC0にキャパシタCtが並列接続される構成となる。したがってこの場合の共振周波数は、式5のC0がキャパシタC0とキャパシタCtとの合成容量(C0+Ct)に置換された式で示されることになり、共振子単体の共振周波数と一致することが解る。また、式6から、この場合の反共振周波数は、共振子単体の反共振周波数に比べ、低周波数側へシフトすることが解る。
[1-5. 高周波フィルタの電極構造]
次に、高周波フィルタ10の詳細な電極構造について、説明する。
次に、高周波フィルタ10の詳細な電極構造について、説明する。
[1-5-1. 全体構造]
図6は、実施例1に係る高周波フィルタ10の電極構造(電極レイアウト)を模式的に表す図である。具体的には、同図の(a)は平面図であり、同図の(b)は同図の(a)のA-A’線における断面図であり、同図の(c)は同図の(a)のB-B’線における断面図である。なお、図6に示された電極構造は、高周波フィルタ10を構成する各共振子、ならびに、キャパシタC1、C2を構成する櫛歯容量電極の典型的な構造を説明するためのものである。このため、高周波フィルタ10の各共振子のIDT電極及び櫛歯容量電極を構成する電極指の本数や長さなどは、同図に示す電極指の本数や長さに限定されない。また、図6では、スイッチSW1、SW2についても模式的に図示しているが、スイッチSW1、SW2の配置及び構造については特に限定されず、例えば、スイッチSW1、SW2は、各共振子及び櫛歯容量電極とは別のチップに構成されていてもかまわない。
図6は、実施例1に係る高周波フィルタ10の電極構造(電極レイアウト)を模式的に表す図である。具体的には、同図の(a)は平面図であり、同図の(b)は同図の(a)のA-A’線における断面図であり、同図の(c)は同図の(a)のB-B’線における断面図である。なお、図6に示された電極構造は、高周波フィルタ10を構成する各共振子、ならびに、キャパシタC1、C2を構成する櫛歯容量電極の典型的な構造を説明するためのものである。このため、高周波フィルタ10の各共振子のIDT電極及び櫛歯容量電極を構成する電極指の本数や長さなどは、同図に示す電極指の本数や長さに限定されない。また、図6では、スイッチSW1、SW2についても模式的に図示しているが、スイッチSW1、SW2の配置及び構造については特に限定されず、例えば、スイッチSW1、SW2は、各共振子及び櫛歯容量電極とは別のチップに構成されていてもかまわない。
図6に示すように、高周波フィルタ10を構成する各共振子(直列腕共振子s1及び並列腕共振子p1)は、例えば、弾性波を用いた弾性波共振子である。これにより、高周波フィルタ10を、少なくとも一部に圧電性を有する基板である圧電基板102に形成されたIDT電極により構成できるので、急峻性の高い通過特性を有する小型かつ低背のフィルタ回路を実現できる。
直列腕共振子s1は、複数の電極指111aからなるIDT電極111、1組の反射器112、及び圧電基板102によって構成されている。
図6の(a)及び(b)に示すように、直列腕共振子s1のIDT電極111は、電極膜101によって構成され、当該電極膜101は圧電基板102上に形成されている。
IDT電極111は、複数の電極指111aと、当該複数の電極指111aを挟んで対向して配置された1組のバスバー電極とを有し、複数の電極指111aが1組のバスバー電極の一方と他方に対して交互に接続されることにより構成されている。ここで、複数の電極指111aは、弾性波の伝搬方向と直交する方向に沿って形成され、当該伝搬方向に沿って周期的に形成されている。
このように構成された直列腕共振子s1では、IDT電極111の設計パラメータ等によって、励振される弾性波の波長が規定される。以下、IDT電極111の設計パラメータについて説明する。
上記弾性波の波長は、複数の電極指111aのうち1つのバスバー電極に接続された電極指111aの繰り返し周期λs1で規定される。また、電極指ピッチ(複数の電極指111aのピッチ、すなわち電極指周期)Ps1とは、当該繰り返し周期λs1の1/2であり、電極指111aのライン幅をWs1とし、隣り合う電極指111aの間のスペース幅をSs1とした場合、Ps1=(Ws1+Ss1)で定義される。また、電極デューティ(デューティ比)とは、複数の電極指111aのライン幅占有率であり、複数の電極指111aのライン幅とスペース幅との加算値に対する当該ライン幅の割合、つまりWs1/(Ws1+Ss1)で定義される。すなわち、電極デューティは、電極指ピッチ(複数の電極指111aのピッチ)に対する複数の電極指111aの幅の比、つまりWs1/Ps1で定義される。また、対数とは、対をなす電極指111aの数であり、電極指111aの総数の概ね半数である。例えば、対数をNp1とし、電極指111aの総数をMp1とすると、Mp1=2Np1+1を満たす。また、電極指111aの膜厚とは、電極指111aを形成する電極膜101の厚みTp1である。また、弾性波共振子の静電容量C0は、以下の式13で示される。
なお、ε0は真空中の誘電率、εrは圧電基板102の誘電率である。
次に、キャパシタC1、C2の構造について、説明する。なお、キャパシタC1とキャパシタC2とは、要求仕様に基づく設計パラメータを除き、同等の構造を有する。このため、以下では、キャパシタC2の構造について説明し、キャパシタC1の構造については説明を省略する。
キャパシタC2は、圧電基板102と圧電基板102上に形成された櫛歯容量電極104とで構成されている。櫛歯容量電極104は、複数の電極指141aで構成されている。図6の(a)及び(b)に示すように、櫛歯容量電極104は、IDT電極111と同様に電極膜101によって構成されている。つまり、キャパシタC2を構成する櫛歯容量電極104は、直列腕共振子s1を構成するIDT電極111と同一の圧電基板102上に形成されている。なお、櫛歯容量電極104とIDT電極111とは、互いに異なる基板上に形成されていてもかまわない。
櫛歯容量電極104は、複数の電極指141aと、当該複数の電極指141aを挟んで対向して配置された1組のバスバー電極とを有し、複数の電極指141aが1組のバスバー電極の一方と他方に対して交互に接続されることにより構成されている。ここで、複数の電極指141aは、弾性波の伝搬方向に沿って形成され、当該伝搬方向と直交する方向に沿って周期的に形成されている。
このように構成されたキャパシタC2では、櫛歯容量電極104の設計パラメータ等によって、容量値及びQ値等の特性が規定される。以下、櫛歯容量電極104の設計パラメータについて説明する。
櫛歯容量電極104の電極指ピッチ(電極指のピッチ、すなわち電極指周期)Pc2とは、電極指141aのライン幅をWc2とし、隣り合う電極指141aの間のスペース幅をSc2とした場合、Pc2=Wc2+Sc2で定義される。また、電極デューティ(デューティ比)とは、複数の電極指141aのライン幅占有率であり、複数の電極指141aのライン幅とスペース幅との加算値に対する当該ライン幅の割合、つまりWc2/(Wc2+Sc2)で定義される。すなわち、電極デューティは、複数の電極指141aのピッチに対する複数の電極指141aの幅の比、つまりWc2/Pc2で定義される。また、電極指141aの膜厚とは、電極指141aを形成する電極膜101の厚みTc2である。
次いで、キャパシタC2を構成する櫛歯容量電極104と、キャパシタC2と接続される直列腕共振子s1のIDT電極111の設計パラメータについて、比較して説明する。
キャパシタC2の電極指ピッチは、直列腕共振子s1の電極指ピッチより狭い。つまり、Pc2<Ps1を満たす。ここで、キャパシタC2における複数の電極指141aのピッチは、直列腕共振子s1における複数の電極指111aのピッチの80パーセント以下(すなわちPc2≦0.8×Ps1=0.4×λs1)であることが好ましい。
また、キャパシタC2における複数の電極指141aの膜厚は、直列腕共振子s1における複数の電極指111aの膜厚より薄い。つまり、Tc2<Ts1を満たす。ここで、製造上の理由から、キャパシタC2において、電極指141aの膜厚Tc2は電極指ピッチPc2に対して40%以下(すなわちTc2≦0.40×Pc2)であることが好ましい。また、同様の理由から、直列腕共振子s1において、電極指111aの膜厚Ts1は電極指ピッチPs1に対して40%以下(すなわちTs1≦0.40×Ps1)であることが好ましい。また、電極指141aの膜厚Tc2の下限については特に限定されないが、例えば、電極指ピッチPc2の15%以上(すなわち0.15×Pc2≦Tc2)である。同様に、電極指111aの膜厚Ts1の下限についても特に限定されないが、例えば、電極指ピッチPs1の15%以上(すなわち0.15×Ps1≦Ts1)である。
また、キャパシタC2の電極デューティは、直列腕共振子s1の電極デューティより大きいことが好ましい。つまり、キャパシタC2及び直列腕共振子s1は、Wc2/Pc2>Ws1/Ps1を満たすことが好ましい。このような構成にすることにより、櫛歯容量電極104の単位面積当たりの容量値を大きくすることができるので、小型化及び省スペース化が図られる。
なお、各素子(直列腕共振子s1、並列腕共振子p1、キャパシタC2、C2)において、電極指ピッチ、膜厚及び電極デューティ等は、均一とは限らず、製造プロセス等によるばらつきによって不均一となっている、あるいは、特性等の調整のために不均一となっている場合がある。このため、キャパシタC2と直列腕共振子s1とは、これらを構成する櫛歯容量電極及びIDT電極の一部が上述した電極指ピッチ、膜厚及び電極デューティ等の関係を満たさない場合もある。つまり、キャパシタC2と直列腕共振子s1との間の上述した電極指ピッチ、膜厚及び電極デューティの関係は、概ね成立していればよく、例えば、キャパシタC2の平均値と直列腕共振子s1の平均値との間で成立していればよい。
ここまで、電極指ピッチ、膜厚及び電極デューティの関係について、キャパシタC2と直列腕共振子s1との関係を例に説明したが、同様の関係は、キャパシタC1と直列腕共振子s1との関係において成立していてもかまわない。また、同様の関係は、キャパシタC1と直列腕共振子s1との関係、及び、キャパシタC2と直列腕共振子s1との関係、の少なくとも一方において成立していてもかまわない。
[1-5-2. キャパシタの特性]
本実施例に係る高周波フィルタ10は、直列腕共振子s1、キャパシタC1、C2の電極指ピッチ及び膜厚が上述の関係を満たすことにより、直列腕共振子s1のQ値ならびにキャパシタC1、C2のQ値の双方を確保するという効果を奏することができる。
本実施例に係る高周波フィルタ10は、直列腕共振子s1、キャパシタC1、C2の電極指ピッチ及び膜厚が上述の関係を満たすことにより、直列腕共振子s1のQ値ならびにキャパシタC1、C2のQ値の双方を確保するという効果を奏することができる。
これは、キャパシタC1、C2の特性が設計パラメータに依存することによる。そこで、以下、上記効果が奏される理由について、典型例のキャパシタC2を用いてスイッチSW1がオフとなりSW2がオンとなっている場合を例に説明する。
[1-5-3. 電極指ピッチとの関連]
まず、典型例のキャパシタC2について、電極指ピッチと特性との関連について説明する。なお、このとき、電極指ピッチ以外の設計パラメータは一定であり、電極デューティは0.60(すなわち、Wc2/Pc2=0.55)であり、電極指ピッチに対する膜厚の比率は0.20(すなわち、Tc2=0.20×Pc2)である。また、直列腕共振子s1の電極指ピッチは、2.12μmである。
まず、典型例のキャパシタC2について、電極指ピッチと特性との関連について説明する。なお、このとき、電極指ピッチ以外の設計パラメータは一定であり、電極デューティは0.60(すなわち、Wc2/Pc2=0.55)であり、電極指ピッチに対する膜厚の比率は0.20(すなわち、Tc2=0.20×Pc2)である。また、直列腕共振子s1の電極指ピッチは、2.12μmである。
図7Aは、典型例において、キャパシタC2の電極指ピッチと、容量値、容量Q値、直列腕回路11のインピーダンス、及びフィルタ特性との関係を表すグラフである。具体的には、電極指ピッチPc2を、0.75、1.75、2.50、4.00(いずれも単位はμm)とした場合の周波数特性が表されている。なお、同図に示された特性は、スイッチSW1をオンとしSW2をオフとした場合のものである。つまり、直列腕回路11は、直列腕共振子s1及びキャパシタC2の直列回路となっている。
図7Aの(a)に示すように、電極指ピッチPc2を変えても容量値はほとんど変わらない。なお、ここで言う容量値とは、櫛歯容量の自己共振による影響をほぼ無視できる低域の周波数領域における容量値(静電容量値)である。また、キャパシタC2は、電極指ピッチPc2が狭いほど、自己共振点が高周波数側にシフトする。
一方、図7Aの(b)に示すように、キャパシタC2のQ値(容量Q)は、概ね周波数が高くなるにつれて低下するものの、自己共振点では局所的に低下する。このため、電極指ピッチPc2を狭くして櫛歯容量の自己共振点を高周波フィルタ10の通過帯域より高周波数側に追いやることにより、当該通過帯域における櫛歯容量のQ値を高めることができる。
言い換えると、電極指ピッチPc2が広いほど、キャパシタC2の自己共振点は低域側にシフトする。このため、当該自己共振点の周波数が他の弾性波共振子を介することなくキャパシタC2と接続される直列腕共振子s1の共振点または反共振点の周波数と一致する場合がある。つまり、直列腕共振子s1の共振点または反共振点の周波数と容量Qが局所的に低下する周波数とが一致する場合がある。この場合、直列腕共振子s1とキャパシタC2との合成特性で得られる共振点または反共振点は、キャパシタC2のQ値の低下によってQ値が低下してしまうため、要求されるQ値の確保が困難となる。このため、電極指ピッチPc2を狭くしてキャパシタC2の自己共振点を直列腕共振子s1の共振点及び反共振点より高周波数側に追いやることにより、直列腕共振子s1とキャパシタC2との合成特性のQ値の低下を抑制して要求されるQ値を確保することができる。
また、当然のことながら、電極指ピッチPc2が狭いほど容量値を維持したまま櫛歯容量のサイズを小型化できるため、キャパシタC2を備える高周波フィルタ等の小型化及び省スペース化が図られる。
図7Bは、図7Aの(c)中の波線枠内付近を拡大して示すグラフであり、具体的には、直列腕回路11の反共振周波数付近のインピーダンス特性が示されている。
図7Aで示したように、キャパシタC2の電極指ピッチが大きくなるほど、自己共振点周波数が低周波数側にシフトし、容量Q値を悪化させる。これに伴い、スイッチSW1がオンの場合には、図7Bに示すように、キャパシタC2の電極指ピッチが直列腕共振子s1の電極指ピッチに近づくほど容量Q値の悪化によって直列腕回路11の反共振点のQ値が悪化する。表2に、このときのキャパシタC2の電極指ピッチと直列腕回路11の反共振点のQ値(Qa)との関係を示す。
このため、この場合、通過帯域高域端のロス及び減衰特性の悪化を招く(図7Aの(c)及び(d)参照)。したがって、キャパシタC2の電極指ピッチは直列腕共振子s1の電極指ピッチより狭く、キャパシタC2の膜厚は直列腕共振子s1の膜厚より薄く設定する必要がある。
ここまで、電極指ピッチと特性との関係について、キャパシタC2を例に説明したが、同様の関係は、キャパシタC1についても成立する。具体的には、キャパシタC1の電極指ピッチが大きくなるほど、自己共振点周波数が低周波数側にシフトし、容量Q値を悪化させる。これに伴い、スイッチSW1がオフの場合には、キャパシタC1の電極指ピッチが直列腕共振子s1の電極指ピッチに近づくほど容量Q値の悪化によって直列腕回路11の共振点のQ値が悪化する。このため、この場合、通過帯域高域端及び通過帯域内のロスの悪化を招く。したがって、キャパシタC1の電極指ピッチは直列腕共振子s1の電極指ピッチより狭く、キャパシタC1の膜厚は直列腕共振子s1の膜厚より薄く設定する必要がある。
このように、櫛歯容量電極で構成されるキャパシタは、電極指のピッチが狭いほど、自己共振点が高周波数側にシフトする。このため、本実施例では、櫛歯容量電極について、電極指のピッチを直列腕共振子s1の電極指111aのピッチより狭くして自己共振点を高周波フィルタ10の通過帯域より高周波数側に追いやることにより、通過帯域内及び通過帯域高域側近傍においてキャパシタC1、C2のQ値を高めることができる。これにより、通過帯域内のロスの抑制及び/または通過帯域高域側の減衰スロープの急峻性を向上することができる。具体的には、キャパシタC1のQ値を高めることにより通過帯域内のロスの抑制を図ることができ、キャパシタC2のQ値を高めることにより通過帯域高域側近傍の減衰帯域の広帯域化を図ることができる。
また、製造上の理由から、電極指のピッチは電極指の膜厚によって制限される。このため、櫛歯容量電極で構成されるキャパシタにおける電極指の膜厚を直列腕共振子における電極指の膜厚より薄くすることによって、キャパシタにおける電極指のピッチをより狭くできるので、直列腕共振子s1のQ値及びキャパシタのQ値の双方を確保しやすくなる。よって、直列腕共振子s1のQ値及びキャパシタC1、C2のQ値の双方を確保することにより、通過帯域内のロスのさらなる抑制及び/または通過帯域高域側の減衰スロープの急峻性を向上することができる。
(実施の形態2)
上記実施の形態1では、キャパシタC1(第1キャパシタ)に対してスイッチSW2(第2スイッチ)が並列に接続されていたが、このようなスイッチSW2は設けられていなくてもかまわない。そこで、本実施の形態では、このように構成された高周波フィルタについて、実施例(実施例2)を用いて説明する。
上記実施の形態1では、キャパシタC1(第1キャパシタ)に対してスイッチSW2(第2スイッチ)が並列に接続されていたが、このようなスイッチSW2は設けられていなくてもかまわない。そこで、本実施の形態では、このように構成された高周波フィルタについて、実施例(実施例2)を用いて説明する。
[2-1. 構成]
図8は、実施例2に係る高周波フィルタ10Aの回路構成図である。
図8は、実施例2に係る高周波フィルタ10Aの回路構成図である。
同図に示すように、本実施例における直列腕回路11Aは、実施例1における直列腕回路11に比べて、スイッチSW2を有さない。つまり、直列腕回路11Aは、直列腕共振子s1と、直列腕共振子s1に対して直列に接続されたキャパシタC1(第1キャパシタ)と、直列腕回路11Aの反共振周波数を可変する第1周波数可変回路11aと、を有する。
このように構成された高周波フィルタ10Aであっても、実施例1と同様に、スイッチSW1のオン及びオフを切り換えることにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。
[2-2. 特性]
図9Aは、実施例2及び比較例に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図9Bは、実施例2及び比較例に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。
図9Aは、実施例2及び比較例に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図9Bは、実施例2及び比較例に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。
図9A及び図9Bから明らかなように、低周波数シフト時及び高周波数シフト時のいずれにおいても、実施例2では、比較例に比べて、通過帯域高域端のロスが改善されている。
このように、本実施例であっても、実施例1と同様に、直列腕共振子s1とキャパシタC1(第1キャパシタ)とが直列接続されていることにより、直列腕共振子s1とキャパシタC1との直列接続回路11e(第1直列接続回路)の共振周波数が、直列腕共振子s1単体の共振周波数に比べて、高周波数側にシフトする。つまり、直列接続回路11eは、直列腕共振子s1単体に比べて、共振周波数と反共振周波数との周波数差を小さくすることができる。したがって、本実施例は、実施例1と同様の効果を奏することができる。すなわち、本実施例によれば、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変できる。
(実施の形態3)
上記実施の形態1、2では、並列腕回路の共振周波数あるいは反共振周波数は固定であったが、直列腕回路と同様に、並列腕回路の共振周波数あるいは反共振周波数が可変できてもかまわない。また、上記実施の形態1、2では、並列腕回路には、1つの並列腕共振子が設けられていたが、複数の並列腕共振子が設けられていてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例3)を用いて説明する。
上記実施の形態1、2では、並列腕回路の共振周波数あるいは反共振周波数は固定であったが、直列腕回路と同様に、並列腕回路の共振周波数あるいは反共振周波数が可変できてもかまわない。また、上記実施の形態1、2では、並列腕回路には、1つの並列腕共振子が設けられていたが、複数の並列腕共振子が設けられていてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例3)を用いて説明する。
[3-1. 構成]
図10Aは、実施例3に係る高周波フィルタ10Bの回路構成図である。
図10Aは、実施例3に係る高周波フィルタ10Bの回路構成図である。
同図に示すように、本実施例における並列腕回路12Bは、並列腕共振子p1a(第1並列腕共振子)と、並列腕共振子p1b(第2並列腕共振子)と、スイッチSW3(第3スイッチ)と、を有する。ここで、並列腕共振子p1bとスイッチSW3とは直列に接続されており、この直列接続回路は第3周波数可変回路11cを構成する。
並列腕共振子p1aは、ノードx1とグランドとを結ぶ並列腕上に設けられた共振子(第1並列腕共振子)であり、ノードx1とグランドとの間に接続されている。
第3周波数可変回路11cは、並列腕共振子p1b(第2並列腕共振子)とスイッチSW3(第3スイッチ)との直列接続回路であって、並列腕共振子p1a(第1並列腕共振子)と並列接続されている。この第3周波数可変回路11cは、並列腕回路12Bの共振周波数及び反共振周波数を可変し、具体的には、第3周波数可変回路11cは、RFIC等の制御部(図示せず)からの制御信号にしたがってスイッチSW3のオン及びオフが切り換わることにより、これらを可変する。
本実施例では、第3周波数可変回路11cを構成する並列腕共振子p1b及びスイッチSW3は、ノードx1側からこの順に接続されているが、この逆の順序で接続されていてもかまわない。ただし、スイッチSW3が並列腕共振子p1bよりノードx1側に配置されると、スイッチSW3オン時においてスイッチSW3の抵抗成分(オン抵抗)により高周波フィルタ10Bのロスが悪化する。このため、スイッチSW3が並列腕共振子p1bよりグランド側に配置されていることが好ましい。
本実施例では、第1周波数可変回路11a、第2周波数可変回路11b及び第3周波数可変回路11cにおいて、スイッチSW1(第1スイッチ)がオン(導通状態)の場合、スイッチSW2(第2スイッチ)及びスイッチSW3(第3スイッチ)のいずれもオンであり、スイッチSW1がオフ(非導通状態)の場合、スイッチSW2及びスイッチSW3のいずれもオフである。つまり、スイッチSW1~SW3は、同時にオンまたは同時にオフとなる。これにより、スイッチSW1~SW3を制御する制御線の本数を削減できるため、構成の簡素化が図られる。つまり、スイッチSW1~SW3の制御回路を共通化できるため、高周波フィルタ10Bの小型化が可能となる。なお、スイッチSW1~SW3は、個別にオンまたはオフしてもかまわない。
ここで、スイッチSW3は、SPST型のスイッチ素子であり、例えば、スイッチSW1、SW2と同様に構成されている。
このような構成であっても、実施例1と同様に、スイッチSW1(第1スイッチ)およびスイッチSW2(第2スイッチ)のオン及びオフを切り換えることにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。また、このような構成によれば、並列腕共振子p1a(第1並列腕共振子)に対して並列腕共振子p1b(第2並列腕共振子)とスイッチSW3(第3スイッチ)との直列接続回路である第2直列接続回路(すなわち、本実施例の第3周波数可変回路11c)が並列に接続されていることにより、スイッチSW3のオン及びオフの切り換えに応じて、並列腕回路12Bの共振周波数及び反共振周波数を可変することができる。
[3-2. 特性]
次に、本実施例の高周波フィルタ10Bのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
次に、本実施例の高周波フィルタ10Bのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
実施例3の高周波フィルタ10Bの回路定数を、表3に示す。
この表に示すように、並列腕共振子p1a(第1並列腕共振子)の共振周波数は、直列腕共振子s1の共振周波数よりも低く、並列腕共振子p1b(第2並列腕共振子)の共振周波数は、並列腕共振子p1aの共振周波数よりも高くなっている。また、並列腕共振子p1bの反共振周波数は、並列腕共振子p1aの反共振周波数よりも高くなっている。
図10Bは、高周波フィルタ10Bに関する各種特性を示すグラフである。具体的には、同図上段には、スイッチSW1~SW3がともにオンの場合(低周波数シフト)、ならびに、スイッチSW1~SW3がともにオフの場合(高周波数シフト)の2状態のフィルタ特性を重ねあわせたグラフと、当該2状態のフィルタ特性を個別に示すグラフとが示されている。また、同図中段には、各々の上段に対応する直列腕回路11のインピーダンス特性が示されている。また、同図下段には、各々の上段に対応する並列腕回路12Bのインピーダンス特性が示されている。なお、直列腕回路11のインピーダンス特性としては、直列腕共振子s1単体の当該特性、スイッチSW1、2がともにオンの場合の直列腕回路11の当該特性、及び、スイッチSW1、2がともにオフの場合の直列腕回路11の当該特性が示されている。また、並列腕回路12Bのインピーダンス特性としては、並列腕共振子p1a単体の当該特性、並列腕共振子p1b単体の当該特性、スイッチSW3がオンの場合の並列腕回路12Bの当該特性、及び、スイッチSW3がオフの場合の並列腕回路12Bの当該特性が示されている。また、これらの事項は、後述する実施例4の高周波フィルタに関する各種特性を示すグラフ(図16B参照)においても同様である。
まず、図10Aに示された回路構成において、スイッチSW1~SW3がともにオフの場合(高周波数シフト)の特性について説明する。
この場合、直列腕回路11の特性は、実施例1においてSW1、2がともにオフの場合の特性と同様となる。したがって、図10B右列中段のグラフに示すように、直列腕回路11の反共振周波数は、直列腕共振子s1の反共振周波数よりも若干低周波数側にシフトし、直列腕回路11の共振周波数は、直列腕共振子s1の共振周波数よりも大きく高周波数側にシフトする。
また、この場合、並列腕回路12Bは、並列腕共振子p1aに対して、スイッチSW3がオフとなっている第3周波数可変回路11cが並列に接続された状態となる。このとき、図10B右列下段のグラフに示すように、並列腕回路12Bは、2つの共振周波数と2つの反共振周波数を有する。具体的には、並列腕回路12Bは、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数よりも高周波数側に位置する第2共振周波数、ならびに、第1共振周波数と第2共振周波数との間に位置する第1反共振周波数、及び、並列腕共振子p1bの反共振周波数よりも低周波数側に位置する第2反共振周波数を有する。このことについて、次に詳細に説明する。
並列腕回路12Bは、スイッチSW3がオフの場合、理想的には、スイッチSW3のインピーダンスが無限大となって並列腕共振子p1bが無効となるため、並列腕共振子p1aで構成される共振周波数と反共振周波数を有する。一方、並列腕回路12Bは、スイッチSW3がオンの場合、並列腕共振子p1bが有効となるため、並列腕共振子p1aと並列腕共振子p1bの並列接続回路となる。よって、並列腕回路12Bは、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数と等しい第2共振周波数、ならびに、第1共振周波数より高く並列腕共振子p1aの反共振周波数より低い第1反共振周波数、及び、第2共振周波数より高く並列腕共振子p1bの反共振周波数より低い第2反共振周波数を有する。
このように、並列腕回路12Bは、理想的には、スイッチSW3のオンとオフの切り換えにより、共振点の個数及び周波数、ならびに、反共振点の個数及び周波数を可変することができる。このため、理想的には、スイッチSW3がオフからオンに切り換わると、通過帯域高域側のカットオフ周波数が低周波数側にシフトするとともに、通過帯域高域側に並列腕共振子p1bの共振周波数によって規定される減衰極が新たに形成される。つまり、低周波数シフト時に、通過帯域高域側に新たな減衰極が形成されるため、通過帯域高域側近傍の減衰量を改善することができる。
ただし、実際には、スイッチSW3はオフ時に微小な容量成分であるオフ容量(Coff3)を有する。このため、スイッチSW3がオフの場合であっても、並列腕共振子p1bが有効となり、並列腕回路12Bは、図10B右列下段のグラフに示すように、並列腕共振子p1aと、並列腕共振子p1b及びスイッチSW3のオフ容量の直列接続回路による2つの共振周波数と2つの反共振周波数を有する。
これに関し、一般的にスイッチのオフ容量は微小(0.3pF程度)である。よって、スイッチSW3のオフ容量は、並列腕共振子p1bの静電容量に比べて十分に小さいため、並列腕共振子p1bの静電容量とスイッチSW3のオフ容量(Coff3)との合成容量は、並列腕共振子p1bの静電容量の容量値に比べて十分小さい値となる。したがって、スイッチSW3がオフの場合には、第1反共振周波数は、並列腕共振子p1aの反共振周波数より若干低い周波数に位置し、第2反共振周波数は、並列腕共振子p1bの反共振周波数より若干低い周波数に位置する。また、第2共振周波数は、並列腕共振子p1bの共振周波数よりも大きく高周波数側かつ第2反共振周波数よりも若干低い周波数に位置する。このため、スイッチSW3がオフの場合、第2共振周波数及び第2反共振周波数は、直列腕回路11の反共振周波数で構成される減衰極よりも高周波数側に位置する。
これにより、スイッチSW1~SW3がともにオフの場合、図10B右列上段のグラフに示すフィルタ特性が形成される。
次に、図10Aに示された回路構成において、スイッチSW1~SW3がともにオンの場合(低周波数シフト)の特性について説明する。
この場合、直列腕回路11の特性は、実施例1においてSW1、2がともにオンの場合の特性と同様となる。したがって、図10B中央列中段のグラフに示すように、直列腕回路11の反共振周波数は、直列腕共振子s1の反共振周波数よりも低周波数側にシフトし、直列腕回路11の共振周波数は、直列腕共振子s1の共振周波数と同じになる。
また、この場合、並列腕回路12Bは、並列腕共振子p1aに対して、スイッチSW3がオンとなっている第3周波数可変回路11cが並列に接続された状態となる。つまり、並列腕回路12Bは、並列腕共振子p1aと並列腕共振子p1bとの並列接続回路となる。
したがって、図10B中央列下段のグラフに示すように、並列腕回路12Bは、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数と等しい第2共振周波数、ならびに、第1共振周波数と第2共振周波数との間に位置する第1反共振周波数、及び、第2共振周波数よりも高周波数側に位置する第2反共振周波数を有する。その結果、第1反共振周波数は、並列腕共振子p1aの反共振周波数よりも大きく低周波数側にシフトする。
上述したように並列腕共振子p1bの共振周波数は直列腕共振子s1の共振周波数よりも高いため、第1反共振周波数は高周波フィルタ10Bの通過帯域を規定し、第2共振周波数は通過帯域高域側の減衰極を規定する。
これにより、スイッチSW1~SW3がともにオンの場合、図10B中央列上段のグラフに示すフィルタ特性が形成される。
つまり、図10B左列下段のグラフに示すように、並列腕回路12Bは、スイッチSW3のオンとオフの切り換えによって、低周波数側の反共振周波数(すなわち第1反共振周波数)、及び、高周波数側の共振周波数(すなわち第2共振周波数)を同時に低周波数側もしくは高周波数側にシフトすることができる。
よって、図10B中央列上段のグラフに示すように、スイッチSW3がオフからオンに切り換わると、第2共振周波数で規定される減衰極が低周波数側にシフトするため、通過帯域高域側近傍の減衰量を改善することができる。また、スイッチSW3のオンとオフの切り換えによって、通過帯域高域側のカットオフ周波数と減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスの悪化を抑制しつつ周波数可変が可能になる。
図11Aは、実施例3及び実施例1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図11Bは、実施例3及び実施例1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。
図11A及び図11Bから明らかなように、実施例3に係る高周波フィルタ10Bであっても、実施例1に係る高周波フィルタ10と同様に、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。また、図11Aから明らかなように、実施例3に係る高周波フィルタ10Bは、実施例1に係る高周波フィルタ10に比べて、低周波数シフト時における通過帯域高域側近傍の減衰量を改善することができる。
[3-3. 共振解析(2つの共振子が並列接続)]
ここで、2つの共振子が並列接続された場合の特性について、等価回路モデルを用いて説明しておく。
ここで、2つの共振子が並列接続された場合の特性について、等価回路モデルを用いて説明しておく。
図12は、並列接続された2つの共振子の等価回路モデル及びその共振特性を表す図である。同図には、共振子res1及びres2が並列接続されたモデルが示されている。共振子res1は、キャパシタC1及びインダクタL1の直列回路とキャパシタC01との並列回路で表わされ、共振子res2は、キャパシタC2及びインダクタL2の直列回路とキャパシタC02との並列回路で表すことができる。ここで、キャパシタC01及びC02は、それぞれ、共振子res1及びres2の静電容量である。これら2つの共振子res1及びres2で構成された共振回路は、図12左下に示された等価回路で表される。つまり、上記共振回路は、キャパシタC1及びインダクタL1の直列回路と、キャパシタC2及びインダクタL2の直列回路と、キャパシタC0(=C01+C02)との並列回路で表わされる。
上記等価回路において、共振子の共振周波数frは、キャパシタC1とインダクタL1との直列回路で規定され、式1で示される。
上記等価回路において、2つの共振周波数が規定され、共振周波数fr1、fr2は、それぞれ、キャパシタC1とインダクタL1との直列回路、及び、キャパシタC2とインダクタL2との直列回路で規定され、式14で示される。
つまり、上記等価回路で表される2つの共振周波数fr1、fr2は、それぞれ、共振子res1の共振周波数fr_res1及び共振子res2の共振周波数fr_res2と略等しい。
また、上記等価回路の反共振周波数は、上記等価回路のアドミッタンスYが0となる周波数であることから、式15を解くことにより、式16のように2つの反共振周波数(fa1、fa2)を有することが解る。
上記式15により得られる反共振周波数fa1、fa2は、式3により得られる共振子単体の反共振周波数(図12のグラフではfa_res1、fa_res2として表示)と異なることが解る。また、式15から導出される反共振周波数fa1は、共振子res1単体の反共振周波数fa_res1よりも低く、反共振周波数fa2は、共振子res2単体の反共振周波数fa_res2よりも低くなる。
上述した共振解析に基づき、本実施例に係る高周波フィルタ10Bにおいて、SW3のオン及びオフの切り換えに応じて並列腕回路12Bの共振特性がシフトすることが説明される。
すなわち、スイッチSW3(第3スイッチ)がオンの場合には、並列腕共振子p1aと並列腕共振子p1bとが並列接続される。このため、並列腕回路12Bは、2つの共振周波数(第1共振周波数及び第2共振周波数)と2つの反共振周波数(第1反共振周波数及び第2反共振周波数)と、を持つ。すなわち、並列腕回路12Bの第1共振周波数及び第2共振周波数は、それぞれ、並列腕共振子p1aの共振周波数と並列腕共振子p1bの共振周波数と同じとなる。また、並列腕回路12Bの第1反共振周波数は、並列腕共振子p1aの反共振周波数よりも低くなり、並列腕回路12Bの第2反共振周波数は、並列腕共振子p1aの反共振周波数よりも低くなる。
一方、スイッチSW3(第3スイッチ)がオフの場合には、並列腕共振子p1aに対して並列腕共振子p1bの静電容量とスイッチSW3のオフ容量との合成容量が並列に接続される。上述したようにスイッチSW3のオフ容量は、並列腕共振子p1bの静電容量に比べて十分に小さいため、並列腕共振子p1bの静電容量とスイッチSW3のオフ容量(Coff3)との合成容量は、並列腕共振子p1bの静電容量の容量値に比べて十分小さい値となる。このため、並列腕回路12Bの第1共振周波数は並列腕共振子p1aの共振周波数と同じとなり、並列腕回路12Bの第1反共振周波数は並列腕共振子p1aの反共振周波数より若干低周波数側にシフトする。また、並列腕回路12Bの第1反共振周波数は並列腕共振子p1bの反共振周波数より若干低周波数側にシフトする。また、並列腕回路12Bの第2共振周波数は、並列腕共振子p1bの共振周波数よりも大きく高周波数側かつ第2反共振周波数よりも若干低い周波数にシフトする。
[3-4. 第3周波数可変回路による特性への影響]
次に、上記高周波フィルタ10Bにおいて、第3周波数可変回路11cの構成によるフィルタ特性への影響について、典型例を用いて説明する。具体的には、並列腕共振子p1bと接続されるスイッチSW3(第3スイッチ)のオフ容量による当該フィルタ特性への影響、及び、並列腕共振子p1bとスイッチSW3とを結ぶ配線の特性インピーダンスによる当該フィルタ特性への影響について、説明する。
次に、上記高周波フィルタ10Bにおいて、第3周波数可変回路11cの構成によるフィルタ特性への影響について、典型例を用いて説明する。具体的には、並列腕共振子p1bと接続されるスイッチSW3(第3スイッチ)のオフ容量による当該フィルタ特性への影響、及び、並列腕共振子p1bとスイッチSW3とを結ぶ配線の特性インピーダンスによる当該フィルタ特性への影響について、説明する。
なお、第3周波数可変回路11cによるフィルタ特性への影響については、直列腕回路の構成に関わらず同様である。このため、以下では、簡明のため、当該フィルタ特性への影響について、直列腕回路が1つの直列腕共振子のみで構成された高周波フィルタを例に説明する。
[3-4-1. 典型例1の構成]
図13Aは、第3周波数可変回路11cによる特性への影響を説明するための典型例1に係る高周波フィルタ23Aを示す回路構成図である。また、図13Bは、典型例1に係る高周波フィルタ23Aのスイッチオフ時及びスイッチオン時のインピーダンス特性及び通過特性の比較を表すグラフである。
図13Aは、第3周波数可変回路11cによる特性への影響を説明するための典型例1に係る高周波フィルタ23Aを示す回路構成図である。また、図13Bは、典型例1に係る高周波フィルタ23Aのスイッチオフ時及びスイッチオン時のインピーダンス特性及び通過特性の比較を表すグラフである。
スイッチ23SWオフ時の場合には、並列腕共振子23p2のインピーダンスは概ね無限大であるため、高周波フィルタ23Aのインピーダンス特性は、直列腕共振子23sのインピーダンス特性(図13B上段グラフの実線)と並列腕共振子23p1のインピーダンス特性(図13B上段グラフの粗破線)とが合成されたインピーダンス特性となる。このため、スイッチ23SWオフ時の場合の高周波フィルタ23Aは、並列腕共振子23p1の共振周波数frp1を低周波数側の減衰極とし、直列腕共振子23sの反共振周波数fasを高周波数側の減衰極とし、並列腕共振子23p1の反共振周波数fap1と直列腕共振子23sの共振周波数frsとで通過帯域を構成するバンドパスフィルタ(図13B下段グラフの破線)となる。
一方、スイッチ23SWオン時の場合には、高周波フィルタ23Aのインピーダンス特性は、直列腕共振子23sのインピーダンス特性(図13B上段グラフの実線)と並列腕共振子23p1、23p2が並列接続された並列共振回路のインピーダンス特性(図13B上段グラフの細破線)とが合成されたインピーダンス特性となる。なお、並列共振回路のインピーダンス特性(図13B上段グラフの細破線)は、並列腕共振子23p1のインピーダンス特性(図13B上段グラフの粗破線)と並列腕共振子23p2のインピーダンス特性(図13B上段グラフの一点鎖線)との合成特性となる。このため、スイッチ23SWオン時の場合の高周波フィルタ23Aは、並列共振回路の共振周波数frp3(並列腕共振子23p1の共振周波数frp1を反映)を低周波数側の減衰極とし、並列共振回路の共振周波数frp4(並列腕共振子23p2の共振周波数frp2を反映)を高周波数側の減衰極とするバンドパスフィルタ(図13B下段グラフの実線)となる。
ここで、スイッチ23SWオン時には、並列腕共振子23p1の共振周波数frp1よりも高周波数側に、並列腕共振子23p2の共振周波数frp2が存在する。このため、並列共振回路の反共振周波数fap3が並列腕共振子23p1の反共振周波数fap1よりも低周波数側へシフトするとともに、並列共振回路の反共振周波数fap4が並列腕共振子23p2の反共振周波数fap2よりも低周波数側へシフトする。つまり、並列共振回路の反共振周波数fap3は並列腕共振子23p1の反共振周波数fap1よりも低周波数側となり、かつ、並列共振回路の共振周波数frp4は直列腕共振子23sの反共振周波数fasよりも低周波数側となる。よって、スイッチ22SWオン時には、スイッチ23SWオフ時よりも通過帯域幅が低周波数側に狭くなると共に、減衰帯域も低周波数側にシフトする。
つまり、上記構成によれば、並列腕共振子23p2の共振周波数frp2が、通過帯域内の中心周波数近傍の挿入損失に影響する直列腕共振子23sの共振周波数frsよりも高く、かつ、通過帯域外の高周波数側の減衰極に対応する直列腕共振子の反共振周波数fasよりも低い。これにより、スイッチ23SWオン時に、通過帯域内の低損失性を維持したまま、通過帯域外の高周波数側の減衰極を低周波数側へとシフトさせることが可能となる。よって、スイッチ23SWオン時には、通過帯域の高域端を低周波数側へシフトできるので、通過帯域の高周波端(通過帯域高域端)の急峻性を損なうことなく通過帯域幅を狭くすることが可能となる。
[3-4-2. オフ容量によるフィルタ特性への影響]
ここで、スイッチ23SWはオフ時に、理想的にはインピーダンス無限大となるが、実際には、容量成分であるオフ容量(Coff)を有する。
ここで、スイッチ23SWはオフ時に、理想的にはインピーダンス無限大となるが、実際には、容量成分であるオフ容量(Coff)を有する。
図14Aは、典型例1に係る高周波フィルタ23Aのスイッチ23SWオフ時の等価回路図である。また、図14Bは、典型例1に係る高周波フィルタ23Aのオフ容量を変化させた場合のインピーダンス特性及び通過特性の比較を表すグラフである。より具体的には、図14Bの上段グラフは、スイッチ23SWのオフ容量Coffを変化させた場合の並列腕共振子23p2とオフ容量Coffとの合成特性の変化を示しており、図14Bの下段グラフは、スイッチ23SWのオフ容量Coffを変化させた場合のスイッチ23SWオフ時の高周波フィルタ23Aのフィルタ特性の変化を示している。
図14Bの上段グラフに示すように、オフ容量Coffを大きくすることで、並列腕共振子23p2とオフ容量Coffとの合成特性の共振周波数(frp2)は低周波数側にシフトする。また、図14Bの下段グラフに示すように、オフ容量Coffを大きくすることで、通過帯域高域側の減衰極(frp4)も低周波数側にシフトする。なお、オフ容量Coffの変化は、並列腕共振子23p2とオフ容量Coffとの合成特性の反共振周波数(fap2)には影響しない。
図14Cは、典型例1に係る高周波フィルタ23Aのオフ容量と共振周波数及び共振周波数におけるインピーダンスとの関係を表すグラフである。
スイッチ23SWのオフ時には、理想的には、スイッチ23SWのインピーダンスは無限大であることが望ましいが、実際にはオフ容量Coffが大きくなることで、上記インピーダンスは低下する。このため、並列腕共振子23p2とオフ容量Coffとの合成特性により、新たな減衰極(frp4)が発生し、オフ容量Coffの値により上記合成特性の共振周波数(frp2)が規定される。
ここで、スイッチ23SWオン時の並列腕共振子23p2(図14B上段グラフにおける容量Coffなし)によって形成される減衰極(frp4)は780MHzであるため、オフ容量Coffが大きくなるほど、スイッチ23SWのオン及びオフの切り換えによる周波数可変幅が狭くなってしまう。また、上記のような周波数可変フィルタでは、20MHz以上の周波数可変幅が必要となるため、オフ容量Coffは、0.8pF以下に設定する必要がある。
これにより、スイッチ23SWのオン時とオフ時との周波数可変幅を大きく確保することが可能となる。なお、上述した必要とされる周波数可変幅は、例えば、バンド28Tx(703-748MHz)とバンド68Tx(698-728MHz)とを可変させるフィルタを構成する場合において通過帯域高域端の周波数差が20MHzであることからも設定される。
[3-4-3. 典型例2の構成]
図15Aは、第3周波数可変回路11cによる特性への影響を説明するための典型例2に係る高周波フィルタ23Bを示す回路構成図である。本典型例に係る高周波フィルタ23Bは、典型例1に係る高周波フィルタ23Aと回路構成は同じであり、フィルタ特性も略一致するため、スイッチ23SWのオン時及びオフ時における基本的なフィルタ特性については、説明を省略する。
図15Aは、第3周波数可変回路11cによる特性への影響を説明するための典型例2に係る高周波フィルタ23Bを示す回路構成図である。本典型例に係る高周波フィルタ23Bは、典型例1に係る高周波フィルタ23Aと回路構成は同じであり、フィルタ特性も略一致するため、スイッチ23SWのオン時及びオフ時における基本的なフィルタ特性については、説明を省略する。
図15Aに示された高周波フィルタ23Bでは、並列腕共振子23p2とスイッチ23SWとを接続する配線23kを明示している。
なお、「配線インピーダンス」とは、配線の特性インピーダンスを意味しており、本典型例では、配線の特性インピーダンスを、便宜上、「配線インピーダンス」と記している。
[3-4-4. 典型例2の構造]
図15Bは、典型例2に係る高周波フィルタ23Bの構造を説明する平面図及び断面図である。より具体的には、図15Bの上段には高周波フィルタ23Bの上方から見た平面図が示され、中段には配線基板内を透視した平面図が示され、下段には断面図が示されている。直列腕共振子23s、並列腕共振子23p1、23p2を含む弾性表面波共振子(23saw)と、スイッチ23SWとは、個々のパッケージ(チップ)で構成され、配線基板100上に搭載されている。また、弾性表面波共振子(23saw)とスイッチ23SWとは、樹脂部材101aで覆われている。配線基板100としては、LTCC基板またはPCB基板が例示される。配線基板100内のビア及び配線パターンにより、弾性表面波共振子(23saw)とスイッチ23SWとが接続される。特に、並列腕共振子23p2とスイッチ23SWとは、配線基板100上または内部に配置された配線23kにより接続されている。配線23kは、理想的には無いこと(並列腕共振子23p2とスイッチ23SWとが直結された状態)が望ましいが、弾性表面波共振子(23saw)とスイッチ23SWとは別パッケージで構成されるため、配線23kが必要となる。
図15Bは、典型例2に係る高周波フィルタ23Bの構造を説明する平面図及び断面図である。より具体的には、図15Bの上段には高周波フィルタ23Bの上方から見た平面図が示され、中段には配線基板内を透視した平面図が示され、下段には断面図が示されている。直列腕共振子23s、並列腕共振子23p1、23p2を含む弾性表面波共振子(23saw)と、スイッチ23SWとは、個々のパッケージ(チップ)で構成され、配線基板100上に搭載されている。また、弾性表面波共振子(23saw)とスイッチ23SWとは、樹脂部材101aで覆われている。配線基板100としては、LTCC基板またはPCB基板が例示される。配線基板100内のビア及び配線パターンにより、弾性表面波共振子(23saw)とスイッチ23SWとが接続される。特に、並列腕共振子23p2とスイッチ23SWとは、配線基板100上または内部に配置された配線23kにより接続されている。配線23kは、理想的には無いこと(並列腕共振子23p2とスイッチ23SWとが直結された状態)が望ましいが、弾性表面波共振子(23saw)とスイッチ23SWとは別パッケージで構成されるため、配線23kが必要となる。
[3-5. 配線インピーダンスによるフィルタ特性への影響]
ここで、配線23kの特性インピーダンスは、高周波フィルタ23Bのフィルタ特性に影響する。
ここで、配線23kの特性インピーダンスは、高周波フィルタ23Bのフィルタ特性に影響する。
図15Cは、典型例2に係る高周波フィルタ23Bの配線インピーダンスを変化させた場合のインピーダンス特性及び通過特性の比較を表すグラフである。より具体的には、図15Cの左上段グラフは、スイッチ23SWオフ時において配線23kの特性インピーダンスを変化させた場合の並列腕共振子23p2と配線23kとスイッチ23SWとの合成特性の変化を示している。また、図15Cの右上段グラフは、スイッチ23SWオン時において配線23kの特性インピーダンスを変化させた場合の並列腕共振子23p2とスイッチ23SWとの合成特性の変化を示している。また、図15Cの左下段グラフは、スイッチ23SWオフ時において配線23kの特性インピーダンスを変化させた場合の高周波フィルタ23Bのフィルタ特性の変化を示している。また、図15Cの右下段グラフは、スイッチ23SWオン時において配線23kの特性インピーダンスを変化させた場合の高周波フィルタ23Bのフィルタ特性の変化を示している。
まず、スイッチ23SWオフ時において、配線23kの特性インピーダンスが高くなるほど理想状態の特性に近づき、配線23kの特性インピーダンスが低くなるほど、通過帯域高域側の減衰極(frp4)が低周波数側にシフトする。
一方、スイッチ23SWオン時において、配線23kの特性インピーダンスが高くなるほど通過帯域高域側の減衰極(frp4)は低周波数側にシフトし、配線23kの特性インピーダンスが低くなるほど、理想状態の特性に近づく。
図15Dは、典型例2に係る高周波フィルタ23Bの配線インピーダンスと共振周波数及びインピーダンスとの関係を表すグラフである。より具体的には、図15Dの上段には、スイッチ23SWオフ時における、配線23kの特性インピーダンスと、並列腕共振子23p2、配線23k及びスイッチ23SWの合成特性の共振周波数及びインピーダンスとの関係が示されている。また、図15Dの中段には、スイッチ23SWオン時における、配線23kインピーダンスと、並列腕共振子23p2、配線23k及びスイッチ23SWの合成特性の共振周波数及びインピーダンスとの関係が示されている。また、図15Dの下段には、スイッチ23SWのオン時及びオフ時における、配線23kの特性インピーダンスと、周波数可変幅との関係が示されている。
ここで、図15Dの下段に示すように、スイッチ23SWのオン及びオフの切り換えによる通過帯域高域側の減衰極(frp4)の周波数差である周波数可変幅に注目すると、配線23kの特性インピーダンスを高くするほど、周波数可変幅は大きくなる。また逆に、配線23kの特性インピーダンスを低くするほど周波数可変幅は小さくなる。また、典型例3で示した通り、周波数可変フィルタでは、20MHz以上の周波数可変幅の確保が必要となるため、配線23kの特性インピーダンスは、20Ω以上に設定する必要がある。
これにより、スイッチ23SWのオン時とオフ時との周波数可変幅を大きく確保することが可能となる。
ここで、配線23kの特性インピーダンスを高く設計するには、以下の手法が挙げられる。
(1)配線基板100の比誘電率を15以下とする。
(2)配線23kの上下のグランドパターンとの距離を100μm以上とする。
(3)配線23kの上部にグランドが無い構成とする。
(4)配線23kを構成するビアを、他の層間ビアよりも細くする。
(5)配線23kを、配線基板100の厚み方向において、1/2より上側(上半分の領域)に配置する。
(実施の形態4)
並列腕回路の共振周波数あるいは反共振周波数を可変する構成は実施の形態3に限らない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例4)を用いて説明する。
並列腕回路の共振周波数あるいは反共振周波数を可変する構成は実施の形態3に限らない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例4)を用いて説明する。
[4-1. 構成]
図16Aは、実施例4に係る高周波フィルタ10Cの回路構成図である。
図16Aは、実施例4に係る高周波フィルタ10Cの回路構成図である。
同図に示すように、本実施例における並列腕回路12Cは、実施例3における並列腕回路12Bに比べて、さらに、スイッチSW3(第3スイッチ)に並列接続されたインピーダンス素子であるキャパシタC3(第3キャパシタ)を有する。つまり、本実施例では、キャパシタC3とスイッチSW3との並列接続回路が並列腕共振子p1bに対して直列に接続されており、この直列接続回路が第3周波数可変回路11dを構成する。
このような構成であっても、実施例1と同様に、スイッチSW1(第1スイッチ)のオン及びオフを切り換えることにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。また、このような構成によれば、スイッチSW3に対してキャパシタC3が並列に接続されていることにより、スイッチSW3のオン及びオフに応じて、並列腕回路12Cの共振周波数及び反共振周波数を可変することができる。
[4-2. 特性]
次に、本実施例の高周波フィルタ10Cのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
次に、本実施例の高周波フィルタ10Cのフィルタ特性(通過特性)について、当該フィルタ特性を規定するインピーダンス特性(共振特性)についても述べつつ説明する。
実施例4の高周波フィルタ10Cの回路定数を、表4に示す。
図16Bは、高周波フィルタ10Cに関する各種特性を示すグラフである。なお、並列腕のインピーダンス特性としては、並列腕共振子p1a単体の当該特性、並列腕共振子p1b単体の当該特性、スイッチSW3がオンの場合の並列腕回路12Cの当該特性、及び、スイッチSW3がオフの場合の並列腕回路12Cの当該特性が示されている。
まず、図16Aに示された回路構成において、スイッチSW1~SW3がともにオフの場合(高周波数シフト)の特性について説明する。
この場合、直列腕回路11の特性は、実施例1においてSW1、2がともにオフの場合の特性と同様となる。したがって、図16B右列中段のグラフに示すように、直列腕回路11の反共振周波数は、直列腕共振子s1の反共振周波数よりも若干低周波数側にシフトし、直列腕回路11の共振周波数は、直列腕共振子s1の共振周波数よりも大きく高周波数側にシフトする。
また、この場合、並列腕回路12Cは、並列腕共振子p1aに対して、スイッチSW3がオフとなっている第3周波数可変回路11dが並列に接続された状態となる。つまり、並列腕回路12Cは、並列腕共振子p1aと、キャパシタC3及びスイッチSW3の合成容量が負荷された並列腕共振子p1bとの並列接続回路となる。なお、当該合成容量とは、キャパシタC3とスイッチSW3のオフ容量との合成容量である。
したがって、図16B右列下段のグラフに示すように、並列腕回路12Cは、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数より高周波数側に位置する第2共振周波数、ならびに、当該第1共振周波数と当該第2共振周波数との間に位置する第1反共振周波数、及び、当該第2共振周波数よりも高周波数側に位置する第2反共振周波数を有する。
これにより、スイッチSW1~SW3がともにオフの場合、図16B右列上段のグラフに示すフィルタ特性が形成される。
次に、図16Aに示された回路構成において、スイッチSW1~SW3がともにオンの場合(低周波数シフト)の特性について説明する。
この場合、直列腕回路11の特性は、実施例1においてSW1、2がともにオンの場合の特性と同様となる。したがって、図16B中央列中段のグラフに示すように、直列腕回路11の反共振周波数は、直列腕共振子s1の反共振周波数よりも低周波数側にシフトし、直列腕回路11の共振周波数は、直列腕共振子s1の共振周波数と同じになる。
また、この場合、並列腕回路12Cは、並列腕共振子p1aに対して、スイッチSW3がオンとなっている第3周波数可変回路11dが並列に接続された状態となる。つまり、並列腕回路12Cは、並列腕共振子p1aと並列腕共振子p1bとの並列接続回路となる。
したがって、図16B中央列下段のグラフに示すように、並列腕回路12Cは、並列腕共振子p1aの共振周波数と等しい第1共振周波数、及び、並列腕共振子p1bの共振周波数と等しい第2共振周波数、ならびに、当該第1共振周波数と当該第2共振周波数との間に位置する第1反共振周波数、及び、当該第2共振周波数よりも高周波数側に位置する第2反共振周波数を有する。
これにより、スイッチSW1~SW3がともにオンの場合、図16B中央列上段のグラフに示すフィルタ特性が形成される。
ここで、図16B左列下段のグラフから明らかなように、スイッチSW3がオンの場合とオフの場合とを比べると、第2共振周波数及び第1反共振周波数は、ともに低周波数側にシフトする、あるいは、ともに高周波数側にシフトする。つまり、スイッチSW3がオンの場合の第2共振周波数は、スイッチSW3がオフの場合の第2共振周波数に比べて、低周波数側に位置する。また、スイッチSW3がオンの場合の第1反共振周波数は、スイッチSW3がオフの場合の第1反共振周波数に比べて、低周波数側に位置する。また、スイッチSW3がオフの場合であっても、第2共振周波数は、直列腕回路11の反共振周波数の近傍に位置する。
ここで、並列腕回路12Cの第1反共振周波数は高周波フィルタ10Cの通過帯域を規定し、並列腕回路12Cの第2共振周波数及び直列腕回路11の反共振周波数は通過帯域高域側の減衰極を規定する。
したがって、本実施例によれば、スイッチSW3に対してインピーダンス素子(本実施例ではキャパシタC3)が並列接続されていることにより、スイッチSW3がオフの場合であっても直列腕回路11の反共振周波数によって構成される減衰極の近傍に、並列腕回路12Cの第2共振周波数(高周波数側の共振周波数)によって構成される減衰極を位置させることができる。よって、スイッチSW3がオンの場合だけでなくオフの場合においても減衰帯域幅を広帯域化できるとともに、スイッチSW3のオン及びオフの切り換えによって、通過帯域高域側のカットオフ周波数及び通過帯域高域側の減衰極を同時にシフトさせることができるので、通過帯域高域端のロスを抑制し、かつ、減衰帯域幅を維持しつつ、通過帯域高域側の減衰極の周波数を可変することができる。
図17Aは、実施例4及び実施例1に係る高周波フィルタの低周波数シフト時の特性を比較したグラフである。図17Bは、実施例4及び実施例1に係る高周波フィルタの高周波数シフト時の特性を比較したグラフである。
図17A及び図17Bから明らかなように、実施例4に係る高周波フィルタ10Cであっても、実施例1に係る高周波フィルタ10と同様に、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。また、図17Aから明らかなように、実施例4に係る高周波フィルタ10Cは、実施例1に係る高周波フィルタ10に比べて、通過帯域高域側近傍の減衰量を改善することができる。
また、上述したように、例えば、3GPPで規定されるバンドの多くは、Tx帯域(送信帯域)が低周波数側、Rx帯域(受信帯域)が高周波数側になり、各バンドの中心周波数及び帯域幅が異なる。そのため、これに使用する周波数可変型の高周波フィルタは、Tx帯域およびRx帯域のいずれか一方を通過帯域、他方を減衰帯域とし、通過帯域と減衰帯域を同時に低周波数側もしくは高周波数側にシフトする必要がある。
本実施例によれば、スイッチSW3(第3スイッチ)に並列接続されたインピーダンス素子がキャパシタC3(第3キャパシタ)である。このため、スイッチSW1とスイッチSW2とスイッチSW3のオン(導通状態)及びオフ(非導通状態)を同じ状態とすることにより、直列腕回路11の共振周波数及び反共振周波数、ならびに、並列腕回路12Cの低周波数側の反共振周波数及び高周波数側の共振周波数、を同時に低周波数側もしくは高周波数側にシフトすることができる。このため、通過帯域高域側のカットオフ周波数及び減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域端のロスの悪化を抑制しつつ周波数可変が可能になる。
なお、本実施例では、スイッチSW3(第3スイッチ)に並列接続されたインピーダンス素子として、キャパシタC3(第3キャパシタ)を例に説明した。しかし、当該インピーダンス素子は、キャパシタに限らず、インダクタであってもかまわない。
ただし、当該インピーダンス素子としてインダクタを用いた場合、スイッチSW3がオンの場合の第2共振周波数は、スイッチSW3がオフの場合の第2共振周波数に比べて、低周波数側に位置する。また、スイッチSW3がオンの場合の第1反共振周波数は、スイッチSW3がオフの場合の第1反共振周波数に比べて、高周波数側に位置する。つまり、この場合、本実施例と比べて、スイッチSW3のオン及びオフの切り換えによる並列腕回路12Cの第2共振周波数及び第1反共振周波数のシフト方向が反対となる。
この場合であっても、第1スイッチ及び第2スイッチがオンの場合に第3スイッチがオフとなり、第1スイッチ及び第2スイッチがオフの場合に第3スイッチがオンとなることにより、本実施例と同様に、通過帯域高域端のロスの悪化を抑制しつつ周波数可変が可能になる。
(実施の形態5)
以上説明した高周波フィルタの構成は、複数の直列腕共振子を有する構成に適用されてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例5)を用いて説明する。
以上説明した高周波フィルタの構成は、複数の直列腕共振子を有する構成に適用されてもかまわない。そこで、本実施の形態では、このような高周波フィルタについて、実施例(実施例5)を用いて説明する。
[5-1. 構成]
図18Aは、実施例5に係る高周波フィルタ40の回路構成図である。
図18Aは、実施例5に係る高周波フィルタ40の回路構成図である。
同図に示す高周波フィルタ40は、入出力端子11m(第1入出力端子)と入出力端子11n(第2入出力端子)とを結ぶ経路上に設けられた複数の直列腕回路(本実施例では4つの直列腕回路210s、220s、230s、240s)、及び、1以上の並列腕回路(本実施例では3つの並列腕回路210p、220p、230p)によって構成されたラダー型のフィルタ回路である。具体的には、高周波フィルタ40は、4つの直列腕共振子s1~s4を有し、さらに、並列腕共振子p1a、p1b、p2a、p2b、p3と、スイッチSW11~SW13、SW23、SW41、SW42と、キャパシタC11~C13、C23、C41、C42と、を有する、複数のバンドを通過帯域とする周波数可変型のバンドパスフィルタである。なお、直列腕回路及び並列腕回路の数は、上記の数に限定されない。
ここで、直列腕回路210s、220s、230s、240sのうち、入出力端子11mの最も近くに設けられた直列腕回路210s、及び、入出力端子11nの最も近くに設けられた直列腕回路240sは、上記実施の形態1~4のいずれか(ここでは実施の形態1)に係る高周波フィルタの直列腕回路11に相当する。よって、スイッチSW11、SW41は直列腕回路11のスイッチSW1に相当し、スイッチSW12、SW42は直列腕回路11のスイッチSW2に相当し、キャパシタC11、C41は直列腕回路11のキャパシタC1に相当し、キャパシタC12、C42は直列腕回路11のキャパシタC2に相当する。また、並列腕回路210p、220pは、上記実施例4に係る高周波フィルタ10Cの並列腕回路12Cに相当し、並列腕回路230pは、上記実施例1に係る高周波フィルタ10の並列腕回路12に相当する。このため、並列腕共振子p1a、p1bは並列腕回路12Cの並列腕共振子p1aに相当し、スイッチSW13、SW23は並列腕回路12CのスイッチSW3に相当し、並列腕共振子p3は並列腕回路12の並列腕共振子p1に相当する。つまり、高周波フィルタ40は、入出力端子11mの最も近くに実施例4に係る高周波フィルタ10Cに相当する構成が設けられ、入出力端子11nの最も近くに実施例1に係る高周波フィルタ10に相当する構成が設けられている。
なお、高周波フィルタ40の構成はこれに限らない。例えば、複数の直列腕回路は、少なくとも1つが上記実施の形態1~4のいずれかの直列腕回路に相当すればよく、一方の入出力端子の最も近くに設けられた直列腕回路のみが上記実施の形態1~4のいずれかの直列腕回路に相当してもかまわないし、入出力端子の最も近くに設けられた直列腕回路と異なる直列腕回路のみが上記実施の形態1~4のいずれかの直列腕回路に相当してもかまわない。
また、入出力端子(入出力端子11mまたは入出力端子11n)と当該入出力端子の最も近くに設けられた直列腕回路との経路上のノードとグランドとを接続する並列腕回路が設けられていてもかまわない。
このように構成された高周波フィルタ40は、上記実施の形態1~4のいずれかの高周波フィルタの構成を含むため、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。
[5-2. 構造]
図18Bは、実施例5に係る高周波フィルタ40の構造を説明する平面図である。
図18Bは、実施例5に係る高周波フィルタ40の構造を説明する平面図である。
同図に示すように、本実施例では、複数の共振子(直列腕共振子s1~s4及び並列腕共振子p1a、p1b、p2a、p2b、p3)は1つの共振子用のパッケージ41(チップ)で構成され、他の素子(スイッチSW11~SW13、SW23、SW41、SW42と、キャパシタC11~C13、C23、C41、C42)は共振子用のパッケージ41とは別のパッケージ42a~42cで構成されており、これらパッケージ41、42a~42cは、配線基板43上に搭載されている。つまり、共振子と、スイッチは別のパッケージに形成されている。
パッケージ41、42a~42cは、当該パッケージ41、42a~42cを配線基板43に実装するための表面電極(図18B中の丸印、「ランド」または「パッド」とも言う)を底面に有する。なお、図18Bでは、簡明のため、各パッケージに構成された回路素子及び配線を模式的に示し、パッケージ41、42a~42cの内部を透過してその底面の表面電極を図示している。
また、配線基板43は、入出力端子11m及び入出力端子11nのそれぞれを構成する外部接続電極(図18B中の丸印)を有する。この外部接続電極は、例えば、配線基板43をマザー基板等に実装するための表面電極、配線基板43と他の電子部品とを接続するコネクタ、あるいは、配線基板43上に他の電子部品が搭載されている場合には当該他の電子部品とパッケージ42aまたはパッケージ42cとを接続するパターン配線の一部である。
同図から明らかなように、パッケージ42aにおいては、スイッチSW11とスイッチSW12の一方端子同士を共通化した上で、パッケージ42aの共通端子421として、入出力端子11mと接続されている。また、スイッチSW11の他方端子はキャパシタC12を介して、パッケージ42aの第1端子422に接続されている。さらに、スイッチSW12の他方端子は、パッケージ42aの第2端子423に接続されている。なお、キャパシタC11は、スイッチSW12と並列接続されている。
パッケージ42cにおいては、スイッチSW41とスイッチSW42の一方端子同士を共通化した上で、パッケージ42cの共通端子431として、入出力端子11nと接続されている。また、スイッチSW41の他方端子はキャパシタC42を介して、パッケージ42cの第1端子432に接続されている。さらに、スイッチSW42の他方端子は、パッケージ42cの第2端子433に接続されている。なお、キャパシタC41は、スイッチSW42と並列接続されている。
共振子用のパッケージ41においては、パッケージ41の第1端子411と第2端子412の間に直列腕共振子s1が接続される。また、パッケージ41の第3端子413と第4端子414の間に直列腕共振子s4が接続されている。
パッケージ41の第2端子412と第3端子413の間に、図18Aの並列腕回路210p、220p、230p、及び、直列腕回路220s、230sが接続されている。
配線基板43は、パッケージ42aの第2端子423とパッケージ41の第1端子411を接続し、パッケージ42aの第1端子422とパッケージ41の第2端子412を接続し、パッケージ42cの第1端子432とパッケージ41の第3端子413を接続し、パッケージ42cの第2端子433とパッケージ41の第4端子414を接続している。
このように、直列腕に設けられたスイッチの一方端子が入出力端子11m、11nの一方に接続されている場合には、スイッチを含むパッケージ42a,42cと、共振子群を含むパッケージ41に分けたときに、スイッチが共振子群よりも入出力端子の一方に近い位置にあるので、共振子用のパッケージ41及びスイッチ用のパッケージ42a,42cの端子数を削減することができ、高周波フィルタ40の小型化が図られる。
なお、図18Aに示す回路構成において、キャパシタC11、C12、C41、C42の少なくとも1つは、共振子用のパッケージ41に組み込まれていてもかまわない。また、スイッチSW12とキャパシタC12とが逆の接続順序となっている場合には、これらのうちスイッチSW12が共振子用のパッケージ41に組み込まれていてもかまわない。また、スイッチSW42とキャパシタC42とが逆の接続順序となっている場合には、これらのうちスイッチSW42が共振子用のパッケージ41に組み込まれていてもかまわない。
また、少なくとも1つの並列腕共振子p1a、p1b、p2a、p2b、p3は、共振子用のパッケージとは別に設けられていても構わないし、スイッチSW11~SW13、SW23、SW41、SW42と、キャパシタC11~C13、C23、C41、C42とは、上記と異なる組み合わせでパッケージ化されていてもかまわない。
[5-3. マルチプレクサへの適用例]
このような高周波フィルタ40は、マルチプレクサに適用することができる。
このような高周波フィルタ40は、マルチプレクサに適用することができる。
図19は、実施例5に係るマルチプレクサ(デュプレクサ)200の回路構成図である。同図に示されたマルチプレクサ200は、送信側フィルタ60と、受信側フィルタ50と、整合用インダクタ70とを備える。送信側フィルタ60は、入力端子200T及び共通端子200cに接続され、受信側フィルタ50は、共通端子200c及び出力端子200Rに接続されている。
送信側フィルタ60は、送信帯域を通過帯域とするバンドパスフィルタであり、回路構成は特に限定されない。
受信側フィルタ50は、実施例5に係る高周波フィルタ40に相当し、複数のバンドを通過帯域とする周波数可変型のバンドパスフィルタである。
上記構成によれば、複数の周波数帯域を適宜選択するシステムに適用されるチューナブルなデュプレクサにおいて、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。つまり、通過帯域高域端のロスを抑制しつつ、通過帯域および減衰帯域を切り換えることができる高性能なデュプレクサを実現することができる。また、周波数帯域ごとに対応するフィルタを配置せず、スイッチを有する1つのフィルタ回路により複数の周波数帯域に適用できるので、マルチプレクサを小型化することができる。
なお、受信側フィルタ50は、実施例5の構成に限らず、実施例1~4のいずれかの構成であってもかまわない。また、実施例1~5に係る高周波フィルタは、受信側フィルタに限らず、送信側フィルタに適用されてもかまわない。また、これらの高周波フィルタは、デュプレクサに限らず、複数の送信側フィルタまたは複数の受信側フィルタを備えるマルチプレクサに適用されてもかまわない。
ここで、直列腕共振子として弾性表面波共振子を用いた場合、直列腕共振子の反共振周波数の高周波数側にバルク波損失が発生する。したがって、複数のフィルタそれぞれの一方の端子が共通接続された共通端子を有するマルチプレクサにおいて、中心周波数の低いフィルタに上記直列腕共振子を有する高周波フィルタを適用した場合、バルク波損失により、中心周波数の高いフィルタの通過帯域内のロスが悪化する。このようなロスの悪化は、共通端子に最も近く接続された直列腕回路(すなわち他の直列腕回路を介することなく共通端子に接続された直列腕回路)のバルク波損失による影響が支配的である。
なお、バルク波損失とは、弾性波表面波共振子の反共振周波数の高周波数側のストップバンド高域において、機械エネルギーが基板内に放射し、当該弾性表面波共振子の等価直流抵抗が大きくなることにより発生する損失のことを指す。
これに関し、上記実施例1~5によれば、直列腕回路がキャパシタC1(第1キャパシタ)及びキャパシタC2(第2キャパシタ)を有することにより、入力された信号が直列腕共振子s1とキャパシタC1、C2とで信号分配(電力分配)される。このため、直列腕回路全体とした見たときのバルク波損失が低減される。そして、このような実施例1~5の直列腕回路が一方の入出力端子(入出力端子11mまたは入出力端子11n)の最も近く接続されることで、当該一方の入出力端子が共通端子に接続された中心周波数の低いフィルタを備えるマルチプレクサにおいて、中心周波数が高いフィルタの通過帯域内のロスを抑制することができる。
(実施の形態6)
以上の実施の形態1~5で説明した高周波フィルタ及びマルチプレクサは、使用バンド数が多いシステムに対応する高周波フロントエンド回路に適用することもできる。そこで、本実施の形態では、このような高周波フロントエンド回路及び通信装置について説明する。
以上の実施の形態1~5で説明した高周波フィルタ及びマルチプレクサは、使用バンド数が多いシステムに対応する高周波フロントエンド回路に適用することもできる。そこで、本実施の形態では、このような高周波フロントエンド回路及び通信装置について説明する。
図20は、実施の形態6に係る通信装置300の構成図である。
同図に示すように、通信装置300は、複数のスイッチにより構成されるスイッチ群310と、複数のフィルタにより構成されるフィルタ群320と、送信側スイッチ331、332ならびに受信側スイッチ351、352及び353と、送信増幅回路341、342ならびに受信増幅回路361、362と、RF信号処理回路(RFIC)と、ベースバンド信号処理回路(BBIC)と、アンテナ素子(ANT)と、を備える。なお、アンテナ素子(ANT)は、通信装置300に内蔵されていなくてもよい。
スイッチ群310は、制御部(図示せず)からの制御信号にしたがって、アンテナ素子(ANT)と所定のバンドに対応する信号経路とを接続し、例えば、複数のSPST型のスイッチによって構成される。なお、アンテナ素子(ANT)と接続される信号経路は1つに限らず、複数であってもかまわない。つまり、通信装置300は、キャリアアグリゲーションに対応してもかまわない。
フィルタ群320は、例えば次の帯域を通過帯域に有する複数のフィルタ(デュプレクサを含む)によって構成される。具体的には、当該帯域は、(i)Band12の送信帯域、(ii)Band13の送信帯域、(iii)Band14の送信帯域、(iv)Band27の送信帯域、(v)Band26の送信帯域、(vi)Band29及びBand14(またはBand12、Band67及びBand13)の受信帯域、(vii-Tx)Band68(またはBand28aまたはBand28b)の送信帯域、(vii-Rx)Band68(またはBand28aまたはBand28b)の受信帯域、(viii-TxBand20の送信帯域、(viii-Rx)Band20の受信帯域、(ix-Tx)Band27(またはBand26)の送信帯域、(x-Tx)Band8の送信帯域、ならびに、(x-Rx)Band8の受信帯域、である。
送信側スイッチ331は、ローバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路341に接続された共通端子とを有するスイッチ回路である。送信側スイッチ332は、ハイバンド側の複数の送信側信号経路に接続された複数の選択端子と送信増幅回路342に接続された共通端子とを有するスイッチ回路である。これら送信側スイッチ331、332は、フィルタ群320の前段(ここでは送信側信号経路における前段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り換えられるスイッチ回路である。これにより、送信増幅回路341、342で増幅された高周波信号(ここでは高周波送信信号)は、フィルタ群320の所定のフィルタを介してアンテナ素子(ANT)に出力される。
受信側スイッチ351は、ローバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路361に接続された共通端子とを有するスイッチ回路である。受信側スイッチ352は、所定のバンド(ここではBand20)の受信側信号経路に接続された共通端子と、受信側スイッチ351の共通端子及び受信側スイッチ352の共通端子に接続された2つの選択端子とを有するスイッチ回路である。受信側スイッチ353は、ハイバンド側の複数の受信側信号経路に接続された複数の選択端子と受信増幅回路362に接続された共通端子とを有するスイッチ回路である。これら受信側スイッチ351~353は、フィルタ群320の後段(ここでは受信側信号経路における後段)に設けられ、制御部(図示せず)からの制御信号にしたがって接続状態が切り換えられる。これにより、アンテナ素子(ANT)に入力された高周波信号(ここでは高周波受信信号)は、フィルタ群320の所定のフィルタを介して、受信増幅回路361、362で増幅されて、RF信号処理回路(RFIC)に出力される。なお、ローバンドに対応するRF信号処理回路(RFIC)とハイバンドに対応するRF信号処理回路(RFIC)とが個別に設けられていてもかまわない。
送信増幅回路341は、ローバンドの高周波送信信号を電力増幅するパワーアンプであり、送信増幅回路342は、ハイバンドの高周波送信信号を電力増幅するパワーアンプである。
受信増幅回路361は、ローバンドの高周波受信信号を電力増幅するローノイズアンプであり、受信増幅回路362は、ハイバンドの高周波受信信号を電力増幅するローノイズアンプである。
RF信号処理回路(RFIC)は、アンテナ素子(ANT)で送受信される高周波信号を処理する回路である。具体的には、RF信号処理回路(RFIC)は、アンテナ素子(ANT)から受信側信号経路を介して入力された高周波信号(ここでは高周波受信信号)を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC)へ出力する。また、RF信号処理回路(RFIC)は、ベースバンド信号処理回路(BBIC)から入力された送信信号をアップコンバートなどにより信号処理し、当該信号処理して生成された高周波信号(ここでは高周波送信信号)を送信側信号経路に出力する。
このように構成された通信装置300は、(vi)Band29及びBand14(またはBand12、Band67及びBand13)の受信帯域を通過帯域に有するフィルタ、(vii-Tx)Band68(またはBand28aまたはBand28b)の送信帯域を通過帯域に有するフィルタ、(vii-Rx)Band68(またはBand28aまたはBand28b)の受信帯域を通過帯域に有するフィルタ、(ix-Tx)Band27(またはBand26)の送信帯域を通過帯域に有するフィルタの少なくとも1つとして、実施の形態1~5のいずれかに係る高周波フィルタを備える。つまり、当該フィルタは、制御信号にしたがって、通過帯域を切り換える。
なお、通信装置300のうち、スイッチ群310と、フィルタ群320と、送信側スイッチ331、332ならびに受信側スイッチ351、352、353と、送信増幅回路341、342ならびに受信増幅回路361、362と、上記制御部とは、高周波フロントエンド回路を構成する。
ここで、上記制御部は、図20には図示していないが、RF信号処理回路(RFIC)が有していてもよいし、制御部が制御する各スイッチとともにスイッチICを構成していてもよい。
以上のように構成された高周波フロントエンド回路及び通信装置300によれば、上記実施の形態1~5のいずれかに係る高周波フィルタを備えることにより、通過帯域高域端のロスを抑制しつつ、通過帯域高域側の減衰極の周波数を可変することができる。つまり、通過帯域高域端のロスを抑制しつつ、通過帯域および減衰帯域を切り換えることができる高性能な高周波フロントエンド回路及び通信装置を実現できる。また、バンドごとにフィルタを設ける場合に比べてフィルタの個数を削減できるため、小型化することができる。
また、本実施の形態に係る高周波フロントエンド回路によれば、フィルタ群320(複数の高周波フィルタ)の前段または後段に設けられた送信側スイッチ331、332ならびに受信側スイッチ351~353(スイッチ回路)を備える。これにより、高周波信号が伝達される信号経路の一部を共通化することができる。よって、例えば、複数の高周波フィルタに対応する送信増幅回路341、242あるいは受信増幅回路361、362(増幅回路)を共通化することができる。したがって、高周波フロントエンド回路の小型化及び低コスト化が可能となる。
なお、送信側スイッチ331、332ならびに受信側スイッチ351~353は、少なくとも1つが設けられていればよい。また、送信側スイッチ331、332の個数、ならびに、受信側スイッチ351~353の個数は、上記説明した個数に限らず、例えば、1つの送信側スイッチと1つの受信側スイッチとが設けられていてもかまわない。また、送信側スイッチ及び受信側スイッチの選択端子等の個数も、本実施の形態に限らず、それぞれ2つであってもかまわない。
(その他の実施の形態など)
以上、本発明の実施の形態に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置について、実施の形態1~6を挙げて説明したが、本発明の高周波フィルタ、高周波フロントエンド回路、及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波フィルタ、高周波フロントエンド回路、及び通信装置を内蔵した各種機器も本発明に含まれる。
以上、本発明の実施の形態に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置について、実施の形態1~6を挙げて説明したが、本発明の高周波フィルタ、高周波フロントエンド回路、及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波フィルタ、高周波フロントエンド回路、及び通信装置を内蔵した各種機器も本発明に含まれる。
例えば、上記実施例2の直列腕回路11Aと、上記実施例3の並列腕回路12Bまたは上記実施例4の並列腕回路12Cと、を組み合わせて実現される高周波フィルタも本発明に含まれる。また、このような高周波フィルタにおいて、第3スイッチに並列接続されるインピーダンス素子はキャパシタであり、第1スイッチがオンの場合、第3スイッチはオンであり、第1スイッチがオフの場合、第3スイッチはオフであってもよい。これにより、直列腕回路の反共振周波数と並列腕回路の高周波数側の共振周波数を同時に低周波数側もしくは高周波数側にシフトすることができる。このため、通過帯域高域側について、直列腕回路によって形成される減衰極及び並列腕回路によって形成される減衰極を同時に低周波数側もしくは高周波数側にシフトすることができるので、通過帯域高域側の減衰帯域幅を維持しつつ周波数可変が可能になる。また、第1スイッチと第3スイッチの制御回路を共通化できるため、高周波フィルタの小型化が可能になる。
なお、上記実施の形態1~5に係る高周波フィルタは、互いに近接する周波数帯域を排他的に切り換えるシステムへの適用に限らず、1つの周波数帯域内に割り当てられた、互いに近接する複数のチャネルを排他的に切り換えるシステムにも適用可能である。
また、上記実施の形態1~5に係る高周波フィルタにおいて、直列腕共振子及び並列腕共振子は、弾性表面波を用いた弾性波共振子に限らず、例えば、バルク波または弾性境界波を用いた弾性波共振子によって構成されていてもかまわない。また、直列腕共振子及び並列腕共振子のそれぞれは、1つの弾性波共振子に限らず、1つの弾性波共振子が直列分割等された複数の分割共振子が含まれる。
また、上記実施の形態1~5に係る高周波フィルタにおいて、第1キャパシタ及び第2キャパシタの少なくとも一方は、櫛歯容量電極で構成されていなくてもよく、例えば基板上で絶縁層もしくは誘電体層を介して対向して配置された電極膜によって構成されていてもかまわない。
また、上記実施の形態1~5に係る高周波フィルタにおいて、並列腕回路は、弾性波共振子でなく、LC共振回路で構成されていてもかまわない。また、この並列腕回路は、共振回路に限らず、インダクタンス素子やキャパシタンス素子であってもかまわない。
また、上記実施の形態1~4で説明した直列腕回路の構成は、当該直列腕回路を含む複数の直列腕回路と1以上の並列腕回路とを備えるラダー型のフィルタ回路に適用することができる。このようなフィルタ回路において、上記実施の形態1~4で説明した直列腕回路と異なる直列腕回路の構成は、特に限定されず、例えば、縦結合共振子またはLC共振回路等の共振回路であってもかまわないし、インダクタンス素子やキャパシタンス素子であってもかまわない。このため、当該直列腕回路の構成は、要求仕様に応じて適宜選択されればよく、例えば、減衰強化等が要求される場合には縦結合共振子が選択され得る。
また、上記実施の形態5では、上記実施の形態1~4で説明した直列腕回路を含む複数の直列腕回路と1以上の並列腕回路とを備えるラダー型のフィルタ回路の構成として、上記実施の形態1~4で説明した直列腕回路が入出力端子11mまたは入出力端子11nに最も近く設けられた構成について説明した。しかし、当該ラダー型のフィルタ回路の構成はこれに限らず、例えば、上記実施の形態1~4で説明した直列腕回路と異なる直列腕回路が入出力端子11mまたは入出力端子11nに最も近く設けられていてもかまわない。つまり、上記実施の形態1~4で説明した直列腕回路は、複数の直列腕回路の端部以外に設けられていても構わない。
また、上記実施の形態1~5に係る高周波フィルタにおいて、弾性表面波フィルタを構成する場合の圧電基板102は、高音速支持基板と、低音速膜と、圧電膜とがこの順で積層された積層構造であってもよい。圧電膜は、例えば、50°YカットX伝搬LiTaO3圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。圧電膜は、例えば、IDT電極の電極指ピッチで定まる波長をλとしたときに、厚みが3.5λ以下である。高音速支持基板は、低音速膜、圧電膜ならびに電極膜101を支持する基板である。高音速支持基板は、さらに、圧電膜を伝搬する表面波や境界波等の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜及び低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板であり、厚みは、例えば120μmである。低音速膜は、圧電膜を伝搬する弾性波よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電膜と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素を主成分とする膜であり、厚みは、例えば670nmである。この積層構造によれば、圧電基板102を単層で使用している構造と比較して、共振周波数及び反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
なお、高音速支持基板は、支持基板と、圧電膜を伝搬する表面波や境界波等の弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、サファイア、リチウムタンタレート、リチュウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体及び樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
また、上記実施の形態1~6に係る高周波フィルタ、高周波フロントエンド回路、及び通信装置において、さらに、各入出力端子及び共通端子の間に、インダクタンス素子やキャパシタンス素子が接続されていてもよい。さらに、各回路素子を接続する配線によるインダクタンス成分を有してもよい。
本発明は、近接する複数のバンドを同時または排他的に使用するマルチバンド及びマルチモードシステムに適用できる小型の高周波フィルタ、高周波フロントエンド回路、及び通信装置として、携帯電話などの通信機器に広く利用できる。
10、10A、10B、10C、10X、23A、23B、40 高周波フィルタ
11、11A、11X、210s、220s、230s、240s 直列腕回路
11a 第1周波数可変回路
11b 第2周波数可変回路
11c、11d 第3周波数可変回路
11e 直列接続回路
11m 入出力端子
11n 入出力端子
12、12B、12C、210p、220p、230p 並列腕回路
22SW、23SW、SW、SW1、SW2、SW3、SW11、SW12、SW13、SW23、SW41、SW42 スイッチ
23k 配線
23p1、23p2、p1、p1a、p1b、p2、p2a、p2b、p3 並列腕共振子
23s、s1、s2、s3、s4 直列腕共振子
41、42a、42b、42c パッケージ
43、100 配線基板
50 受信側フィルタ
60 送信側フィルタ
70 整合用インダクタ
101 電極膜
101a 樹脂部材
102 圧電基板
104 櫛歯容量電極
111 IDT電極
111a、141a 電極指
112 反射器
200 マルチプレクサ(デュプレクサ)
200c 共通端子
200R 出力端子
200T 入力端子
300 通信装置
310 スイッチ群
320 フィルタ群
331、332 送信側スイッチ
341、342 送信増幅回路
351~353 受信側スイッチ
361、362 受信増幅回路
411,422、432 第1端子
412、423、433 第2端子
413 第3端子
414 第4端子
421、431 共通端子
ANT アンテナ素子
BBIC ベースバンド信号処理回路
C1、C2、C3、C11、C12、C13、C23、C41、C42 キャパシタ
x1 ノード
11、11A、11X、210s、220s、230s、240s 直列腕回路
11a 第1周波数可変回路
11b 第2周波数可変回路
11c、11d 第3周波数可変回路
11e 直列接続回路
11m 入出力端子
11n 入出力端子
12、12B、12C、210p、220p、230p 並列腕回路
22SW、23SW、SW、SW1、SW2、SW3、SW11、SW12、SW13、SW23、SW41、SW42 スイッチ
23k 配線
23p1、23p2、p1、p1a、p1b、p2、p2a、p2b、p3 並列腕共振子
23s、s1、s2、s3、s4 直列腕共振子
41、42a、42b、42c パッケージ
43、100 配線基板
50 受信側フィルタ
60 送信側フィルタ
70 整合用インダクタ
101 電極膜
101a 樹脂部材
102 圧電基板
104 櫛歯容量電極
111 IDT電極
111a、141a 電極指
112 反射器
200 マルチプレクサ(デュプレクサ)
200c 共通端子
200R 出力端子
200T 入力端子
300 通信装置
310 スイッチ群
320 フィルタ群
331、332 送信側スイッチ
341、342 送信増幅回路
351~353 受信側スイッチ
361、362 受信増幅回路
411,422、432 第1端子
412、423、433 第2端子
413 第3端子
414 第4端子
421、431 共通端子
ANT アンテナ素子
BBIC ベースバンド信号処理回路
C1、C2、C3、C11、C12、C13、C23、C41、C42 キャパシタ
x1 ノード
Claims (13)
- 第1入出力端子と第2入出力端子とを結ぶ経路上に設けられた直列腕回路と、
前記経路上のノードとグランドとに接続された並列腕回路と、を備え、
前記直列腕回路は、
直列腕共振子と、第1キャパシタと、を有する第1直列接続回路と、
前記第1直列接続回路に並列接続され、前記直列腕回路の反共振周波数を可変する、第1周波数可変回路と、
を有し、
前記第1周波数可変回路は、
第2キャパシタと、
前記第2キャパシタと直列接続された第1スイッチと、
を有し、
前記直列腕共振子と前記第1キャパシタとは、直列接続されている、
高周波フィルタ。 - 前記直列腕回路は、並列接続回路を有し、
前記並列接続回路は、前記第1キャパシタと、前記第1キャパシタに並列接続された第2スイッチと、を有し、
前記並列接続回路は、前記直列腕回路の共振周波数を可変する第2周波数可変回路を構成する、
請求項1に記載の高周波フィルタ。 - 前記第1スイッチが導通状態の場合、前記第2スイッチは導通状態であり、
前記第1スイッチが非導通状態の場合、前記第2スイッチは非導通状態である、
請求項2に記載の高周波フィルタ。 - 前記直列腕共振子は、少なくとも一部に圧電性を有する基板上に形成された複数の電極指からなるIDT電極を有し、
前記第1キャパシタ及び前記第2キャパシタの少なくとも一方のキャパシタは、前記基板と、当該基板上に形成された複数の電極指からなる櫛歯容量電極とで構成されており、
前記櫛歯容量電極を構成する複数の電極指のピッチは、前記直列腕共振子を構成する複数の電極指のピッチより狭く、
前記少なくとも一方のキャパシタの自己共振点は、前記高周波フィルタの通過帯域より高域側に形成されている、
請求項1~3のいずれか1項に記載の高周波フィルタ。 - 前記櫛歯容量電極における複数の電極指の膜厚は、前記直列腕共振子における複数の電極指の膜厚以下である、
請求項4に記載の高周波フィルタ。 - 前記高周波フィルタは、さらに、前記経路上に設けられた1以上の他の直列腕回路を備え、
前記直列腕回路は、前記他の直列腕回路を介することなく、前記第1入出力端子及び前記第2入出力端子の一方の入出力端子に接続されている、
請求項1~5のいずれか1項に記載の高周波フィルタ。 - 前記第1スイッチは、一方の端子が前記一方の入出力端子に接続され、他方の端子が前記第2キャパシタに接続されている、
請求項6に記載の高周波フィルタ。 - 前記並列腕回路は、
前記ノードと前記グランドとの間に接続された第1並列腕共振子と、
前記第1並列腕共振子に並列接続された第3周波数可変回路と、を備え、
前記第3周波数可変回路は、第2並列腕共振子と第3スイッチとを有する第2直列接続回路を含み、
前記第1並列腕共振子の共振周波数は、前記直列腕共振子の共振周波数よりも低く、
前記第2並列腕共振子の共振周波数は、前記第1並列腕共振子の共振周波数よりも高く、
前記第2並列腕共振子の反共振周波数は、前記第1並列腕共振子の反共振周波数よりも高い、
請求項1~7のいずれか1項に記載の高周波フィルタ。 - 前記第3周波数可変回路は、さらに、前記第3スイッチに並列接続されたインピーダンス素子を有する、
請求項8に記載の高周波フィルタ。 - 前記直列腕回路は、前記第1キャパシタに並列接続された第2スイッチを有し、
前記インピーダンス素子は、第3キャパシタであり、
前記第1スイッチが導通状態の場合、前記第2スイッチ及び前記第3スイッチのいずれも導通状態であり、
前記第1スイッチが非導通状態の場合、前記第2スイッチ及び前記第3スイッチのいずれも非導通状態である、
請求項9に記載の高周波フィルタ。 - 前記第1スイッチは、GaAsもしくはCMOSからなるFETスイッチ、または、ダイオードスイッチである、
請求項1~10のいずれか1項に記載の高周波フィルタ。 - 請求項1~11のいずれか1項に記載の高周波フィルタと、
前記第1スイッチの導通状態及び非導通状態を制御する制御部と、を備える、
高周波フロントエンド回路。 - アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項12に記載の高周波フロントエンド回路と、を備える、
通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/519,596 US11031920B2 (en) | 2017-01-30 | 2019-07-23 | Radio-frequency filter, radio-frequency front-end circuit, and communication apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-014759 | 2017-01-30 | ||
JP2017014759 | 2017-01-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/519,596 Continuation US11031920B2 (en) | 2017-01-30 | 2019-07-23 | Radio-frequency filter, radio-frequency front-end circuit, and communication apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139320A1 true WO2018139320A1 (ja) | 2018-08-02 |
Family
ID=62979510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001247 WO2018139320A1 (ja) | 2017-01-30 | 2018-01-17 | 高周波フィルタ、高周波フロントエンド回路及び通信装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11031920B2 (ja) |
WO (1) | WO2018139320A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11611331B2 (en) * | 2018-03-28 | 2023-03-21 | Murata Manufacturing Co., Ltd. | Multiplexer, radio-frequency front-end circuit, communication apparatus, and elastic wave filter |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020080017A1 (ja) * | 2018-10-16 | 2020-04-23 | 株式会社村田製作所 | 高周波モジュール |
US11817893B2 (en) * | 2021-03-29 | 2023-11-14 | Psemi Corporation | Hybridized wideband notch filter topologies and methods |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323961A (ja) * | 1999-03-10 | 2000-11-24 | Matsushita Electric Ind Co Ltd | 弾性表面波共振器を用いた帯域切替フィルタとそれを用いたアンテナ共用器 |
JP2003101373A (ja) * | 2001-09-25 | 2003-04-04 | Tdk Corp | 弾性表面波素子および弾性表面波装置 |
WO2006123518A1 (ja) * | 2005-05-16 | 2006-11-23 | Murata Manufacturing Co., Ltd. | 弾性境界波装置 |
JP2014502803A (ja) * | 2010-12-10 | 2014-02-03 | ペレグリン セミコンダクター コーポレイション | 共振器回路及び共振器の調整のための方法、システム、及び装置 |
WO2015099105A1 (ja) * | 2013-12-27 | 2015-07-02 | 株式会社村田製作所 | 高周波フィルタ |
JP2016054374A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社村田製作所 | 可変共振回路および可変フィルタ回路 |
WO2016104598A1 (ja) * | 2014-12-26 | 2016-06-30 | 京セラ株式会社 | 弾性波装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1035648A3 (en) | 1999-03-10 | 2000-12-27 | Matsushita Electric Industrial Co., Ltd. | A band switching filter using a surface acoustic wave resonator and an antenna duplexer using the same |
US20030062969A1 (en) | 2001-09-25 | 2003-04-03 | Tdk Corporation | Saw element and saw device |
US7443269B2 (en) | 2005-07-27 | 2008-10-28 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Method and apparatus for selectively blocking radio frequency (RF) signals in a radio frequency (RF) switching circuit |
JP4725537B2 (ja) | 2007-03-07 | 2011-07-13 | 株式会社村田製作所 | 減衰特性可変フィルタ |
JP5072047B2 (ja) | 2007-08-23 | 2012-11-14 | 太陽誘電株式会社 | 弾性波フィルタ、それを用いたデュプレクサおよびそのデュプレクサを用いた通信機 |
FR2927742A1 (fr) * | 2008-02-15 | 2009-08-21 | St Microelectronics Sa | Filtre a resonateur acoustiques de type baw reconfigurable par voie numerique et procede |
JP2011146768A (ja) | 2010-01-12 | 2011-07-28 | Panasonic Corp | ラダー型弾性波フィルタと、これを用いたアンテナ共用器 |
US9300038B2 (en) * | 2010-12-10 | 2016-03-29 | Peregrine Semiconductor Corporation | Method, system, and apparatus for resonator circuits and modulating resonators |
JP6430974B2 (ja) * | 2016-01-27 | 2018-11-28 | 太陽誘電株式会社 | 共振回路およびフィルタ回路 |
JP6411398B2 (ja) * | 2016-03-14 | 2018-10-24 | 太陽誘電株式会社 | フィルタ回路、フロントエンド回路およびモジュール |
-
2018
- 2018-01-17 WO PCT/JP2018/001247 patent/WO2018139320A1/ja active Application Filing
-
2019
- 2019-07-23 US US16/519,596 patent/US11031920B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000323961A (ja) * | 1999-03-10 | 2000-11-24 | Matsushita Electric Ind Co Ltd | 弾性表面波共振器を用いた帯域切替フィルタとそれを用いたアンテナ共用器 |
JP2003101373A (ja) * | 2001-09-25 | 2003-04-04 | Tdk Corp | 弾性表面波素子および弾性表面波装置 |
WO2006123518A1 (ja) * | 2005-05-16 | 2006-11-23 | Murata Manufacturing Co., Ltd. | 弾性境界波装置 |
JP2014502803A (ja) * | 2010-12-10 | 2014-02-03 | ペレグリン セミコンダクター コーポレイション | 共振器回路及び共振器の調整のための方法、システム、及び装置 |
WO2015099105A1 (ja) * | 2013-12-27 | 2015-07-02 | 株式会社村田製作所 | 高周波フィルタ |
JP2016054374A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社村田製作所 | 可変共振回路および可変フィルタ回路 |
WO2016104598A1 (ja) * | 2014-12-26 | 2016-06-30 | 京セラ株式会社 | 弾性波装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11611331B2 (en) * | 2018-03-28 | 2023-03-21 | Murata Manufacturing Co., Ltd. | Multiplexer, radio-frequency front-end circuit, communication apparatus, and elastic wave filter |
Also Published As
Publication number | Publication date |
---|---|
US20190348967A1 (en) | 2019-11-14 |
US11031920B2 (en) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10644673B2 (en) | Radio frequency filter circuit, duplexer, radio frequency front end circuit, and communication apparatus | |
WO2018037968A1 (ja) | 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置 | |
US10944381B2 (en) | Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device | |
US11115002B2 (en) | Multiplexer, radio frequency front-end circuit, and communication device | |
US10715110B2 (en) | Acoustic wave filter device, multiplexer, RF front-end circuit, and communication apparatus | |
US11206010B2 (en) | Radio frequency module, front end module, and communication device | |
WO2018151218A1 (ja) | フィルタ装置、マルチプレクサ、高周波フロントエンド回路、および通信装置 | |
US10958242B2 (en) | Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device | |
US11476835B2 (en) | High-frequency filter circuit, high-frequency front end circuit, and communication device | |
KR102358740B1 (ko) | 필터 장치, 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치 | |
US11699991B2 (en) | Multiplexer, high frequency front-end circuit, and communication apparatus | |
WO2018135538A1 (ja) | 高周波フィルタ、高周波フロントエンド回路、および通信装置 | |
US10742193B2 (en) | Acoustic wave filter device, RF front-end circuit, and communication apparatus | |
US10715107B2 (en) | Acoustic wave device, radio frequency front-end circuit, and communication device | |
WO2018186227A1 (ja) | 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置 | |
US10756768B2 (en) | Radio-frequency front-end circuit and communication device | |
US11394368B2 (en) | Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device | |
JP2009508417A (ja) | 電気的なモジュール | |
WO2018147135A1 (ja) | 高周波フィルタ、高周波フロントエンド回路及び通信装置 | |
WO2018139320A1 (ja) | 高周波フィルタ、高周波フロントエンド回路及び通信装置 | |
WO2019078157A1 (ja) | 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置 | |
WO2018056056A1 (ja) | 弾性波装置、高周波フロントエンド回路および通信装置 | |
KR20210066893A (ko) | 엑스트랙터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18744435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18744435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |