WO2019150688A1 - フィルタ装置、高周波フロントエンド回路、および通信装置 - Google Patents

フィルタ装置、高周波フロントエンド回路、および通信装置 Download PDF

Info

Publication number
WO2019150688A1
WO2019150688A1 PCT/JP2018/041280 JP2018041280W WO2019150688A1 WO 2019150688 A1 WO2019150688 A1 WO 2019150688A1 JP 2018041280 W JP2018041280 W JP 2018041280W WO 2019150688 A1 WO2019150688 A1 WO 2019150688A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
terminal
arm resonator
passband
series arm
Prior art date
Application number
PCT/JP2018/041280
Other languages
English (en)
French (fr)
Inventor
浩司 野阪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019568868A priority Critical patent/JP6927334B2/ja
Priority to CN201880088543.XA priority patent/CN111684719B/zh
Publication of WO2019150688A1 publication Critical patent/WO2019150688A1/ja
Priority to US16/984,158 priority patent/US11843367B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/66Phase shifters
    • H03H9/68Phase shifters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14502Surface acoustic wave [SAW] transducers for a particular purpose
    • H03H9/14514Broad band transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a filter device, a high frequency front end circuit, and a communication device.
  • a filter device in which a wide band of a pass band is realized by arranging two filters having different pass bands in parallel.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-160629
  • two bandpass filters having different passbands are arranged in parallel to realize a wide passband.
  • the pass band of the filter device is formed by arranging the first filter and the second filter in parallel as in the wireless reception circuit disclosed in Patent Document 1.
  • the center frequency of the pass band of the second filter is higher than the center frequency of the pass band of the first filter. That is, in the pass band of the filter device, the frequency band (low band side) lower than the center frequency is mainly formed by the first filter (low band side filter), and the frequency band higher than the center frequency (high band side). ) Is mainly formed by the second filter (high-pass filter).
  • the low-pass filter has a high attenuation in the pass band of the high-pass filter
  • the high-pass filter has a high attenuation in the pass band of the low-pass filter. Neither is considered.
  • the present invention has been made to solve the above-described problems, and its object is to reduce the insertion loss of the pass band of the filter device.
  • the filter device has a first passband.
  • the filter device includes a first terminal and a second terminal, and a first filter and a second filter.
  • the first filter and the second filter are arranged in parallel between the first terminal and the second terminal.
  • the first passband includes at least a part of the second passband of the first filter.
  • the first pass band includes at least a part of the third pass band of the second filter.
  • the second pass band is narrower than the first pass band.
  • the third passband is narrower than the first passband.
  • the center frequency of the third pass band is higher than the center frequency of the second pass band.
  • the first filter includes a plurality of series arm resonators.
  • the plurality of series arm resonators are arranged in series on a path from the first terminal to the second terminal via the first filter.
  • the plurality of series arm resonators includes a first series arm resonator and a second series arm resonator.
  • the first specific bandwidth of the first series arm resonator is the second series arm resonance. Different from the second specific bandwidth of the child.
  • the first filter includes series arm resonators having different specific bandwidths, whereby the insertion loss at the high band end of the pass band of the filter device can be reduced.
  • a filter device has a first passband.
  • the filter device includes a first terminal and a second terminal, and a first filter and a second filter.
  • the first filter and the second filter are arranged in parallel between the first terminal and the second terminal.
  • the first passband includes at least a part of the second passband of the first filter.
  • the first pass band includes at least a part of the third pass band of the second filter.
  • the second pass band is narrower than the first pass band.
  • the third passband is narrower than the first passband.
  • the center frequency of the third pass band is higher than the center frequency of the second pass band.
  • the second filter includes a first parallel arm resonator and a second parallel arm resonator.
  • the first parallel arm resonator is disposed between a ground point and a first connection point on a path from the first terminal to the second terminal via the second filter.
  • the second parallel arm resonator is disposed between the ground point and a second connection point different from the first connection point on the path from the first terminal to the second terminal via the second filter.
  • the specific bandwidth of the first parallel arm resonator is equal to that of the second parallel arm resonator. Different from specific bandwidth.
  • the second filter includes parallel arm resonators having different specific bandwidths, thereby reducing the insertion loss at the lower end of the pass band of the filter device.
  • the filter device according to the present invention can reduce the insertion loss of the pass band of the filter device.
  • FIG. 6 is a circuit configuration diagram of a filter device according to a modification of the first embodiment.
  • FIG. It is a figure which shows collectively the pass characteristic of the high frequency filter in Embodiment 2, and the impedance characteristic of the resonator contained in the high frequency filter.
  • FIG. 6 is a circuit configuration diagram of a filter device according to Embodiment 3.
  • FIG. It is a figure which shows collectively the pass characteristic of the filter apparatus which concerns on Embodiment 3, and the comparative example 2, and the pass characteristic of a low-pass filter. It is a figure which shows collectively the pass characteristic of the filter apparatus which concerns on Embodiment 4 and the comparative example 2, and the pass characteristic of a low-pass filter.
  • FIG. 10 is a circuit configuration diagram of a filter device according to a modification of the fourth embodiment.
  • FIG. 10 is a circuit configuration diagram of a filter device according to a fifth embodiment. It is a figure which shows an example of the module structure of the filter apparatus of FIG.
  • FIG. 22 is a table showing both pass characteristics of the filter device of FIG. 21 and a table showing a conduction state of each switch.
  • FIG. 10 is a configuration diagram of a communication device according to a sixth embodiment.
  • FIG. 10 is a circuit configuration diagram of a filter device according to a modification of the sixth embodiment.
  • FIG. 1 is a circuit configuration diagram of a filter device 1 according to an embodiment.
  • the filter device 1 includes a filter FLT1 (first filter), a filter FLT2 (second filter), an input / output terminal T1 (first terminal), and an input / output terminal T2 (second terminal).
  • Filters FLT1 and FLT2 are connected in parallel between input / output terminals T1 and T2. Specifically, one terminal of the filter FLT1 is connected to the input / output terminal T1, and the other terminal of the filter FLT1 is connected to the input / output terminal T2.
  • One terminal of the filter FLT2 is connected to the input / output terminal T1, and the other terminal of the filter FLT2 is connected to the input / output terminal T2.
  • Each of the filters FLT1 and FLT2 includes an acoustic wave resonator as a series arm resonator and a parallel arm resonator.
  • the acoustic wave resonator is, for example, a surface acoustic wave (SAW) resonator, a bulk acoustic wave (BAW) resonator, a FBAR (Film Bulk Acoustic Wave Resonator), or an SM (Solidly Mounted) resonator.
  • SAW surface acoustic wave
  • BAW bulk acoustic wave
  • FBAR Fanm Bulk Acoustic Wave Resonator
  • SM Solidly Mounted
  • the high-pass filter FLT2 may be an LC filter formed by an LC resonance circuit.
  • FIG. 2 shows the relationship between the pass band PB1 (first pass band) of the filter device 1 of FIG. 1 and the pass bands PB2 (second pass band) and pass band PB3 (third pass band) of the filters FLT1 and FLT2.
  • frequencies Cf1 to Cf3 are the center frequencies of the passbands PB1 to PB3.
  • the pass band is an arbitrary continuous frequency band in which the range of the insertion loss is within the range not less than the minimum value of the insertion loss and not more than the value obtained by adding 3 dB to the minimum value.
  • the pass band PB1 includes a part of the pass band PB2 and a part of the pass band PB3.
  • the pass band PB2 is narrower than the pass band PB1.
  • the pass band PB3 is narrower than the pass band PB1.
  • the center frequency Cf3 of the pass band PB3 is higher than the center frequency Cf2 of the pass band PB2.
  • a frequency band lower than the center frequency Cf1 is mainly formed by the filter FLT1
  • a frequency band higher than the center frequency Cf1 is mainly formed by the filter FLT2.
  • the filter FLT1 is a filter that forms the passband PB2, and is referred to as a low-pass filter.
  • the filter FLT2 is a filter that forms the passband PB3, and is called a high-pass filter.
  • the filter FLT2 increases, the signal consumed by the filter FLT2 decreases and the signal passing through the filter FLT1 increases. As a result, the insertion loss of the filter device 1 at the lowest frequency (low end) of the passband PB1 is reduced.
  • the attenuation pole of the filter FLT1 is generated in the vicinity of the anti-resonance frequency of the series arm resonator included in the filter FLT1. Therefore, a plurality of attenuation poles of the filter FLT1 in the vicinity of the pass band PB3 can be formed by having a plurality of series arm resonators in the filter FLT1. Furthermore, by increasing the frequency difference between the anti-resonance frequencies of the plurality of series arm resonators in the filter FLT1, the frequency difference between the plurality of attenuation poles of the filter FLT1 in the vicinity of the passband PB3 can be increased, and the attenuation bandwidth can be reduced. Can be spread. Therefore, the attenuation amount of the filter FLT1 in the passband PB3 can be increased.
  • the attenuation pole of the filter FLT2 is generated near the resonance frequency of the parallel arm resonator included in the filter FLT2. Therefore, a plurality of attenuation poles of the filter FLT2 in the vicinity of the pass band PB2 can be formed by having a plurality of parallel arm resonators in the filter FLT2. Furthermore, by increasing the frequency difference between the resonance frequencies of the plurality of parallel arm resonators in the filter FLT2, the frequency difference between the plurality of attenuation poles of the filter FLT2 in the vicinity of the passband PB2 can be increased, thereby widening the attenuation bandwidth. be able to. Therefore, the attenuation amount of the filter FLT2 in the passband PB2 can be increased.
  • the impedances of the acoustic wave resonators constituting the series arm resonator and the parallel arm resonator are maximized at the antiresonance frequency and minimized at the resonance frequency.
  • the filter device by including two series arm resonators having different relative bandwidths in the plurality of series arm resonators constituting the low-pass filter, and shifting the anti-resonance frequency, In the pass band of the filter, the frequency difference between the two attenuation poles of the low-pass filter is increased. As a result, the attenuation amount of the low-pass filter is increased in the pass band of the high-pass filter, and the insertion loss at the high pass end of the pass band of the filter device can be reduced.
  • a plurality of parallel arm resonators constituting the high-frequency side filter include two parallel arm resonators having different specific bandwidths, and the resonance frequency is shifted to thereby reduce the low-frequency side filter.
  • the frequency difference between the two attenuation poles of the high-pass filter is increased.
  • the attenuation amount of the high-pass filter increases in the pass band of the low-pass filter, and the insertion loss at the low pass end of the pass band of the filter device can be reduced.
  • the specific bandwidth is a percentage (%) obtained by dividing the difference between the anti-resonance frequency of the series arm resonator or the parallel arm resonator and the resonance frequency by the resonance frequency.
  • FIG. 3 is a chart showing the relationship between the resonance frequency fr of a general acoustic wave resonator and the specific bandwidth BWR.
  • the resonance frequency fr is changed, the specific bandwidth BWR is changed.
  • the frequency difference between the resonance frequencies fr of the plurality of acoustic wave resonators is approximately 100 MHz or less.
  • the specific bandwidth BWR changes by about 0.7%. Therefore, in the following, it is assumed that the two specific bandwidths are different when the difference between the two specific bandwidths is 0.8% or more. When the difference between the two specific bandwidths is less than 0.8%, the two specific bandwidths are assumed to be equal.
  • a first adjustment film made of an insulator or a dielectric is provided between the comb electrode and the piezoelectric substrate, and the film thickness of the first adjustment film is set.
  • the specific bandwidth of the acoustic wave resonator can be changed. In the case where there is no first adjustment film, the specific bandwidth is the largest, and the thicker the first adjustment film, the smaller the specific bandwidth.
  • a second adjustment film made of an insulator or a dielectric is provided so as to cover the comb electrode, and the specific bandwidth of the SAW resonator can be changed by changing the film thickness of the second adjustment film. it can. In the case where there is no second adjustment film, the specific bandwidth is the largest, and the thicker the second adjustment film, the smaller the specific bandwidth.
  • the specific bandwidth can be changed by changing the material of the piezoelectric body between the opposing electrodes.
  • FIG. 4 is a circuit configuration diagram specifically showing the configuration of filters FLT1 and FLT2 of FIG. Note that the circuit configurations of the filter device 100 according to Comparative Example 1 and the filter device 2 according to Embodiment 2 described later are also the circuit configurations shown in FIG.
  • the filter FLT1 includes a plurality of series arm resonators s11 and s12 and a parallel arm resonator p11.
  • the series arm resonator s11 first series arm resonator
  • the series arm resonator s12 second series arm resonator
  • the parallel arm resonator p11 is connected between the ground point and the connection point of the series arm resonators s11 and s12.
  • the filter FLT2 includes a phase shifter PS1 (first phase shifter), a phase shifter PS2 (second phase shifter), and a filter circuit AS1.
  • the phase shifter PS1 is connected between the filter circuit AS1 and the input / output terminal T1.
  • the phase shifter PS2 is connected between the filter circuit AS1 and the input / output terminal T2.
  • the filter circuit AS1 includes a series arm resonator s21 and parallel arm resonators p21 and p22.
  • the series arm resonator s21 is connected between the phase shifters PS1 and PS2.
  • the parallel arm resonator p21 is connected between the ground point and the connection point of the phase shifter PS1 and the series arm resonator s21.
  • the parallel arm resonator p22 is connected between the ground point and the connection point of the phase shifter PS2 and the series arm resonator s21.
  • the phase shifters PS1 and PS2 are configured to increase the impedance of the filter FLT2 in the passband PB2 of the filter FLT1.
  • Table 1 below shows the resonance frequency fr, antiresonance frequency fa, and ratio of the series arm resonators s11 and s12, the parallel arm resonator p11, the series arm resonator s21, and the parallel arm resonators p21 and p22 in the filter device 1, respectively. Bandwidth BWR and capacitance are shown.
  • the difference in the resonance frequency fr between the series arm resonators s11 and s12 in the filter device 1 is 11 MHz, whereas the difference in the antiresonance frequency fa is 40.8 MHz.
  • the difference in anti-resonance frequency fa is about four times larger than the difference in resonance frequency fr.
  • the relative bandwidth BWR (first bandwidth) of the series arm resonator s11 in the filter device 1 is changed to the series arm resonance mainly by shifting the antiresonance frequency fa of the series arm resonators s11 and s12.
  • the specific bandwidth BWR (second bandwidth) of the child s12 is set larger.
  • FIG. 5 shows a combination of the pass characteristics (frequency characteristics of insertion loss and attenuation amount) of the low-pass filter FLT1 in Embodiment 1 and the impedance characteristics of the resonators s11, s12, and p11 included in the low-pass filter FLT1.
  • FIG. 5A is a diagram showing the pass characteristics of the low-pass filter FLT1 in the first embodiment.
  • FIG. 5B is a diagram illustrating impedance characteristics of series arm resonators s11 and s12 and parallel arm resonator p11 included in low-pass filter FLT1 in the first embodiment.
  • the “filter pass characteristic” is a pass characteristic of a single filter, and is a pass characteristic when the filter is separated from other circuits.
  • the “resonator impedance characteristic” is an impedance characteristic of a single resonator, and is an impedance characteristic when the resonator is separated from other circuits.
  • the pass characteristic of the filter FLT1 includes the vicinity of the antiresonance frequencies of the series arm resonators s11 and s12 in the vicinity of the passband PB3.
  • An attenuation pole occurs in Since the antiresonance frequencies of the series arm resonators s11 and s12 are shifted by 40.8 MHz, the frequency band in which the attenuation pole is generated is approximately the same as the difference between the antiresonance frequencies of the series arm resonators s11 and s12.
  • the circuit configuration of the filter device 100 is the same as the circuit configuration shown in FIG. Table 2 below shows the resonance frequencies fr, antiresonance frequencies fa, and ratios of the series arm resonators s11 and s12, the parallel arm resonator p11, the series arm resonator s21, and the parallel arm resonators p21 and p22 in the filter device 100. Bandwidth BWR and capacitance are shown.
  • the specific bandwidth BWR of the series arm resonator s11 is the series arm resonator. It is equal to the specific bandwidth BWR of s12.
  • FIG. 6 is a diagram showing both the pass characteristics of the low-pass filter FLT1 in Comparative Example 1 and the impedance characteristics of the resonators s11, s12, and p11 included in the low-pass filter FLT1.
  • FIG. 6A is a diagram illustrating the pass characteristics of the low-pass filter FLT1 in the first comparative example.
  • FIG. 6B is a diagram illustrating impedance characteristics of the series arm resonators s11 and s12 and the parallel arm resonator p21 included in the low-pass filter FLT1 in the first comparative example.
  • the pass characteristic of the filter FLT1 includes the vicinity of the antiresonance frequencies of the series arm resonators s11 and s12 in the vicinity of the passband PB3.
  • An attenuation pole occurs in Since the antiresonance frequencies of the series arm resonators s11 and s12 are substantially the same, the attenuation poles are concentrated in a narrow frequency band as compared with the first embodiment.
  • FIG. 7 is a diagram illustrating both the pass characteristics of the filter devices according to Embodiment 1 and Comparative Example 1 and the pass characteristics of the low-pass filter.
  • FIG. 7A is a diagram showing both the pass characteristic of the filter device 1 (solid line) and the pass characteristic of the filter device 100 (dotted line).
  • FIG. 7B shows the pass characteristic (solid line) of the filter FLT1 in the first embodiment shown in FIG. 5A, and the pass characteristic of the filter FLT1 in the comparative example 1 shown in FIG. 6A (dotted line).
  • FIG. 7 is a diagram illustrating both the pass characteristics of the filter devices according to Embodiment 1 and Comparative Example 1 and the pass characteristics of the low-pass filter.
  • FIG. 7A is a diagram showing both the pass characteristic of the filter device 1 (solid line) and the pass characteristic of the filter device 100 (dotted line).
  • FIG. 7B shows the pass characteristic (solid line) of the filter FLT1 in the first embodiment shown in FIG. 5A, and the pass characteristic of the filter FLT1
  • the frequency difference between the two attenuation poles of the filter FLT1 formed in the vicinity of the passband PB3 is larger than that of the comparative example 1, and the attenuation in the passband PB3.
  • the amount is large. Therefore, as shown in FIG. 7A, the insertion loss of the filter device 1 is smaller than the insertion loss of the filter device 100 at the high band end of the passband PB1.
  • FIG. 8 is a circuit configuration diagram of a filter device 1A according to a modification of the first embodiment.
  • the configuration of the filter device 1A is a configuration in which switches SW1 to SW4 are added to the configuration of the filter device 1 of FIG. Since the other configuration is the same, the description will not be repeated.
  • the switch SW1 (second switch) is connected between the input / output terminal T1 and the filter FLT1.
  • the switch SW2 (third switch) is connected between the input / output terminal T2 and the filter FLT1.
  • the switch SW3 (fourth switch) is connected between the input / output terminal T1 and the filter FLT2.
  • the switch SW4 (fifth switch) is connected between the input / output terminal T2 and the filter FLT2.
  • the conduction states (ON or OFF) of the switches SW1 and SW2 are synchronized.
  • the conduction states of the switches SW3 and SW4 are synchronized.
  • the switches SW1 to SW4 are switched in a conductive state according to a control signal from a control circuit included in an RF signal processing circuit (RFIC: Radio Frequency Integrated Circuit) (not shown), for example.
  • RFIC Radio Frequency Integrated Circuit
  • the control circuit may be provided separately from the RFIC.
  • the pass band of the filter device 1A is the pass band PB2 of the filter FLT1.
  • the pass band of the filter device 1A is the pass band PB3 of the filter FLT2.
  • the pass band of the filter device 1A is PB1.
  • not all the switches SW1 to SW4 are necessary. For example, by providing one combination of the switches SW1 and SW2 or the switches SW3 and SW4, the pass band of the filter device can be made variable.
  • the pass band of the filter device is PB1.
  • the pass band of the filter device is the pass band PB3 of the filter FLT2.
  • the pass band of the filter device is PB1 when the switches SW3 and SW4 are on.
  • the pass band of the filter device is the pass band PB2 of the filter FLT1.
  • the insertion loss of the passband can be reduced.
  • the filter device 2 In the second embodiment, a case will be described in which two parallel arm resonators having different specific bandwidths are included in a plurality of parallel arm resonators constituting the high-pass filter.
  • the circuit configuration of the filter device 2 according to the second embodiment is the same as the circuit configuration shown in FIG.
  • the low-pass filter FLT1 may be an LC filter formed by an LC resonance circuit.
  • Table 3 shows the resonance frequency fr, antiresonance frequency fa, and ratio of each of the series arm resonators s11 and s12, the parallel arm resonator p11, the series arm resonator s21, and the parallel arm resonators p21 and p22 in the filter device 2. Bandwidth BWR and capacitance are shown.
  • the difference between the anti-resonance frequencies fa of the plurality of parallel arm resonators p21 and s22 in the filter device 2 is 0.9 MHz, whereas the difference between the resonance frequencies fr is 53.6 MHz. .
  • the difference in the resonance frequency fr is about 6 times larger than the difference in the antiresonance frequency fa.
  • the parallel arm in the filter device 2 is mainly shifted by shifting the resonance frequency fr of the parallel arm resonator p21 (first parallel arm resonator) and the parallel arm resonator p22 (second parallel arm resonator).
  • the specific bandwidth BWR (fourth bandwidth) of the resonator p21 is larger than the specific bandwidth BWR (fifth bandwidth) of the parallel arm resonator p22.
  • FIG. 9 is a diagram showing both the pass characteristics of the high-pass filter FLT2 and the impedance characteristics of the resonators s21, s22, and p21 included in the high-pass filter FLT2 in the second embodiment.
  • FIG. 9A is a diagram showing the pass characteristic of the high-pass filter FLT2 in the second embodiment.
  • FIG. 9B is a diagram illustrating impedance characteristics of the series arm resonator s21 and the parallel arm resonators p21 and p22 included in the high-pass filter FLT2 in the second embodiment.
  • the pass characteristics of the filter FLT2 are in the vicinity of the resonance frequencies of the parallel arm resonators p21 and p22 in the vicinity of the passband PB2.
  • An attenuation pole is generated. Since the antiresonance frequencies of the parallel arm resonators p21 and p22 are shifted by 53.6 MHz, the frequency band in which the attenuation pole is generated is approximately the same as the difference between the resonance frequencies of the parallel arm resonators p21 and p22.
  • the specific bandwidth BWR of the parallel arm resonator p21 is equal to the parallel arm resonator. It is equal to the specific bandwidth BWR of p22.
  • FIG. 10 is a diagram showing both the pass characteristics of the high-pass filter FLT2 in Comparative Example 1 and the impedance characteristics of the resonators s21, p21, and p22 included in the high-pass filter FLT2.
  • FIG. 10A is a diagram illustrating the pass characteristics of the high-pass filter FLT2 in the first comparative example.
  • FIG. 10B is a diagram illustrating impedance characteristics of the series arm resonator s21 and the parallel arm resonators p21 and p22 included in the high-pass filter FLT2 in the first comparative example.
  • the pass characteristics of the filter FLT2 include resonances of the parallel arm resonators p21 and p22 on the low frequency side of the passband PB1. There is an attenuation pole near the frequency. Since the resonance frequencies of the parallel arm resonators p21 and p22 are substantially the same, the attenuation poles are concentrated in a narrow frequency band as compared with the second embodiment.
  • FIG. 11 is a diagram showing both the pass characteristics of the filter devices according to Embodiment 2 and Comparative Example 1 and the pass characteristics of the high-pass filter.
  • FIG. 11A is a diagram illustrating the transmission characteristic (solid line) of the filter device 2 and the transmission characteristic (dotted line) of the filter device 100 together.
  • FIG. 11B shows the pass characteristic (solid line) of the filter FLT2 in the second embodiment shown in FIG. 9A, and the pass characteristic (dotted line) of the filter FLT2 in the comparative example 1 shown in FIG. FIG.
  • the frequency difference between the two attenuation poles of the filter FLT2 formed on the low frequency side in the vicinity of the passband PB2 is larger than that of the first comparative example, The amount of attenuation at PB2 is large. Therefore, as shown in FIG. 11A, the insertion loss of the filter device 2 is smaller than the insertion loss of the filter device 100 at the lower end of the passband PB1.
  • the high frequency end frequency of the stop band in the elastic wave resonator is generated at a frequency higher than the anti-resonance frequency, and the elastic wave resonance occurs at a frequency higher than the high frequency end frequency of the stop band.
  • the reflection coefficient of the child is smaller than the reflection coefficient at the antiresonance frequency fa. This is because the bulk wave in the acoustic wave resonator leaks to the outside of the acoustic wave resonator (this is referred to as “bulk wave loss”), and the reflection loss increases, so that the Q of the acoustic wave resonator is increased. This is because the characteristics deteriorate.
  • the higher the anti-resonance frequency the higher the frequency at which bulk wave loss occurs. That is, by increasing the specific bandwidth of the elastic wave resonator, the difference between the antiresonance frequency and the resonance frequency can be increased, and the frequency at which bulk wave loss occurs (frequency at the high end of the stopband) And the resonance frequency can be increased.
  • the resonator closest to the input / output terminal of the low-pass filter has a relatively low impedance in the low-pass filter in the pass band of the high-pass filter, greatly affecting the insertion loss in the pass band of the filter device. To do.
  • the specific bandwidth of the series arm resonator closest to the input / output terminal (series arm resonators at both ends) is equal to that of the series arm resonator disposed between the series arm resonators at both ends.
  • a case where the bandwidth is smaller than the specific bandwidth will be described to show that the effect of the present invention is obtained.
  • Embodiment 4 the case where the specific bandwidth of the series arm resonators at both ends is larger than the specific bandwidth of the series arm resonators disposed between the series arm resonators at both ends will be described. This is more effective than Embodiment 3 in terms of reducing bulk wave loss.
  • FIG. 12 is a circuit configuration diagram of the filter device 3 according to the third embodiment.
  • the configuration of the filter device 3 is a configuration in which the filters FLT1 and FLT2 in FIG. 4 are replaced by filters FLT31 and FLT32, respectively.
  • the circuit configurations of the filter device 200 according to Comparative Example 2 and the filter device 4 according to Embodiment 4 to be referred to later are the same as those shown in FIG.
  • the filter FLT 31 includes a series arm resonator s13 (second series arm resonator) and a series arm resonator s14 (third series arm resonator) in addition to the configuration of the filter FLT1 in FIG. And parallel arm resonators p12 and p13.
  • the plurality of series arm resonators s11 to s14 are connected in series between the input / output terminals T1 and T2 with the series arm resonators s11 and s14 as both ends.
  • the series arm resonator s11 is closest to the input / output terminal T1
  • the series arm resonator s14 is closest to the input / output terminal T2.
  • the parallel arm resonator p12 is connected between the ground point and the connection point of the series arm resonators s12 and s13.
  • the parallel arm resonator p13 is connected between the ground point and the connection point of the series arm resonators s13 and s14.
  • the filter FLT 32 includes a filter circuit AS3 instead of the filter circuit AS1 of FIG.
  • Filter circuit AS3 further includes a series arm resonator s22 and a parallel arm resonator p23 in addition to the configuration of filter circuit AS1.
  • Series arm resonators s21 and s22 are connected in series between phase shifters PS1 and PS2.
  • the parallel arm resonator p22 is connected between the ground point and the connection point of the series arm resonators s21 and s22.
  • the parallel arm resonator p23 is connected between the ground point and the connection point of the phase shifter PS2 and the series arm resonator s22.
  • Table 4 below shows the resonance frequency fr and antiresonance of the series arm resonators s11 to s14, parallel arm resonators p11 to p13, series arm resonators s21 and s22, and parallel arm resonators p21 to p23 in the filter device 3, respectively.
  • the frequency fa, the specific bandwidth BWR, and the capacitance are shown.
  • the specific bandwidth BWR (first bandwidth) of the series arm resonator s11 and the specific bandwidth BWR (third bandwidth) of the series arm resonator s14 in the filter device 3 are the series arm resonance. It is smaller than the specific bandwidth BWR (second bandwidth) of the children s12 and s13.
  • Table 5 below shows the resonances of the series arm resonators s11 to s14, the parallel arm resonators p11 to p13, the series arm resonators s21 and s22, and the parallel arm resonators p21 to p23 in the filter device 200 according to Comparative Example 2.
  • the frequency fr, the antiresonance frequency fa, the specific bandwidth BWR, and the capacitance are shown.
  • the specific bandwidths of the series arm resonators s11 to s14 in the filter device 200 are equal.
  • FIG. 13 is a diagram illustrating both the pass characteristics of the filter device according to Embodiment 3 and Comparative Example 2 and the pass characteristics of the low-pass filter.
  • FIG. 13A is a diagram showing both the pass characteristic of the filter device 3 (solid line) and the pass characteristic of the filter device 200 (dotted line).
  • FIG. 13B is a diagram showing both the pass characteristic (solid line) of the filter FLT 31 in Embodiment 3 and the pass characteristic (dotted line) of the filter FLT 31 in Comparative Example 2.
  • the frequency difference between the highest frequency attenuation pole and the lowest frequency attenuation pole of the filter FLT 31 formed on the high frequency side of the pass band PB1 is compared. It is larger than Example 2 and the amount of attenuation at the high band end of the pass band PB3 is large. Therefore, as shown in FIG. 13A, the insertion loss of the filter device 3 is smaller than the insertion loss of the filter device 200 at the high band end of the pass band PB1.
  • the filter device according to Embodiment 3 can reduce the insertion loss of the passband.
  • Table 6 shows the resonance frequency fr and antiresonance of the series arm resonators s11 to s14, parallel arm resonators p11 to p13, series arm resonators s21 and s22, and parallel arm resonators p21 to p23 in the filter device 4, respectively.
  • the frequency fa, the specific bandwidth BWR, and the capacitance are shown.
  • the specific bandwidth BWR (first bandwidth) of the series arm resonator s11 and the specific bandwidth BWR (third bandwidth) of s14 in the filter device 4 are the series arm resonators s12 and s13. Is larger than the specific bandwidth BWR (second bandwidth).
  • the capacitance of the series arm resonator s14 is smaller than each capacitance of the series arm resonators s11 to s13.
  • FIG. 14 is a diagram illustrating both the pass characteristics of the filter device according to Embodiment 4 and Comparative Example 2 and the pass characteristics of the low-pass filter.
  • FIG. 14A is a diagram showing both the pass characteristic of the filter device 4 (solid line) and the pass characteristic of the filter device 200 (dotted line).
  • FIG. 14B is a diagram illustrating both the pass characteristics (solid line) of the filter FLT 31 in Embodiment 4 and the pass characteristics (dotted line) of the filter FLT 31 in Comparative Example 2.
  • the frequency difference between the highest frequency attenuation pole and the lowest frequency attenuation pole of the filter FLT 31 formed on the high frequency side of the pass band PB1 is compared. It is larger than Example 2 and the amount of attenuation at the high band end of the pass band PB3 is large. Therefore, as shown in FIG. 14A, the insertion loss of the filter device 4 is smaller than the insertion loss of the filter device 200 at the high band end of the passband PB1.
  • FIG. 15 shows the change (a) of the impedance characteristic of the acoustic wave resonator and the reflection characteristic (C) when the capacitance of the acoustic wave resonator is changed from Cv1 to Cv4 (Cv1 ⁇ Cv2 ⁇ Cv3 ⁇ Cv4). It is a figure which shows collectively the frequency characteristic (b) of reflection loss.
  • “Resonator impedance characteristics” and “resonator reflection characteristics” are impedance characteristics and reflection characteristics of a single resonator, and are impedance characteristics and reflection characteristics when the resonator is separated from other circuits. .
  • the reflection loss in the frequency band higher than the antiresonance frequency of the acoustic wave resonator is smaller as the capacitance of the acoustic wave resonator is smaller. Therefore, it is desirable that the capacitance of the resonator closest to the input / output terminal is small.
  • FIG. 16 is a diagram illustrating both the impedance characteristics and the reflection characteristics of the series arm resonator s11 of the third and fourth embodiments.
  • FIG. 16A is a diagram illustrating both the impedance characteristic (dotted line) of the series arm resonator s11 of the third embodiment and the impedance characteristic (solid line) of the series arm resonator s11 of the fourth embodiment.
  • FIG. 16B is a diagram showing both the reflection characteristics (dotted line) of the series arm resonator s11 of the third embodiment and the reflection characteristics (solid line) of the series arm resonator s11 of the fourth embodiment.
  • the impedance of the series arm resonator s11 at the high band end of the pass band PB1 is larger in the fourth embodiment than in the third embodiment.
  • the reflection loss of the series arm resonator s11 at the high band end of the pass band PB1 is smaller in the fourth embodiment than in the third embodiment.
  • FIG. 17 is a diagram illustrating impedance characteristics (a) and reflection characteristics (b) of the series arm resonator s14 of the third and fourth embodiments.
  • FIG. 17A is a diagram illustrating the impedance characteristic (dotted line) of the series arm resonator s14 of the third embodiment and the impedance characteristic (solid line) of the series arm resonator s14 of the fourth embodiment.
  • FIG. 17B is a diagram showing both the reflection characteristic (dotted line) of the series arm resonator s14 of the third embodiment and the reflection characteristic (solid line) of the series arm resonator s14 of the fourth embodiment.
  • the impedance of the series arm resonator s14 at the high band end of the pass band PB1 is larger in the fourth embodiment than in the third embodiment.
  • the reflection loss of the series arm resonator s14 at the high band end of the pass band PB1 is smaller in the fourth embodiment than in the third embodiment.
  • the specific bandwidth of the series arm resonator s11 and the specific bandwidth of the series arm resonator s14 are the specific bandwidth of the series arm resonator s12 and the series arm resonator s13. Less than specific bandwidth.
  • the capacitance of the series arm resonator s11 and the capacitance of the series arm resonator s14 are larger than the capacitance of the series arm resonator s12 and the capacitance of the series arm resonator s13. .
  • the specific bandwidth of the series arm resonator s11 and the specific bandwidth of the series arm resonator s14 are the specific bandwidth of the series arm resonator s12 and the series arm resonator s13. Greater than specific bandwidth.
  • at least one of the capacitance of the series arm resonator s11 and the capacitance of the series arm resonator s14 is the capacitance of the series arm resonator s12 and the series arm resonator s13. Is less than the capacitance.
  • the resonance frequencies of the series arm resonators s11 to s14 are arranged in the pass band PB2 or in the vicinity thereof. Furthermore, in the series arm resonator with a small specific bandwidth, the reflection loss due to the bulk wave loss is large, and the difference between the resonance frequency and the frequency at which the bulk wave loss is generated is small. The loss is great. On the other hand, in series arm resonators with a large specific bandwidth, the reflection loss due to bulk wave loss is small, and the difference between the resonant frequency and the frequency at which bulk wave loss occurs is large. Loss is small. Further, when comparing the series arm resonators having the same specific bandwidth, the reflection loss due to the bulk wave loss is small in the series arm resonator having a small capacitance.
  • FIG. 18 is a diagram showing the reflection characteristic (dotted line) of the low-pass filter FLT31 of the third embodiment and the reflection characteristic (solid line) of the low-pass filter FLT31 of the fourth embodiment.
  • FIG. 18A shows the reflection characteristics of the low-pass filter FLT31 at the input / output terminal T1.
  • FIG. 18B is a diagram showing the reflection characteristics of the low-pass filter FLT31 at the input / output terminal T2.
  • the reflection loss of the filter FLT31 at the high band end of the pass band PB1 is higher in the fourth embodiment than in the third embodiment. small.
  • the series arm resonator closest to the input / output terminal has a relatively low impedance in the low band side filter FLT31 in the pass band of the high band side filter, and the pass band of the filter device. This greatly affects the insertion loss. Therefore, the reflection loss of the low-pass filter FLT31 is smaller in the fourth embodiment in which the reflection loss of the series arm resonator s11 and the series arm resonator s14 is smaller at the high band end of the passband PB1.
  • FIG. 19 is a diagram showing both the pass characteristics of the filter devices according to Embodiments 3 and 4 and the pass characteristic of the low-pass filter.
  • FIG. 19A is a diagram showing both the transmission characteristic (dotted line) of the filter device 3 and the transmission characteristic (solid line) of the filter device 4.
  • FIG. 19 (b) is a diagram showing both the pass characteristic (dotted line) of filter FLT31 in the third embodiment and the pass characteristic (solid line) of filter FLT31 in the fourth embodiment.
  • the bulk wave loss is reduced as compared with the third embodiment. Therefore, as shown in FIG. 19A, the insertion loss of the filter device 4 at the high band end of the pass band PB1 is smaller than the insertion loss of the filter device 3.
  • the series arm resonator or the parallel arm resonator may have a configuration in which a plurality of elastic wave resonators are connected in series. That is, the series arm resonator or the parallel arm resonator may be formed from a plurality of elastic wave resonators formed by dividing one elastic wave resonator in series.
  • the area of the resonator can be increased, and the amount of heat generated per unit area can be reduced.
  • the series arm resonators at both ends are likely to generate heat because they directly and intensively receive high-frequency power from the input / output terminals.
  • At least one of the series arm resonators at both ends to which high-frequency power is input is highly required to be formed by series division.
  • the area of the series arm resonator becomes smaller as the electrostatic capacity becomes smaller, a series arm resonator having a smaller electrostatic capacity in order to reduce bulk wave loss is highly required to be formed by series division.
  • the series arm resonators s14 that are series arm resonators at both ends and whose electrostatic capacitance is smaller than that of other series arm resonators are most required to be formed by series division. Therefore, in a modification of the fourth embodiment, a case where the series arm resonator s14 is divided in series will be described.
  • FIG. 20 is a circuit configuration diagram of a filter device 4A according to a modification of the fourth embodiment.
  • the configuration of the filter device 4A is a configuration in which the filter FLT31 of the filter device 4 of FIG. 12 is replaced with an FLT41 (first filter).
  • the configuration of the filter FLT41 is a configuration in which the series arm resonator s14 of the filter FLT31 is replaced with a series arm resonator s14A. Since the configuration other than this is the same as that of the fourth embodiment, description thereof will not be repeated.
  • the series arm resonator s14A is divided in series into a plurality of acoustic wave resonators s141 and s142.
  • the capacitance of the series arm resonator s14A is smaller than the capacitance of each of the series arm resonators s12 and s13, like the series arm resonator s14.
  • the size of the series arm resonator s14A is larger than the size of the series arm resonator s14 due to the series division. Therefore, the heat generation amount per unit area of the series arm resonator s14A is smaller than the heat generation amount per unit area of the series arm resonator s14.
  • the power durability of the series arm resonator s14A is superior to that of the series arm resonator s14.
  • the filter device According to the filter device according to the fourth embodiment and the modification, it is possible to improve the power durability and reduce the insertion loss at the high band end of the passband.
  • FIG. 21 is a circuit configuration diagram of the filter device 5 according to the fifth embodiment.
  • the filter device 5 includes a filter FLT51 (first filter), a filter FLT52 (second filter), a filter FLT53, a switch circuit SWC1 (second switch), and a switch circuit SWC2 (third switch). And a common terminal T51 (first terminal), an input / output terminal T52 (second terminal), and an input / output terminal T53 (third terminal).
  • Filter device 5, filter FLT51, and filter FLT52 each have a passband PB51 (first passband), a passband PB52 (second passband), and a passband PB53 (third passband).
  • the filter FLT51 is a low-pass filter
  • the filter FLT52 is a high-pass filter.
  • Filter FLT 53 has pass band PB 53.
  • the pass band PB 51 includes a part of the pass band PB 52 and a part of the pass band PB 53.
  • Passband PB52 is narrower than passband PB51.
  • Passband PB53 is narrower than passband PB51.
  • the center frequency of the pass band PB53 is higher than the center frequency of the pass band PB52.
  • the passbands PB52 and PB53 do not overlap.
  • the filter FLT52 and the switch circuit SWC1 are connected in series in this order. Between the common terminal T51 and the input / output terminal T52, the filter FLT51, the filter FLT52 connected in series, and the switch circuit SWC1 are connected in parallel. The switch circuit SWC2 and the filter FLT53 are connected in series in this order between the input / output terminal T53 and the connection point of the filter FLT52 and the switch circuit SWC1.
  • the switch circuit SWC1 includes switches SW51, SW52, and SW5G.
  • the switches SW51 and SW52 are connected in series between the filter FLT52 and the input / output terminal T52.
  • Switch SW5G is connected between the ground point and the connection point of switches SW51 and SW52.
  • the conduction states of the switches SW51 and SW52 are synchronized.
  • the switch SW51 (SW52) and the switch SW5G are exclusively switched on.
  • the switch circuit SWC2 includes switches SW6 and SW6G.
  • the filter FLT 52, the switch SW6, and the filter FLT 53 are connected in series between the common terminal T51 and the input / output terminal T53 in this order.
  • Switch SW6G is connected between the ground point and the connection point of switch SW6 and filter FLT53. The switches SW6 and SW6G are switched on and off exclusively.
  • the filter FLT 51 includes a series arm resonator s511 (first series arm resonator), a series arm resonator s512 (second series arm resonator), a series arm resonator s513 (third series arm resonator), and a parallel arm resonance.
  • the specific bandwidth of the series arm resonator s511 is different from the specific bandwidth of the series arm resonator s512.
  • the specific bandwidth of the series arm resonator s513 is different from the specific bandwidth of the series arm resonator s512.
  • the series arm resonators s511 to s513 are connected in series between the common terminal T51 and the input / output terminal T52.
  • the parallel arm resonator p511 is connected between the ground point and the connection point of the common terminal T51 and the series arm resonator s511.
  • the parallel arm resonator p512 is connected between the ground point and the connection point of the series arm resonators s511 and s512.
  • the parallel arm resonator p513 is connected between the ground point and the connection point of the series arm resonators s512 and s513.
  • the parallel arm resonator p514 is connected between the ground point and the connection point of the series arm resonator s513 and the input / output terminal T52.
  • the switches SW91 to SW93 are connected in series with the capacitors Cs11 to Cs13, respectively.
  • the switch SW91 and the capacitor Cs11 are connected in parallel with the series arm resonator s511.
  • the switch SW92 and the capacitor Cs12 are connected in parallel with the series arm resonator s512.
  • the switch SW93 and the capacitor Cs13 are connected in parallel with the series arm resonator s513.
  • the pass characteristics of the filter FLT 51 differ between when the switches SW91 to SW93 are on and when the switches SW91 to SW93 are off.
  • the switches SW51, SW52, SW5G, switches SW6, SW6G, and switches SW91 to SW93 are switched between conductive states, for example, in accordance with a control signal from a control circuit included in an RFIC (not shown).
  • the control circuit may be provided separately from the RFIC.
  • the filter FLT 52 includes a phase shifter PS21 (first phase shifter), a phase shifter PS22 (second phase shifter), and a filter circuit AS5.
  • the filter circuit AS5 includes a series arm resonator s521, a parallel arm resonator p521 (first parallel arm resonator), and a parallel arm resonator p522 (second parallel arm resonator).
  • the phase shifter PS21 is connected between the common terminal T51 and the series arm resonator s521.
  • the phase shifter PS22 is connected between the series arm resonator s521 and the switch SW6.
  • the phase shifters PS21 and PS22 are configured to increase the impedance of the filter FLT52 in the passband PB52 of the filter FLT51.
  • the filter FLT 53 includes a series arm resonator s31, a longitudinally coupled resonator 32, and a parallel arm resonator p31.
  • the series arm resonator s31 and the longitudinally coupled resonator 32 are connected in series between the switch SW6 and the input / output terminal T53.
  • the parallel arm resonator p31 is connected between a ground point and a connection point between the longitudinally coupled resonator 32 and the input / output terminal T53.
  • the longitudinally coupled resonator 32 is formed of, for example, a plurality of IDT (Interdigital Transducer) electrodes juxtaposed between two reflectors.
  • the longitudinally coupled resonator 32 may not have a reflector.
  • FIG. 22 is a diagram illustrating an example of a module configuration of the filter device 5 of FIG. As shown in FIG. 22, packages (chips) 51 to 55 and inductors Lp 521 and Lp 522 are mounted on the wiring board 50.
  • Packages 51 to 53 are resonator packages.
  • the packages 54 and 55 are switch packages.
  • Each of the packages 51 to 55 has a surface electrode on the bottom surface for mounting on the wiring board 50.
  • the surface electrode is indicated by a circle in FIG. In FIG. 22, in order to make the package structure easy to see, circuit elements and wirings formed in each package are schematically shown, and the inside of the packages 51 to 55 is transmitted so that the surface electrode on the bottom surface of each package is illustrated. Show.
  • the wiring board 50 has external connection electrodes constituting the common terminal T51 and the input / output terminals T52 and T53.
  • the external connection electrode is, for example, a surface electrode for mounting the wiring board 50 on a mother board or the like, or a connector for connecting the wiring board 50 and other electronic components.
  • series arm resonators s511 to s513 and parallel arm resonators p511 to p514 are mounted in the package 51.
  • switches SW91 to SW93 and capacitors Cs11 to Cs13 are mounted in the package 55.
  • the packages 51 and 55 form a filter FLT 51.
  • a series arm resonator s521, parallel arm resonators p521 and p522, and capacitors Cs21 and Cs22 are mounted in the package 52.
  • the inductor Lp521 and the capacitor Cs21 form a phase shifter PS21.
  • Inductor Lp522 and capacitor Cs22 form phase shifter PS22.
  • the package 52 and the inductors Lp521 and Lp522 form a filter FLT52.
  • a series arm resonator s31, a parallel arm resonator p31, and a longitudinally coupled resonator 32 are mounted in the package 53.
  • the package 53 forms a filter FLT 53.
  • switches SW51, SW52, SW5G, SW6, and SW6G are formed in the package 53.
  • the switches SW51, SW52, SW5G, SW6, SW6G, the switches SW91 to SW93, the capacitors Cs11 to Cs13, Cs21, and Cs22 may be modularized with a configuration different from the above.
  • the capacitors Cs11 to Cs13 may be mounted not in the switch package but in the resonator package or in the wiring board 50.
  • FIG. 23 is a table showing the pass characteristics of the filter device of FIG. 21 together with a table showing the conduction states of the switches SW51, SW52, SW5G, SW6, SW6G, and SW91 to SW93.
  • FIG. 23A shows a common terminal T51 and an input / output terminal when the switches SW51, SW52, SW6G are on and the switches SW5G, SW6, SW91 to SW93 are off. It is a figure which shows the passage characteristic between T52.
  • the pass band between the common terminal T51 and the input / output terminal T52 in the conductive state of the switch shown in FIG. 23A is a pass band PB51 formed by the filters FLT51 and FLT52. In this case, no high frequency signal is input / output to the input / output terminal T53.
  • FIG. 23B shows the pass characteristic IL51 between the common terminals T51 and T52 when the switches SW51, SW52, SW6G, SW91 to SW93 are off, and the switches SW5G and SW6 are on, and the switches SW51, SW52, It is a figure which shows collectively the passage characteristic IL52 between the common terminal T51 and the input-output terminal T52 when SW6G is OFF and switch SW5G, switch SW6, and SW91-SW93 are ON.
  • the pass band between the common terminal T51 and the input / output terminal T52 in the conductive state of the switch shown in FIG. 23B is a pass band PB52 formed by the filter FLT51.
  • FIG. 23 (c) is a diagram showing pass characteristics between the common terminal T51 and the input / output terminal T53 when the switches SW51, SW52, SW6G, and SW91 to SW93 are off and the switches SW5G and SW6 are on.
  • a pass band between the common terminal T51 and the input / output terminal T53 in the conductive state of the switch shown in FIG. 23C is a pass band PB53 formed by the filter FLT52. Even if SW91 to SW93 are on, the same pass characteristics are obtained.
  • the pass characteristics IL51 and IL52 in the passband PB52 change in substantially the same manner.
  • an attenuation pole occurs at a frequency lower than that of the pass characteristic IL51.
  • the manner in which the pass characteristic IL52 increases in the frequency band between the passband PB52 and the passband PB53 is steeper than the manner in which the pass characteristic IL51 increases.
  • the pass characteristics IL51 and IL52 are changed in different modes.
  • the pass characteristics of the filter FLT 51 can be changed by switching the conduction states of the switches SW91 to SW93.
  • the insertion loss at the high band end of the pass band PB51 can be reduced in the conductive state of the switch shown in FIG. Further, according to the filter device 5, the bandpass filter configuration of the passband PB51 (the conduction state of the switch of FIG. 23A) and the multiplexer configuration (FIG. 23B and FIG. 23) having the passband PB52 and the passband PB53. 23 (c) can be switched.
  • the filter device can reduce the insertion loss of the passband.
  • FIG. 24 is a configuration diagram of the communication apparatus 1000 according to the sixth embodiment.
  • the communication apparatus 1000 includes a high-frequency front-end circuit 300, an RFIC 400, a BBIC (Baseband Integrated Circuit) 500, and an antenna element 900.
  • a high-frequency front-end circuit 300 As shown in FIG. 24, the communication apparatus 1000 includes a high-frequency front-end circuit 300, an RFIC 400, a BBIC (Baseband Integrated Circuit) 500, and an antenna element 900.
  • BBIC Baseband Integrated Circuit
  • the high-frequency front end circuit 300 includes a filter device 6, a switch circuit SWC6, a duplexer 67, transmission amplifier circuits 60T and 62T, and reception amplifier circuits 60R and 62R.
  • the filter circuit SWC6 is connected to the antenna element 900, the filter device 6, and the duplexer 67.
  • the filter circuit SWC6 switches the connection between the antenna element 900 and the filter device 6 and the connection between the antenna element 900 and the duplexer 67.
  • the filter device 6 includes a filter FLT61 (first filter), a filter FLT62 (second filter), a common terminal T61 (first terminal), an input / output terminal T62 (second terminal), and an input / output terminal T63 (third terminal). ), A switch SW61 (second switch), and a switch SW62 (third switch).
  • the pass bands of the filter device 6, the filter FLT 61, and the filter FLT 62 are a pass band PB61 (first pass band), a pass band PB62 (second pass band), and a pass band PB63 (third pass band), respectively.
  • the filter FLT61 is a low-pass filter
  • the filter FLT62 is a high-pass filter.
  • the passband PB61 includes a part of the passband PB62 and a part of the passband PB63.
  • the pass band PB62 is narrower than the pass band PB61.
  • Passband PB63 is narrower than passband PB61.
  • the center frequency of the pass band PB63 is higher than the center frequency of the pass band PB62.
  • the passbands PB62 and PB63 do not overlap.
  • the filter FLT62 and the switch SW61 are connected in series in this order. Between the common terminal T61 and the input / output terminal T62, the filter FLT61, the filter FLT62 and the switch SW61 connected in series are connected in parallel.
  • the switch SW62 is connected between the input / output terminal T63 and a connection point between the filter FLT62 and the switch SW61.
  • the filter device 6 can be realized by adding switches SW61 and SW62 and an input / output terminal T63 to the filter devices according to the first to fourth embodiments.
  • the filter device 6 can also be realized by the filter device according to the fifth embodiment.
  • the common terminal T61 is connected to the switch circuit SWC6.
  • the input / output terminal T62 is connected to the reception amplification circuit 60R.
  • the input / output terminal T63 is connected to the transmission amplifier circuit 60T.
  • the transmission amplifier circuit 60T is a power amplifier that amplifies power of a high-frequency signal in a predetermined frequency band.
  • the reception amplifier circuit 60R is a low noise amplifier that amplifies power of a high frequency signal in a predetermined frequency band.
  • the duplexer 67 has a transmission terminal and a reception terminal.
  • the duplexer 67 uses a frequency band different from the pass bands PB61 to PB63 as a transmission band and a reception band.
  • the transmission amplifier circuit 62T is connected to the transmission terminal of the duplexer 67.
  • the transmission amplifier circuit 62T is a power amplifier that amplifies power of a high-frequency transmission signal in a predetermined frequency band.
  • the reception amplification circuit 62R is connected to the reception terminal of the duplexer 67.
  • the reception amplifier circuit 62R is a low noise amplifier that amplifies power of a high frequency signal in a predetermined frequency band.
  • RFIC 400 processes a high-frequency signal transmitted and received by antenna element 900. Specifically, the RFIC 400 processes a high-frequency signal input from the antenna element 900 via the reception-side signal path by down-conversion or the like, and outputs the signal to the BBIC 500. The RFIC 400 performs signal processing on the transmission signal input from the BBIC 500 by up-conversion and outputs the signal.
  • the RFIC 400 outputs a control signal for switching the conduction state to each of the switch circuit SWC6, the switches SW61 and SW62.
  • the control signal may be output from a control circuit provided separately from the RFIC.
  • the filter device 6 In the filter device 6, the case where the third switch is connected between the third input / output terminal and the connection point of the second filter and the second switch has been described.
  • the filter device according to the sixth embodiment is similar to the filter device 6A according to the modification of the sixth embodiment shown in FIG. 25, in which the switch SW62 (third switch) is connected to the input / output terminal T62 (second terminal).
  • the low-pass filter FLT61 (first filter) and the switch SW61 (second switch) may be connected between the connection points.
  • the communication quality can be improved by the filter device in which the insertion loss at the high frequency end is reduced.
  • 1-6, 1A, 4A, 6A 100, 200 filter device, 32 longitudinally coupled resonator, 50 wiring board, 51-55 package, 60R, 62R reception amplification circuit, 60T, 62T transmission amplification circuit, 67 duplexer, 300 High-frequency front end circuit, 900 antenna element, 1000 communication device, AS1 to AS3 filter circuit, Cs11 to Cs13, Cs21, Cs22 capacitor, FLT1, FLT2, FLT31, FLT32, FLT41, FLT51 to FLT53, FLT61 to FLT63 filter, 400 RFIC, Lp521, Lp522 inductor, PS1, PS2, PS21, PS22 phase shifter, SW1 to SW4, SW5G, SW6, SW6G, SW51, SW52, SW61, SW62, SW91 to S 93 switch, SWC1, SWC2, SWC6 switch circuit, T1, T2, T52, T53, T62, T63 I / O terminal, T51, T61 common terminal, p11 to p

Abstract

フィルタ装置の通過帯域の挿入損失を低減する。本発明の一実施形態に係るフィルタ装置(1)は、第1端子(T1)および第2端子(T2)と、第1フィルタ(FLT1)および第2フィルタ(FLT2)とを備える。第1フィルタ(FLT1)および第2フィルタ(FLT2)は、第1端子(T1)と第2端子(T2)との間で並列に配置されている。第1フィルタ(FLT1)は、複数の直列腕共振子を含む。複数の直列腕共振子は、第1端子(T1)から第1フィルタ(FLT1)を経由して第2端子(T2)に至る経路に直列に配置されている。複数の直列腕共振子は、第1直列腕共振子(s11)および第2直列腕共振子(s12)を含む。各直列腕共振子の反共振周波数と共振周波数との差を共振周波数で除した値を比帯域幅と定義した場合、第1直列腕共振子(s11)の第1比帯域幅は、第2直列腕共振子(s12)の第2比帯域幅と異なる。

Description

フィルタ装置、高周波フロントエンド回路、および通信装置
 本発明は、フィルタ装置、高周波フロントエンド回路、および通信装置に関する。
 従来、通過帯域が異なる2つのフィルタを並列に配置することにより、通過帯域の広帯域化が実現されたフィルタ装置が知られている。たとえば、特開2008-160629号公報(特許文献1)に開示されている無線受信回路においては、通過帯域が異なる2つの帯域通過フィルタが並列に配置され、通過帯域の広域化が実現されている。
特開2008-160629号公報
 特許文献1に開示されている無線受信回路のように、フィルタ装置の通過帯域が、第1フィルタと第2フィルタとを並列に配置することによって形成されているとする。第2フィルタの通過帯域の中心周波数は、第1フィルタの通過帯域の中心周波数よりも高い。すなわち、フィルタ装置の通過帯域のうち、中心周波数よりも低い周波数帯(低域側)は主に第1フィルタ(低域側フィルタ)によって形成され、当該中心周波数よりも高い周波数帯(高域側)は主に第2フィルタ(高域側フィルタ)によって形成されている。
 高域側フィルタの通過帯域における低域側フィルタの減衰量、あるいは低域側フィルタの通過帯域における高域側フィルタの減衰量が小さいと、フィルタ装置の通過帯域の挿入損失が大きくなる。
 しかし、特許文献1に開示されている無線受信回路においては、高域側フィルタの通過帯域における低域側フィルタの高減衰化、および低域側フィルタの通過帯域における高域側フィルタの高減衰化について、いずれも考慮されていない。
 本発明は上記のような課題を解決するためになされたものであり、その目的はフィルタ装置の通過帯域の挿入損失を低減することである。
 本発明の一実施形態に係るフィルタ装置は、第1通過帯域を有する。フィルタ装置は、第1端子および第2端子と、第1フィルタおよび第2フィルタとを備える。第1フィルタおよび第2フィルタは、第1端子と第2端子との間で並列に配置されている。第1通過帯域は、第1フィルタの第2通過帯域の少なくとも一部を含む。第1通過帯域は、第2フィルタの第3通過帯域の少なくとも一部を含む。第2通過帯域は、第1通過帯域よりも狭い。第3通過帯域は、第1通過帯域よりも狭い。第3通過帯域の中心周波数は、第2通過帯域の中心周波数よりも高い。第1フィルタは、複数の直列腕共振子を含む。複数の直列腕共振子は、第1端子から第1フィルタを経由して第2端子に至る経路に直列に配置されている。複数の直列腕共振子は、第1直列腕共振子および第2直列腕共振子を含む。各直列腕共振子の反共振周波数と共振周波数との差を共振周波数で除した値を比帯域幅と定義した場合、第1直列腕共振子の第1比帯域幅は、第2直列腕共振子の第2比帯域幅と異なる。
 本発明の一実施形態によるフィルタ装置によれば、第1フィルタが比帯域幅が異なる直列腕共振子を含むことにより、フィルタ装置の通過帯域の高域端の挿入損失を低減することができる。
 本発明の他の実施形態に係るフィルタ装置は、第1通過帯域を有する。フィルタ装置は、第1端子および第2端子と、第1フィルタおよび第2フィルタとを備える。第1フィルタおよび第2フィルタは、第1端子と第2端子との間で並列に配置されている。第1通過帯域は、第1フィルタの第2通過帯域の少なくとも一部を含む。第1通過帯域は、第2フィルタの第3通過帯域の少なくとも一部を含む。第2通過帯域は、第1通過帯域よりも狭い。第3通過帯域は、第1通過帯域よりも狭い。第3通過帯域の中心周波数は、第2通過帯域の中心周波数よりも高い。第2フィルタは、第1並列腕共振子および第2並列腕共振子を含む。第1並列腕共振子は、接地点と、第1端子から第2フィルタを経由して第2端子に至る経路上の第1接続点との間に配置されている。第2並列腕共振子は、接地点と、第1端子から第2フィルタを経由して第2端子に至る経路上の、第1接続点と異なる第2接続点との間に配置されている。各並列腕共振子の反共振周波数と共振周波数との差を共振周波数で除した値を比帯域幅と定義した場合、第1並列腕共振子の比帯域幅は、第2並列腕共振子の比帯域幅と異なる。
 本発明の他の実施形態によるフィルタ装置によれば、第2フィルタが比帯域幅が異なる並列腕共振子を含むことにより、フィルタ装置の通過帯域の低域端の挿入損失を低減することができる。
 本発明に係るフィルタ装置によれば、フィルタ装置の通過帯域の挿入損失を低減することができる。
実施の形態に係るフィルタ装置の回路構成図である。 図1のフィルタ装置の第1通過帯域、および低域側フィルタ,高域側フィルタそれぞれの第2通過帯域,第3通過帯域の関係を示す図である。 実施の形態に係る弾性波共振子の共振周波数と比帯域幅との関係を示す図表である。 図1の低域側フィルタおよび高域側フィルタの構成を具体的に示す回路構成図である。 実施の形態1における低域側フィルタの通過特性と、低域側フィルタに含まれる共振子のインピーダンス特性とを併せて示す図である。 比較例1における低域側フィルタの通過特性と、低域側フィルタに含まれる共振子のインピーダンス特性とを併せて示す図である。 実施の形態1および比較例1に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。 実施の形態1の変形例に係るフィルタ装置の回路構成図である。 実施の形態2における高域側フィルタの通過特性と、高域側フィルタに含まれる共振子のインピーダンス特性とを併せて示す図である。 比較例1における高域側フィルタの通過特性と、高域側フィルタに含まれる共振子のインピーダンス特性とを併せて示す図である。 実施の形態2および比較例1に係るフィルタ装置の通過特性と、高域側フィルタの通過特性とを併せて示す図である。 実施の形態3に係るフィルタ装置の回路構成図である。 実施の形態3および比較例2に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。 実施の形態4および比較例2に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。 弾性波共振子の静電容量を変化させた場合の、当該弾性波共振子のインピーダンス特性の変化、および反射特性を合わせて示す図である。 実施の形態3および4の直列腕共振子のインピーダンス特性および反射特性を併せて示す図である。 実施の形態3および4の直列腕共振子のインピーダンス特性および反射特性を併せて示す図である。 実施の形態3の低域側フィルタの反射特性および実施の形態4の低域側フィルタの反射特性を示す図である。 実施の形態3および4に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。 実施の形態4の変形例に係るフィルタ装置の回路構成図である。 実施の形態5に係るフィルタ装置の回路構成図である。 図21のフィルタ装置のモジュール構成の一例を示す図である。 図21のフィルタ装置の通過特性と、各スイッチの導通状態を示す表とを併せて示す図表である。 実施の形態6に係る通信装置の構成図である。 実施の形態6の変形例に係るフィルタ装置の回路構成図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 図1は、実施の形態に係るフィルタ装置1の回路構成図である。図1に示されるように、フィルタ装置1は、フィルタFLT1(第1フィルタ)と、フィルタFLT2(第2フィルタ)と、入出力端子T1(第1端子),入出力端子T2(第2端子)とを備える。フィルタFLT1およびFLT2は、入出力端子T1とT2との間で並列に接続されている。具体的には、フィルタFLT1の一方端子は入出力端子T1に接続され、フィルタFLT1の他方端子は入出力端子T2に接続されている。また、フィルタFLT2の一方端子は入出力端子T1に接続され、フィルタFLT2の他方端子は入出力端子T2に接続されている。
 フィルタFLT1およびFLT2の各々は、直列腕共振子および並列腕共振子として弾性波共振子を含む。弾性波共振子は、たとえば弾性表面波(SAW:Surface Acoustic Wave)共振子、バルク弾性波(BAW:Bulk Acoustic Wave)共振子、FBAR(Film Bulk Acoustic Wave Resonator)、あるいはSM(Solidly Mounted)共振子である。なお、実施の形態1において高域側フィルタFLT2は、LC共振回路によって形成されたLCフィルタでもよい。
 図2は、図1のフィルタ装置1の通過帯域PB1(第1通過帯域)、およびフィルタFLT1,FLT2それぞれの通過帯域PB2(第2通過帯域),通過帯域PB3(第3通過帯域)の関係を示す図である。図2において、周波数Cf1~Cf3は、通過帯域PB1~PB3それぞれの中心周波数である。なお、通過帯域とは、挿入損失の範囲が、挿入損失の最小値以上、当該最小値に3dBを加算した値以下の範囲内に収まる任意の連続した周波数帯である。
 図2に示されるように、通過帯域PB1は、通過帯域PB2の一部および通過帯域PB3の一部を含んでいる。通過帯域PB2は、通過帯域PB1よりも狭い。通過帯域PB3は、通過帯域PB1よりも狭い。通過帯域PB3の中心周波数Cf3は、通過帯域PB2の中心周波数Cf2よりも高い。通過帯域PB1のうち、中心周波数Cf1よりも低い周波数帯は主にフィルタFLT1によって形成され、中心周波数Cf1よりも高い周波数帯は主にフィルタFLT2によって形成されている。フィルタFLT1は通過帯域PB2を形成するフィルタであり、低域側フィルタと呼ぶ。フィルタFLT2は通過帯域PB3を形成するフィルタであり、高域側フィルタと呼ぶ。
 通過帯域PB3において、フィルタFLT1の減衰量が大きいほど、フィルタFLT1で消費される信号が減少し、フィルタFLT2を通過する信号が増加する。その結果、通過帯域PB1の最も高い周波数(高域端)でのフィルタ装置1の挿入損失が低減する。
 また、通過帯域PB2において、フィルタFLT2の減衰量が大きいほど、フィルタFLT2で消費される信号が減少し、フィルタFLT1を通過する信号が増加する。その結果、通過帯域PB1の最も低い周波数(低域端)でのフィルタ装置1の挿入損失が低減する。
 通過帯域PB3において、フィルタFLT1の減衰極は、フィルタFLT1に含まれる直列腕共振子の反共振周波数付近で発生する。そのため、フィルタFLT1に複数の直列腕共振子を有することで、通過帯域PB3付近におけるフィルタFLT1の減衰極を複数形成できる。さらに、フィルタFLT1における複数の直列腕共振子の反共振周波数の周波数差を大きくすることで、通過帯域PB3付近におけるフィルタFLT1の複数の減衰極の周波数差を大きくすることができ、減衰帯域幅を広げることができる。よって、通過帯域PB3におけるフィルタFLT1の減衰量を大きくすることができる。
 また、通過帯域PB2において、フィルタFLT2の減衰極は、フィルタFLT2に含まれる並列腕共振子の共振周波数付近で発生する。そのため、フィルタFLT2に複数の並列腕共振子を有することで、通過帯域PB2付近におけるフィルタFLT2の減衰極を複数形成できる。さらに、フィルタFLT2における複数の並列腕共振子の共振周波数の周波数差を大きくすることで、通過帯域PB2付近におけるフィルタFLT2の複数の減衰極の周波数差を大きくすることができ、減衰帯域幅を広げることができる。よって、通過帯域PB2におけるフィルタFLT2の減衰量を大きくすることができる。
 なお、直列腕共振子および並列腕共振子を構成する弾性波共振子のインピーダンスは、反共振周波数において極大となり、共振周波数で極小となる。
 そこで、実施の形態1においては、低域側フィルタを構成する複数の直列腕共振子に比帯域幅が異なる2つの直列腕共振子を含ませて、反共振周波数をずらすことにより、高域側フィルタの通過帯域において低域側フィルタの2つの減衰極の周波数差を大きくする。その結果、高域側フィルタの通過帯域において低域側フィルタの減衰量が大きくなり、フィルタ装置の通過帯域の高域端の挿入損失を低減することができる。
 また、実施の形態2においては、高域側フィルタを構成する複数の並列腕共振子に比帯域幅が異なる2つの並列腕共振子を含ませて、共振周波数をずらすことにより、低域側フィルタの通過帯域において高域側フィルタの2つの減衰極の周波数差を大きくする。その結果、低域側フィルタの通過帯域において高域側フィルタの減衰量が大きくなり、フィルタ装置の通過帯域の低域端における挿入損失を低減することができる。
 なお、実施の形態において比帯域幅とは、直列腕共振子あるいは並列腕共振子の反共振周波数と共振周波数との差を共振周波数で除した百分率(%)である。
 図3は、一般的な弾性波共振子の共振周波数frと比帯域幅BWRとの関係を示す図表である。共振周波数frを変化させると比帯域幅BWRが変化する。複数の弾性波共振子を用いて一般的なフィルタ装置を構成する場合、複数の弾性波共振子の共振周波数frの周波数差は、概ね100MHz以下である。図3に示されるように、共振周波数frを100MHz変化させると、比帯域幅BWRは0.7%程度変化する。そこで、以下では、2つの比帯域幅の差が0.8%以上である場合に、当該2つの比帯域幅が異なるとする。2つの比帯域幅の差が0.8%未満である場合、当該2つの比帯域幅は等しいとする。
 弾性波共振子がSAW共振子の場合、櫛歯電極と圧電性を有する基板との間に、絶縁体または誘電体で構成される第1調整膜を設け、その第1調整膜の膜厚を変えることで、弾性波共振子の比帯域幅を変えることができる。なお、第1調整膜が無い場合に比帯域幅が最も大きく第1調整膜の膜厚が厚いほど比帯域幅が小さくなる。また、櫛歯電極を覆うように、絶縁体または誘電体で構成される第2調整膜が設けられ、第2調整膜の膜厚を変えることで、SAW共振子の比帯域幅を変えることができる。なお、第2調整膜が無い場合に比帯域幅が最も大きく第2調整膜の膜厚が厚いほど比帯域幅が小さくなる。
 弾性波共振子がBAW共振子の場合、対向する電極間の圧電体の材料を変更することで比帯域幅を変えることができる。
 [実施の形態1]
 実施の形態1においては、低域側フィルタを構成する複数の直列腕共振子に比帯域幅が異なる2つの直列腕共振子が含まれている場合について説明する。図4は、図1のフィルタFLT1およびFLT2の構成を具体的に示す回路構成図である。なお、後に説明する比較例1に係るフィルタ装置100、および実施の形態2に係るフィルタ装置2の回路構成も、図4に示される回路構成である。
 図4に示されるように、フィルタFLT1は、複数の直列腕共振子s11,s12と、並列腕共振子p11とを含む。直列腕共振子s11(第1直列腕共振子)および直列腕共振子s12(第2直列腕共振子)は、入出力端子T1とT2との間で直列に接続されている。並列腕共振子p11は、接地点と、直列腕共振子s11およびs12の接続点との間に接続されている。
 フィルタFLT2は、移相器PS1(第1移相器)と、移相器PS2(第2移相器)と、フィルタ回路AS1とを含む。移相器PS1は、フィルタ回路AS1と入出力端子T1との間に接続されている。移相器PS2は、フィルタ回路AS1と入出力端子T2との間に接続されている。
 フィルタ回路AS1は、直列腕共振子s21と、並列腕共振子p21,p22とを含む。直列腕共振子s21は、移相器PS1とPS2との間に接続されている。並列腕共振子p21は、接地点と、移相器PS1および直列腕共振子s21の接続点との間に接続されている。並列腕共振子p22は、接地点と、移相器PS2および直列腕共振子s21の接続点との間に接続されている。移相器PS1,PS2は、フィルタFLT1の通過帯域PB2におけるフィルタFLT2のインピーダンスを増加させるように構成されている。
 以下の表1に、フィルタ装置1における直列腕共振子s11,s12、並列腕共振子p11、直列腕共振子s21,および並列腕共振子p21,p22各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フィルタ装置1における直列腕共振子s11とs12との共振周波数frの差が11MHzであるのに対して、反共振周波数faの差は40.8MHzである。反共振周波数faの差は、共振周波数frの差よりも4倍程度大きい。フィルタ装置1においては、主に直列腕共振子s11,s12の反共振周波数faをずらすことによって、フィルタ装置1における直列腕共振子s11の比帯域幅BWR(第1帯域幅)を、直列腕共振子s12の比帯域幅BWR(第2帯域幅)より大きくしている。
 図5は、実施の形態1における低域側フィルタFLT1の通過特性(挿入損失および減衰量の周波数特性)と、低域側フィルタFLT1に含まれる共振子s11,s12,p11のインピーダンス特性とを併せて示す図である。図5(a)は、実施の形態1における低域側フィルタFLT1の通過特性を示す図である。図5(b)は、実施の形態1における低域側フィルタFLT1に含まれる直列腕共振子s11,s12、および並列腕共振子p11のインピーダンス特性を併せて示す図である。なお、「フィルタの通過特性」とは、フィルタ単体の通過特性であり、フィルタを他の回路から切り離した場合における通過特性である。なお、「共振子のインピーダンス特性」とは、共振子単体のインピーダンス特性であり、共振子を他の回路から切り離した場合におけるインピーダンス特性である。
 図5および表1を併せて参照しながら、図5(a)に示されるように、フィルタFLT1の通過特性には、通過帯域PB3付近において、直列腕共振子s11およびs12の各反共振周波数付近に減衰極が生じている。直列腕共振子s11およびs12の各反共振周波数は40.8MHzずれているため、減衰極が生じる周波数帯も直列腕共振子s11およびs12の反共振周波数の差と同程度である。
 次に、比較例1に係るフィルタ装置100について説明する。フィルタ装置100の回路構成は図4に示される回路構成と同じである。以下の表2に、フィルタ装置100における直列腕共振子s11,s12、並列腕共振子p11、直列腕共振子s21,および並列腕共振子p21,p22各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、フィルタ装置100において、直列腕共振子s11およびs12の共振周波数frおよび反共振周波数faはほぼ等しいため、直列腕共振子s11の比帯域幅BWRは、直列腕共振子s12の比帯域幅BWRに等しい。
 図6は、比較例1における低域側フィルタFLT1の通過特性と、低域側フィルタFLT1に含まれる共振子s11,s12,p11のインピーダンス特性とを併せて示す図である。図6(a)は、比較例1における低域側フィルタFLT1の通過特性を示す図である。図6(b)は、比較例1における低域側フィルタFLT1に含まれる直列腕共振子s11,s12、および並列腕共振子p21のインピーダンス特性を併せて示す図である。
 図6および表2を併せて参照しながら、図6(a)に示されるように、フィルタFLT1の通過特性には、通過帯域PB3付近において、直列腕共振子s11およびs12の各反共振周波数付近に減衰極が生じている。直列腕共振子s11およびs12の各反共振周波数がほぼ同じであるため、減衰極は実施の形態1と比べると狭い周波数帯に集中している。
 次に、実施の形態1と比較例1との比較を行なう。図7は、実施の形態1および比較例1に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。図7(a)は、フィルタ装置1の通過特性(実線)およびフィルタ装置100の通過特性(点線)を併せて示す図である。図7(b)は、図5(a)に示される実施の形態1におけるフィルタFLT1の通過特性(実線)、および図6(a)に示される比較例1におけるフィルタFLT1の通過特性(点線)を併せて示す図である。
 図7(b)に示されるように、実施の形態1においては、通過帯域PB3付近に形成される、フィルタFLT1の2つの減衰極の周波数差が比較例1よりも大きく、通過帯域PB3における減衰量が大きい。そのため、図7(a)に示されるように、通過帯域PB1の高域端において、フィルタ装置1の挿入損失は、フィルタ装置100の挿入損失よりも小さい。
 [実施の形態1の変形例]
 実施の形態1に係るフィルタ装置の通過帯域は可変であってもよい。図8は、実施の形態1の変形例に係るフィルタ装置1Aの回路構成図である。フィルタ装置1Aの構成は、図4のフィルタ装置1の構成にスイッチSW1~SW4が加えられた構成である。それ以外の構成は同様であるため説明を繰り返さない。
 図8に示されるように、スイッチSW1(第2スイッチ)は、入出力端子T1とフィルタFLT1との間に接続されている。スイッチSW2(第3スイッチ)は、入出力端子T2とフィルタFLT1との間に接続されている。スイッチSW3(第4スイッチ)は、入出力端子T1とフィルタFLT2との間に接続されている。スイッチSW4(第5スイッチ)は、入出力端子T2とフィルタFLT2との間に接続されている。スイッチSW1およびSW2の導通状態(オンまたはオフ)は同期している。スイッチSW3およびSW4の導通状態は同期している。
 スイッチSW1~SW4は、たとえば不図示のRF信号処理回路(RFIC:Radio Frequency Integrated Circuit)に含まれる制御回路からの制御信号に応じて、導通状態が切り替えられる。当該制御回路は、RFICとは別個に設けられてもよい。
 スイッチSW1およびSW2の導通状態がオンであり、スイッチSW3およびSW4の導通状態がオフである場合、フィルタ装置1Aの通過帯域はフィルタFLT1の通過帯域PB2となる。スイッチSW1およびSW2の導通状態がオフであり、スイッチSW3およびSW4の導通状態がオンである場合、フィルタ装置1Aの通過帯域はフィルタFLT2の通過帯域PB3となる。スイッチSW1~SW4の導通状態がオンである場合、フィルタ装置1Aの通過帯域はPB1となる。
 実施の形態1に係るフィルタ装置の通過帯域を可変とするために、スイッチSW1~SW4の全てが必要であるわけではない。たとえば、スイッチSW1,SW2、あるいはスイッチSW3,SW4の一方の組み合わせを備えることにより、フィルタ装置の通過帯域を可変とすることができる。
 スイッチSW1およびSW2を備え、スイッチSW3およびSW4を備えない場合、スイッチSW1,SW2がオンのとき、フィルタ装置の通過帯域はPB1となる。スイッチSW1,SW2がオフのとき、フィルタ装置の通過帯域はフィルタFLT2の通過帯域PB3となる。
 スイッチSW1およびSW2を備えず、スイッチSW3およびSW4を備える場合、スイッチSW3,SW4がオンのとき、フィルタ装置の通過帯域はPB1となる。スイッチSW3,SW4がオフのとき、フィルタ装置の通過帯域はフィルタFLT1の通過帯域PB2となる。
 以上、実施の形態1および変形例に係るフィルタ装置によれば、通過帯域の挿入損失を低減することができる。
 [実施の形態2]
 実施の形態2においては、高域側フィルタを構成する複数の並列腕共振子に比帯域幅が異なる2つの並列腕共振子が含まれる場合について説明する。実施の形態2に係るフィルタ装置2の回路構成は、図4に示される回路構成と同じである。なお、実施の形態2において低域側フィルタFLT1は、LC共振回路によって形成されたLCフィルタでもよい。
 以下の表3に、フィルタ装置2における直列腕共振子s11,s12、並列腕共振子p11、直列腕共振子s21,および並列腕共振子p21,p22各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、フィルタ装置2における複数の並列腕共振子p21,s22の反共振周波数faの差が0.9MHzであるのに対して、共振周波数frの差は53.6MHzである。共振周波数frの差は、反共振周波数faの差よりも6倍程度大きい。フィルタ装置2においては、主に並列腕共振子p21(第1並列腕共振子),並列腕共振子p22(第2並列腕共振子)の共振周波数frをずらすことによって、フィルタ装置2における並列腕共振子p21の比帯域幅BWR(第4帯域幅)を、並列腕共振子p22の比帯域幅BWR(第5帯域幅)より大きくしている。
 図9は、実施の形態2における高域側フィルタFLT2の通過特性と、高域側フィルタFLT2に含まれる共振子s21,s22,p21のインピーダンス特性とを併せて示す図である。図9(a)は、実施の形態2における高域側フィルタFLT2の通過特性を示す図である。図9(b)は、実施の形態2における高域側フィルタFLT2に含まれる直列腕共振子s21、および並列腕共振子p21,p22のインピーダンス特性を併せて示す図である。
 図9および表1を併せて参照しながら、図9(a)に示されるように、フィルタFLT2の通過特性には、通過帯域PB2付近において、並列腕共振子p21およびp22の各共振周波数付近に減衰極が生じている。並列腕共振子p21およびp22の各反共振周波数は53.6MHzずれているため、減衰極が生じる周波数帯も並列腕共振子p21およびp22の共振周波数の差と同程度である。
 再び表2を参照しながら、フィルタ装置100において、並列腕共振子p21およびp22の共振周波数frおよび反共振周波数faはほぼ等しいため、並列腕共振子p21の比帯域幅BWRは、並列腕共振子p22の比帯域幅BWRに等しい。
 図10は、比較例1における高域側フィルタFLT2の通過特性と、高域側フィルタFLT2に含まれる共振子s21,p21,p22のインピーダンス特性とを併せて示す図である。図10(a)は、比較例1における高域側フィルタFLT2の通過特性を示す図である。図10(b)は、比較例1における高域側フィルタFLT2に含まれる直列腕共振子s21、および並列腕共振子p21,p22のインピーダンス特性を併せて示す図である。
 図10および表2を併せて参照しながら、図10(a)に示されるように、フィルタFLT2の通過特性には、通過帯域PB1の低域側において、並列腕共振子p21およびp22の各共振周波数付近に減衰極が生じている。並列腕共振子p21およびp22の各共振周波数がほぼ同じであるため、減衰極は実施の形態2と比べると狭い周波数帯に集中している。
 次に、実施の形態2と比較例1との比較を行なう。図11は、実施の形態2および比較例1に係るフィルタ装置の通過特性と、高域側フィルタの通過特性とを併せて示す図である。図11(a)は、フィルタ装置2の通過特性(実線)およびフィルタ装置100の通過特性(点線)を併せて示す図である。図11(b)は、図9(a)に示される実施の形態2におけるフィルタFLT2の通過特性(実線)、および図10(a)に示される比較例1におけるフィルタFLT2の通過特性(点線)を併せて示す図である。
 図11(b)に示されるように、実施の形態2においては、通過帯域PB2付近の低域側に形成される、フィルタFLT2の2つの減衰極の周波数差が比較例1より大きく、通過帯域PB2における減衰量が大きい。そのため、図11(a)に示されるように、通過帯域PB1の低域端において、フィルタ装置2の挿入損失は、フィルタ装置100の挿入損失よりも小さい。
 以上、実施の形態2に係るフィルタ装置によれば、通過帯域の挿入損失を低減することができる。
 [実施の形態3および4]
 弾性波共振子は、当該弾性波共振子におけるストップバンドの高域端の周波数は、反共振周波数よりも高い周波数で発生し、ストップバンドの高域端の周波数より高い周波数で、当該弾性波共振子の反射係数が反共振周波数faにおける反射係数よりも小さくなる。これは、弾性波共振子におけるバルク波が弾性波共振子の外部に漏洩すること(このことを「バルク波損失」と称する)によって、反射損失が大きくなることにより、当該弾性波共振子のQ特性が悪化するためである。
 また、反共振周波数が高いほど、バルク波損失が発生する周波数を高くすることができる。すなわち、弾性波共振子の比帯域幅を大きくすることで、反共振周波数と共振周波数との差を大きくすることができるとともに、バルク波損失が発生する周波数(ストップバンドの高域端の周波数)と共振周波数との差を大きくすることができる。
 そのため、低域側フィルタにおけるバルク波損失が大きくなると、高域側フィルタの通過帯域の挿入損失が増大し、フィルタ装置の通過帯域内の挿入損失が増大する。さらに、低域側フィルタの入出力端子に最も近い共振子は、高域側フィルタの通過帯域において、低域側フィルタ内で相対的にインピーダンスが低く、フィルタ装置の通過帯域の挿入損失に大きく影響する。
 そこで、実施の形態3,4においては、入出力端子に最も近い共振子に着目する。まず、実施の形態3においては、入出力端子に最も近い直列腕共振子(両端の直列腕共振子)の比帯域幅が、両端の直列腕共振子の間に配置された直列腕共振子の比帯域幅よりも小さい場合について説明し、本発明の効果が得られることを示す。次に、実施の形態4においては、両端の直列腕共振子の比帯域幅が、両端の直列腕共振子の間に配置された直列腕共振子の比帯域幅よりも大きい場合について説明し、バルク波損失の低減という観点で実施の形態3よりも効果的であることを示す。
 [実施の形態3]
 図12は、実施の形態3に係るフィルタ装置3の回路構成図である。フィルタ装置3の構成は、図4のフィルタFLT1,FLT2が、フィルタFLT31,FLT32にそれぞれ置き換えられた構成である。なお、後に参照する比較例2に係るフィルタ装置200、および実施の形態4に係るフィルタ装置4の回路構成も、図12に示される回路構成と同じである。
 図12に示されるように、フィルタFLT31は、図4のフィルタFLT1の構成に加えて、直列腕共振子s13(第2直列腕共振子)、直列腕共振子s14(第3直列腕共振子)、および並列腕共振子p12,p13をさらに含む。
 複数の直列腕共振子s11~s14は、入出力端子T1とT2との間で直列腕共振子s11およびs14を両端として直列に接続されている。直列腕共振子s11~s14の中で、直列腕共振子s11が入出力端子T1に最も近く、直列腕共振子s14が入出力端子T2に最も近い。
 並列腕共振子p12は、接地点と、直列腕共振子s12およびs13の接続点との間に接続されている。並列腕共振子p13は、接地点と、直列腕共振子s13およびs14の接続点との間に接続されている。
 フィルタFLT32は、図4のフィルタ回路AS1に替えてフィルタ回路AS3を含む。フィルタ回路AS3は、フィルタ回路AS1の構成に加えて直列腕共振子s22と、並列腕共振子p23とをさらに含む。
 直列腕共振子s21,s22は、移相器PS1とPS2との間で直列に接続されている。並列腕共振子p22は、接地点と、直列腕共振子s21およびs22の接続点との間に接続されている。並列腕共振子p23は、接地点と、移相器PS2および直列腕共振子s22の接続点との間に接続されている。
 以下の表4に、フィルタ装置3における直列腕共振子s11~s14、並列腕共振子p11~p13、直列腕共振子s21,s22、および並列腕共振子p21~p23各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。表4に示されるように、フィルタ装置3における直列腕共振子s11の比帯域幅BWR(第1帯域幅)および直列腕共振子s14の比帯域幅BWR(第3帯域幅)は、直列腕共振子s12,s13の比帯域幅BWR(第2帯域幅)より小さい。
Figure JPOXMLDOC01-appb-T000004
 以下の表5に、比較例2に係るフィルタ装置200における直列腕共振子s11~s14、並列腕共振子p11~p13、直列腕共振子s21,s22、および並列腕共振子p21~p23各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。表5に示されるように、フィルタ装置200における直列腕共振子s11~s14の各比帯域幅は等しい。
Figure JPOXMLDOC01-appb-T000005
 次に、実施の形態3と比較例2との比較を行なう。図13は、実施の形態3および比較例2に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。図13(a)は、フィルタ装置3の通過特性(実線)およびフィルタ装置200の通過特性(点線)を併せて示す図である。図13(b)は、実施の形態3におけるフィルタFLT31の通過特性(実線)、および比較例2におけるフィルタFLT31の通過特性(点線)を併せて示す図である。
 図13(b)に示されるように、実施の形態3においては、通過帯域PB1の高域側に形成される、フィルタFLT31の最高周波数の減衰極と最低周波数の減衰極との周波数差が比較例2よりも大きく、通過帯域PB3の高域端における減衰量が大きい。そのため、図13(a)に示されるように、通過帯域PB1の高域端において、フィルタ装置3の挿入損失は、フィルタ装置200の挿入損失よりも小さい。
 以上、実施の形態3に係るフィルタ装置によれば、通過帯域の挿入損失を低減することができる。
 [実施の形態4]
 以下の表6に、フィルタ装置4における直列腕共振子s11~s14、並列腕共振子p11~p13、直列腕共振子s21,s22、および並列腕共振子p21~p23各々の共振周波数fr,反共振周波数fa,比帯域幅BWR,静電容量を示す。表6に示されるように、フィルタ装置4における直列腕共振子s11の比帯域幅BWR(第1帯域幅),s14の比帯域幅BWR(第3帯域幅)は、直列腕共振子s12,s13の比帯域幅BWR(第2帯域幅)より大きい。また、直列腕共振子s14の静電容量は、直列腕共振子s11~s13の各静電容量よりも小さい。
Figure JPOXMLDOC01-appb-T000006
 次に、実施の形態4と比較例2との比較を行なう。図14は、実施の形態4および比較例2に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。図14(a)は、フィルタ装置4の通過特性(実線)およびフィルタ装置200の通過特性(点線)を併せて示す図である。図14(b)は、実施の形態4におけるフィルタFLT31の通過特性(実線)、および比較例2におけるフィルタFLT31の通過特性(点線)を併せて示す図である。
 図14(b)に示されるように、実施の形態4においては、通過帯域PB1の高域側に形成される、フィルタFLT31の最高周波数の減衰極と最低周波数の減衰極との周波数差が比較例2よりも大きく、通過帯域PB3の高域端における減衰量が大きい。そのため、図14(a)に示されるように、通過帯域PB1の高域端において、フィルタ装置4の挿入損失は、フィルタ装置200の挿入損失よりも小さい。
 次に、図15~図19を参照しながら、実施の形態3と4との比較を行なう。まず、図15を用いて、弾性波共振子の静電容量、インピーダンス、および反射損失との一般的な関係について説明する。図15は、弾性波共振子の静電容量をCv1~Cv4(Cv1<Cv2<Cv3<Cv4)に変化させた場合の、当該弾性波共振子のインピーダンス特性の変化(a)、および反射特性(反射損失の周波数特性)(b)を合わせて示す図である。なお、「共振子のインピーダンス特性」および「共振子の反射特性」とは、共振子単体のインピーダンス特性および反射特性であり、共振子を他の回路から切り離した場合におけるインピーダンス特性および反射特性である。
 図15(a)に示されるように、弾性波共振子の静電容量が小さいほどインピーダンスが大きい。図15(b)に示されるように、弾性波共振子の反共振周波数より高い周波数帯での反射損失は、弾性波共振子の静電容量が小さいほど小さい。そのため、入出力端子に最も近い共振子の静電容量は小さい方が望ましい。
 図16は、実施の形態3および4の直列腕共振子s11のインピーダンス特性および反射特性を併せて示す図である。図16(a)は、実施の形態3の直列腕共振子s11のインピーダンス特性(点線)、および実施の形態4の直列腕共振子s11のインピーダンス特性(実線)を併せて示す図である。図16(b)は、実施の形態3の直列腕共振子s11の反射特性(点線)、および実施の形態4の直列腕共振子s11の反射特性(実線)を併せて示す図である。
 図16(a)に示されるように、通過帯域PB1の高域端での直列腕共振子s11のインピーダンスは、実施の形態4の方が実施の形態3よりも大きい。図16(b)に示されるように、通過帯域PB1の高域端での直列腕共振子s11の反射損失は、実施の形態4の方が実施の形態3よりも小さい。
 図17は、実施の形態3および4の直列腕共振子s14のインピーダンス特性(a)および反射特性(b)を併せて示す図である。図17(a)は、実施の形態3の直列腕共振子s14のインピーダンス特性(点線)、および実施の形態4の直列腕共振子s14のインピーダンス特性(実線)を併せて示す図である。図17(b)は、実施の形態3の直列腕共振子s14の反射特性(点線)、および実施の形態4の直列腕共振子s14の反射特性(実線)を併せて示す図である。
 図17(a)に示されるように、通過帯域PB1の高域端での直列腕共振子s14のインピーダンスは、実施の形態4の方が実施の形態3よりも大きい。図17(b)に示されるように、通過帯域PB1の高域端での直列腕共振子s14の反射損失は、実施の形態4の方が実施の形態3よりも小さい。
 表4に示されるように実施の形態3において、直列腕共振子s11の比帯域幅および直列腕共振子s14の比帯域幅は、直列腕共振子s12の比帯域幅および直列腕共振子s13の比帯域幅より小さい。また、実施の形態3において、直列腕共振子s11の静電容量および直列腕共振子s14の静電容量は、直列腕共振子s12の静電容量および直列腕共振子s13の静電容量より大きい。
 表5に示されるように実施の形態4において、直列腕共振子s11の比帯域幅および直列腕共振子s14の比帯域幅は、直列腕共振子s12の比帯域幅および直列腕共振子s13の比帯域幅より大きい。また、直列腕共振子s11の静電容量および直列腕共振子s14の静電容量の少なくとも一方(ここでは直列腕共振子s14)は、直列腕共振子s12の静電容量および直列腕共振子s13の静電容量より小さい。
 図16~17に示されるように、直列腕共振子s11~s14の共振周波数は、通過帯域PB2内またはその近傍の周波数帯に配置される。さらに、比帯域幅の小さい直列腕共振子において、バルク波損失による反射損失が大きく、共振周波数とバルク波損失が発生する周波数の差が小さいため、フィルタ装置の通過帯域の高域端での反射損失が大きい。一方、比帯域幅の大きい直列腕共振子において、バルク波損失による反射損失が小さく、共振周波数とバルク波損失が発生する周波数の差が大きいため、フィルタ装置の通過帯域の高域端での反射損失が小さい。また、同じ比帯域幅の直列腕共振子を比較すると、静電容量が小さい直列腕共振子において、バルク波損失による反射損失が小さい。
 図18は、実施の形態3の低域側フィルタFLT31の反射特性(点線)および実施の形態4の低域側フィルタFLT31の反射特性(実線)を示す図である。図18(a)は、入出力端子T1における低域側フィルタFLT31の反射特性を示す図である。図18(b)は、入出力端子T2における低域側フィルタFLT31の反射特性を示す図である。図18に示されるように、入出力端子T1およびT2のいずれの入出力端子でも、通過帯域PB1の高域端におけるフィルタFLT31の反射損失は、実施の形態4の方が実施の形態3よりも小さい。
 直列腕共振子s11~s14のうち、入出力端子に最も近い直列腕共振子は、高域側フィルタの通過帯域において、低域側フィルタFLT31内で相対的にインピーダンスが低く、フィルタ装置の通過帯域の挿入損失に大きく影響を与える。そのため、通過帯域PB1の高域端において、直列腕共振子s11および直列腕共振子s14の反射損失が小さい実施の形態4の方が、低域側フィルタFLT31の反射損失が小さい。
 図19は、実施の形態3および4に係るフィルタ装置の通過特性と、低域側フィルタの通過特性とを併せて示す図である。図19(a)は、フィルタ装置3の通過特性(点線)およびフィルタ装置4の通過特性(実線)を併せて示す図である。図19(b)は、実施の形態3におけるフィルタFLT31の通過特性(点線)、および実施の形態4におけるフィルタFLT31の通過特性(実線)を併せて示す図である。実施の形態4においては、バルク波損失が実施の形態3よりも低減される。そのため、図19(a)に示されるように、通過帯域PB1の高域端におけるフィルタ装置4の挿入損失は、フィルタ装置3の挿入損失よりも小さい。
 [実施の形態4の変形例]
 直列腕共振子あるいは並列腕共振子は、複数の弾性波共振子を直列に接続した構成をとる場合がある。つまり、直列腕共振子あるいは並列腕共振子は、1つの弾性波共振子が直列分割されることによって形成された複数の弾性波共振子から形成される場合がある。直列腕共振子あるいは並列腕共振子を複数の弾性波共振子に直列分割することにより、当該共振子の面積を増加させて、単位面積当たりの発熱量を低減することができる。特に両端の直列腕共振子は、入出力端子からの高周波電力を直接的かつ集中的に受けるため、発熱しやすい。そのため、高周波電力が入力される両端の直列腕共振子の少なくとも一方は、直列分割によって形成される必要性が高い。また、静電容量が小さいほど直列腕共振子の面積は小さくなるため、バルク波損失を低減するために静電容量を小さくした直列腕共振子は、直列分割によって形成される必要性が高い。
 実施の形態4においては、両端の直列腕共振子であり、静電容量が他の直列腕共振子よりも小さい直列腕共振子s14が直列分割によって形成される必要性が最も高い。そこで、実施の形態4の変形例においては、直列腕共振子s14が直列分割された場合について説明する。
 図20は、実施の形態4の変形例に係るフィルタ装置4Aの回路構成図である。フィルタ装置4Aの構成は、図12のフィルタ装置4のフィルタFLT31がFLT41(第1フィルタ)に置き換えられた構成である。フィルタFLT41の構成は、フィルタFLT31の直列腕共振子s14が直列腕共振子s14Aに置き換えられた構成である。これ以外の構成は実施の形態4と同様であるため説明を繰り返さない。
 図20に示されるように、直列腕共振子s14Aは、複数の弾性波共振子s141,s142に直列分割されている。直列腕共振子s14Aの静電容量は、直列腕共振子s14と同様に、直列腕共振子s12,s13の各静電容量よりも小さい。しかし、直列腕共振子s14Aのサイズは、直列分割されていることにより、直列腕共振子s14のサイズよりも大きい。そのため、直列腕共振子s14Aの単位面積当たりの発熱量は、直列腕共振子s14の単位面積当たりの発熱量よりも小さい。直列腕共振子s14Aの耐電力性は、直列腕共振子s14の耐電力性よりも優れている。
 以上、実施の形態4および変形例に係るフィルタ装置によれば、耐電力性能を向上するとともに、通過帯域の高域端での挿入損失を低減することができる。
 [実施の形態5]
 実施の形態5においては、低域側フィルタおよび高域側フィルタによって形成されるバンドパスフィルタ構成、および低域側フィルタの通過帯域および高域側フィルタの通過帯域を有するマルチプレクサ構成を切り替える構成について説明する。
 図21は、実施の形態5に係るフィルタ装置5の回路構成図である。図21に示されるように、フィルタ装置5は、フィルタFLT51(第1フィルタ),フィルタFLT52(第2フィルタ),フィルタFLT53と、スイッチ回路SWC1(第2スイッチ),スイッチ回路SWC2(第3スイッチ)と、共通端子T51(第1端子)と、入出力端子T52(第2端子)および入出力端子T53(第3端子)とを備える。フィルタ装置5、フィルタFLT51、およびフィルタFLT52は、通過帯域PB51(第1通過帯域)、通過帯域PB52(第2通過帯域)、および通過帯域PB53(第3通過帯域)をそれぞれ有する。フィルタFLT51は低域側フィルタであり、フィルタFLT52は高域側フィルタである。フィルタFLT53は、通過帯域PB53を有する。
 通過帯域PB51は、通過帯域PB52の一部および通過帯域PB53の一部を含んでいる。通過帯域PB52は、通過帯域PB51よりも狭い。通過帯域PB53は、通過帯域PB51よりも狭い。通過帯域PB53の中心周波数は、通過帯域PB52の中心周波数よりも高い。通過帯域PB52とPB53とは重なっていない。
 共通端子T51および入出力端子T52の間で、フィルタFLT52とスイッチ回路SWC1とがこの順に直列に接続されている。共通端子T51および入出力端子T52の間で、フィルタFLT51と、直列に接続されたフィルタFLT52およびスイッチ回路SWC1とが並列に接続されている。入出力端子T53と、フィルタFLT52およびスイッチ回路SWC1の接続点との間で、スイッチ回路SWC2とフィルタFLT53とがこの順に直列に接続されている。
 スイッチ回路SWC1は、スイッチSW51,SW52,SW5Gを含む。スイッチSW51,SW52は、フィルタFLT52と入出力端子T52との間で直列に接続されている。スイッチSW5Gは、接地点と、スイッチSW51およびSW52の接続点との間に接続されている。スイッチSW51およびSW52の導通状態は同期している。スイッチSW51(SW52)とスイッチSW5Gとは、排他的に導通状態が切り替えられる。
 スイッチ回路SWC2は、スイッチSW6,SW6Gを含む。フィルタFLT52、スイッチSW6、およびフィルタFLT53とは、共通端子T51および入出力端子T53の間でこの順に直列に接続されている。スイッチSW6Gは、接地点と、スイッチSW6およびフィルタFLT53の接続点との間に接続されている。スイッチSW6とSW6Gとは、排他的に導通状態が切り替えられる。
 フィルタFLT51は、直列腕共振子s511(第1直列腕共振子),直列腕共振子s512(第2直列腕共振子),直列腕共振子s513(第3直列腕共振子)と、並列腕共振子p511~p514と、スイッチSW91(第1スイッチ),スイッチSW92(第1スイッチ),スイッチSW93(第1スイッチ)と、キャパシタCs11(容量素子),キャパシタCs12(容量素子),キャパシタCs13(容量素子)とを含む。
 直列腕共振子s511の比帯域幅は、直列腕共振子s512の比帯域幅と異なる。直列腕共振子s513の比帯域幅は、直列腕共振子s512の比帯域幅と異なる。
 直列腕共振子s511~s513は、共通端子T51と入出力端子T52との間で直列に接続されている。並列腕共振子p511は、接地点と、共通端子T51および直列腕共振子s511の接続点との間に接続されている。並列腕共振子p512は、接地点と、直列腕共振子s511およびs512の接続点との間に接続されている。並列腕共振子p513は、接地点と、直列腕共振子s512およびs513の接続点との間に接続されている。並列腕共振子p514は、接地点と、直列腕共振子s513および入出力端子T52の接続点との間に接続されている。
 スイッチSW91~SW93は、キャパシタCs11~Cs13とそれぞれ直列に接続されている。スイッチSW91とキャパシタCs11は、直列腕共振子s511と並列に接続されている。スイッチSW92とキャパシタCs12は、直列腕共振子s512と並列に接続されている。スイッチSW93とキャパシタCs13は、直列腕共振子s513と並列に接続されている。フィルタFLT51の通過特性は、スイッチSW91~SW93がオンの場合と、スイッチSW91~SW93がオフの場合とで異なる。
 スイッチSW51,SW52,SW5G、スイッチSW6,SW6G、およびスイッチSW91~SW93は、たとえば不図示のRFICに含まれる制御回路からの制御信号に応じて、導通状態が切り替えられる。当該制御回路は、RFICとは別個に設けられてもよい。
 フィルタFLT52は、移相器PS21(第1移相器),移相器PS22(第2移相器)と、フィルタ回路AS5とを含む。フィルタ回路AS5は、直列腕共振子s521と、並列腕共振子p521(第1並列腕共振子),並列腕共振子p522(第2並列腕共振子)とを含む。
 移相器PS21は、共通端子T51と直列腕共振子s521との間に接続されている。移相器PS22は、直列腕共振子s521とスイッチSW6との間に接続されている。移相器PS21,PS22は、フィルタFLT51の通過帯域PB52におけるフィルタFLT52のインピーダンスを増加させるように構成されている。
 フィルタFLT53は、直列腕共振子s31と、縦結合型共振器32と、並列腕共振子p31とを含む。直列腕共振子s31と縦結合型共振器32とは、スイッチSW6と入出力端子T53との間で直列に接続されている。並列腕共振子p31は、接地点と、縦結合型共振器32および入出力端子T53の接続点との間に接続されている。縦結合型共振器32は、たとえば、2つの反射器の間において並置された複数のIDT(Interdigital Transducer)電極から形成されている。縦結合型共振器32は、反射器を有していなくてもよい。
 図22は、図21のフィルタ装置5のモジュール構成の一例を示す図である。図22に示されるように、配線基板50に、パッケージ(チップ)51~55、およびインダクタLp521,Lp522が実装されている。
 パッケージ51~53は、共振子用のパッケージである。パッケージ54,55は、スイッチ用のパッケージである。パッケージ51~55は、配線基板50に実装されるための表面電極を底面に有する。当該表面電極は、図22において丸印で示されている。なお、図22においては、パッケージ構造を見易くするため、各パッケージに構成された回路素子および配線を模式的に示し、パッケージ51~55の内部を透過させて、各パッケージの底面の表面電極を図示している。
 配線基板50は、共通端子T51、入出力端子T52およびT53のそれぞれを構成する外部接続電極を有する。この外部接続電極は、例えば、配線基板50をマザー基板等に実装するための表面電極、あるいは配線基板50と他の電子部品とを接続するコネクタである。
 パッケージ51には、直列腕共振子s511~s513および並列腕共振子p511~p514が実装されている。パッケージ55には、スイッチSW91~SW93と、キャパシタCs11~Cs13とが実装されている。パッケージ51,55は、フィルタFLT51を形成している。
 パッケージ52には、直列腕共振子s521、並列腕共振子p521,p522、およびキャパシタCs21,Cs22が実装されている。インダクタLp521とキャパシタCs21は、移相器PS21を形成している。インダクタLp522とキャパシタCs22は、移相器PS22を形成している。パッケージ52、およびインダクタLp521,Lp522は、フィルタFLT52を形成している。
 パッケージ53には、直列腕共振子s31、並列腕共振子p31、および縦結合型共振器32が実装されている。パッケージ53は、フィルタFLT53を形成している。パッケージ54には、スイッチSW51、SW52、SW5G、SW6、およびSW6Gが形成されている。
 スイッチSW51、SW52、SW5G、SW6、SW6G、スイッチSW91~SW93、キャパシタCs11~Cs13、Cs21、およびCs22は、上記と異なる構成でモジュール化されていてもかまわない。たとえば、キャパシタCs11~Cs13は、スイッチ用のパッケージではなく、共振子用のパッケージに実装されてもよいし、配線基板50の内部に実装されてもよい。
 図23は、図21のフィルタ装置の通過特性と、スイッチSW51,SW52,SW5G、SW6,SW6G,SW91~SW93の各導通状態を示す表とを併せて示す図表である。
 図21および図23を参照しながら、図23(a)は、スイッチSW51,SW52,SW6Gがオンであり、スイッチSW5G,SW6,SW91~SW93がオフである場合の、共通端子T51および入出力端子T52間の通過特性を示す図である。図23(a)に示されるスイッチの導通状態における共通端子T51および入出力端子T52間の通過帯域は、フィルタFLT51およびFLT52によって形成された通過帯域PB51となる。なお、この場合、入出力端子T53には高周波信号は入出力されない。
 図23(b)は、スイッチSW51,SW52,SW6G,SW91~SW93がオフであり、スイッチSW5G,スイッチSW6がオンである場合の共通端子T51およびT52間の通過特性IL51、およびスイッチSW51,SW52,SW6Gがオフであり、スイッチSW5G,スイッチSW6,SW91~SW93がオンである場合の共通端子T51および入出力端子T52間の通過特性IL52を併せて示す図である。図23(b)に示されるスイッチの導通状態における共通端子T51および入出力端子T52間の通過帯域は、フィルタFLT51によって形成された通過帯域PB52となる。
 図23(c)は、スイッチSW51,SW52,SW6G,SW91~SW93がオフであり、スイッチSW5G,SW6がオンである場合の共通端子T51および入出力端子T53間の通過特性を示す図である。図23(c)に示されるスイッチの導通状態における共通端子T51および入出力端子T53間の通過帯域は、フィルタFLT52によって形成された通過帯域PB53となる。なお、SW91~SW93がオンの場合であっても同様の通過特性となる。
 図23(b)を参照しながら、通過帯域PB52における通過特性IL51とIL52とはほぼ同様に変化している。通過帯域PB52より大きい周波数においては、通過特性IL52の方が通過特性IL51より低い周波数で減衰極が生じる。その結果、通過帯域PB52と通過帯域PB53との間の周波数帯における通過特性IL52の増加の態様は通過特性IL51の増加の態様よりも急峻である。通過帯域PB53においては、通過特性IL51とIL52とは異なる態様で変化している。フィルタ装置5によれば、スイッチSW91~SW93の導通状態を切り替えられることにより、フィルタFLT51の通過特性を変化させることができる。
 フィルタ装置5によれば、図23(a)に示されるスイッチの導通状態において、通過帯域PB51の高域端の挿入損失を低減することができる。また、フィルタ装置5によれば、通過帯域PB51のバンドパスフィルタ構成(図23(a)のスイッチの導通状態)と、通過帯域PB52および通過帯域PB53を有するマルチプレクサ構成(図23(b)および図23(c)に示されるスイッチの導通状態)とを切り替えることができる。
 以上、実施の形態5に係るフィルタ装置によれば、通過帯域の挿入損失を低減することができる。
 [実施の形態6]
 実施の形態6においては、実施の形態1~5おいて説明したフィルタ装置を用いて実現可能な高周波フロントエンド回路および通信装置について説明する。
 図24は、実施の形態6に係る通信装置1000の構成図である。図24に示されるように、通信装置1000は、高周波フロントエンド回路300と、RFIC400と、BBIC(Baseband Integrated Circuit)500と、アンテナ素子900とを備える。
 高周波フロントエンド回路300は、フィルタ装置6と、スイッチ回路SWC6と、デュプレクサ67と、送信増幅回路60Tおよび62Tと、受信増幅回路60Rおよび62Rとを含む。
 フィルタ回路SWC6は、アンテナ素子900、フィルタ装置6、およびデュプレクサ67に接続されている。フィルタ回路SWC6は、アンテナ素子900とフィルタ装置6との接続、および、アンテナ素子900とデュプレクサ67との接続を切り替える。
 フィルタ装置6は、フィルタFLT61(第1フィルタ),フィルタFLT62(第2フィルタ)と、共通端子T61(第1端子)と、入出力端子T62(第2端子),入出力端子T63(第3端子)と、スイッチSW61(第2スイッチ),スイッチSW62(第3スイッチ)とを含む。フィルタ装置6、フィルタFLT61、およびフィルタFLT62の通過帯域は、それぞれ通過帯域PB61(第1通過帯域),通過帯域PB62(第2通過帯域),通過帯域PB63(第3通過帯域)である。フィルタFLT61は低域側フィルタであり、フィルタFLT62は高域側フィルタである。
 通過帯域PB61は、通過帯域PB62の一部および通過帯域PB63の一部を含んでいる。通過帯域PB62は、通過帯域PB61よりも狭い。通過帯域PB63は、通過帯域PB61よりも狭い。通過帯域PB63の中心周波数は、通過帯域PB62の中心周波数よりも高い。通過帯域PB62とPB63とは重なっていない。
 共通端子T61および入出力端子T62の間で、フィルタFLT62とスイッチSW61とがこの順に直列に接続されている。共通端子T61および入出力端子T62の間で、フィルタFLT61と、直列に接続されたフィルタFLT62およびスイッチSW61とが並列に接続されている。スイッチSW62は、入出力端子T63と、フィルタFLT62およびスイッチSW61の接続点との間に接続されている。
 フィルタ装置6は、実施の形態1~4に係るフィルタ装置にスイッチSW61,SW62、および入出力端子T63を追加することによって実現可能である。また、フィルタ装置6は、実施の形態5に係るフィルタ装置によっても実現可能である。
 共通端子T61は、スイッチ回路SWC6に接続されている。入出力端子T62は、受信増幅回路60Rに接続されている。入出力端子T63は、送信増幅回路60Tに接続されている。
 送信増幅回路60Tは、所定の周波数帯域の高周波信号を電力増幅するパワーアンプである。受信増幅回路60Rは、所定の周波数帯域の高周波信号を電力増幅するローノイズアンプである。
 デュプレクサ67は、送信端子および受信端子を有する。デュプレクサ67は通過帯域PB61~PB63とは異なる周波数帯域を送信帯域および受信帯域とする。
 送信増幅回路62Tは、デュプレクサ67の送信端子に接続されている。送信増幅回路62Tは、所定の周波数帯域の高周波送信信号を電力増幅するパワーアンプである。受信増幅回路62Rは、デュプレクサ67の受信端子に接続されている。受信増幅回路62Rは、所定の周波数帯域の高周波信号を電力増幅するローノイズアンプである。
 RFIC400は、アンテナ素子900で送信および受信される高周波信号を処理する。具体的には、RFIC400は、アンテナ素子900から受信側信号経路を介して入力された高周波信号を、ダウンコンバートなどにより信号処理し、BBIC500へ出力する。RFIC400は、BBIC500から入力された送信信号をアップコンバートなどにより信号処理して出力する。
 また、RFIC400は、導通状態を切り替える制御信号をスイッチ回路SWC6,スイッチSW61,SW62の各々に出力する。当該制御信号は、RFICとは別個に設けられた制御回路から出力されてもよい。
 [実施の形態6の変形例]
 フィルタ装置6においては、第3スイッチが、第3入出力端子と、第2フィルタおよび第2スイッチの接続点との間に接続されている場合について説明した。実施の形態6に係るフィルタ装置は、図25に示される実施の形態6の変形例に係るフィルタ装置6Aのように、スイッチSW62(第3スイッチ)が、入出力端子T62(第2端子)と、低域側フィルタFLT61(第1フィルタ)およびスイッチSW61(第2スイッチ)の接続点との間に接続されていてもよい。
 以上、実施の形態6および変形例に係る通信装置によれば、高域端における挿入損失が低減されたフィルタ装置により、通信品質を向上させることができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1~6,1A,4A,6A,100,200 フィルタ装置、32 縦結合型共振器、50 配線基板、51~55 パッケージ、60R,62R 受信増幅回路、60T,62T 送信増幅回路、67 デュプレクサ、300 高周波フロントエンド回路、900 アンテナ素子、1000 通信装置、AS1~AS3 フィルタ回路、Cs11~Cs13,Cs21,Cs22 キャパシタ、FLT1,FLT2,FLT31,FLT32,FLT41,FLT51~FLT53,FLT61~FLT63 フィルタ、400 RFIC、Lp521,Lp522 インダクタ、PS1,PS2,PS21,PS22 移相器、SW1~SW4,SW5G,SW6,SW6G,SW51,SW52,SW61,SW62,SW91~SW93 スイッチ、SWC1,SWC2,SWC6 スイッチ回路、T1,T2,T52,T53,T62,T63 入出力端子、T51,T61 共通端子、p11~p13,p21~p23,p31,p511~p514,p521,p522 並列腕共振子、s11~s14,s14A,s21,s22,s31,s511~s513,s521 直列腕共振子、s141,s142 弾性波共振子。

Claims (12)

  1.  第1通過帯域を有するフィルタ装置であって、
     第1端子および第2端子と、
     前記第1端子と前記第2端子との間で並列に配置された第1フィルタおよび第2フィルタとを備え、
     前記第1通過帯域は、前記第1フィルタの第2通過帯域の少なくとも一部および前記第2フィルタの第3通過帯域の少なくとも一部を含み、
     前記第2通過帯域は、前記第1通過帯域よりも狭く、
     前記第3通過帯域は、前記第1通過帯域よりも狭く、
     前記第3通過帯域の中心周波数は、前記第2通過帯域の中心周波数よりも高く、
     前記第1フィルタは、前記第1端子から前記第1フィルタを経由して前記第2端子に至る経路に直列に配置された複数の直列腕共振子を含み、
     前記複数の直列腕共振子は、第1直列腕共振子および第2直列腕共振子を含み、
     各直列腕共振子の反共振周波数と共振周波数との差を前記共振周波数で除した値を比帯域幅と定義した場合、前記第1直列腕共振子の第1比帯域幅は、前記第2直列腕共振子の第2比帯域幅と異なる、フィルタ装置。
  2.  前記複数の直列腕共振子は、第3直列腕共振子をさらに含み、
     前記複数の直列腕共振子は、前記第1端子から前記第1フィルタを経由して前記第2端子に至る経路において、前記第1直列腕共振子および前記第3直列腕共振子を両端として直列に配置され、
     前記第3直列腕共振子の第3比帯域幅は、前記第2比帯域幅と異なる、請求項1に記載のフィルタ装置。
  3.  前記第1比帯域幅は、前記第2比帯域幅よりも大きく、
     前記第3比帯域幅は、前記第2比帯域幅よりも大きい、請求項2に記載のフィルタ装置。
  4.  前記第1直列腕共振子の静電容量および前記第3直列腕共振子の静電容量の少なくとも一方は、前記第2直列腕共振子の静電容量よりも小さい、請求項2または3に記載のフィルタ装置。
  5.  前記第1直列腕共振子、前記第2直列腕共振子、および前記第3直列腕共振子の各々は、少なくとも1つの弾性波共振子を含み、前記第1直列腕共振子に含まれる弾性波共振子の数および前記第3直列腕共振子に含まれる弾性波共振子の数の少なくとも一方は、前記第2直列腕共振子に含まれる弾性波共振子の数より多い、請求項2~4のいずれか1項に記載のフィルタ装置。
  6.  第1通過帯域を有するフィルタ装置であって、
     第1端子および第2端子と、
     前記第1端子と前記第2端子との間で並列に配置された第1フィルタおよび第2フィルタとを備え、
     前記第1通過帯域は、前記第1フィルタの第2通過帯域の少なくとも一部および前記第2フィルタの第3通過帯域の少なくとも一部を含み、
     前記第2通過帯域は、前記第1通過帯域よりも狭く、
     前記第3通過帯域は、前記第1通過帯域よりも狭く、
     前記第3通過帯域の中心周波数は、前記第2通過帯域の中心周波数よりも高く、
     前記第2フィルタは、
     接地点と、前記第1端子から前記第2フィルタを経由して前記第2端子に至る経路上の第1接続点との間に配置された第1並列腕共振子と、
     前記接地点と、前記第1端子から前記第2フィルタを経由して前記第2端子に至る経路上の、前記第1接続点とは異なる第2接続点との間に配置された第2並列腕共振子とを含み、
     各並列腕共振子の反共振周波数と共振周波数との差を前記共振周波数で除した値を比帯域幅と定義した場合、前記第1並列腕共振子の第4比帯域幅は、前記第2並列腕共振子の第5比帯域幅と異なる、フィルタ装置。
  7.  前記第2フィルタは、
     前記第1並列腕共振子および前記第2並列腕共振子を含むフィルタ回路と、
     前記フィルタ回路と前記第1端子との間の経路に配置された第1移相器と、
     前記フィルタ回路と前記第2端子との間の経路に配置された第2移相器とを含み、
     前記第1移相器および前記第2移相器は、前記第2通過帯域における前記第2フィルタのインピーダンスを増加させるように構成されている、請求項6に記載のフィルタ装置。
  8.  第2スイッチ、第3スイッチ、第4スイッチ、および第5スイッチをさらに備え、
     前記第2スイッチ、前記第1フィルタ、および前記第3スイッチは、前記第1端子および前記第2端子の間でこの順に直列に接続され、
     前記第4スイッチ、前記第2フィルタ、および前記第5スイッチは、前記第1端子および前記第2端子の間でこの順に直列に接続され、
     直列に接続された前記第2スイッチ、前記第1フィルタ、および前記第3スイッチと、直列に接続された前記第4スイッチ、前記第2フィルタ、および前記第5スイッチとは、前記第1端子および前記第2端子の間で並列に接続されている、請求項1~7のいずれか1項に記載のフィルタ装置。
  9.  第3端子と、
     第2スイッチおよび第3スイッチとをさらに備え、
     前記第2フィルタおよび前記第2スイッチは、前記第1端子および前記第2端子の間でこの順に直列に接続され、
     前記第1フィルタと、直列に接続された前記第2フィルタおよび前記第2スイッチとは、前記第1端子および前記第2端子の間で並列に接続され、
     前記第3スイッチは、前記第3端子と、前記第2フィルタおよび前記第2スイッチの第3接続点との間に接続され、
     前記第2通過帯域と前記第3通過帯域とは、重なっていない、請求項1~7のいずれか1項に記載のフィルタ装置。
  10.  第3端子と、
     第2スイッチおよび第3スイッチとをさらに備え、
     前記第1フィルタおよび前記第2スイッチは、前記第1端子および前記第3端子の間でこの順に直列に接続され、
     前記第2フィルタと、直列に接続された前記第1フィルタおよび前記第2スイッチとは、前記第1端子および前記第3端子の間で並列に接続され、
     前記第3スイッチは、前記第2端子と、前記第1フィルタおよび前記第2スイッチの第3接続点との間に接続され、
     前記第2通過帯域と前記第3通過帯域とは、重なっていない、請求項1~7のいずれか1項に記載のフィルタ装置。
  11.  請求項1~10のいずれか1項に記載のフィルタ装置と、
     前記フィルタ装置に電気的に接続された増幅回路とを備える、高周波フロントエンド回路。
  12.  アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項11に記載の高周波フロントエンド回路とを備える、通信装置。
PCT/JP2018/041280 2018-02-05 2018-11-07 フィルタ装置、高周波フロントエンド回路、および通信装置 WO2019150688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019568868A JP6927334B2 (ja) 2018-02-05 2018-11-07 フィルタ装置、高周波フロントエンド回路、および通信装置
CN201880088543.XA CN111684719B (zh) 2018-02-05 2018-11-07 滤波器装置、高频前端电路、以及通信装置
US16/984,158 US11843367B2 (en) 2018-02-05 2020-08-04 Filter device, radio-frequency front-end circuit, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018284 2018-02-05
JP2018-018284 2018-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/984,158 Continuation US11843367B2 (en) 2018-02-05 2020-08-04 Filter device, radio-frequency front-end circuit, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2019150688A1 true WO2019150688A1 (ja) 2019-08-08

Family

ID=67478059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041280 WO2019150688A1 (ja) 2018-02-05 2018-11-07 フィルタ装置、高周波フロントエンド回路、および通信装置

Country Status (4)

Country Link
US (1) US11843367B2 (ja)
JP (1) JP6927334B2 (ja)
CN (1) CN111684719B (ja)
WO (1) WO2019150688A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539381B2 (en) 2020-03-30 2022-12-27 Murata Manufacturing Co., Ltd. Radio frequency circuit, antenna module, and communication device
KR20230090209A (ko) 2021-12-14 2023-06-21 삼성전기주식회사 체적 음향 공진기 필터 및 체적 음향 공진기 필터 모듈

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999081B (zh) * 2017-07-25 2023-08-08 株式会社村田制作所 高频滤波器、多工器、高频前端电路以及通信装置
CN111034042B (zh) * 2017-08-28 2023-06-02 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
WO2010122786A1 (ja) * 2009-04-23 2010-10-28 パナソニック株式会社 アンテナ共用器
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
JP2013197772A (ja) * 2012-03-19 2013-09-30 Nippon Dempa Kogyo Co Ltd 弾性波フィルタ
WO2017204347A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ装置、及び、通信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289234A (ja) * 2002-01-28 2003-10-10 Murata Mfg Co Ltd 弾性表面波装置、通信装置
US6710677B2 (en) * 2002-02-12 2004-03-23 Nortel Networks Limited Band reject filters
JP3827232B2 (ja) * 2003-05-13 2006-09-27 Tdk株式会社 フィルタ装置およびそれを用いた分波器
US8004370B2 (en) * 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP4733675B2 (ja) * 2006-09-08 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ 可変共振器、帯域幅可変フィルタ、電気回路装置
JP2008160629A (ja) 2006-12-26 2008-07-10 Matsushita Electric Ind Co Ltd 無線受信回路、無線受信装置及び無線受信装置の切替方法
JP5072642B2 (ja) * 2007-03-28 2012-11-14 京セラ株式会社 弾性表面波装置及びこれを用いた分波器並びに通信装置
CN203056060U (zh) * 2013-01-28 2013-07-10 南京理工大学 带宽调节范围宽且性能可控的射频可重构带通滤波器
EP2963819B1 (en) * 2013-02-27 2021-03-24 KYOCERA Corporation Elastic wave element, demultiplexer and communication module
FR3026582A1 (fr) * 2014-09-29 2016-04-01 Commissariat Energie Atomique Circuit resonant a frequence et a impedance variables
US10250214B2 (en) * 2016-10-31 2019-04-02 Murata Manufacturing Co., Ltd. Filter device, multiplexer, radio-frequency front end circuit, and communication device
WO2018186227A1 (ja) * 2017-04-03 2018-10-11 株式会社村田製作所 弾性波フィルタ装置、デュプレクサ、高周波フロントエンド回路、および通信装置
CN110999081B (zh) * 2017-07-25 2023-08-08 株式会社村田制作所 高频滤波器、多工器、高频前端电路以及通信装置
CN111034042B (zh) * 2017-08-28 2023-06-02 株式会社村田制作所 滤波器装置、多工器、高频前端电路以及通信装置
US11211676B2 (en) * 2019-10-09 2021-12-28 Com Dev Ltd. Multi-resonator filters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
WO2010122786A1 (ja) * 2009-04-23 2010-10-28 パナソニック株式会社 アンテナ共用器
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
JP2013197772A (ja) * 2012-03-19 2013-09-30 Nippon Dempa Kogyo Co Ltd 弾性波フィルタ
WO2017204347A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ装置、及び、通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539381B2 (en) 2020-03-30 2022-12-27 Murata Manufacturing Co., Ltd. Radio frequency circuit, antenna module, and communication device
KR20230090209A (ko) 2021-12-14 2023-06-21 삼성전기주식회사 체적 음향 공진기 필터 및 체적 음향 공진기 필터 모듈

Also Published As

Publication number Publication date
US11843367B2 (en) 2023-12-12
US20200366272A1 (en) 2020-11-19
JP6927334B2 (ja) 2021-08-25
CN111684719A (zh) 2020-09-18
CN111684719B (zh) 2023-07-25
JPWO2019150688A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
CN109286387B (zh) 高频滤波器、多路复用器、高频前置电路以及通信装置
WO2019150688A1 (ja) フィルタ装置、高周波フロントエンド回路、および通信装置
US10700666B2 (en) Filter circuit, multiplexer, and module
JP5237138B2 (ja) フィルタ、デュープレクサ、通信モジュール
JP6439862B2 (ja) 高周波フィルタ、フロントエンド回路、および、通信機器
JP6766874B2 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6669681B2 (ja) フィルタ回路、マルチプレクサおよびモジュール
JP4680727B2 (ja) 共振器型フィルタ
CN111034042B (zh) 滤波器装置、多工器、高频前端电路以及通信装置
US20010011932A1 (en) Surface acoustic wave filter
WO2011086717A1 (ja) マルチプレクサ
US10727812B2 (en) Multiplexer
WO2015045882A1 (ja) 周波数可変フィルタ
JP6889423B2 (ja) フィルタ装置、高周波フロントエンド回路、および通信装置
CN111133678A (zh) 滤波器装置、多工器、高频前端电路以及通信装置
WO2006067935A1 (ja) 分波器
KR20190040991A (ko) 탄성파 필터 장치, 고주파 프론트엔드 회로 및 통신 장치
WO2020090382A1 (ja) マルチプレクサ、フィルタおよび通信装置
WO2019235276A1 (ja) マルチプレクサ
WO2021149333A1 (ja) フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP5503764B2 (ja) フィルタ、デュープレクサ、通信モジュール
CN109818594B (zh) 高频滤波器以及多工器
WO2022145306A1 (ja) フィルタ装置、高周波モジュール及び通信装置
WO2019235490A1 (ja) マルチプレクサ
JP2021072563A (ja) マルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903097

Country of ref document: EP

Kind code of ref document: A1