WO2019235490A1 - マルチプレクサ - Google Patents

マルチプレクサ Download PDF

Info

Publication number
WO2019235490A1
WO2019235490A1 PCT/JP2019/022224 JP2019022224W WO2019235490A1 WO 2019235490 A1 WO2019235490 A1 WO 2019235490A1 JP 2019022224 W JP2019022224 W JP 2019022224W WO 2019235490 A1 WO2019235490 A1 WO 2019235490A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
multiplexer
wave filter
common terminal
connection node
Prior art date
Application number
PCT/JP2019/022224
Other languages
English (en)
French (fr)
Inventor
高田 俊明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020207034249A priority Critical patent/KR102521168B1/ko
Priority to JP2020523127A priority patent/JP6819821B2/ja
Priority to CN201980036534.0A priority patent/CN112204881B/zh
Publication of WO2019235490A1 publication Critical patent/WO2019235490A1/ja
Priority to US17/075,751 priority patent/US11929726B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0004Impedance-matching networks
    • H03H9/0009Impedance-matching networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to a multiplexer including an elastic wave filter.
  • Recent mobile communication terminals are required to support a plurality of communication bands (frequency bands) and a plurality of radio systems, so-called multiband and multimode, in one terminal.
  • a small multiplexer that demultiplexes / combines high-frequency signals of a plurality of communication bands is arranged in the front end portion connected to the antenna.
  • Patent Document 1 includes three filters (a low-pass filter, a band-pass filter, and a high-pass filter) and an inductance element connected in parallel to a common port (common terminal) (connected to the common port and the ground).
  • a composite filter circuit (multiplexer) provided is disclosed.
  • an inductance element connected in parallel to a common terminal is provided for impedance matching between an external circuit (for example, an antenna) connected to the common terminal and the three filters.
  • the impedance matching between the external circuit (for example, the antenna) and the three filters is accurately performed. Can not be removes.
  • the impedance of the single filter is designed to be capacitive in advance.
  • an elastic wave filter is used as each filter having capacitive impedance. In this case, compared to the impedance of the filter alone, the combined impedance of the three filters that shift to the capacitive side and the low impedance side can be shifted to the inductive side by the inductance element. It is difficult to get close.
  • the present invention has been made to solve the above-described problem, and is a multiplexer in which three or more acoustic wave filters are connected to a common terminal, and an external circuit connected to the common terminal.
  • An object of the present invention is to provide a multiplexer capable of accurately obtaining impedance matching.
  • a multiplexer connects a common terminal, a first acoustic wave filter connected to the common terminal, and the common terminal and the first acoustic wave filter.
  • an inductance element connected between the wiring region from the first acoustic wave filter and the ground, or between the second wiring and the ground, in the first wiring, from the common terminal to First connection Length to over de is longer than the length from the common terminal to said second connection node.
  • FIG. 1A is an arrangement diagram of circuit elements constituting the multiplexer according to the embodiment.
  • FIG. 1B is a plan configuration diagram of the multiplexer according to the embodiment.
  • FIG. 2A is an arrangement diagram of circuit elements constituting the multiplexer according to the first comparative example.
  • FIG. 2B is a plan configuration diagram of a multiplexer according to Comparative Example 1.
  • FIG. 3A is an arrangement diagram of circuit elements constituting the multiplexer according to Comparative Example 2.
  • FIG. 3B is a plan configuration diagram of a multiplexer according to Comparative Example 2.
  • FIG. 4A is a Smith chart illustrating impedance characteristics of the multiplexer according to the embodiment.
  • FIG. 4B is a Smith chart showing the impedance characteristics of the multiplexer according to Comparative Example 1.
  • FIG. 4A is a Smith chart illustrating impedance characteristics of the multiplexer according to the embodiment.
  • FIG. 4B is a Smith chart showing the impedance characteristics of the multiplexer according to Comparative Example 1.
  • FIG. 5 is a Smith chart in which the impedances of the multiplexers according to the example and the comparative example 1 are compared for each pass band.
  • FIG. 6 is a graph comparing the pass characteristics of the six filters according to the example and the comparative example 1.
  • FIG. 7 is a cross-sectional view schematically showing the resonator of the acoustic wave filter that constitutes the multiplexer according to the embodiment.
  • FIG. 1A is an arrangement diagram of circuit elements constituting the multiplexer 1 according to the embodiment.
  • the multiplexer 1 includes a common terminal 100, reception filters 11, 13, and 15, transmission filters 12, 14, and 16, inductors 31 and 32, reception output terminals 110, 130, and 150, Transmission input terminals 120, 140, and 160.
  • the multiplexer 1 is connected to an external circuit such as an antenna element at the common terminal 100.
  • the reception output terminals 110, 130, and 150 are connected to, for example, a reception amplifier circuit.
  • the transmission input terminals 120, 140, and 160 are connected to, for example, a transmission amplifier circuit.
  • the reception filter 11 has an input terminal connected to the connection node n1 (second connection node) via the inductor 32, an output terminal connected to the reception output terminal 110, and a third band having a reception band of the communication band A as a pass band. It is an elastic wave filter.
  • the reception band of the communication band A for example, the reception band (1930-1995 MHz) of the band 25 of LTE (Long Term Evolution) is applied.
  • the transmission filter 12 is a third elastic wave filter having an output end connected to the connection node n3 (second connection node), an input end connected to the transmission input terminal 120, and a transmission band of the communication band A as a pass band.
  • the transmission band of the communication band A for example, the transmission band (1850-1915 MHz) of the LTE band 25 is applied.
  • the reception filter 13 is a third acoustic wave filter having an input end connected to the connection node n4 (second connection node), an output end connected to the reception output terminal 130, and a reception band of the communication band B as a pass band.
  • the reception band of the communication band B for example, the reception band (2110-2200 MHz) of the LTE band 66 is applied.
  • the transmission filter 14 is a third acoustic wave filter having an output end connected to the connection node n2 (second connection node), an input end connected to the transmission input terminal 140, and a transmission band of the communication band B as a pass band.
  • the transmission band of the communication band B for example, the transmission band (1710-1780 MHz) of the LTE band 66 is applied.
  • the reception filter 15 is a first acoustic wave filter having an input end connected to the connection node n5 (first connection node), an output end connected to the reception output terminal 150, and a reception band of the communication band C as a pass band.
  • the reception band of the communication band C for example, the reception band (2350-2360 MHz) of the LTE band 30 is applied.
  • the transmission filter 16 is a second elastic wave filter whose output end is connected to the connection node n5 (first connection node), whose input end is connected to the transmission input terminal 160, and whose transmission band is the transmission band of the communication band C. .
  • the transmission band (2305-2315 MHz) of the LTE band 30 is applied to the transmission band of the communication band C.
  • Connection nodes n1, n2, n3, n4 and n5 are all nodes on the wiring connecting the common terminal 100 and each acoustic wave filter.
  • the inductor 31 is an inductance element connected between the connection node n5 and the ground, and the impedance between the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 and an external circuit connected to the common terminal 100. This is an impedance matching element for matching.
  • the inductor 32 is an inductance element connected in series between the connection node n1 and the input end of the reception filter 11, and a phase adjustment element for adjusting the phase of impedance when the reception filter 11 is viewed from the connection node n1. It is.
  • the inductor 32 is not an essential component.
  • the multiplexer according to the present embodiment does not need to have six elastic wave filters, and may have three or more elastic wave filters.
  • a reception filter 15 that is a first acoustic wave filter
  • a transmission filter 16 that is a second acoustic wave filter
  • reception filters 11 and 13 that are third acoustic wave filters
  • transmission filters 12 and 14 As long as it has.
  • the three or more elastic wave filters constituting the multiplexer according to the present embodiment may be either a transmission filter or a reception filter.
  • the multiplexer 1 according to the present embodiment has a circuit configuration in which six acoustic wave filters of the reception filters 11, 13, 15 and the transmission filters 12, 14, and 16 are electrically connected to the common terminal 100. . Furthermore, in the multiplexer 1 according to the present embodiment, the arrangement configuration of each circuit element for realizing the above circuit configuration is a configuration that has not existed conventionally. Hereinafter, the arrangement configuration of each circuit element constituting the multiplexer 1 according to the present embodiment will be described in detail.
  • FIG. 1B is a plan configuration diagram of the multiplexer 1 according to the embodiment.
  • the multiplexer 1 according to the present embodiment has a connection wiring for connecting the common terminal 100 and each acoustic wave filter in addition to the circuit elements shown in FIG. 1A.
  • the connection wiring includes wirings 21, 22, 23, 24, 25 and 26.
  • the wiring 21 is a first wiring that connects the common terminal 100 and the reception filter 15.
  • the wiring 22 is a second wiring that connects the connection node n5 and the transmission filter 16.
  • the wiring 23 is a third wiring that connects the connection node n4 and the reception filter 13.
  • the wiring 24 is a third wiring that connects the connection node n ⁇ b> 3 and the transmission filter 12.
  • the wiring 25 is a third wiring that connects the connection node n ⁇ b> 2 and the transmission filter 14.
  • the wiring 26 is a third wiring that connects the connection node n ⁇ b> 1 and the reception filter 11.
  • the length of the wiring from the common terminal 100 to the connection node n5 is the length of the wiring from the common terminal 100 to the connection node n4, the length of the wiring from the common terminal 100 to the connection node n3, It is longer than both the length of the wiring to the connection node n2 and the length of the wiring from the common terminal 100 to the connection node n1.
  • the inductor 31 is connected to the connection node n5 without going through another connection node. That is, the inductor 31 is connected to the connection node n5 having the longest wiring distance from the common terminal 100 among the connection nodes n1 to n5.
  • impedance matching with an external circuit connected to the common terminal 100 can be achieved with high accuracy.
  • the inductor 31 is not only connected between the connection node n5 and the ground, but also from the connection node n5 to the input end of the reception filter 15, and from the connection node n5 to the output end of the transmission filter 16. It is only necessary to be connected between one of the wirings and the ground.
  • the multiplexer 1 may further include a mounting substrate 50 as shown in FIG. 1B.
  • a common terminal 100, reception filters 11, 13, 15 and transmission filters 12, 14, 16 are mounted on the mounting substrate 50.
  • wirings 21 to 26 are formed on the mounting substrate 50.
  • Each of the inductors 31 and 32 may be a chip-shaped inductor that is surface-mounted on the mounting substrate 50, or may be an inductor formed by a coil pattern in the mounting substrate 50.
  • the wirings 21 to 26 are formed on the mounting substrate 50 on which each acoustic wave filter is mounted, and the inductor 31 is mounted, so that the multiplexer 1 is a small module. Is possible.
  • the mounting substrate 50 may be a multilayer substrate having a plurality of dielectric layers.
  • a substrate having a low dielectric loss and a low dielectric constant is used as a substrate for propagating a high-frequency signal with low loss.
  • the phase change of the impedance of each acoustic wave filter by the wirings 21 to 26 becomes large.
  • the common terminal 100 is adjacent to the reception filter 15 having the longest wiring distance, and other connection nodes and other elastic wave filters are interposed.
  • the inductor 31 is connected to the connection node n5. Thereby, it is possible to match the impedance of the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 viewed from the common terminal 100 to the reference impedance (for example, 50 ⁇ ) while suppressing the dielectric loss of the mounting substrate 50. It becomes.
  • the size of each acoustic wave filter is 0.8 mm ⁇ 1.1 mm, and the inductor 31 and Each of the sizes of 32 is 0.4 mm ⁇ 0.2 mm, and the size of the multiplexer 1 is 4.8 mm ⁇ 3.5 mm.
  • the above-mentioned sizes are obtained when the above-described LTE bands 25, 66, and 30 are applied as the respective acoustic wave filters, and a multilayer substrate having a plurality of dielectric layers is applied as the mounting substrate 50.
  • the multiplexer 1 according to the present embodiment is superior in miniaturization and impedance matching as compared with the conventional multiplexer.
  • the arrangement configuration of multiplexers according to Comparative Example 1 and Comparative Example 2 which are conventional arrangement configurations of multiplexers will be described.
  • FIG. 2A is an arrangement diagram of circuit elements constituting the multiplexer 500 according to the first comparative example.
  • the multiplexer 500 includes a common terminal 100, reception filters 11, 13, and 15, transmission filters 12, 14, and 16, inductors 33 and 34, reception output terminals 110, 130, and 150, Transmission input terminals 120, 140, and 160.
  • the multiplexer 500 according to the comparative example 1 differs from the multiplexer 1 according to the embodiment in the arrangement configuration of the inductance elements.
  • the description of the same configuration as the multiplexer 1 according to the embodiment is omitted, and a description will be given focusing on a different configuration.
  • the inductor 33 is an inductance element connected between the connection node n ⁇ b> 1 and the ground, and impedance of the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 and an external circuit connected to the common terminal 100. This is an impedance matching element for matching.
  • the inductor 34 is an inductance element connected in series between the connection node n1 and the input end of the reception filter 11, and has the same function as the inductor 32 according to the embodiment.
  • FIG. 2B is a plan configuration diagram of the multiplexer 500 according to the first comparative example.
  • the multiplexer 500 according to the comparative example 1 further includes a connection wiring for connecting the common terminal 100 and each acoustic wave filter in addition to the circuit elements shown in FIG. 2A.
  • the connection wiring includes wirings 521, 522, 523, 524, 525, and 526.
  • the wiring 521 is a first wiring that connects the common terminal 100 and the reception filter 15.
  • the wiring 522 is a second wiring that connects the connection node n5 and the transmission filter 16.
  • the wiring 523 is a third wiring that connects the connection node n4 and the reception filter 13.
  • the wiring 524 is a third wiring that connects the connection node n ⁇ b> 3 and the transmission filter 12.
  • the wiring 525 is a third wiring that connects the connection node n ⁇ b> 2 and the transmission filter 14.
  • the wiring 526 is a third wiring that connects the connection node n ⁇ b> 1 and the reception filter 11.
  • the length of the wiring from the common terminal 100 to the connection node n1 is the length of the wiring from the common terminal 100 to the connection node n5, the length of the wiring from the common terminal 100 to the connection node n4, It is shorter than any of the length of the wiring to the connection node n3 and the length of the wiring from the common terminal 100 to the connection node n2.
  • the inductor 33 is connected to the connection node n1 without passing through another connection node. That is, the inductor 33 is connected to the connection node n1 having the shortest wiring distance from the common terminal 100 among the connection nodes n1 to n5.
  • the size of each acoustic wave filter is 0.8 mm ⁇ 1.1 mm, and the inductor 31 And 32 are 0.4 mm ⁇ 0.2 mm, respectively, and the size of the multiplexer 1 is 4.8 mm ⁇ 3.5 mm, which is the same size as the multiplexer 1 according to the embodiment.
  • the above sizes are obtained when the above-described LTE bands 25, 66, and 30 are applied as the respective acoustic wave filters, and a multilayer substrate having a plurality of dielectric layers is applied as the mounting substrate 50.
  • FIG. 3A is an arrangement diagram of circuit elements constituting the multiplexer 600 according to the second comparative example.
  • the multiplexer 600 includes a common terminal 100, reception filters 11, 13, and 15, transmission filters 12, 14, and 16, inductors 35 and 36, reception output terminals 110, 130, and 150, Transmission input terminals 120, 140, and 160.
  • the multiplexer 600 according to the comparative example 2 differs from the multiplexer 1 according to the embodiment in the arrangement configuration and wiring configuration of the inductance elements.
  • the description of the same configuration as the multiplexer 1 according to the embodiment will be omitted, and a description will be given focusing on a different configuration.
  • the inductor 35 is an inductance element connected between the connection node n ⁇ b> 1 and the ground, and impedance of the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 and an external circuit connected to the common terminal 100. This is an impedance matching element for matching.
  • the inductor 36 is an inductance element connected in series between the connection node n1 and the input end of the reception filter 11, and has the same function as the inductor 32 according to the embodiment.
  • FIG. 3B is a plan configuration diagram of the multiplexer 600 according to the second comparative example.
  • the multiplexer 600 according to the comparative example 2 further includes a connection wiring for connecting the common terminal 100 and each acoustic wave filter in addition to the circuit elements shown in FIG. 3A.
  • the connection wiring includes wirings 621, 622, 623, 624, 625 and 626.
  • the wiring 621 connects the common terminal 100 and the reception filter 15.
  • the wiring 622 connects the connection node n1 and the transmission filter 16.
  • the wiring 623 connects the connection node n1 and the reception filter 13.
  • the wiring 624 connects the connection node n1 and the transmission filter 12.
  • the wiring 625 connects the connection node n1 and the transmission filter 14.
  • the wiring 626 connects the connection node n1 and the reception filter 11.
  • connection node n1 there is only one connection node n1 on the wiring 621 connecting the common terminal 100 and the reception filter 15, and all of the six elastic wave filters are connected to other connection nodes. It is connected to the connection node n1 without going through.
  • the common terminal 100 is arranged on the outer peripheral portion of the region where the six acoustic wave filters are arranged.
  • the total number of wirings connecting the common terminal 100 and each acoustic wave filter as compared with the arrangement configuration in which a plurality of connection nodes exist on the wiring 621 in the case where the acoustic wave filters are not symmetrically arranged. Length becomes long. For this reason, the propagation loss of the multiplexer 600 becomes large, and it is disadvantageous for miniaturization.
  • the size of each acoustic wave filter is 0.8 mm ⁇ 1.1 mm
  • the inductor 35 And 36 are 0.4 mm ⁇ 0.2 mm
  • the size of the multiplexer 1 is 4.8 mm ⁇ 4.0 mm.
  • the above sizes are obtained when the above-described LTE bands 25, 66, and 30 are applied as the respective acoustic wave filters, and a multilayer substrate having a plurality of dielectric layers is applied as the mounting substrate 50.
  • the configuration in which a plurality of connection nodes are provided on the wiring connecting the common terminal 100 and each acoustic wave filter as in the example and the comparative example 1 is single on the wiring as in the comparative example 2.
  • the wiring layout is less likely to be restricted, which is advantageous for downsizing.
  • a multiplexer having a configuration in which three or more acoustic wave filters are connected to a common terminal a plurality of wirings connecting the common terminal 100 and each acoustic wave filter are provided as in the example and the comparative example 1.
  • the wiring can be efficiently routed, which is advantageous for downsizing.
  • the high-frequency propagation characteristics deteriorate in the case of the wiring configuration of Comparative Example 1.
  • the operation of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are compared to explain that a difference in high-frequency propagation characteristics occurs.
  • FIG. 4A is a Smith chart showing impedance characteristics of the multiplexer 1 according to the embodiment.
  • FIG. 4B is a Smith chart showing impedance characteristics of the multiplexer 500 according to the comparative example. More specifically, FIG. 4A shows the impedance in the passband when the elastic wave filter is viewed from each connection node in the multiplexer 1 according to the embodiment.
  • FIG. 4B shows the impedance in the passband when the elastic wave filter is viewed from each connection node in the multiplexer 500 according to the comparative example 1.
  • the impedance changes sequentially through the connection nodes (n5 ⁇ n1) from the reception filter 15 at the position where the wiring distance is the longest from the common terminal 100, and finally the common terminal At 100, a transition state is shown in which the combined impedance of each acoustic wave filter is matched to the reference impedance.
  • Each of the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 is an acoustic wave filter having a capacitive impedance. In order to shift these capacitive impedances to the inductive side, the inductor 31 or 33 is added.
  • the reception filter 15 when the reception filter 15 at the position where the wiring distance from the common terminal 100 is the longest is viewed alone (from x2 in FIG. 4B, the reception filter 15 is The impedance in the passband (C-Rx) in the case of viewing is in the capacitive region (C-Rx alone in FIG. 4B).
  • the reception filter 15 includes another transmission filter 16, which is an elastic wave filter, the reception filter 13, and the transmission filters 12, 14.
  • the reception filter 11 is connected in parallel. Therefore, the combined impedance of the six acoustic wave filters is shifted to the capacitive side and the low impedance side with respect to the impedance of the reception filter 15 alone (n1 (+ other filter connection) in FIG. 4B).
  • the reception filters 11 and 13 and the transmission filters 12, 14, and 16 are connected in parallel to the reception filter 15, the reception filter 15 passes through the connection nodes n5 to n1.
  • the combined impedance of the six acoustic wave filters viewed from the connection node n1 (impedance viewed from the six acoustic wave filters connected in parallel from z2 in FIG. 4B) is:
  • the equal resistance circle is shifted clockwise by the wiring 521 (n1 (+ other filter connection + wiring) in FIG. 4B) with respect to the combined impedance (n1 (+ other filter connection) in FIG. 4B) of the six elastic wave filters. )).
  • the connection node n1 the combined impedance of the six elastic wave filters as viewed from the connection node n1 by the inductor 31 (the six elastic wave filters connected in parallel from y2 in FIG. 4B).
  • the impedance seen) shifts counterclockwise on the isoconductance circle and is located in the inductive region (n1 (+ other filter connection + wiring + parallel L) in FIG. 4B).
  • the combined impedance of the six elastic wave filters before the addition of the inductor 31 at z2 is different from the reference impedance.
  • the combined impedance of the six acoustic wave filters at y2 after the addition of the inductor 31 is greatly shifted from the reference impedance to the low impedance side even if the inductor 31 is shifted counterclockwise on the isoconductance circle. It will be located in the inductive region.
  • the combined impedance that is, the impedance of the multiplexer 500 seen from the six elastic wave filters connected in parallel from the common terminal 100 is greatly deviated from the reference impedance to the low impedance side.
  • the multiplexer 1 when the reception filter 15 at the position where the wiring distance from the common terminal 100 is the longest is viewed alone (from x1 in FIG. 4A, the reception filter).
  • the impedance in the passband (C-Rx) of (when 15 is viewed) is in the capacitive region as in the multiplexer 500 according to Comparative Example 1 (C-Rx alone in FIG. 4A).
  • the impedance of the reception filter 15 viewed from the connection node n5 by the inductor 31 at the connection node n5 is on an equal conductance circle. Is counterclockwise and is located in the inductive region (n5 (+ parallel L) in FIG. 4A). That is, at y1 (connection node n5), the impedance of the reception filter 15 before the reception filters 11, 13 and the transmission filters 12, 14, 16 are connected in parallel is arranged in the inductive region by the inductor 31.
  • the impedance of the reception filter 15 at x1 before the addition of the inductor 31 is a capacitive impedance close to the reference impedance as compared with the combined impedance of the six elastic wave filters connected in parallel. Therefore, the impedance of the reception filter 15 at y1 (connection node n5) after the addition of the inductor 31 is inductive in a state close to the reference impedance even if the inductor 31 is shifted counterclockwise on the isoconductance circle. It will be located in the area.
  • the combined impedance of the six acoustic wave filters viewed from the connection node n1 is equal conductance.
  • the equal resistance circle is shifted clockwise by the wiring 21 while shifting on the circle counterclockwise.
  • the impedance of the reception filter 15 at y1 (connection node n5) before the shift is located in an inductive region close to the reference impedance, the shift amount is small.
  • the combined impedance that is, the impedance of the multiplexer 1 seen from the six elastic wave filters connected in parallel from the common terminal 100 is accurately matched to the reference impedance.
  • the parallel connection type inductor that shifts the combined impedance of the six acoustic wave filters having capacitive impedance to the inductive region is replaced with the six acoustic waves among the plurality of connection nodes.
  • the filter is connected to the connection node before being shared by the common terminal 100 (farthest from the common terminal 100).
  • the inductor 31 is connected to the reception filter 15 connected to the position where the wiring distance is the longest from the common terminal 100 before other elastic wave filters are connected, and the impedance of the reception filter 15 is induced close to the reference impedance.
  • the parallel connection type inductor 31 is connected between the connection node n5 having the longest wiring distance from the common terminal 100 to the input end of the reception filter 15 or the ground among the connection nodes n1 to n5. Connection is made between the wiring 22 from the node n5 to the output end of the transmission filter 16 and the ground. In other words, the parallel connection type inductor 31 is connected from the connection node n5 having the longest wiring distance from the common terminal 100 to the ground without passing through another connection node.
  • FIG. 5 is a Smith chart in which the impedances of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are compared for each pass band. More specifically, FIG. 5A shows the transmission band (A ⁇ Tx: 1850) of the band 25 when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Impedance at -1915 MHz) is shown. FIG. 5B shows the band 25 reception band (A-Rx: 1930-1995 MHz) when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Impedance is shown. FIG.
  • FIG. 5C shows the transmission band (B-Tx: 1710-1780 MHz) of the band 66 when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Impedance is shown.
  • FIG. 5D shows a band 66 reception band (B-Rx: 2110-2200 MHz) when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Impedance is shown.
  • FIG. 5E shows the transmission band (C-Tx: 2305-2315 MHz) of the band 30 when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Impedance is shown.
  • FIG. 5F shows the band 30 reception band (C-Rx: 2350-2360 MHz) when the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1 are viewed from the common terminal 100. Imped
  • any pass band of the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 it is implemented more than the multiplexer 500 according to the comparative example 1. It can be seen that the impedance of the multiplexer 1 according to the example viewed from the common terminal 100 is closer to the reference impedance.
  • FIG. 6 is a graph comparing the pass characteristics of the six acoustic wave filters constituting the multiplexer according to the example and the comparative example 1. More specifically, FIG. 6A shows the pass characteristics of the transmission filter 12 between the transmission input terminal 120 and the common terminal 100 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1. ing. FIG. 6B shows pass characteristics of the reception filter 11 between the common terminal 100 and the reception output terminal 110 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1. FIG. 6C shows pass characteristics of the transmission filter 14 between the transmission input terminal 140 and the common terminal 100 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1. FIG.
  • FIG. 6D shows pass characteristics of the reception filter 13 between the common terminal 100 and the reception output terminal 130 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1.
  • FIG. 6E shows the pass characteristics of the transmission filter 16 between the transmission input terminal 160 and the common terminal 100 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1.
  • FIG. 6F shows pass characteristics of the reception filter 15 between the common terminal 100 and the reception output terminal 150 of the multiplexer 1 according to the embodiment and the multiplexer 500 according to the comparative example 1.
  • the pass characteristics of any of the reception filters 11, 13, and 15 and the transmission filters 12, 14, and 16 are greater than those of the multiplexer 500 according to the first comparative example. It can be seen that the insertion loss in the passband is significantly reduced in the multiplexer 1 according to the example.
  • the insertion loss in the passband is reduced because the impedance of each passband viewed from the common terminal 100 is closer to the reference impedance than the multiplexer 500 according to the comparative example 1. Has been greatly reduced.
  • the acoustic wave filter having the longest wiring distance from the common terminal 100 may have the pass band on the highest frequency side.
  • the reception filter 15 is an LTE band 30 reception filter
  • the transmission filter 16 is an LTE band 30 transmission filter.
  • the reception filter 11 is an LTE band 25 reception filter
  • the transmission filter 12 is an LTE band 25 transmission filter.
  • the reception filter 13 is an LTE band 66 reception filter
  • the transmission filter 14 is an LTE band 66 transmission filter.
  • the reception filter 15 has the longest wiring distance from the common terminal 100, and the pass band is on the highest frequency side.
  • the impedance of the reception filter 15 is most likely to shift to the capacitive side among the six elastic wave filters.
  • a parallel connection type inductor 31 is connected without passing through other connection nodes and other elastic wave filters. For this reason, even when the impedance of the reception filter 15 alone shifts to the most capacitive side, the impedance of the reception filter 15 viewed from the common terminal 100 can be matched with the reference impedance. As a result, the combined impedance of the six acoustic wave filters as viewed from the common terminal 100 can be matched to the reference impedance with higher accuracy.
  • the reception filter 15 is an elastic wave filter having the longest wiring distance from the common terminal 100, but the transmission filter 16 may be an elastic wave filter having the largest wiring distance from the common terminal 100.
  • the pass band of the transmission filter 16 is on the lower frequency side than the pass band of the reception filter 15, but the communication band of the transmission filter 16 and the reception filter 15 is the band 30.
  • the communication band of the transmission filter 12 and the reception filter 11 is a band 25.
  • a communication band of the transmission filter 14 and the reception filter 13 is a band 66. In this case, the communication band of the transmission filter 16 is on the highest frequency side among the three communication bands.
  • the parallel connection type inductor 31 is connected in the vicinity of the transmission filter 16 and the reception filter 15 that are shifted to the capacitive side without passing through other connection nodes and other elastic wave filters.
  • FIG. 7 is a cross-sectional view schematically showing a resonator of each acoustic wave filter constituting the multiplexer 1 according to the embodiment.
  • the reception filters 11, 13, and 15 and the transmission filters 12, 14, and 16 constituting the multiplexer 1 according to the present embodiment are each an elastic wave filter and have one or more elastic wave resonators.
  • the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 of the present embodiment are, for example, ladder-type elastic wave filters configured by a series arm elastic wave resonator and a parallel arm elastic wave resonator. It is. 7A to 7C show a cross-sectional structure of the acoustic wave resonator included in the reception filter 15 among the acoustic wave resonators included in the six acoustic wave filters.
  • the acoustic wave resonator is typically composed of a piezoelectric substrate 250 and an IDT (InterDigital Transducer) electrode 260 as shown in FIG.
  • the IDT electrode 260 is composed of a pair of comb electrodes facing each other, and is formed on the substrate 250. More specifically, each of the pair of comb electrodes includes, for example, a plurality of electrode fingers that are parallel to each other and a bus bar electrode that connects the plurality of electrode fingers.
  • the substrate 250 includes a support substrate 253, an energy confinement layer 252 and a piezoelectric layer 251, and has a structure in which the support substrate 253, the energy confinement layer 252 and the piezoelectric layer 251 are stacked in this order in the z-axis direction. Have.
  • LiTaO 3 piezoelectric single crystal or piezoelectric ceramic is used for the piezoelectric layer 251.
  • the support substrate 253 is a substrate that supports the piezoelectric layer 251, the energy confinement layer 252, and the IDT electrode 260.
  • the energy confinement layer 252 includes one layer or a plurality of layers, and the velocity of the elastic bulk wave propagating through at least one of the layers is larger than the velocity of the elastic wave propagating in the vicinity of the piezoelectric layer 251.
  • it has a laminated structure of a low sound velocity layer 254 and a high sound velocity layer 255.
  • the low sound velocity layer 254 is a film in which the sound velocity of the bulk wave in the low sound velocity layer 254 is lower than the sound velocity of the elastic wave propagating through the piezoelectric layer 251.
  • the high sound velocity layer 255 is a film in which the sound velocity of the bulk wave in the high sound velocity layer 255 is higher than the sound velocity of the elastic wave propagating through the piezoelectric layer 251.
  • the support substrate 253 may be a high sound velocity layer.
  • the energy confinement layer 252 includes, for example, a low acoustic impedance layer 256 having a relatively low acoustic impedance and a high acoustic impedance layer 257 having a relatively high acoustic impedance, as shown in FIG. It is the acoustic impedance layer 258 which has the structure laminated
  • the acoustic wave filter using the piezoelectric substrate 250 has a high dielectric constant of the piezoelectric layer 251 and thus has a capacitive impedance. There is a tendency. Even in this case, the impedance of the reception filter 15 viewed from the common terminal 100 can be brought close to the reference impedance, and the impedance of the multiplexer 1 viewed from the common terminal 100 can be matched with the reference impedance. .
  • the reception filters 11, 13, 15 and the transmission filters 12, 14, 16 constituting the multiplexer 1 according to the present embodiment are, for example, surface acoustic wave (SAW: Surface Acoustic Wave) resonance having the above laminated structure. Consists of children.
  • the six acoustic wave filters are not limited to the surface acoustic wave device described above, and may be a BAW (Bulk Acoustic Wave) device, an FBAR (Film Bulk Acoustic Resonator), or the like. Note that SAW includes not only surface waves but also boundary waves.
  • the multiplexer 1 includes the common terminal 100, the reception filter 15 (first acoustic wave filter) connected to the common terminal 100, and the wiring 21 (the first connection) connecting the common terminal 100 and the reception filter 15.
  • the transmission filter 16 (second elastic wave filter) connected to the connection node n5 on the wiring 21, and the reception filters 11, 13 and the transmission filter 12 connected to the connection nodes n4 to n1 on the wiring 21 , 14 (third elastic wave filter), wiring 22 (second wiring) connecting connection node n5 and transmission filter 16, connection nodes n4 to n1, reception filters 11, 13, and transmission filters 12, 14 Between the wirings 23 to 26 (third wiring) to be connected and the wiring region of the wiring 21 from the connection node n5 to the reception filter 15 and the ground, or the wiring Comprising an inductor 31 connected between the 22 and the ground.
  • the length of the wiring 21 from the common terminal 100 to the connection node n5 is the length of the wiring from the common terminal 100 to the connection node n4, the length of the wiring from the common terminal 100 to the connection node n3, It is longer than both the length of the wiring to the connection node n2 and the length of the wiring from the common terminal 100 to the connection node n1.
  • the common terminal 100 and each elastic wave are compared with the configuration in which the connection node on the wiring 21 is one point.
  • the total length of the wiring connecting the common terminal 100 and each acoustic wave filter can be shortened without being restricted by the position of the filter.
  • the inductor 31 for phase shifting the capacitive impedance of the acoustic wave filter is connected to a wiring region until the reception filter 15 arranged farthest from the common terminal 100 is connected to the transmission filter 16. That is, the inductor 31 is connected not to the position closest to the common terminal 100 but to the wiring region farthest from the common terminal 100. For this reason, the impedance of the reception filter 15 at the connection node n5 is reduced by the inductor 31 without deviating from the reference impedance to the capacitive and low impedance side range by parallel connection with other acoustic wave filters having capacitive impedance. Shifted in the inductive direction in a state close to the reference impedance.
  • the impedance of the reception filter 15 shifts to the capacitive side by parallel connection with other acoustic wave filters, but shifts from the inductive state close to the reference impedance to the capacitive side. It is possible to match the combined impedance of the two acoustic wave filters to the reference impedance.
  • the loss and size reduction of the multiplexer 1 can be realized by the above arrangement of the plurality of connection nodes and the inductor 31.
  • a matching element such as an inductor and a capacitor, and a switch circuit may be connected between each component.
  • the inductor may include a wiring inductor formed by wiring that connects each component.
  • the present invention can be widely used in communication devices such as mobile phones as a low-loss multiplexer that can be applied to multiband and multimode frequency standards.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transceivers (AREA)

Abstract

マルチプレクサ(1)は、共通端子(100)と、共通端子(100)に接続された受信フィルタ(15)と、共通端子(100)と受信フィルタ(15)とを接続する配線(21)と、配線(21)上の接続ノード(n5)に接続された送信フィルタ(16)と、配線(21)上の接続ノード(n4)に接続された受信フィルタ(13)と、接続ノード(n5)と送信フィルタ(16)とを接続する配線(22)と、接続ノード(n4)と受信フィルタ(13)とを接続する配線(23)と、配線(21)のうちの接続ノード(n5)から受信フィルタ(15)までの配線領域とグランドとの間、または、配線(22)とグランドとの間に接続されたインダクタ(31)とを備え、配線(21)において、共通端子(100)から接続ノード(n5)までの長さは、共通端子(100)から接続ノード(n4)までの長さよりも長い。

Description

マルチプレクサ
 本発明は、弾性波フィルタを備えるマルチプレクサに関する。
 近年の移動体通信端末には、一端末で複数の通信バンド(周波数帯域)および複数の無線方式、いわゆるマルチバンド化およびマルチモード化に対応することが要求されている。これに対応すべく、アンテナに接続されるフロントエンド部には、複数の通信バンドの高周波信号を分波/合波する小型のマルチプレクサが配置される。
 特許文献1(図8)には、3つのフィルタ(ローパスフィルタ、バンドパスフィルタ、ハイパスフィルタ)と、共通ポート(共通端子)に並列接続(共通ポートおよびグランドに接続)されたインダクタンス素子と、を備えた複合フィルタ回路(マルチプレクサ)が開示されている。
特開2006-345027号公報
 特許文献1に記載されたマルチプレクサでは、共通端子に並列接続されたインダクタンス素子は、共通端子に接続される外部回路(例えばアンテナ)と上記3つのフィルタとのインピーダンス整合がとるために設けられる。
 しかしながら、上記マルチプレクサの回路接続を実現すべく、共通端子に上記3つのフィルタよりも近接させて上記インダクタンス素子を接続した場合、外部回路(例えばアンテナ)と上記3つのフィルタとのインピーダンス整合は精度よくとれない。具体的には、上記インダクタンス素子により上記3つのフィルタの合成インピーダンスを誘導性側にシフトさせることができるので、フィルタ単体のインピーダンスは、予め容量性となるように設計される。容量性インピーダンスを有する各フィルタとしては、例えば、弾性波フィルタが使用される。この場合、フィルタ単体のインピーダンスと比較して、より容量性側かつ低インピーダンス側にシフトする上記3つのフィルタの合成インピーダンスを、上記インダクタンス素子により誘導性側にシフトさせることはできるが、基準インピーダンスに近づけることは困難である。
 そこで、本発明は、上記課題を解決するためになされたものであって、3つ以上の弾性波フィルタが共通端子に接続されたマルチプレクサであって、当該共通端子に接続される外部回路とのインピーダンス整合を精度よくとることが可能なマルチプレクサを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、共通端子と、前記共通端子に接続された第1弾性波フィルタと、前記共通端子と前記第1弾性波フィルタとを接続する第1配線と、前記第1配線上の第1接続ノードに接続された第2弾性波フィルタと、前記第1配線上の第2接続ノードに接続された第3弾性波フィルタと、前記第1接続ノードと前記第2弾性波フィルタとを接続する第2配線と、前記第2接続ノードと前記第3弾性波フィルタとを接続する第3配線と、前記第1配線のうち前記第1接続ノードから前記第1弾性波フィルタまでの配線領域とグランドとの間、または、前記第2配線とグランドとの間に接続されたインダクタンス素子と、を備え、前記第1配線において、前記共通端子から前記第1接続ノードまでの長さは、前記共通端子から前記第2接続ノードまでの長さよりも長い。
 共通端子に接続される外部回路とのインピーダンス整合を高精度にとれるマルチプレクサを提供することが可能となる。
図1Aは、実施例に係るマルチプレクサを構成する回路素子の配置構成図である。 図1Bは、実施例に係るマルチプレクサの平面構成図である。 図2Aは、比較例1に係るマルチプレクサを構成する回路素子の配置構成図である。 図2Bは、比較例1に係るマルチプレクサの平面構成図である。 図3Aは、比較例2に係るマルチプレクサを構成する回路素子の配置構成図である。 図3Bは、比較例2に係るマルチプレクサの平面構成図である。 図4Aは、実施例に係るマルチプレクサのインピーダンス特性を表すスミスチャートである。 図4Bは、比較例1に係るマルチプレクサのインピーダンス特性を表すスミスチャートである。 図5は、実施例および比較例1に係るマルチプレクサのインピーダンスを通過帯域ごとに比較したスミスチャートである。 図6は、実施例および比較例1に係る6つのフィルタの通過特性を比較したグラフである。 図7は、実施例に係るマルチプレクサを構成する弾性波フィルタの共振子を模式的に表す断面図である。
 以下、本発明の実施の形態について、実施例および図面を用いて詳細に説明する。なお、以下で説明する実施例は、いずれも包括的または具体的な例を示すものである。以下の実施例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態)
 [1.マルチプレクサの配置構成]
 図1Aは、実施例に係るマルチプレクサ1を構成する回路素子の配置構成図である。同図に示すように、マルチプレクサ1は、共通端子100と、受信フィルタ11、13および15と、送信フィルタ12、14および16と、インダクタ31および32と、受信出力端子110、130および150と、送信入力端子120、140および160と、を備える。
 マルチプレクサ1は、共通端子100において、例えばアンテナ素子などの外部回路と接続される。また、受信出力端子110、130および150は、例えば、受信増幅回路と接続される。また、送信入力端子120、140および160は、例えば、送信増幅回路と接続される。
 受信フィルタ11は、入力端がインダクタ32を介して接続ノードn1(第2接続ノード)に接続され、出力端が受信出力端子110に接続され、通信バンドAの受信帯域を通過帯域とする第3弾性波フィルタである。通信バンドAの受信帯域は、例えば、LTE(Long Term Evolution)のバンド25の受信帯域(1930-1995MHz)が適用される。
 送信フィルタ12は、出力端が接続ノードn3(第2接続ノード)に接続され、入力端が送信入力端子120に接続され、通信バンドAの送信帯域を通過帯域とする第3弾性波フィルタである。通信バンドAの送信帯域は、例えば、LTEのバンド25の送信帯域(1850-1915MHz)が適用される。
 受信フィルタ13は、入力端が接続ノードn4(第2接続ノード)に接続され、出力端が受信出力端子130に接続され、通信バンドBの受信帯域を通過帯域とする第3弾性波フィルタである。通信バンドBの受信帯域は、例えば、LTEのバンド66の受信帯域(2110-2200MHz)が適用される。
 送信フィルタ14は、出力端が接続ノードn2(第2接続ノード)に接続され、入力端が送信入力端子140に接続され、通信バンドBの送信帯域を通過帯域とする第3弾性波フィルタである。通信バンドBの送信帯域には、例えば、LTEのバンド66の送信帯域(1710-1780MHz)が適用される。
 受信フィルタ15は、入力端が接続ノードn5(第1接続ノード)に接続され、出力端が受信出力端子150に接続され、通信バンドCの受信帯域を通過帯域とする第1弾性波フィルタである。通信バンドCの受信帯域には、例えば、LTEのバンド30の受信帯域(2350-2360MHz)が適用される。
 送信フィルタ16は、出力端が接続ノードn5(第1接続ノード)に接続され、入力端が送信入力端子160に接続され、通信バンドCの送信帯域を通過帯域とする第2弾性波フィルタである。通信バンドCの送信帯域には、例えば、LTEのバンド30の送信帯域(2305-2315MHz)が適用される。
 上記6つの弾性波フィルタの詳細な構造については後述する。
 接続ノードn1、n2、n3、n4およびn5は、全て、共通端子100と各弾性波フィルタとを結ぶ配線上のノードである。
 インダクタ31は、接続ノードn5とグランドとの間に接続されたインダクタンス素子であり、受信フィルタ11、13、15および送信フィルタ12、14、16と、共通端子100に接続された外部回路とのインピーダンス整合をとるためのインピーダンス整合素子である。
 インダクタ32は、接続ノードn1と受信フィルタ11の入力端との間に直列接続されたインダクタンス素子であり、接続ノードn1から受信フィルタ11を見た場合のインピーダンスの位相を調整するための位相調整素子である。
 なお、本実施の形態に係るマルチプレクサにおいて、インダクタ32は必須の構成要素ではない。
 また、本実施の形態に係るマルチプレクサにおいて、6つの弾性波フィルタを有さなくてもよく、3以上の弾性波フィルタを有していればよい。例えば、第1弾性波フィルタである受信フィルタ15と、第2弾性波フィルタである送信フィルタ16と、第3弾性波フィルタである受信フィルタ11、13、および送信フィルタ12、14のうち少なくとも1つと、を有していればよい。さらに、本実施の形態に係るマルチプレクサを構成する3以上の弾性波フィルタは、送信フィルタおよび受信フィルタのいずれであってもよい。
 本実施例に係るマルチプレクサ1では、受信フィルタ11、13、15、送信フィルタ12、14および16の6つの弾性波フィルタが、共通端子100に電気的に接続されている回路構成を有している。さらに、本実施例に係るマルチプレクサ1では、上記回路構成を実現するための各回路素子の配置構成が、従来にない構成となっている。以下では、本実施例に係るマルチプレクサ1を構成する各回路素子の配置構成について詳細に説明する。
 図1Bは、実施例に係るマルチプレクサ1の平面構成図である。同図に示すように、本実施例に係るマルチプレクサ1は、図1Aに示された各回路素子に加えて、さらに、共通端子100と各弾性波フィルタとを接続する接続配線を有している。上記接続配線は、配線21、22、23、24、25および26を含む。
 配線21は、共通端子100と受信フィルタ15とを接続する第1配線である。配線22は、接続ノードn5と送信フィルタ16とを接続する第2配線である。配線23は、接続ノードn4と受信フィルタ13とを接続する第3配線である。配線24は、接続ノードn3と送信フィルタ12とを接続する第3配線である。配線25は、接続ノードn2と送信フィルタ14とを接続する第3配線である。配線26は、接続ノードn1と受信フィルタ11とを接続する第3配線である。
 ここで、共通端子100から接続ノードn5までの配線の長さは、共通端子100から接続ノードn4までの配線の長さ、共通端子100から接続ノードn3までの配線の長さ、共通端子100から接続ノードn2までの配線の長さ、および、共通端子100から接続ノードn1までの配線の長さのいずれよりも長い。また、インダクタ31は、他の接続ノードを介することなく、接続ノードn5に接続されている。つまり、インダクタ31は、接続ノードn1~n5のうち、共通端子100と最も配線距離の大きい接続ノードn5に接続されている。
 実施例に係るマルチプレクサ1の上記配置構成によれば、共通端子100に接続される外部回路とのインピーダンス整合を高精度にとることが可能となる。
 なお、インダクタ31は、接続ノードn5とグランドとの間に接続されるだけでなく、接続ノードn5から受信フィルタ15の入力端までの配線、および、接続ノードn5から送信フィルタ16の出力端までの配線、のいずれかとグランドとの間に接続されていればよい。
 また、本実施例に係るマルチプレクサ1は、図1Bに示すように、さらに、実装基板50を有していてもよい。実装基板50には、共通端子100、受信フィルタ11、13、15、送信フィルタ12、14、16が実装されている。さらに、実装基板50には、配線21~26が形成されている。インダクタ31および32は、それぞれ、実装基板50上に表面実装されたチップ状のインダクタであってもよく、または、実装基板50内のコイルパターンで形成されたインダクタであってもよい。
 実装基板50を有する上記構成によれば、各弾性波フィルタを実装する実装基板50に配線21~26が形成され、また、インダクタ31が実装されているので、マルチプレクサ1を小型のモジュールとすることが可能となる。
 なお、実装基板50は、複数の誘電体層を有する多層基板であってもよい。高周波信号を低損失で伝搬させる基板としては、誘電損失の小さい低誘電率のものが使用される。しかし、低誘電率の多層基板の場合、上記配線21~26による各弾性波フィルタのインピーダンスの位相変化が大きくなる。この場合であっても、本実施例に係るマルチプレクサ1の上記構成によれば、共通端子100から最も配線距離の大きい受信フィルタ15に近接して、他の接続ノードおよび他の弾性波フィルタを介さずに、接続ノードn5にインダクタ31が接続されている。これにより、実装基板50の誘電損失を抑制しつつ、共通端子100から見た受信フィルタ11、13、15、送信フィルタ12、14、16のインピーダンスを基準インピーダンス(例えば、50Ω)に合わせることが可能となる。
 実施例に係るマルチプレクサ1において、実装基板50を平面視した場合(z軸方向から見た場合)、例えば、各弾性波フィルタのサイズは、それぞれ、0.8mm×1.1mmとなり、インダクタ31および32のサイズは、それぞれ、0.4mm×0.2mmとなり、マルチプレクサ1のサイズは、4.8mm×3.5mmとなる。なお、上記サイズは、各弾性波フィルタとして、上述したLTEのバンド25、66、30を適用し、実装基板50として複数の誘電体層を有する多層基板を適用した場合のものである。
 [2.マルチプレクサの小型化およびインピーダンス整合]
 以下では、本実施例に係るマルチプレクサ1が、従来のマルチプレクサと比較して、小型化およびインピーダンス整合の点で優れていることを説明する。まず、従来のマルチプレクサの配置構成である比較例1および比較例2に係るマルチプレクサの配置構成について説明する。
 図2Aは、比較例1に係るマルチプレクサ500を構成する回路素子の配置構成図である。同図に示すように、マルチプレクサ500は、共通端子100と、受信フィルタ11、13および15と、送信フィルタ12、14および16と、インダクタ33および34と、受信出力端子110、130および150と、送信入力端子120、140および160と、を備える。比較例1に係るマルチプレクサ500は、実施例に係るマルチプレクサ1と比較して、インダクタンス素子の配置構成が異なる。比較例1に係るマルチプレクサ500について、実施例に係るマルチプレクサ1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 インダクタ33は、接続ノードn1とグランドとの間に接続されたインダクタンス素子であり、受信フィルタ11、13、15および送信フィルタ12、14、16と、共通端子100に接続された外部回路とのインピーダンス整合をとるためのインピーダンス整合素子である。
 インダクタ34は、接続ノードn1と受信フィルタ11の入力端との間に直列接続されたインダクタンス素子であり、実施例に係るインダクタ32と同様の機能を有する。
 図2Bは、比較例1に係るマルチプレクサ500の平面構成図である。同図に示すように、比較例1に係るマルチプレクサ500は、図2Aに示された各回路素子に加えて、さらに、共通端子100と各弾性波フィルタとを接続する接続配線を有している。上記接続配線は、配線521、522、523、524、525および526を含む。
 配線521は、共通端子100と受信フィルタ15とを接続する第1配線である。配線522は、接続ノードn5と送信フィルタ16とを接続する第2配線である。配線523は、接続ノードn4と受信フィルタ13とを接続する第3配線である。配線524は、接続ノードn3と送信フィルタ12とを接続する第3配線である。配線525は、接続ノードn2と送信フィルタ14とを接続する第3配線である。配線526は、接続ノードn1と受信フィルタ11とを接続する第3配線である。
 ここで、共通端子100から接続ノードn1までの配線の長さは、共通端子100から接続ノードn5までの配線の長さ、共通端子100から接続ノードn4までの配線の長さ、共通端子100から接続ノードn3までの配線の長さ、共通端子100から接続ノードn2までの配線の長さのいずれよりも短い。また、インダクタ33は、他の接続ノードを介することなく、接続ノードn1に接続されている。つまり、インダクタ33は、接続ノードn1~n5のうち、共通端子100と最も配線距離の小さい接続ノードn1に接続されている。
 比較例1に係るマルチプレクサ500の上記配置構成によれば、共通端子100に接続される外部回路とのインピーダンス整合を精度よくとることが困難である。
 比較例1に係るマルチプレクサ500において、実装基板50を平面視した場合(z軸方向から見た場合)、例えば、各弾性波フィルタのサイズは、それぞれ、0.8mm×1.1mmとなり、インダクタ31および32のサイズは、それぞれ、0.4mm×0.2mmとなり、マルチプレクサ1のサイズは、4.8mm×3.5mmとなり、実施例に係るマルチプレクサ1と同じサイズとなる。なお、上記サイズは、各弾性波フィルタとして上述したLTEのバンド25、66、30を適用し、実装基板50として複数の誘電体層を有する多層基板を適用した場合のものである。
 図3Aは、比較例2に係るマルチプレクサ600を構成する回路素子の配置構成図である。同図に示すように、マルチプレクサ600は、共通端子100と、受信フィルタ11、13および15と、送信フィルタ12、14および16と、インダクタ35および36と、受信出力端子110、130および150と、送信入力端子120、140および160と、を備える。比較例2に係るマルチプレクサ600は、実施例に係るマルチプレクサ1と比較して、インダクタンス素子の配置構成および配線構成が異なる。比較例2に係るマルチプレクサ600について、実施例に係るマルチプレクサ1と同じ構成については説明を省略し、異なる構成を中心に説明する。
 インダクタ35は、接続ノードn1とグランドとの間に接続されたインダクタンス素子であり、受信フィルタ11、13、15および送信フィルタ12、14、16と、共通端子100に接続された外部回路とのインピーダンス整合をとるためのインピーダンス整合素子である。
 インダクタ36は、接続ノードn1と受信フィルタ11の入力端との間に直列接続されたインダクタンス素子であり、実施例に係るインダクタ32と同様の機能を有する。
 図3Bは、比較例2に係るマルチプレクサ600の平面構成図である。同図に示すように、比較例2に係るマルチプレクサ600は、図3Aに示された各回路素子に加えて、さらに、共通端子100と各弾性波フィルタとを接続する接続配線を有している。上記接続配線は、配線621、622、623、624、625および626を含む。
 配線621は、共通端子100と受信フィルタ15とを接続する。配線622は、接続ノードn1と送信フィルタ16とを接続する。配線623は、接続ノードn1と受信フィルタ13とを接続する。配線624は、接続ノードn1と送信フィルタ12とを接続する。配線625は、接続ノードn1と送信フィルタ14とを接続する。配線626は、接続ノードn1と受信フィルタ11とを接続する。
 ここで、比較例2に係るマルチプレクサ600では、共通端子100と受信フィルタ15とを接続する配線621上には、1つの接続ノードn1しかなく、6つの弾性波フィルタの全てが、他の接続ノードを介することなく接続ノードn1に接続されている。
 比較例2に係るマルチプレクサ600の上記配置構成によれば、配線621上に1つの接続ノードn1しか存在しないので、例えば、共通端子100が6つの弾性波フィルタが配置された領域の外周部に配置された場合、および、各弾性波フィルタが対称配置されない場合などにおいて、配線621上に複数の接続ノードが存在する配置構成と比較して、共通端子100と各弾性波フィルタとを結ぶ配線の合計長さが長くなってしまう。このため、マルチプレクサ600の伝搬損失が大きくなり、また、小型化に不利となる。
 比較例2に係るマルチプレクサ600において、実装基板50を平面視した場合(z軸方向から見た場合)、例えば、各弾性波フィルタのサイズは、それぞれ、0.8mm×1.1mmとなり、インダクタ35および36のサイズは、それぞれ、0.4mm×0.2mmとなり、マルチプレクサ1のサイズは、4.8mm×4.0mmとなり、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500と比較して大きくなってしまう。なお、上記サイズは、各弾性波フィルタとして上述したLTEのバンド25、66、30を適用し、実装基板50として複数の誘電体層を有する多層基板を適用した場合のものである。
 つまり、実施例および比較例1のように、共通端子100と各弾性波フィルタとを接続する配線上に複数の接続ノードを設ける構成のほうが、比較例2のように上記配線上に単一の接続ノードを設ける構成に比べ、上記配線のレイアウト制約を受けにくくなり、小型化に有利である。
 なお、これに対し、別の比較例として、複数の弾性波フィルタが共通端子100に接続された回路構成を実現すべく、各弾性波フィルタと共通端子100とを接続する配線を弾性波フィルタごとに設けた場合、共通端子100の位置により当該配線の合計長さが長くなり、マルチプレクサの伝搬損失が大きくなり、また、小型化に不利となる。
 上述したように、3以上の弾性波フィルタが共通端子に接続された構成を有するマルチプレクサにおいて、実施例および比較例1のように、共通端子100と各弾性波フィルタとを接続する配線上に複数の接続ノードを設けることにより、当該配線を効率良く引き回すことができ、小型化に有利となる。しかしながら、接続ノードが複数存在する場合、比較例1の配線構成の場合、高周波伝搬特性が悪化することがわかった。以下、インピーダンス整合の観点から、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の作用を比較して、高周波伝搬特性の差異が発生することを説明する。
 図4Aは、実施例に係るマルチプレクサ1のインピーダンス特性を表すスミスチャートである。図4Bは、比較例に係るマルチプレクサ500のインピーダンス特性を表すスミスチャートである。より具体的には、図4Aには、実施例に係るマルチプレクサ1において、各接続ノードから弾性波フィルタを見た場合の通過帯域におけるインピーダンスが示されている。また、図4Bには、比較例1に係るマルチプレクサ500において、各接続ノードから弾性波フィルタを見た場合の通過帯域におけるインピーダンスが示されている。
 図4Aおよび図4Bの双方において、共通端子100から最も配線距離の大きい位置にある受信フィルタ15から、順次、各接続ノード(n5→n1)を経由してインピーダンスが変化し、最終的に共通端子100にて各弾性波フィルタの合成インピーダンスが基準インピーダンスに整合されていく遷移状態が示されている。なお、受信フィルタ11、13、15、送信フィルタ12、14、16のそれぞれは、容量性インピーダンスを有する弾性波フィルタであり、これらの容量性インピーダンスを誘導性側にシフトするために、インダクタ31または33が付加されている。
 まず、比較例1に係るマルチプレクサ500では、図4Bに示すように、共通端子100からの配線距離が最も大きい位置にある受信フィルタ15を単体で見た場合(図4Bのx2から受信フィルタ15を見た場合)の通過帯域(C-Rx)におけるインピーダンスは、容量性領域にある(図4BのC-Rx単体)。
 次に、図4Bに示すように、接続ノードn5からn1へと、共通端子100に近づくにつれ、受信フィルタ15に、他の弾性波フィルタである送信フィルタ16、受信フィルタ13、送信フィルタ12、14、受信フィルタ11が並列接続される。よって、上記6つの弾性波フィルタの合成インピーダンスは、受信フィルタ15単体のインピーダンスに対して、より容量性側かつ低インピーダンス側へシフトする(図4Bのn1(+他フィルタ接続))。なお、受信フィルタ15に、受信フィルタ11、13、送信フィルタ12、14、16が並列接続される間、受信フィルタ15は接続ノードn5からn1を経由することになる。このため、(インダクタ31が接続されていない状態における)接続ノードn1から見た6つの弾性波フィルタの合成インピーダンス(図4Bのz2から並列接続された6つの弾性波フィルタを見たインピーダンス)は、配線521により、上記6つの弾性波フィルタの合成インピーダンス(図4Bのn1(+他フィルタ接続))に対して、等レジスタンス円を時計回りにシフトする(図4Bのn1(+他フィルタ接続+配線))。
 次に、図4Bに示すように、接続ノードn1において、インダクタ31により、接続ノードn1から見た上記6つの弾性波フィルタの合成インピーダンス(図4Bのy2から並列接続された6つの弾性波フィルタを見たインピーダンス)は、等コンダクタンス円上を反時計回りにシフトし、誘導性領域に位置する(図4Bのn1(+他フィルタ接続+配線+パラレルL))。ただし、このy2において、上記6つの弾性波フィルタの合成インピーダンスがインダクタ31により誘導性領域に配置されても、z2におけるインダクタ31の付加前における上記6つの弾性波フィルタの合成インピーダンスが、基準インピーダンスから大幅に容量性インピーダンスかつ低インピーダンスにずれてしまっている。このため、インダクタ31の付加後のy2における上記6つの弾性波フィルタの合成インピーダンスは、インダクタ31により等コンダクタンス円上を反時計回りにシフトしても、基準インピーダンスから低インピーダンス側に大幅にずれた誘導性領域に位置することとなる。この結果、共通端子100から並列接続された上記6つの弾性波フィルタを見た合成インピーダンス(つまり、マルチプレクサ500のインピーダンス)は、基準インピーダンスから低インピーダンス側に大きく外れた状態となってしまう。
 これに対して、実施例に係るマルチプレクサ1では、図4Aに示すように、共通端子100からの配線距離が最も大きい位置にある受信フィルタ15を単体で見た場合(図4Aのx1から受信フィルタ15を見た場合)の通過帯域(C-Rx)におけるインピーダンスは、比較例1に係るマルチプレクサ500と同様に、容量性領域にある(図4AのC-Rx単体)。
 次に、図4Aに示すように、接続ノードn5において、インダクタ31により、接続ノードn5から見た受信フィルタ15のインピーダンス(図4Aのy1から受信フィルタ15を見たインピーダンス)は、等コンダクタンス円上を反時計回りにシフトし、誘導性領域に位置する(図4Aのn5(+パラレルL))。つまり、このy1(接続ノードn5)において、受信フィルタ11、13、送信フィルタ12、14、16が並列接続される前の受信フィルタ15のインピーダンスがインダクタ31により誘導性領域に配置される。このとき、インダクタ31の付加前のx1における受信フィルタ15のインピーダンスは、並列接続された6つの弾性波フィルタの合成インピーダンスと比較して、基準インピーダンスに近い容量性インピーダンスとなっている。このため、インダクタ31が付加された後のy1(接続ノードn5)における受信フィルタ15のインピーダンスは、インダクタ31により等コンダクタンス円上を反時計回りにシフトしても、基準インピーダンスに近い状態で誘導性領域に位置することとなる。
 次に、図4Aに示すように、接続ノードn1から見た上記6つの弾性波フィルタの合成インピーダンス(図4Aのz1から並列接続された上記6つの弾性波フィルタを見たインピーダンス)は、等コンダクタンス円上を反時計回りにシフトしつつ、配線21により等レジスタンス円を時計回りにシフトする。しかしながら、上記シフト前のy1(接続ノードn5)における受信フィルタ15のインピーダンスが、基準インピーダンスに近い誘導性領域に位置しているため、上記シフト量は小さくなる。この結果、共通端子100から並列接続された上記6つの弾性波フィルタを見た合成インピーダンス(つまり、マルチプレクサ1のインピーダンス)は、基準インピーダンスに精度よく整合された状態となる。
 すなわち、本実施例に係るマルチプレクサ1では、容量性インピーダンスを有する6つの弾性波フィルタの合成インピーダンスを誘導性領域へとシフトさせる並列接続型のインダクタを、複数の接続ノードのうち、6つの弾性波フィルタが共通端子100で共通化される前の(共通端子100から最も遠い)接続ノードに接続する。共通端子100から最も配線距離の大きい位置に接続された受信フィルタ15に対して、その他の弾性波フィルタが接続される前にインダクタ31を接続し、受信フィルタ15のインピーダンスを、基準インピーダンスに近い誘導性領域にシフトさせることで、その後の配線およびその他の弾性波フィルタ付加によるインピーダンス変化の影響が最小限に抑えられる。これにより、マルチプレクサ1のインピーダンスを、低インピーダンス側に外れないようにすることが可能となる。
 つまり、並列接続型のインダクタ31を、接続ノードn1~n5のうち、共通端子100から最も配線距離の大きい接続ノードn5から受信フィルタ15の入力端までの配線21とグランドとの間、または、接続ノードn5から送信フィルタ16の出力端までの配線22とグランドとの間に接続する。言い換えると、並列接続型のインダクタ31を、共通端子100から最も配線距離の大きい接続ノードn5から、他の接続ノードを介さずに、グランドとの間に接続する。
 図5は、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500のインピーダンスを通過帯域ごとに比較したスミスチャートである。より具体的には、図5の(a)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド25の送信帯域(A-Tx:1850-1915MHz)におけるインピーダンスが示されている。また、図5の(b)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド25の受信帯域(A-Rx:1930-1995MHz)におけるインピーダンスが示されている。また、図5の(c)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド66の送信帯域(B-Tx:1710-1780MHz)におけるインピーダンスが示されている。また、図5の(d)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド66の受信帯域(B-Rx:2110-2200MHz)におけるインピーダンスが示されている。また、図5の(e)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド30の送信帯域(C-Tx:2305-2315MHz)におけるインピーダンスが示されている。また、図5の(f)には、共通端子100から実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500を見た場合の、バンド30の受信帯域(C-Rx:2350-2360MHz)におけるインピーダンスが示されている。
 図5の(a)~(f)に示すように、受信フィルタ11、13、15、および、送信フィルタ12、14、16のいずれの通過帯域においても、比較例1に係るマルチプレクサ500よりも実施例に係るマルチプレクサ1のほうが、共通端子100から見たインピーダンスは、基準インピーダンスに近くなっていることが解る。
 図6は、実施例および比較例1に係るマルチプレクサを構成する6つの弾性波フィルタの通過特性を比較したグラフである。より具体的には、図6の(a)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、送信入力端子120-共通端子100間における送信フィルタ12の通過特性が示されている。また、図6の(b)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、共通端子100-受信出力端子110間における受信フィルタ11の通過特性が示されている。また、図6の(c)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、送信入力端子140-共通端子100間における送信フィルタ14の通過特性が示されている。また、図6の(d)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、共通端子100-受信出力端子130間における受信フィルタ13の通過特性が示されている。また、図6の(e)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、送信入力端子160-共通端子100間における送信フィルタ16の通過特性が示されている。また、図6の(f)には、実施例に係るマルチプレクサ1および比較例1に係るマルチプレクサ500の、共通端子100-受信出力端子150間における受信フィルタ15の通過特性が示されている。
 図6の(a)~(f)に示すように、受信フィルタ11、13、15、および、送信フィルタ12、14、16のいずれの通過特性においても、比較例1に係るマルチプレクサ500よりも実施例に係るマルチプレクサ1のほうが、通過帯域における挿入損失が大幅に低減されていることが解る。
 つまり、本実施例に係るマルチプレクサ1は、比較例1に係るマルチプレクサ500と比較して、共通端子100から見た各通過帯域のインピーダンスが基準インピーダンスに近くなっていることにより、通過帯域における挿入損失が大幅に低減されている。
 なお、実施例に係るマルチプレクサ1を構成する6つの弾性波フィルタのうち、共通端子100からの配線距離の最も大きい弾性波フィルタは、通過帯域が最も高周波側にあってもよい。本実施例では、受信フィルタ15がLTEのバンド30の受信フィルタであり、送信フィルタ16がLTEのバンド30の送信フィルタである。また、受信フィルタ11がLTEのバンド25の受信フィルタであり、送信フィルタ12がLTEのバンド25の送信フィルタである。また、受信フィルタ13がLTEのバンド66の受信フィルタであり、送信フィルタ14がLTEのバンド66の送信フィルタである。この場合には、受信フィルタ15が共通端子100からの配線距離の最も大きく、かつ、通過帯域が最も高周波側にある。
 これによれば、受信フィルタ15の通過帯域の周波数が最も高いことから、受信フィルタ15のインピーダンスは、6つの弾性波フィルタのなかで、最も容量性側にシフトする可能性が高い。この受信フィルタ15に近接して、他の接続ノードおよび他の弾性波フィルタを介さずに、並列接続型のインダクタ31が接続されている。このため、受信フィルタ15単体のインピーダンスが最も容量性側にシフトする場合であっても、共通端子100から見た受信フィルタ15のインピーダンスを基準インピーダンスに合わせることが可能となる。これにより、共通端子100から見た上記6つの弾性波フィルタの合成インピーダンスを、より高精度に基準インピーダンスに合わせることが可能となる。
 なお、本実施例では、受信フィルタ15が共通端子100からの配線距離の最も大きい弾性波フィルタとしたが、送信フィルタ16を、共通端子100からの配線距離の最も大きい弾性波フィルタとしてもよい。送信フィルタ16の通過帯域は、厳密には、受信フィルタ15の通過帯域よりも低周波側にあるが、送信フィルタ16および受信フィルタ15の通信バンドは、バンド30である。また、送信フィルタ12および受信フィルタ11の通信バンドは、バンド25である。また、送信フィルタ14および受信フィルタ13の通信バンドは、バンド66である。この場合には、送信フィルタ16の通信バンドは、3つの通信バンドのうち最も高周波側にある。この場合であっても、より容量性側にシフトする送信フィルタ16および受信フィルタ15に近接して、他の接続ノードおよび他の弾性波フィルタを介さずに、並列接続型のインダクタ31が接続される。これにより、共通端子100から見た上記6つの弾性波フィルタの合成インピーダンスを、より高精度に基準インピーダンスに合わせることが可能となる。
 [3.弾性波フィルタの構造]
 図7は、実施例に係るマルチプレクサ1を構成する各弾性波フィルタの共振子を模式的に表す断面図である。
 本実施例に係るマルチプレクサ1を構成する受信フィルタ11、13、15、および、送信フィルタ12、14、16は、それぞれ、弾性波フィルタであり、1以上の弾性波共振子を有している。本実施例の受信フィルタ11、13、15、および、送信フィルタ12、14、16は、例えば、直列腕の弾性波共振子および並列腕の弾性波共振子で構成されたラダー型の弾性波フィルタである。図7の(a)~(c)には、上記6つの弾性波フィルタが有する弾性波共振子のうち、受信フィルタ15が有する弾性波共振子の断面構造が示されている。上記弾性波共振子は、典型的には、図7の(a)に示すように、圧電性を有する基板250と、IDT(InterDigital Transducer)電極260とで構成されている。
 IDT電極260は、互いに対向する一対の櫛形電極で構成され、基板250上に形成される。より具体的には、上記一対の櫛形電極のそれぞれは、例えば、互いに平行な複数の電極指と、当該複数の電極指を接続するバスバー電極とで構成されている。
 基板250は、支持基板253と、エネルギー閉じ込め層252と、圧電体層251とを備え、支持基板253、エネルギー閉じ込め層252、および圧電体層251がこの順でz軸方向に積層された構造を有している。
 圧電体層251は、例えば、LiTaO圧電単結晶または圧電セラミックスが用いられる。
 支持基板253は、圧電体層251、エネルギー閉じ込め層252、およびIDT電極260を支持する基板である。
 エネルギー閉じ込め層252は、1層または複数の層からなり、その少なくとも1つの層を伝搬する弾性バルク波の速度は、圧電体層251近傍を伝搬する弾性波の速度よりも大きい。例えば、図7の(b)に示すように、低音速層254と、高音速層255との積層構造となっている。低音速層254は、圧電体層251を伝搬する弾性波の音速よりも、低音速層254中のバルク波の音速が低速となる膜である。高音速層255は、圧電体層251を伝搬する弾性波の音速よりも、高音速層255中のバルク波の音速が高速となる膜である。なお、支持基板253を高音速層としてもよい。
 また、エネルギー閉じ込め層252は、例えば、図7の(c)に示すように、音響インピーダンスが相対的に低い低音響インピーダンス層256と、音響インピーダンスが相対的に高い高音響インピーダンス層257とが、交互に積層された構成を有する音響インピーダンス層258である。
 実施例に係るマルチプレクサ1を構成する弾性波フィルタの上記構成によれば、圧電性を有する基板250を用いた弾性波フィルタは、圧電体層251の誘電率が高いため、インピーダンスが容量性となる傾向にある。この場合であっても、共通端子100から見た受信フィルタ15のインピーダンスを基準インピーダンスに近づけることが可能であり、共通端子100から見たマルチプレクサ1のインピーダンスを基準インピーダンスに整合させることが可能となる。
 なお、本実施例に係るマルチプレクサ1を構成する受信フィルタ11、13、15、および、送信フィルタ12、14、16は、例えば、上記の積層構造を有する弾性表面波(SAW:Surface Acoustic Wave)共振子で構成される。なお、上記6つの弾性波フィルタは、上述した弾性表面波デバイスに限定されず、BAW(Bulk Acoustic Wave)デバイス、もしくは、FBAR(Film Bulk Acoustic Resonator)等であってもよい。なお、SAWには、表面波だけでなく境界波も含まれる。
 (まとめ)
 以上、本実施例に係るマルチプレクサ1は、共通端子100と、共通端子100に接続された受信フィルタ15(第1弾性波フィルタ)と、共通端子100と受信フィルタ15とを接続する配線21(第1配線)と、配線21上の接続ノードn5に接続された送信フィルタ16(第2弾性波フィルタ)と、配線21上の接続ノードn4~n1に接続された受信フィルタ11、13および送信フィルタ12、14(第3弾性波フィルタ)と、接続ノードn5と送信フィルタ16とを接続する配線22(第2配線)と、接続ノードn4~n1と受信フィルタ11、13および送信フィルタ12、14とを接続する配線23~26(第3配線)と、配線21のうち接続ノードn5から受信フィルタ15までの配線領域とグランドとの間、または、配線22とグランドとの間に接続されたインダクタ31とを備える。また、共通端子100から接続ノードn5までの配線21の長さは、共通端子100から接続ノードn4までの配線の長さ、共通端子100から接続ノードn3までの配線の長さ、共通端子100から接続ノードn2までの配線の長さ、および、共通端子100から接続ノードn1までの配線の長さのいずれよりも長い。
 実施例に係るマルチプレクサ1の上記配置構成によれば、配線21上の接続ノードが複数存在するので、配線21上の接続ノードが1点である構成と比較して、共通端子100および各弾性波フィルタの配置位置の制約を受けることなく、共通端子100と各弾性波フィルタとを結ぶ配線の合計長さを短くできる。
 また、弾性波フィルタの容量性インピーダンスを位相シフトするためのインダクタ31が、共通端子100から最も遠く配置された受信フィルタ15が送信フィルタ16と接続されるまでの配線領域に接続される。つまり、インダクタ31が、共通端子100に最近接する位置ではなく、共通端子100から最も離れた配線領域に接続される。このため、接続ノードn5における受信フィルタ15のインピーダンスは、容量性インピーダンスを有するその他の弾性波フィルタとの並列接続により基準インピーダンスから容量性かつ低インピーダンス側の範囲へ逸脱することなく、インダクタ31により、基準インピーダンスに近い状態で誘導性方向へシフトされる。その後、受信フィルタ15のインピーダンスは、その他の弾性波フィルタとの並列接続により容量性側へシフトするが、基準インピーダンスに近い誘導性状態から容量性側へシフトするので、共通端子100から見た6つの弾性波フィルタの合成インピーダンスを基準インピーダンスに合わせることが可能となる。
 よって、複数の接続ノードおよびインダクタ31の上記配置により、マルチプレクサ1の低損失化および小型化を実現できる。
 (その他の実施の形態)
 以上、本発明に係るマルチプレクサについて、実施例を挙げて説明したが、本発明は、上記実施例に限定されるものではない。上記実施例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係るマルチプレクサを内蔵した各種機器も本発明に含まれる。
 また、例えば、実施例に係るマルチプレクサにおいて、各構成要素の間に、インダクタおよびキャパシタなどの整合素子、ならびにスイッチ回路が接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
 本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できる低損失のマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
 1、500、600  マルチプレクサ
 11、13、15  受信フィルタ
 12、14、16  送信フィルタ
 21、22、23、24、25、26、521、522、523、524、525、526、621、622、623、624、625、626  配線
 31、32、33、34、35、36  インダクタ
 50  実装基板
 100  共通端子
 110、130、150  受信出力端子
 120、140、160  送信入力端子
 250  基板
 251  圧電体層
 252  エネルギー閉じ込め層
 253  支持基板
 254  低音速層
 255  高音速層
 256  低音響インピーダンス層
 257  高音響インピーダンス層
 258  音響インピーダンス層
 260  IDT電極
 n1、n2、n3、n4、n5  接続ノード

Claims (5)

  1.  共通端子と、
     前記共通端子に接続された第1弾性波フィルタと、
     前記共通端子と前記第1弾性波フィルタとを接続する第1配線と、
     前記第1配線上の第1接続ノードに接続された第2弾性波フィルタと、
     前記第1配線上の第2接続ノードに接続された第3弾性波フィルタと、
     前記第1接続ノードと前記第2弾性波フィルタとを接続する第2配線と、
     前記第2接続ノードと前記第3弾性波フィルタとを接続する第3配線と、
     前記第1配線のうち前記第1接続ノードから前記第1弾性波フィルタまでの配線領域とグランドとの間、または、前記第2配線とグランドとの間に接続されたインダクタンス素子と、を備え、
     前記第1配線において、前記共通端子から前記第1接続ノードまでの長さは、前記共通端子から前記第2接続ノードまでの長さよりも長い、
     マルチプレクサ。
  2.  さらに、
     前記共通端子、前記第1弾性波フィルタ、前記第2弾性波フィルタ、および前記第3弾性波フィルタが実装された実装基板を備え、
     前記第1配線、前記第2配線、および前記第3配線は、前記実装基板に形成され、
     前記インダクタンス素子は、前記実装基板上に表面実装されたチップ状のインダクタ、または、前記実装基板内のコイルパターンで形成されたインダクタである、
     請求項1に記載のマルチプレクサ。
  3.  前記実装基板は、複数の誘電体層を有する多層基板である、
     請求項2に記載のマルチプレクサ。
  4.  前記第1弾性波フィルタの通過帯域は、前記第2弾性波フィルタの通過帯域および前記第3弾性波フィルタの通過帯域のそれぞれよりも、高周波側にある、
     請求項1~3のいずれか1項に記載のマルチプレクサ。
  5.  前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれは、圧電性を有する基板に形成され、
     前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれは、IDT(InterDigital Transducer)電極を有する弾性波共振子で構成され、
     前記基板は、
     支持基板と、
     前記IDT電極が一方面上に形成された圧電体層と、
     前記支持基板と前記圧電体層との間に配置され、弾性波エネルギーを閉じ込めることが可能なエネルギー閉じ込め層と、を備え、
     前記エネルギー閉じ込め層は、
     伝搬するバルク波の音速が互いに異なる複数の層、または、音響インピーダンスが互いに異なる複数の層、からなる、
     請求項1~4のいずれか1項に記載のマルチプレクサ。
PCT/JP2019/022224 2018-06-05 2019-06-04 マルチプレクサ WO2019235490A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207034249A KR102521168B1 (ko) 2018-06-05 2019-06-04 멀티플렉서
JP2020523127A JP6819821B2 (ja) 2018-06-05 2019-06-04 マルチプレクサ
CN201980036534.0A CN112204881B (zh) 2018-06-05 2019-06-04 多工器
US17/075,751 US11929726B2 (en) 2018-06-05 2020-10-21 Multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018107839 2018-06-05
JP2018-107839 2018-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/075,751 Continuation US11929726B2 (en) 2018-06-05 2020-10-21 Multiplexer

Publications (1)

Publication Number Publication Date
WO2019235490A1 true WO2019235490A1 (ja) 2019-12-12

Family

ID=68769306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022224 WO2019235490A1 (ja) 2018-06-05 2019-06-04 マルチプレクサ

Country Status (5)

Country Link
US (1) US11929726B2 (ja)
JP (1) JP6819821B2 (ja)
KR (1) KR102521168B1 (ja)
CN (1) CN112204881B (ja)
WO (1) WO2019235490A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208670A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 マルチプレクサ、送信装置、受信装置、高周波フロントエンド回路、通信装置、およびマルチプレクサのインピーダンス整合方法
WO2017115579A1 (ja) * 2015-12-28 2017-07-06 株式会社村田製作所 マルチプレクサ
WO2017159834A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378703B2 (ja) 2005-06-07 2009-12-09 日立金属株式会社 高周波回路部品
EP1920536B1 (en) * 2005-08-24 2010-11-10 Nxp B.V. Integrated rc oscillator with high frequency stability, notably for an integrated switched-mode power supply
JP2007312164A (ja) * 2006-05-19 2007-11-29 Hitachi Ltd 圧電薄膜共振器並びにそれを用いた高周波フィルタ及び高周波モジュール
CN105723615B (zh) * 2013-11-29 2018-07-27 株式会社村田制作所 分波器
CN104658506B (zh) * 2015-03-18 2018-01-30 合肥京东方光电科技有限公司 移位寄存器、栅极驱动电路及其驱动方法、显示面板
JP6168243B2 (ja) * 2015-03-25 2017-07-26 株式会社村田製作所 移相器、インピーダンス整合回路、合分波器および通信端末装置
JP7313792B2 (ja) * 2016-07-13 2023-07-25 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
DE102017115705A1 (de) 2016-07-13 2018-01-18 Murata Manufacturing Co., Ltd. Multiplexierer, Hochfrequenz-Frontend-Kreis, Kommunikationsvorrichtung und Konstruktionsverfahren für einen Multiplexierer
JP6573851B2 (ja) * 2016-08-04 2019-09-11 太陽誘電株式会社 マルチプレクサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208670A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 マルチプレクサ、送信装置、受信装置、高周波フロントエンド回路、通信装置、およびマルチプレクサのインピーダンス整合方法
WO2017115579A1 (ja) * 2015-12-28 2017-07-06 株式会社村田製作所 マルチプレクサ
WO2017159834A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置

Also Published As

Publication number Publication date
KR20210005197A (ko) 2021-01-13
JPWO2019235490A1 (ja) 2021-02-12
KR102521168B1 (ko) 2023-04-13
US20210044271A1 (en) 2021-02-11
JP6819821B2 (ja) 2021-01-27
CN112204881B (zh) 2024-05-17
US11929726B2 (en) 2024-03-12
CN112204881A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP6589824B2 (ja) マルチプレクサ
JP6959819B2 (ja) マルチプレクサ
US10944381B2 (en) Acoustic wave filter device, multiplexer, radio-frequency front end circuit, and communication device
WO2017217197A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
US10892738B2 (en) Acoustic wave filter device and multiplexer
JP6773238B2 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
JP6835041B2 (ja) マルチプレクサ
JP5768951B1 (ja) フィルタ装置
JP2019169921A (ja) マルチプレクサ
WO2019111695A1 (ja) マルチプレクサ
JP7103420B2 (ja) フィルタ装置およびマルチプレクサ
US11405018B2 (en) Filter and multiplexer
JP6819821B2 (ja) マルチプレクサ
US10790803B2 (en) Radio-frequency module, multiplexer, and multi-filter
JP7014308B2 (ja) エクストラクタ
JP6566170B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2020080017A1 (ja) 高周波モジュール
WO2019244938A1 (ja) フィルタおよびマルチプレクサ
JP2021064897A (ja) フィルタ装置
WO2020080018A1 (ja) 高周波モジュール
WO2013125369A1 (ja) 分波装置
WO2020003956A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP2021072563A (ja) マルチプレクサ
WO2019235514A1 (ja) フィルタおよびマルチプレクサ
KR20210011330A (ko) 필터 및 멀티플렉서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523127

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034249

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815198

Country of ref document: EP

Kind code of ref document: A1