WO2011093056A1 - トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子 - Google Patents

トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011093056A1
WO2011093056A1 PCT/JP2011/000376 JP2011000376W WO2011093056A1 WO 2011093056 A1 WO2011093056 A1 WO 2011093056A1 JP 2011000376 W JP2011000376 W JP 2011000376W WO 2011093056 A1 WO2011093056 A1 WO 2011093056A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
substituted
compound
deuterium
Prior art date
Application number
PCT/JP2011/000376
Other languages
English (en)
French (fr)
Inventor
紀昌 横山
長岡 誠
幸喜 加瀬
信吾 小澤
重 草野
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to EP11736773.0A priority Critical patent/EP2530069B1/en
Priority to CN201180007234.3A priority patent/CN102781906B/zh
Priority to US13/574,923 priority patent/US9196839B2/en
Priority to JP2011551756A priority patent/JP5335103B2/ja
Publication of WO2011093056A1 publication Critical patent/WO2011093056A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to a compound suitable for an organic electroluminescence element (hereinafter abbreviated as an organic EL element) which is a self-luminous element suitable for various display devices, and the element, and more specifically, a triphenylamine structure. And an organic EL device using the compound.
  • an organic electroluminescence element hereinafter abbreviated as an organic EL element
  • organic EL elements are self-luminous elements, they have been actively researched because they are brighter and more visible than liquid crystal elements and are capable of clear display.
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission, but it is important how to efficiently transfer both holes and electrons to the light emitting layer, Improve the probability of recombination of holes and electrons by increasing the hole injection property and blocking the electrons injected from the cathode, and confine excitons generated in the light-emitting layer. Therefore, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing. There is also a need for a hole transport material that has a stable thin film and high heat resistance.
  • JP-A-8-048656 Japanese Patent No. 3194657 Special table No. 2008-532998 JP 2009-231516 A JP-A-7-126615
  • the object of the present invention is as a highly efficient and durable organic EL device material with excellent hole injection / transport performance, electron blocking ability, high stability in a thin film state, and heat resistance.
  • An object of the present invention is to provide an organic compound having excellent characteristics, and to provide a highly efficient and highly durable organic EL device using this compound.
  • the physical characteristics that the organic compound to be provided by the present invention should have include (1) good hole injection characteristics, (2) high hole mobility, and (3) electron blocking ability. (4) the thin film state is stable, and (5) the heat resistance is excellent. Further, the physical characteristics to be provided by the organic EL element to be provided by the present invention are (1) high luminous efficiency and power efficiency, (2) low emission start voltage, and (3) practical driving. It can be mentioned that the voltage is low.
  • the present inventors have high hole injection / transport capability of the triphenylamine structure, and heat resistance and thin film stability due to substitution with deuterium atoms.
  • the present invention is an arylamine compound having a structure in which two triphenylamine structures represented by the following general formula (1) are linked by a single bond or a divalent group not containing a hetero atom.
  • R1 to R28 may be the same or different, and a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a nitro group, or a carbon atom which may have a substituent
  • R29 to R32 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R33 to R42 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R43 to R50 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R51 to R55 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • the present invention is an arylamine compound having a structure in which four triphenylamine structures represented by the following general formula (2) are connected by a single bond or a divalent group not containing a hetero atom.
  • R56 to R109 may be the same or different, and a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, nitro group, or optionally substituted carbon atom
  • R29 to R32 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R33 to R42 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R43 to R50 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • R51 to R55 may be the same or different and each represents a hydrogen atom or a deuterium atom.
  • the present invention provides an organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched therebetween, wherein the arylamine compound represented by the general formula (1) or the general formula (2) is at least It is an organic electroluminescent element characterized by being used as a constituent material of one organic layer.
  • the “optionally substituted cycloalkyl group having 5 to 10 carbon atoms” or the “optionally substituted linear or branched alkenyl group having 2 to 6 carbon atoms” "C1-C6 linear or branched alkyl group", “C5-C10 cycloalkyl group” or "C2-C6 linear or branched alkenyl group”
  • a linear or branched alkyl group having 1 to 6 carbon atoms having a substituent represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2), “having a substituent
  • substituents in the “cycloalkyl group having 5 to 10 carbon atoms” or “the linear or branched alkenyl group having 2 to 6 carbon atoms having a substituent” include a deuterium atom, Trifluoromethyl group, cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2)
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms in “optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms” or “5 to 5 carbon atoms”.
  • cycloalkyloxy groups specifically, methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyl Oxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamanti Such oxy group and a 2-adamantyl group can be cited. These substituents may be bonded to each other to form a ring.
  • a linear or branched alkyl group having 1 to 6 carbon atoms; 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and a propyloxy group Linear or branched alkoxy groups; alkenyl groups such as allyl groups; aralkyl groups such as benzyl groups, naphthylmethyl groups and phenethyl groups; aryloxy groups such as phenoxy groups and tolyloxy groups; benzyloxy groups and phenethyloxy groups
  • the “aromatic hydrocarbon group”, “aromatic heterocyclic group” or “fused polycyclic aromatic group” in the “unsubstituted fused polycyclic aromatic group” specifically includes a phenyl group, a biphenylyl group, a terphenylyl group.
  • substituted aromatic hydrocarbon group “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2)
  • substituted specifically, deuterium atom, cyano group, trifluoromethyl group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n- Linear or branched having 1 to 6 carbon atoms such as propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, etc.
  • Alkyl group cycloalkyl group having 5 to 10 carbon atoms such as cyclopentyl group and cyclohexyl group; vinyl group, allyl group, 2-butenyl group, 1-hexenyl group, etc.
  • aryloxy group in the “substituted or unsubstituted aryloxy group” represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2) include a phenoxy group and a tolyloxy group. And biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group, and the like. These substituents may be bonded to each other to form a ring.
  • substituted aryloxy group represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2)
  • substituents in the “substituted aryloxy group” represented by R1 to R28 or R56 to R109 in the general formulas (1) and (2) include a deuterium atom, a cyano group, and trifluoromethyl.
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group or a propyloxy group; a cycloalkyl having 5 to 10 carbon atoms such as a cyclopentyloxy group or a cyclohexyloxy group Oxy group; aralkyl group such as benzyl group, naphthylmethyl group, phenethyl group; phenoxy group, tolyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, full Aryloxy group such as oleenyloxy group, indenyloxy group, pyrenyloxy group and perylenyloxy group; arylalkoxy group such as benzyloxy group and phenethyloxy group; phenyl group, biphenylyl group, terphenylyl group, naph
  • the arylamine compound represented by the general formula (1) is preferably an arylamine compound represented by the following general formula (1 ′) or the following general formula (1 ′′) for use in an organic EL device.
  • n1 to n4 may be the same or different and represent 0 or 5
  • m1 and m2 may be the same or different and represent 0 or 4
  • the arylamine compound represented by the general formula (2) is preferably an arylamine compound represented by the following general formula (2 ') for use in an organic EL device.
  • At least one of R1 to R109 in the general formula (1) or (2) is preferably a deuterium atom or a substituent containing a deuterium atom, and contains a deuterium atom or a deuterium atom. More substituents are more preferable.
  • all of R1 to R5, all of R6 to R10, all of R11 to R14, all of R15 to R18, all of R19 to R23, or all of R24 to R28 are deuterium atoms.
  • the substituents R1 to R109 are all substituted with deuterium atoms except for the bonding position with the triphenylamine structure, aromatic hydrocarbon group, aromatic It is preferably a heterocyclic group, a condensed polycyclic aromatic group or an aryloxy group.
  • A1 or A2 in the general formula (1) or (2) is represented by the structural formula (B), (C), (D) or (F), all of R29 to R32, R33 to R42 It is preferable that all of R43 to R46, all of R47 to R50, or all of R51 to R55 are substituted with deuterium atoms.
  • the arylamine compound having a triphenylamine structure represented by the general formula (1) or (2) of the present invention is a novel compound, and has a thin film state stability and heat resistance equal to or higher than those of conventional hole transport materials. It has sex.
  • the arylamine compound having a triphenylamine structure represented by the general formula (1) or (2) of the present invention is a constituent material of a hole injection layer and / or a hole transport layer and an electron blocking layer of an organic EL device.
  • a compound having a substituted anthracene ring structure and a pyridoindole ring structure represented by the following general formula (3) is preferably used as a constituent material of the electron transport layer.
  • Ar1 and Ar2 may be the same or different, and Ar1 is a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group.
  • Ar2 represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted condensed polycyclic aromatic group, and B and C may be the same or different, and may be a single bond, substituted or unsubstituted.
  • Substituted or unsubstituted aromatic hydrocarbon group "substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted condensed polycyclic aromatic represented by Ar1 in general formula (3)
  • aromatic hydrocarbon group “aromatic heterocyclic group” or “condensed polycyclic aromatic group” of the “group”
  • phenyl group biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl group, naphthyl group Group, anthryl group, acenaphthenyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, pyridyl group, triazyl group, pyrimidyl group, furanyl group, pyronyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group,
  • the “substituent” in the “substituted aromatic hydrocarbon group”, “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by Ar1 in the general formula (3) is specifically Deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, hydroxyl group, nitro group, linear or branched alkyl group having 1 to 6 carbon atoms, cyclopentyl group, cyclohexyl group, carbon atom A linear or branched alkoxy group having 1 to 6 carbon atoms, a dialkylamino group substituted with a linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, naphthyl group, anthryl group, fluorenyl group , A styryl group, a pyridyl group, a pyridoindolyl group, a quinolyl group, a benzothi
  • Specific examples of the “polycyclic aromatic group” include groups such as a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthryl group, a phenanthryl group, a fluorenyl group, an indenyl group, and a pyrenyl group.
  • substituted aromatic hydrocarbon group or “substituted condensed polycyclic aromatic group” represented by Ar 2 in the general formula (3), specifically, a deuterium atom, a fluorine atom, A chlorine atom, a cyano group, a trifluoromethyl group, a hydroxyl group, a nitro group, a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, a straight chain having 1 to 6 carbon atoms or Branched alkoxy group, dialkylamino group substituted with linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, naphthyl group, anthryl group, fluorenyl group, styryl group, pyridyl group, pyridoin
  • Examples thereof include a drill group, a quinolyl group, and a benzo
  • substituted aromatic hydrocarbon group “substituted aromatic heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by R110 to R116 in the general formula (3)
  • deuterium atom fluorine atom, chlorine atom, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms, phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group, styryl
  • examples thereof include a group such as a group, naphthyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, and pyridoindolyl group, and these substituents may be further substituted.
  • linear or branched alkyl group having 1 to 6 carbon atoms represented by R110 to R117 in the general formula (3) include a methyl group, an ethyl group, and an n-propyl group.
  • the following groups can be mentioned.
  • a divalent group of a substituted or unsubstituted aromatic hydrocarbon "a divalent group of a substituted or unsubstituted aromatic heterocyclic ring” or “substituted or As the “divalent group of aromatic hydrocarbon”, “divalent group of aromatic heterocycle” or “divalent group of condensed polycyclic aromatic” in the “unsubstituted fused polycyclic aromatic divalent group”, Specifically, phenylene group, biphenylylene group, terphenylylene group, tetrakisphenylene group, naphthylene group, anthrylene group, phenanthrylene group, fluorenylene group, phenanthrolylene group, indenylene group, pyrenylene group, pyridinylene group, pyrimidinylene group, quinolylene group, Isoquinolylene group, indolylene group, carbazolylene group, quinoxarylene group
  • the arylamine compound having a triphenylamine structure represented by the general formula (1) or (2) of the present invention is useful as a constituent material of a hole injection layer, a hole transport layer, and an electron blocking layer of an organic EL device. It has a high hole injecting / transporting ability, excellent electron blocking ability, stable thin film state, and excellent heat resistance.
  • the organic EL device of the present invention has high luminous efficiency and high power efficiency, which can reduce the practical driving voltage of the device. Furthermore, the light emission starting voltage can be lowered and the durability can be improved. And the element lifetime of an organic EL element can be improved dramatically. Further, as a constituent material of the electron transport layer, a substituted compound represented by the general formula (3) was used.
  • FIG. 1 is a 1H-NMR chart of the compound of Example 1 of the present invention (Compound 5).
  • FIG. 3 is a 1H-NMR chart of the compound of Example 2 of the present invention (Compound 49).
  • FIG. 3 is a 1H-NMR chart of the compound of Example 3 of the present invention (Compound 18).
  • FIG. 3 is a 1H-NMR chart of the compound of Example 4 of the present invention (Compound 19).
  • FIG. 6 is a 1H-NMR chart of the compound of Example 5 of the present invention (Compound 20).
  • FIG. 6 is a 1H-NMR chart of the compound of Example 6 of the present invention (Compound 21).
  • FIG. 6 is a 1H-NMR chart of the compound of Example 7 of the present invention (Compound 40).
  • FIG. 6 is a diagram showing EL element configurations of Examples 11 to 14 and Comparative Example 2.
  • FIG. 6 is a diagram showing EL device configurations of Examples 15 to 18 and Comparative Example 3.
  • the arylamine compound having a triphenylamine structure of the present invention is a novel compound and can be synthesized by a known method (for example, see Patent Documents 1 and 5) using a deuterated raw material.
  • Tg glass transition point
  • work function index of hole transportability
  • the glass transition point (Tg) was determined with a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S) using powder.
  • the work function was measured using an atmospheric photoelectron spectrometer AC-2 manufactured by Riken Keiki Co., Ltd. after a 100 nm thin film was formed on the ITO substrate.
  • the structure of the organic EL device of the present invention includes an anode, a hole transport layer, an electron blocking layer, a light-emitting layer, an electron transport layer, and a cathode sequentially on the substrate, and between the anode and the hole transport layer. And those having an electron injection layer between the electron transport layer and the cathode.
  • these multilayer structures several organic layers can be omitted.
  • a structure having an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode sequentially on a substrate can be used. .
  • an electrode material having a large work function such as ITO or gold is used.
  • a hole injection layer of the organic EL device of the present invention in addition to the arylamine compound having a triphenylamine structure represented by the general formula (1) or (2) of the present invention, a porphyrin compound represented by copper phthalocyanine, Materials such as starburst type triphenylamine derivatives and various triphenylamine tetramers, acceptor heterocyclic compounds such as hexacyanoazatriphenylene, and coating type polymer materials can be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • N, N′-diphenyl-N, N'-di (m-tolyl) benzidine hereinafter abbreviated as TPD
  • NPD N, N'-diphenyl-N, N'-di ( ⁇ -naphthyl) benzidine
  • NPD N, N , N ′, N′-tetrabiphenylylbenzidine and other benzidine derivatives
  • 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane hereinafter abbreviated as TAPC
  • various amounts of triphenylamine Bodies, tetramers and the like can be used.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrene sulfonate)
  • a material that is usually used for the layer is further P-doped with trisbromophenylamine hexachloroantimony or the like, or a TPD structure having a partial structure. Molecular compounds and the like can be used.
  • TCTA N-carbazolyl triphenylamine
  • Ad-Cz 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz Carbazole derivatives such as 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • Phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene a compound having a triphenylsilyl group and a triarylamine structure. It may be a compound having the electron blocking action. These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • the light emitting layer of the organic EL device of the present invention various metal complexes, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, etc., in addition to metal complexes of quinolinol derivatives such as Alq 3 Can be used.
  • the light emitting layer may be composed of a host material and a dopant material, and in addition to the light emitting material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used as the host material.
  • quinacridone coumarin, rubrene, perylene, and derivatives thereof
  • benzopyran derivatives rhodamine derivatives, aminostyryl derivatives, and the like
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • a phosphorescent light emitting material can be used as the light emitting material.
  • a phosphorescent emitter of a metal complex such as iridium or platinum can be used.
  • Green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6, and red phosphorescent emitters
  • Btp 2 Ir (acac) are used as the host material.
  • carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, mCP, and the like can be used.
  • p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2) or 2,2 ′, 2 ′′-(1,3,5-phenylene) represented by the following formula -Tris (1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used.
  • the phosphorescent light-emitting material into the host material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • phenanthroline derivatives such as bathocuproine (hereinafter abbreviated as BCP), aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (hereinafter referred to as “BCP”).
  • BCP bathocuproine
  • BCP aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • BCP aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate
  • various rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and the like can be used. These materials may also serve as the material for the electron transport layer.
  • These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used.
  • These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • various metal complexes triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline, in addition to metal complexes of quinolinol derivatives including Alq 3 and BAlq.
  • Derivatives, phenanthroline derivatives, silole derivatives and the like can be used. These may be formed alone, but may be used as a single layer formed by mixing with other materials, layers formed alone, mixed layers formed, or A stacked structure of layers formed by mixing with a layer formed alone may be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method.
  • an alkali metal salt such as lithium fluoride and cesium fluoride
  • an alkaline earth metal salt such as magnesium fluoride
  • a metal oxide such as aluminum oxide
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • Tetrakis (triphenylphosphine) palladium 2.28 g was added and heated, followed by stirring under reflux for 7.5 hours. After allowing to cool to room temperature, a liquid separation operation was performed to collect the organic layer. The organic layer was dried over magnesium sulfate and then concentrated to obtain 22.27 g of a black crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: n-hexane) by performing afforded white crystals 14.07g biphenyl -d 10 (86% yield).
  • the mixture was stirred at 210 ° C. for 26.5 hours. After cooling to 100 ° C. and adding 70 ml of toluene, the mixture was further cooled to room temperature, and the precipitated solid was collected by filtration. After dispersion washing by adding 200 ml of water and 20 ml of methanol, 3.2 L of o-dichlorobenzene was added and heated to 100 ° C. to dissolve. The insoluble material was removed by filtration, the filtrate was concentrated, and recrystallization with o-dichlorobenzene was repeated 4 times. Further, 300 ml of methanol was added and stirred for 1 hour while heating to reflux.
  • N-[(4′-iodo) biphenyl-4-yl] -N- (phenyl-d 5 ) -benzamide 33.43 g, diphenylamine 14.13 g, copper powder 0.45 g, potassium carbonate 14.43 g, Sodium hydrogen sulfite 1.08 g and dodecylbenzene 56 ml were added to a nitrogen-substituted reaction vessel and heated. The mixture was stirred at 210 ° C. for 7.5 hours while adding 0.45 g of copper powder and 0.96 g of potassium carbonate, respectively. After cooling to 80 ° C. and adding 500 ml of toluene, the mixture was further cooled to 60 ° C.
  • the insoluble material was removed by filtration, then concentrated and added to another reaction vessel.
  • Potassium hydroxide (9.76 g), water (11 ml) and isoamyl alcohol (49 ml) were added, and the mixture was stirred for 3 hours while heating. After allowing to cool to room temperature, 500 ml of toluene and 500 ml of water were added and stirred, and a liquid separation operation was performed to collect the organic layer. The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure. A crude product was obtained by adding 400 ml of hexane and collecting the precipitated solid by filtration.
  • Example 8 About the comparative compounds 50, 51, and 52 which are not substituted by the corresponding deuterium atom with the compound of this invention, the glass transition point was calculated
  • the compound of the present invention has a glass transition point of 90 ° C. or higher, which indicates that the thin film state is stable in the compound of the present invention.
  • the compounds of Examples 1 and 2 of the present invention have almost the same glass transition point as that of the comparative compound 50 that is not substituted with the corresponding deuterium atom.
  • the compounds of Examples 3 to 6 of the present invention have almost the same glass transition point as that of the comparative compound 51 which is not substituted with the corresponding deuterium atom.
  • the compound of Inventive Example 7 has almost the same glass transition point as that of the comparative compound 52 not substituted with the corresponding deuterium atom.
  • Example 9 Using the compound of the present invention, a deposited film having a thickness of 100 nm was formed on an ITO substrate, and the work function was measured with an atmospheric photoelectron spectrometer (AC-2 type, manufactured by Riken Keiki Co., Ltd.). Work function Compound of Example 1 of the present invention 5.47 eV Inventive Example 2 compound 5.51 eV Comparative compound 50 5.46 eV Inventive Example 3 Compound 5.43 eV Inventive Example 4 Compound 5.44 eV Inventive Example 5 compound 5.43 eV Inventive Example 6 Compound 5.42 eV Comparative compound 51 5.45 eV Inventive Example 7 Compound 5.43 eV Comparative Compound 52 5.44 eV
  • the compound of the present invention exhibits a suitable energy level as compared with the work function 5.4 eV of general hole transport materials such as NPD and TPD, and has a good hole transport capability.
  • the compounds of Examples 1 and 2 of the present invention have substantially the same energy level as that of the comparative compound 50 not substituted with the corresponding deuterium atom.
  • the compounds of Examples 3 to 6 of the present invention have almost the same energy level as that of the comparative compound 51 that is not substituted with the corresponding deuterium atom.
  • the compound of Inventive Example 7 has almost the same energy level as that of the comparative compound 52 not substituted with the corresponding deuterium atom.
  • the organic EL element has a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2 as shown in FIG. 7, an electron injection layer 8 and a cathode (aluminum electrode) 9 were deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, the compound 52 having the above structural formula was formed to a thickness of 20 nm as the hole injection layer 3 so as to cover the transparent anode 2. On this hole injection layer 3, the compound (compound 5) of Example 1 of the present invention was formed as a hole transport layer 4 so as to have a film thickness of 40 nm.
  • a film thickness of 30 nm On this emitting layer 5 was formed to have the Alq 3 film thickness 30nm as the electron transport layer 7.
  • lithium fluoride was formed as the electron injection layer 8 so as to have a film thickness of 0.5 nm.
  • aluminum was deposited to a thickness of 150 nm to form the cathode 9.
  • the characteristic measurement was performed at normal temperature in air
  • Example 10 For comparison, in Example 10, except that the comparative compound 50 was formed so as to have a film thickness of 40 nm instead of the compound of Example 1 of the present invention (Compound 5) as the material of the hole transport layer 4.
  • the organic EL element was produced under the conditions described above. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the driving voltage when a current having a current density of 10 mA / cm 2 was passed was 4.97 V of Comparative Compound 50, while that of Compound (Compound 5) of Example 1 of the present invention was 5. Although it is almost the same value as 02V, the luminous efficiency is greatly improved to 9.00 cd / A in the compound of Example 1 (Compound 5) of 8.53 cd / A in Comparative Compound 50. The power efficiency was also improved to 5.60 lm / W in the compound of Example 1 (Compound 5) of 5.40 lm / W of Comparative Compound 50.
  • the organic EL device using the arylamine compound having the triphenylamine structure of the present invention is compared with the organic EL device using the comparative compound 50 not substituted with a known deuterium atom. Even so, it has been found that the luminous efficiency and power efficiency can be improved.
  • the organic EL element has a hole transport layer 4, a light emitting layer 5, an electron transport layer 7 and an electron injection layer 8 on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2.
  • the cathode (aluminum electrode) 9 was deposited in this order.
  • the compound of Example 1 of the present invention (Compound 5) was formed to a film thickness of 60 nm as the hole transport layer 4 so as to cover the transparent electrode 2.
  • the compound 55 of the following structural formula was formed as the electron carrying layer 7 so that it might become a film thickness of 30 nm.
  • the electron transport layer 7 lithium fluoride was formed as the electron injection layer 8 so as to have a film thickness of 0.5 nm.
  • aluminum was deposited to a thickness of 150 nm to form the cathode 9.
  • the characteristic measurement was performed at normal temperature in air
  • Table 2 summarizes the measurement results of the light emission characteristics when a DC voltage was applied to the organic EL device produced using the compound of Example 1 (Compound 5) of the present invention.
  • Example 12 In Example 11, the compound (Compound 19) of Example 4 of the present invention was formed so as to have a film thickness of 60 nm instead of the compound (Compound 5) of Example 1 of the present invention as the material for the hole transport layer 4.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 13 In Example 11, the compound (Compound 21) of Example 6 of the present invention was formed so as to have a film thickness of 60 nm instead of the compound (Compound 5) of Example 1 of the present invention as the material for the hole transport layer 4.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 14 In Example 11, except that the compound (Compound 40) of Example 7 of the present invention was formed to a film thickness of 60 nm in place of the compound (Compound 5) of Example 1 of the present invention as the material for the hole transport layer 4.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 11 For comparison, in Example 11 except that the comparative compound 50 was formed so as to have a film thickness of 60 nm instead of the compound of Example 1 of the present invention (Compound 5) as the material of the hole transport layer 4.
  • the organic EL element was produced under the conditions described above. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the organic EL device using the compound of the example of the present invention is a comparative compound 50 in any of driving voltage, light emission efficiency, and power efficiency when a current density of 10 mA / cm 2 is passed. It can be seen that the performance is equivalent to or better than that of an organic EL device using the above.
  • Table 3 summarizes the results of measuring element lifetime using the same organic EL elements as in Example 11 and Comparative Example 2.
  • the lifetime of the element is measured by measuring the time when the luminance is attenuated to 97 when the initial luminance is 100 with respect to the emission luminance when the current amount (W) when emitting light at 350 cd / m 2 is constant. Asked.
  • the device lifetime of the organic EL device using the compound of Example 1 of the present invention is that of the organic EL device using the comparative compound 50 not substituted with deuterium atoms.
  • the life has been significantly extended.
  • Table 4 summarizes the results of measuring the element lifetime using the same organic EL elements as in Examples 11 to 14 and Comparative Example 2.
  • the element lifetime is the time when the luminance is attenuated to 50 when the initial luminance is 100 with respect to the emission luminance when the current amount (W) when emitting light at a luminance of 5000 cd / m 2 is constant (luminance half-life). ) was measured.
  • the device lifetime of the organic EL device using the compound of the example of the present invention is longer than that of the organic EL device using the comparative compound 50 not substituted with deuterium atoms.
  • the organic EL element has a hole transport layer 4, a light emitting layer 5, a hole blocking layer 6, an electron transport layer on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. 7, an electron injection layer 8 and a cathode (aluminum electrode) 9 were deposited in this order.
  • the film was formed to a thickness of 20 nm.
  • BCP was formed as a hole blocking layer 6 so as to have a film thickness of 10 nm.
  • Alq 3 was formed as an electron transport layer 7 so as to have a film thickness of 30 nm.
  • lithium fluoride was formed as the electron injection layer 8 so as to have a film thickness of 0.5 nm.
  • aluminum was deposited to a thickness of 150 nm to form the cathode 9.
  • the characteristic measurement was performed at normal temperature in air
  • Example 16 In Example 15, except that instead of the compound (Compound 5) of Example 1 of the present invention as the material for the hole transport layer 4, the compound (Compound 19) of Example 4 of the present invention was formed to a film thickness of 50 nm. An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 17 In Example 15, except that the compound (Compound 21) of Example 6 of the present invention was formed to have a film thickness of 50 nm instead of the compound (Compound 5) of Example 1 of the present invention as the material of the hole transport layer 4.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 18 In Example 15, except that the compound (Compound 40) of Example 7 of the present invention was formed so as to have a film thickness of 50 nm instead of the compound (Compound 5) of Example 1 of the present invention as the material of the hole transport layer 4.
  • An organic EL element was produced under the same conditions. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • Example 15 For comparison, in Example 15, except that the comparative compound 50 was formed so as to have a film thickness of 50 nm instead of the compound of Example 1 of the present invention (Compound 5) as the material of the hole transport layer 4.
  • the organic EL element was produced under the conditions described above. About the produced organic EL element, the characteristic measurement was performed at normal temperature in air
  • the organic EL device using the compound of the example of the present invention has the comparative compound 50 in any of the driving voltage, the light emission efficiency, and the power efficiency when a current density of 10 mA / cm 2 is passed. It can be seen that the performance is equal to or better than the organic EL element used.
  • the organic EL device using the compound of the example of the present invention has a current density of 10 mA / in comparison with the organic EL device using the comparative compound 50 not substituted with deuterium atoms. It was found that the driving voltage, the light emission efficiency, and the current efficiency when a current of cm 2 was passed showed the same or better performance.
  • the organic EL device using the arylamine compound having the triphenylamine structure of the present invention is compared with the organic EL device using the comparative compound 50 not substituted with a known deuterium atom.
  • improvement in device performance such as drive voltage, light emission efficiency, and power efficiency can be expected, and that further improvement in device life can be achieved.
  • the arylamine compound having a triphenylamine structure of the present invention is excellent as a compound for an organic EL device because it has a high hole injection / transport capability, an electron blocking capability, and a stable thin film state.
  • an organic EL device using the compound, high light emission efficiency and power efficiency can be obtained, and the device life can be significantly extended. For example, it has become possible to develop home appliances and lighting.

Abstract

【課題】 高効率、高耐久性の有機EL素子用の材料として、正孔の注入・輸送性能に優れ、電子阻止能力を有し、薄膜状態での安定性が高く、耐熱性に優れた特性を有する有機化合物を提供し、さらにこの化合物を用いて、高効率、高耐久性の有機EL素子を提供すること。 【解決手段】 一般式(1)または一般式(2)で表される、トリフェニルアミン構造を有するアリールアミン化合物であり、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、該化合物が、少なくとも1つの有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子である。

Description

トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以後、有機EL素子と略称する)に適した化合物と該素子に関するものであリ、詳しくはトリフェニルアミン構造を有する化合物と、該化合物を用いた有機EL素子に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)と正孔を輸送することのできる芳香族アミン化合物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度を得た(例えば、非特許文献1参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されている(例えば、非特許文献2参照)。
 また、発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている(例えば、非特許文献3参照)。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。上記の講習会予稿集に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、正孔、電子の両電荷を如何に効率よく発光層に受け渡すかが重要であり、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、さらには発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、薄膜が安定で耐熱性が高い正孔輸送材料が求められている。
 これまで有機EL素子に用いられてきた正孔輸送材料としては、種々の芳香族アミン誘導体が知られていた(例えば、特許文献1および特許文献2参照)。これらの化合物の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物が知られているが、さらなる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。
 一方、重水素原子で置換された発光層の材料を使用することで、高効率の有機EL素子が得られたという例が知られている(例えば、特許文献3及び特許文献4参照)。
 これは、重水素原子で置換された場合、励起子の形成が容易になることによって発光効率が高くなるということを応用したものである。しかしながら、このことは、発光層の材料に対してはいえるが、正孔輸送層の材料に対しては当てはまらず、したがって正孔輸送層の材料に応用した例は知られていなかった。
特開平8-048656号公報 特許第3194657号公報 特表第2008-532998号公報 特開2009-231516号公報 特開平7-126615号公報
Appl.Phys.Lett.,51,913(1987) 応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001)
 本発明の目的は、高効率、高耐久性の有機EL素子用の材料として、正孔の注入・輸送性能に優れ、電子阻止能力を有し、薄膜状態での安定性が高く、耐熱性に優れた特性を有する有機化合物を提供し、さらにこの化合物を用いて、高効率、高耐久性の有機EL素子を提供することにある。
 本発明が提供しようとする有機化合物が具備すべき物理的な特性としては、(1)正孔の注入特性がよいこと、(2)正孔の移動度が大きいこと、(3)電子阻止能力に優れること、(4)薄膜状態が安定であること、(5)耐熱性に優れていることをあげることができる。また、本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)発光効率および電力効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いことをあげることができる。
 そこで本発明者らは上記の目的を達成するために、トリフェニルアミン構造が高い正孔注入・輸送能力を有していることと、重水素原子で置換されることよる耐熱性や薄膜安定性への効果に期待して、トリフェニルアミン構造を有する化合物を設計して化学合成し、該化合物を用いて種々の有機EL素子を試作し、素子の特性評価を鋭意行なった結果、本発明を完成するに至った。
 すなわち本発明は、下記一般式(1)で表される、トリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物である。
Figure JPOXMLDOC01-appb-C000001
                         (1)
 (式中、R1~R28は同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基であって、互いに結合して環を形成していてもよい。但し、R1~R28の少なくともひとつは重水素原子、もしくは重水素原子を含む置換基であるものとする。A1は下記構造式(B)~(F)で示される2価基、または単結合を表す。)
Figure JPOXMLDOC01-appb-C000002
                         (B)
 (式中、R29~R32は同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000003
                         (C)
 (式中、R33~R42は同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000004
                         (D)
 (式中、R43~R50は同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000005
                         (E)
Figure JPOXMLDOC01-appb-C000006
                         (F)
 (式中、R51~R55は同一でも異なってもよく、水素原子または重水素原子を表す。)
 また、本発明は、下記一般式(2)で表される、トリフェニルアミン構造を4個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物である。
Figure JPOXMLDOC01-appb-C000007
                         (2)
 (式中、R56~R109は同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基であって、互いに結合して環を形成していてもよい。但し、R56~R109の少なくともひとつは重水素原子、もしくは重水素原子を含む置換基であるものとする。A2は下記構造式(B)~(F)で示される2価基、または単結合を表す。)
Figure JPOXMLDOC01-appb-C000008
                         (B)
 (式中、R29~R32同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000009
                         (C)
 (式中、R33~R42は同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000010
                         (D)
 (式中、R43~R50は同一でも異なってもよく、水素原子または重水素原子を表す。)
Figure JPOXMLDOC01-appb-C000011
                         (E)
Figure JPOXMLDOC01-appb-C000012
                         (F)
 (式中、R51~R55は同一でも異なってもよく、水素原子または重水素原子を表す。)
 また、本発明は、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、前記一般式(1)または一般式(2)で表されるアリールアミン化合物が、少なくとも1つの有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子である。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」または「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基および2-ブテニル基などをあげることができる。また、これらの置換基同士が互いに結合し、環を形成していてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルコキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、芳香族複素環基またはアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基および2-アダマンチルオキシ基などをあげることができる。また、これらの置換基同士が互いに結合し、環を形成していてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有する炭素原子数5ないし10のシクロアルキルオキシ基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルコキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、芳香族複素環基またはアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フラニル基、ピラニル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、およびカルボリニル基などをあげることができる。また、これらの置換基同士が互いに結合し、環を形成していてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5ないし10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5ないし10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、芳香族複素環基またはアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。また、これらの置換基同士が互いに結合し、環を形成していてもよい。
 一般式(1)および(2)中のR1~R28またはR56~R109で表される「置換アリールオキシ基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5ないし10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基;メトキシ基、エトキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5ないし10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェノキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルコキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、チオフェニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、芳香族複素環基またはアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよい。
 尚、前記一般式(1)で表されるアリールアミン化合物は、下記一般式(1’)あるいは下記一般式(1’’)で表されるアリールアミン化合物が有機EL素子に用いるのに好ましい。
Figure JPOXMLDOC01-appb-C000013
                         (1’)
 (式中、Dは重水素原子を表し、n1~n4は同一でも異なってもよく、0または5を表し、m1、m2は同一でも異なってもよく、0または4を表す。)
Figure JPOXMLDOC01-appb-C000014
                         (1’’)
 (式中、Dは重水素原子を表し、n5~n8は同一でも異なってもよく、0または5を表し、m3~m8は同一でも異なってもよく、0または4を表す。)
 また、前記一般式(2)で表されるアリールアミン化合物は、下記一般式(2’)で表されるアリールアミン化合物が有機EL素子に用いるのに好ましい。
Figure JPOXMLDOC01-appb-C000015
                         (2’)
 (式中、Dは重水素原子を表し、n9~n14は同一でも異なってもよく、0または5を表す。)
 本発明において、一般式(1)または(2)中のR1~R109の少なくともひとつは重水素原子、もしくは重水素原子を含む置換基であることが好ましく、重水素原子、もしくは重水素原子を含む置換基は多い方がより好ましい。例えば、一般式(1)において、R1~R5の全て、R6~R10の全て、R11~R14の全て、R15~R18の全て、R19~R23の全て、もしくはR24~R28の全て、が重水素原子で置換されているのが好ましく、一般式(2)において、R56~R60の全て、R61~R64の全て、R65~R68の全て、R69~R73の全て、R74~R78の全て、R79~R82の全て、R83~R86の全て、R87~R91の全て、R92~R95の全て、R96~R99の全て、R100~R104の全て、もしくはR105~R109の全て、が重水素原子で置換されているのが好ましい。また、一般式(1)または(2)中のR1~R109の置換基が、トリフェニルアミン構造との結合位置以外の全てが重水素原子で置換されている、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基であることが好ましい。また、一般式(1)または(2)中のA1またはA2が前記構造式(B)、(C)、(D)または(F)で表される場合、R29~R32の全て、R33~R42の全て、R43~R46の全て、R47~R50の全て、もしくはR51~R55の全て、が重水素原子で置換されているのが好ましい。
 本発明の一般式(1)または(2)で表される、トリフェニルアミン構造を有するアリールアミン化合物は新規な化合物であり、従来の正孔輸送材料と同等以上の薄膜状態の安定性と耐熱性を有している。
 本発明の一般式(1)または(2)で表される、トリフェニルアミン構造を有するアリールアミン化合物は、有機EL素子の正孔注入層および/または正孔輸送層、電子阻止層の構成材料として使用することができる。正孔の注入性が高く、正孔移動度が大きいため、好適に使用できる。薄膜の安定性が高く、耐熱性に優れていることから、高発光効率を得ることができるだけでなく、有機EL素子の耐久性が向上するという作用を有する。
 尚、本願発明の有機EL素子は、下記一般式(3)で表される、置換されたアントラセン環構造とピリドインドール環構造を有する化合物を電子輸送層の構成材料として用いるのが好ましい。
Figure JPOXMLDOC01-appb-C000016
                         (3)
 (式中、Ar1、Ar2は同一でも異なってもよく、Ar1は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、Ar2は置換もしくは無置換の芳香族炭化水素基または置換もしくは無置換の縮合多環芳香族基を表し、B、Cは同一でも異なってもよく、単結合、あるいは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、R110~R116は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、R117は重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基を表し、r117は0または1~8の整数を表し、r117が2以上のとき複数のR117は互いに同一でも異なってもよく、r117が0である場合はR117で置換されていないことを表す。W、X、Y、Zは炭素原子または窒素原子を表す。ここでW、X、Y、Zはそのいずれか1つのみが窒素原子であるものとし、この場合の窒素原子はR110~R113の水素原子もしくは置換基を有さないものとする。)
 一般式(3)中のAr1で表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」の「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的にフェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ピリジル基、トリアジル基、ピリミジル基、フラニル基、ピロニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基のような基をあげることができる。
 一般式(3)中のAr1で表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、水酸基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルコキシ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基で置換されたジアルキルアミノ基、フェニル基、ナフチル基、アントリル基、フルオレニル基、スチリル基、ピリジル基、ピリドインドリル基、キノリル基、ベンゾチアゾリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよい。
 一般式(3)中のAr2で表される、「置換もしくは無置換の芳香族炭化水素基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基のような基をあげることができる。
 一般式(3)中のAr2で表される、「置換芳香族炭化水素基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、水酸基、ニトロ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルコキシ基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基で置換されたジアルキルアミノ基、フェニル基、ナフチル基、アントリル基、フルオレニル基、スチリル基、ピリジル基、ピリドインドリル基、キノリル基、ベンゾチアゾリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよい。
 一般式(3)中のR110~R116で表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、トリアジル基、ピリミジル基、フラニル基、ピロニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、ピリドインドリル基のような基をあげることができる。
 一般式(3)中のR110~R116で表される、「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリドインドリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよい。
 一般式(3)中のR110~R117で表される、「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、t-ペンチル基、n-ヘキシル基、i-ヘキシル基、t-ヘキシル基のような基をあげることができる。
 一般式(3)中のB、Cで表される、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」または「置換もしくは無置換の縮合多環芳香族の2価基」における「芳香族炭化水素の2価基」、「芳香族複素環の2価基」または「縮合多環芳香族の2価基」としては、具体的に、フェニレン基、ビフェニリレン基、ターフェニリレン基、テトラキスフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、フルオレニレン基、フェナントロリレン基、インデニレン基、ピレニレン基、ピリジニレン基、ピリミジニレン基、キノリレン基、イソキノリレン基、インドリレン基、カルバゾリレン基、キノキサリレン基、ベンゾイミダゾリレン基、ピラゾリレン基、ナフチリジニレン基、フェナントロリニレン基、アクリジニレン基のような基をあげることができる。
 一般式(3)中のB、Cで表される、「置換芳香族炭化水素の2価基」、「置換芳香族複素環の2価基」または「置換縮合多環芳香族の2価基」における「置換基」としては、具体的に、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリドインドリル基のような基をあげることができ、これらの置換基はさらに置換されていてもよい。
 本発明の一般式(1)または(2)で表される、トリフェニルアミン構造を有するアリールアミン化合物は、有機EL素子の正孔注入層、正孔輸送層、電子阻止層の構成材料として有用であり、正孔注入・輸送能力が高く、電子阻止能力に優れ、薄膜状態が安定で、耐熱性に優れている。本発明の有機EL素子は発光効率および電力効率が高く、このことにより素子の実用駆動電圧を低くさせることができる。さらに発光開始電圧を低くさせ、耐久性を向上させることができる。そして、有機EL素子の素子寿命を飛躍的に向上させることができる。また、電子輸送層の構成材料として、一般式(3)で表される置換された
本発明実施例1の化合物(化合物5)の1H-NMRチャート図である。 本発明実施例2の化合物(化合物49)の1H-NMRチャート図である。 本発明実施例3の化合物(化合物18)の1H-NMRチャート図である。 本発明実施例4の化合物(化合物19)の1H-NMRチャート図である。 本発明実施例5の化合物(化合物20)の1H-NMRチャート図である。 本発明実施例6の化合物(化合物21)の1H-NMRチャート図である。 本発明実施例7の化合物(化合物40)の1H-NMRチャート図である。 実施例10、比較例1のEL素子構成を示した図である。 実施例11~14、比較例2のEL素子構成を示した図である。 実施例15~18、比較例3のEL素子構成を示した図である。
 本発明のトリフェニルアミン構造を有するアリールアミン化合物は新規な化合物であり、重水素化した原料を用いて公知の方法(例えば、特許文献1および5参照)によって合成できる。
 一般式(1)または(2)で表されるトリフェニルアミン構造を有するアリールアミン化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
 尚、下記構造式では、水素原子は省略して記載している。
Figure JPOXMLDOC01-appb-C000017
                         (化合物3)
Figure JPOXMLDOC01-appb-C000018
                         (化合物4)
Figure JPOXMLDOC01-appb-C000019
                         (化合物5)
Figure JPOXMLDOC01-appb-C000020
                         (化合物6)
Figure JPOXMLDOC01-appb-C000021
                         (化合物7)
Figure JPOXMLDOC01-appb-C000022
                         (化合物8)
Figure JPOXMLDOC01-appb-C000023
                         (化合物9)
Figure JPOXMLDOC01-appb-C000024
                         (化合物10)
Figure JPOXMLDOC01-appb-C000025
                         (化合物11)
Figure JPOXMLDOC01-appb-C000026
                         (化合物12)
Figure JPOXMLDOC01-appb-C000027
                         (化合物13)
Figure JPOXMLDOC01-appb-C000028
                         (化合物14)
Figure JPOXMLDOC01-appb-C000029
                         (化合物15)
Figure JPOXMLDOC01-appb-C000030
                         (化合物16)
Figure JPOXMLDOC01-appb-C000031
                         (化合物17)
Figure JPOXMLDOC01-appb-C000032
                         (化合物18)
Figure JPOXMLDOC01-appb-C000033
                         (化合物19)
Figure JPOXMLDOC01-appb-C000034
                         (化合物20)
Figure JPOXMLDOC01-appb-C000035
                         (化合物21)
Figure JPOXMLDOC01-appb-C000036
                         (化合物22)
Figure JPOXMLDOC01-appb-C000037
                         (化合物23)
Figure JPOXMLDOC01-appb-C000038
                         (化合物24)
Figure JPOXMLDOC01-appb-C000039
                         (化合物25)
Figure JPOXMLDOC01-appb-C000040
                         (化合物26)
Figure JPOXMLDOC01-appb-C000041
                         (化合物27)
Figure JPOXMLDOC01-appb-C000042
                         (化合物28)
Figure JPOXMLDOC01-appb-C000043
                         (化合物29)
Figure JPOXMLDOC01-appb-C000044
                         (化合物30)
Figure JPOXMLDOC01-appb-C000045
                         (化合物31)
Figure JPOXMLDOC01-appb-C000046
                         (化合物32)
Figure JPOXMLDOC01-appb-C000047
                         (化合物33)
Figure JPOXMLDOC01-appb-C000048
                         (化合物34)
Figure JPOXMLDOC01-appb-C000049
                         (化合物35)
Figure JPOXMLDOC01-appb-C000050
                         (化合物36)
Figure JPOXMLDOC01-appb-C000051
                         (化合物37)
Figure JPOXMLDOC01-appb-C000052
                         (化合物38)
Figure JPOXMLDOC01-appb-C000053
                         (化合物39)
Figure JPOXMLDOC01-appb-C000054
                         (化合物40)
Figure JPOXMLDOC01-appb-C000055
                         (化合物41)
Figure JPOXMLDOC01-appb-C000056
                         (化合物42)
Figure JPOXMLDOC01-appb-C000057
                         (化合物43)
Figure JPOXMLDOC01-appb-C000058
                         (化合物44)
Figure JPOXMLDOC01-appb-C000059
                         (化合物45)
Figure JPOXMLDOC01-appb-C000060
                         (化合物46)
Figure JPOXMLDOC01-appb-C000061
                         (化合物47)
Figure JPOXMLDOC01-appb-C000062
                         (化合物48)
Figure JPOXMLDOC01-appb-C000063
                         (化合物49)
 これらの化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって行った。化合物の同定は、NMR分析によって行なった。物性値として、ガラス転移点(Tg)と仕事関数の測定を行った。ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性の指標となるものである。
 ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって求めた。
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、理研計器製の大気中光電子分光装置AC-2型を用いて測定した。
 本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔輸送層、電子阻止層、発光層、電子輸送層、陰極からなるもの、また、陽極と正孔輸送層の間に正孔注入層を有するもの、電子輸送層と陰極の間に電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略することが可能であり、例えば基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層、陰極を有する構成とすることもできる。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。本発明の有機EL素子の正孔注入層として、本発明の一般式(1)または(2)で表されるトリフェニルアミン構造を有するアリールアミン化合物のほか、銅フタロシアニンに代表されるポルフィリン化合物、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔輸送層として、本発明の一般式(1)または(2)で表されるトリフェニルアミン構造を有するアリールアミン化合物のほか、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(以後、TPDと略称する)やN,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、NPDと略称する)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)、種々のトリフェニルアミン3量体および4量体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものや、TPDの構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の電子阻止層として、本発明の一般式(1)または(2)で表されるトリフェニルアミン構造を有するアリールアミン化合物のほか、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層として、Alqをはじめとするキノリノール誘導体の金属錯体のほか、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成してもよく、ホスト材料として前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。
 また、発光材料として燐光性の発光材料を使用することも可能である。燐光性の発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や下記式で表される2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
Figure JPOXMLDOC01-appb-C000064
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔阻止層として、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜してもよいが、他の材料とともに混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
[実施例1]
 <4,4’-ビス〔(ビフェニル-4-イル)-(フェニル-d)-アミノ〕ビフェニル(化合物5)の合成>
 窒素置換した反応容器に、アニリン-2,3,4,5,6-d30.00g、酢酸50mlを加え、攪拌しながら70℃まで加熱した後、無水酢酸34.7mlを滴下し、さらに70℃で4時間撹拌した。室温まで冷却した後、反応液を氷水に注加し、析出した結晶をろ別することによって、淡褐色結晶48.71gを得た。一方、ろ液を分液ロートに移し、トルエン1000mlを加えて抽出操作を行い、抽出液を濃縮、乾固することによって褐色結晶4.05gを得た。これらの結晶を合わせ、減圧下で乾燥させてアセトアニリド-2,3,4,5,6-dの褐色結晶41.33g(収率96.5%)を得た。
 得られたアセトアニリド-2,3,4,5,6-d35.00g、4-ブロモビフェニル48.50g、銅粉1.32g、炭酸カリウム43.14g、亜硫酸ナトリウム6.53g、ドデシルベンゼン97mlを窒素置換した反応容器に加えて加熱し、210℃で34時間撹拌した。その間、銅粉1.32g、炭酸カリウム2.88gをそれぞれ計4回ずつ追加しながら反応を継続した。100℃まで冷却し、トルエン194mlを加えた後、さらに50℃まで冷却し、析出する不溶物をろ過によって除去した。
 ろ液を濃縮した後、窒素置換した反応容器に加え、さらに水酸化カリウム30g、水40ml、イソアミルアルコール61ml加えて加熱し、撹拌しながら、3時間還流した。冷却して析出する粗結晶を、メタノール100mlを用いて洗浄した後、メタノール/水の混合溶媒を加えて加熱し、78℃で1時間撹拌した。析出する結晶をろ過によって採取した後、さらにトルエン/n-ヘキサンを用いた再結晶を行うことによって精製し、(ビフェニル-4-イル)-(フェニル-d)-アミンの褐色結晶35.78g(収率68.7%)を得た。
 得られた(ビフェニル-4-イル)-(フェニル-d)-アミン15.00g、4,4’-ジヨードビフェニル10.14g、銅粉0.16g、3,5-ジ(tert-ブチル)サリチル酸0.63g、炭酸カリウム10.35g、亜硫酸ナトリウム0.78g、ドデシルベンゼン18mlを窒素置換した反応容器に加えて加熱し、210℃で11時間撹拌した。その間、銅粉0.16g、炭酸カリウム0.35gをそれぞれ追加しながら反応を継続した。100℃まで冷却し、トルエン269mlを加えた後、さらに50℃まで冷却し、析出する不溶物をろ過によって除去した。ろ液を濃縮し、トルエン/n-ヘキサンを用いた再結晶を3回行うことによって精製し、4,4’-ビス〔(ビフェニル-4-イル)-(フェニル-d)-アミノ〕ビフェニル(化合物5)の淡黄白色結晶14.61g(収率89.9%)を得た。
 得られた淡黄白色結晶についてNMRを使用して構造を同定した。1H-NMR測定結果を図1に示した。
 1H-NMR(THF-d)で以下の26個の水素のシグナルを検出した。δ(ppm)=7.59(4H)、7.53(8H)、7.38(4H)、7.27(2H)、7.15(8H)
[実施例2]
 <4,4’-ビス{(ビフェニル-d-4-イル)-フェニルアミノ}ビフェニル(化合物49)の合成>
 窒素置換した反応容器に、ブロモベンゼン-d16.08g、(フェニル-d)ボロン酸13.79g、炭酸カリウム20.46g、水74ml、トルエン160ml、エタノール40mlを加え、超音波を照射しながら30分間窒素ガスを通気した。テトラキス(トリフェニルホスフィン)パラジウム2.28gを加えて加熱し、還流下7.5時間撹拌した。室温まで放冷した後、分液操作を行って有機層を採取し、有機層を硫酸マグネシウムで乾燥した後、濃縮することによって黒色の粗製物22.27gを得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:n-ヘキサン)による精製を行うことによって、ビフェニル-d10の白色結晶14.07g(収率86%)を得た。
 得られたビフェニル-d1014.07g、塩化鉄(III)0.28g、臭素2.2ml、クロロホルム70mlを窒素置換した反応容器に加え、室温で46時間撹拌した。反応溶液に10%水酸化ナトリウム水溶液70mlを加えて撹拌した後、分液操作を行って有機層を採取し、水100mlよる洗浄を行った後に濃縮することによって、4-ブロモビフェニル-d17.69gを得た。
 得られた4-ブロモビフェニル-d17.60g、アニリン27ml、tert-ブトキシナトリウム8.38g、トルエン260mlを窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム0.80g、トリ(tert-ブチル)ホスフィン0.9mlを加えて加熱し、85℃で2.5時間撹拌した。室温まで放冷した後、メタノール10ml、水200mlを加えて攪拌し、不溶物をろ過によって除いた後、分液操作を行って有機層を採取した。有機層を硫酸マグネシウムで乾燥した後、濃縮することによって黒色の粗製物35.17gを得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)による精製を行うことによって、[(ビフェニル-d)-4-イル]-フェニルアミン8.55g(2工程で収率39%)を得た。
 得られた[(ビフェニル-d)-4-イル]-フェニルアミン2.20g、4,4’-ジヨードビフェニル1.56g、銅粉25.7mg、3,5-ジ(tert-ブチル)サリチル酸98.5mg、炭酸カリウム1.59g、亜硫酸ナトリウム112.5mg、ドデシルベンゼン2mlを窒素置換した反応容器に加えて加熱し、210℃で8時間撹拌した。室温まで冷却し、トルエン40mlを加えた後、50℃まで加熱し、不溶物をろ過によって除いた。ろ液を濃縮し、トルエン/n-ヘキサンを用いた再結晶を3回行って精製した後、メタノールを用いた還流洗浄を行うことによって、4,4’-ビス{(ビフェニル-d-4-イル)-フェニルアミノ}ビフェニル(化合物49)の淡黄白色結晶2.11g(収率83.4%)を得た。
 得られた淡黄白色結晶についてNMRを使用して構造を同定した。1H-NMR測定結果を図2に示した。
 1H-NMR(THF-d)で以下の18個の水素のシグナルを検出した。δ(ppm)=7.52(4H)、7.26(4H)、7.14(8H)、7.02(2H)
[実施例3]
 <4,4’-ビス{(ビフェニル-4-イル)-[(ビフェニル-2,3,5,6-d)-4-イル]アミノ}ビフェニル(化合物18)の合成>
 窒素置換した反応容器に、(ビフェニル-4-イル)-(フェニル-d)アミン20.0g、DMF400mlを加えて溶解させた後、氷冷下にて、N-ブロモコハク酸イミド4.7gを加えた。N-ブロモコハク酸イミド9.4gを2回に分けて追加しながら、反応温度を室温まで上げた。3時間撹拌した後、反応溶液を水2000mlに滴下し、析出する固体をろ過によって採取した。得られた固体にトルエン1000mlを加えて溶解した後、硫酸マグネシウムで乾燥し、ろ過操作を行った後に、ろ液を濃縮した。得られた濃縮物にn-ヘキサン200mlを加えて分散洗浄を行い、減圧下、一晩乾燥させることによって、(ビフェニル-4-イル)-4-ブロモ(フェニル-2,3,5,6-d)アミンの小豆色の固体23.4g(収率89.0%)を得た。
 得られた(ビフェニル-4-イル)-4-ブロモ(フェニル-2,3,5,6-d)アミン23.0g、フェニルボロン酸9.4g、リン酸三カリウム59.5g、THF460mlを窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。酢酸パラジウム0.8g、トリ(tert-ブチル)ホスフィン2.1gを加えて加熱し、さらに酢酸パラジウム2.0g、トリ(tert-ブチル)ホスフィン5.2g、フェニルボロン酸1.7gをそれぞれ追加しながら、60℃で12.5時間攪拌した。室温まで冷却し、水100ml、トルエン320mlを加え、減圧下濃縮した。トルエン100ml、水300mlを加えて攪拌した後、分液操作を行って有機層を採取した。有機層を硫酸マグネシウムで乾燥した後、濃縮し、メタノール350mlによる分散洗浄を行った後、減圧下、一晩乾燥させることによって、(ビフェニル-4-イル)-[(ビフェニル-2,3,5,6-d)-4-イル]アミンの白褐色固体16.6g(収率72.7%)を得た。
 得られた(ビフェニル-4-イル)-[(ビフェニル-2,3,5,6-d)-4-イル]アミン16.3g、4,4’-ジヨードビフェニル8.5g、銅粉0.1g、炭酸カリウム8.6g、亜硫酸水素ナトリウム0.7g、3,5-ジ(tert-ブチル)サリチル酸0.5g、キシレン35ml、ドデシルベンゼン20mlを窒素置換した反応容器に加えた後、キシレンを留去しながら加熱し、銅粉0.4g、炭酸カリウム8.7g、亜硫酸水素ナトリウム2.0g、3,5-ジ(tert-ブチル)サリチル酸0.52g、o-ジクロロベンゼン4mlをそれぞれ追加しながら、210℃で26.5時間攪拌した。100℃まで冷却し、トルエン70mlを加えた後、さらに室温まで冷却し、析出する固体をろ過によって採取した。水200ml、メタノール20mlを加えて分散洗浄を行った後、o-ジクロロベンゼン3.2Lを加え、100℃まで加熱して溶解させた。不溶物をろ過によって除いた後、濃縮し、o-ジクロロベンゼンによる再結晶を4回繰り返した。さらにメタノール300mlを加え、加熱還流させながら1時間撹拌した。室温まで放冷し、析出する固体をろ過によって採取し、減圧下一晩乾燥させることによって、4,4’-ビス{(ビフェニル-4-イル)-[(ビフェニル-2,3,5,6-d)-4-イル]アミノ}ビフェニル(化合物18)の淡黄色固体14.6g(収率87.2%)を得た。
 得られた淡黄色固体についてNMRを使用して構造を同定した。1H-NMR測定結果を図3に示した。
 1H-NMR(THF-d)で以下の36個の水素のシグナルを検出した。δ(ppm)=7.61(8H)、7.57(8H)、7.39(8H)、7.26(4H)、7.23-7.20(8H)
[実施例4]
 <4,4’-ビス{(ビフェニル-4-イル)-[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミノ}ビフェニル(化合物19)の合成>
 窒素置換した反応容器に、(ビフェニル-4-イル)-フェニルアミン35.0g、DMF700mlを加えて溶解させた後、氷冷下にて、N-ブロモコハク酸イミド8.5gを加えた。N-ブロモコハク酸イミド17.0gを2回に分けて追加しながら、反応温度を室温まで上げた。25.5時間撹拌した後、反応溶液を水3500mlに滴下し、析出する固体をろ過によって採取した。得られた固体にトルエン2500mlを加えて溶解した後、硫酸マグネシウムで乾燥し、ろ過操作を行った後に、ろ液を濃縮した。得られた濃縮物にn-ヘキサン500mlを加えて分散洗浄を行い、減圧下、一晩乾燥させることによって、(ビフェニル-4-イル)-(4-ブロモフェニル)アミンの小豆色の固体44.1g(収率95.4%)を得た。
 得られた(ビフェニル-4-イル)-(4-ブロモフェニル)アミン44.0g、(フェニル-d)ボロン酸19.0g、リン酸三カリウム115.2g、THF880mlを窒素置換した反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。酢酸パラジウム1.5g、トリ(tert-ブチル)ホスフィン5.5gを加えて加熱し、さらに酢酸パラジウム0.8g、トリ(tert-ブチル)ホスフィン1.6g、((フェニル-d)ボロン酸2.0gをそれぞれ追加しながら、65℃で16.5時間攪拌した。室温まで冷却し、トルエン650ml、水250mlの混合溶液に滴下した。得られた溶液を濃縮し、析出する固体をろ過によって採取した。得られた固体をトルエン1.3Lに溶解し、ろ過によって不溶物を除いた後濃縮した。トルエンを用いた再結晶による精製を行った後、減圧下、一晩乾燥させることによって、(ビフェニル-4-イル)-[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミンの黄色固体19.7g(収率44.5%)を得た。
 得られた(ビフェニル-4-イル)-[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミン19.5g、4,4’-ジヨードビフェニル10.1g、銅粉0.2g、炭酸カリウム10.3g、亜硫酸水素ナトリウム0.8g、3,5-ジ(tert-ブチル)サリチル酸0.6g、キシレン42ml、ドデシルベンゼン24mlを窒素置換した反応容器に加えた後、キシレンを留去しながら加熱し、銅粉0.4g、炭酸カリウム6.8g、亜硫酸水素ナトリウム1.6g、3,5-ジ-(tert-ブチル)サリチル酸1.2g、ドデシルベンゼン24mlをそれぞれ追加しながら、210℃で20時間攪拌した。100℃まで冷却し、トルエン85mlを加えた後、さらに室温まで冷却し、析出する固体をろ過によって採取した。水250ml、メタノール25mlを加えて分散洗浄を行った後、o-ジクロロベンゼン4.0Lを加え、100℃まで加熱して溶解させた。不溶物をろ過によって除いた後、濃縮し、o-ジクロロベンゼンによる再結晶を3回繰り返した。さらにメタノール400mlを加え、加熱還流させながら1時間撹拌した。室温まで放冷し、析出する固体をろ過によって採取し、減圧下一晩乾燥させることによって、4,4’-ビス{(ビフェニル-4-イル)-[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミノ}ビフェニル(化合物19)の淡黄色固体18.2g(収率91.0%)を得た。
 得られた淡黄色固体についてNMRを使用して構造を同定した。1H-NMR測定結果を図4に示した。
 1H-NMR(THF-d)で以下の34個の水素のシグナルを検出した。δ(ppm)=7.61(4H)、7.58(12H)、7.39(4H)、7.27(2H)、7.23-7.20(12H)
[実施例5]
 <4,4’-ビス{ビス[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミノ}ビフェニル(化合物20)の合成>
 窒素置換した反応容器に、ビス(4-ブロモフェニル)アミン20.7g、(フェニル-d)ボロン酸17.0g、リン酸三カリウム53.5g、THF340mlを加え、超音波を照射しながら30分間窒素ガスを通気した。酢酸パラジウム0.7g、トリ(tert-ブチル)ホスフィン1.9gを加え、酢酸パラジウム1.8g、トリ(tert-ブチル)ホスフィン3.8g、リン酸三カリウム53.5gをそれぞれ追加しながら加熱し、60℃で16.5時間攪拌した。室温まで放冷し、不溶物をろ過によって除いた後、濃縮し、トルエンから再結晶することによって固体を得た。減圧下一晩乾燥させることによって、ビス[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミンの黒黄色固体8.0g(収率37.7%)を得た。
 得られたビス[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミン8.00g、4,4’-ジヨードビフェニル4.10g、銅粉0.06g、炭酸カリウム4.20g、亜硫酸水素ナトリウム0.32g、3,5-ジ(tert-ブチル)サリチル酸0.25g、キシレン19ml、ドデシルベンゼン9mlを窒素置換した反応容器に加え、キシレンを留去しながら加熱し、210℃で12時間攪拌した。130℃まで冷却し、トルエン35mlを加えた後、さらに室温まで冷却し、析出する固体をろ過によって採取した。水50ml、メタノール10mlを加えて分散洗浄を行った後、o-ジクロロベンゼン1.4Lを加え、100℃まで加熱して溶解させた。不溶物をろ過によって除いた後、濃縮し、o-ジクロロベンゼンによる再結晶を4回繰り返した。さらに、メタノール80mlを加え、加熱還流させながら1時間撹拌した。室温まで放冷し、析出する固体をろ過によって採取し、減圧下一晩乾燥させることによって、4,4’-ビス{ビス[(ビフェニル-1’,2’,3’,5’,6’-d)-4-イル]アミノ}ビフェニル(化合物20)の淡黄色固体2.7g(収率32.9%)を得た。
 得られた淡黄色固体についてNMRを使用して構造を同定した。1H-NMR測定結果を図5に示した。
 1H-NMR(THF-d)で以下の24個の水素のシグナルを検出した。δ(ppm)=7.57(12H)、7.21(12H)
[実施例6]
 <4,4’-ビス[ビス(ビフェニル-4-イル)アミノ]ビフェニル-2,3,5,6,2’,3’,5’,6’-d(化合物21)の合成>
 窒素置換した反応容器に、ビス(ビフェニル-4-イル)アミン20.0g、ブロモベンゼン-d10.2g、tert-ブトキシナトリウム9.0g、トルエン150mlを加え、超音波を照射しながら30分間窒素ガスを通気した。酢酸パラジウム0.2g、トリ(tert-ブチル)ホスフィン0.5gを加えて加熱し、90℃で2時間攪拌した。室温まで放冷し、メタノール100mlを加えて分散洗浄を行った後、トルエン102mlを加えて溶解させた。シリカゲル20gを用いた吸着精製を行った後、濃縮した。メタノール100mlを加えて分散洗浄を行った後、減圧下一晩乾燥することによって、N-(フェニル-d)-ビス(ビフェニル-4-イル)アミンの白色固体20.1g(収率80.1%)を得た。
 得られたN-(フェニル-d)-ビス(ビフェニル-4-イル)アミン5.00g、過塩素酸銅・6水和物6.90g、トルエン58ml、アセトニトリル20mlを窒素置換した反応容器に加え、室温下、57時間撹拌した。3%アンモニア水43mlを加えて分散洗浄を行った後、水200mlを加えて分散洗浄を行った。o-ジクロロベンゼン400mLを加え、100℃まで加熱して溶解させた。不溶物をろ過によって除いた後、濃縮し、o-ジクロロベンゼンによる再結晶を6回繰り返した。得られた結晶にメタノール30mlを加え、加熱還流下で1時間撹拌した。室温まで放冷した後、ろ過によって固体を採取し、減圧下一晩乾燥させることによって、4,4’-ビス[ビス(ビフェニル-4-イル)アミノ]ビフェニル-2,3,5,6,2’,3’,5’,6’-d(化合物21)の淡黄色固体2.5g(収率50.5%)を得た。
 得られた淡黄色固体についてNMRを使用して構造を同定した。1H-NMR測定結果を図6に示した。
 1H-NMR(THF-d)で以下の36個の水素のシグナルを検出した。δ(ppm)=7.61(8H)、7.57(8H)、7.39(8H)、7.27(4H)、7.22(8H)
[実施例7]
 <4,4’-ビス{[(4’-ジフェニルアミノ)ビフェニル-4-イル]-(フェニル-d)アミノ}ビフェニル(化合物40)の合成>
 窒素置換した反応容器に、N-(フェニル-d)-ベンズアミド36.00g、4,4’-ジヨードビフェニル144.54g、銅粉2.26g、炭酸カリウム29.52g、亜硫酸水素ナトリウム3.70g、キシレン180ml、ドデシルベンゼン90mlを加えた後、キシレン150mlを留去しながら加熱し、銅粉2.26g、炭酸カリウム4.92gをそれぞれ2回に分けて追加しながら、200℃で16.5時間攪拌した。80℃まで冷却した後、トルエン1000mlを加え、さらに50℃まで冷却した。不溶物をろ過によって除いた後、濃縮し、ヘキサン800mlを加えて、シリカゲルを用いた吸着精製を行った。さらに、NHシリカゲルを用いた吸着精製を行った後、濃縮することによって、N-[(4’-ヨード)ビフェニル-4-イル]-N-(フェニル-d)-ベンズアミドの白色粉体35.58g(収率41%)を得た。
 得られたN-[(4’-ヨード)ビフェニル-4-イル]-N-(フェニル-d)-ベンズアミド33.43g、ジフェニルアミン14.13g、銅粉0.45g、炭酸カリウム14.43g、亜硫酸水素ナトリウム1.08g、ドデシルベンゼン56mlを窒素置換した反応容器に加えて加熱し、銅粉0.45g、炭酸カリウム0.96gをそれぞれ追加しながら、210℃で7.5時間攪拌した。80℃まで冷却し、トルエン500mlを加えた後、さらに60℃まで冷却した。不溶物をろ過によって除去した後、濃縮し、別の反応容器に加えた。水酸化カリウム9.76g、水11ml、イソアミルアルコール49mlを加えて加熱しながら3時間攪拌した。室温まで放冷した後、トルエン500ml、水500mlを加えて攪拌し、分液操作を行って有機層を採取し、有機層を硫酸マグネシウムで乾燥した後、減圧下濃縮した。ヘキサン400mlを加え、析出する固体をろ過によって採取することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:シクロヘキサン/トルエン)による精製を行うことによって、4’-ジフェニルアミノ-4-[(フェニル-d)アミノ]ビフェニルの白色粉体16.38g(収率56%)を得た。
 得られた4’-ジフェニルアミノ-4-[(フェニル-d)アミノ]ビフェニル16.00g、4,4’-ジヨードビフェニル7.1g、銅粉0.11g、炭酸カリウム3.61g、亜硫酸水素ナトリウム0.27g、キシレン19ml、ドデシルベンゼン11mlを窒素置換した反応容器に加え、キシレン12mlを留去しながら加熱し、銅粉0.11g、炭酸カリウム0.24gをそれぞれ追加しながら、210℃で10時間攪拌した。80℃まで冷却し、トルエン250mlを加えた後、さらに60℃まで冷却した。不溶物をろ過によって除去した後、濃縮し、トルエン/酢酸エチルの混合溶媒を用いた再結晶を4回繰返すことによって精製し、4,4’-ビス{[(4’-ジフェニルアミノ)ビフェニル-4-イル]-(フェニル-d)アミノ}ビフェニル(化合物40)の淡黄白色粉体14.01g(収率82%)を得た。
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。1H-NMR測定結果を図7に示した。
 1H-NMR(THF-d)で以下の44個の水素のシグナルを検出した。δ(ppm)=6.99(4H)、7.06-7.16(20H)、7.23(8H)、7.47-7.54(12H)
[実施例8]
 本発明の化合物と対応する重水素原子で置換されていない比較化合物50、51、52について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によってガラス転移点を求めた。
                   ガラス転移点
  本発明実施例1の化合物      100℃
  本発明実施例2の化合物      101℃
  比較化合物50          101℃
  本発明実施例3の化合物      134℃
  本発明実施例4の化合物      133℃
  本発明実施例5の化合物      134℃
  本発明実施例6の化合物      133℃
  比較化合物51          132℃
  本発明実施例7の化合物      144℃
  比較化合物52          144℃
Figure JPOXMLDOC01-appb-C000065
                         (比較化合物50)
Figure JPOXMLDOC01-appb-C000066
                         (比較化合物51)
Figure JPOXMLDOC01-appb-C000067
                         (比較化合物52)
 本発明の化合物は90℃以上のガラス転移点を有しており、本発明の化合物において薄膜状態が安定であることを示すものである。また、本発明実施例1、2の化合物は対応する重水素原子で置換されていない比較化合物50とほぼ同じガラス転移点を有している。また、本発明実施例3~6の化合物は対応する重水素原子で置換されていない比較化合物51とほぼ同じガラス転移点を有している。さらに、本発明実施例7の化合物は対応する重水素原子で置換されていない比較化合物52とほぼ同じガラス転移点を有している。
[実施例9]
 本発明の化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、大気中光電子分光装置(理研計器製、AC-2型)で仕事関数を測定した。
                 仕事関数
 本発明実施例1の化合物     5.47eV
 本発明実施例2の化合物     5.51eV
 比較化合物50         5.46eV
 本発明実施例3の化合物     5.43eV
 本発明実施例4の化合物     5.44eV
 本発明実施例5の化合物     5.43eV
 本発明実施例6の化合物     5.42eV
 比較化合物51         5.45eV
 本発明実施例7の化合物     5.43eV
 比較化合物52         5.44eV
 このように本発明の化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。また、本発明実施例1、2の化合物は対応する重水素原子で置換されていない比較化合物50とほぼ同じエネルギー準位を有している。また、本発明実施例3~6の化合物は対応する重水素原子で置換されていない比較化合物51とほぼ同じエネルギー準位を有している。さらに、本発明実施例7の化合物は対応する重水素原子で置換されていない比較化合物52とほぼ同じエネルギー準位を有している。
[実施例10]
 有機EL素子は、図8に示すような、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔注入層3として、前記構造式の化合物52を膜厚20nmとなるように形成した。この正孔注入層3の上に、正孔輸送層4として本発明実施例1の化合物(化合物5)を膜厚40nmとなるように形成した。この正孔輸送層4の上に、発光層5として下記構造式の化合物53と下記構造式の化合物54を、蒸着速度比が化合物53:化合物54=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この発光層5の上に、電子輸送層7としてAlqを膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚0.5nmとなるように形成した。最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極9を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。
 本発明の実施例1の化合物(化合物5)を使用して作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000068
                         (化合物53)
Figure JPOXMLDOC01-appb-C000069
                         (化合物54)
 [比較例1]
 比較のために、実施例10において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて前記比較化合物50を膜厚40nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧は、比較化合物50の4.97Vに対して、本発明の実施例1の化合物(化合物5)では5.02Vとほぼ同じ値であるが、発光効率においては、比較化合物50の8.53cd/Aに対して、本発明の実施例1の化合物(化合物5)では9.00cd/Aと大きく向上した。また、電力効率においても、比較化合物50の5.40lm/Wに対して、本発明の実施例1の化合物(化合物5)では5.60lm/Wと向上した。
 以上の結果から明らかなように、本発明のトリフェニルアミン構造を有するアリールアミン化合物を用いた有機EL素子は、既知の重水素原子で置換されていない比較化合物50を用いた有機EL素子と比較しても、発光効率や電力効率の向上を達成できることがわかった。
 上記と同一の有機EL素子を用いて発光開始電圧を測定した結果を以下に示した。
 有機EL素子  化合物      発光開始電圧[V]
 実施例10   化合物5     2.7
 比較例1    比較化合物50  2.8
 その結果、重水素原子で置換されていない比較化合物50を使用した比較例1に対し、本発明の実施例1の化合物(化合物5)を使用した実施例10ではほぼ同程度の発光開始電圧であることが分かる。
[実施例11]
 有機EL素子は、図9に示すような、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層4、発光層5、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明電極2を覆うように正孔輸送層4として、本発明実施例1の化合物(化合物5)を膜厚60nmとなるように形成した。この正孔輸送層4の上に、発光層5として前記化合物53と前記化合物54を、蒸着速度比が化合物53:化合物54=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この発光層5の上に、電子輸送層7として下記構造式の化合物55を膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚0.5nmとなるように形成した。最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極9を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。
Figure JPOXMLDOC01-appb-C000070
                         (化合物55)
 本発明の実施例1の化合物(化合物5)を使用して作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
[実施例12]
 実施例11において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例4の化合物(化合物19)を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
[実施例13]
 実施例11において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例6の化合物(化合物21)を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
[実施例14]
 実施例11において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例7の化合物(化合物40)を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
 [比較例2]
 比較のために、実施例11において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて前記比較化合物50を膜厚60nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧、発光効率、電力効率のいずれにおいても、本発明の実施例の化合物を使用した有機EL素子は比較化合物50を使用した有機EL素子と同等以上の性能を示すことが分かる。
 実施例11と比較例2と同一の有機EL素子を用いて、素子寿命を測定した結果を表3にまとめて示した。素子寿命は、発光輝度350cd/mで発光させた時の電流量(W)を一定とした時の発光輝度について、初期輝度を100とした時、輝度が97まで減衰する時間を測定して求めた。
Figure JPOXMLDOC01-appb-T000003
 表3に示す様に、本発明の実施例1の化合物(化合物5)を使用した有機EL素子の素子寿命は、重水素原子で置換されていない比較化合物50を使用した有機EL素子の素子寿命に対し、大幅に長寿命化していることが分かる。
 実施例11~14および比較例2と同一の有機EL素子を用いて、素子寿命を測定した結果を表4にまとめて示した。素子寿命は、発光輝度5000cd/mで発光させた時の電流量(W)を一定とした時の発光輝度について、初期輝度を100とした時、輝度が50まで減衰する時間(輝度半減寿命)を測定して求めた。
Figure JPOXMLDOC01-appb-T000004
 表4に示す様に、本発明の実施例の化合物を使用した有機EL素子の素子寿命は、重水素原子で置換されていない比較化合物50を使用した有機EL素子の素子寿命に対し、長寿命化していることが分かる。
[実施例15]
 有機EL素子は、図10に示すような、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔輸送層4として本発明実施例1の化合物(化合物5)を膜厚50nmとなるように形成した。この正孔輸送層4の上に、発光層5としてTPBIとIr(ppy)を、蒸着速度比がTPBI:Ir(ppy)=92:8となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層5の上に、正孔阻止層6としてBCPを膜厚10nmとなるように形成した。この正孔阻止層6の上に、電子輸送層7としてAlqを膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚0.5nmとなるように形成した。最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極9を形成した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表5にまとめて示した。
[実施例16]
 実施例15において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例4の化合物(化合物19)を膜厚50nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表5にまとめて示した。
[実施例17]
 実施例15において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例6の化合物(化合物21)を膜厚50nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表5にまとめて示した。
[実施例18]
 実施例15において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて本発明実施例7の化合物(化合物40)を膜厚50nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表5にまとめて示した。
[比較例3]
 比較のために、実施例15において、正孔輸送層4の材料として本発明実施例1の化合物(化合物5)に代えて前記比較化合物50を膜厚50nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表5にまとめて示した。
Figure JPOXMLDOC01-appb-T000005
 表5に示す様に、電流密度10mA/cm2の電流を流したときの駆動電圧、発光効率、電力効率のいずれにおいても、本発明の実施例の化合物を使用した有機EL素子は比較化合物50を使用した有機EL素子と同等以上の性能を示すことが分かる。
 以上の結果から明らかなように、本発明の実施例の化合物を使用した有機EL素子は、重水素原子で置換されていない比較化合物50を使用した有機EL素子と比較して、電流密度10mA/cmの電流を流したときの駆動電圧、発光効率、電流効率のいずれにおいても、同等以上の性能を示すことが分かった。
 以上の結果から明らかなように、本発明のトリフェニルアミン構造を有するアリールアミン化合物を用いた有機EL素子は、既知の重水素原子で置換されていない比較化合物50を用いた有機EL素子と比較して、駆動電圧、発光効率、電力効率などの素子性能の向上が期待でき、さらには、大幅な素子寿命の向上を達成できることがわかった。
 本発明のトリフェニルアミン構造を有するアリールアミン化合物は、正孔注入・輸送能力が高く、電子阻止能力を有し、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、素子寿命の大幅な長寿命化を達成することができる。例えば、家庭電化製品や照明の用途への展開が可能となった。
 1 ガラス基板
 2 透明陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極

Claims (26)

  1.  下記一般式(1)で表される、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000071
                             (1)
     (式中、R1~R28は同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基であって、互いに結合して環を形成していてもよい。但し、R1~R28の少なくともひとつは重水素原子、もしくは重水素原子を含む置換基であるものとする。A1は下記構造式(B)~(F)で示される2価基、または単結合を表す。)
    Figure JPOXMLDOC01-appb-C000072
                             (B)
     (式中、R29~R32は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000073
                             (C)
     (式中、R33~R42は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000074
                             (D)
     (式中、R43~R50は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000075
                             (E)
    Figure JPOXMLDOC01-appb-C000076
                             (F)
     (式中、R51~R55は同一でも異なってもよく、水素原子または重水素原子を表す。)
  2.  下記一般式(2)で表される、分子中にトリフェニルアミン構造を4個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000077
                             (2)
     (式中、R56~R109は同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基であって、互いに結合して環を形成していてもよい。但し、R56~R109の少なくともひとつは重水素原子、もしくは重水素原子を含む置換基であるものとする。A2は下記構造式(B)~(F)で示される2価基、または単結合を表す。)
    Figure JPOXMLDOC01-appb-C000078
                             (B)
     (式中、R29~R32は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000079
                             (C)
     (式中、R33~R42は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000080
                             (D)
     (式中、R43~R50は同一でも異なってもよく、水素原子または重水素原子を表す。)
    Figure JPOXMLDOC01-appb-C000081
                             (E)
    Figure JPOXMLDOC01-appb-C000082
                             (F)
     (式中、R51~R55は同一でも異なってもよく、水素原子または重水素原子を表す。)
  3.  前記一般式(1)において、R1~R10またはR19~R28の少なくともひとつが、トリフェニルアミン構造との結合位置以外の全てが重水素原子で置換されている、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基である、請求項1記載のアリールアミン化合物。
  4.  前記一般式(1)において、R1~R10またはR19~R28の少なくともふたつが、トリフェニルアミン構造との結合位置以外の全てが重水素原子で置換されている、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基である、請求項1または請求項3記載のアリールアミン化合物。
  5.  前記一般式(1)において、R1~R5の全てが重水素原子である、請求項1記載のアリールアミン化合物。
  6.  前記一般式(1)において、R1~R5およびR19~R23の全てが重水素原子である、請求項1または請求項5記載のアリールアミン化合物。
  7.  前記一般式(1)において、R11~R18の全てが重水素原子である、請求項1記載のアリールアミン化合物。
  8.  前記一般式(1)において、R1~R5から選ばれる4個およびR19~R23から選ばれる4個の全てが重水素原子である、請求項1記載のアリールアミン化合物。
  9.  下記一般式(1’)で表される、請求項1記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000083
                             (1’)
     (式中、Dは重水素原子を表し、n1~n4は同一でも異なってもよく、0または5を表し、m1、m2は同一でも異なってもよく、0または4を表す。)
  10.  下記一般式(1’’)で表される、請求項1記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000084
                             (1’’)
     (式中、Dは重水素原子を表し、n5~n8は同一でも異なってもよく、0または5を表し、m3~m8は同一でも異なってもよく、0または4を表す。)
  11.  前記一般式(2)において、R56~R60、R69~R78、R87~R91またはR100~R109の少なくともひとつが、トリフェニルアミン構造との結合位置以外の全てが重水素原子で置換されている、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基である、請求項2記載のアリールアミン化合物。
  12.  前記一般式(2)において、R56~R60、R69~R78、R87~R91またはR100~R109の少なくともふたつが、トリフェニルアミン構造との結合位置以外の全てが重水素原子で置換されている、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基である、請求項2または請求項9記載のアリールアミン化合物。
  13.  前記一般式(2)において、R56~R60の全てが重水素原子である、請求項2記載のアリールアミン化合物。
  14.  前記一般式(2)において、R56~R60およびR87~R91の全てが重水素原子である、請求項2または請求項11記載のアリールアミン化合物。
  15.  前記一般式(2)において、R79~R86の全てが重水素原子である、請求項2記載のアリールアミン化合物。
  16.  前記一般式(2)において、R61~R68およびR92~R99の全てが重水素原子である、請求項2記載のアリールアミン化合物。
  17.  下記一般式(2’)で表される、請求項2記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000085
                             (2’)
     (式中、Dは重水素原子を表し、n9~n14は同一でも異なってもよく、0または5を表す。)
  18.  一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、前記請求項1~17に記載のアリールアミン化合物が、少なくとも1つの有機層の構成材料として用いられていることを特徴とする有機エレクトロルミネッセンス素子。
  19.  前記した有機層が正孔輸送層である請求項18記載の有機エレクトロルミネッセンス素子。
  20.  前記した有機層が正孔注入層である請求項18記載の有機エレクトロルミネッセンス素子。
  21.  前記した有機層が電子阻止層である請求項18記載の有機エレクトロルミネッセンス素子。
  22.  一対の電極とその間に挟まれた、発光層、正孔輸送層と電子輸送層を含む、複数層の有機層を有する有機EL素子において、前記請求項1~17に記載のアリールアミン化合物が、該正孔輸送層の構成材料として用いられ、下記一般式(3)で表される、置換されたアントラセン環構造とピリドインドール環構造を有する化合物が、該電子輸送層の構成材料として用いられていることを特徴とする請求項18記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000086
                             (3)
     (式中、Ar1、Ar2は同一でも異なってもよく、Ar1は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、Ar2は置換もしくは無置換の芳香族炭化水素基または置換もしくは無置換の縮合多環芳香族基を表し、B、Cは同一でも異なってもよく、単結合、あるいは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基または置換もしくは無置換の縮合多環芳香族の2価基を表し、R110~R116は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、R117は重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基を表し、r117は0または1~8の整数を表し、r117が2以上のとき複数のR117は互いに同一でも異なってもよく、r117が0である場合はR117で置換されていないことを表す。W、X、Y、Zは炭素原子または窒素原子を表す。ここでW、X、Y、Zはそのいずれか1つのみが窒素原子であるものとし、この場合の窒素原子はR110~R113の水素原子もしくは置換基を有さないものとする。)
  23.  一対の電極とその間に挟まれた、燐光性の発光材料を含有する発光層と複数層の有機層を有する有機EL素子において、前記請求項1~17に記載のアリールアミン化合物が、少なくとも一層の有機層の構成材料として用いられていることを特徴とする請求項18記載の有機エレクトロルミネッセンス素子。
  24.  前記した有機層が正孔注入層である請求項23記載の有機エレクトロルミネッセンス素子。
  25.  前記した有機層が電子阻止層である請求項23記載の有機エレクトロルミネッセンス素子。
  26.  前記した燐光性の発光材料がイリジウムまたは白金を含む金属錯体である請求項23~25のいずれか1項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2011/000376 2010-01-26 2011-01-25 トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子 WO2011093056A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11736773.0A EP2530069B1 (en) 2010-01-26 2011-01-25 Compound with triphenylamine structure, and organic electroluminescent element
CN201180007234.3A CN102781906B (zh) 2010-01-26 2011-01-25 具有三苯胺结构的化合物及有机电致发光器件
US13/574,923 US9196839B2 (en) 2010-01-26 2011-01-25 Compound having triphenylamine structure, and organic electroluminescent device
JP2011551756A JP5335103B2 (ja) 2010-01-26 2011-01-25 トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014265 2010-01-26
JP2010014265 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011093056A1 true WO2011093056A1 (ja) 2011-08-04

Family

ID=44319054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000376 WO2011093056A1 (ja) 2010-01-26 2011-01-25 トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US9196839B2 (ja)
EP (1) EP2530069B1 (ja)
JP (2) JP5335103B2 (ja)
KR (1) KR20120112672A (ja)
CN (1) CN102781906B (ja)
TW (1) TWI508933B (ja)
WO (1) WO2011093056A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117973A1 (ja) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2014527021A (ja) * 2011-04-01 2014-10-09 ドクサン ハイ メタル カンパニー リミテッド 化合物及びこれを用いた有機電気素子、その電子装置
TWI471308B (zh) * 2012-11-13 2015-02-01 Ind Tech Res Inst 有機化合物及包含其之有機電激發光裝置
JPWO2013038627A1 (ja) * 2011-09-12 2015-03-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
KR20230126721A (ko) 2020-12-25 2023-08-30 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자, 발광 장치, 유기 일렉트로루미네센스표시 장치 및 전자 기기
KR20230131254A (ko) 2021-01-13 2023-09-12 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스표시 장치 및 전자 기기

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781906B (zh) * 2010-01-26 2014-06-04 保土谷化学工业株式会社 具有三苯胺结构的化合物及有机电致发光器件
CN105074948B (zh) * 2013-02-22 2017-12-26 保土谷化学工业株式会社 有机电致发光器件
WO2016009823A1 (ja) * 2014-07-16 2016-01-21 東レ株式会社 モノアミン誘導体、それを用いた発光素子材料および発光素子
KR102314735B1 (ko) 2014-07-24 2021-10-21 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
US10464895B2 (en) * 2015-10-06 2019-11-05 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence elements, organic electroluminescence element, and electronic device
CN106431938B (zh) * 2016-09-12 2019-02-22 长春海谱润斯科技有限公司 一种芳香族胺类衍生物及其制备方法和应用
KR102430840B1 (ko) 2016-11-30 2022-08-08 호도가야 가가쿠 고교 가부시키가이샤 치환 트리아릴아민 구조 단위를 포함하는 고분자량 화합물
CN109336772A (zh) * 2018-10-11 2019-02-15 上海道亦化工科技有限公司 一种含螺结构的三芳香胺化合物及其用途和发光器件
CN111470984B (zh) * 2020-04-16 2022-12-13 苏州欧谱科显示科技有限公司 一种空穴传输材料及其制备方法和应用
CN112979624B (zh) * 2021-04-26 2021-08-10 南京高光半导体材料有限公司 一种有机化合物及有机电致发光器件
CN114621102B (zh) * 2022-03-18 2023-05-02 长春海谱润斯科技股份有限公司 一种芳胺衍生物及其有机电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126225A (ja) * 1993-11-01 1995-05-16 Hodogaya Chem Co Ltd テトラフェニルベンジジン化合物
JPH07126226A (ja) * 1993-11-01 1995-05-16 Hodogaya Chem Co Ltd ベンジジン化合物
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2008532998A (ja) 2005-03-05 2008-08-21 ドゥサン コーポレーション 新規イリジウム錯体及びこれを用いた有機電界発光素子
JP2009231516A (ja) 2007-03-28 2009-10-08 Fujifilm Corp 有機電界発光素子

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650955B1 (en) 1993-11-01 1998-08-19 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JP2001240854A (ja) * 2000-02-29 2001-09-04 Ricoh Co Ltd 有機発光材料および該有機発光材料を使用した有機発光素子
JP3745296B2 (ja) * 2002-03-25 2006-02-15 松下電器産業株式会社 電界発光素子
JP3768196B2 (ja) * 2003-02-10 2006-04-19 出光興産株式会社 芳香族ジアミン誘導体の製造方法
JP4487587B2 (ja) 2003-05-27 2010-06-23 株式会社デンソー 有機el素子およびその製造方法
JP3848306B2 (ja) 2003-06-27 2006-11-22 キヤノン株式会社 アントリル誘導基置換化合物およびそれを使用した有機発光素子
JP3848307B2 (ja) * 2003-06-27 2006-11-22 キヤノン株式会社 アミノアントリル誘導基置換化合物およびそれを使用した有機発光素子
JP4336537B2 (ja) 2003-07-31 2009-09-30 キヤノン株式会社 有機発光素子
KR100739498B1 (ko) * 2005-05-07 2007-07-19 주식회사 두산 중수소화된 신규 아릴아민 유도체, 그 제조 방법 및 이를이용한 유기 전계 발광 소자
KR100852328B1 (ko) * 2006-03-15 2008-08-14 주식회사 엘지화학 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기 전기 발광 소자
WO2007108666A1 (en) * 2006-03-23 2007-09-27 Lg Chem, Ltd. New diamine derivatives, preparation method thereof and organic electronic device using the same
CN101506207B (zh) * 2006-08-18 2013-11-13 保土谷化学工业株式会社 具有其上连结有取代的吡啶基的吡啶并吲哚环结构的化合物和有机电致发光器件
KR101469296B1 (ko) 2007-03-28 2014-12-04 유디씨 아일랜드 리미티드 유기 전계발광 소자
JP2008288270A (ja) * 2007-05-15 2008-11-27 Canon Inc 有機発光素子用材料及びそれを用いた有機発光素子
JP5484690B2 (ja) 2007-05-18 2014-05-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
WO2009069790A1 (ja) * 2007-11-28 2009-06-04 National University Corporation Tokyo University Of Agriculture And Technology 常温有機蓄光材料、可逆性感熱記録材料、可逆性感熱記録媒体及び可逆性感熱記録媒体の記録方法
TWI464167B (zh) * 2008-01-31 2014-12-11 Hodogaya Chemical Co Ltd A substituted pyridyl group and a pyridoindole ring structure, and an organic electroluminescent element
EP2677562A3 (en) * 2008-05-16 2014-04-02 Hodogaya Chemical Co., Ltd. Arylamines for organic electroluminescent devices
KR101064823B1 (ko) * 2008-12-08 2011-09-14 주식회사 두산 아릴 아민 유도체 및 이를 이용한 유기 전계 발광 소자
CN102369255B (zh) * 2009-04-03 2014-08-20 E.I.内穆尔杜邦公司 电活性材料
KR101120917B1 (ko) * 2009-06-19 2012-02-27 주식회사 두산 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
JP5617398B2 (ja) * 2009-07-14 2014-11-05 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
US8617720B2 (en) * 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
CN102781906B (zh) * 2010-01-26 2014-06-04 保土谷化学工业株式会社 具有三苯胺结构的化合物及有机电致发光器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126225A (ja) * 1993-11-01 1995-05-16 Hodogaya Chem Co Ltd テトラフェニルベンジジン化合物
JPH07126226A (ja) * 1993-11-01 1995-05-16 Hodogaya Chem Co Ltd ベンジジン化合物
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2005044791A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2008532998A (ja) 2005-03-05 2008-08-21 ドゥサン コーポレーション 新規イリジウム錯体及びこれを用いた有機電界発光素子
JP2009231516A (ja) 2007-03-28 2009-10-08 Fujifilm Corp 有機電界発光素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 51, 1987, pages 913
See also references of EP2530069A4
THE JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 23 - 31
THE JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 55 - 61

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117973A1 (ja) * 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP5977227B2 (ja) * 2011-02-28 2016-08-24 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US9444055B2 (en) 2011-02-28 2016-09-13 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
JP2014527021A (ja) * 2011-04-01 2014-10-09 ドクサン ハイ メタル カンパニー リミテッド 化合物及びこれを用いた有機電気素子、その電子装置
US9691990B2 (en) 2011-04-01 2017-06-27 Duk San Neolux Co., Ltd. Compound, organic electronic element using same, and electronic device using the latter
JPWO2013038627A1 (ja) * 2011-09-12 2015-03-23 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2018110121A (ja) * 2011-09-12 2018-07-12 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
TWI471308B (zh) * 2012-11-13 2015-02-01 Ind Tech Res Inst 有機化合物及包含其之有機電激發光裝置
US11575087B1 (en) 2020-12-25 2023-02-07 Idemitsu Kosan Co., Ltd. Organic electroluminescence device, light emitting device, organic electroluminescence display device and electronic device
KR20230126721A (ko) 2020-12-25 2023-08-30 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자, 발광 장치, 유기 일렉트로루미네센스표시 장치 및 전자 기기
KR20230131254A (ko) 2021-01-13 2023-09-12 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스표시 장치 및 전자 기기

Also Published As

Publication number Publication date
JPWO2011093056A1 (ja) 2013-05-30
US20120292609A1 (en) 2012-11-22
TWI508933B (zh) 2015-11-21
CN102781906A (zh) 2012-11-14
JP2013216667A (ja) 2013-10-24
US9196839B2 (en) 2015-11-24
CN102781906B (zh) 2014-06-04
EP2530069A1 (en) 2012-12-05
EP2530069A4 (en) 2013-10-30
EP2530069B1 (en) 2016-09-14
KR20120112672A (ko) 2012-10-11
JP5335103B2 (ja) 2013-11-06
TW201202177A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
JP5335103B2 (ja) トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子
JP6374905B2 (ja) インデノカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5850835B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6329937B2 (ja) 有機エレクトロルミネッセンス素子
JP6049998B2 (ja) カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6134476B2 (ja) 有機エレクトロルミネッセンス素子
WO2011048822A1 (ja) 有機エレクトロルミネッセンス素子
CN108352454B (zh) 有机电致发光器件
JP5807011B2 (ja) カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2015155378A (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
EP2894155B1 (en) Compound having indeno acridan ring structure, and organic electroluminescence element
JP2011178742A (ja) フェノキサジン環構造またはフェノチアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6158703B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6251675B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) 有機エレクトロルミネッセンス素子
JP7149263B2 (ja) 有機エレクトロルミネッセンス素子
JP6389459B2 (ja) ジカルバゾール誘導体及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007234.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551756

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127020007

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011736773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011736773

Country of ref document: EP