WO2011092972A1 - インテークマニホールド - Google Patents

インテークマニホールド Download PDF

Info

Publication number
WO2011092972A1
WO2011092972A1 PCT/JP2010/073040 JP2010073040W WO2011092972A1 WO 2011092972 A1 WO2011092972 A1 WO 2011092972A1 JP 2010073040 W JP2010073040 W JP 2010073040W WO 2011092972 A1 WO2011092972 A1 WO 2011092972A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
pressure supply
negative pressure
supply path
surge tank
Prior art date
Application number
PCT/JP2010/073040
Other languages
English (en)
French (fr)
Inventor
伊藤篤史
新海文浩
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to JP2011551709A priority Critical patent/JP5626597B2/ja
Priority to US13/575,160 priority patent/US8677967B2/en
Priority to EP10844726.9A priority patent/EP2530292B1/en
Priority to CN201090001462.0U priority patent/CN202991290U/zh
Publication of WO2011092972A1 publication Critical patent/WO2011092972A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers

Definitions

  • the present invention relates to an intake manifold used for an internal combustion engine.
  • Gas introduction for introducing a gas containing mist-like oil or water vapor into the surge tank, such as blow-by gas in the crankcase, PCV gas from the canister, EGR gas (exhaust gas recirculation gas), etc.
  • a negative pressure supply path for applying the intake negative pressure in the surge tank to the outside (for example, a brake booster or the like).
  • a negative pressure supply path for applying the intake negative pressure in the surge tank to the outside (for example, a brake booster or the like).
  • a concentration port that communicates with the main air flow path
  • the concentration port is a gas introduction section that introduces a gas containing a mist-like fluid or steam (referred to as “gas introduction port” in the literature).
  • a negative pressure supply path for introducing negative pressure in the literature, “negative pressure introduction port”
  • a partition wall portion is disposed between the gas introduction part and the opening of the negative pressure supply path.
  • a bulge portion that is raised and raised at an appropriate position on the inner surface of the wall portion constituting the surge tank is provided, and a gas introduction portion for introducing a gas containing water vapor at an appropriate position other than the bulge portion on the inner surface of the wall portion (
  • a gas introduction hole for introducing a gas containing water vapor at an appropriate position other than the bulge portion on the inner surface of the wall portion
  • a negative pressure supply path for taking out the intake negative pressure in the surge tank
  • the gas introduction part and the opening of the negative pressure supply path are separated by a partition wall, but the gas introduction part and the opening of the negative pressure supply path are provided adjacent to each other. Yes.
  • the gas supplied from the gas introduction part easily flows into the negative pressure supply path due to the entrainment flow generated in the surge tank.
  • the gas flows into the negative pressure supply path due to the entrainment flow, and the negative pressure supply path may be clogged due to freezing of the mist-like fluid or vapor contained in the gas.
  • the intake manifold described in Patent Document 2 is provided with a guide groove that suppresses the intrusion of water droplets into the negative pressure supply path in the raised portion.
  • the guide groove due to the entrainment flow in the surge tank Therefore, there is a risk that water droplets that circulate while avoiding the negative pressure supply path will diffuse. Therefore, the diffused water droplets are likely to flow into the negative pressure supply path due to the entrainment flow, and the negative pressure supply path may be clogged due to freezing.
  • the present invention has been made in view of the above-described problems, and suppresses the inflow of fuel components and moisture contained in the gas introduced from the gas introduction portion to the negative pressure supply path, thereby blocking the negative pressure supply path.
  • the purpose is to suppress.
  • a first characteristic configuration of an intake manifold according to the present invention is an intake manifold having a surge tank to which an intake passage for air supplied to an internal combustion engine is connected, and communicates with the intake passage or the surge tank.
  • a gas introduction part that introduces a gas containing a fuel component into the surge tank; and communicates upstream of the gas introduction part in the intake flow path or the surge tank with respect to the flow direction of the air.
  • a negative pressure supply path for supplying a negative pressure to the outside, and the negative pressure supply path passes through the expansion chamber having a cross-sectional area larger than the cross-sectional area of the negative pressure supply path, or the intake flow path or the It is connected to the surge tank.
  • the negative pressure supply path is provided upstream of the gas introduction part in the air flow direction, the gas introduced from the gas introduction part is affected by the entrainment flow in the surge tank and has a negative pressure. Inflow into the supply path can be suppressed. That is, clogging of the negative pressure supply path due to the fuel component and moisture contained in the gas and blockage of the negative pressure supply path due to freezing thereof can be suppressed, and negative pressure can be supplied to the outside in a timely manner. Since the negative pressure supply path only needs to be arranged upstream of the gas introduction portion in the air flow direction, the arrangement location of the negative pressure supply path can be changed according to the mounting space of each vehicle, and the degree of design freedom is improved.
  • the suction force due to the negative pressure at the inlet of the expansion tank on the surge tank side is smaller than the suction force due to the negative pressure in the negative pressure supply path. small. Therefore, compared with the case where no expansion chamber is provided, the fuel component and moisture contained in the gas are less likely to flow into the negative pressure supply path.
  • the negative pressure supply path is substantially extended by the expansion chamber having a large cross-sectional area, even if the fuel component and moisture flow into the expansion chamber, they adhere to the wall surface of the expansion chamber and go to the negative pressure supply path. Inflow of fuel components and moisture can be suppressed. As a result, clogging of the negative pressure supply path due to the fuel component and moisture contained in the gas and blockage of the negative pressure supply path due to freezing thereof are further suppressed.
  • a second characteristic configuration of the intake manifold according to the present invention is that the expansion chamber has a first opening communicating with the negative pressure supply path, and a second opening communicating with at least one of the intake flow path and the surge tank. And the opening area of the second opening is set larger than the opening area of the first opening.
  • the opening area of the second opening is small, so the fuel component contained in the gas in the second opening.
  • clogging due to adhesion of moisture and freezing of the negative pressure supply path due to blockage are likely to be induced.
  • the second opening of the expansion chamber has a larger opening area than the first opening, so that the second opening is clogged by the fuel component and moisture contained in the gas, or they are frozen. It is difficult for the second opening to be blocked.
  • the first opening is separated from the gas introduction part through the expansion chamber, the first opening is also clogged with the fuel component and moisture contained in the gas and the first opening due to freezing thereof. Blockage of the part is suppressed. As a result, clogging of the negative pressure supply path due to the fuel component and moisture contained in the gas and blockage of the negative pressure supply path due to freezing thereof are suppressed, and negative pressure can be supplied to the outside in a timely manner.
  • a third characteristic configuration of the intake manifold according to the present invention is that the expansion chamber has the first opening and the first piece integrally formed with the negative pressure supply path, and the second opening has the second opening. It is in the point formed from the piece.
  • the expansion chamber is formed by a combination of the first piece and the second piece, and is provided in the intake manifold with a simple structure. That is, the expansion chamber can form a negative pressure supply channel that is easily supplied from the negative pressure supply channel by assembling the first piece and the second piece.
  • the negative pressure supply path is provided in the first piece, the welding area of the first piece and the second piece is reduced compared to the case where the negative pressure supply path is configured with the first piece and the second piece, In addition, poor welding in the negative pressure supply path cannot occur. If the extending direction of the negative pressure supply path is changed according to each vehicle, the negative pressure supply path communicating with the negative pressure supply path can be shortened, and a small intake manifold can be obtained. Furthermore, since it is not necessary to change the shape of the second piece according to each vehicle, it can be used in common regardless of the type of vehicle.
  • the shape of the first piece is a shape that becomes narrower from the end that becomes the boundary with the second piece toward the first opening, and the first piece is In the case of molding by injection molding, the first piece can be easily taken out from the mold.
  • a fourth characteristic configuration of the intake manifold according to the present invention is that, in the second opening, an opening dimension in a direction orthogonal to the air flow direction is set shorter than an opening dimension in the air flow direction.
  • the opening dimension in the direction perpendicular to the air flow direction is shorter than the opening dimension in the air flow direction in the second opening. That is, the length of the edge of the second opening, which is the source of airflow noise, on the upstream side in the air flow direction is shortened, so that the air supplied to the internal combustion engine is reduced from entering the expansion chamber. As a result, the vortex generated at the edge of the second opening on the upstream side in the air flow direction is reduced, and the generation of airflow noise can be suppressed.
  • the second opening has a longitudinal direction extending in the air flow direction and a width direction orthogonal to the air flow direction.
  • the length of the edge of the second opening in the width direction is that the upstream side in the air flow direction is shorter than the downstream side in the air flow direction.
  • the length of the edge of the second opening in the width direction is shorter on the upstream side in the air flow direction than on the downstream side. Therefore, when considering the total length of the edge of the second opening in the width direction as constant, compared with the case where the upstream side is longer than the downstream side while securing the opening area of the second opening. Thus, the amount of vortex generated at the upstream edge is reduced. Therefore, generation of airflow noise can be further suppressed.
  • the sixth characteristic configuration of the intake manifold according to the present invention is that the surface on the downstream side in the air flow direction among the surfaces constituting the expansion chamber is laid down toward the upstream side in the air flow direction.
  • the intake manifold 1 of the present embodiment includes an upper piece 1a, a middle piece 1b, and a lower piece 1c made of resin.
  • the upper piece 1a is welded to the middle piece 1b
  • the welded surface 10a is welded to the middle piece 1b
  • the welded surfaces 10b and 10c are welded to the upper piece 1a and the lower piece 1c
  • the lower piece 1c is welded to the middle piece 1b.
  • the intake manifold 1 having the surge tank 2 is formed by vibration welding the welding surfaces 10a to 10d.
  • the surge tank 2 includes an upstream intake passage 21 through which air passes from a throttle body (not shown), and a plurality of downstream intake passages 22 through which air-fuel mixture passes from the upstream intake passage 21 to the engine (not shown). It is connected.
  • the air-fuel mixture includes PCV gas and EGR gas, which will be described later, in addition to air.
  • an air current in which the air current of the air-fuel mixture swirls in the surge tank 2 (hereinafter referred to as an entrained flow) It is designed to be.
  • the intake manifold 1 has a vacuum pressure supply passage 3 (negative pressure) for supplying the vacuum pressure (negative pressure) in the surge tank 2 to a vacuum pressure actuator (not shown) and a brake booster (not shown). Pressure supply path) and a gas introduction part 4 for introducing gas into the surge tank 2.
  • the gas introduction unit 4 communicates with the upstream intake passage 21 to introduce a PCV gas containing a liquid such as a fuel component and moisture, and communicates with the surge tank 2 to communicate a liquid such as a fuel component and moisture.
  • a second gas introduction part 42 for introducing EGR gas containing.
  • the vacuum pressure supply path 3 communicates with the upstream side of the upstream intake path 21 from the gas introduction part 4 in the air flow direction, and is connected to the upstream intake path 21 via the expansion chamber 5.
  • the vacuum pressure in the surge tank 2 is supplied.
  • the vacuum pressure supply path 3 includes a first vacuum pressure supply path 31 to which a vacuum pressure supply port (not shown) is connected from a vacuum pressure actuator, and a first vacuum pressure supply port to which a vacuum pressure supply port is connected from a brake booster.
  • a double vacuum pressure supply passage 32 is shown in FIG. 2, the vacuum pressure supply path 3 includes a first vacuum pressure supply path 31 to which a vacuum pressure supply port (not shown) is connected from a vacuum pressure actuator, and a first vacuum pressure supply port to which a vacuum pressure supply port is connected from a brake booster.
  • a double vacuum pressure supply passage 32 is shown in FIG. 2, the vacuum pressure supply path 3 includes a first vacuum pressure supply path 31 to which a vacuum pressure supply port (not shown) is connected from a vacuum pressure actuator, and a first vacuum pressure supply port to which a vacuum pressure supply port is connected from a brake booster.
  • the expansion chamber 5 includes a first expansion chamber 51 provided on the welding surface 10a of the upper piece 1a and a second expansion chamber 52 provided on the welding surface 10b of the middle piece 1b. Is done.
  • the first expansion chamber 51 has a first opening 51 a that communicates with the vacuum pressure supply path 3
  • the second expansion chamber 52 has a second opening 52 a that communicates with the upstream intake passage 21.
  • the first gas introduction part 41 is also composed of a first gas introduction channel 41a provided on the welding surface 10a and a second gas introduction channel 41b provided on the welding surface 10b.
  • the 3rd opening part 41c which the 2nd gas introduction flow path 41b and the upstream intake flow path 21 connect is provided in the air flow direction downstream rather than the 2nd opening part 52a.
  • the inflow of the PCV gas introduced from the first gas introduction part 41 into the vacuum pressure supply path 3 can be suppressed.
  • the opening area of the second opening 52a is larger than that of the first opening 51a so that the vacuum pressure in the surge tank 2 can be smoothly supplied from the vacuum pressure supply path 3 to the vacuum pressure actuator or the like. For this reason, blockage of the second opening 52a due to freezing of the fuel component and moisture contained in the gas is suppressed, and the vacuum pressure in the surge tank 2 can be supplied from the vacuum pressure supply path 3 in a timely manner.
  • the expansion chamber 5 has a larger supply passage area for the vacuum pressure than the vacuum pressure supply passage 3. That is, the cross-sectional area of the expansion chamber 5 is larger than the cross-sectional area of the vacuum pressure supply path 3.
  • the shape of the expansion chamber 5 is such that the supply path area of the vacuum pressure increases as it goes from the first opening 51a to the second opening 52a. That is, since the suction force when supplying the vacuum pressure exerted on the surge tank 2 to the vacuum pressure actuator or the like is reduced, the inflow of the fuel component and moisture contained in the gas into the vacuum pressure supply path 3 can be suppressed.
  • the surface 53 on the downstream side in the air flow direction is laid down toward the upstream side in the air flow direction as shown in FIG. Therefore, when the vacuum pressure exerted on the surge tank 2 is supplied to the vacuum pressure actuator, the air flow accompanying the negative pressure supply is guided to the surface 53 and smoothly merges with the air flowing through the upstream intake passage 21. Therefore, turbulence is unlikely to occur in the expansion chamber 5. As a result, the fuel component and moisture are not easily drawn into the expansion chamber 5, and clogging of the vacuum pressure supply path 3 can be prevented more reliably.
  • the second opening 52 a has an edge 520 at the boundary with the upstream intake passage 21.
  • the second opening 52a is formed so that the opening dimension B in the direction orthogonal to the air flow direction is shorter than the opening dimension A in the air flow direction. That is, the shape of the second opening 52a is a shape in which the direction extending in the air flow direction is the longitudinal direction and the direction extending perpendicular to the air flow direction is the width direction.
  • the edge portion 520 on the upstream side in the air flow direction of the second opening 52a which is a source of airflow noise, is shortened, so that the amount of air flowing into the expansion chamber 5 is reduced. Therefore, the generation of the vortex generated at the edge 520 on the upstream side of the second opening 52a in the air flow direction is reduced, and the generation of the airflow sound due to the flowing air can be suppressed.
  • FIG. 3 (b) and 3 (c) are modified examples of FIG. 3 (a).
  • the edge 520b upstream in the air flow direction is shorter than the edge 520a downstream in the air flow direction. Is formed.
  • the edge 520a on the downstream side in the air flow direction extends in a direction perpendicular to the air flow direction so as to include a curve. Accordingly, the edge portion 520a on the downstream side in the air flow direction is longer than that in the case of FIG. 3A and has a shape including a curve. Therefore, since the opening area of the 2nd opening part 52a can be ensured, the length direction of the edge part 520b can be shortened, and generation
  • the edge portion 520d on the upstream side in the air flow direction from the edge portion 520c on the downstream side in the air flow direction. Is formed short. Since the edge 520d on the upstream side in the air flow direction is shorter than that in FIG. 3A, the opening area of the second opening 52a decreases from the edge 520c toward the edge 520d.
  • the edge portion 520d has a shorter length than that in FIG. 3 (a), so that airflow noise is generated by the turbulent air flow due to the flowing air and the edge portion 520d. Is further suppressed.
  • the 2nd opening part 52a is exhibiting the shape containing a curve, it is not limited to this structure.
  • the shape of the second opening 52a may be an elliptical shape.
  • the first expansion chamber 51 and the vacuum pressure supply path 3 are integrally molded. From this, the location where the vacuum pressure supply path 3 communicates with the first expansion chamber 51 can be determined at the design stage.
  • parts that perform various functions mounted on vehicles are increasing, and space for mounting intake manifolds is limited.
  • the direction of the vacuum pressure supply path 3 to which the vacuum pressure supply port is connected can be changed according to the vehicle to be mounted. Therefore, the intake manifold 1 of the present embodiment can be mounted on various vehicles, and the intake manifold 1 can be downsized.
  • the vacuum pressure supply passage 3 communicating with the first expansion chamber 51 is formed by hollow molding or the like. That is, when the upper piece 1a is injection-molded, the first expansion chamber 51 and the vacuum pressure supply path 3 can be formed in a process of pouring resin. Accordingly, the location, size and number of the vacuum pressure supply passages 3 can be determined with a small number of steps, and the upper piece 1a can be formed with a simple design.
  • the first gas introduction part 41 is also integrally formed with the first gas introduction channel 41a, and the first gas introduction part 41 is formed by hollow molding or the like. And the direction of the 1st gas introduction part 41 to which the PCV gas introduction port which introduces PCV gas is connected can be changed according to the vehicles carrying.
  • the vacuum pressure supply path 3 is arranged upstream of the gas introduction part 4 in the air flow direction, so that the fuel component and moisture contained in the gas due to the entrainment flow of the surge tank 2 Can be prevented from flowing into the vacuum pressure supply passage 3. That is, clogging (blocking) of the vacuum pressure supply path 3 due to freezing of fuel components and moisture can be suppressed. Furthermore, since the vacuum pressure supply path 3 supplies the vacuum pressure in the surge tank 2 to the vacuum pressure actuator or the like via the expansion chamber 5, the above-described effects can be improved.
  • the expansion chamber 5 is formed by welding the welding surface 10a and the welding surface 10b, the expansion chamber 5 can be disposed in the intake manifold 1 without adopting a complicated structure.
  • the arrangement location and the number of parts of the gas introduction part 4 are not limited to the above-described embodiment. Any configuration that can distribute and supply PCV gas, EGR gas, and the like introduced from the gas introduction unit 4 to each downstream intake passage 22 may be used.
  • the vacuum pressure supply path 3 is configured to communicate with the upstream intake flow path 21, but is not limited thereto. As long as it is configured to communicate with the upstream side of the gas introduction unit 4, the surge tank 2 may be communicated. However, in this case, the vacuum pressure supply path 3 needs to communicate with a portion of the surge tank 2 where air flows in one direction from the upstream side to the downstream side.
  • the intake manifold 1 includes three pieces 1a, 1b, and 1c, but is not limited thereto.
  • the intake manifold 1 may be composed of two or less pieces, or four or more pieces.
  • the vacuum pressure supply path 3 and the expansion chamber 5 are integrally formed with the intake manifold 1, but are not limited thereto.
  • the vacuum pressure supply path 3 and the expansion chamber 5 may be separate from the intake manifold 1.
  • the vacuum pressure supply path 3 includes the vacuum pressure supply paths 31 and 32 for supplying negative pressure to the vacuum pressure actuator and the brake booster, but has at least one vacuum pressure supply path. If you do.
  • the present invention can be used for an intake manifold having a surge tank to which an intake passage for air supplied to an internal combustion engine is connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

 内燃機関へ供給される空気の吸気流路が接続されるサージタンクを有するインテークマニホールドであって、前記吸気流路または前記サージタンクに連通し、燃料成分を含有するガスを前記サージタンクに導入するガス導入部と、前記吸気流路または前記サージタンクのうち前記ガス導入部よりも前記空気の流動方向上流側に連通し、前記サージタンク内の負圧を外部に供給する負圧供給路と、を備え、前記負圧供給路は、前記負圧供給路の断面積よりも大きい断面積を有する拡張室を介して、前記吸気流路または前記サージタンクに接続されている。

Description

インテークマニホールド
 本発明は、内燃機関に用いられるインテークマニホールドに関する。
 従来のインテークマニホールドには、例えばクランクケース内のブローバイガス、キャニスタからのPCVガス、EGRガス(排気還流ガス)等といったミスト状の油分や水蒸気を含んだガスをサージタンクに導入するためのガス導入部が設けられているとともに、サージタンク内の吸気負圧を外部(例えばブレーキブースタ等)に付与するための負圧供給路が設けられているものがある。このようなインテークマニホールドにおいて、ガス導入部から導入されるガスに含有される燃料成分および水分が負圧供給路に流入し、凍結によって閉塞して負圧供給ポートが詰まる懸念がある。
 上記懸念を解消するインテークマニホールドとして、空気の主流路に連通する集中ポートを設け、集中ポートは、ミスト状の流体または蒸気を含んだガスを導入するガス導入部(文献では、「ガス導入用ポート」)と、負圧を導入する負圧供給路(文献では、「負圧導入ポート」)と、を備え、ガス導入部と負圧供給路の開口部との間に隔壁部が配設される技術が開示されている(例えば、特許文献1参照。)。
 また、サージタンクを構成する壁部内面の適宜位置に隆起して段違いとなる隆起部が設けられ、壁部内面において隆起部以外の適宜位置に水蒸気を含むガスを導入するためのガス導入部(文献では、「ガス導入孔」)を備えると共に、サージタンク内の吸気負圧を外部に取り出すための負圧供給路(文献では、「吸気負圧取出し孔」)を隆起部に接続し、隆起部の立ち上げ面において負圧供給路の開口部より上方に位置する領域に、隆起部上方の壁部内面を伝って落ちてくる水分を受けるとともに負圧供給路から遠ざける位置へ導く案内溝が設けられた技術が開示されている(例えば、特許文献2参照)。
特開2003-254178号公報 特開2007-40142号公報
 ところで、インテークマニホールドのサージタンク内では、エンジンに接続する複数の気筒へ混合気(空気、PCVガスおよびEGRガス)を均一に分配する巻き込み流が発生している。
 特許文献1に記載のインテークマニホールドでは、ガス導入部と負圧供給路の開口部とを隔壁で隔離しているが、ガス導入部と負圧供給路の開口部とが隣接して設けられている。このため、サージタンク内で発生する巻き込み流により、ガス導入部から供給されるガスが負圧供給路に流入しやすい。つまり、巻き込み流によりガスが負圧供給路へ流入し、負圧供給路がガスに含有されるミスト状の流体または蒸気の凍結により詰まる虞がある。
 また、特許文献2に記載のインテークマニホールドも同様に、隆起部に水滴の負圧供給路への浸入を抑制する案内溝が設けられているが、サージタンク内の巻き込み流により、案内溝に沿って負圧供給路を避けて流通する水滴が拡散する虞がある。従って、拡散した水滴が巻き込み流により負圧供給路に流入しやすく、凍結により負圧供給路が詰まる虞がある。
 本発明は、上記問題点に鑑みてなされたものであり、負圧供給路へのガス導入部から導入されるガスに含有される燃料成分および水分の流入を抑え、負圧供給路の詰まりを抑制することを目的とする。
 本発明に係るインテークマニホールドの第一特徴構成は、内燃機関へ供給される空気の吸気流路が接続されるサージタンクを有するインテークマニホールドであって、前記吸気流路または前記サージタンクに連通し、燃料成分を含有するガスを前記サージタンクに導入するガス導入部と、前記吸気流路または前記サージタンクのうち前記ガス導入部よりも前記空気の流動方向上流側に連通し、前記サージタンク内の負圧を外部に供給する負圧供給路と、を備え、前記負圧供給路は、前記負圧供給路の断面積よりも大きい断面積を有する拡張室を介して、前記吸気流路または前記サージタンクに接続されている点にある。
 本特徴構成によると、負圧供給路がガス導入部より空気の流動方向上流側に設けられているため、ガス導入部から導入されるガスがサージタンク内の巻き込み流の影響を受けて負圧供給路に流入するのを抑制できる。つまり、ガスに含有される燃料成分および水分による負圧供給路の詰まりや、それらの凍結による負圧供給路の閉塞が抑制され、外部に適時負圧を供給できる。負圧供給路は、ガス導入部より空気の流動方向上流に配置されれば良いため、各車両の搭載スペースに合わせて負圧供給路の配置箇所を変更でき、設計自由度が向上する。
 また、拡張室の断面積は、負圧供給路の断面積よりも大きいので、負圧供給路における負圧による吸引力に比べて、拡張室のサージタンク側の入り口における負圧による吸引力は小さい。よって、拡張室を設けていない場合と比較して、ガスに含有される燃料成分および水分が負圧供給路に流入しにくい。
 さらに、負圧供給路が断面積の大きい拡張室によって実質的に延長されるので、仮に、燃料成分および水分が拡張室に流入しても、拡張室内の壁面に付着し、負圧供給路への燃料成分および水分の流入を抑制できる。この結果、ガスに含有される燃料成分および水分による負圧供給路の詰まりや、それらの凍結による負圧供給路の閉塞がさらに抑制される。
 ここで、「外部」とはサージタンク内の負圧が付与されるブレーキブースタ等を指す。
 本発明に係るインテークマニホールドの第二特徴構成は、前記拡張室は、前記負圧供給路に連通する第一開口部と、前記吸気流路および前記サージタンクの少なくとも1つに連通する第二開口部と、を有し、前記第二開口部の開口面積を、前記第一開口部の開口面積よりも大きく設定した点にある。
 例えば、第一開口部の開口面積が第二開口部の開口面積より大きい拡張室を用いた場合、第二開口部の開口面積が小さいため、第二開口部にてガスに含有される燃料成分および水分の付着による詰まりや、閉塞による負圧供給路の凍結が誘発されやすい。
 しかし、本特徴構成によると、拡張室の第二開口部は、第一開口部より開口面積が大きいため、ガスに含有される燃料成分および水分による第二開口部の詰まりや、それらの凍結による第二開口部の閉塞が生じにくい。また、拡張室を介すことによって第一開口部はガス導入部から離れているため、第一開口部においても、ガスに含有される燃料成分および水分による詰まりや、それらの凍結による第一開口部の閉塞が抑制される。この結果、ガスに含有される燃料成分および水分による負圧供給路の詰まりや、それらの凍結による負圧供給路の閉塞が抑制され、適時外部に負圧を供給できる。
 本発明に係るインテークマニホールドの第三特徴構成は、前記拡張室は、前記第一開口部を有すると共に前記負圧供給路と一体成形される第一ピースと、前記第二開口部を有する第二ピースと、から形成される点にある。
 本特徴構成によると、拡張室は、第一ピースと第二ピースとの組み合わせにより形成され、簡素な構造でインテークマニホールドに設けられる。つまり、拡張室は、第一ピースと第二ピースとを組み付けることにより容易に負圧供給路から供給する負圧の供給流路を形成できる。
 また、負圧供給路は第一ピースに設けられるため、第一ピースと第二ピースとで負圧供給路を構成する場合と比べ、第一ピースと第二ピースとの溶着面積が低減され、かつ、負圧供給路における溶着不良は起き得ない。負圧供給路の延在方向を各車両に応じて変更すれば、負圧供給路に連通する負圧供給流路を短縮でき、小型なインテークマニホールドとすることもできる。さらに、第二ピースを各車両に応じて形状変更する必要がないので、車両の種別によらず共通して使用できる。
 本特徴構成であると、例えば、第一ピースの形状が、第二ピースとの境界となる端部から第一開口部方向に向かうにしたがって幅狭となる形状であって、その第一ピースを射出成型によって成形するような場合においては、金型から第一ピースを容易に取り出すことができる。
 本発明に係るインテークマニホールドの第四特徴構成は、前記第二開口部において、空気の流動方向に直交する方向の開口寸法を、空気の流動方向の開口寸法よりも短く設定した点にある。
 内燃機関に供給される空気が第二開口部を通過する際には、その空気が拡張室に回り込んで、第二開口部の空気流動方向上流側の縁部で渦流が発生し、その乱流によって気流音が発生する。
 本特徴構成であると、第二開口部において、空気の流動方向の開口寸法よりも空気の流動方向に直交する方向の開口寸法が短い。即ち、気流音の発生源となる第二開口部の空気流動方向上流側の縁部の長さが短くなるため、内燃機関に供給される空気が拡張室に回り込むのが低減される。その結果、第二開口部の空気流動方向上流側の縁部で発生する渦流が少なくなり、気流音の発生を抑制できる。
 本発明に係るインテークマニホールドの第五特徴構成は、前記第二開口部は、空気の流動方向に延在する方向が長手方向であり、空気の流動方向に直交して延在する方向が幅方向である形状であって、前記幅方向における前記第二開口部の縁部の長さは、空気の流動方向下流側よりも空気の流動方向上流側の方が短い点にある。
 本特徴構成であると、幅方向における第二開口部の縁部の長さが、空気流動方向上流側の方が下流側よりも短い。よって、幅方向における第二開口部の縁部の長さの合計を一定として考えた場合、第二開口部の開口面積を確保しつつも、上流側の方が下流側よりも長い場合と比較して、上流側の縁部における渦流の発生量が少なくなる。従って、気流音の発生をさらに抑制できる。
 本発明に係るインテークマニホールドの第六特徴構成は、前記拡張室を構成する面のうち空気の流動方向下流側の面は、空気の流動方向上流側に向けて倒伏されている点にある。
 本特徴構成のように、拡張室を構成する面のうち空気の流動方向下流側の面が、空気の流動方向上流側に向けて倒伏していると、サージタンク内の負圧が外部に供給されるとき、負圧供給に伴う気流がその面に案内されて吸気流路を流通する空気と円滑に合流する。よって、拡張室内で乱流が生じにくい。この結果、燃料成分および水分が拡張室に引き込まれにくく、負圧供給路への詰まりをより確実に防止できる。
本実施形態のインテークマニホールドの正面図である。 本実施形態のインテークマニホールドの側面図である。 本実施形態の拡張室の第二開口部の形状を示す概略図である。
 以下、本発明に係る実施形態を図面に基づいて説明する。
 始めに、図1および図2に基づき全体構成を説明する。本実施形態のインテークマニホールド1は樹脂製であるアッパーピース1a、ミドルピース1bおよびロアピース1cから構成される。アッパーピース1aにはミドルピース1bと溶着する溶着面10aと、ミドルピース1bにはアッパーピース1aおよびロアピース1cに溶着する溶着面10bおよび10cと、ロアピース1cにはミドルピース1bと溶着する溶着面10dと、を有する。各溶着面10a~10dを振動溶着することによりサージタンク2を有するインテークマニホールド1が形成される。
 サージタンク2は、スロットルボディ(図示略)から空気が通過する上流吸気流路21と、上流吸気流路21からエンジン(図示略)へ混合気が通過する複数の下流吸気流路22と、が接続されている。尚、混合気には空気のほか後述するPCVガスおよびEGRガスが含まれる。空気、PCVガスおよびEGRガスを含む混合気を各下流吸気流路22へ均一かつ同じ濃度で分配するため、混合気の気流がサージタンク2内で渦を巻くような気流(以下、巻き込み流)となるように設計されている。
 インテークマニホールド1は、図1および図2に示すごとく、サージタンク2内のバキューム圧(負圧)をバキューム圧アクチュエータ(図示略)およびブレーキブースタ(図示略)に供給するバキューム圧供給路3(負圧供給路)と、ガスをサージタンク2に導入するガス導入部4と、を有する。ガス導入部4は、上流吸気流路21に連通して燃料成分および水分など液体を含有するPCVガスを導入する第一ガス導入部41と、サージタンク2に連通して燃料成分および水分など液体を含有するEGRガスを導入する第二ガス導入部42と、を有する。
 尚、サージンタンク2内で発生する巻き込み流により、PCVガスおよびEGRガスがバキューム圧供給路3へ流入し、バキューム圧をバキューム圧アクチュエータ等に適時供給することが妨げられる懸念がある。上記懸念を解消するべく、バキューム圧供給路3は、上流吸気経路21のうち、ガス導入部4よりも空気流動方向上流側に連通し、かつ拡張室5を介して上流吸気経路21へ接続され、サージタンク2内のバキューム圧を供給する。このようにバキューム圧供給路3の上流吸気経路21への接続箇所を工夫し、また、拡張室5を設けることで、バキューム圧供給路3へのガスの流入を抑制できる。
 バキューム圧供給路3は、図2に示すごとく、バキューム圧アクチュエータからバキューム圧供給ポート(図示略)が接続される第一バキューム圧供給路31と、ブレーキブースタからバキューム圧供給ポートが接続される第二バキューム圧供給路32と、を有する。
 拡張室5は、図1および図2に示すごとく、アッパーピース1aの溶着面10aに設けられる第一拡張室51と、ミドルピース1bの溶着面10bに設けられる第二拡張室52と、から構成される。第一拡張室51はバキューム圧供給路3に連通する第一開口部51aを有し、第二拡張室52は上流吸気流路21に連通する第二開口部52aを有する。
 また、第一ガス導入部41も同様に、溶着面10aに設けられる第一ガス導入流路41aと溶着面10bに設けられる第二ガス導入流路41bとから構成される。
 尚、第二ガス導入流路41bと上流吸気流路21とが連通する第三開口部41cは、第二開口部52aよりも空気流動方向下流側に設けられる。このことから、第一ガス導入部41から導入されるPCVガスのバキューム圧供給路3への流入を抑制できる。
 第二開口部52aは、バキューム圧供給路3からサージタンク2内のバキューム圧を円滑にバキューム圧アクチュエータ等に供給できるよう、第一開口部51aよりも開口面積が大きい。このため、ガスに含有される燃料成分および水分の凍結による第二開口部52aの閉塞が抑制され、適時バキューム圧供給路3からサージタンク2内のバキューム圧を供給できる。
 また、拡張室5は、バキューム圧供給路3と比べて、バキューム圧の供給流路面積が大きい。即ち、拡張室5の断面積はバキューム圧供給路3の断面積よりも大きい。加えて、拡張室5の形状は第一開口部51aから第二開口部52aへ向かうにしたがってバキューム圧の供給流路面積が大きくなっている。つまり、サージタンク2に及ぼすバキューム圧をバキューム圧アクチュエータ等へ供給する際の吸引力が小さくなるため、ガスに含有される燃料成分および水分のバキューム圧供給路3への流入を抑制できる。
 さらに、拡張室5を構成する面のうち空気の流動方向下流側の面53は、図1に示すごとく、空気の流動方向上流側に向けて倒伏されている。よって、サージタンク2に及ぼすバキューム圧がバキューム圧アクチュエータに供給されるとき、負圧供給に伴う気流がその面53に案内されて上流吸気経路21を流通する空気に円滑に合流する。よって、拡張室5内で乱流が生じにくい。この結果、燃料成分および水分が拡張室5に引き込まれにくく、バキューム圧供給路3への詰まりをより確実に防止できる。
 次に、図3に基づき第二開口部52aの形状を説明する。
 第二開口部52aは上流吸気流路21との境界部に縁部520を有する。図3(a)に示すごとく、空気流動方向に直交する方向の開口寸法Bが空気流動方向の開口寸法Aより短くなるように第二開口部52aを形成する。すなわち、第二開口部52aの形状は、空気流動方向に延在する方向が長手方向であり、空気流動方向に直交して延在する方向が幅方向である形状である。上流空気流路21に空気を流動させる場合、気流音の発生源となる第二開口部52aの空気流動方向上流側の縁部520を短くして、拡張室5に回り込む空気量が少なくなる。従って、第二開口部52aの空気流動方向上流側の縁部520で発生する渦流の発生が少なくなり、流動する空気に起因する気流音の発生を抑制できる。
 図3(b)、(c)は、図3(a)の変形例である。図3(b)では、図3(a)に示される第二開口部52aの幅方向における縁部520において、空気流動方向下流側の縁部520aより空気流動方向上流側の縁部520bが短く形成されている。また、空気流動方向下流側の縁部520aは曲線を含むよう空気流動方向に直交する方向に延在する。従って、図3(a)の場合より空気流動方向下流側の縁部520aが長くなると共に曲線を含んだ形状を有する。そのため、第2開口部52aの開口面積を確保できるため、縁部520bの長さ方向を短くでき、気流音の発生が抑制できる。
 また、図3(c)では、図3(a)に示される第二開口部52aの幅方向における縁部520において、空気流動方向下流側の縁部520cより空気流動方向上流側の縁部520dが短く形成されている。図3(a)より空気流動方向上流側の縁部520dが短くなることから、第二開口部52aの開口面積が縁部520cから縁部520dに向かうにしたがって小さくなる。上流空気流路21に空気を流動させる場合、図3(a)と比べ縁部520dの長さが短いため、流動する空気と縁部520dとに起因し、空気の乱流による気流音の発生がさらに抑制される。
 ここで、第二開口部52aは、曲線を含む形状を呈しているがこの構成に限定されない。また、第二開口部52aの形状を楕円形状としても良い。
 尚、アッパーピース1aを成形する際、第一拡張室51およびバキューム圧供給路3は一体成形される。このことから、設計段階でバキューム圧供給路3が第一拡張室51に連通する箇所を定めることができる。近年、車両に搭載される様々な機能を果たす部品が増加しており、インテークマニホールドを搭載するスペースが限られている。特に、インテークマニホールドに付設されるポートの向きによっては、他の部品に干渉する懸念やインテークマニホールドの規定の大きさを超える懸念が生じる。しかし、本実施形態のインテークマニホールド1では、搭載する車両に応じてバキューム圧供給ポートが接続されるバキューム圧供給路3の向きを変更できる。よって、様々な車両に本実施形態のインテークマニホールド1が搭載可能であり、かつインテークマニホールド1の小型化が図れる。
 また、製造工程において、第一拡張室51に連通するバキューム圧供給路3を中空成形などにより成形する。つまり、アッパーピース1aを射出成形する際、樹脂を流し込む工程で第一拡張室51およびバキューム圧供給路3を形成できる。このことから、少ない工程でバキューム圧供給路3の配置箇所、大きさおよび個数を定めることができ、簡素な設計でアッパーピース1aを成形できる。また、第一ガス導入部41も上述のように、第一ガス導入流路41aと一体成形され、第一ガス導入部41は中空成形などにより成形される。そして、PCVガスを導入するPCVガス導入ポートが接続される第一ガス導入部41の向きを搭載する車両に応じて変更できる。
 以上、本実施形態に係るインテークマニホールド1において、バキューム圧供給路3がガス導入部4よりも空気流動方向上流に配置されるため、サージタンク2の巻き込み流によるガスに含有される燃料成分および水分のバキューム圧供給路3への流入を抑制できる。つまり、燃料成分および水分の凍結によるバキューム圧供給路3の詰まり(閉塞)を抑制できる。さらに、バキューム圧供給路3は、拡張室5を介してサージタンク2内のバキューム圧をバキューム圧アクチュエータ等に供給するため、上述した効果を向上できる。
 また、拡張室5は、溶着面10aと溶着面10bとの溶着により形成されるため、複雑な構造を採用することなくインテークマニホールド1に配設可能となる。
〔別実施形態〕
 ガス導入部4の配置箇所および部品点数は上述の実施形態に限定されない。ガス導入部4から導入されるPCVガスやEGRガス等を各下流吸気流路22へ分配供給できる構成であれば良い。
 上述の実施形態においては、バキューム圧供給路3は、上流吸気流路21に連通するよう構成したが、これに限られるものではない。ガス導入部4よりも上流側に連通する構成であれば、サージタンク2に連通していても良い。ただし、この場合は、バキューム圧供給路3は、サージタンク2のうち上流側から下流側への一方向に空気が流れる部分に連通させる必要がある。
 上述の実施形態に係るインテークマニホールド1は、三つのピース1a、1bおよび1cから構成されるが、これに限られるものではない。例えば、インテークマニホールド1は、二つ以下、または四つ以上のピースから構成されていても良い。
 上述の実施形態に係るバキューム圧供給路3および拡張室5は、インテークマニホールド1に一体成形されるが、これに限られるものではない。例えば、バキューム圧供給路3および拡張室5は、インテークマニホールド1と別体であっても良い。
 上述の実施形態に係るバキューム圧供給路3は、バキューム圧アクチュエータおよびブレーキブースタに負圧を供給するためのバキューム圧供給路31、32を有しているが、バキューム圧供給路を少なくとも一つ有していれば良い。
 本発明は、内燃機関へ供給される空気の吸気流路が接続されるサージタンクを有するインテークマニホールドに利用することができる。
 1    インテークマニホールド
 1a   アッパーピース(第一ピース)
 1b   ミドルピース(第二ピース)
 2    サージタンク
 21   上流吸気流路(吸気流路)
 3    バキューム圧供給路(負圧供給路)
 4    ガス導入部
 5    拡張室
 51a  第一開口部
 52a  第二開口部
 520、520a、520b、520c、520d  縁部
 53  空気の流動方向下流側の面
 

Claims (6)

  1.  内燃機関へ供給される空気の吸気流路が接続されるサージタンクを有するインテークマニホールドであって、
     前記吸気流路または前記サージタンクに連通し、燃料成分を含有するガスを前記サージタンクに導入するガス導入部と、
     前記吸気流路または前記サージタンクのうち前記ガス導入部よりも前記空気の流動方向上流側に連通し、前記サージタンク内の負圧を外部に供給する負圧供給路と、を備え、
     前記負圧供給路は、前記負圧供給路の断面積よりも大きい断面積を有する拡張室を介して、前記吸気流路または前記サージタンクに接続されているインテークマニホールド。
  2.  前記拡張室は、前記負圧供給路に連通する第一開口部と、前記吸気流路および前記サージタンクの少なくとも1つに連通する第二開口部と、を有し、
     前記第二開口部の開口面積を、前記第一開口部の開口面積よりも大きく設定してある請求項1に記載のインテークマニホールド。
  3.  前記拡張室は、前記第一開口部を有すると共に前記負圧供給路と一体成形される第一ピースと、前記第二開口部を有する第二ピースと、から形成される請求項2に記載のインテークマニホールド。
  4.  前記第二開口部において、空気の流動方向に直交する方向の開口寸法を、空気の流動方向の開口寸法よりも短く設定してある請求項2または3に記載のインテークマニホールド。
  5.  前記第二開口部は、空気の流動方向に延在する方向が長手方向であり、空気の流動方向に直交して延在する方向が幅方向である形状であって、
     前記幅方向における前記第二開口部の縁部の長さは、空気の流動方向下流側よりも空気の流動方向上流側の方が短い請求項2乃至4のいずれか一項に記載のインテークマニホールド。
  6.  前記拡張室を構成する面のうち空気の流動方向下流側の面は、空気の流動方向上流側に向けて倒伏されている請求項1乃至5のいずれか一項に記載のインテークマニホールド。
     
PCT/JP2010/073040 2010-01-28 2010-12-21 インテークマニホールド WO2011092972A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011551709A JP5626597B2 (ja) 2010-01-28 2010-12-21 インテークマニホールド
US13/575,160 US8677967B2 (en) 2010-01-28 2010-12-21 Intake manifold having negative pressure relief
EP10844726.9A EP2530292B1 (en) 2010-01-28 2010-12-21 Intake manifold
CN201090001462.0U CN202991290U (zh) 2010-01-28 2010-12-21 进气歧管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017407 2010-01-28
JP2010017407 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092972A1 true WO2011092972A1 (ja) 2011-08-04

Family

ID=44318971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073040 WO2011092972A1 (ja) 2010-01-28 2010-12-21 インテークマニホールド

Country Status (5)

Country Link
US (1) US8677967B2 (ja)
EP (1) EP2530292B1 (ja)
JP (1) JP5626597B2 (ja)
CN (1) CN202991290U (ja)
WO (1) WO2011092972A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108381A (ja) * 2011-11-18 2013-06-06 Honda Motor Co Ltd 吸気マニホールド
CN103174560A (zh) * 2011-12-26 2013-06-26 丰田自动车株式会社 进气歧管
JP2014234789A (ja) * 2013-06-04 2014-12-15 三菱自動車工業株式会社 サージタンク
JP2016113970A (ja) * 2014-12-16 2016-06-23 スズキ株式会社 エンジンの吸気装置
JP2020037918A (ja) * 2018-09-05 2020-03-12 トヨタ紡織株式会社 吸気マニホールド
JP2021139301A (ja) * 2020-03-02 2021-09-16 スズキ株式会社 エンジンにおけるブローバイガス還流構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5883304B2 (ja) * 2012-02-07 2016-03-15 株式会社Roki インテークマニホールド
JP2016125467A (ja) * 2015-01-08 2016-07-11 アイシン精機株式会社 内燃機関の吸気装置
US10001093B2 (en) * 2016-01-21 2018-06-19 Ford Global Technologies, Llc Intake manifold having slosh prevention baffles
US10323609B1 (en) * 2018-01-05 2019-06-18 RB Distribution, Inc. Configurable engine manifold
JP6534766B1 (ja) * 2018-08-28 2019-06-26 株式会社ケーヒン 吸気マニホールド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229928A (ja) * 1998-02-12 1999-08-24 Denso Corp 内燃機関の吸気管負圧制御装置
JP2000120470A (ja) * 1998-08-10 2000-04-25 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2002161774A (ja) * 2000-11-27 2002-06-07 Toyota Motor Corp 内燃機関の燃焼制御装置
JP2003254178A (ja) 2002-02-28 2003-09-10 Denso Corp 内燃機関の吸気装置
JP2005048736A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 内燃機関のサージタンク
JP2007040142A (ja) 2005-08-02 2007-02-15 Toyota Motor Corp インテークマニホルド

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135531A (ja) * 1994-11-04 1996-05-28 Suzuki Motor Corp エンジンのインテークマニホールド
JPH08135529A (ja) * 1994-11-07 1996-05-28 Aisan Ind Co Ltd 多連スロットルボデーの負圧導入通路
JPH1182197A (ja) * 1997-09-08 1999-03-26 Denso Corp 内燃機関の吸気装置
JPH11141417A (ja) * 1997-11-06 1999-05-25 Toyota Motor Corp サージタンク
KR100423348B1 (ko) 1998-08-10 2004-03-18 도요다 지도샤 가부시끼가이샤 내연기관의 증발연료 처리장치
JP3585818B2 (ja) * 2000-09-12 2004-11-04 本田技研工業株式会社 吸気マニホールド
JP4529297B2 (ja) * 2001-03-02 2010-08-25 株式会社デンソー インテークマニホールドの負圧取出し構造
JP2005002941A (ja) * 2003-06-13 2005-01-06 Mikuni Corp インテークマニホールド
JP4319946B2 (ja) * 2004-06-03 2009-08-26 三菱電機株式会社 多枝吸気ブロック装置及び排ガス再燃焼配管装置
US7523731B2 (en) * 2004-09-29 2009-04-28 Keihin Corporation Intake system for internal combustion engine
JP2008002340A (ja) * 2006-06-22 2008-01-10 Mahle Filter Systems Japan Corp 内燃機関の吸気装置
JP2008095559A (ja) * 2006-10-06 2008-04-24 Aisan Ind Co Ltd 内燃機関のスロットル装置
JP4743711B2 (ja) * 2006-10-27 2011-08-10 株式会社デンソー 内燃機関のブレーキ負圧制御装置
US8186323B2 (en) * 2007-07-26 2012-05-29 Nissan Motor Co., Ltd. Intake air noise adjuster
US7451732B1 (en) * 2008-01-30 2008-11-18 Mann & Hummel Gmbh Multi-shell air intake manifold with passage for map sensor and method of producing same
JP5202047B2 (ja) * 2008-03-13 2013-06-05 愛三工業株式会社 樹脂製インテークマニホールド
JP2009257222A (ja) * 2008-04-17 2009-11-05 Toyota Motor Corp 内燃機関の制御装置
JP2010007493A (ja) * 2008-06-24 2010-01-14 Toyota Motor Corp 車両の負圧供給装置
US8511289B2 (en) * 2009-05-18 2013-08-20 Aisan Kogyo Kabushiki Kaisha Intake manifolds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229928A (ja) * 1998-02-12 1999-08-24 Denso Corp 内燃機関の吸気管負圧制御装置
JP2000120470A (ja) * 1998-08-10 2000-04-25 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2002161774A (ja) * 2000-11-27 2002-06-07 Toyota Motor Corp 内燃機関の燃焼制御装置
JP2003254178A (ja) 2002-02-28 2003-09-10 Denso Corp 内燃機関の吸気装置
JP2005048736A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 内燃機関のサージタンク
JP2007040142A (ja) 2005-08-02 2007-02-15 Toyota Motor Corp インテークマニホルド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530292A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108381A (ja) * 2011-11-18 2013-06-06 Honda Motor Co Ltd 吸気マニホールド
US8683971B2 (en) 2011-11-18 2014-04-01 Honda Motor Co., Ltd. Intake manifold
CN103174560A (zh) * 2011-12-26 2013-06-26 丰田自动车株式会社 进气歧管
CN103174560B (zh) * 2011-12-26 2016-04-27 丰田自动车株式会社 进气歧管
JP2014234789A (ja) * 2013-06-04 2014-12-15 三菱自動車工業株式会社 サージタンク
JP2016113970A (ja) * 2014-12-16 2016-06-23 スズキ株式会社 エンジンの吸気装置
JP2020037918A (ja) * 2018-09-05 2020-03-12 トヨタ紡織株式会社 吸気マニホールド
JP7124573B2 (ja) 2018-09-05 2022-08-24 トヨタ紡織株式会社 吸気マニホールド
JP2021139301A (ja) * 2020-03-02 2021-09-16 スズキ株式会社 エンジンにおけるブローバイガス還流構造
JP7371534B2 (ja) 2020-03-02 2023-10-31 スズキ株式会社 エンジンにおけるブローバイガス還流構造

Also Published As

Publication number Publication date
JPWO2011092972A1 (ja) 2013-05-30
US20120291741A1 (en) 2012-11-22
EP2530292A4 (en) 2015-04-15
EP2530292B1 (en) 2017-04-19
EP2530292A1 (en) 2012-12-05
JP5626597B2 (ja) 2014-11-19
CN202991290U (zh) 2013-06-12
US8677967B2 (en) 2014-03-25

Similar Documents

Publication Publication Date Title
JP5626597B2 (ja) インテークマニホールド
US8137425B2 (en) Intake system for vehicle internal combustion engine
US8607756B1 (en) Intake manifold
JP5755087B2 (ja) 樹脂製インテークマニホールド
JP6879068B2 (ja) インテークマニホールド
JP5825903B2 (ja) 樹脂製インテークマニホールド
US9951722B2 (en) Chamber for reducing operating noise of purge control solenoid valve for evaporative emission control system
JP5686692B2 (ja) 樹脂製インテークマニホールド
JP5967310B2 (ja) 内燃機関のブローバイガス処理装置
JP5065217B2 (ja) 内燃機関のサージタンク及びインテークマニホールド
JP4357233B2 (ja) 内燃機関のサージタンク
JP4814164B2 (ja) 内燃機関の吸気装置
US9212637B2 (en) Intake pipe structure for internal combustion engine
JP5180760B2 (ja) 内燃機関のインテークマニホールド
JP4781210B2 (ja) サージタンク内ガス導入装置
JP6025582B2 (ja) インテークマニホールド
KR101063168B1 (ko) 대형 엔진의 일체형 인테이크 매니폴드
JP2009215896A (ja) 樹脂製インテークマニホールド
JP2014181624A (ja) 内燃機関の吸気装置
JP2014105604A (ja) 内燃機関の吸気装置
JP5791259B2 (ja) 樹脂製インテークマニホールド
JP6166130B2 (ja) 内燃機関用吸気マニホールド
JP2009008027A (ja) 内燃機関の吸気装置
JP2020033892A (ja) 吸気マニホールド

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001462.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551709

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010844726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010844726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13575160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201003802

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE