WO2015045794A1 - 共振器及び高周波フィルタ - Google Patents

共振器及び高周波フィルタ Download PDF

Info

Publication number
WO2015045794A1
WO2015045794A1 PCT/JP2014/073444 JP2014073444W WO2015045794A1 WO 2015045794 A1 WO2015045794 A1 WO 2015045794A1 JP 2014073444 W JP2014073444 W JP 2014073444W WO 2015045794 A1 WO2015045794 A1 WO 2015045794A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
resonator
circuit
frequency
inductor
Prior art date
Application number
PCT/JP2014/073444
Other languages
English (en)
French (fr)
Inventor
神藤始
谷将和
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480052290.2A priority Critical patent/CN105580274B/zh
Priority to JP2015539062A priority patent/JP6187594B2/ja
Publication of WO2015045794A1 publication Critical patent/WO2015045794A1/ja
Priority to US15/076,965 priority patent/US10009010B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H5/00One-port networks comprising only passive electrical elements as network components
    • H03H5/12One-port networks comprising only passive electrical elements as network components with at least one voltage- or current-dependent element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/545Filters comprising resonators of piezoelectric or electrostrictive material including active elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6403Programmable filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]
    • H03H2009/02188Electrically tuning
    • H03H2009/02204Electrically tuning operating on an additional circuit element, e.g. applying a tuning DC voltage to a passive circuit element connected to the resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Definitions

  • the present invention relates to a resonator having a resonance point and an anti-resonance point, and a high-frequency filter including the resonator.
  • the communication apparatus includes a plurality of filters corresponding to a plurality of bands, and switches a filter to be used for each required frequency band.
  • a filter for example, as described in Patent Document 1, a tunable filter (variable filter) capable of varying the pass characteristic over a wider band is desired.
  • an object of the present invention is to provide a resonator and a high-frequency filter that are compatible with a plurality of communication bands in which the relationship between the transmission frequency and the reception frequency on the frequency axis is various.
  • a resonator according to the present invention includes a resonator having a resonance frequency and an anti-resonance frequency, and a first series circuit in which a first inductor and a first variable capacitor are connected in series.
  • the anti-resonance frequency that is connected in parallel to the resonator and that is closest to the resonance frequency of the resonator moves along the frequency axis with the change in the capacitance value of the first variable capacitor.
  • the antiresonance frequency of the resonator is variable, and can be adjusted to a desired antiresonance frequency by changing the capacitance of the first variable capacitor.
  • the attenuation band can be adjusted or the attenuation band can be changed almost without changing the pass band in order to obtain desired transmission characteristics.
  • the passband can be adjusted without any change.
  • the antiresonance frequency closest to the resonance frequency is inverted from the high frequency side to the low frequency side (or vice versa) with the resonance frequency as a boundary. be able to.
  • the resonator is used for a high frequency filter, for example, it is possible to exchange the positional relationship between the pass band and the attenuation band on the frequency axis, and further, depending on the desired transmission characteristic, the attenuation band characteristic or Passband characteristics can be adjusted, and desired transmission characteristics can be obtained.
  • the resonance angular frequency ⁇ r of the resonator, the inductance Li of the first inductor, and the capacitance Cp of the first variable capacitor are Li> 1 / ( ⁇ r 2 ⁇ Cp) or Li ⁇ 1 / ( ⁇ r 2 ⁇ It is preferable to satisfy the condition of Cp).
  • the anti-resonance frequency closest to the resonance frequency of the resonator can be higher or lower than the resonance frequency.
  • the inductance Li is preferably 0.2 nH or more.
  • the anti-resonance frequency can be adjusted with high accuracy.
  • the present invention includes a second series circuit in which a second inductor and a second variable capacitor are connected in series, and the second series circuit is connected in series to a parallel circuit of the resonator and the first series circuit. Preferably it is.
  • the resonance frequency of the resonator is also variable, and can be adjusted to a desired resonance frequency by changing the capacitance of the second variable capacitor.
  • both the pass band characteristic and the attenuation band characteristic can be adjusted according to the desired transmission characteristic, and various desired transmission characteristics can be obtained. Can do.
  • a resonator that can be adjusted to an antiresonance frequency with a simple configuration, and when this resonator is used, for example, in a high frequency filter, in order to obtain a desired transmission characteristic, an attenuation band characteristic or a passband characteristic is obtained. Band characteristics can be adjusted, and various filter characteristics can be realized.
  • Circuit diagram of resonant circuit according to embodiment 1 The figure which shows the impedance characteristic of the resonance circuit when the anti-resonance point of the resonance circuit is on the high frequency side from the resonance point The figure which shows the impedance characteristic of the resonance circuit when the anti-resonance point of the resonance circuit is on the lower frequency side than the resonance point Circuit diagram of another example of the resonance circuit according to the first embodiment Diagram for explaining the resonance point and anti-resonance point when an inductor is connected to the resonator Circuit diagram of resonant circuit according to embodiment 2
  • Circuit diagram of a resonance circuit having a configuration different from that of the resonance circuit according to the second embodiment Circuit diagram of a resonance circuit having a configuration different from that of the resonance circuit according to the second embodiment Circuit diagram of a resonance circuit having a configuration different from that of the resonance circuit
  • FIG. 1 is a circuit diagram of a resonance circuit 1 according to this embodiment.
  • the resonance circuit 1 corresponds to a resonator according to the present invention.
  • the resonance circuit 1 includes a resonator 11.
  • the resonator 11 is an element having a resonance point (resonance frequency) and an antiresonance point (antiresonance frequency).
  • the resonator 11 is a piezoelectric resonator, for example, a SAW (SurfaceSAcoustic Wave) device.
  • the resonator 11 according to this embodiment has a center frequency of 800 MHz and a characteristic impedance of 50 ⁇ .
  • the SAW device is configured by forming a comb pattern on a thin film of piezoelectric material with an Al or Al alloy thin film, and takes out an electric signal in a specific frequency band.
  • the resonator 11 may be a BAW (BulkulAcoustic Wave) device.
  • the resonance circuit 1 includes a series circuit 16 in which a variable capacitor 14 and an inductor 15 are connected in series.
  • the series circuit 16 is connected to the input / output terminals IO1 and IO2. That is, the series circuit 16 is connected in parallel to the resonator 11.
  • variable capacitor 14 examples include a varicap diode, a MEMS device, and a BST (barium / strontium / titanate) device.
  • the antiresonance point of the resonator 11 can be adjusted by connecting the series circuit 16 to the resonator 11 in parallel. Specifically, when the capacitance of the variable capacitor 14 is represented by Cp and the inductance of the inductor 15 is represented by Lp, the resonance circuit 1 sets the antiresonance point to a frequency higher than the resonance point according to the combination of the capacitance Cp and the inductance Lp. On the low frequency side.
  • the resonant circuit 1 has a plurality of anti-resonance points, but the anti-resonance point referred to in the present embodiment refers to the anti-resonance point closest to the resonance frequency of the resonator 11.
  • Lp 1 / ( ⁇ r 2 ⁇ Cp)
  • the anti-resonance frequency of the resonance circuit 1 is higher than the resonance frequency.
  • the anti-resonance frequency of the resonance circuit 1 is on the lower frequency side than the resonance frequency.
  • FIG. 2 is a diagram illustrating impedance characteristics of the resonance circuit 1 when the anti-resonance point of the resonance circuit 1 is on a higher frequency side than the resonance point.
  • the vertical axis in FIG. 2 represents the impedance value of the resonance circuit 1
  • the horizontal axis represents the signal frequency [MHz] of the resonance circuit 1.
  • the resonance circuit 1 has a resonance frequency of about 1920 MHz.
  • Cp 0.5 pF
  • Lp 1 / ( ⁇ r 2 ⁇ Cp) ⁇ 13.6 nH. Therefore, if the inductor 15 satisfying Lp ⁇ 13.6 nH is selected, the antiresonance point of the resonance circuit 1 is on the higher frequency side than the resonance point.
  • the inductance Lp of each inductor 15 satisfies Lp ⁇ 13.6 nH, in FIG. 3, the antiresonance point of the resonance circuit 1 is on the higher frequency side than the resonance point.
  • the frequency of the anti-resonance point can be varied by fixing the inductance of the inductor 15 and changing the capacitance of the variable capacitor 14 so as to maintain the relationship of Equation 1.
  • FIG. 3 is a diagram illustrating impedance characteristics of the resonance circuit 1 when the antiresonance point of the resonance circuit 1 is on the lower frequency side than the resonance point.
  • the vertical axis represents the impedance value of the resonance circuit 1
  • the horizontal axis represents the signal frequency [MHz] of the resonance circuit 1.
  • Lp 3.0 nH satisfies Lp> 1.72 nH. Therefore, only the characteristic indicated by the solid line is that the antiresonance point of the resonance circuit 1 is on the lower frequency side than the resonance point.
  • the frequency of the antiresonance point can be varied by fixing the inductance of the inductor 15 and changing the capacitance of the variable capacitor 14 so as to maintain the relationship of Equation 2.
  • the variable capacitor 14 and the inductor are satisfied so as to satisfy the condition of Lp ⁇ 1 / ( ⁇ r 2 ⁇ Cp) or Lp> 1 / ( ⁇ r 2 ⁇ Cp).
  • the antiresonance point can be provided on the high frequency side or the low frequency side of the resonance point.
  • FIG. 4 is a circuit diagram of another example of the resonance circuit according to the first embodiment.
  • a resonant circuit 1A shown in FIG. 4 includes an inductor 12 and a resonator 11 connected in series. Further, an inductor 13 is connected to the resonator 11 in parallel.
  • the inductors 12 and 13 are elements for shifting the resonance point and antiresonance point of the resonator 11, and are so-called extension coils.
  • FIG. 5 is a diagram for explaining the movement of the resonance point and the anti-resonance point when the inductors 12 and 13 are connected to the resonator 11.
  • the upper diagram in FIG. 5 shows the admittance characteristics of a circuit in which an inductor 13 and a resonator 11 are connected in parallel.
  • the lower diagram in FIG. 5 shows impedance characteristics of a circuit in which an inductor 12 is connected in series to a parallel circuit of a resonator 11 and an inductor 13.
  • the vertical axis represents the admittance value [S]
  • the horizontal axis represents the signal frequency [GHz].
  • the solid line indicates the characteristics of the parallel circuit of the resonator 11 and the inductor 13
  • the broken line indicates the characteristics of only the resonator 11
  • the alternate long and short dash line indicates the characteristics of only the inductor 13.
  • the antiresonance point of the parallel circuit of the resonator 11 and the inductor 13 (the frequency when the admittance value in the broken line is 0) is a high frequency from the antiresonance point of the resonator 11 as shown by the arrow in the figure. It is shifting to the side. That is, by connecting the inductor 13 to the resonator 11 in parallel, the antiresonance point of the resonator 11 is shifted to the high frequency side.
  • the vertical axis is the impedance value [ ⁇ ]
  • the horizontal axis is the signal frequency [GHz].
  • the solid line indicates the characteristics of the series circuit in which the inductor 12 is connected in series to the parallel circuit of the resonator 11 and the inductor 13
  • the broken line indicates the characteristics of the parallel circuit of the resonator 11 and the inductor 13
  • the alternate long and short dash line indicates the characteristics of the inductor 12 only.
  • the resonance point (frequency when the impedance value in the broken line is 0) of the circuit of the resonator 11 and the inductors 12 and 13 is a parallel circuit of the resonator 11 and the inductor 13 as shown by an arrow in the figure. It shifts from the resonance point to the low frequency side. That is, by connecting the inductor 12 in series with a parallel circuit with the resonator 11 inductor 13, the resonance point of the resonator 11 is shifted to the low frequency side.
  • the resonance point and the antiresonance point of the resonator 11 can be shifted, and the interval between the resonance point and the antiresonance point can be widened. Accordingly, when the antiresonance point is adjusted by changing the capacitance of the variable capacitor as in the resonance circuit 1 of FIG. 1, the variable width of the antiresonance point can be widened.
  • the inductance Lp of the inductor 15 becomes a relatively small value.
  • a small inductor 15 can be formed with high accuracy by forming the inductor 15 with a lead wiring on a resin substrate or a lead wiring on a chip forming a piezoelectric resonator such as a SAW filter or a piezoelectric thin film resonator filter. it can.
  • the inductor 15 is difficult to be formed with high accuracy in the vicinity of 0 nH. Generally, when the inductor 15 is 0.2 nH or more, and further 1.0 nH or more, manufacturing variations are small, which is desirable.
  • the resonant circuit according to the second embodiment will be described below.
  • the resonance circuit according to the second embodiment is different from the first embodiment in that both the resonance point and the antiresonance point can be adjusted.
  • FIG. 6 is a circuit diagram of a resonance circuit according to the second embodiment.
  • the resonance circuit 2 has a configuration in which a series circuit 19 in which a variable capacitor 17 and an inductor 18 are connected in series is further connected to the resonance circuit 1A according to the first embodiment.
  • the resonance point of the resonator 11 can be adjusted by connecting the variable capacitor 17 and the inductor 18 in series to the resonator 11.
  • FIG. 7 is a diagram showing impedance characteristics of a circuit in which a variable capacitor 17 and an inductor 18 are connected in series to the resonator 11.
  • the element values of the variable capacitor 14 and the inductors 12, 13, 15 are 0.
  • Ls 0 nH
  • the resonance frequency is variable by connecting a variable capacitor 17 and an inductor 18 in series to the resonator 11.
  • the resonance circuit 2 according to the present embodiment has not only the antiresonance point but also the resonance point by further connecting the variable capacitor 17 and the inductor 18 in series to the resonance circuit 1A according to the first embodiment. Can be adjusted.
  • a high frequency filter including the resonance circuit 2 when configured, both the pass characteristic and the attenuation band of the high frequency filter can be adjusted, so that a plurality of desired transmission characteristics can be obtained with one resonance circuit 2.
  • a high frequency filter can be realized. Thereby, it can respond to various characteristics.
  • FIGS. 8-10 are circuit diagrams of a resonance circuit having a configuration different from that of the resonance circuit 2 according to the second embodiment.
  • the 8 is provided with a parallel circuit 20 in which an inductor 13 and a series circuit 16 are connected in parallel to the resonator 11, respectively. Further, a series circuit 19 is connected in series to the parallel circuit 20.
  • this resonance circuit 2A is compared with the resonance circuit 2 shown in FIG. 6, the inductor 12 is not connected in series with the resonator 11. Thereby, in the resonance circuit 2A, the anti-resonance frequency can be shifted while suppressing the deterioration of the impedance at the anti-resonance point of the resonator 11.
  • the anti-resonance point of the resonance circuit 2A is adjusted by the series circuit 16, and the resonance point of the resonance circuit 2A is adjusted by the series circuit 19.
  • the resonance circuit 2B shown in FIG. 9 includes a parallel circuit 21 in which an inductor 13 and a series circuit 16 are connected in parallel to the resonator 11 and the inductor 12 connected in series. Further, a series circuit 19 is connected in series to the parallel circuit 21.
  • the resonance point of the resonator 11 can be shifted to the low frequency side by the inductor 12 connected in series to the resonator 11, and the anti-resonance point of the resonator 11 can be shifted to the high frequency side by the inductor 13. it can.
  • the shift amount of the resonance point is larger than that of the resonance circuit 1A shown in FIG.
  • the antiresonance point of the resonance circuit 2B can be adjusted by the variable capacitor 14 and the inductor 15, and the resonance point of the resonance circuit 2B can be adjusted by the variable capacitor 17 and the inductor 18.
  • the 10 has a series circuit 19 connected in series to the resonator 11.
  • a series circuit 19 connected in series to the resonator 11.
  • An inductor 13 and a series circuit 16 are connected in parallel to the resonator 11 and the series circuit 19 connected in series.
  • the resonance point is adjusted by the series circuit 19
  • the antiresonance point is shifted to the high frequency side by the inductor 13, and the antiresonance point is adjusted by the series circuit 16.
  • the resonance point and the anti-resonance point of the resonance circuit can be adjusted.
  • the resonance circuit passes through the high frequency filter. Since both the characteristic and the attenuation band can be adjusted, a high frequency filter capable of obtaining a plurality of desired transmission characteristics with a single resonance circuit can be realized.
  • FIG. 11 is a circuit diagram of the high frequency filter according to the third embodiment.
  • the high frequency filter 3 according to this embodiment includes a resonance circuit 30 connected to a signal line between the input / output terminals IO1 and IO2, and a resonance circuit 40 having one end connected to the signal line and the other end connected to the ground. And.
  • the resonance circuits 30 and 40 have the same configuration as the resonance circuit 2 according to the second embodiment. That is, the inductor 33 (43) is connected in parallel to the resonator 31 (41).
  • an inductor 32 (42), a variable capacitor 36 (46), and an inductor 37 (47) are connected in series to the resonator 31 (41).
  • a series-connected variable capacitor 34 (44) and an inductor 35 (45) are connected in parallel to the resonator 31 (41) and the inductor 32 (42) connected in series.
  • the resonance circuits 30 and 40 have different resonance frequencies and antiresonance frequencies, respectively.
  • the high frequency filter 3 acts as a band pass filter having a specific frequency band as a pass band.
  • the capacitances of the variable capacitors 34, 36, 44, 46 of the resonance circuits 30, 40 the pass band of the high frequency filter 3 can be shifted without substantially changing the loss. That is, a band-variable bandpass filter with low insertion loss can be realized.
  • the resonance circuit combined to configure the high frequency filter may have the same configuration as the resonance circuit 1 according to the first embodiment.
  • FIG. 12 is a circuit diagram of the high frequency filter according to the fourth embodiment.
  • the high frequency filter 4 includes the resonance circuit 2 according to the second embodiment.
  • the high frequency filter 4 includes matching capacitors 51 and 52 connected between the input / output terminals IO1 and IO2 and the ground, capacitors 53 and 54 respectively connected to the input and output of the resonance circuit 2, and the capacitors 53 and 54 and an inductor 55 connected between the ground.
  • FIG. 13, FIG. 14 and FIG. 15 are diagrams showing the passband characteristics of the high frequency filter 4.
  • the horizontal axis is the frequency axis [MHz]
  • the vertical axis is the insertion loss S21 [dB].
  • the capacitances of the capacitors 51 and 52 in FIG. 11 are 0.8 pF
  • the capacitances of the capacitors 53 and 54 are 0.9 pF
  • the inductance of the inductor 55 is 5.1 nH
  • the inductances of the inductors 12 and 13 are 0, and the inductors 15 and 18 are. Is set to 4.0 nH.
  • FIG. 13 shows passband characteristics when the capacitances of the variable capacitors 14 and 17 are 0.5 pF and 1.4 pF.
  • the pass band of the high frequency filter 4 is located in a frequency band of about 1800 MHz or less, and the frequency band of 1800 MHz or more is an attenuation band.
  • FIG. 14 shows passband characteristics when the capacitances of the variable capacitors 14 and 17 are 1.0 pF and 2.2 pF.
  • the pass band of the high frequency filter 4 is located in a frequency band of about 1850 MHz or more, and the frequency band of 1850 MHz or less is an attenuation band.
  • the pass band of the high frequency filter is located in a frequency band of about 1550 MHz or less, and the frequency band of 1550 MHz or more is an attenuation band.
  • the passband and the attenuation band can be changed by changing the capacitance of the variable capacitors 14 and 17, and a single circuit configuration can be obtained.
  • the frequency of the pass band and the attenuation band can be changed by setting an attenuation pole on the wide side of the pass band or an attenuation pole on the low side of the pass band.
  • variable capacitor (first variable capacitor) 15 Inductor (first inductor) 16: Series circuit (first series circuit) 17 ...
  • Variable capacitor (second variable capacitor) 18 Inductor (second inductor) 19 ... Series circuit (second series circuit) 20 ... Parallel circuit 21 ... Parallel circuit 30, 40 ... Resonant circuit 31, 41 ... Resonator 32, 33, 37 ... Inductor 34, 36, 44, 46 ... Variable capacitor 35 ... Inductor 36 ... Variable capacitor 51, 52, 53, 54 ... Capacitor

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 共振回路(1)は、共振周波数及び反共振周波数を有する共振子(11)と、共振子(11)に直列接続された(12)と、共振子(11)に並列接続されたインダクタ(13)と、可変キャパシタ(14)及びインダクタ(15)が直列接続された直列回路(16)とを備えている。直列回路(16)は、共振子(11)に対し並列接続されている。可変キャパシタ(14)の容量値の変更に伴い、共振子(11)の共振周波数に最も近い反共振周波数が、周波数軸上で共振周波数を挟んで移動する。これにより、送信周波数と受信周波数との周波数軸上の関係が様々な複数の通信バンドに対応可能な共振器及び高周波フィルタを提供する。

Description

共振器及び高周波フィルタ
 本発明は、共振点及び反共振点を有する共振器、及びそれを備えた高周波フィルタに関する。
 近年の通信装置は、様々な周波数帯域での通信を行う。このため、通信装置は、複数の帯域に対応した複数のフィルタを備え、求められる周波数帯域毎に使用するフィルタを切替えている。このフィルタは、例えば、特許文献1に記載されているように、より広帯域に亘って通過特性を可変にできるチューナブルフィルタ(可変フィルタ)が望まれている。
特開2009-130831号公報
 ところで、近年の通信装置には、通信バンドによっては、送信時の周波数帯域が受信時の周波数帯域より低周波側となるもの、又は送信帯域が受信帯域の高周波側になるものがある。特許文献1に記載のチューナブルフィルタでは、通過特性又は減衰特性を調整できても、通過帯域と減衰帯域との関係を周波数軸上で逆転させることができない。したがって、一つのチューナブルフィルタにおいて、周波数軸上で送信帯域と受信帯域との関係が逆となる複数の通信バンドに用いることができず、それぞれの個別のチューナブルフィルタを設けなければならない。
 そこで、本発明の目的は、送信周波数と受信周波数との周波数軸上の関係が様々な複数の通信バンドに対応可能な共振器及び高周波フィルタを提供することにある。
 本発明に係る共振器は、共振周波数及び反共振周波数を有する共振子と、第1インダクタ及び第1可変キャパシタが直列接続された第1直列回路と、を備え、前記第1直列回路は、前記共振子に対し並列接続され、前記第1可変キャパシタの容量値の変更に伴い、前記共振子の共振周波数に最も近い前記反共振周波数が、周波数軸上で前記共振周波数を挟んで移動することを特徴とする。
 この構成では、共振子の反共振周波数が可変となり、第1可変キャパシタのキャパシタンスを変更することで、所望の反共振周波数に調整できる。これにより、本発明に係る共振子を、例えば高周波フィルタに用いた場合、所望の伝送特性を得るために、通過帯域をほとんど変化させることなく減衰帯域を調整したり、減衰帯域をほとんど変化させることなく通過帯域を調整したりすることができる。
 また、この構成では、第1可変キャパシタの容量値を変更することで、共振周波数に最も近い反共振周波数を、共振周波数を境に、高周波側から低周波側(又はその逆)へと反転させることができる。このため、共振子を、例えば高周波フィルタに用いた場合、通過帯域と減衰帯域との周波数軸上での位置関係を入れ替えることも可能となり、さらに、所望の伝送特性に応じて、減衰帯域特性あるいは通過帯域特性を調整でき、所望の伝送特性を得ることができる。
 本発明は、前記共振子の共振角周波数ωr、前記第1インダクタのインダクタンスLi、前記第1可変キャパシタのキャパシタンスCpは、Li>1/(ωr×Cp)又はLi<1/(ωr×Cp)の条件を満たすことが好ましい。
 この構成によれば、共振子の共振周波数に最も近い反共振周波数が、共振周波数より高周波側又は低周波側となるようにできる。
 前記インダクタンスLiは0.2nH以上であることが好ましい。
 この構成では、第1インダクタを、製造上のばらつきが小さい素子にできるため、反共振周波数を精度よく調整できる。
 本発明は、第2インダクタ及び第2可変キャパシタが直列接続された第2直列回路を備え、前記第2直列回路は、前記共振子と前記第1直列回路との並列回路に対し直列接続されていることが好ましい。
 この構成では、共振子の共振周波数も可変となり、第2可変キャパシタのキャパシタンスを変更することで、所望の共振周波数に調整できる。これにより、本発明に係る共振子を、例えば高周波フィルタに用いた場合、所望の伝送特性に応じて、通過帯域特性及び減衰帯域特性の両方を調整でき、さらに多様に所望の伝送特性を得ることができる。
 本発明によれば、簡素な構成で、反共振周波数に調整できる共振器を実現でき、この共振器を、例えば高周波フィルタに用いた場合、所望の伝送特性を得るために、減衰帯域特性あるいは通過帯域特性を調整でき、多様なフィルタ特性を実現できる。
実施形態1に係る共振回路の回路図 共振回路の反共振点が共振点より高周波側となる場合の、共振回路のインピーダンス特性を示す図 共振回路の反共振点が共振点より低周波側となる場合の、共振回路のインピーダンス特性を示す図 実施形態1に係る共振回路の別の例の回路図 共振子にインダクタを接続した場合の、共振点及び反共振点を説明するための図 実施形態2に係る共振回路の回路図 共振子に可変キャパシタとインダクタとを直列接続した回路のインピーダンス特性を示す図 実施形態2に係る共振回路とは異なる構成の共振回路の回路図 実施形態2に係る共振回路とは異なる構成の共振回路の回路図 実施形態2に係る共振回路とは異なる構成の共振回路の回路図 実施形態3に係る高周波フィルタの回路図 実施形態4に係る高周波フィルタの回路図 高周波フィルタの通過帯域特性 高周波フィルタの通過帯域特性 高周波フィルタの通過帯域特性
(実施形態1)
 図1は、本実施形態に係る共振回路1の回路図である。この共振回路1は、本発明に係る共振器に相当する。
 共振回路1は共振子11を備えている。共振子11は、共振点(共振周波数)及び反共振点(反共振周波数)を有する素子である。具体的には、共振子11は圧電共振子であり、例えばSAW(Surface Acoustic Wave)デバイスである。そして、本実施形態に係る共振子11は、中心周波数が800MHz、特性インピーダンスが50Ωである。SAWデバイスは、圧電体の薄膜に、AlまたはAl合金薄膜で櫛型パターンが形成されて構成され、特定の周波数帯域の電気信号を取り出す。なお、共振子11は、BAW(Bulk Acoustic Wave)デバイスであってもよい。
 共振回路1は、可変キャパシタ14とインダクタ15とが直列接続された直列回路16を備えている。この直列回路16は、入出力端子IO1,IO2に接続されている。すなわち、直列回路16は、共振子11に対して並列接続されている。
 なお、可変キャパシタ14としては、例えば、バリキャップダイオード、MEMSデバイス、BST(バリウム・ストロンチウム・チタン酸塩)デバイスなどが挙げられる。
 共振子11に対し、直列回路16を並列接続することで、共振子11の反共振点を調整することができる。具体的には、可変キャパシタ14のキャパシタンスをCp、インダクタ15のインダクタンスをLpで表した場合、共振回路1は、キャパシタンスCpと、インダクタンスLpとの組み合わせに応じて、反共振点を共振点より高周波側、又は低周波側に設けることができる。
 なお、共振回路1は、複数の反共振点を有しているが、本実施形態で言う反共振点は、共振子11の共振周波数に最も近い反共振点を言う。
 ここで、共振回路1の共振点における角周波数をωrで表すと、インダクタ15と可変キャパシタ14の直列共振回路の共振周波数におけるLpは、Lp=1/(ωr×Cp)である。そして、Lp<1/(ωr×Cp)…(式1)の条件を満たす場合、共振回路1の反共振周波数は、共振周波数より高周波側となる。Lp>1/(ωr×Cp)…(式2)の条件を満たす場合、共振回路1の反共振周波数は、共振周波数より低周波側となる。
 図2は、共振回路1の反共振点が共振点より高周波側となる場合の、共振回路1のインピーダンス特性を示す図である。図2の縦軸は、共振回路1のインピーダンス値、横軸は、共振回路1の信号周波数[MHz]である。共振回路1は、共振周波数が約1920MHzである。Cp=0.5pFとした場合、Lp=1/(ωr×Cp)≒13.6nHである。したがって、Lp<13.6nHを満たすインダクタ15を選択すれば、共振回路1の反共振点が共振点より高周波側となる。
 図2では、Cp=0.5pFと固定したときにLpの値を変化させた場合の共振回路1のインピーダンス特性の変化の一例を示す。実線がLp=3.0nHのとき、破線がLp=1.7nHのとき、点線がLp=0.7nHのとき、一点鎖線がLp=0nHのときの特性をそれぞれ示す。このように、各インダクタ15のインダクタンスLpは、Lp<13.6nHを満たしているため、図3では、共振回路1の反共振点が共振点より高周波側となる。そして、インダクタ15のインダクタンスを固定し、式1の関係を保持するように可変キャパシタ14のキャパシタンスを変化させることで、反共振点の周波数を可変させることができる。例えば、共振回路1において、Lp=3.0nHに固定した状態でキャパシタンスCpを式1の関係を保持するように変化させることで、反共振点を共振点より高周波側で適宜調整できる。
 図3は、共振回路1の反共振点が共振点より低周波側となる場合の、共振回路1のインピーダンス特性を示す図である。図3の縦軸は、共振回路1のインピーダンス値、横軸は、共振回路1の信号周波数[MHz]である。Cp=4.0pFとした場合、Lp=1/(ωr×Cp)≒1.72nHである。したがって、Lp>1.72nHを満たすインダクタ15を選択すれば、共振回路1の反共振点が共振点より低周波側となる。
 図3では、Cp=4.0pFと固定したときにLpの値を変化させた場合の共振回路1のインピーダンス特性の変化の一例を示す。実線がLp=3.0nHのとき、破線がLp=1.7nHのとき、点線がLp=0.7nHのとき、一点鎖線がLp=0nHのときの特性をそれぞれ示す。図3では、Lp=3.0nHのみが、Lp>1.72nHを満たしている。したがって、実線で示す特性のみが、共振回路1の反共振点が共振点より低周波側にある。そして、インダクタ15のインダクタンスを固定し、式2の関係を保持するように可変キャパシタ14のキャパシタンスを変化させることで、反共振点の周波数を可変させることができる。
 図2、図3により、Lp=3.0nHと固定したとしても、キャパシタンスCpを調整すれば、式1、式2の何れかを満たすことができることが理解できる。したがって、キャパシタンスCpを変化させることで、送信帯域と受信帯域との周波数軸上の位置を変えることができ、より多様な特性に対応できる。
 以上のように、本実施形態に係る共振回路1では、Lp<1/(ωr×Cp)、又は、Lp>1/(ωr×Cp)の条件を満たすように、可変キャパシタ14とインダクタ15とを選択することで、反共振点を、共振点の高周波側、又は低周波側に設けることができる。これにより、共振回路1を備えた高周波フィルタを構成する場合、通過帯域と減衰帯域の周波数の関係が逆転できる高周波フィルタを同時に実現できる。
 図1に示す共振回路1において、共振子11の共振点と反共振点との間隔(比帯域幅)が狭い場合には、共振子11にインダクタを接続することで、共振子11の比帯域幅を広げることができる。
 図4は、実施形態1に係る共振回路の別の例の回路図である。図4に示す共振回路1Aは、共振子11にインダクタ12を直列接続している。また、この共振子11には、インダクタ13を並列に接続している。インダクタ12,13はそれぞれ、共振子11の共振点及び反共振点をシフトさせるための素子であり、いわゆる伸張コイルである。
 図5は、共振子11にインダクタ12,13を接続した場合の、共振点及び反共振点の動きを説明するための図である。図5の上側の図は、共振子11にインダクタ13を並列接続した回路のアドミタンス特性を示す。図5の下側の図は、共振子11とインダクタ13との並列回路に、インダクタ12を直列接続した回路のインピーダンス特性を示している。
 図5のアドミタンス特性を示す図において、縦軸がアドミタンス値[S]であり、横軸が信号周波数[GHz]である。また、実線は、共振子11とインダクタ13との並列回路の特性、破線は共振子11のみの特性、一点鎖線はインダクタ13のみの特性をそれぞれ示している。この図において、共振子11とインダクタ13との並列回路の反共振点(破線におけるアドミタンス値が0のときの周波数)は、図中の矢印に示すように、共振子11の反共振点から高周波側へシフトしている。すなわち、共振子11にインダクタ13を並列接続することで、共振子11の反共振点は高周波側へシフトする。
 図5のインピーダンス特性を示す図において、縦軸がインピーダンス値[Ω]であり、横軸が信号周波数[GHz]である。また、実線は、共振子11とインダクタ13との並列回路にインダクタ12を直列接続した直列回路の特性、破線は、共振子11とインダクタ13の並列回路の特性、一点鎖線はインダクタ12のみの特性をそれぞれ示している。この図において、共振子11及びインダクタ12,13の回路の共振点(破線におけるインピーダンス値が0のときの周波数)は、図中の矢印に示すように、共振子11とインダクタ13との並列回路の共振点から低周波側へシフトしている。すなわち、共振子11インダクタ13との並列回路にインダクタ12を直列接続することで、共振子11の共振点は低周波側へシフトする。
 このように、共振子11にインダクタ12,13を直列・並列に接続することで、共振子11の共振点及び反共振点をシフトでき、共振点及び反共振点の間隔を広げることができる。これにより、図1の共振回路1のように、可変キャパシタのキャパシタンスを変更させて反共振点を調整する際に、反共振点の可変幅を広げることができる。
 なお、上記式のLp=1/(ωr×Cp)から、可変キャパシタのキャパシタンスCpの値を大きくすると、インダクタ15のインダクタンスLpは比較的小さい値となるため、低温焼結型積層セラミック基板、樹脂基板の引廻し配線、又は、SAWフィルタ若しくは圧電薄膜共振器フィルタなどの圧電共振子を形成するチップ上での引廻し配線で、インダクタ15を形成することで、小さなインダクタ15を高精度に形成できる。このインダクタ15は、0nH付近で精度よく形成するのは難しく、一般に0.2nH以上、更には1.0nH以上とすると製造上のバラツキが小さくなり、望ましい。
(実施形態2)
 以下に、実施形態2に係る共振回路について説明する。実施形態2に係る共振回路は、共振点及び反共振点の両方を調整できる点で、実施形態1と相違する。
 図6は、実施形態2に係る共振回路の回路図である。共振回路2は、実施形態1に係る共振回路1Aに、可変キャパシタ17とインダクタ18とが直列接続されてなる直列回路19がさらに接続された構成である。共振子11に可変キャパシタ17とインダクタ18とを直列接続することで、共振子11の共振点を調整できる。
 図7は、共振子11に可変キャパシタ17とインダクタ18とを直列接続した回路のインピーダンス特性を示す図である。なお、図7のインピーダンス特性は、可変キャパシタ14、インダクタ12,13、15の素子値を0としている。可変キャパシタ17のキャパシタンスをCs、インダクタ18のインダクタンスをLsで表すと、図7の実線は、Cs=4.0pF、Ls=1.0nH、破線は、Cs=4.0pF、Ls=0nH、一点鎖線は、Cs=0.5pF、Ls=1nHの特性をそれぞれ示す。図7の矢印に示すように、共振子11に可変キャパシタ17とインダクタ18とを直列接続することで、共振周波数は可変となる。
 以上のように、本実施形態に係る共振回路2は、実施形態1に係る共振回路1Aに、可変キャパシタ17とインダクタ18とをさらに直列接続することで、反共振点だけでなく、共振点も調整できる。これにより、共振回路2を備えた高周波フィルタを構成する場合、その高周波フィルタの通過特性及び減衰帯域の両方を調整できるため、一つの共振回路2で、複数の所望の伝送特性を得ることができる高周波フィルタを実現できる。これにより、さらに多様な特性に対応できる。
 以下に、実施形態2に係る共振回路2の変形例について説明する。図8、図9及び図10は、実施形態2に係る共振回路2とは異なる構成の共振回路の回路図である。
 図8に示す共振回路2Aは、共振子11に対し、インダクタ13と、直列回路16とがそれぞれ並列接続された並列回路20を備えている。さらに、並列回路20には直列回路19が直列接続されている。この共振回路2Aを、図6に示す共振回路2と比較すると、インダクタ12が共振子11に直列接続されていない。これにより、共振回路2Aでは、共振子11の反共振点のインピーダンスの劣化を抑えつつ、反共振周波数をシフトすることができる。なお、直列回路16により、共振回路2Aの反共振点が調整され、直列回路19により、共振回路2Aの共振点が調整される。
 図9に示す共振回路2Bは、直列接続された共振子11及びインダクタ12に対し、インダクタ13と、直列回路16とが並列に接続された並列回路21を備えている。さらに、並列回路21には、直列回路19が直列接続されている。この共振回路2Bでは、共振子11に直列接続されたインダクタ12により、共振子11の共振点を低周波側へシフトでき、また、インダクタ13により、共振子11の反共振点を高周波側へシフトできる。この場合、図4に示す共振回路1Aと比べて共振点のシフト量は大きい。また、可変キャパシタ14及びインダクタ15により、共振回路2Bの反共振点を調整でき、可変キャパシタ17及びインダクタ18により、共振回路2Bの共振点を調整できる。
 図10に示す共振回路2Cは、共振子11に直列回路19が直列接続されている。そして、直列接続された共振子11及び直列回路19に、インダクタ13と、直列回路16とが並列接続されている。この共振回路2Cでは、直列回路19により、共振点が調整され、インダクタ13により反共振点が高周波側へシフトされ、直列回路16により反共振点が調整される。
 図8~図10に示す何れの共振回路であっても、共振回路の共振点及び反共振点を調整でき、これら何れかの共振回路を備えた高周波フィルタを構成する場合、その高周波フィルタの通過特性及び減衰帯域の両方を調整できるため、一つの共振回路で、複数の所望の伝送特性を得ることができる高周波フィルタを実現できる。
(実施形態3)
 図11は、実施形態3に係る高周波フィルタの回路図である。本実施形態に係る高周波フィルタ3は、入出力端子IO1,IO2との間の信号ラインに接続された共振回路30と、一端が信号ラインに接続され、他端がグランドに接続された共振回路40とを備えている。共振回路30,40は、実施形態2に係る共振回路2と同じ構成である。すなわち、共振子31(41)には、インダクタ33(43)が並列接続されている。また、共振子31(41)には、インダクタ32(42)、可変キャパシタ36(46)及びインダクタ37(47)が直列接続されている。直列接続された共振子31(41)及びインダクタ32(42)には、直列接続された可変キャパシタ34(44)及びインダクタ35(45)が並列に接続されている。
 この高周波フィルタ3において、共振回路30,40は、それぞれ異なる共振周波数及び反共振周波数を有している。これにより、高周波フィルタ3は、特定の周波数帯域を通過帯域とするバンドパスフィルタとして作用する。また、共振回路30,40の可変キャパシタ34,36,44,46のキャパシタンスが調整されることで、損失をほぼ変えずに、高周波フィルタ3の通過帯域をシフトさせることができる。すなわち、挿入損失が低い、帯域可変のバンドパスフィルタを実現できる。
 なお、高周波フィルタを構成するために組み合わせる共振回路は、実施形態1に係る共振回路1と同様の構成であってもよい。
(実施形態4)
 図12は、実施形態4に係る高周波フィルタの回路図である。高周波フィルタ4は、実施形態2に係る共振回路2を備えている。また、高周波フィルタ4は、入出力端子IO1,IO2とグランドとの間にそれぞれ接続された整合用のキャパシタ51,52と、共振回路2の入出力にそれぞれ接続されたキャパシタ53,54及び当該キャパシタ53,54とグランドの間に接続されたインダクタ55とを備えている。
 図13、図14及び図15は、高周波フィルタ4の通過帯域特性を示す図である。図13、図14及び図15は、横軸を周波数軸[MHz]とし、縦軸を挿入損失S21[dB]としている。以下では、図11におけるキャパシタ51,52のキャパシタンスを0.8pF、キャパシタ53,54のキャパシタンスを0.9pF、インダクタ55のインダクタンスを5.1nH、インダクタ12,13のインダクタンスを0、インダクタ15,18のインダクタンスを4.0nHとする。
 図13は、可変キャパシタ14,17のキャパシタンスを、0.5pF,1.4pFとした場合の通過帯域特性を示す。この場合、高周波フィルタ4の通過帯域は約1800MHz以下周波数帯域に位置し、1800MHz以上の周波数帯域が減衰帯域となる。図14は、可変キャパシタ14,17のキャパシタンスを、1.0pF,2.2pFとした場合の通過帯域特性を示す。この場合、高周波フィルタ4の通過帯域は約1850MHz以上の周波数帯域に位置し、1850MHz以下の周波数帯域が減衰帯域となる。図15は、可変キャパシタ14,17のキャパシタンスを、4.0pF,4.0pFとした場合の通過帯域特性を示す。この場合、高周波フィルタの通過帯域は約1550MHz以下の周波数帯域に位置し、1550MHz以上の周波数帯域が減衰帯域となる。
 図13~図15から読み取れるように、同じ構成の高周波フィルタであっても、可変キャパシタ14,17のキャパシタンスを変更することで、通過帯域及び減衰帯域を変更することができ、単一の回路構成で通過帯域と減衰帯域との周波数を変化させ、通過帯域の広域側に減衰極を設定し、又は、通過帯域の低域側に減衰極をせっていすることができる。これにより、多様なフィルタ特性を単一の回路構成で実現できる。
IO1,IO2…入出力端子
1,1A,2,2A,2B,2C…共振回路
3,4…高周波フィルタ
11…共振子
12,13…インダクタ
14…可変キャパシタ(第1可変キャパシタ)
15…インダクタ(第1インダクタ)
16…直列回路(第1直列回路)
17…可変キャパシタ(第2可変キャパシタ)
18…インダクタ(第2インダクタ)
19…直列回路(第2直列回路)
20…並列回路
21…並列回路
30,40…共振回路
31,41…共振子
32,33,37…インダクタ
34,36,44,46…可変キャパシタ
35…インダクタ
36…可変キャパシタ
51,52,53,54…キャパシタ

Claims (5)

  1.  共振周波数及び反共振周波数を有する共振子と、
     第1インダクタ及び第1可変キャパシタが直列接続された第1直列回路と、
     を備え、
     前記第1直列回路は、前記共振子に対し並列接続され、
     前記第1可変キャパシタの容量値の変更に伴い、前記共振子の共振周波数に最も近い前記反共振周波数が、周波数軸上で前記共振周波数を挟んで移動する、
     共振器。
  2.  前記共振子の共振角周波数ωr、前記第1インダクタのインダクタンスLi、前記第1可変キャパシタのキャパシタンスCpは、Li>1/(ωr×Cp)又はLi<1/(ωr×Cp)の条件を満たす、
     請求項1に記載の共振器。
  3.  前記インダクタンスLiは0.2nH以上である、請求項2に記載の共振器。
  4.  第2インダクタ及び第2可変キャパシタが直列接続された第2直列回路を備え、
     前記第2直列回路は、前記共振子と前記第1直列回路との並列回路に対し直列接続されている、
     請求項1から3の何れかに記載の共振器。
  5.  請求項1から4の何れかに記載の共振器を備え、
     通過帯域及び減衰帯域を有する、高周波フィルタ。
PCT/JP2014/073444 2013-09-26 2014-09-05 共振器及び高周波フィルタ WO2015045794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480052290.2A CN105580274B (zh) 2013-09-26 2014-09-05 谐振器及高频滤波器
JP2015539062A JP6187594B2 (ja) 2013-09-26 2014-09-05 共振器及び高周波フィルタ
US15/076,965 US10009010B2 (en) 2013-09-26 2016-03-22 Resonator device and high frequency filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-199160 2013-09-26
JP2013199160 2013-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/076,965 Continuation US10009010B2 (en) 2013-09-26 2016-03-22 Resonator device and high frequency filter

Publications (1)

Publication Number Publication Date
WO2015045794A1 true WO2015045794A1 (ja) 2015-04-02

Family

ID=52742941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073444 WO2015045794A1 (ja) 2013-09-26 2014-09-05 共振器及び高周波フィルタ

Country Status (4)

Country Link
US (1) US10009010B2 (ja)
JP (1) JP6187594B2 (ja)
CN (1) CN105580274B (ja)
WO (1) WO2015045794A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219867A (ja) * 2015-05-14 2016-12-22 株式会社村田製作所 可変フィルタ回路、および、高周波モジュール
JPWO2015087894A1 (ja) * 2013-12-13 2017-03-16 株式会社村田製作所 周波数可変フィルタ
CN107017856A (zh) * 2016-01-25 2017-08-04 Tdk株式会社 带通滤波器及分波器
JP2017220910A (ja) * 2016-06-10 2017-12-14 太陽誘電株式会社 弾性波デバイス
JP2023525474A (ja) * 2020-04-21 2023-06-16 安徽安努奇科技有限公司 共振回路およびフィルタデバイス

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600021B1 (ko) * 2016-02-29 2023-11-07 삼성전기주식회사 대역 분할 가변형 대역 통과 필터
US10903818B2 (en) * 2016-04-01 2021-01-26 Intel Corporation Piezoelectric package-integrated film bulk acoustic resonator devices
WO2017204348A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ回路、高周波フロントエンド回路及び通信装置
WO2019179304A1 (en) * 2018-03-20 2019-09-26 Huawei Technologies Co., Ltd. Tunable filter
CN111937285B (zh) * 2018-03-28 2023-11-17 株式会社村田制作所 电压转换器
US11323094B2 (en) * 2018-11-30 2022-05-03 Resonant Inc. Resonator circuit using an inverter to adjust anti-resonance frequency
CN111162752A (zh) * 2020-01-14 2020-05-15 诺思(天津)微系统有限责任公司 一种体声波滤波器
CN111200419B (zh) * 2020-01-16 2021-08-10 诺思(天津)微系统有限责任公司 一种滤波器、双工器、高频前端电路及通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173475A (ja) * 1996-12-06 1998-06-26 Nec Corp 圧電振動子
JP2002223147A (ja) * 2001-01-29 2002-08-09 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2004173245A (ja) * 2002-10-30 2004-06-17 Murata Mfg Co Ltd ラダー型フィルタ、分波器、および通信機
JP2011071911A (ja) * 2009-09-28 2011-04-07 Taiyo Yuden Co Ltd フィルタ
WO2011093449A1 (ja) * 2010-01-28 2011-08-04 株式会社村田製作所 チューナブルフィルタ
JP2012257050A (ja) * 2011-06-08 2012-12-27 Nippon Dempa Kogyo Co Ltd ハイパス型のノッチフィルタ及びこのフィルタを備えた電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148968A (ja) * 1994-11-24 1996-06-07 Mitsubishi Electric Corp 薄膜圧電素子
EP0732805B1 (en) * 1995-03-15 2003-01-15 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter
US5933062A (en) * 1997-11-04 1999-08-03 Motorola Inc. Acoustic wave ladder filter with effectively increased coupling coefficient and method of providing same
US7030718B1 (en) * 2002-08-09 2006-04-18 National Semiconductor Corporation Apparatus and method for extending tuning range of electro-acoustic film resonators
JP4053504B2 (ja) 2004-01-30 2008-02-27 株式会社東芝 チューナブルフィルタ
EP2051377A4 (en) * 2006-08-03 2012-03-28 Panasonic Corp FREQUENCY VARIABLE ACOUSTIC FILM RESONATOR, FILTER AND COMMUNICATION APPARATUS USING THE SAME
JP2009130831A (ja) 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
WO2010090731A2 (en) * 2009-02-04 2010-08-12 Sand9, Inc. Methods and apparatus for tuning devices having mechanical resonators
US8339220B2 (en) * 2009-09-16 2012-12-25 Lojack Operating Company, Lp Surface acoustic wave resonator filter
JP5039115B2 (ja) * 2009-11-17 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 可変共振器、可変フィルタ
KR101919115B1 (ko) * 2012-02-29 2018-11-15 삼성전자주식회사 Bawr 을 이용한 필터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173475A (ja) * 1996-12-06 1998-06-26 Nec Corp 圧電振動子
JP2002223147A (ja) * 2001-01-29 2002-08-09 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2004173245A (ja) * 2002-10-30 2004-06-17 Murata Mfg Co Ltd ラダー型フィルタ、分波器、および通信機
JP2011071911A (ja) * 2009-09-28 2011-04-07 Taiyo Yuden Co Ltd フィルタ
WO2011093449A1 (ja) * 2010-01-28 2011-08-04 株式会社村田製作所 チューナブルフィルタ
JP2012257050A (ja) * 2011-06-08 2012-12-27 Nippon Dempa Kogyo Co Ltd ハイパス型のノッチフィルタ及びこのフィルタを備えた電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015087894A1 (ja) * 2013-12-13 2017-03-16 株式会社村田製作所 周波数可変フィルタ
JP2016219867A (ja) * 2015-05-14 2016-12-22 株式会社村田製作所 可変フィルタ回路、および、高周波モジュール
CN107017856A (zh) * 2016-01-25 2017-08-04 Tdk株式会社 带通滤波器及分波器
CN107017856B (zh) * 2016-01-25 2020-07-10 Tdk株式会社 带通滤波器及分波器
JP2017220910A (ja) * 2016-06-10 2017-12-14 太陽誘電株式会社 弾性波デバイス
US10291206B2 (en) 2016-06-10 2019-05-14 Taiyo Yuden Co., Ltd. Acoustic wave device
JP2023525474A (ja) * 2020-04-21 2023-06-16 安徽安努奇科技有限公司 共振回路およびフィルタデバイス

Also Published As

Publication number Publication date
JPWO2015045794A1 (ja) 2017-03-09
US10009010B2 (en) 2018-06-26
JP6187594B2 (ja) 2017-08-30
US20160204755A1 (en) 2016-07-14
CN105580274B (zh) 2018-08-21
CN105580274A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6187594B2 (ja) 共振器及び高周波フィルタ
JP6323464B2 (ja) 高周波フィルタ
JP6187593B2 (ja) 共振回路及び高周波フィルタ
KR102054634B1 (ko) 탄성파 장치 및 그 제조 방법
US10263600B2 (en) Band-pass filter and branching filter
JP6439862B2 (ja) 高周波フィルタ、フロントエンド回路、および、通信機器
US10250227B2 (en) Frequency-variable filter
US20190341910A1 (en) Wideband piezoelectric filter with ladder-structure
JP4697229B2 (ja) 弾性波フィルタ装置
JP6308221B2 (ja) 周波数可変フィルタ
KR100541895B1 (ko) 고주파 필터
JP6250702B2 (ja) 分岐技術を用いた広帯域フィルタ
WO2019078157A1 (ja) 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
CN111342789A (zh) 带耦合电感的滤波器单元、滤波器及电子设备
JP6638214B2 (ja) 可変フィルタ回路、および、高周波モジュール
JPWO2006137275A1 (ja) 圧電薄膜フィルタ
CN109818594B (zh) 高频滤波器以及多工器
JP2012156881A (ja) フィルタ及び電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052290.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539062

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847000

Country of ref document: EP

Kind code of ref document: A1