WO2011090059A1 - 熱交換器チューブ - Google Patents
熱交換器チューブ Download PDFInfo
- Publication number
- WO2011090059A1 WO2011090059A1 PCT/JP2011/050832 JP2011050832W WO2011090059A1 WO 2011090059 A1 WO2011090059 A1 WO 2011090059A1 JP 2011050832 W JP2011050832 W JP 2011050832W WO 2011090059 A1 WO2011090059 A1 WO 2011090059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- powder
- heat exchanger
- particle size
- flux
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0012—Brazing heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/008—Soldering within a furnace
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/012—Soldering with the use of hot gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/20—Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
- B23K1/203—Fluxing, i.e. applying flux onto surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/16—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
Definitions
- the present invention relates to a heat exchanger tube, and particularly relates to a heat exchanger tube having excellent corrosion resistance.
- the heat exchanger is made of a pair of left and right tubes called header pipes 5, and an aluminum alloy provided between the header pipes 5 so as to be spaced apart from each other in parallel. It is composed of a large number of tubes 1 and fins 6 provided between the tubes 1 and 1. Then, the internal space of each tube 1 and the internal space of the header pipe 5 are communicated, the medium is circulated between the internal space of the header pipe 5 and the internal space of each tube 1, and heat can be exchanged efficiently through the fins 6. It is like that.
- Each tube 1 constituting this heat exchanger has a flux containing brazing filler metal powder on the surface of an Al alloy extruded tube 3 having a flat cross section having a plurality of refrigerant passage holes 4 as shown in the perspective view of FIG.
- the heat exchanger tube 11 formed with the flux layer 2 is formed by applying JIS 1050 with excellent extrudability, and is used for the Al alloy extruded tube 3.
- the brazing material contained in the flux layer 2 it is also known that Si powder, Al—Si alloy powder, or Al—Si—Zn alloy powder is used.
- the heat exchanger tubes 11 are installed at right angles to the header pipes 5 arranged in parallel with each other, and each heat exchanger is exchanged.
- An assembly obtained by inserting the end portion of the equipment tube 11 into an opening (not shown) provided on the side surface of the header pipe 5 and arranging the corrugated fins 6 between the heat exchanger tubes 11. Is inserted into a heating furnace and heated, the header pipe 5 and the tube 1 are brazed and fixed by the brazing material of the heat exchanger tube 11 and the corrugated fins 6 are brazed and fixed between the tubes 1 and 1. Heat exchanger is obtained.
- the thickness of the tube 1 constituting the heat exchanger is thinner than the header pipe 5 and the like from the viewpoint of efficiently performing heat exchange. For this reason, when the tube and the header pipe are corroded at substantially the same speed, there is a possibility that a hole is first formed in the tube and the medium leaks from there. Therefore, in the heat exchanger, the anticorrosion measure of the tube is an important issue.
- Patent Document 1 discloses an example of a Zn-containing flux.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchanger tube having better corrosion resistance.
- the tube for a heat exchanger of the present invention is formed by forming a flux layer containing Si powder and Zn-containing flux on the outer surface of an Al alloy extruded tube, and the amount of the Si powder applied to the Al alloy extruded tube Is in the range of 1 g / m 2 to 5 g / m 2 , and the coating amount of the Zn-containing flux is in the range of 5 g / m 2 to 20 g / m 2 .
- the Zn-containing flux preferably contains at least one Zn compound selected from ZnF 2 , ZnCl 2 and KZnF 3 .
- the Si powder and the Zn-containing flux are mixed and applied, the Si powder melts into a brazing solution during brazing, and Zn in the flux is uniformly diffused into the brazing solution. And spread evenly on the tube surface. Since the diffusion rate of Zn in a liquid phase such as a brazing liquid is significantly higher than the diffusion rate in a solid phase, the Zn concentration on the tube surface becomes almost uniform, thereby forming a uniform sacrificial anode layer, and for heat exchangers. The corrosion resistance of the tube can be improved.
- the maximum particle size of the Si powder is preferably in the range of 30 ⁇ m or less. When the maximum particle size exceeds 30 ⁇ m, the erosion depth of the tube increases, which is not preferable. If the maximum particle size of the Si powder is less than 0.1 ⁇ m, the Si powder aggregates and the depth of erosion of the tube also increases, so 0.1 ⁇ m or more is preferable.
- the Al alloy extruded tube contains Si, Mn, the balance Al and inevitable impurities, the Si content is 0.5% by mass or more and 1.0% by mass or less, and the Mn content is It is preferable that it consists of Al alloy which is 0.05 mass% or more and 1.2 mass% or less.
- the heat exchanger tube is a heat exchanger tube formed by forming a flux layer containing Si powder, a Zn-containing flux and a binder on the outer surface of an Al alloy extruded tube.
- the application amount of the Si powder to the Al alloy extruded tube is in the range of 1 g / m 2 to 5 g / m 2
- the application amount of the Zn-containing flux is in the range of 3 g / m 2 to 20 g / m 2.
- the Si powder has a 99% particle size (D 99 ) of 5 ⁇ m or more and 20 ⁇ m or less, and the Si powder has a coarse particle content of 1 ppm with a particle size of 5 times or more of (D 99 ). It may be a tube for a heat exchanger characterized by being less than. However, (D 99 ) indicates a particle size at which the cumulative volume of particles having a particle size equal to or smaller than that is 99% of all particles.
- the 50% particle size (average particle size) (D 50 ) of the Si powder may be (D 99 ) ⁇ 0.05 or more and (D 99 ) ⁇ 0.7 or less. preferable. However (D 50) is less than the cumulative volume of particles having a particle size indicates a particle diameter at 50% of the total particle.
- the Zn-containing flux may include at least one Zn compound of ZnF 2 , ZnCl 2 , and KZnF 3 .
- the Al alloy extruded tube contains Si in a range of 0.05% by mass to 1.0% by mass, and Mn in a range of 0.05% by mass to 1.2% by mass. It may be a heat exchanger tube that contains and the balance is Al and inevitable impurities.
- the Si powder can be uniformly dispersed on the coated surface without causing aggregation or granulation of the Si powder in the coating film.
- the brazing can be uniformly formed on the coated surface during brazing, and no sacrificial local corrosion occurs, and the sacrificial anode layer can be uniformly formed on the surface.
- FIG. 1 is a perspective view of a heat exchanger tube.
- FIG. 2 is a perspective view of the heat exchanger.
- the tube for heat exchangers of this invention is comprised by forming the flux layer in which Si powder and Zn containing flux are contained in the outer surface of Al alloy extruded tube.
- the Al alloy extruded tube constituting the heat exchanger tube contains Si, Mn, the balance Al and inevitable impurities, the Si content is 0.5 mass% or more and 1.0 mass% or less, and Mn Is made of an Al alloy having a content of 0.05 mass% or more and 1.2 mass% or less.
- Si makes the potential of the extruded tube noble by dissolving a large amount of Si in the Al alloy extruded tube, and when forming a heat exchanger,
- the header pipe and fin to be brazed can be preferentially corroded, which suppresses the occurrence of deep pitting corrosion on the extruded tube, improves the brazeability and forms a good joint. It has the effect of improving the strength later.
- the Si content is less than 0.5%, the desired effect cannot be obtained, which is not preferable.
- the Si content exceeds 1.0%, the melting point of the alloy is lowered and excessive melting during brazing is caused. Is unfavorable because it further reduces extrudability. Therefore, Si contained in the Al alloy extruded tube is set to 0.5 to 1.0%. A more preferable range of the Si content is 0.6% or more and 0.8% or less.
- Mn makes the potential of the Al alloy extruded tube noble and difficult to diffuse into the brazing, so it can take a large potential difference with the fin or header pipe, make the anticorrosion effect by the fin or header pipe more effective, improve the external corrosion resistance, Furthermore, it has the effect
- the flux layer formed on the tube surface contains Zn-containing flux and Si powder, and after brazing, a molten brazing material layer is formed on the entire surface of the tube. Since Zn is uniformly dispersed in the brazing material layer, the brazing material layer functions in the same manner as the sacrificial anode layer, and the brazing material layer is preferentially corroded in a planar shape. Is suppressed, and the corrosion resistance is improved.
- the amount of Si powder applied to the heat exchanger tube is preferably in the range of 1 g / m 2 to 5 g / m 2 . If the coating amount is less than 1 g / m 2 , the amount of brazing material is insufficient and sufficient brazing strength cannot be obtained, and furthermore, the diffusion of Zn becomes insufficient. On the other hand, if the coating amount exceeds 5 g / m 2 , the Si concentration on the tube surface increases and the corrosion rate increases, which is not preferable.
- the flux layer contains at least a Zn-containing flux.
- a Zn-free flux that does not contain Zn may be included.
- the Zn-containing flux preferably contains at least one Zn compound such as ZnF 2 , ZnCl 2 , KZnF 3 , for example.
- the Zn-free flux contains, for example, at least one or more fluorides such as LiF, KF, CaF 2 , AlF 3 , and SiF 4, and KAlF 4 and KAlF 3 that are complex compounds of the fluorides. It is preferable.
- a Zn diffusion layer (brazing material layer) is formed on the surface of the tube after brazing, and this Zn diffusion layer functions as a sacrificial anode layer.
- the anticorrosive effect can be enhanced.
- the Si powder and the Zn-containing flux are mixed and applied, the Si powder melts into a brazing liquid during brazing, and the Zn in the flux diffuses uniformly into the brazing liquid and uniformly on the tube surface. spread. Since the diffusion rate of Zn in the liquid phase such as brazing liquid is significantly larger than the diffusion rate in the solid phase, the Zn concentration on the tube surface becomes almost uniform, thereby forming a uniform Zn diffusion layer, which is used for heat exchangers. The corrosion resistance of the tube can be improved.
- the amount of the Zn-containing flux applied to the heat exchanger tube is preferably in the range of 5 g / m 2 to 20 g / m 2 .
- the coating amount is less than 5 g / m 2 , the formation of the Zn diffusion layer is insufficient and the anticorrosion effect cannot be sufficiently obtained, and when the coating amount exceeds 20 g / m 2 , it is not preferable. Since excess Zn concentrates on the fillet portion, which is a joint portion with the component, and the corrosion rate increases at the joint portion, it is not preferable.
- a heat exchanger can be configured by brazing a heat exchanger header pipe or fin to the heat exchanger tube. That is, this heat exchanger is configured by joining a heat exchanger tube, a heat exchanger header pipe, and a fin according to the present invention. That is, similar to the heat exchanger described in the related art, a pair of left and right tubes called a heat exchanger header pipe and the heat exchanger header pipe are provided in parallel with a space therebetween. It comprises a plurality of heat exchanger tubes and fins provided between the heat exchanger tubes.
- each heat exchanger tube communicates with the internal space of the heat exchanger header pipe, and the medium is circulated between the internal space of the heat exchanger header pipe and the internal space of each heat exchanger tube, and the efficiency is achieved via the fins. Heat exchange can be performed well.
- the heat exchanger tube is configured by forming a flux layer containing Si powder and Zn-containing flux on the outer surface of an Al alloy extruded tube (tube body).
- the flux layer also includes a binder.
- the main body of the heat exchanger tube can be composed of an aluminum extruded tube or an Al alloy extruded tube.
- the alloy composition of the Al alloy extruded tube contains Si, Mn, the balance Al and inevitable impurities, the Si content is 0.05% by mass or more and 1.0% by mass or less, and the Mn content is It is good also as 0.05 mass% or more and 1.2 mass% or less Al alloy.
- the Si content is important in order to moderate the Si diffusion gradient and form a uniform sacrificial anode layer.
- Si content is less than 0.05% by mass, the Si diffusion gradient increases and a uniform sacrificial anode layer is not formed.
- Si exceeds 1.0 mass%, the melting point of the alloy constituting the tube is lowered and the extrudability is lowered. Therefore, the Si content in the present invention is set to 0.05 to 1.0 mass%. A more preferable Si content is 0.1 to 0.6% by mass.
- Mn is an effective element for forming a uniform sacrificial anode layer by forming an intermetallic compound with diffusion Si. Further, Mn is an element effective in improving the corrosion resistance of the tube, improving the mechanical strength, and improving the extrudability during extrusion molding.
- Mn content is less than 0.05% by mass, the Si diffusion gradient becomes large, and a uniform sacrificial anode layer is not formed.
- the Mn content exceeds 1.2% by mass, the extrudability increases due to an increase in extrusion pressure. descend. Therefore, the Mn content in the present invention is set to 0.05 to 1.2% by mass. A more preferable Mn content is 0.1 to 0.6% by mass.
- the Al alloy constituting the tube further contains one or more of Fe: 0.1 to 0.6% by mass, Ti: 0.005 to 0.2% by mass, and Cu: less than 0.1% by mass. May be.
- Fe is effective for forming an intermetallic compound with diffusion Si and generating a uniform sacrificial anode layer. When the Fe content is less than 0.1% by mass, the Si diffusion gradient increases, and a uniform sacrificial anode layer is not generated. If the Fe content exceeds 0.6% by mass, the intermetallic compounds in the aluminum alloy constituting the tube increase, and the extrudability tends to decrease, resulting in a decrease in mold life. A more preferable Fe content is 0.15 to 0.5% by mass.
- Ti forms a fine intermetallic compound that does not inhibit the corrosion resistance, and contributes to improving the strength of the tube. If the amount is less than 0.005% by mass, the effect of addition is not observed. If the amount exceeds 0.2% by mass, the extrusion pressure of the tube alloy increases and the extrudability decreases. A more preferable Ti content is 0.005 to 0.1% by mass.
- Cu is effective for increasing the potential of the tube and maintaining the sacrificial anode layer effect for a long time. However, when the addition amount exceeds 0.1 mass%, the corrosion rate increases and the effect duration of the sacrificial anode layer is increased. On the contrary, it becomes a short time.
- the addition amount of Cu is preferably less than 0.05% by mass.
- the tube body can be formed by extruding aluminum or the above aluminum alloy.
- the extruded tube constituting the tube body can be formed as a porous extruded tube having a plurality of communicating tubes.
- the extruded tube may have a surface composed of two substantially flat main surfaces, two side surfaces, and two end surfaces in which communication hole openings are formed.
- the flux layer may be formed on two main surfaces and two side surfaces, or only on the two main surfaces. Further, the surface roughness Rmax of the extruded tube (tube body) is preferably less than 20 ⁇ m.
- the flux layer formed on the tube surface contains Zn-containing flux, Si powder, and a binder.
- the Zn-containing flux preferably contains at least one Zn compound selected from ZnF 2 , ZnCl 2 and KZnF 3 .
- the Zn-containing flux may be made of the above zinc compound. Or the mixture of said zinc compound and another flux may be sufficient. Examples of other fluxes include LiF, KF, CaF 2 , AlF 3 , SiF 4 , K 1-3 AlF 4-6 , Cs 1-3 AlF 4-6 , Cs 0.02 K 1-2 AlF 4-5
- K 2 SiF 6 may be included in the Zn-containing flux.
- the particle size of the flux is preferably in the range of 1 to 6 ⁇ m in average particle size (D 50 ).
- the Zn-containing flux is a mixture of a Zn compound and a Zn-free flux, it is preferable to adjust the coating amount of the Zn compound to be 3 g / m 2 or more.
- An acrylic resin can be used for the binder. If an acrylic resin is used as the binder, it has the effect of fixing the material forming the flux layer such as Si powder or fluoride flux to the tube surface, and the process prior to brazing (for example, heat exchanger assembly process) Sometimes the flux layer can be prevented from peeling off the tube. Moreover, since it is easy to decompose and evaporate during the heating at the time of brazing, it does not hinder brazing property and corrosion resistance, so it is preferable as a binder.
- the Si powder contained in the flux layer preferably has a 99% particle size (D 99 ) of 5 ⁇ m or more and 20 ⁇ m or less.
- the 99% particle size (D 99 ) is a particle size at which the cumulative volume of particles having a particle size smaller than 99% is 99% of the total powder.
- the content of coarse particles (hereinafter, “D coarse” ) having a particle size of (D 99 ) ⁇ 5 or more in the Si powder is preferably less than 1 ppm.
- the particle size of the Si powder is 20 ⁇ m or less at the value of 99% particle size (D 99 ).
- the particle size of the Si powder is preferably 20 ⁇ m or less at a 99% particle size (D 99 ).
- the Si powder becomes finer as a whole, so that the fine Si powder easily gathers, and the Si powder, the flux and the binder are mixed.
- (D 99 ) of the Si powder is 5 ⁇ m or more and 15 ⁇ m or less.
- 99% particle diameter (D 99 ) is 99% particle diameter (D 99 ) as a coarse particle of coarse Si powder having a 99% particle diameter (D 99 ) of 5 ⁇ m or more and 20 ⁇ m or less and contained in a trace amount in Si powder. It is preferable that the content of coarse particles that is 5 times or more of the above is less than 1 ppm. In addition, even if the content of coarse particles that are 5 times or more of the 99% particle size (D 99 ) is in the range of less than 1 ppm, it is more preferably 0.5 ppm or less, and most preferably in the range of 0.1 ppm or less.
- the average particle size (D 50 ) at which the volume-based cumulative particle size distribution from the small particle size side becomes 50% is 0.05 times the value of the 99% particle size (D 99 ). More preferably, it is in the range of 0.7 times or less. This is because, when Si powder is present on the surface of the tube, the average particle size (D 50 ) of the Si powder is not less than 0.05 times and not more than 0.7 times the value of 99% particle size (D 99 ). If within the range, after brazing and heating, a uniform sacrificial anode layer is produced on the surface of the tube, whereas the average particle size (D 50 ) of the Si powder is a value of 99% particle size (D 99 ).
- the average particle diameter (D 50 ) of the Si powder is in a range of 0.05 to 0.7 times the value of 99% particle diameter (D 99 ).
- the amount of Si powder applied to the tube is preferably in the range of 1 g / m 2 to 5 g / m 2 . If the coating amount of the Si powder is less than 1 g / m 2 , brazing will be insufficient and a uniform sacrificial anode layer will not be formed. On the other hand, when the coating amount of Si powder exceeds 5 g / m 2 , a noble cathode layer is formed on the surface of the sacrificial anode layer, and the effect of the sacrificial anode layer is lost in a short time. Therefore, the content of Si powder in the coating film (flux layer) is preferably 1 to 5 g / m 2 .
- the amount of the Zn-containing flux applied to the heat exchanger tube is preferably in the range of 3 g / m 2 to 20 g / m 2 .
- the coating amount of the Zn-containing fluoride-based flux in the coating film (flux layer) is less than 3 g / m 2 , the potential difference is reduced, and the sacrificial effect due to the sacrificial anode layer is hardly exhibited.
- a more preferable coating amount of the Zn-containing flux is 4 g / m 2 or more and 15 g / m 2 or less.
- the coated material contains a binder in addition to Si powder and fluoride-based flux.
- An example of the binder is preferably an acrylic resin.
- the binder acts to fix the Si powder and Zn-containing flux necessary for the formation of the sacrificial anode layer to the front or back surface of the tube 3, but the binder coating amount in the coating film is less than 0.2 g / m 2.
- Si powder or Zn flux may fall off the tube 3 and a uniform sacrificial anode layer may not be formed.
- the coating amount of the binder in the coating film exceeds 8.3 g / m 2 , the brazing property is lowered due to the binder residue, and a uniform sacrificial anode layer is not formed.
- the coating amount of the binder in the coating film is preferably 0.2 to 8.3 g / m 2 .
- the binder usually evaporates by heating during brazing. More preferably, the coating amount of the binder on the tube surface is 0.3 g / m 2 or more and 7 g / m 2 or less.
- the coating amount of the binder is preferably in the range of 5% to 25% with respect to the total coating amount of the Si powder, the Zn-containing flux and the binder in the coating film.
- a heat exchanger can be configured by brazing a heat exchanger header pipe or fin to the heat exchanger tube.
- the heat exchanger is configured by joining the tube, the header pipe, and the fin. That is, a pair of tubular bodies called header pipes are arranged apart from each other in the left-right or up-down direction, and a plurality of tubes are arranged between the header pipes. An opening corresponding to the number of tubes is provided on one side of each header pipe. For example, the tube and the header pipe are assembled by inserting the end of the tube into the opening.
- a plate material called a fin is disposed between adjacent tubes.
- the fin may be a corrugated fin obtained by processing a plate material into a corrugated shape.
- brazing solution contains zinc in the flux, Si in the Si powder, and alloy components on the surface of the tube main body that are eutectic with the Si powder.
- the brazing liquid solidifies upon cooling to form a brazing material layer.
- Zn diffuses in the brazing liquid and spreads uniformly, and also diffuses in the Al alloy of the tube body, and as a result, a uniform Zn diffusion layer is formed on the tube surface.
- the medium is circulated in the internal space of each header pipe and the internal space of each tube, and heat exchange is efficiently performed through fins having a large contact area with the outside.
- a billet is made of an Al alloy containing 0.7% by mass of Si and 0.5% by mass of Mn, and by extruding this billet, it has 10 holes for a refrigerant passage, and a cross-sectional dimension is 20 mm in width.
- An Al alloy extruded tube having a height of 2 mm and a wall thickness of 0.20 mm was produced.
- a flux mixture was prepared by mixing the Zn-containing flux with the Si powder. And this flux mixture was spray-coated on the outer surface of the previously manufactured Al alloy extruded tube to form a flux layer.
- Table 1 shows the coating amount of the Si powder and the flux mixture on the Al alloy extruded tube.
- fins made of JIS3003 or JIS3003 / JIS4045 clad material are prepared, and the fins are assembled to the heat exchanger tubes of Examples 1 to 6 and Comparative Examples 1 to 4, and held at 600 ° C. for 3 minutes in a nitrogen atmosphere. I did.
- a corrosion test (SWAAT for 20 days) was performed on the finned tube after brazing, and the maximum corrosion depth of the tube was measured. The results are shown in Table 1.
- the maximum corrosion depth is 100 ⁇ m or less, indicating that the corrosion of the tube is suppressed.
- the erosion is slightly deep.
- the particle size of the Si powder was adjusted using a means for measuring the particle size distribution by a laser diffraction particle size distribution measuring apparatus described below and a particle size selecting means by sieving to prepare samples shown in Table 2.
- a Mean for measuring the particle size distribution by a laser diffraction particle size distribution measuring apparatus described below and a particle size selecting means by sieving to prepare samples shown in Table 2.
- ⁇ Method for defining particle size distribution of Si powder > (1) Purchase a grade of Si powder with a known particle size distribution. Even if a laser diffraction particle size distribution measuring apparatus is used as it is, the distribution of coarse particles of Si cannot be measured. Although commercially available Si powder has particle size distribution data, it contains substantially a large number of coarse Si particles that do not correspond to the particle size distribution. (2) Sifting of Si powder is performed using a sieve having a size of (D 99 ) ⁇ 5.
- the particle size is classified by sieving.
- the powder remaining on the sieve after the sieving is mainly coarse powder, the particle size distribution can be measured with a laser diffraction particle size distribution measuring device.
- a Si powder having a desired coarse particle content is prepared by adding a necessary amount of the above-mentioned coarse powder of Si to a powder having a particle size equal to or smaller than a predetermined particle size by sieving. (6) Therefore, the content of the coarse Si particles contained in the Si powder can be strictly adjusted to the numerical value obtained by calculation. Thus, Si powder which adjusted the particle size distribution was used for the test.
- the maximum corrosion depth is 140 ⁇ m or more, and it is clear that there is a problem with corrosion resistance. Therefore, the number of corrosion holes having a corrosion depth of 120 ⁇ m or more is not measured.
- Comparative Example B1 since (D 99 ) was small, granulation occurred and the amount of Zn-containing flux applied was small, so the maximum corrosion depth was as large as 140 ⁇ m.
- Comparative Example B2 since (D 99 ) was large, aggregation occurred, and the coating amount of the Zn-containing flux was small, so that the maximum corrosion depth was as large as 185 ⁇ m.
- the Si powder and the Zn-containing flux melts into a brazing liquid during brazing.
- Zn in the flux is uniformly diffused in the brazing solution and spreads uniformly on the tube surface. Since the diffusion rate of Zn in a liquid phase such as a brazing liquid is significantly higher than the diffusion rate in a solid phase, the Zn concentration on the tube surface becomes almost uniform, thereby forming a uniform sacrificial anode layer, and for heat exchangers.
- the corrosion resistance of the tube can be improved.
- the application amount of the Zn-containing flux is in the range of 5 g / m 2 or more and 20 g / m 2 or less, Zn can be uniformly provided on the tube surface. Further, by adjusting the particle size distribution of the Si powder, Zn can be uniformly provided on the tube surface even when the coating amount of the Zn-containing flux is 3 g / m 2 or more and 20 g / m 2 or less.
- the brazing can be uniformly generated on the coated surface when brazing to form the heat exchanger, and the sacrificial anode layer is uniformly generated on the surface without causing local deep corrosion. can do.
- the heat exchanger using the tube of the present invention is excellent in corrosion resistance and durability.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
本発明の熱交換器用チューブは、Al合金押出管の外表面に、Si粉末とZn含有フラックスとが含まれてなるフラックス層を形成させてなり、前記Al合金押出管に対する前記Si粉末の塗布量が1g/m2以上5g/m2以下の範囲であり、前記Zn含有フラックスの塗布量が5g/m2以上20g/m2以下の範囲であることを特徴とする。
また、前記Zn含有フラックスは、ZnF2、ZnCl2、KZnF3のうちの少なくとも1種以上のZn化合物を含むものであることが好ましい。
上記熱交換器チューブにおいて、前記Zn含有フラックスは、ZnF2、ZnCl2、KZnF3のうち少なくとも1種以上のZn化合物を含むものであってもよい。
上記熱交換器チューブにおいて、前記Al合金押出管はSiを0.05質量%以上1.0質量%以下の範囲で含有し、Mnを0.05質量%以上1.2質量%以下の範囲で含有し、残部がAl及び不可避的不純物である熱交換器用チューブであってもよい。
第1実施形態
本発明の熱交換器用チューブは、Al合金押出管の外表面に、Si粉末とZn含有フラックスとが含まれてなるフラックス層を形成させて構成されている。
熱交換器用チューブを構成するAl合金押出管は、Siと、Mnと、残部Alおよび不可避不純物とを含有し、Siの含有量が0.5質量%以上1.0質量%以下であり、Mnの含有量が0.05質量%以上1.2質量%以下のAl合金から構成されている。
したがって、Al合金押出管に含まれるMn量は、0.05~1.2%に定めた。
Zn含有フラックスには、例えばZnF2、ZnCl2、KZnF3等のZn化合物が少なくとも1種以上含まれることが好ましい。また、Zn非含有フラックスには、例えば、LiF、KF、CaF2、AlF3、SiF4などの弗化物や、前記弗化物の錯化合物であるKAlF4、KAlF3などが少なくとも1種以上含まれることが好ましい。
すなわち、この熱交換器は、本発明に係る熱交換器用チューブと、熱交換器用ヘッダーパイプとフィンとが接合されて構成される。すなわち、従来の技術において説明した熱交換器と同様に、熱交換器用ヘッダーパイプと称される左右一対の管体と、その熱交換器用ヘッダーパイプの間に互いに平行に間隔を空けて設けられた複数の熱交換器用チューブと、熱交換器用チューブ同士の間に設けられたフィンとで構成されている。そして各熱交換器用チューブの内部空間と熱交換器用ヘッダーパイプの内部空間を連通させ、熱交換器用ヘッダーパイプの内部空間と各熱交換器用チューブの内部空間に媒体を循環させ、フィンを介して効率良く熱交換ができるようになっている。
以下、本発明に係る第2の実施形態について説明する。
本実施形態においても、熱交換器用チューブは、Al合金押出管(チューブ本体)の外表面に、Si粉末とZn含有フラックスとが含まれてなるフラックス層を形成させて構成されている。この実施形態では、フラックス層にバインダも含まれている。
Al合金押出管の合金組成は、Siと、Mnと、残部Alおよび不可避不純物とを含有し、Siの含有量が0.05質量%以上1.0質量%以下であり、Mnの含有量が0.05質量%以上1.2質量%以下のAl合金としてもよい。なお、熱交換器を製造する際には、フィンの素材としては、チューブより電位が低いフィン材を用いることが好ましい。
Siの含有量はSi拡散勾配を緩やかにし、均一な犠牲陽極層を形成するために重要である。Siの含有量が0.05質量%未満では、Si拡散勾配が大きくなり、均一な犠牲陽極層が形成されない。一方、Siが1.0質量%を超えて含有されると、チューブを構成する合金の融点が下がり、押出性が低下する。したがって本発明におけるSi含有量は、0.05~1.0質量%にする。より好ましいSiの含有量は、0.1~0.6質量%である。
Mnの含有量が0.05質量%未満では、Si拡散勾配が大きくなり、均一な犠牲陽極層が形成されなくなり、Mnが1.2質量%を超えて含有すると、押出圧力増により押出性が低下する。したがって本発明におけるMn含有量は、0.05~1.2質量%にする。より好ましいMnの含有量は、0.1~0.6質量%である。
Feは、拡散Siと金属間化合物を形成し、均一な犠牲陽極層を生成するために有効である。Feの含有量が0.1質量%未満ではSi拡散勾配が大きくなり、均一な犠牲陽極層が生成されなくなる。Feの含有量が0.6質量%を超えると、チューブの構成するアルミニウム合金中の金属間化合物が増加し、押出性を低下させる傾向があり、結果として金型寿命が低下する。より好ましいFeの含有量は、0.15~0.5質量%である。
Cuはチューブの電位を高くし、犠牲陽極層効果を長時間維持するために有効であるが、添加量が0.1質量%を超えると、腐食速度が増加し、犠牲陽極層の効果持続時間が逆に短時間になる。Cuの添加量として好ましくは0.05質量%未満である。
押出管は、実質的に平坦な二つの主表面、二つの側面、および連通孔の開口部が形成された二つの端面からなる表面を有するものであってもよい。フラックス層は、二つの主表面および二つの側面に形成してもよく、二つの主表面のみに形成してもよい。
また、押出管(チューブ本体)の表面粗さRmaxは20μm未満が好ましい。
Zn含有フラックスは、ZnF2、ZnCl2、KZnF3から選択されるZn化合物の少なくとも1種以上を含むものであることが好ましい。Zn含有フラックスは、上記の亜鉛化合物よりなるものでもよい。あるいは、上記の亜鉛化合物と他のフラックスの混合物であってもよい。他のフラックスとしては、例えばLiF、KF、CaF2、AlF3、SiF4、K1-3AlF4-6、Cs1-3AlF4-6、Cs0.02K1-2AlF4-5、K2SiF6から選択される1種または2種以上がZn含有フラックスに含まれていてもよい。なお、フラックスの粒度は平均粒径(D50)において1~6μmの範囲が好ましい。
Zn含有フラックスをZn化合物と、Zn-フリーのフラックスの混合物とする場合、Zn化合物の塗布量が3g/m2以上となるように調整することが好ましい。
好ましくは、Si粉末の(D99)は、5μm以上、15μm以下である。
なお、99%粒径(D99)の5倍以上となる粗大粒の含有量が、1ppm未満の範囲であっても、0.5ppm以下がより好ましく、0.1ppm以下の範囲が最も好ましい。
この点に鑑み、Si粉末の平均粒径(D50)が、99%粒径(D99)の値の0.05倍以上0.7倍以下の範囲であることが好ましい。
Zn含有フラックスのさらに好ましい塗布量は、4g/m2以上、15g/m2以下である。
バインダは犠牲陽極層の形成に必要なSi粉末とZn含有フラックスをチューブ3の表面または裏面に固着する作用があるが、塗膜中のバインダの塗布量が0.2g/m2未満であると、ろう付け時にSi粉末やZnフラックスがチューブ3から脱落し、均一な犠牲陽極層が形成されないおそれがある。一方、塗膜中のバインダの塗布量が8.3g/m2を超えると、バインダ残渣によりろう付け性が低下し、均一な犠牲陽極層が形成されない。このため、塗膜中のバインダの塗布量は、0.2~8.3g/m2とすることが好ましい。なお、バインダは、通常、ろう付けの際の加熱により蒸散する。
さらに好ましい、チューブ表面におけるバインダの塗布量は、0.3g/m2以上7g/m2以下である。バインダの塗布量は、塗膜中のSi粉末とZn含有フラックスとバインダの合計塗布量に対し5%から25%の範囲とすることが好ましい。
熱交換器は、上記のチューブと、ヘッダーパイプとフィンとが接合されて構成される。すなわち、ヘッダーパイプと称される一対の管体を左右または上下に離間して配置し、複数のチューブをヘッダーパイプの間に配置する。各ヘッダーパイプの片面には、チューブの数に対応する開口が設けられており、例えば、チューブの端部を上記開口に挿入することにより、チューブとヘッダーパイプは組み立てられる。
隣り合うチューブの間には、フィンとよばれる板材が配置される。フィンは、板材を波型に加工したコルゲートフィンでもよい。
[実施例2]
<Si粉末粒度分布の規定方法>
(1)市販の粒度分布が分かっているあるグレードのSi粉末を購入する。このままではレーザー回折式粒度分布測定装置を用いてもSiの粗大粒の分布は測定できない。市販Si粉末には粒度分布データが付いているが、粒度分布に該当しないSiの粗大粒を実質的には相当数含んでいる。
(2)(D99)×5が目開きのサイズの篩を用いて、Si粉末の「ふるい分け」を行う。
(4)ふるい分け後、ふるいに残った粉は主に粗大粉であるため、レーザー回折式粒度分布測定装置にて粒度分布が測定できるようになる。
(5)ふるい分けにより一定粒度以下になった粉に上記Siの粗大粉を必要量添加することにより、所望の粗大粒含有量を有するSi粉末を作成する。
(6)従って、Si粉末に含まれるSi粗大粒の含有量を計算で求めた数値に厳密に調整することができる。このように粒度分布を調整したSi粉末を試験に使用した。
比較例B1では、(D99)が小さいため、造粒が生じ、またZn含有フラックスの塗布量も少ないため、最大腐食深さが140μmと大きくなった。
比較例B2では、(D99)が大きいため凝集を生じ、またZn含有フラックスの塗布量も少ないため、最大腐食深さが185μmと大きくなった。
また、Si粉末の粒径分布を調整することにより、Zn含有フラックスの塗布量が3g/m2以上20g/m2以下の場合にも、チューブ表面にZnを均一に設けることができる。
Claims (4)
- Al合金押出管の外表面に、Si粉末とZn含有フラックスとバインダとが含まれてなるフラックス層を形成させてなる熱交換器用チューブであって、
前記Al合金押出管に対する前記Si粉末の塗布量が1g/m2以上5g/m2以下の範囲であり、前記Zn含有フラックスの塗布量が3g/m2以上20g/m2以下の範囲であり、
前記Si粉末は、99%粒径(D99)が5μm以上、20μm以下であり、さらに粒径が(D99)の5倍以上となる粗大粒の含有量が1ppm未満であることを特徴とする熱交換器用チューブ、
但し、(D99)は、それ以下の粒径を有する粒子の累積体積が、全粒子の99%となる粒径を示す。 - 請求項1記載の熱交換器用チューブであって、前記Si粉末の50%粒径(D50)が、(D99)×0.05以上、(D99)×0.7以下となる熱交換器用チューブ、ただし(D50)は、それ以下の粒径を有する粒子の累積体積が、全粒子の50%となる粒径を示す。
- 請求項1記載の熱交換器チューブであって、前記Zn含有フラックスは、ZnF2、ZnCl2、KZnF3のうち少なくとも1種以上のZn化合物を含むものであることを特徴とする熱交換器用チューブ。
- 請求項1ないし請求項3のいずれか一項に記載の熱交換器チューブであって、前記Al合金押出管はSiを0.05質量%以上1.0質量%以下の範囲で含有し、Mnを0.05質量%以上1.2質量%以下の範囲で含有し、残部がAl及び不可避的不純物であることを特徴とする熱交換器用チューブ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180006384.2A CN102802865B (zh) | 2010-01-20 | 2011-01-19 | 热交换器管 |
JP2011550922A JP5744760B2 (ja) | 2010-01-20 | 2011-01-19 | 熱交換器チューブ |
EP11734665.0A EP2527078B1 (en) | 2010-01-20 | 2011-01-19 | Heat exchanger tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/690,685 | 2010-01-20 | ||
US12/690,685 US8640766B2 (en) | 2003-05-06 | 2010-01-20 | Heat exchanger tube |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011090059A1 true WO2011090059A1 (ja) | 2011-07-28 |
Family
ID=44306860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050832 WO2011090059A1 (ja) | 2010-01-20 | 2011-01-19 | 熱交換器チューブ |
Country Status (5)
Country | Link |
---|---|
US (1) | US8640766B2 (ja) |
EP (1) | EP2527078B1 (ja) |
JP (2) | JP5744760B2 (ja) |
CN (2) | CN102802865B (ja) |
WO (1) | WO2011090059A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013220427A (ja) * | 2012-04-13 | 2013-10-28 | Showa Denko Kk | ろう付用アルミニウム材料の製造方法 |
JP2014238209A (ja) * | 2013-06-07 | 2014-12-18 | 株式会社ケーヒン・サーマル・テクノロジー | アルミニウム押出形材製熱交換管外面の防食処理方法および熱交換器の製造方法 |
KR101518193B1 (ko) | 2012-10-24 | 2015-05-06 | 하리마카세이 가부시기가이샤 | 납땜용 조성물, 열교환기용 튜브 및 열교환기 |
US9283633B2 (en) | 2003-05-06 | 2016-03-15 | Mitsubishi Aluminum Co. Ltd. | Heat exchanger tube precursor and method of producing the same |
CN106457483A (zh) * | 2014-05-26 | 2017-02-22 | 株式会社Uacj | 热交换器用管及热交换器以及钎焊用膏 |
JP2017060989A (ja) * | 2015-09-25 | 2017-03-30 | 三菱アルミニウム株式会社 | 熱交換器用アルミニウム合金チューブ |
JP2019190720A (ja) * | 2018-04-24 | 2019-10-31 | 三菱マテリアル株式会社 | 親水性に優れた熱交換器用アルミニウムフィンと熱交換器およびその製造方法 |
WO2022050029A1 (ja) | 2020-09-02 | 2022-03-10 | 株式会社Uacj | アルミニウム合金押出チューブ及び熱交換器 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8640766B2 (en) | 2003-05-06 | 2014-02-04 | Mitsubishi Aluminum Co., Ltd. | Heat exchanger tube |
JP5610714B2 (ja) | 2009-06-24 | 2014-10-22 | 株式会社Uacj | アルミニウム合金製熱交換器 |
JP5750237B2 (ja) * | 2010-05-25 | 2015-07-15 | 株式会社Uacj | アルミニウム合金製熱交換器の製造方法 |
DE202010010188U1 (de) * | 2010-07-14 | 2010-10-14 | Erbslöh Aluminium Gmbh | Wärmetauscher |
JP5815325B2 (ja) * | 2011-08-09 | 2015-11-17 | 三菱アルミニウム株式会社 | 熱交換器 |
CN108917449A (zh) * | 2011-10-18 | 2018-11-30 | 开利公司 | 微通道加热交换器合金系统 |
JP5906113B2 (ja) * | 2012-03-27 | 2016-04-20 | 三菱アルミニウム株式会社 | 熱交換器用押出伝熱管と熱交換器および熱交換器用押出伝熱管の製造方法 |
USD763417S1 (en) * | 2012-08-02 | 2016-08-09 | Mitsubishi Electric Corporation | Heat exchanger tube |
WO2016017716A1 (ja) | 2014-07-30 | 2016-02-04 | 株式会社Uacj | アルミニウム合金ブレージングシート |
CN107073618B (zh) | 2014-12-11 | 2019-05-28 | 株式会社Uacj | 钎焊方法 |
WO2016100640A1 (en) | 2014-12-17 | 2016-06-23 | Carrier Corporation | Aluminum alloy finned heat exchanger |
JP6186455B2 (ja) | 2016-01-14 | 2017-08-23 | 株式会社Uacj | 熱交換器及びその製造方法 |
JP6312968B1 (ja) | 2016-11-29 | 2018-04-18 | 株式会社Uacj | ブレージングシート及びその製造方法 |
CN110291355A (zh) * | 2017-02-13 | 2019-09-27 | 株式会社Uacj | 钎焊性及外表面防腐蚀性优异的铝挤出扁平多孔管及使用其而成的铝制热交换器 |
JP7053281B2 (ja) | 2017-03-30 | 2022-04-12 | 株式会社Uacj | アルミニウム合金クラッド材及びその製造方法 |
JP2019045091A (ja) * | 2017-09-05 | 2019-03-22 | 株式会社ケーヒン・サーマル・テクノロジー | 熱交換器 |
JP6522178B1 (ja) * | 2018-01-31 | 2019-05-29 | ダイキン工業株式会社 | 冷媒分流器及び空気調和機 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07227695A (ja) | 1993-12-24 | 1995-08-29 | Nippondenso Co Ltd | ロウ付け用フラックス、熱交換器、及び熱交換器の製造法 |
JPH1034375A (ja) * | 1996-07-23 | 1998-02-10 | Nippon Light Metal Co Ltd | アルミニウム合金のろう付方法 |
JP2004330233A (ja) * | 2003-05-06 | 2004-11-25 | Mitsubishi Alum Co Ltd | 熱交換器用チューブ |
JP2007275898A (ja) * | 2006-04-03 | 2007-10-25 | Toyo Aluminium Kk | アルミニウムろう付用ペースト状組成物、それが塗布されたアルミニウム含有部材、および、それを用いたアルミニウム含有部材のろう付方法。 |
JP2009106947A (ja) * | 2007-10-26 | 2009-05-21 | Mitsubishi Alum Co Ltd | アルミニウム合金チューブ |
JP2009184017A (ja) * | 2009-03-27 | 2009-08-20 | Mitsubishi Alum Co Ltd | 熱交換器用チューブ |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6015064A (ja) | 1983-07-06 | 1985-01-25 | Hitachi Ltd | 熱交換器 |
JPS61293699A (ja) | 1985-06-20 | 1986-12-24 | Toyota Central Res & Dev Lab Inc | ろう付け用フラツクスおよびその製造方法 |
US4906307A (en) | 1987-10-16 | 1990-03-06 | Calsonic Corporation | Flux used for brazing aluminum-based alloy |
JPH01225736A (ja) | 1988-03-07 | 1989-09-08 | Mitsubishi Alum Co Ltd | Al熱交換器の管継手用高強度Al合金 |
JPH0320594A (ja) | 1989-06-19 | 1991-01-29 | Honda Motor Co Ltd | 熱交換器 |
US5049299A (en) | 1989-10-26 | 1991-09-17 | Kiwi Brands Incorporated | Liquid lavatory cleansing and sanitizing composition |
JPH03212927A (ja) | 1990-01-18 | 1991-09-18 | Toshiba Corp | X線リソグラフィ用露光装置 |
JPH0525576A (ja) | 1991-07-16 | 1993-02-02 | Mitsubishi Alum Co Ltd | 耐孔食性にすぐれたAl 熱交換器用高強度Al 合金管材 |
US5232788A (en) | 1992-02-12 | 1993-08-03 | Alcan International Limited | Aluminum brazing sheet |
JP3160099B2 (ja) | 1992-12-11 | 2001-04-23 | 三菱アルミニウム株式会社 | 熱交換器の製造方法 |
US5418072A (en) | 1993-09-20 | 1995-05-23 | Alcan International Limited | Totally consumable brazing encapsulate for use in joining aluminum surfaces |
US5544698A (en) | 1994-03-30 | 1996-08-13 | Peerless Of America, Incorporated | Differential coatings for microextruded tubes used in parallel flow heat exchangers |
JPH07303858A (ja) | 1994-05-13 | 1995-11-21 | Nippon Light Metal Co Ltd | ろう付け用スラリーの塗布方法 |
JP3534450B2 (ja) * | 1994-08-10 | 2004-06-07 | 三菱重工業株式会社 | 熱交換器の製造方法 |
US6153021A (en) | 1995-09-22 | 2000-11-28 | Nippon Light Metal Company Ltd. | Method of brazing aluminum |
US5771962A (en) | 1996-04-03 | 1998-06-30 | Ford Motor Company | Manufacture of heat exchanger assembly by cab brazing |
US5785770A (en) | 1996-05-30 | 1998-07-28 | Advance Research Chemicals, Inc. | Brazing flux |
JP3212927B2 (ja) | 1996-12-14 | 2001-09-25 | 三菱アルミニウム株式会社 | アルミニウム合金粉末ろう材および該粉末ろう材を用いたろう付方法 |
IL120001A0 (en) | 1997-01-13 | 1997-04-15 | Amt Ltd | Aluminum alloys and method for their production |
DE19744734A1 (de) | 1997-10-10 | 1999-04-15 | Erbsloeh Ag | Verfahren zur partiellen oder vollständigen Beschichtung von Metalloberflächen mit Lot und Bindemittel |
DE19913111A1 (de) | 1998-03-25 | 1999-09-30 | Solvay Fluor & Derivate | Neue Flußmittel |
JP3865933B2 (ja) | 1998-05-25 | 2007-01-10 | 三菱アルミニウム株式会社 | 熱交換器用高強度アルミニウム合金押出材の製造方法 |
JPH11347783A (ja) | 1998-06-09 | 1999-12-21 | Nippon Light Metal Co Ltd | アルミニウム又はアルミニウム合金接合用線状ろう材及びその製造方法 |
JP2000015481A (ja) | 1998-07-07 | 2000-01-18 | Denso Corp | アルミニウム材料のろう付け用組成物及びろう付け用アルミニウム材料並びにアルミニウム材料のろう付け方法 |
JP2000063970A (ja) | 1998-08-21 | 2000-02-29 | Nippon Light Metal Co Ltd | アルミニウム合金製熱交換器用押出管 |
DE19859735B4 (de) | 1998-12-23 | 2006-04-27 | Erbslöh Ag | Verfahren zur partiellen oder vollständigen Beschichtung der Oberflächen von Bauteilen aus Aluminium und seinen Legierungen mit Lot, Fluß- und Bindemittel zur Hartverlötung |
US6352789B1 (en) | 1999-04-12 | 2002-03-05 | Corus Aluminium Walzprodukte Gmbh | Brazing sheet and method of making same |
JP4964367B2 (ja) | 1999-04-22 | 2012-06-27 | アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング | ろう付け用の複合シート状材料料 |
JP4577634B2 (ja) | 2000-09-07 | 2010-11-10 | 三菱アルミニウム株式会社 | 熱交換器用ろう材被覆アルミニウム合金押出チューブ |
JP4636520B2 (ja) * | 2001-07-30 | 2011-02-23 | 株式会社デンソー | 熱交換器用アルミニウムブレージングシートのろう材およびその製造方法 |
JP2003053523A (ja) | 2001-08-14 | 2003-02-26 | Mitsubishi Alum Co Ltd | 熱交換器およびその製造方法 |
JP2003094165A (ja) | 2001-09-20 | 2003-04-02 | Denso Corp | ろう付け用アルミニウム材およびそれを用いたろう付け方法 |
US7534309B2 (en) | 2002-06-17 | 2009-05-19 | Sumitomo Light Metal Industries, Ltd. | Aqueous aluminum brazing composition, aluminum material coated with the brazing composition, brazing method using the aluminum material, and automotive heat exchanger manufactured by using the brazing method |
US8640766B2 (en) | 2003-05-06 | 2014-02-04 | Mitsubishi Aluminum Co., Ltd. | Heat exchanger tube |
JP2006045667A (ja) | 2004-06-28 | 2006-02-16 | Showa Denko Kk | アルミニウム製熱交換管およびその製造方法 |
JP2006255755A (ja) | 2005-03-17 | 2006-09-28 | Mitsubishi Alum Co Ltd | ろう付用アルミニウム合金材およびアルミニウム合金材のろう付方法 |
JP4611797B2 (ja) * | 2005-04-28 | 2011-01-12 | 三菱アルミニウム株式会社 | ろう付性に優れたラジエータチューブ用アルミニウム合金板材、及びそれを備えたラジエータチューブと熱交換器 |
JP2006348372A (ja) * | 2005-06-20 | 2006-12-28 | Mitsubishi Alum Co Ltd | 自動車熱交換器用高強度アルミニウム合金材 |
JP4541252B2 (ja) * | 2005-08-18 | 2010-09-08 | 三菱アルミニウム株式会社 | ラジエータチューブ用アルミニウム合金板材 |
JP2007260733A (ja) * | 2006-03-29 | 2007-10-11 | Mitsubishi Alum Co Ltd | ろう付用混合物およびろう付方法 |
JP2008006480A (ja) * | 2006-06-30 | 2008-01-17 | Sumitomo Light Metal Ind Ltd | 熱交換器用ブレージングフィン材並びに熱交換器及びその製造方法 |
DE102008009695B4 (de) | 2007-03-02 | 2023-10-12 | Mahle International Gmbh | Halbzeug |
EP2159528B1 (en) | 2008-09-02 | 2015-11-04 | Calsonic Kansei Corporation | Heat exchanger made of aluminum alloy |
JP5417160B2 (ja) * | 2009-12-28 | 2014-02-12 | 三菱アルミニウム株式会社 | 耐食性に優れる粉末ろう組成物及びそれを用いてなる熱交換器用アルミニウム合金チューブ及び熱交換器 |
-
2010
- 2010-01-20 US US12/690,685 patent/US8640766B2/en not_active Expired - Lifetime
-
2011
- 2011-01-19 EP EP11734665.0A patent/EP2527078B1/en active Active
- 2011-01-19 CN CN201180006384.2A patent/CN102802865B/zh active Active
- 2011-01-19 WO PCT/JP2011/050832 patent/WO2011090059A1/ja active Application Filing
- 2011-01-19 JP JP2011550922A patent/JP5744760B2/ja active Active
- 2011-01-19 CN CN201610180286.5A patent/CN105965177B/zh active Active
-
2014
- 2014-04-14 JP JP2014083211A patent/JP5809728B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07227695A (ja) | 1993-12-24 | 1995-08-29 | Nippondenso Co Ltd | ロウ付け用フラックス、熱交換器、及び熱交換器の製造法 |
JPH1034375A (ja) * | 1996-07-23 | 1998-02-10 | Nippon Light Metal Co Ltd | アルミニウム合金のろう付方法 |
JP2004330233A (ja) * | 2003-05-06 | 2004-11-25 | Mitsubishi Alum Co Ltd | 熱交換器用チューブ |
JP2007275898A (ja) * | 2006-04-03 | 2007-10-25 | Toyo Aluminium Kk | アルミニウムろう付用ペースト状組成物、それが塗布されたアルミニウム含有部材、および、それを用いたアルミニウム含有部材のろう付方法。 |
JP2009106947A (ja) * | 2007-10-26 | 2009-05-21 | Mitsubishi Alum Co Ltd | アルミニウム合金チューブ |
JP2009184017A (ja) * | 2009-03-27 | 2009-08-20 | Mitsubishi Alum Co Ltd | 熱交換器用チューブ |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9283633B2 (en) | 2003-05-06 | 2016-03-15 | Mitsubishi Aluminum Co. Ltd. | Heat exchanger tube precursor and method of producing the same |
JP2013220427A (ja) * | 2012-04-13 | 2013-10-28 | Showa Denko Kk | ろう付用アルミニウム材料の製造方法 |
KR101518193B1 (ko) | 2012-10-24 | 2015-05-06 | 하리마카세이 가부시기가이샤 | 납땜용 조성물, 열교환기용 튜브 및 열교환기 |
US10092983B2 (en) | 2012-10-24 | 2018-10-09 | Harima Chemicals, Incorporated | Brazing composition, heat exchanger tube, and heat exchanger |
JP2014238209A (ja) * | 2013-06-07 | 2014-12-18 | 株式会社ケーヒン・サーマル・テクノロジー | アルミニウム押出形材製熱交換管外面の防食処理方法および熱交換器の製造方法 |
CN106457483A (zh) * | 2014-05-26 | 2017-02-22 | 株式会社Uacj | 热交换器用管及热交换器以及钎焊用膏 |
JP2017060989A (ja) * | 2015-09-25 | 2017-03-30 | 三菱アルミニウム株式会社 | 熱交換器用アルミニウム合金チューブ |
JP2019190720A (ja) * | 2018-04-24 | 2019-10-31 | 三菱マテリアル株式会社 | 親水性に優れた熱交換器用アルミニウムフィンと熱交換器およびその製造方法 |
JP7030605B2 (ja) | 2018-04-24 | 2022-03-07 | 三菱マテリアル株式会社 | 親水性に優れた熱交換器用アルミニウムフィンと熱交換器およびその製造方法 |
WO2022050029A1 (ja) | 2020-09-02 | 2022-03-10 | 株式会社Uacj | アルミニウム合金押出チューブ及び熱交換器 |
Also Published As
Publication number | Publication date |
---|---|
US8640766B2 (en) | 2014-02-04 |
EP2527078B1 (en) | 2020-12-02 |
US20100116472A1 (en) | 2010-05-13 |
JP5744760B2 (ja) | 2015-07-08 |
CN102802865B (zh) | 2016-04-20 |
JPWO2011090059A1 (ja) | 2013-05-23 |
EP2527078A1 (en) | 2012-11-28 |
CN102802865A (zh) | 2012-11-28 |
JP2014169856A (ja) | 2014-09-18 |
JP5809728B2 (ja) | 2015-11-11 |
EP2527078A4 (en) | 2015-07-29 |
CN105965177B (zh) | 2018-03-23 |
CN105965177A (zh) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5809728B2 (ja) | 熱交換器用チューブ | |
JP4413526B2 (ja) | 熱交換器用チューブ | |
JP5548411B2 (ja) | アルミニウム合金製熱交換器およびその製造方法 | |
KR101589918B1 (ko) | 전열관과 그 제조 방법 | |
JP5417160B2 (ja) | 耐食性に優れる粉末ろう組成物及びそれを用いてなる熱交換器用アルミニウム合金チューブ及び熱交換器 | |
JP4980390B2 (ja) | 熱交換器用チューブ | |
JP5115963B2 (ja) | 耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム製熱交換器の製造方法 | |
EP2543951A1 (en) | Heat exchanger constituted of aluminum alloy | |
JP4577634B2 (ja) | 熱交換器用ろう材被覆アルミニウム合金押出チューブ | |
JP2009058139A (ja) | 耐食性に優れたアルミニウム製熱交換器用部材 | |
JP5334086B2 (ja) | 耐食性に優れたアルミニウム製熱交器およびその製造方法 | |
US20160097607A1 (en) | Heat exchanger tube precursor and method of producing the same | |
JP2017060989A (ja) | 熱交換器用アルミニウム合金チューブ | |
JP6968598B2 (ja) | 耐食性に優れたアルミニウム合金製熱交換器の製造方法およびアルミニウム合金製熱交換器 | |
JP7558004B2 (ja) | アルミニウム合金押出チューブ及び熱交換器 | |
JP2006205254A (ja) | ろう付け性と耐食性に優れた熱交換器用アルミニウム合金材及びそれを備えた熱交換器 | |
JP7311337B2 (ja) | フラックスフリーろう付用ろう材ワイヤーおよびフラックスフリーろう付方法 | |
JP7012529B2 (ja) | 熱交換器用片面ろうフィン材および熱交換器とその製造方法 | |
JP2009058140A (ja) | 耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム熱交換器の製造方法 | |
JP7179493B2 (ja) | 熱交換器用フィン材および熱交換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180006384.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734665 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550922 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201003585 Country of ref document: TH Ref document number: 6435/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011734665 Country of ref document: EP |