WO2012176576A1 - フィルタ装置 - Google Patents

フィルタ装置 Download PDF

Info

Publication number
WO2012176576A1
WO2012176576A1 PCT/JP2012/063340 JP2012063340W WO2012176576A1 WO 2012176576 A1 WO2012176576 A1 WO 2012176576A1 JP 2012063340 W JP2012063340 W JP 2012063340W WO 2012176576 A1 WO2012176576 A1 WO 2012176576A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
filter
inductor
inductors
wiring board
Prior art date
Application number
PCT/JP2012/063340
Other languages
English (en)
French (fr)
Inventor
雅則 加藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012176576A1 publication Critical patent/WO2012176576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/34Networks for connecting several sources or loads working on different frequencies or frequency bands, to a common load or source
    • H03H11/344Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter

Definitions

  • the present invention relates to a filter device.
  • the present invention relates to a filter device including at least two filter units.
  • Patent Document 1 describes a filter device in which a plurality of surface acoustic wave filter chips and a plurality of chip inductors are mounted on a wiring board.
  • adjacent chip inductors are arranged so that their longitudinal directions are orthogonal to each other. For this reason, the magnetic field directions of adjacent chip inductors are orthogonal to each other. Thereby, electromagnetic interference between adjacent chip inductors is suppressed.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a filter device including at least two filter units, which has a high degree of freedom in layout and can be downsized. There is.
  • the filter device includes an antenna terminal connected to an antenna, first and second filter units, a first inductor, and a second inductor.
  • the first and second filter units are connected to the antenna terminal.
  • the first inductor is connected between the first filter unit and the antenna terminal.
  • the first inductor is an impedance matching inductor.
  • the second inductor is connected to the second filter unit.
  • the filter device according to the present invention includes a wiring board and first and second chip inductors.
  • the first chip inductor is mounted on the wiring board.
  • the first chip inductor constitutes a first inductor.
  • the second chip inductor is mounted on the wiring board so as to be adjacent to the first chip inductor.
  • the second chip inductor constitutes a second inductor.
  • One of the first and second chip inductors is configured to generate a magnetic field along the surface direction of the wiring board.
  • the other of the first and second chip inductors is configured to generate a magnetic field along a direction (typically a vertical direction) inclined with respect to the surface direction of the wiring board.
  • adjacent means facing directly without interposing other elements.
  • the other of the first and second chip inductors is configured to generate a magnetic field along the vertical direction of the surface of the wiring board.
  • the second inductor is a chip inductor for impedance matching connected between the second filter unit and the antenna terminal.
  • the first and second chip inductors both have a longitudinal direction, and the longitudinal direction of the first chip inductor and the longitudinal direction of the second chip inductor are They are arranged parallel to each other.
  • the first and second chip inductors are both arranged along the longitudinal direction.
  • the filter device is mounted on the wiring board, and the first filter chip constituting the first filter unit and the wiring board are mounted on the wiring board. And a second filter chip constituting the second filter unit.
  • Each of the first and second filter chips has a rectangular shape.
  • the first and second chip inductors are arranged along the end sides of the first or second filter chip.
  • the present invention it is possible to provide a filter device that has a high degree of layout freedom and can be miniaturized.
  • FIG. 1 is a schematic circuit diagram of the filter device according to the first embodiment.
  • FIG. 2 is a schematic plan view of the filter device according to the first embodiment.
  • FIG. 3 is a schematic perspective view of the chip inductor 21.
  • FIG. 4 is a schematic perspective view of the chip inductor 20.
  • FIG. 5 is a schematic circuit diagram of the filter device according to the second embodiment.
  • FIG. 6 is a schematic plan view of the filter device according to the second embodiment.
  • FIG. 7 is a schematic plan view of a filter device according to a comparative example.
  • FIG. 8 is a graph showing the isolation characteristics in the reception frequency band of the filter device according to the first embodiment and the filter device according to the comparative example.
  • FIG. 1 is a schematic circuit diagram of the filter device according to the first embodiment. First, the circuit configuration of the filter device 1 of the present embodiment will be described with reference to FIG.
  • the filter device 1 includes an antenna terminal 12 connected to an antenna, and first and second filter units 10 and 11.
  • the first and second filter units 10 and 11 are commonly connected to the antenna terminal 12 via the switch 13.
  • the switch 13 selectively connects one of the first and second filter sections 10 and 11 to the antenna terminal 12.
  • Each of the first and second filter units 10 and 11 may be, for example, a filter unit having a single filter unit dedicated to reception or transmission, or may include a plurality of filter units such as a duplexer. The filter part which has may be sufficient.
  • a duplexer that is a kind of duplexer
  • the first and second filter units 10 and 11 each have a transmission filter unit and a reception filter unit.
  • the transmission filter unit is connected between the antenna terminal 12 and the transmission-side signal terminals 14 and 15.
  • the transmission filter unit can be configured by, for example, a ladder-type elastic wave filter unit.
  • the transmission filter part may be comprised by other types of filter parts, such as a longitudinal coupling resonator type
  • the reception filter unit is connected between the antenna terminal 12 and the first and second reception side signal terminals 16 to 19.
  • the reception filter unit is configured by a balanced filter unit that outputs a balanced signal.
  • the reception filter unit is composed of a longitudinally coupled resonator type acoustic wave filter unit having a balanced-unbalanced conversion function.
  • the receiving filter part may output an unbalanced signal, for example, may be comprised by the ladder type
  • the “elastic wave” includes a surface acoustic wave, a boundary acoustic wave, and a bulk acoustic wave.
  • An inductor L1 is connected between the first filter unit 10 and the antenna terminal 12. Specifically, the inductor L1 is connected between the connection point between the antenna terminal 12 and the first filter unit 10 and the ground potential.
  • the inductor L1 is an impedance matching inductor on the antenna terminal 12 side of the first filter unit 10.
  • an inductor L2 is connected between the connection point between the antenna terminal 12 and the second filter unit 11 and the ground potential.
  • the inductor L2 is an impedance matching inductor on the antenna terminal 12 side of the second filter unit 11.
  • the transmission filter unit in the first filter unit 10 is connected to the transmission side signal terminal 14.
  • the transmission filter unit in the second filter unit 11 is connected to the transmission-side signal terminal 15.
  • Inductors L6 and L7 are connected between the reception filter unit in the first filter unit 10 and the reception-side signal terminals 16 and 17, respectively.
  • An inductor L5 is connected between a connection point between the reception filter unit and the inductor L6 and a connection point between the reception filter unit and the inductor L7.
  • These inductors L5 to L7 are inductors for matching impedance.
  • Inductors L9 and L10 are connected between the reception filter unit in the second filter unit 11 and the reception-side signal terminals 18 and 19, respectively.
  • An inductor L8 is connected between a connection point between the reception filter unit and the inductor L9 and a connection point between the reception filter unit and the inductor L10.
  • These inductors L8 to L10 are inductors for matching impedances on the reception side signal terminals 18 and 19 side of the reception filter unit in the first filter unit 11.
  • FIG. 2 is a schematic plan view of the filter device according to the first embodiment. Next, a specific configuration of the filter device 1 according to the present embodiment will be described with reference to FIG.
  • the filter device 1 has a wiring board 30. On the surface of the wiring substrate 30, first and second filter chips 31, 32 and a plurality of chip inductors 20 to 27 are mounted.
  • the first filter chip 31 constitutes at least a part of the first filter unit 10. That is, the first filter chip 31 may constitute the entirety of the first filter unit 10, for example, constitutes a portion excluding the inductor and the like of the first filter unit 10, and the remaining The portion may be constituted by the wiring board 30.
  • the second filter chip 32 constitutes at least a part of the second filter unit 11. That is, the second filter chip 32 may constitute the entirety of the second filter unit 11, for example, constitutes a portion excluding the inductor or the like of the second filter unit 11, and the remaining The portion may be constituted by the wiring board 30.
  • Each of the first and second filter chips 31 and 32 has a rectangular shape having four end sides.
  • the first and second filter chips 31 and 32 are arranged along the x direction, which is the direction in which the short sides extend.
  • the first and second filter chips 31 and 32 are adjacent to each other in the x direction.
  • Each of the first and second filter chips 31 and 32 is arranged such that the long side is along the y direction.
  • the first filter chip 31 is larger in dimension along the y direction than the second filter chip 32.
  • the first filter chip 31 and the second filter chip 32 have different pass frequency bands. For this reason, the first filter chip 31 and the second filter chip 32 have different shapes.
  • the first filter chip 31 and the second filter chip 32 are two duplexer chips that are mounted on the wiring board 30 and have different pass frequency bands such as Band1 and Band2 of the UTMS standard.
  • the y2 side short side of the first filter chip 31 and the y2 side short side of the second filter chip 32 are arranged substantially linearly.
  • the y1 side short side of the first filter chip 31 is located on the y1 side with respect to the y1 side short side of the second filter chip 32.
  • the chip inductor 20 constitutes an inductor L1.
  • the chip inductor 21 constitutes an inductor L2.
  • the chip inductor 22 constitutes an inductor L5.
  • the chip inductor 23 constitutes an inductor L6.
  • the chip inductor 24 constitutes an inductor L7.
  • the chip inductor 25 constitutes an inductor L8.
  • the chip inductor 26 constitutes an inductor L9.
  • the chip inductor 27 constitutes an inductor L10.
  • the chip inductors 20 and 21 are arranged on the wiring board 30 on the x1 side in the x direction of the first filter chip 31 and on the y1 side in the y direction of the second filter chip 32.
  • the chip inductors 22 to 27 are arranged on the wiring board 30 on the y2 side of the first and second filter chips 31 and 32.
  • the filter device 1 constitutes a duplexer bank in which a duplexer and an impedance matching circuit are mounted on the same wiring board.
  • chip inductors 20 and 21 are arranged on one main surface of the wiring board 30.
  • the chip inductors 20 and 21 are impedance matching inductors on the antenna terminal 12 side of the first and second filter chips 31 and 32.
  • the first filter chip 31 and the second filter chip 32 are duplexers having different pass frequency bands.
  • the chip inductors 20 and 21 have an elongated shape. Specifically, the chip inductors 20 and 21 have a rectangular shape. The longitudinal directions of the chip inductors 20 and 21 are along the x direction. For this reason, the longitudinal directions of the chip inductors 20 and 21 are parallel to each other.
  • the chip inductors 20 and 21 are arranged on the wiring board 30 along the x direction parallel to the longitudinal direction. More specifically, the rectangular first filter chip 31 and second filter chip 32 are mounted on the wiring board 30. The first filter chip 31 and the second filter chip 32 are adjacent to each other. Chip inductors 20 and 21 are arranged along the y1 side side of the second filter chip 32 whose side along the x direction is shorter than the side along the x direction of the first filter chip 31.
  • the chip inductor 20 and the chip inductor 21 are adjacent to each other.
  • the chip inductors 20 and 21 are chip inductors for impedance matching on the antenna terminal 12 side of the first filter chip 31 and the second filter chip 32.
  • the chip inductors 20 and 21 have an elongated shape. In the chip inductors 20 and 21, the wiring directions inside the inductors are different from each other. For this reason, one of the chip inductors 20 and 21 generates a magnetic field along the surface direction of the wiring board 30, and the other generates a magnetic field along the direction inclined with respect to the surface direction of the wiring board 30.
  • FIG. 7 shows that the filter device according to this comparative example and the filter device 1 according to the above-described embodiment are compatible with Band 1 of the UTMS standard.
  • FIG. 8 shows the isolation characteristics in the respective reception frequency bands of the filter device 1 and the filter device according to the comparative example. From the results shown in FIG. 8, it can be seen that the filter device 1 according to the first embodiment has an isolation characteristic of about 7 dB better in the reception frequency band than the filter device according to the comparative example. In the filter device of the comparative example shown in FIG.
  • the first chip inductor 120 and the second chip try to reduce the coupling electromagnetically. If the distance between the inductor 121 is further increased, or the first chip inductor 120 and the first chip inductor 120 are arranged to be inclined with respect to each other in the longitudinal direction, the mounting area of the chip inductor increases. As a result, there may be a problem that the size of the filter device becomes large.
  • FIG. 3 is a schematic perspective view of the chip inductor 21.
  • FIG. 4 is a schematic perspective view of the chip inductor 20.
  • the chip inductor 21 is constituted by a so-called multilayer chip inductor. That is, the chip inductor 21 is a chip inductor having a wiring 21 a wound around an axis that extends linearly in a direction perpendicular to the surface direction of the wiring board 30. For this reason, the chip inductor 21 mainly generates a magnetic field in a direction perpendicular to the surface direction of the wiring board 30 when a signal is input.
  • the chip inductor 20 is constituted by a so-called wire-wound chip inductor. That is, the chip inductor 20 is a chip inductor having a wiring 20 a wound around an axis that extends linearly in the surface direction of the wiring substrate 30. For this reason, the chip inductor 20 mainly generates a magnetic field in a direction parallel to the surface direction of the wiring board 30 when a signal is input.
  • one of the chip inductors 20 and 21 is configured to mainly generate a magnetic field along the surface direction of the wiring board 30, while the other is in the surface direction.
  • a magnetic field along a direction inclined with respect to the direction (typically a vertical direction) is mainly generated.
  • the chip inductor 20 and the chip inductor 21 can be coupled electromagnetically regardless of the mounting direction of the chip inductors 20 and 21. Therefore, the degree of freedom in layout with the chip inductors 20 and 21 is high.
  • the chip inductor 20 and the chip inductor 21 can be arranged so that their longitudinal directions are parallel to each other. In that case, the chip inductor 20 and the chip inductor 21 can be arranged along the longitudinal direction.
  • the chip inductors 20 and 21 can be arranged along the y1 side of the filter chip 32. Therefore, the filter device 1 can be downsized.
  • the chip inductor 21 generates a magnetic field along a direction perpendicular to the surface direction of the wiring board 30, while the chip inductor 20 mainly generates a magnetic field along the surface direction of the wiring board 30.
  • the directions of the generated magnetic fields are orthogonal to each other. Therefore, electromagnetic interference between the chip inductor 21 and the chip inductor 20 can be more effectively suppressed. Therefore, for example, isolation characteristics such as an isolation characteristic between the transmission filter unit and the reception filter unit can be improved.
  • the direction of the axis of the chip inductor having wiring wound around the axis is defined as the direction of the magnetic field.
  • the direction of the magnetic field is the direction in which the right screw advances when the right screw is rotated along the winding direction of the wiring.
  • a duplexer bank such as the filter device 1
  • the influence of electromagnetic coupling generated between a plurality of impedance matching inductors connected between a common antenna and each of the first and second duplexers is suppressed. can do. Therefore, an isolation characteristic between the transmission filter unit and the reception filter unit included in the first duplexer, and an isolation characteristic between the transmission filter unit and the reception filter unit between the first and second duplexers. Can be improved while suppressing an increase in the mounting area of the chip inductor.
  • FIG. 5 is a schematic circuit diagram of the filter device according to the second embodiment. First, the circuit configuration of the filter device 2 of the present embodiment will be described with reference to FIG.
  • an inductor L3 is connected between the transmission filter unit and the transmission-side signal terminal 14 in the first filter unit 10.
  • An inductor L4 is connected between the transmission filter unit and the transmission-side signal terminal 15 in the second filter unit 11.
  • the inductors L3 and L4 are for matching impedances of the transmission-side signal terminals 14 and 15 and a circuit connected to the subsequent stage.
  • FIG. 6 is a schematic plan view of the filter device according to the second embodiment. Next, a specific configuration of the filter device 2 according to the present embodiment will be described with reference to FIG.
  • first and second filter chips 31 and 32, a plurality of chip inductors 22 to 27, and chip inductors 40, 41, 42, and 43 are mounted on the surface of the wiring board 30. ing.
  • the chip inductor 40 constitutes the inductor L1
  • the chip inductor 41 constitutes the inductor L2
  • the chip inductor 42 constitutes the inductor L3
  • the chip inductor 43 constitutes the inductor L4.
  • the chip inductors 40 and 42 are arranged on the x2 side in the x direction of the second filter chip 32 and on the y1 side in the y direction of the second filter chip 32.
  • the chip inductors 41 and 43 are arranged on the x1 side in the x direction of the first filter chip 31 and on the y1 side in the y direction of the second filter chip 32.
  • Each of the chip inductors 40, 41, 42, 43 is disposed adjacent to each other in the x direction. That is, no other element is arranged between the chip inductors 40, 41, 42, and 43 adjacent to each other in the x direction.
  • the chip inductors 40, 41, 42 and 43 have an elongated shape. Specifically, the chip inductors 40, 41, 42, and 43 have a rectangular shape. The longitudinal direction of each of the chip inductors 40, 41, 42, 43 is along the x direction. For this reason, the longitudinal directions of the chip inductors 40, 41, 42, and 43 are parallel to each other. The chip inductors 40, 41, 42, 43 are arranged along the x direction parallel to the longitudinal direction. The chip inductors 40, 41, 42, and 43 are linearly arranged along the y1 side sides of the first and second filter chips 31 and 32.
  • the chip inductors 40 and 41 are constituted by so-called multilayer chip inductors, similarly to the chip inductor 21. Similarly to the chip inductor 20, the chip inductors 42 and 43 are so-called winding type chip inductors.
  • one of the two adjacent chip inductors 40, 41, 42, and 43 adjacent to each other generates a magnetic field along the surface direction of the wiring board 30. While configured to generate mainly, the other is configured to generate mainly a magnetic field along a direction (typically a vertical direction) inclined with respect to the surface direction.
  • the distance between two chip inductors whose magnetic field directions are parallel to each other is arranged between two chip inductors whose magnetic field directions are parallel to each other, by disposing a chip inductor having a different magnetic field direction from each of the two chip inductors. Can be lengthened.
  • the chip is connected to the antenna terminal 12 and the transmission-side signal terminals 14 and 15, and matches the impedance.
  • Inductors 40, 41, 42, and 43 are difficult to couple with each other in an electromagnetic field. Therefore, it is difficult to couple the electromagnetic field between the chip inductors 40, 41, 42, and 43 that impedance-match the antenna terminal 12 and the transmission side signal terminals 14 and 15, the antenna terminals 12 and the transmission side signal terminals 14 and 15, Furthermore, the layout flexibility of the chip inductors 40, 41, 42, 43 can be increased.
  • the chip inductors 40, 41, 42, and 43 can be arranged so that their longitudinal directions are parallel to each other. In that case, the chip inductors 40, 41, 42, and 43 can be arranged along the longitudinal direction. The chip inductors 40, 41, 42 and 43 can be arranged along the y1 side of the filter chips 31 and 32. Therefore, the filter device 1 can be downsized. In this embodiment as well, the direction of the axis of the chip inductor having the wiring wound around the axis is defined as the direction of the magnetic field.
  • the present invention is not limited to this configuration.
  • the direction of the magnetic field generated by the first chip inductor and the direction of the magnetic field generated by the second chip inductor need not be parallel, and are not necessarily perpendicular to each other. If the direction of the magnetic field generated by the first chip inductor and the direction of the magnetic field generated by the second chip inductor are not parallel, the direction of the magnetic field generated by the first chip inductor and the second chip inductor are generated. Even when the direction of the magnetic field is not perpendicular, electromagnetic interference between chip inductors arranged in the vicinity can be suppressed.
  • both of the two chip inductors that are arranged in the vicinity and in which the direction of the magnetic field generated by one is inclined with respect to the surface direction of the wiring board are connected to the antenna terminal.
  • the example that constitutes the matching inductor has been described.
  • the present invention is not limited to this configuration.
  • One of the two chip inductors that are arranged in the vicinity and in which the direction of the magnetic field generated by one is inclined with respect to the surface direction of the wiring board is other than the impedance matching inductor connected to the antenna terminal
  • the inductor may be configured.
  • One of the two chip inductors that are arranged in the vicinity and in which the direction of the magnetic field generated by one is inclined with respect to the surface direction of the wiring board is, for example, an inductor connected to the subsequent stage of the filter unit. It may be configured.
  • the filter device has two filter units connected to the antenna terminal.
  • the present invention is not limited to this configuration.
  • the filter device according to the present invention only needs to include at least two or more filter units, and may include three or more filter units.
  • the filter device has two impedance matching chip inductors connected between the filter units 10 and 11 and the antenna terminal 12 has been described.
  • the present invention is not limited to this configuration.
  • the filter device may include three or more impedance matching chip inductors connected between the filter section and the antenna terminal.
  • the impedance matching inductors L1 and L2 connected between the filter unit and the antenna terminal are connected between the connection point between the antenna terminal and the filter unit and the ground potential.
  • the impedance matching inductor connected between the filter unit and the antenna terminal may be connected in series between the antenna terminal and the filter unit.
  • the rectangular shape of the filter chip includes a square shape in which the long side and the short side are equal in length.
  • first and second filter units 10 and 11 may be commonly connected to the antenna terminal 12 without using the switch 13.
  • the first and second filter units 10 and 11 may be connected to the antenna terminal 12 via a duplexer, a diplexer, or the like.

Abstract

 少なくとも2つのフィルタ部を備えるフィルタ装置であって、レイアウト自由度が高く、小型化が可能なフィルタ装置を提供する。 第1及び第2のチップインダクタ20、21のうちの一方が、配線基板30の面方向に沿った磁界を発生させるように構成されている一方、第1及び第2のチップインダクタ20、21のうちの他方が、配線基板30の面方向に対して傾斜した方向に沿った磁界を発生させるように構成されている。

Description

フィルタ装置
 本発明は、フィルタ装置に関する。特に、本発明は、少なくとも2つのフィルタ部を備えるフィルタ装置に関する。
 近年、通信機器のマルチバンド化に伴い、共通のアンテナ端子に接続された複数のフィルタ部を有するフィルタ装置が用いられるようになってきている。このようなフィルタ装置の一例として、例えば、特許文献1には、複数の弾性表面波フィルタチップと、複数のチップインダクタとが配線基板上に実装されたフィルタ装置が記載されている。特許文献1に記載のフィルタ装置では、隣り合うチップインダクタは、長手方向が直交するように配されている。このため、隣り合うチップインダクタの磁界の方向が互いに直交している。これにより、隣り合うチップインダクタ同士の電磁的な干渉が抑制されている。
特開2006-279604号公報
 しかしながら、特許文献1に記載のフィルタ装置では、隣り合うチップインダクタの配置に制約がある。このため、レイアウトの自由度が低く、小型化が困難であるという問題がある。
 本発明は、斯かる点に鑑みて成されたものであり、その目的は、少なくとも2つのフィルタ部を備えるフィルタ装置であって、レイアウト自由度が高く、小型化が可能なフィルタ装置を提供することにある。
 本発明に係るフィルタ装置は、アンテナに接続されるアンテナ端子と、第1及び第2のフィルタ部と、第1のインダクタと、第2のインダクタとを備える。第1及び第2のフィルタ部は、アンテナ端子に接続されている。第1のインダクタは、第1のフィルタ部とアンテナ端子との間に接続されている。第1のインダクタは、インピーダンス整合用のインダクタである。第2のインダクタは、第2のフィルタ部に接続されている。本発明に係るフィルタ装置は、配線基板と、第1及び第2のチップインダクタとを備える。第1のチップインダクタは、配線基板上に実装されている。第1のチップインダクタは、第1のインダクタを構成している。第2のチップインダクタは、配線基板上において第1のチップインダクタと隣接するように実装されている。第2のチップインダクタは、第2のインダクタを構成している。第1及び第2のチップインダクタのうちの一方は、配線基板の面方向に沿った磁界を発生させるように構成されている。一方、第1及び第2のチップインダクタのうちの他方は、配線基板の面方向に対して傾斜した方向(典型的には垂直方向)に沿った磁界を発生させるように構成されている。
 なお、本発明において、「隣接する」とは、他の素子を介さずに直接対面していることを意味する。
 「傾斜」には、垂直が含まれるものとする。
 本発明に係るフィルタ装置のある特定の局面では、第1及び第2のチップインダクタのうちの他方が、配線基板の表面の垂直方向に沿った磁界を発生させるように構成されている。
 本発明に係るフィルタ装置の別の特定の局面では、第2のインダクタは、第2のフィルタ部とアンテナ端子との間に接続されているインピーダンス整合用のチップインダクタである。
 本発明に係るフィルタ装置の他の特定の局面では、第1及び第2のチップインダクタは、ともに長手方向を有し、第1のチップインダクタの長手方向と第2のチップインダクタの長手方向とが互いに平行となるように配されている。
 本発明に係るフィルタ装置のさらに他の特定の局面では、第1及び第2のチップインダクタは、ともに長手方向に沿って配列されている。
 本発明に係るフィルタ装置のさらに別の特定の局面では、フィルタ装置は、配線基板の上に実装されており、第1のフィルタ部を構成している第1のフィルタチップと、配線基板の上に実装されており、第2のフィルタ部を構成している第2のフィルタチップとをさらに備える。第1及び第2のフィルタチップのそれぞれは矩形状である。第1及び第2のチップインダクタは、第1または第2のフィルタチップの端辺に沿って配列されている。
 本発明によれば、レイアウト自由度が高く、小型化が可能なフィルタ装置を提供することができる。
図1は、第1の実施形態に係るフィルタ装置の略図的回路図である。 図2は、第1の実施形態に係るフィルタ装置の略図的平面図である。 図3は、チップインダクタ21の模式的斜視図である。 図4は、チップインダクタ20の模式的斜視図である。 図5は、第2の実施形態に係るフィルタ装置の略図的回路図である。 図6は、第2の実施形態に係るフィルタ装置の略図的平面図である。 図7は、比較例に係るフィルタ装置の略図的平面図である。 図8は、第1の実施形態に係るフィルタ装置と、比較例に係るフィルタ装置とのそれぞれの受信周波数帯におけるアイソレーション特性を示すグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態に係るフィルタ装置の略図的回路図である。まず、図1を参照しながら、本実施形態のフィルタ装置1の回路構成について説明する。
 フィルタ装置1は、アンテナに接続されるアンテナ端子12と、第1及び第2のフィルタ部10、11とを備えている。第1及び第2のフィルタ部10、11は、スイッチ13を介してアンテナ端子12に共通に接続されている。
 スイッチ13により、第1及び第2のフィルタ部10、11のうちの一方がアンテナ端子12に選択的に接続される。
 第1及び第2のフィルタ部10、11のそれぞれは、例えば、受信専用または送信専用の単一のフィルタ部を有するフィルタ部であってもよいし、例えば分波器などの複数のフィルタ部を有するフィルタ部であってもよい。本実施形態では、第1及び第2のフィルタ部10、11のそれぞれが、分波器の一種であるデュプレクサにより構成されている例について説明する。
 第1及び第2のフィルタ部10、11は、それぞれ送信フィルタ部と受信フィルタ部とを有する。第1及び第2のフィルタ部10、11のそれぞれにおいて、送信フィルタ部は、アンテナ端子12と送信側信号端子14、15との間に接続されている。送信フィルタ部は、例えば、ラダー型弾性波フィルタ部により構成することができる。もっとも、送信フィルタ部は、例えば、縦結合共振子型弾性波フィルタ部などの他の種類のフィルタ部により構成されていてもよい。
 一方、受信フィルタ部は、アンテナ端子12と、第1及び第2の受信側信号端子16~19との間に接続されている。本実施形態では、受信フィルタ部は、平衡信号を出力するバランス型のフィルタ部により構成されている。具体的には、受信フィルタ部は、平衡-不平衡変換機能を有する縦結合共振子型弾性波フィルタ部により構成されている。もっとも、受信フィルタ部は、不平衡信号を出力するものであってもよく、例えば、ラダー型弾性波フィルタ部により構成されていてもよい。
 なお、本発明において、「弾性波」には、弾性表面波、弾性境界波及びバルク弾性波が含まれるものとする。
 第1のフィルタ部10とアンテナ端子12との間には、インダクタL1が接続されている。具体的には、インダクタL1は、アンテナ端子12と第1のフィルタ部10との間の接続点と、グラウンド電位との間に接続されている。このインダクタL1は、第1のフィルタ部10のアンテナ端子12側のインピーダンス整合用のインダクタである。
 第2のフィルタ部11とアンテナ端子12との間には、インダクタL2が接続されている。具体的には、インダクタL2は、アンテナ端子12と第2のフィルタ部11との間の接続点と、グラウンド電位との間に接続されている。このインダクタL2は、第2のフィルタ部11のアンテナ端子12側のインピーダンス整合用のインダクタである。
 第1のフィルタ部10における送信フィルタ部は送信側信号端子14に接続されている。第2のフィルタ部11における送信フィルタ部は送信側信号端子15に接続されている。
 第1のフィルタ部10における受信フィルタ部と受信側信号端子16、17との間には、インダクタL6、L7が接続されている。受信フィルタ部とインダクタL6との接続点と、受信フィルタ部とインダクタL7との接続点との間には、インダクタL5が接続されている。これらインダクタL5~L7は、インピーダンスを整合させるためのインダクタである。
 第2のフィルタ部11における受信フィルタ部と受信側信号端子18、19との間には、インダクタL9、L10が接続されている。受信フィルタ部とインダクタL9との接続点と、受信フィルタ部とインダクタL10との接続点との間には、インダクタL8が接続されている。これらインダクタL8~L10は、第1のフィルタ部11における受信フィルタ部の受信側信号端子18,19側のインピーダンスを整合させるためのインダクタである。
 図2は、第1の実施形態に係るフィルタ装置の略図的平面図である。次に、図2を参照しながら、本実施形態に係るフィルタ装置1の具体的構成について説明する。
 フィルタ装置1は、配線基板30を有する。配線基板30の表面の上には、第1及び第2のフィルタチップ31、32と、複数のチップインダクタ20~27とが実装されている。第1のフィルタチップ31は、第1のフィルタ部10の少なくとも一部を構成している。すなわち、第1のフィルタチップ31は、第1のフィルタ部10の全体を構成していてもよいし、例えば、第1のフィルタ部10のインダクタ等を除いた部分を構成しており、残りの部分は、配線基板30により構成されていてもよい。第2のフィルタチップ32は、第2のフィルタ部11の少なくとも一部を構成している。すなわち、第2のフィルタチップ32は、第2のフィルタ部11の全体を構成していてもよいし、例えば、第2のフィルタ部11のインダクタ等を除いた部分を構成しており、残りの部分は、配線基板30により構成されていてもよい。
 第1及び第2のフィルタチップ31、32のそれぞれは、4つの端辺を持つ矩形状である。第1及び第2のフィルタチップ31、32は、短辺の延びる方向であるx方向に沿って配されている。第1及び第2のフィルタチップ31、32は、x方向において隣り合っている。第1及び第2のフィルタチップ31、32のそれぞれは、長辺がy方向に沿うように配されている。第1のフィルタチップ31は、第2のフィルタチップ32よりもy方向に沿った寸法が大きい。第1のフィルタチップ31と、第2のフィルタチップ32とでは、通過周波数帯域が異なる。このため、第1のフィルタチップ31と第2のフィルタチップ32とでは、形状が異なる。例えば、第1のフィルタチップ31と第2のフィルタチップ32とは、配線基板30上に実装され、UTMS規格のBand1とBand2とのような通過周波数帯域が互いに異なる2つのデュプレクサチップである。第1のフィルタチップ31のy2側短辺と第2のフィルタチップ32のy2側短辺とは、略直線状に配置される。第1のフィルタチップ31のy1側短辺は、第2のフィルタチップ32のy1側短辺よりもy1側に位置している。
 チップインダクタ20は、インダクタL1を構成している。チップインダクタ21は、インダクタL2を構成している。チップインダクタ22は、インダクタL5を構成している。チップインダクタ23は、インダクタL6を構成している。チップインダクタ24は、インダクタL7を構成している。チップインダクタ25は、インダクタL8を構成している。チップインダクタ26は、インダクタL9を構成している。チップインダクタ27は、インダクタL10を構成している。
 チップインダクタ20、21は、配線基板30上において、第1のフィルタチップ31のx方向におけるx1側であって、第2のフィルタチップ32のy方向におけるy1側に配されている。一方、チップインダクタ22~27は、配線基板30上において、第1及び第2のフィルタチップ31、32のy2側に配されている。フィルタ装置1は、デュプレクサとインピーダンス整合回路とが同じ配線基板上に実装されたデュプレクサバンクを構成している。フィルタ装置1では、チップインダクタ20、21が配線基板30の一主面上に配されている。チップインダクタ20、21は、第1及び第2のフィルタチップ31,32のアンテナ端子12側のインピーダンス整合用インダクタである。第1のフィルタチップ31と第2のフィルタチップ32とは、互いに異なる通過周波数帯域を有するデュプレクサである。
 チップインダクタ20、21は、x方向において隣接して配置されていることが好ましい。すなわち、x方向において、チップインダクタ20と、チップインダクタ21との間には、他の素子が配されていないことが好ましい。
 チップインダクタ20、21は、細長形状を有する。具体的には、チップインダクタ20、21は、矩形状である。チップインダクタ20、21のそれぞれの長手方向は、x方向に沿っている。このため、チップインダクタ20、21の長手方向は、互いに平行である。チップインダクタ20、21は、配線基板30上において、長手方向と平行なx方向に沿って配列されている。より具体的には、矩形状である第1のフィルタチップ31と第2のフィルタチップ32とは、配線基板30上に実装されている。第1のフィルタチップ31と第2のフィルタチップ32とは互いに隣接している。第1のフィルタチップ31のx方向に沿った辺よりもx方向に沿った辺が短い第2のフィルタチップ32のy1側の辺に沿ってチップインダクタ20、21が配置されている。チップインダクタ20とチップインダクタ21とは互いに隣接している。チップインダクタ20、21は、第1のフィルタチップ31と第2のフィルタチップ32のアンテナ端子12側のインピーダンス整合用のチップインダクタである。チップインダクタ20、21は、細長形状を有する。チップインダクタ20,21では、インダクタ内部の配線方向が互いに異なる。このため、チップインダクタ20,21の一方が配線基板30の面方向に沿った磁界を発生させ、他方が配線基板30の面方向に対して傾斜した方向に沿った磁界を発生させる。チップインダクタ20とチップインダクタ21とで磁界の発生方向が異なることから、チップインダクタ20とチップインダクタ21とが磁界結合することによるフィルタ部10,11のアイソレーション特性の劣化を抑制することができる。このため、チップインダクタ20、21の間の距離を小さくすることができる。従って、実装密度の高いデュプレクサバンクを得ることができる。
 図7に示されるように、第1のチップインダクタ120と第2のチップインダクタ121とを、発生する磁界の向きが平行となるように配置したこと以外は、上記実施形態に係るフィルタ装置1と実質的に同様のフィルタ装置を用意した(比較例)。この比較例に係るフィルタ装置も、上記実施形態に係るフィルタ装置1も、同様に、UTMS規格のBand1に対応している。図8に、フィルタ装置1と、比較例に係るフィルタ装置とのそれぞれの受信周波数帯におけるアイソレーション特性を示す。図8に示された結果から、第1の実施形態に係るフィルタ装置1の方が、比較例に係るフィルタ装置よりも、受信周波数帯域におけるアイソレーション特性が約7dB優れていることが分かる。図7で示した比較例のフィルタ装置において、上記実施形態に係るフィルタ装置1と同等のアイソレーション特性を得るため、電磁界的に結合を小さくしようと第1のチップインダクタ120と第2のチップインダクタ121と間の距離をさらに離す、あるいは第1のチップインダクタ120と第1のチップインダクタ120とで長手方向を互いに傾けて配置しようとすると、チップインダクタの実装面積が増大する。その結果フィルタ装置の寸法が大きくなる問題が発生する場合がある。
 図3は、チップインダクタ21の模式的斜視図である。図4は、チップインダクタ20の模式的斜視図である。
 図3に示すように、チップインダクタ21は、所謂積層型のチップインダクタにより構成されている。すなわち、チップインダクタ21は、配線基板30の面方向に対して垂直な方向に直線的に延びる軸心を中心として巻回された配線21aを有するチップインダクタである。このため、チップインダクタ21は、信号が入力された際に、配線基板30の面方向に対して垂直な方向の磁界を主に発生させる。
 一方、チップインダクタ20は、図4に示すように、所謂巻線型のチップインダクタにより構成されている。すなわち、チップインダクタ20は、配線基板30の面方向に直線的に延びる軸心を中心として巻回された配線20aを有するチップインダクタである。このため、チップインダクタ20は、信号が入力された際に、配線基板30の面方向に平行な方向の磁界を主に発生させる。
 以上説明したように、フィルタ装置1では、チップインダクタ20,21のうちの一方が、配線基板30の面方向に沿った磁界を主に発生させるように構成されている一方、他方が面方向に対して傾斜した方向(典型的には垂直方向)に沿った磁界を主に発生させるように構成されている。このため、チップインダクタ20,21の実装方向に関わらず、チップインダクタ20とチップインダクタ21とが電磁界的に結合し難い。従って、チップインダクタ20,21とのレイアウト自由度が高い。具体的には、本実施形態のように、チップインダクタ20とチップインダクタ21とを長手方向が互いに平行となるように配することもできる。その場合において、チップインダクタ20とチップインダクタ21とを長手方向に沿って配列することが可能である。チップインダクタ20,21をフィルタチップ32のy1側の辺に沿って配列することが可能である。従って、フィルタ装置1の小型化が可能となる。
 また、本実施形態では、チップインダクタ21が配線基板30の面方向に対して垂直な方向に沿った磁界を発生させる一方、チップインダクタ20が配線基板30の面方向に沿った磁界を主に発生させる。このため、チップインダクタ21とチップインダクタ20とでは、発生させる磁界の方向が互いに直交する。よって、チップインダクタ21とチップインダクタ20との電磁的な干渉をより効果的に抑制することができる。従って、例えば、送信フィルタ部と受信フィルタ部との間のアイソレーション特性などのアイソレーション特性を改善することができる。なお、本実施形態では、軸心を中心として巻回された配線を有するチップインダクタの軸心の方向を磁界の方向とした。また、磁界の向きは、配線の巻回方向に沿って右ねじを回転させたときに、右ねじが進行する向きである。
 フィルタ装置1のようなデュプレクサバンクでは、例えば、共通アンテナと第1と第2のデュプレクサのそれぞれとの間に接続されたインピーダンス整合用の複数のインダクタの間で発生する電磁界結合の影響を抑制することができる。このため、第1のデュプレクサに含まれる送信フィルタ部と受信フィルタ部との間のアイソレーション特性、第1と第2のデュプレクサとの間の送信フィルタ部と受信フィルタ部との間のアイソレーション特性を、チップインダクタの実装面積の増大を抑制しつつ、改善することができる。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図5は、第2の実施形態に係るフィルタ装置の略図的回路図である。まず、図5を参照しながら、本実施形態のフィルタ装置2の回路構成について説明する。
 本実施形態において、第1のフィルタ部10における送信フィルタ部と送信側信号端子14との間には、インダクタL3が接続されている。第2のフィルタ部11における送信フィルタ部と送信側信号端子15との間には、インダクタL4が接続されている。このインダクタL3,L4は、送信側信号端子14,15とその後段に接続される回路とのインピーダンスを整合するためのものである。
 図6は、第2の実施形態に係るフィルタ装置の略図的平面図である。次に、図6を参照しながら、本実施形態に係るフィルタ装置2の具体的構成について説明する。
 フィルタ装置2において、配線基板30の表面の上には、第1及び第2のフィルタチップ31、32と、複数のチップインダクタ22~27と、チップインダクタ40、41、42、43とが実装されている。
 チップインダクタ40はインダクタL1を、チップインダクタ41はインダクタL2を、チップインダクタ42はインダクタL3を、チップインダクタ43はインダクタL4を構成している。
 チップインダクタ40、42は、第2のフィルタチップ32のx方向におけるx2側であって、第2のフィルタチップ32のy方向におけるy1側に配されている。一方、チップインダクタ41、43は、第1のフィルタチップ31のx方向におけるx1側であって、第2のフィルタチップ32のy方向におけるy1側に配されている。
 チップインダクタ40、41、42、43のそれぞれは、x方向において隣接して配置されている。すなわち、x方向において、互いに隣接するチップインダクタ40、41、42,43の間のそれぞれには、他の素子が配されていない。
 チップインダクタ40、41、42、43は、細長形状を有する。具体的には、チップインダクタ40、41、42、43は、矩形状である。チップインダクタ40、41、42、43のそれぞれの長手方向は、x方向に沿っている。このため、チップインダクタ40、41、42、43の長手方向は、互いに平行である。チップインダクタ40、41、42、43は、長手方向と平行なx方向に沿って配列されている。チップインダクタ40、41、42、43は、第1及び第2のフィルタチップ31、32のy1側の辺に沿って直線状に配列されている。
 チップインダクタ40、41は、チップインダクタ21と同様に、所謂積層型のチップインダクタにより構成されている。チップインダクタ42、43は、チップインダクタ20と同様に、所謂巻線型のチップインダクタにより構成されている。
 以上説明したように、フィルタ装置2では、さらに、互いに隣接する2つのチップインダクタ40、41、42、43のうち互いに隣接する2つのうちの一方が、配線基板30の面方向に沿った磁界を主に発生させるように構成されている一方、他方が面方向に対して傾斜した方向(典型的には垂直方向)に沿った磁界を主に発生させるように構成されている。磁界の方向が互いに平行な2つのチップインダクタの間に、2つのチップインダクタのそれぞれと互いに磁界の方向が異なるチップインダクタを配置することにより、互いに磁界の方向が平行な2つのチップインダクタ間の距離を長くすることができる。
 このため、チップインダクタ40、41、42、43の配線基板30の面方向に沿った実装方向に関わらず、アンテナ端子12及び送信側信号端子14、15に接続されており、インピーダンスを整合するチップインダクタ40、41、42、43が互いに電磁界的に結合し難い。従って、アンテナ端子12と送信側信号端子14,15、アンテナ端子12同士、及び送信側信号端子14,15同士をインピーダンス整合するチップインダクタ40、41、42、43間で電磁界が結合し難く、さらにチップインダクタ40、41、42、43のレイアウト自由度が高くできる。具体的には、本実施形態のように、チップインダクタ40、41、42、43を長手方向がそれぞれ平行となるように配することもできる。その場合において、チップインダクタ40、41、42、43を長手方向に沿って配列することが可能である。チップインダクタ40、41、42、43をフィルタチップ31,32のy1側の辺に沿って配列することが可能である。従って、フィルタ装置1の小型化が可能となる。なお、本実施形態でも、軸心を中心として巻回された配線を有するチップインダクタの軸心の方向を磁界の方向とした。
 なお、上記の実施形態においては、チップインダクタを配線基板上に配置して信号を印加すると、隣り合うチップインダクタが互いに直交した磁界を発生する場合について説明した。但し、本発明は、この構成に限定されない。本発明において、第1のチップインダクタにより発生する磁界の方向と第2のチップインダクタにより発生する磁界の方向とは、平行でなければよく、互いに垂直である必要は必ずしもない。第1のチップインダクタにより発生する磁界の方向と第2のチップインダクタにより発生する磁界の方向とが平行でなければ、第1のチップインダクタにより発生する磁界の方向と第2のチップインダクタにより発生する磁界の方向とが垂直でない場合であっても、近傍に配置されるチップインダクタ同士の電磁的な干渉を抑制することができる。
 上記実施形態では、近傍に配されており、かつ、一方により発生する磁界の向きが配線基板の面方向に対して傾斜した方向である2つのチップインダクタの両方が、アンテナ端子に接続されたインピーダンス整合用のインダクタを構成するものである例について説明した。但し、本発明はこの構成に限定されない。近傍に配されており、かつ、一方により発生する磁界の方向が配線基板の面方向に対して傾斜した方向である2つのチップインダクタの一方は、アンテナ端子に接続されたインピーダンス整合用のインダクタ以外のインダクタを構成するものであってもよい。近傍に配されており、かつ、一方により発生する磁界の方向が配線基板の面方向に対して傾斜した方向である2つのチップインダクタの一方は、例えば、フィルタ部の後段に接続されたインダクタを構成するものであってもよい。
 さらに上記の実施形態では、フィルタ装置がアンテナ端子に接続されているフィルタ部を2つ有する例について説明した。但し、本発明は、この構成に限定されない。本発明に係るフィルタ装置は、少なくとも2つ以上のフィルタ部を備えていればよく、3つ以上のフィルタ部を備えていてもよい。また、上記の実施形態では、フィルタ装置がフィルタ部10、11とアンテナ端子12との間に接続されているインピーダンス整合用のチップインダクタを2つ有する例について説明した。但し、本発明は、この構成に限定されない。すなわち、本発明において、フィルタ装置は、フィルタ部とアンテナ端子との間に接続されているインピーダンス整合用のチップインダクタを3つ以上有していてもよい。
 本実施形態では、フィルタ部とアンテナ端子との間に接続されているインピーダンス整合用のインダクタL1及びL2が、アンテナ端子とフィルタ部との間の接続点と、グラウンド電位との間に接続されている例について説明した。但し、本発明は、この構成に限定されない。本発明において、フィルタ部とアンテナ端子との間に接続されているインピーダンス整合用のインダクタは、アンテナ端子とフィルタ部との間に直列に接続されていてもよい。なお、フィルタチップの矩形形状は長辺と短辺との長さが等しい正方形状を含むものとする。
 また、第1及び第2のフィルタ部10、11は、スイッチ13を介さずアンテナ端子12に共通に接続されていてもよい。第1及び第2のフィルタ部10、11は、デュプレクサ、ダイプレクサなどを介してアンテナ端子12に接続されていてもよい。
1、2…フィルタ装置
10、11…フィルタ部
12…アンテナ端子
13…スイッチ
14、15…送信側信号端子
16~19…受信側信号端子
20~27、40~43…チップインダクタ
30…配線基板
31、32…フィルタチップ
L1~L10…インダクタ

Claims (6)

  1.  アンテナに接続されるアンテナ端子と、
     前記アンテナ端子に接続されている第1及び第2のフィルタ部と、
     前記第1のフィルタ部と前記アンテナ端子との間に接続されているインピーダンス整合用の第1のインダクタと、
     前記第2のフィルタ部に接続されている第2のインダクタと、
    を備えるフィルタ装置であって、
     配線基板と、
     前記配線基板上に実装されており、前記第1のインダクタを構成している第1のチップインダクタと、
     前記配線基板上において前記第1のチップインダクタと隣接するように実装されており、前記第2のインダクタを構成している第2のチップインダクタと、
    を備え、
     前記第1及び第2のチップインダクタのうちの一方が、前記配線基板の面方向に沿った磁界を発生させるように構成されている一方、前記第1及び第2のチップインダクタのうちの他方が、前記配線基板の面方向に対して傾斜した方向に沿った磁界を発生させるように構成されている、フィルタ装置。
  2.  前記第1及び第2のチップインダクタのうちの他方が、前記配線基板の表面の垂直方向に沿った磁界を発生させるように構成されている、請求項1に記載のフィルタ装置。
  3.  前記第2のインダクタは、前記第2のフィルタ部と前記アンテナ端子との間に接続されているインピーダンス整合用のチップインダクタである、請求項1または2に記載のフィルタ装置。
  4.  前記第1及び第2のチップインダクタは、ともに長手方向を有し、前記第1のチップインダクタの長手方向と第2のチップインダクタの長手方向とが互いに平行となるように配されている、請求項1~3のいずれか一項に記載のフィルタ装置。
  5.  前記第1及び第2のチップインダクタは、ともに前記長手方向に沿って配列されている、請求項4に記載のフィルタ装置。
  6.  前記配線基板の上に実装されており、前記第1のフィルタ部を構成している第1のフィルタチップと、
     前記配線基板の上に実装されており、前記第2のフィルタ部を構成している第2のフィルタチップと、
    をさらに備え、
     前記第1及び第2のフィルタチップのそれぞれは矩形状であり、
     前記第1及び第2のチップインダクタは、前記第1または第2のフィルタチップの端辺に沿って配列されている、請求項5に記載のフィルタ装置。
PCT/JP2012/063340 2011-06-20 2012-05-24 フィルタ装置 WO2012176576A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011136202 2011-06-20
JP2011-136202 2011-06-20

Publications (1)

Publication Number Publication Date
WO2012176576A1 true WO2012176576A1 (ja) 2012-12-27

Family

ID=47422418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063340 WO2012176576A1 (ja) 2011-06-20 2012-05-24 フィルタ装置

Country Status (1)

Country Link
WO (1) WO2012176576A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179967A (ja) * 2013-02-15 2014-09-25 Murata Mfg Co Ltd 有極型ローパスフィルタ、およびこれを備えた分波器
WO2014180633A1 (de) * 2013-05-10 2014-11-13 Epcos Ag Zur miniaturisierung geeignetes hf-bauelement mit verringerter kopplung
WO2018003378A1 (ja) * 2016-06-27 2018-01-04 株式会社村田製作所 フィルタ装置およびマルチプレクサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140920A (ja) * 1997-07-22 1999-02-12 Taiyo Yuden Co Ltd 複合部品
JP2006279604A (ja) * 2005-03-29 2006-10-12 Tdk Corp 弾性表面波装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140920A (ja) * 1997-07-22 1999-02-12 Taiyo Yuden Co Ltd 複合部品
JP2006279604A (ja) * 2005-03-29 2006-10-12 Tdk Corp 弾性表面波装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179967A (ja) * 2013-02-15 2014-09-25 Murata Mfg Co Ltd 有極型ローパスフィルタ、およびこれを備えた分波器
WO2014180633A1 (de) * 2013-05-10 2014-11-13 Epcos Ag Zur miniaturisierung geeignetes hf-bauelement mit verringerter kopplung
US9577605B2 (en) 2013-05-10 2017-02-21 Epcos Ag RF component with reduced coupling and suitable for miniaturization
WO2018003378A1 (ja) * 2016-06-27 2018-01-04 株式会社村田製作所 フィルタ装置およびマルチプレクサ
US11631515B2 (en) 2016-06-27 2023-04-18 Murata Manufacturing Co., Ltd. Filter device and multiplexer

Similar Documents

Publication Publication Date Title
JP5817795B2 (ja) 高周波モジュール
JP6406266B2 (ja) 高周波モジュール
JP5510694B1 (ja) 弾性波フィルタ装置及びデュプレクサ
WO2014034373A1 (ja) フィルタ装置
JP6183461B2 (ja) 高周波モジュール
WO2015019794A1 (ja) 高周波モジュール
JP5056952B2 (ja) 弾性波フィルタ装置および、それを備えるモジュール
JP6183462B2 (ja) 高周波モジュール
KR101921853B1 (ko) 듀플렉서
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
JP6411288B2 (ja) ラダー型フィルタ、分波器およびモジュール
WO2012176576A1 (ja) フィルタ装置
KR102424038B1 (ko) 멀티플렉서
JP2010154138A (ja) 積層型マルチプレクサ
JP2004088778A (ja) 弾性表面波フィルタ、及びそれを用いたアンテナ共用器、通信機器
JP5999295B1 (ja) デュプレクサ
US11368135B2 (en) High-frequency module
CN112671369A (zh) 滤波器装置以及具备该滤波器装置的双工器和多工器
WO2015098240A1 (ja) フィルタ装置およびデュプレクサ
WO2018003378A1 (ja) フィルタ装置およびマルチプレクサ
CN213693646U (zh) 多工器
CN217957069U (zh) 收发模块
WO2019235490A1 (ja) マルチプレクサ
JP2023013850A (ja) 送受信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP