WO2019111695A1 - マルチプレクサ - Google Patents

マルチプレクサ Download PDF

Info

Publication number
WO2019111695A1
WO2019111695A1 PCT/JP2018/042779 JP2018042779W WO2019111695A1 WO 2019111695 A1 WO2019111695 A1 WO 2019111695A1 JP 2018042779 W JP2018042779 W JP 2018042779W WO 2019111695 A1 WO2019111695 A1 WO 2019111695A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
filter device
inductor
multiplexer
resonators
Prior art date
Application number
PCT/JP2018/042779
Other languages
English (en)
French (fr)
Inventor
高田 俊明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020207014666A priority Critical patent/KR102424038B1/ko
Priority to JP2019558112A priority patent/JP6711471B2/ja
Priority to CN201880074770.7A priority patent/CN111386656B/zh
Publication of WO2019111695A1 publication Critical patent/WO2019111695A1/ja
Priority to US16/886,832 priority patent/US11558035B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0557Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the other elements being buried in the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0561Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement consisting of a multilayered structure

Definitions

  • the invention relates to a multiplexer comprising a plurality of filter devices.
  • one terminal can cope with a plurality of frequency bands and a plurality of wireless systems, so-called multiband and multimode.
  • one antenna is provided with a multiplexer for separating high frequency signals having a plurality of radio carrier frequencies.
  • Patent Document 1 discloses a filter device including a plurality of series resonators and a plurality of parallel resonators.
  • a shield is formed to surround the series resonators and the parallel resonators in order to improve isolation with other filter devices.
  • An object of the present invention is to improve the isolation between filter devices in a multiplexer and to miniaturize the multiplexer.
  • a multiplexer is provided on a first path connecting a common terminal, a first terminal and a second terminal, the common terminal and the first terminal.
  • a first filter device having a plurality of elastic wave resonators including the series resonator described above, and two or more parallel resonators provided on a path connecting a node on the first path and a ground; Among the plurality of elastic wave resonators on one path, an inductor provided between the elastic wave resonator closest to the first terminal and the first terminal, the common terminal, and the second terminal
  • a second filter device provided on a second path connecting the first and second filter devices, wherein the first filter device is configured to transmit the first of the two or more parallel resonators on the first path.
  • the first parallel resonator closest to the terminal is connected A first ground terminal, a second ground terminal to which a second parallel resonator different from the first parallel resonator among the two or more parallel resonators is connected, and the first filter device A shield wire disposed between the inductor and the plurality of elastic wave resonators, wherein the shield wire is connected to the first ground terminal in the first filter device;
  • the first ground terminal is not connected to the second ground terminal.
  • the shield wire between the inductor and the elastic wave resonator, the electromagnetic field coupling between the inductor and the elastic wave resonator can be suppressed, which occurs outside the pass band of the first filter device. Unwanted waves can be suppressed. As a result, it is possible to suppress the transmission of the unnecessary wave to the second filter device, so that the isolation in the pass band of the second filter device can be improved.
  • the shield wire is provided between the inductor and the elastic wave resonator, for example, the multiplexer can be miniaturized compared to the case where the shield is provided so as to surround the entire circumference of the elastic wave resonator. be able to.
  • the elastic wave resonator closest to the first terminal is a first series resonator closest to the first terminal among the one or more series resonators, and the shield line is the first filter device. When viewed from above, it may be disposed between the inductor and the first series resonator.
  • the shield wire between the inductor and the first series resonator connected in series to the inductor and susceptible to electromagnetic field coupling the coupling between the inductor and the first series resonator can be suppressed. it can. Thereby, the isolation in the pass band of the second filter device can be improved.
  • the shield line may be disposed to intersect a straight line connecting the inductor and the plurality of elastic wave resonators in a plan view of the first filter device.
  • the electromagnetic field coupling between the inductor and the elastic wave resonator can be reliably suppressed.
  • the isolation in the pass band of the second filter device can be improved.
  • the multiplexer further includes a multilayer substrate, the common terminal, the first terminal, and the second terminal are provided on the multilayer substrate, and the first filter device, the inductor, and the second filter device are And may be mounted on one main surface of the multilayer substrate.
  • the first filter device may have a substrate having piezoelectricity, and the shield wire and the first ground terminal may be formed on one main surface of the substrate.
  • the shield wire can be connected to the first ground terminal by simple wiring and the multiplexer can be miniaturized.
  • another electronic component different from the first filter device and the inductor is not mounted between the first filter device and the inductor, and the first filter device and the inductor are adjacent to each other. It may be
  • the inductor may be connected between a power amplifier connected to the first terminal and the first filter device.
  • the inductor may be a chip inductor or a winding inductor.
  • the inductor is, for example, a chip inductor or a winding inductor having a large inductance value, electromagnetic field coupling between the inductor and the elastic wave resonator can be suppressed. Thereby, the isolation in the pass band of the second filter device can be improved.
  • each of the first filter device and the inductor has a rectangular shape in plan view, and in the inductor, a long side of the inductor is parallel to a long side or a short side of the first filter device. It may be arranged in
  • the multiplexer can be miniaturized.
  • the first filter device may be a transmission filter
  • the second filter device may be a reception filter
  • the multiplexer can be used as a duplexer.
  • the present invention can improve the isolation between filter devices in the multiplexer and can miniaturize the multiplexer.
  • FIG. 1 is a diagram showing a front end circuit including a multiplexer according to an embodiment.
  • FIG. 2 is a circuit configuration diagram of the multiplexer according to the embodiment.
  • FIG. 3 is a perspective view of the multiplexer according to the embodiment.
  • FIG. 4A is a cross-sectional view of the multiplexer according to the embodiment cut along the line IVA-IVA of FIG.
  • FIG. 4B is a cross-sectional view of the multiplexer according to the embodiment cut along the line IVB-IVB of FIG. 4A.
  • FIG. 5A is a plan view of the multiplexer according to the embodiment.
  • FIG. 5B is a plan view showing the top layer of the multilayer substrate of the multiplexer according to the embodiment.
  • FIG. 5C is a plan view showing an intermediate layer of the multilayer substrate of the multiplexer according to the embodiment.
  • FIG. 5D is a plan view showing the lowermost layer of the multilayer substrate of the multiplexer according to the embodiment.
  • FIG. 6 is a diagram showing an electrode layout of the first filter device of the multiplexer according to the embodiment.
  • FIG. 7 is a view showing an electrode layout of the first filter device according to Comparative Example 1.
  • FIG. 8 is a view showing an electrode layout of the first filter device according to Comparative Example 2.
  • FIG. 9 is a diagram showing isolation characteristics in the Rx band of the multiplexer according to the embodiment.
  • the multiplexer according to the present embodiment is used for communication devices such as mobile phones.
  • a duplexer of Band 25 transmission passband: 1850 to 1915 MHz, reception passband: 1930 to 1995 MHz
  • FIG. 1 is a diagram showing a front end circuit 5 including a multiplexer 1 according to an embodiment.
  • the multiplexer 1 includes a first filter device 10, an inductor L1, a second filter device 20, and an inductor L2.
  • the multiplexer 1 also includes a common terminal 63, a first terminal 61, and a second terminal 62.
  • the antenna element 9 is connected to the common terminal 63.
  • the first filter device 10 and the inductor L 1 are connected in series on a first path C 1 connecting the common terminal 63 and the first terminal 61.
  • the inductor L 1 is connected between the first filter device 10 and the first terminal 61.
  • the inductor L1 is an element for matching the impedance of the first filter device 10 and the power amplifier 6.
  • the second filter device 20 and the inductor L 2 are connected in series on a second path C 2 connecting the common terminal 63 and the second terminal 62.
  • the inductor L 2 is connected between the common terminal 63 and the second filter device 20.
  • the inductor L2 is an element for matching the impedance of the antenna element 9 and the second filter device 20.
  • the first path C1 and the second path C2 are commonly connected at the node n1.
  • the front end circuit 5 includes the multiplexer 1, a power amplifier 6, and a low noise amplifier 7.
  • An RFIC (Radio Frequency Integrated Circuit) 8 is connected to the input side of the power amplifier 6, and a first terminal 61 of the multiplexer 1 is connected to the output side.
  • the second terminal 62 of the multiplexer 1 is connected to the input side of the low noise amplifier 7, and the RFIC 8 is connected to the output side.
  • FIG. 2 is a circuit diagram of the multiplexer 1. As described above, the multiplexer 1 includes the first filter device 10, the inductor L1, the second filter device 20, and the inductor L2.
  • the first filter device 10 is a ladder type transmission filter, and filters the high frequency signal input from the first terminal 61 and outputs the filtered high frequency signal to the common terminal 63.
  • the first filter device 10 has an elastic wave resonator including series resonators S1, S2, S3, S4, S5 and parallel resonators P1, P2, P3, P4.
  • Each of the series resonators S1 to S5 is connected in series in a first path C1 between the first terminal 61 and the node n1.
  • the series resonator S1 is connected in series to the inductor L1 via the first terminal 61.
  • the series resonator S1 is closest to the first terminal 61 on the first path C1.
  • the series resonator S1 corresponds to a first series resonator in the present invention.
  • the parallel resonators P1 to P4 are provided on paths connecting the nodes n2, n3, n4 and n5 on the first path C1 and the ground. Specifically, one end of the parallel resonator P1 is connected to the node n2 between the series resonators S1 and S2, and the other end is connected to the first ground terminal 11. Among the parallel resonators P1 to P4, a node n2 to which the parallel resonator P1 is connected is closest to the first terminal 61 and farthest to the common terminal 63 on the first path C1. At this time, the parallel resonator P1 is the parallel resonator closest to the first terminal 61 among the parallel resonators P1 to P4, and corresponds to the first parallel resonator in the present invention.
  • One end of the parallel resonator P 2 is connected to the node n 3 between the series resonators S 2 and S 3, and the other end is connected to the second ground terminal 12.
  • One end of the parallel resonator P3 is connected to the node n4 between the series resonators S3 and S4, and the other end is connected to the second ground terminal 12.
  • One end of the parallel resonator P4 is connected to the node n5 between the series resonators S4 and S5, and the other end is connected to the second ground terminal 12.
  • the parallel resonators P2 to P4 correspond to a second parallel resonator in the present invention.
  • the first filter device 10 further includes a first terminal side terminal (amplifier side terminal) 13, a common terminal side terminal (antenna side terminal) 14, and the first ground terminal 11 and the second ground terminal 12 described above. ing.
  • the first terminal side terminal 13 is connected to the first terminal 61 via the inductor L1.
  • the common terminal side terminal 14 is connected to the common terminal 63 via the node n1.
  • the first ground terminal 11 is connected to the ground via an inductor L3 for widening the pass band width of the first filter device 10.
  • the second ground terminal 12 is connected to the ground via an inductor L4 for highly attenuating the high frequency side of the pass band of the first filter device 10.
  • the second ground terminal 12 is a common terminal to which the other ends of the parallel resonators P2 to P4 are connected.
  • the first ground terminal 11 is not connected to the second ground terminal 12 in the first filter device 10. That is, the first ground terminal 11 and the second ground terminal 12 are terminals independent of each other in the first filter device 10.
  • the first ground terminal 11 and the second ground terminal 12 are connected to a ground terminal 64 provided along the lowermost layer of the multilayer substrate 60 described later.
  • the node n2 to which the first ground terminal 11 is connected is located closer to the first terminal 61 than the nodes n3 to n5 to which the second ground terminal 12 is connected. That is, on the first path C1, the nodes n3 to n5 to which the second ground terminal 12 is connected are located closer to the common terminal 63 than the node n2 to which the first ground terminal 11 is connected.
  • the shield wire 16 is connected to the first ground terminal 11.
  • the shield line 16 is a wire for suppressing electromagnetic field coupling between the inductor L1 and the elastic wave resonators (series resonators S1 to S5 and parallel resonators P1 to P4).
  • the shield wire 16 will be described later.
  • the second filter device 20 is a ladder type reception filter, and filters the high frequency signal input from the common terminal 63 and outputs the filtered high frequency signal to the second terminal 62.
  • the second filter device 20 has an elastic wave resonator including series resonators S6, S7, S8 and parallel resonators P5, P6, P7, P8.
  • the second filter device 20 may be a longitudinally coupled resonator type elastic wave filter or an LC filter.
  • FIG. 3 is a perspective view of the multiplexer 1.
  • 4A is a cross-sectional view of the multiplexer 1 taken along line IVA-IVA of FIG.
  • FIG. 4B is a cross-sectional view of the multiplexer 1 taken along line IVB-IVB of FIG. 4A.
  • FIG. 5A is a plan view of the multiplexer 1.
  • the multiplexer 1 includes a multilayer substrate 60, a first filter device 10, a second filter device 20, and inductors L1 and L2.
  • the first filter device 10, the second filter device 20, and the inductors L 1 and L 2 are mounted on one main surface 60 a of the multilayer substrate 60.
  • the multiplexer 1 also includes inductors L3 and L4 formed on the multilayer substrate 60 (not shown).
  • the first filter device 10 and the inductor L1 are adjacent to each other on one main surface 60a of the multilayer substrate 60. That is, other electronic components different from the first filter device 10 and the inductor L1 are not mounted between the first filter device 10 and the inductor L1.
  • Each of the first filter device 10 and the inductor L1 has a rectangular shape in plan view, the first filter device 10 has a long side 10a and a short side 10b, and the inductor L1 has a long side L1a and a short side And L1b.
  • the inductor L1 is disposed such that the long side L1a of the inductor L1 is parallel to the short side 10b of the first filter device 10.
  • the first filter device 10 is a rectangular parallelepiped elastic wave device. As shown in FIGS. 4A and 4B, the first filter device 10 has a substrate 19 having piezoelectricity. Series resonators S1 to S5 and parallel resonators P1 to P4 are formed on one main surface 19a of the substrate 19. In addition, on one main surface 19 a of the substrate 19, the first ground terminal 11, the first terminal side terminal 13, and the shield wire 16 are formed. Although not shown in FIGS. 4A and 4B, the second ground terminal 12 and the common terminal side terminal 14 are formed on the main surface 19a. The first filter device 10 is connected to the land of the top layer 66 via a bonding material 70 such as solder. One main surface 19a of the substrate 19 and one main surface 60a of the multilayer substrate 60 face each other via a space.
  • a bonding material 70 such as solder
  • Each of the inductors L1 and L2 is, for example, a laminated chip inductor formed by via connection of a plurality of coil patterns.
  • the inductors L1 and L2 may be wound inductors formed by winding a wire.
  • the inductance value of the inductor L1 is 3.5 nH.
  • the inductance value of the inductor L1 is larger than the inductance value of the inductors L3 and L4.
  • Each of the inductors L1 and L2 is connected to a land of the main surface 60a of the multilayer substrate 60 using a solder or the like.
  • the inductors L1 and L2 are arranged such that the coil axis is perpendicular to the major surface 60a of the multilayer substrate 60.
  • the multilayer substrate 60 is a laminate of a plurality of ceramic substrates or a laminate of a plurality of resin-containing substrates.
  • the multilayer substrate 60 includes a three-layer ceramic substrate of a top layer 66, an intermediate layer 67, and a bottom layer 68, as shown in FIGS. 4A and 4B.
  • the multilayer substrate 60 is not limited to three layers, and may be composed of four or more base materials.
  • FIG. 5B is a plan view showing the top layer 66 of the multilayer substrate 60.
  • FIG. 5C is a plan view showing the intermediate layer 67 of the multilayer substrate 60.
  • FIG. 5D is a plan view showing the lowermost layer 68 of the multilayer substrate 60. As shown in FIG.
  • a plurality of pattern conductors pc and a plurality of via conductors vc including a conductive material such as Cu or Ag are formed.
  • the top layer 66 is formed with an inductor L3.
  • the inductor L3 is a 3/4 turn coil pattern conductor pc.
  • the first filter device 10 the second filter device 20
  • the lands for mounting the inductors L1 and L2 the wiring for connecting the first filter device 10 and the inductor L1 are formed. It is done.
  • the inductor L4 is formed in the intermediate layer 67.
  • the inductor L4 is a 3/4 turn coil pattern conductor pc.
  • the first terminal 61, the second terminal 62, the common terminal 63, and the ground terminal 64 are provided on the bottom surface (back surface) of the lowermost layer 68 (see FIG. 5D).
  • FIG. 6 is a diagram showing an electrode layout of the first filter device 10, specifically, a perspective view of a VI portion of the multiplexer 1 shown in FIG. 5A.
  • FIG. Is the series resonators S1 to S5, the parallel resonators P1 to P4, the first ground terminal 11, the second ground terminal 12, the first terminal side terminal 13 and the common terminal side terminal 14 of the first filter device 10 are shown in FIG. Is represented.
  • the first ground terminal 11, the second ground terminal 12, the first terminal side terminal 13, and the common terminal side terminal 14 are disposed in the outer peripheral region of the first filter device 10 in plan view.
  • the series resonators S1 to S5 and the parallel resonators P1 to P4 are disposed inside the outer peripheral region in plan view.
  • the first terminal side terminal 13 and the first ground terminal 11 are disposed at a position close to the inductor L1, and the common terminal side terminal 14 is disposed at a position distant from the inductor L1.
  • the second ground terminal 12 is disposed at a position closer to the common terminal side terminal 14 than the first ground terminal 11.
  • Each of the series resonators S1 to S5 and the parallel resonators P1 to P4 is formed of an IDT (Interdigital Transducer) electrode composed of a pair of comb-shaped electrodes facing each other.
  • the IDT electrode is provided on the main surface 19 a side of the substrate 19.
  • a silicon oxide film or the like may be formed between the substrate 19 and the IDT electrode.
  • Each comb-shaped electrode is constituted by a plurality of electrode fingers extending along a direction D2 orthogonal to the propagation direction D1 of the elastic wave, and a bus bar electrode connecting each end of the plurality of electrode fingers.
  • the IDT electrodes are arranged such that the electrode fingers of the pair of comb-shaped electrodes are interdigitated with each other.
  • the bus bar electrodes located on the negative side in the direction D2 when viewed from the electrode fingers of the respective resonators are referred to as one bus bar
  • the bus bar electrodes located on the positive side in the direction D2 are referred to as the other bus bar.
  • One bus bar of the series resonator S1 is connected to the first terminal terminal 13, and the other bus bar of the series resonator S1 is connected to one bus of the series resonator S2.
  • One bus bar of the series resonator S2 is connected to the parallel resonator P1, and the other bus bar of the series resonator S2 is connected to one bus of the series resonator S3.
  • One bus bar of the parallel resonator P ⁇ b> 1 is connected to the first ground terminal 11.
  • the shield wire 16 is connected to the first ground terminal 11.
  • the shield line 16 is disposed between the inductor L1 and the series resonator S1 when the first filter device 10 is viewed in plan. Further, the shield line 16 is disposed to intersect a straight line connecting the inductor L1 and each of the elastic wave resonators when the first filter device 10 is viewed in plan. Specifically, the shield line 16 is formed along the propagation direction D1.
  • the number of shield lines 16 is not limited to one, and may be plural.
  • One bus bar of the series resonator S3 is connected to the parallel resonator P2, and the other bus bar of the series resonator S3 is connected to one bus of the series resonator S4.
  • One bus bar of the series resonator S4 is connected to the parallel resonator P3, and the other bus bar of the series resonator S4 is connected to one bus of the series resonator S5.
  • One bus bar of the series resonator S5 is connected to the parallel resonator P4, and the other bus bar of the series resonator S5 is connected to the common terminal side terminal 14.
  • One bus bar of the parallel resonator P ⁇ b> 2, one bus bar of the parallel resonator P ⁇ b> 3, and one bus bar of the parallel resonator P ⁇ b> 4 are connected to the second ground terminal 12.
  • the shield line 16 when the first filter device 10 is viewed in plan, the shield line 16 includes the inductor L1 and the elastic wave resonator (of the series resonators S1 to S5 and the parallel resonators P1 to P4). And one of the resonators).
  • the electromagnetic field coupling between the inductor L1 and the elastic wave resonator can be suppressed, and unnecessary waves generated outside the pass band of the first filter device 10 can be suppressed.
  • transmission of the unnecessary wave to the second filter device 20 can be suppressed, and isolation in the pass band of the second filter device 20 can be improved.
  • the shield wire 16 is used as the inductor L1 and the elastic wave resonator And electromagnetic field coupling can be suppressed.
  • the shield line 16 in the present embodiment is provided between the inductor L1 and the elastic wave resonator when the first filter device 10 is viewed in plan. Therefore, for example, in the present embodiment, the first filter device 10 and the multiplexer 1 can be miniaturized as compared with the case where a shield is provided so as to surround the entire circumference of the elastic wave resonator.
  • the shield line 16 in the present embodiment is connected to the first ground terminal 11 connected to the parallel resonator P1. Therefore, it is not necessary to separately provide a ground electrode for the shield wire 16, and the first filter device 10 and the multiplexer 1 can be miniaturized.
  • the shield wire 16 is connected to the first ground terminal 11, and the first ground terminal 11 is not connected to the second ground terminal 12.
  • the leakage current generated in the shield wire 16 causes the first ground terminal 11, the second ground terminal 12, and the parallel resonators P2 to P4 to As a result, the problem of entering the common terminal 63 is likely to occur.
  • the transmission path of the leakage current becomes long, and the leakage current does not easily enter the common terminal 63 side. Thereby, the isolation in the pass band of the second filter device 20 can be improved.
  • evaluation results, etc. evaluation results of the multiplexer 1 according to the embodiment will be described in comparison with comparative examples 1 and 2.
  • FIG. 7 is a view showing an electrode layout of the first filter device 110 according to Comparative Example 1. As shown in FIG. The first filter device 110 of Comparative Example 1 does not have the shield line 16.
  • FIG. 8 is a view showing an electrode layout of the first filter device 210 according to Comparative Example 2. As shown in FIG. The first filter device 210 of Comparative Example 2 includes the shield wire 216, and the shield wire 216 is connected to the second ground terminal 12.
  • FIG. 9 is a diagram showing the isolation characteristic of the multiplexer 1 in the Rx band.
  • the isolation value in the frequency pass band (1930 MHz to 1995 MHz) of the second filter device 20 is 55.6 dB in the embodiment, 53.3 dB in the comparative example 1, and 53.5 dB in the comparative example 2. It is.
  • the embodiment has better isolation than the comparative examples 1 and 2.
  • the isolation in the pass band of the second filter device 20 can be improved. Further, as in the present embodiment, by making the first ground terminal 11 connected to the shield wire 16 and the second ground terminal 12 independent, isolation in the pass band of the second filter device 20 can be achieved. It can be improved.
  • the multiplexer 1 according to the embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
  • an aspect in which the above-described embodiment is modified as follows may be included in the present invention.
  • a duplexer was mentioned as an example of a multiplexer, the invention is not limited thereto, and a multiplexer in which a plurality of transmission filters are connected in common may be used, or a multiplexer in which a plurality of reception filters are connected in common Good.
  • the elastic wave resonator is formed on one main surface 19 a of the substrate 19 .
  • the present invention is not limited thereto. It may be an elastic wave device of the Package type.
  • the inductor L1 is disposed such that the long side L1a of the inductor L1 is parallel to the short side 10b of the first filter device 10
  • the present invention is not limited thereto.
  • the inductor L1 may be disposed such that the long side L1a of the inductor L1 is parallel to the long side 210a of the first filter device 210.
  • the shield wire 16 may be drawn out from the first ground terminal 11 and disposed between the inductor L1 and the elastic wave resonator (series resonators S1 and S2, parallel resonator P1).
  • the shield line is not formed around the inductor L2
  • a shield line may be provided between the inductor L2 and the elastic wave resonator of the first filter device 10.
  • the multiplexer 1 is a duplexer, a low-power high frequency signal is input to the inductor L2, so the influence by electromagnetic field coupling is small, and a shield line is necessarily provided between the inductor L2 and the elastic wave resonator. There is no need.
  • the present invention can be widely used in communication devices such as mobile phones as multiplexers applicable to multi-band and multi-mode frequency standards.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

マルチプレクサ(1)は、共通端子(63)と、第1端子(61)と、第2端子(62)と、直列共振子(S1~S5)および並列共振子(P1~P4)を含む複数の弾性波共振子を有する第1フィルタ装置(10)と、弾性波共振子と第1端子(61)との間に設けられたインダクタ(L1)と、第2フィルタ装置(20)とを備える。第1フィルタ装置(10)は、並列共振子(P1)が接続される第1グランド端子(11)と、並列共振子(P2~P4)が接続される第2グランド端子(12)と、インダクタ(L1)と上記弾性波共振子との間に配置されているシールド線(16)とをさらに備える。第1フィルタ装置(10)において、シールド線(16)は第1グランド端子(11)に接続され、第1グランド端子(11)は第2グランド端子(12)に接続されていない。

Description

マルチプレクサ
 本発明は、複数のフィルタ装置を備えるマルチプレクサに関する。
 近年の携帯電話には、一端末で複数の周波数帯域および複数の無線方式、いわゆるマルチバンド化およびマルチモード化に対応することが要求されている。これに対応すべく、1つのアンテナには、複数の無線搬送周波数を有する高周波信号を分波するマルチプレクサが配置される。
 この種のマルチプレクサに用いられるフィルタ装置の一例として、特許文献1には、複数の直列共振子および複数の並列共振子を含むフィルタ装置が開示されている。このフィルタ装置では、他のフィルタ装置とのアイソレーションを向上させるため、直列共振子および並列共振子を囲むようにシールドが形成されている。
特開2014-82609号公報
 しかしながら特許文献1に開示されているフィルタ装置では、フィルタ装置の全周囲にシールドが形成されているため、フィルタ装置およびマルチプレクサが大型化するという問題がある。
 そこで、本発明は、マルチプレクサにおけるフィルタ装置間のアイソレーションを向上するとともに、マルチプレクサを小型化することを目的とする。
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、共通端子、第1端子および第2端子と、前記共通端子と前記第1端子とを結ぶ第1経路上に設けられた1以上の直列共振子、および、前記第1経路上のノードとグランドとを結ぶ経路上に設けられた2以上の並列共振子を含む複数の弾性波共振子を有する第1フィルタ装置と、前記第1経路上にて、前記複数の弾性波共振子のうち前記第1端子に最も近い弾性波共振子と前記第1端子との間に設けられたインダクタと、前記共通端子と前記第2端子とを結ぶ第2経路上に設けられた第2フィルタ装置と、を備えるマルチプレクサであって、前記第1フィルタ装置は、前記第1経路上にて、前記2以上の並列共振子のうち前記第1端子に最も近い第1の並列共振子が接続される第1グランド端子と、前記2以上の並列共振子のうち前記第1の並列共振子と異なる第2の並列共振子が接続される第2グランド端子と、前記第1フィルタ装置を平面視した場合に、前記インダクタと前記複数の弾性波共振子との間に配置されているシールド線と、をさらに備え、前記第1フィルタ装置において、前記シールド線は前記第1グランド端子に接続され、前記第1グランド端子は前記第2グランド端子に接続されていない。
 このように、シールド線をインダクタと弾性波共振子との間に設けることで、インダクタと弾性波共振子との電磁界結合を抑制することができ、第1フィルタ装置の通過帯域外に発生する不要波を抑制することができる。これにより、不要波が第2フィルタ装置に伝わることを抑制できるので、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。また、インダクタと弾性波共振子との間にシールド線が設けられているため、例えば、弾性波共振子の全周を囲むようにシールドが設けられている場合に比べて、マルチプレクサを小型化することができる。
 また、前記第1端子に最も近い弾性波共振子は、前記1以上の直列共振子のうち前記第1端子に最も近い第1の直列共振子であり、前記シールド線は、前記第1フィルタ装置を平面視した場合に、前記インダクタと前記第1の直列共振子との間に配置されていてもよい。
 このように、シールド線をインダクタと、インダクタに直列接続され電磁界結合しやすい第1の直列共振子との間に設けることで、インダクタと第1の直列共振子との結合を抑制することができる。これにより、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、前記シールド線は、前記第1フィルタ装置を平面視した場合に、前記インダクタと前記複数の弾性波共振子とを結ぶ直線に対して交差するように配置されていてもよい。
 これによれば、インダクタと弾性波共振子との電磁界結合を確実に抑制することができる。これにより、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、マルチプレクサは、多層基板をさらに備え、前記共通端子、前記第1端子および前記第2端子は、前記多層基板に設けられ、前記第1フィルタ装置、前記インダクタ、および、前記第2フィルタ装置は、前記多層基板の一方の主面に実装されていてもよい。
 このように、第1フィルタ装置およびインダクタが同一面に実装されている場合であっても、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、前記第1フィルタ装置は、圧電性を有する基板を有し、前記シールド線および前記第1グランド端子は、前記基板の一方の主面に形成されていてもよい。
 これによれば、簡易な配線の引き回しで、シールド線を第1グランド端子に接続することができ、マルチプレクサを小型化することができる。
 また、前記第1フィルタ装置と前記インダクタとの間には、前記第1フィルタ装置および前記インダクタと異なる他の電子部品が実装されておらず、前記第1フィルタ装置および前記インダクタは、互いに隣り合っていてもよい。
 このような構造により、インダクタと第1フィルタ装置とを近付けて配置した場合であっても、インダクタと弾性波共振子との電磁界結合を抑制することができる。これにより、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、前記インダクタは、前記第1端子に接続されるパワーアンプと、前記第1フィルタ装置との間に接続されてもよい。
 このように、インダクタにパワーアンプが接続され、インダクタに大きな電流が流れる場合であっても、インダクタと弾性波共振子との電磁界結合を抑制することができる。これにより、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、前記インダクタは、チップインダクタまたは巻線インダクタであってもよい。
 インダクタが、例えばインダクタンス値の大きなチップインダクタまたは巻線インダクタであっても、インダクタと弾性波共振子との電磁界結合を抑制することができる。これにより、第2フィルタ装置の通過帯域におけるアイソレーションを向上することができる。
 また、前記第1フィルタ装置および前記インダクタのそれぞれは、平面視した場合に長方形状であり、前記インダクタは、前記インダクタの長辺が前記第1フィルタ装置の長辺または短辺に平行となるように配置されていてもよい。
 この配置によれば、マルチプレクサを小型化することができる。
 また、前記第1フィルタ装置は送信用フィルタであり、前記第2フィルタ装置は、受信用フィルタであってもよい。
 これによれば、上記マルチプレクサをデュプレクサとして用いることができる。
 本発明は、マルチプレクサにおけるフィルタ装置間のアイソレーションを向上するとともに、マルチプレクサを小型化することができる。
図1は、実施の形態に係るマルチプレクサを含むフロントエンド回路を示す図である。 図2は、実施の形態に係るマルチプレクサの回路構成図である。 図3は、実施の形態に係るマルチプレクサの斜視図である。 図4Aは、実施の形態に係るマルチプレクサを図3のIVA-IVA線で切断した場合の断面図である。 図4Bは、実施の形態に係るマルチプレクサを図4AのIVB-IVB線で切断した場合の断面図である。 図5Aは、実施の形態に係るマルチプレクサの平面図である。 図5Bは、実施の形態に係るマルチプレクサの多層基板の最上層を示す平面図である。 図5Cは、実施の形態に係るマルチプレクサの多層基板の中間層を示す平面図である。 図5Dは、実施の形態に係るマルチプレクサの多層基板の最下層を示す平面図である。 図6は、実施の形態に係るマルチプレクサの第1フィルタ装置の電極レイアウトを示す図である。 図7は、比較例1に係る第1フィルタ装置の電極レイアウトを示す図である。 図8は、比較例2に係る第1フィルタ装置の電極レイアウトを示す図である。 図9は、実施の形態に係るマルチプレクサのRx帯におけるアイソレーション特性を示す図である。
 以下、本発明の実施の形態について、実施の形態および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態)
 [1.マルチプレクサの回路構成]
 本実施の形態に係るマルチプレクサは、携帯電話などの通信機器に利用される。本実施の形態では、マルチプレクサとして、Band25(送信通過帯域:1850~1915MHz、受信通過帯域:1930~1995MHz)のデュプレクサを例に挙げて説明する。図1は、実施の形態に係るマルチプレクサ1を含むフロントエンド回路5を示す図である。
 図1に示すように、マルチプレクサ1は、第1フィルタ装置10と、インダクタL1と、第2フィルタ装置20と、インダクタL2とを備えている。また、マルチプレクサ1は、共通端子63と、第1端子61と、第2端子62とを備えている。共通端子63には、アンテナ素子9が接続されている。
 第1フィルタ装置10およびインダクタL1は、共通端子63と第1端子61とを結ぶ第1経路C1上に直列に接続されている。インダクタL1は、第1フィルタ装置10と第1端子61との間に接続されている。インダクタL1は、第1フィルタ装置10とパワーアンプ6とのインピーダンスを整合する素子である。
 第2フィルタ装置20およびインダクタL2は、共通端子63と第2端子62とを結ぶ第2経路C2上に直列に接続されている。インダクタL2は、共通端子63と第2フィルタ装置20との間に接続されている。インダクタL2は、アンテナ素子9と第2フィルタ装置20とのインピーダンスを整合する素子である。第1経路C1および第2経路C2は、ノードn1で共通接続されている。
 フロントエンド回路5は、上記マルチプレクサ1と、パワーアンプ6と、ローノイズアンプ7とを備えている。パワーアンプ6の入力側にはRFIC(Radio Frequency Integrated Circuit)8が接続され、出力側にはマルチプレクサ1の第1端子61が接続されている。ローノイズアンプ7の入力側にはマルチプレクサ1の第2端子62が接続され、出力側にはRFIC8が接続されている。
 図2は、マルチプレクサ1の回路構成図である。前述したようにマルチプレクサ1は、第1フィルタ装置10と、インダクタL1と、第2フィルタ装置20と、インダクタL2とを備えている。
 第1フィルタ装置10は、ラダー型の送信用フィルタであり、第1端子61から入力された高周波信号をフィルタリングして共通端子63に出力する。第1フィルタ装置10は、直列共振子S1、S2、S3、S4、S5、および、並列共振子P1、P2、P3、P4を含む弾性波共振子を有している。
 直列共振子S1~S5のそれぞれは、第1端子61とノードn1との間の第1経路C1に直列接続されている。直列共振子S1は、第1端子61を介してインダクタL1に直列接続されている。複数の弾性波共振子のうち、直列共振子S1は第1経路C1上において、第1端子61に最も近い。直列共振子S1は、本発明における第1の直列共振子に相当する。
 並列共振子P1~P4のそれぞれは、第1経路C1上のノードn2、n3、n4、n5とグランドとを結ぶ経路上に設けられている。具体的には、並列共振子P1の一端は直列共振子S1、S2間のノードn2に接続され、他端は第1グランド端子11に接続されている。並列共振子P1~P4のうち並列共振子P1が接続されるノードn2は、第1経路C1上において、第1端子61に最も近く、共通端子63に最も遠い。この時、並列共振子P1は、並列共振子P1~P4のうち第1端子61に最も近い並列共振子であり、本発明における第1の並列共振子に相当する。
 並列共振子P2の一端は直列共振子S2、S3間のノードn3に接続され、他端は第2グランド端子12に接続されている。並列共振子P3の一端は直列共振子S3、S4間のノードn4に接続され、他端は第2グランド端子12に接続されている。並列共振子P4の一端は直列共振子S4、S5間のノードn5に接続され、他端は第2グランド端子12に接続されている。並列共振子P2~P4は、本発明における第2の並列共振子に相当する。
 また、第1フィルタ装置10は、第1端子側端子(アンプ側端子)13と、共通端子側端子(アンテナ側端子)14と、前述した第1グランド端子11および第2グランド端子12とを備えている。第1端子側端子13は、インダクタL1を介して第1端子61に接続されている。共通端子側端子14は、ノードn1を介して共通端子63に接続されている。第1グランド端子11は、第1フィルタ装置10の通過帯域幅を広げるためのインダクタL3を介して、グランドに接続されている。第2グランド端子12は、第1フィルタ装置10の通過帯域の高周波数側を高減衰化するためのインダクタL4を介して、グランドに接続されている。第2グランド端子12は、並列共振子P2~P4の各他端が接続される共通の端子である。
 第1グランド端子11は、第1フィルタ装置10内において、第2グランド端子12に接続されていない。すなわち、第1グランド端子11および第2グランド端子12は、第1フィルタ装置10において、それぞれ独立した端子である。なお、第1グランド端子11および第2グランド端子12は、後述する多層基板60の最下層に沿って設けられたグランド端子64に接続される。
 また、第1経路C1上において、第1グランド端子11が接続されるノードn2は第2グランド端子12が接続されるノードn3~n5よりも、第1端子61側に位置している。すなわち、第1経路C1上において、第2グランド端子12が接続されるノードn3~n5は第1グランド端子11が接続されるノードn2よりも、共通端子63側に位置している。
 本実施の形態では、第1グランド端子11にシールド線16が接続されている。シールド線16は、インダクタL1と弾性波共振子(直列共振子S1~S5および並列共振子P1~P4)との電磁界結合を抑制するための配線である。このシールド線16については、後述する。
 第2フィルタ装置20は、ラダー型の受信用フィルタであり、共通端子63から入力された高周波信号をフィルタリングして、第2端子62に出力する。第2フィルタ装置20は、直列共振子S6、S7、S8、および、並列共振子P5、P6、P7、P8を含む弾性波共振子を有している。なお、第2フィルタ装置20は、縦結合共振子型弾性波フィルタであってもよいし、LCフィルタであってもよい。
 [2.マルチプレクサの実装構造]
 次に、マルチプレクサ1の実装構造について説明する。図3は、マルチプレクサ1の斜視図である。図4Aは、マルチプレクサ1を図3のIVA-IVA線で切断した場合の断面図である。図4Bは、マルチプレクサ1を図4AのIVB-IVB線で切断した場合の断面図である。図5Aは、マルチプレクサ1の平面図である。
 図3および図5Aに示すように、マルチプレクサ1は、多層基板60と、第1フィルタ装置10と、第2フィルタ装置20と、インダクタL1およびL2とを備えている。第1フィルタ装置10、第2フィルタ装置20、インダクタL1、L2は、多層基板60の一方の主面60aに実装されている。また、マルチプレクサ1は、多層基板60に形成されたインダクタL3およびL4を備えている(図示省略)。
 図5Aに示すように、第1フィルタ装置10およびインダクタL1は、多層基板60の一方の主面60a上で、互いに隣り合っている。すなわち、第1フィルタ装置10とインダクタL1との間には、第1フィルタ装置10およびインダクタL1と異なる他の電子部品が実装されていない。
 第1フィルタ装置10およびインダクタL1のそれぞれは、平面視した場合に、長方形状であり、第1フィルタ装置10は長辺10aと短辺10bとを有し、インダクタL1は長辺L1aと短辺L1bとを有している。インダクタL1は、インダクタL1の長辺L1aが第1フィルタ装置10の短辺10bに平行となるように配置されている。
 第1フィルタ装置10は、直方体状をした弾性波デバイスである。図4Aおよび図4Bに示すように、第1フィルタ装置10は、圧電性を有する基板19を有している。基板19の一方の主面19aには、直列共振子S1~S5および並列共振子P1~P4が形成されている。また、基板19の一方の主面19aには、第1グランド端子11、第1端子側端子13およびシールド線16が形成されている。また、図4Aおよび図4Bには示されていないが、主面19aには、第2グランド端子12、共通端子側端子14が形成されている。第1フィルタ装置10は、はんだなどの接合材70を介して、最上層66のランドに接続される。基板19の一方の主面19aおよび多層基板60の一方の主面60aは、空間を介して互いに向き合っている。
 インダクタL1、L2のそれぞれは、例えば、複数のコイルパターンがビア接続されることで形成された積層チップインダクタである。なお、インダクタL1、L2は、ワイヤが巻回されることで形成された巻線インダクタであってもよい。例えば、インダクタL1のインダクタンス値は3.5nHである。インダクタL1のインダクタンス値は、インダクタL3、L4のインダクタンス値よりも大きい。
 インダクタL1、L2のそれぞれは、はんだ等を用いて多層基板60の主面60aのランドに接続される。各インダクタL1、L2は、コイル軸が多層基板60の主面60aに垂直となるように配置される。
 多層基板60は、複数のセラミック基材からなる積層体または複数の樹脂含有基材からなる積層体である。多層基板60は、図4Aおよび図4Bに示すように、最上層66、中間層67、最下層68という3層のセラミック基材を含む。なお、多層基板60は、3層に限られず、4層以上の基材で構成されていてもよい。
 図5Bは、多層基板60の最上層66を示す平面図である。図5Cは、多層基板60の中間層67を示す平面図である。図5Dは、多層基板60の最下層68を示す平面図である。
 最上層66、中間層67および最下層68のそれぞれには、CuまたはAgなどの導電材料を含む複数のパターン導体pcおよび複数のビア導体vcが形成されている。
 図5Bに示すように、最上層66には、インダクタL3が形成されている。例えばインダクタL3は、3/4ターンのコイル状のパターン導体pcである。また、最上層66には、第1フィルタ装置10、第2フィルタ装置20、インダクタL1、L2を実装するためのランド、および、第1フィルタ装置10とインダクタL1とを接続するための配線が形成されている。図5Cに示すように、中間層67には、インダクタL4が形成されている。インダクタL4は、3/4ターンのコイル状のパターン導体pcである。最下層68の底面(裏面)には、第1端子61、第2端子62、共通端子63およびグランド端子64が設けられている(図5D参照)。
 [3.第1フィルタ装置の構造]
 次に、第1フィルタ装置10の構造について説明する。図6は、第1フィルタ装置10の電極レイアウトを示す図であって、具体的には、図5Aに示すマルチプレクサ1のVI部分の透視図である。
 図6には、第1フィルタ装置10の、直列共振子S1~S5、並列共振子P1~P4、第1グランド端子11、第2グランド端子12、第1端子側端子13および共通端子側端子14が表わされている。第1グランド端子11、第2グランド端子12、第1端子側端子13および共通端子側端子14は、平面視して、第1フィルタ装置10の外周領域に配置されている。直列共振子S1~S5および並列共振子P1~P4は、平面視して、外周領域の内側に配置されている。
 第1端子側端子13および第1グランド端子11は、インダクタL1から近い位置に配置され、共通端子側端子14は、インダクタL1から遠い位置に配置されている。第2グランド端子12は、第1グランド端子11よりも共通端子側端子14に近い位置に配置されている。
 直列共振子S1~S5および並列共振子P1~P4のそれぞれは、互いに対向する一対の櫛形電極からなるIDT(Interdigital Transducer)電極によって形成されている。IDT電極は、基板19の主面19a側に設けられている。なお、基板19とIDT電極との間に、シリコン酸化膜などが形成されていてもよい。
 各櫛形電極は、弾性波の伝搬方向D1と直交する方向D2に沿って延びる複数の電極指と、複数の電極指の各端部を接続するバスバー電極とで構成される。IDT電極は、一対の櫛形電極の電極指が互いに間挿し合うように配置されている。以下、図6において、各共振子の電極指から見て、方向D2の負側に位置するバスバー電極を一方のバスバーと呼び、方向D2の正側に位置するバスバー電極を他方のバスバーと呼ぶ。
 直列共振子S1の一方のバスバーは、第1端子側端子13に接続され、直列共振子S1の他方のバスバーは、直列共振子S2の一方のバスバーに接続されている。直列共振子S2の一方のバスバーは、並列共振子P1に接続され、直列共振子S2の他方のバスバーは、直列共振子S3の一方のバスバーに接続されている。並列共振子P1の一方のバスバーは、第1グランド端子11に接続されている。第1グランド端子11には、シールド線16が接続されている。
 シールド線16は、第1フィルタ装置10を平面視した場合に、インダクタL1と直列共振子S1との間に配置されている。また、シールド線16は、第1フィルタ装置10を平面視した場合に、インダクタL1と各弾性波共振子とを結ぶ直線に対して交差するように配置されている。具体的には、シールド線16は、伝搬方向D1に沿って形成されている。シールド線16は、1本に限られず、複数本であってもよい。
 直列共振子S3の一方のバスバーは、並列共振子P2に接続され、直列共振子S3の他方のバスバーは、直列共振子S4の一方のバスバーに接続されている。直列共振子S4の一方のバスバーは、並列共振子P3に接続され、直列共振子S4の他方のバスバーは、直列共振子S5の一方のバスバーに接続されている。直列共振子S5の一方のバスバーは、並列共振子P4に接続され、直列共振子S5の他方のバスバーは、共通端子側端子14に接続されている。並列共振子P2の一方のバスバー、並列共振子P3の一方のバスバー、および、並列共振子P4の一方のバスバーは、第2グランド端子12に接続されている。
 本実施の形態に係るマルチプレクサ1では、第1フィルタ装置10を平面視した場合に、シールド線16が、インダクタL1と弾性波共振子(直列共振子S1~S5および並列共振子P1~P4のうちいずれかの共振子)との間に配置されている。この構造によれば、インダクタL1と弾性波共振子との電磁界結合を抑制することができ、第1フィルタ装置10の通過帯域外に発生する不要波を抑制することができる。これにより、上記不要波が第2フィルタ装置20に伝わることを抑制できるので、第2フィルタ装置20の通過帯域におけるアイソレーションを向上することができる。
 また例えば、図1に示すように、インダクタL1にパワーアンプ6が接続される構成では、インダクタL1に大きな電流が流れるが、その場合であっても、シールド線16をインダクタL1と弾性波共振子との間に設けることで、電磁界結合を抑制することができる。
 また、本実施の形態におけるシールド線16は、第1フィルタ装置10を平面視した場合に、インダクタL1と弾性波共振子との間に設けられている。そのため、例えば、弾性波共振子の全周を囲むようにシールドが設けられている場合に比べて、本実施の形態では、第1フィルタ装置10およびマルチプレクサ1を小型化することができる。
 また、本実施の形態におけるシールド線16は、並列共振子P1に接続されている第1グランド端子11に接続されている。そのため、シールド線16のためのグランド電極を別途設ける必要がなく、第1フィルタ装置10およびマルチプレクサ1を小型化することができる。
 また、本実施の形態において、シールド線16は第1グランド端子11に接続され、第1グランド端子11は第2グランド端子12に接続されていない。例えば、第1グランド端子11と第2グランド端子12とが接続されている場合、シールド線16に発生した漏れ電流が、第1グランド端子11、第2グランド端子12および並列共振子P2~P4を伝って、共通端子63側に入るという問題が起きやすい。それに対し、本実施の形態では、第1グランド端子11と第2グランド端子12とが接続されていないので、漏れ電流の伝達経路が長くなり、漏れ電流が共通端子63側に入りにくい。これにより、第2フィルタ装置20の通過帯域におけるアイソレーションを向上することができる。
 [4.評価結果等]
 以下、実施の形態に係るマルチプレクサ1の評価結果(シミュレーション結果)を、比較例1および2と比較しながら説明する。
 図7は、比較例1に係る第1フィルタ装置110の電極レイアウトを示す図である。比較例1の第1フィルタ装置110は、シールド線16を有していない。
 図8は、比較例2に係る第1フィルタ装置210の電極レイアウトを示す図である。比較例2の第1フィルタ装置210はシールド線216を有しているが、そのシールド線216が第2グランド端子12に接続されている。
 図9は、マルチプレクサ1のRx帯におけるアイソレーション特性を示す図である。図9に示すように、第2フィルタ装置20の周波数通過帯域(1930MHz~1995MHz)におけるアイソレーション値は、実施の形態が55.6dB、比較例1が53.3dB、比較例2が53.5dBである。実施の形態は、比較例1、2に比べてアイソレーションが良い。
 本実施の形態のように、インダクタL1と弾性波共振子との間にシールド線16を設けることで、第2フィルタ装置20の通過帯域におけるアイソレーションを向上することができる。また、本実施の形態のように、シールド線16に接続された第1グランド端子11と、第2グランド端子12とを、それぞれ独立させることで、第2フィルタ装置20の通過帯域におけるアイソレーションを向上することができる。
 (その他の形態など)
 以上、本発明の実施の形態に係るマルチプレクサ1について説明したが、本発明は、上記実施の形態には限定されない。例えば、上記実施の形態に次のような変形を施した態様も、本発明に含まれ得る。
 例えば、実施の形態では、マルチプレクサの例としてデュプレクサを挙げたが、それに限られず、送信用フィルタを複数共通接続したマルチプレクサであってもよいし、受信用フィルタを複数共通接続したマルチプレクサであってもよい。
 実施の形態の第1フィルタ装置10では、基板19の一方の主面19aに弾性波共振子が形成されている例を示したが、それに限られず、第1フィルタ装置10は、WLP(Wafer Level Package)タイプの弾性波デバイスであってもよい。
 実施の形態では、インダクタL1の長辺L1aが第1フィルタ装置10の短辺10bと平行になるように、インダクタL1が配置されているが、それに限られない。例えば、インダクタL1の長辺L1aが第1フィルタ装置210の長辺210aと平行となるように、インダクタL1が配置されてもよい。その場合、シールド線16は、第1グランド端子11から引き出され、インダクタL1と弾性波共振子(直列共振子S1、S2、並列共振子P1)との間に配置されていればよい。
 実施の形態のマルチプレクサ1では、インダクタL2の周りにシールド線が形成されていない例を示したが、それに限られない。例えばインダクタL2と第1フィルタ装置10の弾性波共振子との間にシールド線が設けられていてもよい。ただし、マルチプレクサ1がデュプレクサである場合、インダクタL2には低電力な高周波信号が入力されるので、電磁界結合による影響は少なく、必ずしもインダクタL2と上記弾性波共振子との間にシールド線を設ける必要はない。
 本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できるマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
 1   マルチプレクサ
 5   フロントエンド回路
 6   パワーアンプ
 7   ローノイズアンプ
 8   RFIC
 9   アンテナ素子
 10  第1フィルタ装置
 10a 長辺
 10b 短辺
 11  第1グランド端子
 12  第2グランド端子
 13  第1端子側端子(アンプ側端子)
 14  共通端子側端子(アンテナ側端子)
 16  シールド線
 19  基板
 19a 一方の主面
 20  第2フィルタ装置
 60  多層基板
 60a 一方の主面
 61  第1端子
 62  第2端子
 63  共通端子
 64  グランド端子
 66  最上層
 67  中間層
 68  最下層
 70  接合材
 C1  第1経路
 C2  第2経路
 D1  伝搬方向
 D2  方向
 L1、L2、L3、L4 インダクタ
 L1a 長辺
 L1b 短辺
 n1、n2、n3、n4、n5 ノード
 P1、P2、P3、P4、P5、P6、P7、P8 並列共振子
 S1、S2、S3、S4、S5、S6、S7、S8 直列共振子
 vc  ビア導体
 pc  パターン導体

Claims (10)

  1.  共通端子、第1端子および第2端子と、
     前記共通端子と前記第1端子とを結ぶ第1経路上に設けられた1以上の直列共振子、および、前記第1経路上のノードとグランドとを結ぶ経路上に設けられた2以上の並列共振子を含む複数の弾性波共振子を有する第1フィルタ装置と、
     前記第1経路上にて、前記複数の弾性波共振子のうち前記第1端子に最も近い弾性波共振子と前記第1端子との間に設けられたインダクタと、
     前記共通端子と前記第2端子とを結ぶ第2経路上に設けられた第2フィルタ装置と、
     を備えるマルチプレクサであって、
     前記第1フィルタ装置は、
     前記第1経路上にて、前記2以上の並列共振子のうち前記第1端子に最も近い第1の並列共振子が接続される第1グランド端子と、
     前記2以上の並列共振子のうち前記第1の並列共振子と異なる第2の並列共振子が接続される第2グランド端子と、
     前記第1フィルタ装置を平面視した場合に、前記インダクタと前記複数の弾性波共振子との間に配置されているシールド線と、
     をさらに備え、
     前記第1フィルタ装置において、前記シールド線は前記第1グランド端子に接続され、前記第1グランド端子は前記第2グランド端子に接続されていない
     マルチプレクサ。
  2.  前記第1端子に最も近い弾性波共振子は、前記1以上の直列共振子のうち前記第1端子に最も近い第1の直列共振子であり、
     前記シールド線は、前記第1フィルタ装置を平面視した場合に、前記インダクタと前記第1の直列共振子との間に配置されている
     請求項1に記載のマルチプレクサ。
  3.  前記シールド線は、前記第1フィルタ装置を平面視した場合に、前記インダクタと前記複数の弾性波共振子とを結ぶ直線に対して交差するように配置されている
     請求項1または2に記載のマルチプレクサ。
  4.  多層基板をさらに備え、
     前記共通端子、前記第1端子および前記第2端子は、前記多層基板に設けられ、
     前記第1フィルタ装置、前記インダクタ、および、前記第2フィルタ装置は、前記多層基板の一方の主面に実装されている
     請求項1~3のいずれか1項に記載のマルチプレクサ。
  5.  前記第1フィルタ装置は、圧電性を有する基板を有し、
     前記シールド線および前記第1グランド端子は、前記基板の一方の主面に形成されている
     請求項4に記載のマルチプレクサ。
  6.  前記第1フィルタ装置と前記インダクタとの間には、前記第1フィルタ装置および前記インダクタと異なる他の電子部品が実装されておらず、前記第1フィルタ装置および前記インダクタは、互いに隣り合っている
     請求項4または5に記載のマルチプレクサ。
  7.  前記インダクタは、前記第1端子に接続されるパワーアンプと、前記第1フィルタ装置との間に接続される
     請求項1~6のいずれか1項に記載のマルチプレクサ。
  8.  前記インダクタは、チップインダクタまたは巻線インダクタである
     請求項1~7のいずれか1項に記載のマルチプレクサ。
  9.  前記第1フィルタ装置および前記インダクタのそれぞれは、平面視した場合に長方形状であり、
     前記インダクタは、前記インダクタの長辺が前記第1フィルタ装置の長辺または短辺に平行となるように配置されている
     請求項1~8のいずれか1項に記載のマルチプレクサ。
  10.  前記第1フィルタ装置は送信用フィルタであり、前記第2フィルタ装置は、受信用フィルタである
     請求項1~9のいずれか1項に記載のマルチプレクサ。
PCT/JP2018/042779 2017-12-04 2018-11-20 マルチプレクサ WO2019111695A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207014666A KR102424038B1 (ko) 2017-12-04 2018-11-20 멀티플렉서
JP2019558112A JP6711471B2 (ja) 2017-12-04 2018-11-20 マルチプレクサ
CN201880074770.7A CN111386656B (zh) 2017-12-04 2018-11-20 多工器
US16/886,832 US11558035B2 (en) 2017-12-04 2020-05-29 Multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232655 2017-12-04
JP2017-232655 2017-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/886,832 Continuation US11558035B2 (en) 2017-12-04 2020-05-29 Multiplexer

Publications (1)

Publication Number Publication Date
WO2019111695A1 true WO2019111695A1 (ja) 2019-06-13

Family

ID=66750894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042779 WO2019111695A1 (ja) 2017-12-04 2018-11-20 マルチプレクサ

Country Status (5)

Country Link
US (1) US11558035B2 (ja)
JP (1) JP6711471B2 (ja)
KR (1) KR102424038B1 (ja)
CN (1) CN111386656B (ja)
WO (1) WO2019111695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270330A1 (ja) * 2021-06-25 2022-12-29 株式会社村田製作所 高周波モジュール及び通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647980B1 (ko) * 2018-12-20 2024-03-15 가부시키가이샤 무라타 세이사쿠쇼 멀티플렉서
CN114465601B (zh) * 2022-04-13 2022-08-12 苏州汉天下电子有限公司 一种滤波器、双工器以及多工器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034373A1 (ja) * 2012-08-30 2014-03-06 株式会社村田製作所 フィルタ装置
WO2015098240A1 (ja) * 2013-12-24 2015-07-02 株式会社村田製作所 フィルタ装置およびデュプレクサ
WO2016136413A1 (ja) * 2015-02-25 2016-09-01 株式会社村田製作所 高周波モジュール
WO2017179253A1 (ja) * 2016-04-11 2017-10-19 株式会社村田製作所 複合フィルタ装置、高周波フロントエンド回路及び通信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230510B2 (en) * 2002-11-19 2007-06-12 Nxp B. V. Duplexer and method of isolating an Rx-band and a Tx-band
CN102725958B (zh) * 2010-01-28 2015-03-11 株式会社村田制作所 弹性表面波滤波装置
JP5723667B2 (ja) * 2011-04-27 2015-05-27 太陽誘電株式会社 ラダーフィルタ、分波器及びモジュール
JP5777975B2 (ja) * 2011-08-22 2015-09-16 太陽誘電株式会社 通信モジュール
CN104604130B (zh) * 2012-08-30 2017-05-17 株式会社村田制作所 弹性波滤波器装置及双工器
EP2903159B1 (en) * 2012-09-25 2017-08-02 Murata Manufacturing Co., Ltd. Acoustic wave filter device and duplexer
JP6042689B2 (ja) 2012-10-16 2016-12-14 太陽誘電株式会社 弾性波デバイス及びその設計方法
WO2016088680A1 (ja) * 2014-12-04 2016-06-09 株式会社村田製作所 ラダー型フィルタ、弾性波フィルタモジュール及びデュプレクサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034373A1 (ja) * 2012-08-30 2014-03-06 株式会社村田製作所 フィルタ装置
WO2015098240A1 (ja) * 2013-12-24 2015-07-02 株式会社村田製作所 フィルタ装置およびデュプレクサ
WO2016136413A1 (ja) * 2015-02-25 2016-09-01 株式会社村田製作所 高周波モジュール
WO2017179253A1 (ja) * 2016-04-11 2017-10-19 株式会社村田製作所 複合フィルタ装置、高周波フロントエンド回路及び通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270330A1 (ja) * 2021-06-25 2022-12-29 株式会社村田製作所 高周波モジュール及び通信装置

Also Published As

Publication number Publication date
CN111386656B (zh) 2023-09-08
US20200295737A1 (en) 2020-09-17
US11558035B2 (en) 2023-01-17
JP6711471B2 (ja) 2020-06-17
KR102424038B1 (ko) 2022-07-22
JPWO2019111695A1 (ja) 2020-07-16
CN111386656A (zh) 2020-07-07
KR20200078565A (ko) 2020-07-01

Similar Documents

Publication Publication Date Title
JP5817795B2 (ja) 高周波モジュール
JP6468290B2 (ja) 高周波モジュール
US10615775B2 (en) Multiplexer, transmission apparatus, and reception apparatus
JP6183456B2 (ja) 高周波モジュール
JP6372568B2 (ja) 高周波モジュール
JP6249020B2 (ja) 高周波モジュール
JP6183461B2 (ja) 高周波モジュール
WO2018168653A1 (ja) 高周波モジュール
JP6406266B2 (ja) 高周波モジュール
JP6669132B2 (ja) マルチプレクサ、送信装置および受信装置
JP6183462B2 (ja) 高周波モジュール
JP6187583B2 (ja) 高周波モジュール
US11558035B2 (en) Multiplexer
WO2021002238A1 (ja) 高周波モジュール及び通信装置
WO2012176576A1 (ja) フィルタ装置
JP6564448B2 (ja) RFフィルタ回路、減衰が改善されたrfフィルタおよび分離度が改善されたデュプレクサ
JP6930463B2 (ja) マルチプレクサ、および、通信装置
WO2018003378A1 (ja) フィルタ装置およびマルチプレクサ
WO2019235490A1 (ja) マルチプレクサ
JP2021072563A (ja) マルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558112

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014666

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886429

Country of ref document: EP

Kind code of ref document: A1