WO2011086717A1 - マルチプレクサ - Google Patents

マルチプレクサ Download PDF

Info

Publication number
WO2011086717A1
WO2011086717A1 PCT/JP2010/061603 JP2010061603W WO2011086717A1 WO 2011086717 A1 WO2011086717 A1 WO 2011086717A1 JP 2010061603 W JP2010061603 W JP 2010061603W WO 2011086717 A1 WO2011086717 A1 WO 2011086717A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
pass
filter
duplexer
passband
Prior art date
Application number
PCT/JP2010/061603
Other languages
English (en)
French (fr)
Inventor
尚志 木原
亮 永浜
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2011086717A1 publication Critical patent/WO2011086717A1/ja
Priority to US13/543,908 priority Critical patent/US20120274417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band

Definitions

  • the present invention relates to a multiplexer mounted on a communication device such as a cellular phone and connected to an antenna, and more particularly to a multiplexer including three or more band-pass filters.
  • the number of subscribers is rapidly increasing in mobile phone services.
  • global roaming that enables the use of mobile phone services all over the world is progressing.
  • the volume of various contents transmitted and received by mobile phones is rapidly increasing.
  • the cellular phone is required to cope with multiple bands and to cope with a plurality of types of communication systems.
  • a duplexer is mounted on the RF circuit of the mobile phone.
  • the duplexer is a duplexer including a transmission filter, a reception filter, and a matching circuit.
  • a mobile phone that supports the CDMA system is equipped with a plurality of duplexers in order to support a plurality of types of communication systems. That is, a duplexer corresponding to each band to be used and each communication system is mounted.
  • a plurality of duplexers are mounted on a mobile phone, there is a problem that the RF circuit becomes large.
  • UMTS-BAND1 has a transmission band of 1920 MHz to 1980 MHz and a reception band of 2110 MHz to 2170 MHz.
  • UMTS-BAND4 has a transmission band of 1710 MHz to 1755 MHz and a reception band of 2110 MHz to 2155 MHz.
  • the UMTS-BAND10 has a transmission band of 1710 MHz to 1770 MHz and a reception band of 2110 MHz to 2170 MHz.
  • the reception band has a common frequency band.
  • the reception band has a common frequency band. In such a case, it is conceivable to share the reception filters of the two bands.
  • a UMTS-BAND1 transmission filter for example, in a mobile phone corresponding to UMTS-BAND1 and UMTS-BAND4, instead of the UMTS-BAND1 duplexer and the UMTS-BAND4 duplexer, a UMTS-BAND1 transmission filter, a UMTS-BAND4 transmission filter, and a UMTS-BAND1 And a triplexer made up of three bandpass filters of reception filters corresponding to both UMTS-BAND4.
  • the triplexer is a duplexer including three band-pass filters and a matching circuit.
  • Patent Document 1 discloses an example of such a triplexer.
  • FIG. 5 is a schematic circuit diagram of the triplexer described in Patent Document 1.
  • the triplexer 101 has an antenna terminal 103 connected to the antenna 102.
  • First, second, and third matching circuits 104, 105, and 106 are connected in parallel to the antenna terminal 103.
  • First, second, and third band pass filters 107, 108, and 109 are connected in series to the first, second, and third matching circuits 104, 105, and 106, respectively.
  • the first, second, and third band pass filters 107, 108, and 109 are connected to the first, second, and third terminals 110, 111, and 112, respectively.
  • the first, second and third band pass filters 107, 108 and 109 have different pass bands.
  • the first, second, and third band pass filters 107, 108, 109 have a small insertion loss in each pass band and a large attenuation in the attenuation band.
  • the phases of the other two bandpass filters need to be in an open state. Therefore, for example, in the first band pass filter 107, the phase needs to be open in the pass bands of the second and third band pass filters 108 and 109.
  • the first, second, and third matching circuits 104, 105, and 106 are provided between the antenna terminal 103 and the first, second, and third bandpass filters 107, 108, and 109, respectively. It is connected to the.
  • the first, second, and third matching circuits 104, 105, and 106 allow the first, second, and third bandpass filters 107, 108, and 109 to pass through the passbands of the other two bandpass filters, respectively.
  • the phase is open.
  • the first, second, and third matching circuits 104, 105, and 106 are formed by delay lines, capacitors, and / or inductors.
  • the first, second, and third matching circuits 104, 105, and 106 must be connected to the first, second, and third bandpass filters 107, 108, and 109, respectively. It was. This increases the number of parts and increases the size of the triplexer 101.
  • An object of the present invention is to provide a multiplexer that can easily cope with the increase in the number of bands and a plurality of types of communication systems and can be reduced in size.
  • the multiplexer includes an antenna terminal, a duplexer having a first bandpass filter and a second bandpass filter, and a third bandpass filter, wherein the first bandpass filter is a first bandpass filter.
  • a duplexer and a third bandpass filter are connected in parallel to the antenna terminal.
  • the third passband is located on the lower side or the higher side than the first and second passbands.
  • the multiplexer further includes a first matching circuit connected between the duplexer and the antenna terminal.
  • the third passband is located on a lower frequency side than the first and second passbands, and the first matching circuit is a high-pass filter.
  • the third passband is located on a higher frequency side than the first and second passbands, and the first matching circuit is a low-pass filter.
  • a second matching circuit connected between the third bandpass filter and the antenna terminal is further provided.
  • the phases viewed from the respective antenna terminals of the first and second bandpass filters are open, and the third band
  • the phase of the pass filter as viewed from the antenna terminal of the third band pass filter is open in the first and second pass bands. Therefore, it is not necessary to provide a matching circuit between the duplexer and the antenna terminal, and between the third bandpass filter and the antenna terminal, and the multiplexer can be further miniaturized.
  • the multiplexer since the duplexer having the first and second band pass filters and the third band pass filter are connected to the antenna terminal in parallel to each other, the multiplexer can be miniaturized. Can do.
  • the first, second, and third matching circuits must be connected to the first, second, and third bandpass filters, respectively.
  • the duplexer having the first and second bandpass filters and the third bandpass filter constitute the triplexer, so that the number of matching circuits is reduced as compared with the conventional triplexer. I can do it. Therefore, it is possible to reduce the size of the multiplexer.
  • FIG. 1 is a schematic circuit diagram of a multiplexer according to the first embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a multiplexer according to the second embodiment of the present invention.
  • FIG. 3 is a schematic circuit diagram of a multiplexer according to the third embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of a multiplexer according to the fourth embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram for explaining a conventional triplexer.
  • FIG. 1 is a schematic circuit diagram of a multiplexer 1 according to the first embodiment of the present invention.
  • the multiplexer 1 has an antenna terminal 2 and first, second and third terminals 3, 4, 5.
  • a duplexer 6 is connected between the antenna terminal 2 and the first and second terminals 3 and 4.
  • the duplexer 6 includes first and second band pass filters F1 and F2.
  • the pass band of the first band pass filter F1 is different from the pass band of the second band pass filter F2.
  • a first band pass filter F ⁇ b> 1 is connected between the common connection point 6 a of the duplexer 6 and the first terminal 3.
  • a second band pass filter F ⁇ b> 2 is connected between the common connection point 6 a of the duplexer 6 and the second terminal 4.
  • a third band pass filter 7 is connected between the antenna terminal 2 and the third terminal 5. That is, the third bandpass filter 7 is connected in parallel with the duplexer 6.
  • the pass band of the third band pass filter 7 is different from the pass bands of the first and second band pass filters F1 and F2. That is, the multiplexer 1 is a triplexer having three band pass filters having different pass bands.
  • the pass band of the first band pass filter F1 is the first pass band
  • the pass band of the second band pass filter F2 is the second pass band
  • the pass band of the third band pass filter 7 is the third pass band.
  • the first, second, and third passbands have a relationship of third passband ⁇ second passband ⁇ first passband. That is, the third pass band is located on the lowest side, and the first pass band is located on the highest side. In other words, the second pass band is located in the middle of the first, second and third pass bands.
  • a first matching circuit 8 is connected between the antenna terminal 2 and the duplexer 6.
  • a second matching circuit 9 is connected between the antenna terminal 2 and the third band pass filter 7.
  • the second bandpass filter 7 is set in the open state so that the phase of the third bandpass filter 7 is open.
  • a matching circuit 9 is configured.
  • the first and second band pass filters F1 and F2 of the duplexer 6 are set in the open state so that the respective phases are open.
  • the matching circuit 8 is configured.
  • the first and second matching circuits 8 and 9 are constituted by delay lines, capacitors, inductors, and the like.
  • the delay line, the capacitor, and the inductor may be configured by chip parts. Further, the delay line, the capacitor, and the inductor may be configured by wiring on the substrate constituting the multiplexer 1 or comb-shaped electrodes.
  • the phase of the first band pass filter F1 is open in the second pass band which is the pass band of the second band pass filter F2. Further, the phase of the second band pass filter F2 is open in the first pass band which is the pass band of the first band pass filter F1.
  • the first, second, and third band pass filters 107, 108, 109 are connected to the antenna terminal 103 in parallel with each other. Further, the first, second, and third matching circuits 104, 105, and 106 are connected to the first, second, and third band-pass filters 107, 108, and 109, respectively. Therefore, in addition to the three band pass filters 107, 108, and 109, the first, second, and third band pass filters 107, 108, and 109, three matching circuits 104, 105, and 106 are provided. Was necessary. That is, the conventional triplexer 101 requires the same number of matching circuits as the band-pass filter. For this reason, the number of parts increases and it is difficult to reduce the size.
  • the duplexer 6, the third band pass filter 7, and the first and second matching circuits 8 and 9 constitute a triplexer. Therefore, the multiplexer 1 includes three bandpass filters, the first and second bandpass filters F1 and F2 and the third bandpass filter 7, but the first and second matching circuits 8 and 9 are included.
  • the desired characteristics can be realized by the two matching circuits. Therefore, the number of matching circuits can be reduced as compared with the conventional triplexer 101, and the miniaturization can be promoted.
  • the first and second bandpass filters F1 and F2 and the third bandpass filter 7 of the duplexer 6 are constituted by surface acoustic wave filters.
  • the 1st, 2nd and 3rd band pass filters F1, F2, and 7 may be constituted by other band pass filters, such as a boundary acoustic wave filter and a piezoelectric thin film filter.
  • the third pass band which is the pass band of the third band pass filter 7 is the first and second pass bands of the first and second band pass filters F1 and F2 of the duplexer 6. Although it is located on the lower band side than the pass band, the present invention is not limited to this.
  • the third pass band that is the pass band of the third band pass filter 7 is higher than the first and second pass bands that are the pass bands of the first and second band pass filters F1 and F2 of the duplexer 6. It may be located on the band side. That is, the band pass filter having a pass band located in the middle of the first, second and third pass bands is any of the first and second band pass filters F1 and F2 constituting the duplexer 6. Either one is sufficient.
  • One of F1 and F2 has a passband located on the higher frequency side than the third passband, and the other has a passband located on the lower frequency side than the third passband.
  • the third bandpass filter 7 both in the passband located on the lower side than the third passband and in the passband located on the higher side than the third passband. , It is necessary to open the phase. Therefore, it is necessary to change the reflection impedance of the third band pass filter 7 abruptly. However, it is very difficult to change the reflection impedance of the third band pass filter 7 abruptly.
  • the pass band located on the highest side or the lowest side of the first, second and third pass bands is the third pass band
  • the bandpass filter having a band is one of the first and second bandpass filters F1 and F2 constituting the duplexer 6.
  • the third bandpass filter 7 two passbands located on the lower side of the third passband or two passbands located on the higher side of the third passband.
  • the pass band located in the middle of the first, second, and third pass bands is the first or second pass band as in the above embodiment.
  • the bandpass filter having a passband located in the middle is preferably the first bandpass filter F1 or the second bandpass filter F2. .
  • FIG. 2 is a schematic circuit diagram of the multiplexer 11 according to the second embodiment of the present invention.
  • the multiplexer 11 is configured in the same manner as the multiplexer 1 of the first embodiment, except that the first and second matching circuits 8 and 9 in the multiplexer 1 of the first embodiment are not provided. Therefore, the description regarding the same parts as those of the first embodiment is omitted by assigning the same reference numerals as those of the first embodiment and appropriately using the description of the first embodiment.
  • the matching circuit is not connected to the duplexer 6, and the matching circuit is not connected to the third bandpass filter 7.
  • the first and second bandpass filters F1 and F2 and the third bandpass filter 7 are composed of surface acoustic wave filters. Then, in each of the first and second bandpass filters F1, F2 and the third bandpass filter 7, by adjusting the electrode finger pitch, capacitance ratio, etc. of the IDT electrodes constituting the surface acoustic wave filter The respective phases of the first and second bandpass filters F1, F2 and the third bandpass filter 7 are in a desired state.
  • the electrode finger pitch and capacitance ratio of the IDT electrodes of the third band pass filter 7 the first and second pass bands of the first and second band pass filters F1 and F2 of the duplexer 6 are adjusted.
  • the pass band of 2 the phase viewed from the antenna terminal 2 of the third band pass filter 7 is in an open state.
  • a third pass which is the passband of the third bandpass filter 7 is obtained.
  • the phase viewed from the antenna terminal 2 of each of the first and second bandpass filters F1 and F2 is in an open state.
  • the electrode finger pitch, capacitance ratio, etc. of the IDT electrodes constituting the surface acoustic wave filter are adjusted.
  • the phase viewed from the antenna terminal 2 in the pass band of another band pass filter may be opened.
  • the multiplexer 11 can be further miniaturized.
  • FIG. 3 is a schematic circuit diagram of the multiplexer 21 according to the third embodiment of the present invention.
  • a matching circuit 8A is connected between the antenna terminal 2 and the duplexer 6, and a matching circuit is not connected between the antenna terminal 2 and the third bandpass filter 7.
  • the configuration is the same as that of the multiplexer 1 of the first embodiment. Therefore, the description regarding the same parts as those of the first embodiment is omitted by assigning the same reference numerals as those of the first embodiment and appropriately using the description of the first embodiment.
  • the matching circuit can be omitted by adjusting the electrode finger pitch and capacitance ratio of the IDT electrodes constituting the surface acoustic wave filter.
  • the electrode finger pitch and capacitance ratio of the IDT electrodes of the third band pass filter 7 by adjusting the electrode finger pitch and capacitance ratio of the IDT electrodes of the third band pass filter 7, the first pass band of the first and second band pass filters F 1 and F 2 of the duplexer 6 is adjusted. In the first and second passbands, the phase of the third bandpass filter 7 is open.
  • a matching circuit 8A is connected between the antenna terminal 2 and the duplexer 6.
  • the matching circuit 8A includes a first capacitor 22 and first, second, and third inductors 23, 24, and 25.
  • the first capacitor 22 is connected between the antenna terminal 2 and the common connection point 6 a of the duplexer 6.
  • a first inductor 23 is connected in parallel with the first capacitor 22.
  • a second inductor 24 is connected between the antenna terminal 2 and the ground potential.
  • a third inductor 25 is connected between the common connection point 6a and the ground potential.
  • the matching circuit 8A is arranged so that the respective phases of the first and second band pass filters F1, F2 of the duplexer 6 are open. It is configured.
  • the matching circuit 8A is configured to include an LC resonance circuit including the first capacitor 22 and the first inductor 23, and the second and third inductors 24 and 25 connected in parallel. Functions as a filter.
  • the multiplexer 21 is configured such that the first, second, and third passbands have a relationship of third passband ⁇ second passband ⁇ first passband, or third passband ⁇ first passband. This is effective when the relationship of 1 pass band ⁇ second pass band is satisfied. That is, the multiplexer 21 is effective when the third pass band is located on the lowest side among the first, second, and third pass bands.
  • the matching circuit 8A suppresses the transmission of the signal in the third passband relatively located on the lowest side to the duplexer 6, and the signals in the first and second passbands are transmitted to the duplexer 6. This is because it can be transmitted effectively.
  • FIG. 4 is a schematic circuit diagram of the multiplexer 31 according to the fourth embodiment of the present invention.
  • the multiplexer 31 is configured in the same manner as the multiplexer 21 of the third embodiment, except that a matching circuit 8B is connected instead of the matching circuit 8A in the multiplexer 21 of the third embodiment. Therefore, descriptions other than the matching circuit 8B are omitted by appropriately incorporating the description of the third embodiment.
  • a matching circuit 8B is connected between the antenna terminal 2 and the duplexer 6.
  • the matching circuit 8B includes first, second, and third capacitors 22, 26, and 27, and a first inductor 23.
  • the first capacitor 22 is connected between the antenna terminal 2 and the common connection point 6 a of the duplexer 6.
  • a first inductor 23 is connected in parallel with the first capacitor 22.
  • a second capacitor 26 is connected between the antenna terminal 2 and the ground potential.
  • a third capacitor 27 is connected between the common connection point 6a and the ground potential.
  • the matching circuit 8B is arranged so that the phases of the first and second band pass filters F1, F2 of the duplexer 6 are open. It is configured.
  • the matching circuit 8B has a configuration including an LC resonance circuit including the first capacitor 22 and the first inductor 23, and second and third capacitors 26 and 27 connected in parallel. Functions as a filter.
  • the multiplexer 31 is configured such that the first, second, and third passbands have a relationship of first passband ⁇ second passband ⁇ third passband, or second passband ⁇ second passband. This is effective when there is a relationship of 1 passband ⁇ 3rd passband. That is, the multiplexer 31 is effective when the third pass band is located on the highest frequency side among the first, second, and third pass bands. This prevents the matching circuit 8B from transmitting the signal in the third passband, which is located on the relatively highest side, to the duplexer 6, and sends the signals in the first and second passbands to the duplexer 6. This is because it can be transmitted effectively.
  • a matching circuit is provided between the antenna terminal 2 and the duplexer 6 and between the antenna terminal 2 and the third bandpass filter 7. May not be provided, and a matching circuit may be provided as necessary. In any case, it is only necessary to use one duplexer and one band-pass filter when configuring the triplexer, so that the multiplexer can be downsized.
  • the multiplexer according to the present invention is connected to an antenna in a mobile phone.
  • an impedance matching inductor is connected between the antenna and the antenna terminal. Also good.
  • a triplexer including three band pass filters having different pass bands is configured.
  • the present invention is limited to this. It is not a thing. That is, in addition to the configuration of the above embodiment, one or more other bandpass filters connected to the antenna terminal and connected in parallel to the duplexer 6 and the third bandpass filter 7 One or more duplexers may be provided.
  • the multiplexers 1, 11, 21, and 31 of the first to fourth embodiments can be suitably used as a duplexer in which a reception filter and a transmission filter are shared in a plurality of communication systems.
  • the duplexer 6 is composed of a transmission filter of UMTS-BAND1 and a reception filter corresponding to both UMTS-BAND1 and UMTS-BAND4.
  • the third band pass filter 7 can be configured by a transmission filter of UMTS-BAND4.
  • the duplexer 6 is composed of a transmission filter of UMTS-BAND1 and a reception filter corresponding to both UMTS-BAND1 and UMTS-BAND10.
  • the third band pass filter 7 can be configured by a transmission filter of UMTS-BAND10.
  • the multiplexer according to the present invention is not used only for a mobile phone corresponding to such a specific communication system, but can be widely applied to a mobile phone corresponding to a plurality of bands or a plurality of types of communication systems. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Filters And Equalizers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 互いに異なる通過帯域を有する、3つ以上の帯域通過フィルタを備えたマルチプレクサの小型化を図る。 デュプレクサ6と第3の帯域通過フィルタ7とがアンテナ端子2に接続されており、デュプレクサ6と第3の帯域通過フィルタ7とが並列に接続されており、デュプレクサ6は、第1の通過帯域を有する第1の帯域通過フィルタF1と、第1の通過帯域と異なる通過帯域である第2の通過帯域を有する第2の帯域通過フィルタF2とを有し、第3の帯域通過フィルタ7は、第1及び第2の通過帯域とは異なる第3の通過帯域とを有する、マルチプレクサ1。

Description

マルチプレクサ
 本発明は、例えば携帯電話機などの通信機器に搭載され、アンテナに接続されるマルチプレクサに関し、より詳細には、3つ以上の帯域通過フィルタを備えたマルチプレクサに関する。
 近年、携帯電話サービスでは、加入者数が急速に増加している。また、全世界で携帯電話サービスを利用することを可能とする、グローバルローミング化が進んできている。さらに、携帯電話機で送受信する各種コンテンツの大容量化も急速に進んできている。これらの変化に対応すると共に、通信品質を高めるために、多バンド化への対応及び複数種の通信システムへの対応が携帯電話機に求められている。
 UMTS(Universal Mobile Telecommunications System)のようなCDMA方式に対応する携帯電話機では、信号の送信と受信とが同時に行われる。そのため、携帯電話機のRF回路には、デュプレクサが搭載されている。デュプレクサは、送信フィルタと、受信フィルタと、整合回路とを備える分波器である。CDMA方式に対応する携帯電話機では、複数種の通信システムに対応するために、上記デュプレクサが複数個搭載されている。すなわち、使用される各バンドや各通信システムに対応するデュプレクサが搭載されている。しかしながら、複数個のデュプレクサが携帯電話機に搭載されると、RF回路が大きくなるという問題がある。
 RF回路を小型化する手段として、受信フィルタや送信フィルタを複数の通信システムで共通化することが考えられる。
 UMTS-BAND1は、送信帯域が1920MHz~1980MHz、受信帯域が2110MHz~2170MHzである。UMTS-BAND4は、送信帯域が1710MHz~1755MHz、受信帯域が2110MHz~2155MHzである。UMTS-BAND10は、送信帯域が1710MHz~1770MHz、受信帯域が2110MHz~2170MHzである。このように、UMTS-BAND1とUMTS-BAND4では、受信帯域が共通の周波数帯を有する。また、UMTS-BAND1とUMTS-BAND10では、受信帯域が共通の周波数帯を有する。このような場合、2つのバンドの受信フィルタを共通化することが考えられる。
 例えば、UMTS-BAND1とUMTS-BAND4に対応する携帯電話機においては、UMTS-BAND1のデュプレクサとUMTS-BAND4のデュプレクサとに代えて、UMTS-BAND1の送信フィルタ、UMTS-BAND4の送信フィルタ、UMTS-BAND1及びUMTS-BAND4の双方に対応する受信フィルタの3つの帯域通過フィルタからなるトリプレクサを用いることができる。このようなトリプレクサを用いることにより、RF回路の小型化を図ることができる。トリプレクサは、3つの帯域通過フィルタと、整合回路と備える分波器である。
 下記の特許文献1には、このようなトリプレクサの一例が開示されている。
 図5は、特許文献1に記載のトリプレクサの略図的回路図である。
 トリプレクサ101は、アンテナ102に接続されるアンテナ端子103を有する。アンテナ端子103に、第1,第2及び第3の整合回路104,105,106が互いに並列に接続されている。第1,第2及び第3の整合回路104,105,106には、それぞれ直列に第1,第2及び第3の帯域通過フィルタ107,108,109が接続されている。第1,第2及び第3の帯域通過フィルタ107,108,109は、それぞれ、第1,第2及び第3の端子110,111,112に接続されている。
 第1,第2及び第3の帯域通過フィルタ107,108,109は、通過帯域が相互に異なっている。第1,第2及び第3の帯域通過フィルタ107,108,109は、それぞれの通過帯域においては、挿入損失が小さくされており、減衰帯域においては、減衰量が大きくされている。また、第1,第2及び第3の帯域通過フィルタ107,108,109のそれぞれの通過帯域において、他の2つの帯域通過フィルタの位相は開放状態にあることが必要である。従って、例えば第1の帯域通過フィルタ107では、第2及び第3の帯域通過フィルタ108,109の各通過帯域において、位相が開放状態にある必要がある。
 しかしながら、帯域通過フィルタの設計により、他の2つの帯域通過フィルタの通過帯域における位相が開放状態になるように位相を調整することは非常に困難であった。
 そこで、トリプレクサ101では、第1,第2及び第3の整合回路104,105,106が、それぞれ、アンテナ端子103と第1,第2及び第3の帯域通過フィルタ107,108,109との間に接続されている。第1,第2及び第3の整合回路104,105,106により、第1,第2及び第3の帯域通過フィルタ107,108,109では、それぞれ、他の2つの帯域通過フィルタの通過帯域における位相が開放状態とされている。例えば、第1の帯域通過フィルタ107に、第1の整合回路104が接続されていることにより、第1の帯域通過フィルタ107では、第2及び第3の帯域通過フィルタ108,109の通過帯域における位相が開放状態とされている。上記第1,第2及び第3の整合回路104,105,106は、遅延線、キャパシタ及び/またはインダクタなどにより形成されている。
特開2005-57342号公報
 しかしながら、トリプレクサ101では、第1,第2及び第3の帯域通過フィルタ107,108,109に、それぞれ、第1,第2及び第3の整合回路104,105,106を接続しなければならなかった。そのため、部品点数が増大し、かつトリプレクサ101のサイズが大きくなるという問題があった。
 本発明の目的は、多バンド化への対応や複数種の通信システムへの対応が容易であり、しかも小型化を図ることができるマルチプレクサを提供することにある。
 本発明に係るマルチプレクサは、アンテナ端子と、第1の帯域通過フィルタと第2の帯域通過フィルタとを有するデュプレクサと、第3の帯域通過フィルタとを備え、第1の帯域通過フィルタは第1の通過帯域を有し、第2の帯域通過フィルタは第1の通過帯域と異なる第2の通過帯域を有し、第3の帯域通過フィルタは第1及び第2の通過帯域と異なる第3の通過帯域を有し、アンテナ端子にデュプレクサと第3の帯域通過フィルタとが並列に接続されている。
 本発明に係るマルチプレクサのある特定の局面では、第3の通過帯域が、第1及び第2の通過帯域よりも低域側または高域側に位置している。
 本発明に係るマルチプレクサの他の特定の局面では、デュプレクサとアンテナ端子との間に接続された第1の整合回路がさらに備えられている。
 本発明に係るマルチプレクサのさらに別の特定の局面では、第3の通過帯域が、第1及び第2の通過帯域よりも低域側に位置しており、第1の整合回路がハイパスフィルタである。
 本発明に係るマルチプレクサのさらに他の特定の局面では、第3の通過帯域が、第1及び第2の通過帯域よりも高域側に位置しており、第1の整合回路がローパスフィルタである。
 本発明に係るマルチプレクサのさらに他の特定の局面では、第3の帯域通過フィルタとアンテナ端子との間に接続されている第2の整合回路がさらに備えられている。
 本発明に係るマルチプレクサのさらに他の特定の局面では、第3の通過帯域において、第1及び第2の帯域通過フィルタのそれぞれのアンテナ端子からみた位相が開放状態とされており、第3の帯域通過フィルタは、第1及び第2の通過帯域において、第3の帯域通過フィルタのアンテナ端子からみた位相が開放状態とされている。従って、デュプレクサとアンテナ端子との間、並びに第3の帯域通過フィルタとアンテナ端子との間に、整合回路を設ける必要がなくなり、マルチプレクサのより一層の小型化を図ることができる。
 本発明に係るマルチプレクサでは、第1及び第2の帯域通過フィルタを有するデュプレクサと、第3の帯域通過フィルタとが、アンテナ端子に、互いに並列に接続されているため、マルチプレクサの小型化を図ることができる。例えば、特許文献1に記載の従来のトリプレクサでは、第1,第2及び第3の帯域通過フィルタに、それぞれ、第1,第2及び第3の整合回路を接続しなければならなかった。これに対して、本発明によれば、第1及び第2の帯域通過フィルタを有するデュプレクサと第3の帯域通過フィルタとによりトリプレクサを構成するため、従来のトリプレクサよりも整合回路の数を少なくすることが出来る。従って、マルチプレクサの小型化を図ることができる。
図1は、本発明の第1の実施形態に係るマルチプレクサの略図的回路図である。 図2は、本発明の第2の実施形態に係るマルチプレクサの略図的回路図である。 図3は、本発明の第3の実施形態に係るマルチプレクサの略図的回路図である。 図4は、本発明の第4の実施形態に係るマルチプレクサの略図的回路図である。 図5は、従来のトリプレクサを説明するための略図的回路図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1は、本発明の第1の実施形態に係るマルチプレクサ1の略図的回路図である。
 マルチプレクサ1は、アンテナ端子2と、第1,第2及び第3の端子3,4,5とを有する。アンテナ端子2と第1及び第2の端子3,4との間に、デュプレクサ6が接続されている。デュプレクサ6は、第1及び第2の帯域通過フィルタF1,F2を有する。第1の帯域通過フィルタF1の通過帯域は、第2の帯域通過フィルタF2の通過帯域と異なっている。デュプレクサ6の共通接続点6aと第1の端子3との間に、第1の帯域通過フィルタF1が接続されている。デュプレクサ6の共通接続点6aと第2の端子4との間に、第2の帯域通過フィルタF2が接続されている。
 また、アンテナ端子2と第3の端子5との間に、第3の帯域通過フィルタ7が接続されている。すなわち、第3の帯域通過フィルタ7は、デュプレクサ6と並列に接続されている。
 また、第3の帯域通過フィルタ7の通過帯域は、第1及び第2の帯域通過フィルタF1,F2の通過帯域と異なっている。すなわち、マルチプレクサ1は、互いに異なる通過帯域を有する3つの帯域通過フィルタを有するトリプレクサである。
 第1の帯域通過フィルタF1の通過帯域を第1の通過帯域とし、第2の帯域通過フィルタF2の通過帯域を第2の通過帯域とし、第3の帯域通過フィルタ7の通過帯域を第3の通過帯域とする。本実施形態では、第1,第2及び第3の通過帯域は、第3の通過帯域<第2の通過帯域<第1の通過帯域という関係にある。すなわち、第3の通過帯域が最も低域側に位置しており、第1の通過帯域が最も高域側に位置している。言い換えれば、第1,第2及び第3の通過帯域のうち、第2の通過帯域が、中間に位置する。
 本実施形態では、アンテナ端子2とデュプレクサ6との間に、第1の整合回路8が接続されている。また、アンテナ端子2と第3の帯域通過フィルタ7との間に、第2の整合回路9が接続されている。
 デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2の通過帯域である第1及び第2の通過帯域において、第3の帯域通過フィルタ7の位相が開放状態となるように、第2の整合回路9が構成されている。
 また、第3の帯域通過フィルタ7の通過帯域である第3の通過帯域において、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2のそれぞれの位相が開放状態となるように、第1の整合回路8が構成されている。
 上記第1及び第2の整合回路8,9は、遅延線、キャパシタ及びインダクタなどにより構成されている。遅延線、キャパシタ及びインダクタは、チップ部品により構成されていてもよい。また、遅延線、キャパシタ及びインダクタは、マルチプレクサ1を構成する基板上の配線やくし歯状電極などにより構成されてもよい。
 デュプレクサ6においては、第1の帯域通過フィルタF1は、第2の帯域通過フィルタF2の通過帯域である第2の通過帯域において位相が開放状態とされている。また、第2の帯域通過フィルタF2は、第1の帯域通過フィルタF1の通過帯域である第1の通過帯域において位相が開放状態とされている。
 図5に示した従来のトリプレクサ101では、アンテナ端子103に、互いに並列に第1,第2及び第3の帯域通過フィルタ107,108,109が接続されていた。また、第1,第2及び第3の帯域通過フィルタ107,108,109に、それぞれ、第1,第2及び第3の整合回路104,105,106が接続されていた。従って、第1,第2及び第3の帯域通過フィルタ107,108,109という3つの帯域通過フィルタに加えて、第1,第2及び第3の整合回路104,105,106という3つの整合回路が必要であった。すなわち、従来のトリプレクサ101では、帯域通過フィルタと同じ数の整合回路が必要であった。そのため、部品点数が増大し、小型化が困難であった。
 これに対し、本実施形態のマルチプレクサ1では、デュプレクサ6と、第3の帯域通過フィルタ7と、第1及び第2の整合回路8,9とにより、トリプレクサが構成されている。よって、マルチプレクサ1は、第1及び第2の帯域通過フィルタF1,F2及び第3の帯域通過フィルタ7という、3つの帯域通過フィルタを備えているが、第1及び第2の整合回路8,9という、2つの整合回路で所望の特性を実現することができる。よって、整合回路の数を従来のトリプレクサ101に比べて少なくすることができ、それによって小型化を進めることができる。
 なお、本実施形態では、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2と、第3の帯域通過フィルタ7とは、弾性表面波フィルタにより構成されている。もっとも、第1,第2及び第3の帯域通過フィルタF1,F2,7は、弾性境界波フィルタや圧電薄膜フィルタなどの他の帯域通過フィルタにより構成されていてもよい。
 本実施形態では、第3の帯域通過フィルタ7の通過帯域である第3の通過帯域は、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2の通過帯域である第1及び第2の通過帯域よりも低域側に位置されているが、本発明はこれに限定されるものではない。第3の帯域通過フィルタ7の通過帯域である第3の通過帯域は、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2の通過帯域である第1及び第2の通過帯域よりも高域側に位置してもよい。すなわち、第1,第2及び第3の通過帯域のうち、中間に位置する通過帯域を有する帯域通過フィルタが、デュプレクサ6を構成している第1及び第2の帯域通過フィルタF1,F2のいずれか一方であればよい。
 なお、第1,第2及び第3の通過帯域のうち、中間に位置する通過帯域を第3の通過帯域とした場合には、デュプレクサ6を構成している第1及び第2の帯域通過フィルタF1,F2の一方が、第3の通過帯域よりも高域側に位置する通過帯域を有し、他方は第3の通過帯域よりも低域側に位置する通過帯域を有することとなる。この場合には、第3の帯域通過フィルタ7において、第3の通過帯域よりも低域側に位置する通過帯域と、第3の通過帯域よりも高域側に位置する通過帯域との両方において、位相を開放状態とする必要がある。従って、第3の帯域通過フィルタ7の反射のインピーダンスを急激に変化させる必要がある。しかしながら、第3の帯域通過フィルタ7の反射のインピーダンスを急激に変化させることは非常に困難である。
 これに対して、第1,第2及び第3の通過帯域のうち、最も高域側または最も低域側に位置する通過帯域を第3の通過帯域とした場合には、中間に位置する通過帯域を有する帯域通過フィルタは、デュプレクサ6を構成している第1及び第2の帯域通過フィルタF1,F2のいずれかとなる。この場合には、第3の帯域通過フィルタ7において、第3の通過帯域よりも低域側に位置する2つの通過帯域か、第3の通過帯域よりも高域側に位置する2つの通過帯域かにおいて、位相を開放状態とする必要がある。従って、第3の帯域通過フィルタ7の反射のインピーダンスを急激に変化させる必要はなく、容易に位相を開放状態とすることができる。従って、上記実施形態のように、第1,第2及び第3の通過帯域のうち、中間に位置する通過帯域が、第1または第2の通過帯域であることが好ましい。言い換えれば、第1,第2及び第3の通過帯域のうち、中間に位置する通過帯域を有する帯域通過フィルタが、第1の帯域通過フィルタF1または第2の帯域通過フィルタF2であることが好ましい。
 図2は、本発明の第2の実施形態に係るマルチプレクサ11の略図的回路図である。
 マルチプレクサ11は、第1の実施形態のマルチプレクサ1における第1及び第2の整合回路8,9を備えていないことを除いては、第1の実施形態のマルチプレクサ1と同様に構成されている。従って、第1の実施形態と同様の部分に関する説明については、第1の実施形態と同様の参照番号を付与し、第1の実施形態の説明を適宜援用することにより省略する。
 マルチプレクサ11では、デュプレクサ6に整合回路が接続されておらず、かつ第3の帯域通過フィルタ7にも整合回路が接続されていない。第1及び第2の帯域通過フィルタF1,F2及び第3の帯域通過フィルタ7は、弾性表面波フィルタからなる。そして、第1及び第2の帯域通過フィルタF1,F2及び第3の帯域通過フィルタ7のそれぞれにおいて、弾性表面波フィルタを構成しているIDT電極の電極指ピッチや容量比などを調整することにより、第1及び第2の帯域通過フィルタF1,F2及び第3の帯域通過フィルタ7のそれぞれの位相を所望の状態としている。すなわち、第3の帯域通過フィルタ7のIDT電極の電極指ピッチや容量比などを調整することにより、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2の通過帯域である第1及び第2の通過帯域において、第3の帯域通過フィルタ7のアンテナ端子2からみた位相が開放状態とされている。また、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2のIDT電極の電極指ピッチや容量比などを調整することにより、第3の帯域通過フィルタ7の通過帯域である第3の通過帯域において、第1及び第2の帯域通過フィルタF1,F2のそれぞれのアンテナ端子2からみた位相が開放状態とされている。
 このように、第1及び第2の帯域通過フィルタF1,F2及び第3の帯域通過フィルタ7のそれぞれにおいて、弾性表面波フィルタを構成しているIDT電極の電極指ピッチや容量比などを調整することにより、他の帯域通過フィルタの通過帯域におけるアンテナ端子2からみた位相を開放状態としてもよい。その場合には、整合回路を必要としないので、マルチプレクサ11では、より一層の小型化を図ることができる。
 図3は、本発明の第3の実施形態に係るマルチプレクサ21の略図的回路図である。
 マルチプレクサ21は、アンテナ端子2とデュプレクサ6との間に整合回路8Aが接続されており、アンテナ端子2と第3の帯域通過フィルタ7との間に整合回路が接続されていないことを除いては、第1の実施形態のマルチプレクサ1と同様に構成されている。従って、第1の実施形態と同様の部分に関する説明については、第1の実施形態と同様の参照番号を付与し、第1の実施形態の説明を適宜援用することにより省略する。
 第2の実施形態の説明から明らかなように、本発明においては、弾性表面波フィルタからなる第1及び第2の帯域通過フィルタF1,F2及び/または第3の帯域通過フィルタ7のそれぞれにおいて、弾性表面波フィルタを構成しているIDT電極の電極指ピッチや容量比などを調整することにより、整合回路を省略することができる。本実施形態では、第3の帯域通過フィルタ7のIDT電極の電極指ピッチや容量比などを調整することにより、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2の通過帯域である第1及び第2の通過帯域において、第3の帯域通過フィルタ7の位相が開放状態とされている。
 本実施形態では、アンテナ端子2とデュプレクサ6との間に、整合回路8Aが接続されている。整合回路8Aは、第1のキャパシタ22と、第1,第2及び第3のインダクタ23,24,25とにより構成されている。詳細には、アンテナ端子2とデュプレクサ6の共通接続点6aとの間に、第1のキャパシタ22が接続されている。第1のキャパシタ22と並列に、第1のインダクタ23が接続されている。アンテナ端子2とグラウンド電位との間に、第2のインダクタ24が接続されている。共通接続点6aとグラウンド電位との間に、第3のインダクタ25が接続されている。
 第3の帯域通過フィルタ7の通過帯域である第3の通過帯域において、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2のそれぞれの位相が開放状態となるように、整合回路8Aが構成されている。また、整合回路8Aは、第1のキャパシタ22と第1のインダクタ23とからなるLC共振回路と、並列に接続された第2及び第3のインダクタ24,25とを有する構成であるため、ハイパスフィルタとして機能する。
 よって、マルチプレクサ21は、第1,第2及び第3の通過帯域が、第3の通過帯域<第2の通過帯域<第1の通過帯域という関係にある場合、または第3の通過帯域<第1の通過帯域<第2の通過帯域という関係にある場合に有効である。すなわち、マルチプレクサ21は、第1,第2及び第3の通過帯域のうち、第3の通過帯域が最も低域側に位置する場合に有効である。
 これは、整合回路8Aにより、相対的に最も低域側に位置する第3の通過帯域の信号がデュプレクサ6に伝送することを抑制し、第1及び第2の通過帯域の信号をデュプレクサ6に効果的に伝送することができることによる。
 図4は、本発明の第4の実施形態に係るマルチプレクサ31の略図的回路図である。
 マルチプレクサ31は、第3の実施形態のマルチプレクサ21における整合回路8Aに代えて、整合回路8Bが接続されていることを除いては、第3の実施形態のマルチプレクサ21と同様に構成されている。従って、整合回路8B以外の説明については、第3の実施形態の説明を適宜援用することにより省略する。
 本実施形態では、アンテナ端子2とデュプレクサ6との間に、整合回路8Bが接続されている。整合回路8Bは、第1,第2及び第3のキャパシタ22,26,27と、第1のインダクタ23とにより構成されている。詳細には、アンテナ端子2とデュプレクサ6の共通接続点6aとの間に、第1のキャパシタ22が接続されている。第1のキャパシタ22と並列に、第1のインダクタ23が接続されている。また、アンテナ端子2とグラウンド電位との間に、第2のキャパシタ26が接続されている。共通接続点6aとグラウンド電位との間に、第3のキャパシタ27が接続されている。
 第3の帯域通過フィルタ7の通過帯域である第3の通過帯域において、デュプレクサ6の第1及び第2の帯域通過フィルタF1,F2のそれぞれの位相が開放状態となるように、整合回路8Bが構成されている。
 また、整合回路8Bは、第1のキャパシタ22と第1のインダクタ23とからなるLC共振回路と、並列に接続された第2及び第3のキャパシタ26,27とを有する構成であるため、ローパスフィルタとして機能する。
 よって、マルチプレクサ31は、第1,第2及び第3の通過帯域が、第1の通過帯域<第2の通過帯域<第3の通過帯域という関係にある場合、または第2の通過帯域<第1の通過帯域<第3の通過帯域という関係にある場合に有効である。すなわち、マルチプレクサ31は、第1,第2及び第3の通過帯域のうち、第3の通過帯域が最も高域側に位置する場合に有効である。これは、整合回路8Bにより、相対的に最も高域側に位置する第3の通過帯域の信号がデュプレクサ6に伝送することを抑制し、第1及び第2の通過帯域の信号をデュプレクサ6に効果的に伝送することができることによる。
 第1~第4の実施形態から明らかなように、本発明に係るマルチプレクサでは、アンテナ端子2とデュプレクサ6との間及びアンテナ端子2と第3の帯域通過フィルタ7との間には、整合回路が設けられていなくてもよく、整合回路が必要に応じて適宜設けられてもよい。いずれにしても、トリプレクサを構成する際に、1つのデュプレクサと1つの帯域通過フィルタとを用いるだけでよいため、マルチプレクサの小型化を図ることができる。
 また、本発明に係るマルチプレクサは、携帯電話機においてアンテナと接続されるが、マルチプレクサとアンテナとのインピーダンスの整合を図るために、アンテナとアンテナ端子との間に、インピーダンス整合用インダクタが接続されていてもよい。
 また、第1~第4の実施形態のマルチプレクサ1,11,21,31では、互いに異なる通過帯域を有する3つの帯域通過フィルタからなるトリプレクサが構成されていたが、本発明はこれに限定されるものではない。すなわち、上記実施形態の構成に加えて、さらに、アンテナ端子に接続されており、かつデュプレクサ6及び第3の帯域通過フィルタ7に並列に接続されている、他の1つ以上の帯域通過フィルタや1つ以上のデュプレクサが設けられていてもよい。
 第1~第4の実施形態のマルチプレクサ1,11,21,31は、複数の通信システムで受信フィルタや送信フィルタを共通化してなる分波器として好適に用いることができる。
 例えば、UMTS-BAND1とUMTS-BAND4とに対応する携帯電話機に搭載されるマルチプレクサでは、デュプレクサ6をUMTS-BAND1の送信フィルタと、UMTS-BAND1及びUMTS-BAND4の双方に対応する受信フィルタとにより構成し、第3の帯域通過フィルタ7をUMTS-BAND4の送信フィルタにより構成することができる。
 また、UMTS-BAND1とUMTS-BAND10とに対応する携帯電話機に搭載されるマルチプレクサでは、デュプレクサ6をUMTS-BAND1の送信フィルタと、UMTS-BAND1及びUMTS-BAND10の双方に対応する受信フィルタとにより構成し、第3の帯域通過フィルタ7をUMTS-BAND10の送信フィルタにより構成することができる。
 もっとも、本発明に係るマルチプレクサは、このような特定の通信システムに対応する携帯電話機のみに用いられるものではなく、複数のバンドや複数種の通信システムに対応する携帯電話機に広く適用することができる。
 1,11,21,31…マルチプレクサ
 2…アンテナ端子
 3…第1の端子
 4…第2の端子
 5…第3の端子
 6…デュプレクサ
 6a…共通接続点
 7…第3の帯域通過フィルタ
 8…第1の整合回路
 8A,8B…整合回路
 9…第2の整合回路
 22…第1のキャパシタ
 23…第1のインダクタ
 24…第2のインダクタ
 25…第3のインダクタ
 26…第2のキャパシタ
 27…第3のキャパシタ
 F1…第1の帯域通過フィルタ
 F2…第2の帯域通過フィルタ

Claims (7)

  1.  アンテナ端子と、
     第1の帯域通過フィルタと第2の帯域通過フィルタとを有するデュプレクサと、
     第3の帯域通過フィルタとを備え、
     前記第1の帯域通過フィルタは第1の通過帯域を有し、
     前記第2の帯域通過フィルタは前記第1の通過帯域と異なる第2の通過帯域を有し、
     前記第3の帯域通過フィルタは前記第1及び第2の通過帯域と異なる第3の通過帯域を有し、
     前記アンテナ端子に前記デュプレクサと前記第3の帯域通過フィルタとが並列に接続されている、マルチプレクサ。
  2.  前記第3の通過帯域が、前記第1及び第2の通過帯域よりも低域側または高域側に位置している、請求項1に記載のマルチプレクサ。
  3.  前記デュプレクサと前記アンテナ端子との間に接続された第1の整合回路をさらに備える、請求項1または2に記載のマルチプレクサ。
  4.  前記第3の通過帯域が、前記第1及び第2の通過帯域よりも低域側に位置しており、前記第1の整合回路がハイパスフィルタである、請求項3に記載のマルチプレクサ。
  5.  前記第3の通過帯域が、前記第1及び第2の通過帯域よりも高域側に位置しており、前記第1の整合回路がローパスフィルタである、請求項3に記載のマルチプレクサ。
  6.  前記第3の帯域通過フィルタと前記アンテナ端子との間に接続された第2の整合回路をさらに備える、請求項1~5のいずれか1項に記載のマルチプレクサ。
  7.  前記デュプレクサは、前記第3の通過帯域において、前記第1及び第2の帯域通過フィルタのそれぞれの前記アンテナ端子からみた位相が開放状態とされており、前記第3の帯域通過フィルタは、前記第1及び第2の通過帯域において、前記第3の帯域通過フィルタの前記アンテナ端子からみた位相が開放状態とされている、請求項1または2に記載のマルチプレクサ。
PCT/JP2010/061603 2010-01-13 2010-07-08 マルチプレクサ WO2011086717A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/543,908 US20120274417A1 (en) 2010-01-13 2012-07-09 Multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-004997 2010-01-13
JP2010004997A JP2013062556A (ja) 2010-01-13 2010-01-13 マルチプレクサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/543,908 Continuation US20120274417A1 (en) 2010-01-13 2012-07-09 Multiplexer

Publications (1)

Publication Number Publication Date
WO2011086717A1 true WO2011086717A1 (ja) 2011-07-21

Family

ID=44304017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061603 WO2011086717A1 (ja) 2010-01-13 2010-07-08 マルチプレクサ

Country Status (3)

Country Link
US (1) US20120274417A1 (ja)
JP (1) JP2013062556A (ja)
WO (1) WO2011086717A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207551A (ja) * 2012-03-28 2013-10-07 Tdk Corp トリプレクサ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363378B2 (ja) 2014-04-10 2018-07-25 太陽誘電株式会社 マルチプレクサ
US9391666B1 (en) * 2014-12-23 2016-07-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiplexer device with first and second filtering devices connected to common port
WO2016111262A1 (ja) * 2015-01-07 2016-07-14 株式会社村田製作所 複合フィルタ装置
WO2016117676A1 (ja) 2015-01-23 2016-07-28 株式会社村田製作所 フィルタ装置
KR102043411B1 (ko) * 2015-06-25 2019-11-12 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
JP6416067B2 (ja) 2015-09-24 2018-10-31 太陽誘電株式会社 モジュール
JP6743396B2 (ja) * 2016-01-25 2020-08-19 Tdk株式会社 バンドパスフィルタおよび分波器
US10700658B2 (en) 2016-02-19 2020-06-30 Psemi Corporation Adaptive tuning networks with direct mapped multiple channel filter tuning
US10141958B2 (en) * 2016-02-19 2018-11-27 Psemi Corporation Adaptive tuning network for combinable filters
WO2018037884A1 (ja) * 2016-08-25 2018-03-01 株式会社村田製作所 弾性波装置
KR200487012Y1 (ko) * 2016-08-25 2018-07-25 윌신 테크놀로지 코포레이션 강화된 격리 및 손실을 가지는 마이크로 다이플렉서
US10432237B2 (en) * 2017-10-20 2019-10-01 Taiyo Yuden Co., Ltd. Multiplexer
CN111801891A (zh) 2018-03-09 2020-10-20 株式会社村田制作所 层叠型三工器
US10972072B2 (en) * 2018-03-14 2021-04-06 Murata Manufacturing Co., Ltd. Composite multiplexer
JP6835041B2 (ja) * 2018-06-21 2021-02-24 株式会社村田製作所 マルチプレクサ
CN112335177B (zh) 2018-06-29 2021-11-26 株式会社村田制作所 多工器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204204A (ja) * 2002-01-08 2003-07-18 Murata Mfg Co Ltd マルチプレクサおよび通信装置
JP2007074698A (ja) * 2005-08-08 2007-03-22 Fujitsu Media Device Kk 分波器及びラダー型フィルタ
JP2007215173A (ja) * 2006-02-06 2007-08-23 Samsung Electronics Co Ltd デュプレクサ
WO2009011101A1 (ja) * 2007-07-13 2009-01-22 Panasonic Corporation アンテナ共用器とそれを用いた通信機器
JP2009130518A (ja) * 2007-11-21 2009-06-11 Yokowo Co Ltd トリプレクサ回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188622A (ja) * 1992-12-16 1994-07-08 Murata Mfg Co Ltd アンテナ共用器
US20030054775A1 (en) * 2001-09-18 2003-03-20 Eaves Neil Scott Diplexer
WO2003034603A1 (en) * 2001-10-13 2003-04-24 Samsung Electronics Co., Ltd Mobile communication system having multi-band antenna
US6995630B2 (en) * 2001-10-24 2006-02-07 Matsushita Electric Industrial Co., Ltd. High-frequency compound switch module and communication terminal using it
US6975841B2 (en) * 2001-11-12 2005-12-13 Matsushita Electric Industrial Co., Ltd. Diplexer, and high-frequency switch and antenna duplexer using the same
JP2004194240A (ja) * 2002-12-13 2004-07-08 Murata Mfg Co Ltd 3分波・合波器
KR20040052286A (ko) * 2002-12-16 2004-06-23 삼성전기주식회사 고주파 복합 부품
KR100486627B1 (ko) * 2003-02-21 2005-05-03 엘지전자 주식회사 반도체 패키지
US6845231B2 (en) * 2003-03-24 2005-01-18 Agilent Technologies, Inc. Method facilitating inter-mode handoff
US6980067B2 (en) * 2003-04-16 2005-12-27 Kyocera Wireless Corp. Triplexer systems and methods for use in wireless communications device
JP2005268878A (ja) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd アンテナ共用器
US7126440B2 (en) * 2004-07-26 2006-10-24 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Modular frequency division filter
US7162266B2 (en) * 2004-12-17 2007-01-09 Avago Technologies Wireless Ip (Singapore) Pte.Ltd. Multiple band handset architecture
CN102246414B (zh) * 2008-12-10 2014-05-28 株式会社村田制作所 高频模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204204A (ja) * 2002-01-08 2003-07-18 Murata Mfg Co Ltd マルチプレクサおよび通信装置
JP2007074698A (ja) * 2005-08-08 2007-03-22 Fujitsu Media Device Kk 分波器及びラダー型フィルタ
JP2007215173A (ja) * 2006-02-06 2007-08-23 Samsung Electronics Co Ltd デュプレクサ
WO2009011101A1 (ja) * 2007-07-13 2009-01-22 Panasonic Corporation アンテナ共用器とそれを用いた通信機器
JP2009130518A (ja) * 2007-11-21 2009-06-11 Yokowo Co Ltd トリプレクサ回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207551A (ja) * 2012-03-28 2013-10-07 Tdk Corp トリプレクサ

Also Published As

Publication number Publication date
US20120274417A1 (en) 2012-11-01
JP2013062556A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2011086717A1 (ja) マルチプレクサ
CN108023568B (zh) 滤波器装置、多路复用器、高频前置电路以及通信装置
CN109286387B (zh) 高频滤波器、多路复用器、高频前置电路以及通信装置
JP6116648B2 (ja) フィルタモジュール
JP4805370B2 (ja) フィルタ、携帯端末及び電子部品
JP5354028B2 (ja) 弾性表面波フィルタ装置
US10804882B2 (en) Multiplexer, high-frequency front end circuit, and communication device
JP6965581B2 (ja) 高周波モジュール及び通信装置
JP6439862B2 (ja) 高周波フィルタ、フロントエンド回路、および、通信機器
WO2017217197A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP5673818B2 (ja) 分波器
JP2007110714A (ja) 位相シフタを有しないbawデュプレクサ
WO2020008759A1 (ja) 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
US20210194452A1 (en) Multiplexer, and radio frequency front-end circuit and communication device that use the same
US20140113580A1 (en) Splitter
JP6822764B2 (ja) 分波器
JP2018078542A (ja) フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
US9007145B2 (en) High-frequency signal balancing multiplexer
WO2006040927A1 (ja) 分波器
JP2021064874A (ja) 高周波モジュールおよび通信装置
JPWO2006040923A1 (ja) 分波器
JP2020014104A (ja) フィルタおよびマルチプレクサ
KR101703060B1 (ko) 필터장치 및 듀플렉서
JP4663770B2 (ja) 弾性波デバイス
KR20200002598A (ko) 필터 및 멀티플렉서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP