WO2011089837A1 - 複合型半導体装置 - Google Patents

複合型半導体装置 Download PDF

Info

Publication number
WO2011089837A1
WO2011089837A1 PCT/JP2010/073691 JP2010073691W WO2011089837A1 WO 2011089837 A1 WO2011089837 A1 WO 2011089837A1 JP 2010073691 W JP2010073691 W JP 2010073691W WO 2011089837 A1 WO2011089837 A1 WO 2011089837A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
effect transistor
field effect
drain
electrode
Prior art date
Application number
PCT/JP2010/073691
Other languages
English (en)
French (fr)
Inventor
池谷 直泰
朋宏 野澤
義明 野崎
ジョン ケー トワイナム
川村 博史
作野 圭一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080062295.5A priority Critical patent/CN102725840B/zh
Priority to JP2011550827A priority patent/JP5575816B2/ja
Priority to US13/574,993 priority patent/US8766275B2/en
Publication of WO2011089837A1 publication Critical patent/WO2011089837A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors

Definitions

  • the present invention relates to a composite semiconductor device, and more particularly to a composite semiconductor device including a normally-on field effect transistor and a normally-off field effect transistor connected in series.
  • Si (silicon) -based field effect transistors mainly used in current semiconductor devices are normally-off type.
  • a normally-off type field effect transistor is a transistor that is turned on when a positive voltage is applied between the gate and the source and is turned off when no positive voltage is applied between the gate and the source.
  • GaN gallium nitrogen
  • a normally-on type field effect transistor has a negative threshold voltage and becomes non-conductive when the gate-source voltage is lower than the threshold voltage, and the gate-source voltage is lower than the threshold voltage. If it is too high, it becomes conductive.
  • a main object of the present invention is to provide a composite semiconductor device capable of preventing the normally-off type field effect transistor from being destroyed.
  • the composite semiconductor device includes a first terminal that receives a first voltage, a second terminal that receives a second voltage lower than the first voltage, a third voltage, and the third voltage A third terminal to which one of the fourth voltages higher than the voltage is selectively applied, a drain connected to the first terminal, and a gate connected to the second terminal
  • the first field-effect transistor of the Marion type the drain is connected to the source of the first field-effect transistor, the source is connected to the second terminal, the gate is connected to the third terminal, and the third terminal
  • the third voltage is applied to the first terminal, the normally-off type second field effect transistor which becomes non-conductive, and becomes conductive when the fourth voltage is applied to the third terminal, and the second electric field Forward series between the drain and source of the effect transistor N transistors that are conductive when the voltage between the drain and source of the second field effect transistor exceeds a predetermined voltage that is equal to or lower than the breakdown voltage of the second field effect transistor (where N is a natural number).
  • Unipolar rectifier element the drain is connected to the
  • N unipolar types after the voltage between the drain and the source of the second field effect transistor starts to rise are N unipolar types after the voltage between the drain and the source of the second field effect transistor starts to rise.
  • the time until the rectifying element becomes conductive is less than half of the time from when the voltage between the drain and source of the second field effect transistor starts to rise until the second field effect transistor becomes nonconductive. Is set to
  • each of the N unipolar rectifier elements is a Schottky diode.
  • each of the N unipolar rectifier elements is formed using a material having an energy band gap larger than that of Si.
  • the material is Al x Ga 1-x N (0 ⁇ x ⁇ 1), SiC, diamond, Al x Ga 1-x As (0 ⁇ x ⁇ 1), In x Ga 1-x P (0 ⁇ x ⁇ 1), or Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • a first semiconductor chip including first and second nitride-based semiconductor layers sequentially stacked on a first semiconductor substrate is provided.
  • N Schottky diodes are formed in N regions on the surface of the first semiconductor chip, and the anode and cathode electrodes of the corresponding Schottky diodes are provided in each region so as to be separated from each other.
  • a recessed portion that penetrates through the second nitride-based semiconductor layer and reaches the first nitride-based semiconductor layer is formed, an anode electrode is formed in the recessed portion, and a cathode electrode is formed in the second nitrided layer. It is formed on the surface of the physical semiconductor layer.
  • a second semiconductor chip including third and fourth nitride-based semiconductor layers sequentially stacked on the second semiconductor substrate is provided.
  • the first field effect transistor is formed on the surface of the second semiconductor chip, and the gate electrode, the source electrode, and the drain electrode of the first field effect transistor are formed on the surface of the second nitride-based semiconductor layer, and the gate electrode Is provided between the source electrode and the drain electrode.
  • the third nitride-based semiconductor layer is formed of GaN
  • the fourth nitride-based semiconductor layer is formed of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • a semiconductor chip including first and second nitride-based semiconductor layers sequentially stacked on a semiconductor substrate is provided.
  • the N Schottky diodes are respectively formed in the N first regions on the surface of the semiconductor chip, and the first field effect transistor is formed in the second region on the surface of the semiconductor chip.
  • an anode electrode and a cathode electrode of a corresponding Schottky diode are provided so as to be spaced apart from each other, and each first region penetrates through the second nitride-based semiconductor layer to form the first nitride.
  • a recess portion reaching the semiconductor layer is formed, the anode electrode is formed in the recess portion, and the cathode electrode is formed on the surface of the second nitride semiconductor layer.
  • a gate electrode, a source electrode, and a drain electrode of the first field effect transistor are formed on the surface of the second nitride-based semiconductor layer in the second region, and the gate electrode is provided between the source electrode and the drain electrode. It has been.
  • the first nitride-based semiconductor layer is formed of GaN
  • the second nitride-based semiconductor layer is formed of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • a first resistance element interposed between the gate of the first field effect transistor and the second terminal is further provided.
  • a second resistance element interposed between the first terminal and the drain of the first field effect transistor is further provided.
  • N diodes are connected in series in the forward direction between the drain and source of the normally-off type second field effect transistor, and between the drain and source of the second field effect transistor. Is limited to a voltage equal to or lower than the withstand voltage of the second field effect transistor. Therefore, the operating speed of the diode is sufficiently higher than the operating speed of the Zener diode, so that the second field effect transistor can be prevented from being destroyed.
  • FIG. 1 is a circuit diagram showing a configuration of a composite semiconductor device according to a first embodiment of the present invention.
  • 2 is a time chart showing a drain-source voltage of the normally-on type field effect transistor shown in FIG.
  • FIG. 3 is a circuit diagram showing a comparative example of the first embodiment.
  • 4 is a time chart showing a drain-source voltage of the normally-on type field effect transistor shown in FIG. 3.
  • 6 is a time chart showing a modification of the first embodiment.
  • It is a circuit diagram which shows the structure of the composite type semiconductor device by Embodiment 2 of this invention. It is sectional drawing which shows the structure of the semiconductor chip which mounts the normally-on type field effect transistor shown in FIG. It is a figure for demonstrating the effect of this invention.
  • FIG. 7 is a cross-sectional view showing another structure of a semiconductor chip on which a plurality of diodes 13 shown in FIG. 6 are mounted.
  • FIG. 7 is a cross-sectional view showing still another structure of a semiconductor chip on which a plurality of diodes 13 shown in FIG. 6 are mounted.
  • FIG. 6 is a circuit diagram showing a comparative example of the second embodiment. It is a figure which compares operation
  • the composite semiconductor device As shown in FIG. 1, the composite semiconductor device according to the first embodiment of the present application includes a drain terminal T1, a source terminal T2, a gate terminal T3, a normally-on field effect transistor 1, a normally-off field effect transistor 2, And N diodes 3 (where N is a natural number).
  • a power supply voltage V1 is applied to the drain terminal T1, and a power supply voltage V2 (for example, ground voltage) lower than the power supply voltage V1 is applied to the source terminal T2.
  • a power supply voltage V2 for example, ground voltage
  • One voltage of the “L” level voltage V3 and the “H” level voltage V4 (> V3) is selectively applied to the gate terminal T3.
  • Transistor 1 is made of GaN, for example, and has negative threshold voltage VTH1. The transistor 1 becomes non-conductive when the gate-source voltage is lower than VTH1, and becomes conductive when the gate-source voltage is higher than VTH1.
  • Transistor 2 is an N-channel MOS transistor formed of, for example, Si, and has positive threshold voltage VTH2. The transistor 2 becomes non-conductive when the gate-source voltage is lower than VTH2, and becomes conductive when the gate-source voltage is higher than VTH2.
  • V3 ⁇ V2 The difference (V3 ⁇ V2) between the “L” level voltage V3 applied to the gate terminal T3 and the power supply voltage V2 applied to the source terminal T2 is set to a voltage lower than the threshold voltage VTH2 of the transistor 2. ing. Therefore, when the “L” level voltage V3 is applied to the gate terminal T3, the transistor 2 becomes non-conductive.
  • V4 ⁇ V2 The difference (V4 ⁇ V2) between the “H” level voltage V4 applied to the gate terminal T3 and the power supply voltage V2 applied to the source terminal T2 is higher than the threshold voltage VTH2 of the transistor 2. Is set. Therefore, when the “H” level voltage V4 is applied to the gate terminal T3, the transistor 2 becomes conductive. A diode may be connected in antiparallel to each of the transistors 1 and 2.
  • the N diodes 3 are connected in series in the forward bias direction between the drain and source of the transistor 2. Assuming that the threshold voltage of each diode 3 is VTH3, the sum of the threshold voltages of N diodes 3 (N ⁇ VTH3) is set to a predetermined voltage Vc that is equal to or lower than the breakdown voltage of the transistor 2. Therefore, when the drain-source voltage Vds of the transistor 2 exceeds the predetermined voltage Vc, the N diodes 3 are both turned on. For this reason, the drain-source voltage Vds of the transistor 2 is maintained at a predetermined voltage Vc or lower that is not higher than the breakdown voltage of the transistor 2, and the transistor 2 is prevented from being destroyed.
  • FIG. 2 is a time chart showing the drain-source voltage Vds of the transistor 2 when the voltage at the gate terminal T3 in FIG. 1 is switched from the “H” level voltage V4 to the “L” level voltage V3.
  • the transistor 2 is turned off after a predetermined time (time t1).
  • the transistor 1 Since ⁇ Vc ⁇ VTH1 is set, the transistor 1 is turned off after a predetermined time from when ⁇ Vds ⁇ VTH1 (time t3). Therefore, the transistors 1 and 2 are both non-conductive, and the source terminal T1 and the drain terminal T2 are non-conductive.
  • the drain-source voltage Vds of the transistor 2 is a voltage Vd obtained by dividing the voltage (V1-V2) between the terminals T1 and T2 by the resistance value of the transistors 1 and 2. In this way, the composite semiconductor device operates as a normally-off type switching element.
  • FIG. 3 is a circuit diagram showing a comparative example of the first embodiment, which is compared with FIG.
  • the composite semiconductor device of FIG. 3 is different from the composite semiconductor device of FIG. 1 in that N diodes 3 are replaced by Zener diodes 4.
  • the cathode and anode of the Zener diode 4 are connected to the drain and source of the transistor 2, respectively.
  • the Zener voltage of the Zener diode 4 is set to the predetermined voltage Vc.
  • the composite semiconductor device of FIG. 3 operates in the same manner as the composite semiconductor device of FIG.
  • the response speed of the Zener diode 4 is considerably slower than the response speed of the diode 3. For this reason, even if the drain-source voltage Vds of the transistor 2 suddenly rises and exceeds the predetermined voltage Vc, the Zener diode 4 does not conduct, and the transistor 2 may be destroyed.
  • FIG. 4 is a time chart showing the drain-source voltage Vds of the transistor 2 when the voltage at the gate terminal T3 in FIG. 3 is switched from the “H” level voltage V4 to the “L” level voltage V3.
  • FIG. 3 is a diagram contrasted with FIG. 2.
  • the transistor 2 is turned off after a predetermined time (time t1).
  • the transistor 1 At the moment when the transistor 2 becomes non-conductive, the transistor 1 is still conductive and a current flows through the transistor 1. For this reason, the drain-source voltage Vds of the transistor 1 rapidly increases. Even if the drain-source voltage Vds of the transistor 2 reaches the predetermined voltage Vc, the Zener diode 4 still does not operate, and the drain-source voltage Vds of the transistor 2 exceeds the predetermined voltage Vc (time t2 ).
  • the transistor 1 Since ⁇ Vc ⁇ VTH1 is set, the transistor 1 is turned off after a predetermined time from when ⁇ Vds ⁇ VTH1 (time t3). Therefore, the transistors 1 and 2 are both non-conductive, and the source terminal T1 and the drain terminal T2 are non-conductive. Thereafter, the Zener diode 4 operates (time t4), and the drain-source voltage Vds of the transistor 2 is a voltage obtained by dividing the voltage (V1-V2) between the terminals T1 and T2 by the resistance value of the transistors 1 and 2. Vd.
  • the drain-source voltage Vds of the transistor 2 exceeds the predetermined voltage Vc, and the transistor 2 may be destroyed.
  • the response speed of the diode 3 since the response speed of the diode 3 is fast, the drain-source voltage Vds of the transistor 2 is limited to a predetermined voltage Vc or less, and the transistor 2 is not destroyed.
  • the time (t2 ⁇ t1) from when the drain-source voltage Vds of the transistor 2 starts to rise until the N diodes 3 become conductive is determined between the drain-source of the transistor 2 It is preferable to set it to one half or less of the time (t3 ⁇ t1) from when the voltage Vds starts to rise until the transistor 1 becomes non-conductive.
  • This can be achieved, for example, by adjusting a predetermined voltage Vc, that is, a sum of threshold voltages of N diodes 3 (N ⁇ VTH3). With this setting, it is possible to reliably prevent the transistor 2 from being destroyed due to the drain-source voltage Vds of the transistor 2 exceeding the breakdown voltage of the transistor 2.
  • the composite semiconductor device according to the second embodiment of the present application includes a drain terminal T11, a source terminal T12, a gate terminal T13, a normally-on field effect transistor 11, a normally-off field effect transistor 12, N diodes (where N is a natural number, for example, 4) and resistance elements 14 and 15 are provided.
  • the power supply voltage V11 (150V) is applied to the drain terminal T11, and the ground voltage V12 (0V) is applied to the source terminal T12.
  • One of the “L” level voltage V13 (0V) and the “H” level voltage V14 (10V) is selectively applied to the gate terminal T3.
  • the drain of the normally-on type field effect transistor 11 is connected to one electrode of the resistance element (load resistance) 14, and the other electrode of the resistance element 14 is connected to the drain terminal T11.
  • the resistance value of the resistance element 14 is 141 ⁇ .
  • the gate of the transistor 11 is connected to the source terminal T12 via a resistance element (gate resistance) 15.
  • the resistance value of the resistance element 15 is 10 ⁇ .
  • the transistor 11 has a negative threshold voltage VTH11 ( ⁇ 3 V). The transistor 11 becomes non-conductive when the gate-source voltage is lower than VTH11, and becomes conductive when the gate-source voltage is higher than VTH11.
  • the source of the normally-off type field effect transistor 12 is connected to the source terminal T12, its drain is connected to the source of the transistor 11, and its gate is connected to the gate terminal T13.
  • Transistor 12 has a positive threshold voltage VTH12 (+2 V).
  • the transistor 12 becomes non-conductive when the gate-source voltage is lower than VTH12, and becomes conductive when the gate-source voltage is higher than VTH12. Therefore, when the “L” level voltage V13 is applied to the gate terminal T13, the transistor 12 becomes non-conductive.
  • the “H” level voltage V14 is applied to the gate terminal T13, the transistor 12 becomes conductive.
  • the transistor 12 includes a parasitic diode. In FIG. 6, the parasitic diode is shown as a diode 12 a connected between the source and drain of the transistor 12.
  • the breakdown voltage of the transistor 12 is Va
  • Va / VTH13 ⁇ 2N is desirable. This is because the breakdown voltage and the on-resistance value of the transistor 12 are in a trade-off relationship, and if the breakdown voltage of the transistor 12 is increased more than necessary, the characteristics of the composite semiconductor device are degraded.
  • the drain-source voltage Vds of the transistor 12 is a voltage Vd obtained by dividing the voltage (V11 ⁇ V12) between the terminals T11 and T12 by the resistance value of the resistance element 14 and the transistors 11 and 12. In this way, the composite semiconductor device operates as a normally-off type switching element.
  • a heterojunction field effect GaN transistor is used as the normally-on type field effect transistor 11.
  • the transistor 11 is formed on the surface of the semiconductor chip 20 as shown in FIG.
  • the semiconductor chip 20 includes a semiconductor substrate 21, a buffer layer 22, a channel layer 23, a barrier layer 24, and a gate electrode 25, a source electrode 26 formed on the surface of the barrier layer 24, And a drain electrode 27.
  • the gate electrode 25 is provided between the source electrode 26 and the drain electrode 27.
  • the semiconductor substrate 21 is a crystalline silicon (Si) substrate.
  • the buffer layer 22 is made of AlGaN.
  • the channel layer 23 is made of GaN.
  • the barrier layer 24 is made of Al 0.25 Ga 0.75 N.
  • the gate electrode 25 includes a WN layer and a W layer that are sequentially stacked on the surface of the barrier layer 24.
  • a Schottky junction is formed by the gate electrode 25 and the barrier layer 24. That is, a Schottky barrier diode is formed across the gate electrode 25 and the barrier layer 24.
  • Each of the source electrode 26 and the drain electrode 27 includes an Hf layer, an Al layer, an Hf layer, and an Au layer that are sequentially stacked on the surface of the barrier layer 24.
  • Each of the source electrode 26 and the drain electrode 27 and the barrier layer 24 form a resistance junction.
  • an N channel type MOS field effect transistor formed of Si was used as the normally-off type field effect transistor 12.
  • the performance required for the diode 13 is to turn on quickly when the voltage between the anode and the cathode exceeds the threshold voltage VTH13. Furthermore, the diode 13 needs to be low cost. Therefore, in the second embodiment, a Schottky barrier diode is used as the diode 13.
  • the Schottky barrier diode is a unipolar rectifier, there is less recovery charge and switching loss is reduced. In addition, since the operation time of the Schottky barrier diode is short, the leakage current can be reliably suppressed even when the switching is fast, and an increase in the intermediate voltage (the drain voltage of the transistor 12) can be suppressed.
  • the field effect transistor may be a low withstand voltage element. If a withstand voltage normally-off type GaNFET of about several tens of volts or more is used, low loss or high speed switching is possible. Further, since the normally-on GaN FET and the unipolar rectifier can be manufactured with the same structure or the same process, integration is also possible.
  • FIG. 8A is a diagram showing the VI characteristics of a Schottky barrier diode formed using a normal material
  • FIG. 8B shows a shot formed using a wide band gap semiconductor material. It is a figure which shows the VI characteristic of a key barrier diode.
  • FIG. 8 (a) shows the VI characteristics when the number N of diodes connected in series is changed from 1 to 6, and
  • FIG. 8 (b) shows the number N of diodes 13 connected in series as 1. The VI characteristics are shown when changing from ⁇ 4.
  • FIGS. 8 (a) and 8 (b) in order to turn on at a certain voltage Von, when a diode formed of a normal material is used, six diodes need to be connected in series. When the diode 13 formed of a band gap material is used, it is sufficient to connect the four diodes 13 in series.
  • the current that flows when a predetermined voltage V1 (V1> Von) is applied to a series connection body of six diodes formed of a normal material is I1
  • the four diodes 13 formed of a wide band gap material If a current that flows when a predetermined voltage V1 is applied to the serial connection body is I2, I2> I1. Therefore, the diode 13 formed of a wide band gap material has an advantage that a larger current can flow than a diode formed of a normal material.
  • the number of diodes can be reduced, and the cost can be reduced.
  • Examples of the material having a large energy band gap include Al x Ga 1-x N (0 ⁇ x ⁇ 1), SiC, diamond, ZnO, Al x Ga 1-x As (0 ⁇ x ⁇ 1), and In x Ga.
  • Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + ⁇ 1) makes the energy band gap larger than Si by adjusting the composition. Is possible. Note that the material is not limited to the above, and any material may be used as long as the energy band gap is larger than that of Si.
  • the wide band gap material is more preferably the same material as that of the transistor 11.
  • the material of the diode 13 is also preferably GaN.
  • the material of the transistor 11 is an AlGaN / GaN heteromaterial
  • the material of the diode 13 is also preferably an AlGaN / GaN heteromaterial. If the transistor 11 and the diode 13 can be formed of the same material, the raw material, the substrate, and the manufacturing apparatus of the transistor 11 and the diode 13 can be shared, leading to a reduction in material cost and manufacturing cost.
  • a GaN Schottky barrier diode having a recess structure (hereinafter referred to as a recess GaN Schottky barrier diode) is used as the diode 13. Is preferred.
  • FIG. 9 is a cross-sectional view showing the configuration of such a diode 13.
  • the diode 13 is formed on the surface of the semiconductor chip 30.
  • the semiconductor chip 30 includes a semiconductor substrate 31, a buffer layer 32, a channel layer 33, and a barrier layer 34 sequentially stacked on the surface thereof, and a cathode electrode 35 and an anode provided on the surface of the semiconductor chip 30 so as to be separated from each other.
  • An electrode 36 is a cross-sectional view showing the configuration of such a diode 13.
  • the semiconductor chip 30 includes a semiconductor substrate 31, a buffer layer 32, a channel layer 33, and a barrier layer 34 sequentially stacked on the surface thereof, and a cathode electrode 35 and an anode provided on the surface of the semiconductor chip 30 so as to be separated from each other.
  • An electrode 36 is a cross-sectional view showing the configuration of such a diode 13.
  • the semiconductor substrate 31 is a crystalline silicon (Si) substrate.
  • the buffer layer 32 is made of AlGaN.
  • the channel layer 33 is made of GaN.
  • the barrier layer 34 is made of Al 0.25 Ga 0.75 N.
  • a channel is formed by a two-dimensional electron gas.
  • the cathode electrode 35 includes an Hf layer, an Al layer, an Hf layer, and an Au layer that are sequentially stacked on the surface of the barrier layer 34.
  • a resistance junction is formed by the cathode electrode 35 and the barrier layer 34.
  • the anode electrode 36 is formed in a recess portion (concave portion) 37 formed at a predetermined depth in a predetermined region of the surface of the semiconductor chip 30.
  • a method for forming the anode electrode 36 will be briefly described. After the buffer layer 32, the channel layer 33, and the barrier layer 34 are formed on the surface of the semiconductor substrate 31, a predetermined depth is reached from the surface of the barrier layer 34 to the middle of the channel layer 33 in a predetermined region as shown in FIG.
  • the recess 37 is formed by digging up. Next, a WN layer is formed so as to cover the bottom surface and the side surface of the recess 37, and the W layer is stacked on the WN layer.
  • the anode electrode 36 includes a stacked WN layer and W layer.
  • a Schottky junction is formed by the anode electrode 36, the barrier layer 34, and the channel layer 33. That is, a Schottky barrier diode is formed across the anode electrode 36 and the barrier layer 34. Further, since the anode electrode 36 and the channel layer 33 are in contact with each other, the resistance value between the binary electron gas formed at the interface between the barrier layer 34 and the channel layer 33 and the anode electrode 36 is reduced, and the diode 13 The on-resistance value is reduced.
  • FIG. 11 is a cross-sectional view showing the configuration of the semiconductor chip 40 on which the transistor 11 and the diode 13 are mounted.
  • a semiconductor chip 40 includes a semiconductor substrate 41, a buffer layer 42, a channel layer 43, and a barrier layer 44 sequentially stacked on the surface thereof.
  • the materials of the semiconductor substrate 41, the buffer layer 42, the channel layer 43, and the barrier layer 44 are as described in FIGS.
  • the surface of the semiconductor chip 40 is divided into a transistor region and a diode region by a groove 45.
  • the groove 45 is formed so that the two-dimensional electron gas formed at the interface between the barrier layer 44 and the channel layer 43 is divided into two and the semiconductor substrate 41 is not divided into two. As shown in FIG. 11, it is more preferable that the bottom of the groove 45 reaches the semiconductor substrate 41 because the leakage current between the transistor 11 and the diode 13 can be reduced.
  • the gate electrode 46, the source electrode 47, and the drain electrode 48 of the transistor 11 are provided on the surface of the barrier layer 44 so as to be separated from each other.
  • the gate electrode 46 is provided between the source electrode 47 and the drain electrode 48.
  • the materials of the gate electrode 46, the source electrode 47, and the drain electrode 48 are as described in FIG.
  • the cathode electrode 49 and the anode electrode 50 of the diode 13 are provided on the surface of the semiconductor chip 40 so as to be separated from each other.
  • the cathode electrode 49 is formed on the surface of the barrier layer 49.
  • the anode 50 is provided in a recess 51 that is dug down from the surface of the barrier layer 44 to the middle of the channel layer 43.
  • the materials of the cathode electrode 49 and the anode electrode 50 are as described in FIG.
  • FIG. 11 shows one transistor 11 and one diode 13, but it goes without saying that one transistor 11 and four diodes 13 can be mounted on the same semiconductor chip 40.
  • FIG. 12 is a cross-sectional view showing the two diodes 13 mounted on the surface of the semiconductor chip 40.
  • the transistor 11 and the remaining two diodes 13 are not shown for the sake of simplicity.
  • the surface of the semiconductor chip 40 is divided into a plurality of diode regions for forming a plurality of diodes 13, respectively.
  • Two adjacent diode regions are divided by a groove 52.
  • the bottom of the groove 52 reaches the semiconductor substrate 41.
  • a channel (two-dimensional electron gas) 43 a formed under the interface between the barrier layer 44 and the channel layer 44 is divided by the groove 52.
  • the anode electrode 50 and the cathode electrode 49 of the first diode 13 are provided on the surface of the semiconductor chip 40 so as to be separated from each other.
  • the anode electrode 50 and the cathode electrode 49 of the second diode 13 are provided on the surface of the semiconductor chip 40 so as to be separated from each other.
  • An insulating film 53 is formed so as to cover a region between the end portion of the cathode electrode 49 of the first diode 13 on the groove 52 side and the end portion of the anode electrode 50 of the second diode 13 on the groove 52 side.
  • the A metal wiring 54 is formed on the cathode electrode 49 of the first diode 13, the insulating film 53, and the anode electrode 50 of the second diode 13.
  • the metal wiring 54 may be formed of the same material as the cathode electrode 49, may be formed of the same material as the anode electrode 50, or may be formed of another metal material. Thereby, the two diodes 13 are connected in series. The same applies when four diodes 13 are connected in series.
  • the metal wiring 54 is formed from the cathode electrode 49 of the first diode 13 to the anode electrode 50 of the second diode 13 without providing the groove 52 and the insulating film 53.
  • the diodes 13 may be connected in series.
  • the metal wiring 54 is also omitted, the two diodes 13 are disposed close to each other, and the second diode 13 extends from the end of the cathode electrode 49 of the first diode 13 to the recess 51.
  • the anode electrode 50 of the diode 13 may be formed. Thereby, the cathode electrode 49 of the first diode 13 and the anode electrode 50 of the second diode 13 are directly connected.
  • the transistor 11 may be removed from the semiconductor chip 40 and only the N diodes 13 may be mounted on the semiconductor chip 40.
  • the barrier layers of the transistor 11 and the diode 13 are formed of Al 0.25 Ga 0.75 N.
  • the present invention is not limited to this, and AlGaN, GaN, InGaN, or AlGaInN is not limited to this.
  • a barrier layer may be formed.
  • an AlGaN layer and an AlN layer may be stacked to form a multilayer barrier layer.
  • channel layers of the transistor 11 and the diode 13 are formed of GaN, the present invention is not limited to this, and the channel layers may be formed of AlGaN, GaN, InGaN, or AlGaInN.
  • a channel layer having a multilayer structure may be formed by laminating a GaN layer and an AlGaN layer.
  • the source electrode and the drain electrode of the transistor 11 and the cathode electrode of the diode 13 are formed of Hf / Al / Hf / Au (stacked body of Hf layer, Al layer, Hf layer, and Au layer). Needless to say, other electrode materials such as Ti / Au and Ni / Au may be used.
  • the gate electrode of the transistor 1 and the anode electrode of the diode 3 are formed of WN / W (a laminate of a WN layer and a W layer), but Ni / Au, Ti / Au, Ti / Al, Pd / Au, Pt / Needless to say, other electrode materials such as Au and WSix may be used.
  • FIG. 15 is a circuit diagram showing a comparative example of the second embodiment, and is a diagram to be compared with FIG.
  • the composite semiconductor device in FIG. 15 is different from the composite semiconductor device in FIG. 6 in that N diodes 13 are replaced by Zener diodes 60.
  • the cathode and anode of the Zener diode 60 are connected to the drain and source of the transistor 12, respectively.
  • the Zener voltage of the Zener diode 60 is set to the predetermined voltage Vc1.
  • FIG. 16 is a time chart for comparing the operation of the composite semiconductor device of FIG. 6 with the operation of the composite semiconductor device of FIG.
  • a recess GaN Schottky barrier diode was used as the diode 13.
  • the source-to-source voltage Vds was measured.
  • the peak voltage of Vds is suppressed smaller than that in the composite semiconductor device using the Zener diode.
  • operation time the time from when Vds starts to rise until it settles to a steady state
  • FIG. 17 shows the relationship between the power supply voltage V11 and the peak value of Vds
  • FIG. 18 shows the relationship between the power supply voltage V11 and the operation time. From these FIG. 17 and FIG. 18, in the composite semiconductor device using the recess GaN Schottky barrier diode, both the Vds peak value and the operation time are kept low compared to the composite semiconductor device using the Zener diode. I understand that. This indicates that the response speed of the recess GaN Schottky barrier diode is faster than the response speed of the Zener diode.
  • the drain-source voltage Vds of the transistor 12 can be reliably prevented from suddenly rising and being destroyed.
  • the transistor 12 can be reliably prevented from being destroyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 この複合型半導体装置は、第1および第2の端子(T1,T2)間にノーマリーオン型の第1の電界効果トランジスタ(1)とノーマリーオフ型の第2の電界効果トランジスタ(2)を直列接続し、第1および第2の電界効果トランジスタ(1,2)のゲートをそれぞれ第2および第3の端子(T2,T3)に接続し、第2の電界効果トランジスタ(2)のドレインおよびソース間にN個のダイオード(3)を順方向に直列接続したものである。したがって、第2の電界効果トランジスタ(2)のドレイン-ソース間電圧(Vds)を第2の電界効果トランジスタ(2)の耐圧以下の電圧に制限できる。

Description

複合型半導体装置
 この発明は複合型半導体装置に関し、特に、直列接続されたノーマリーオン型電界効果トランジスタおよびノーマリーオフ型電界効果トランジスタを備えた複合型半導体装置に関する。
 現在の半導体装置において主に使用されているSi(シリコン)系の電界効果トランジスタはノーマリーオフ型である。ノーマリーオフ型電界効果トランジスタは、ゲート-ソース間に正電圧を印加した場合に導通し、ゲート-ソース間に正電圧が印加されていない場合に非導通になるトランジスタである。
 また、高耐圧、低損失、高速スイッチング、高温動作などの特徴を有するために実用化の研究が進められているGaN(ガリウム窒素)系の電界効果トランジスタはノーマリーオン型である。ノーマリーオン型電界効果トランジスタは、負のしきい値電圧を有し、ゲート-ソース間電圧がしきい値電圧よりも低い場合に非導通になり、ゲート-ソース間電圧がしきい値電圧よりも高い場合に導通する。
 このようなノーマリーオン型の電界効果トランジスタを半導体装置において使用すると、従来のゲート駆動回路を使用できないことなどの様々な問題が発生する。そこで、ノーマリーオン型の第1の電界効果トランジスタとノーマリーオフ型の第2の電界効果トランジスタを直列接続して、ノーマリーオフ型の複合型半導体装置を構成することが提案された。
 また、ノーマリーオフ型の第2の電界効果トランジスタのドレイン-ソース間電圧が高くなって第2の電界効果トランジスタが破壊されるのを防止するため、第2の電界効果トランジスタのドレイン-ソース間にツェナーダイオードを接続し、ドレイン-ソース間電圧を第2の電界効果トランジスタの耐圧以下の電圧に制限する方法もある(たとえば、特開2006-324839号公報(特許文献1)参照)。
特開2006-324839号公報
 しかし、従来の複合型半導体装置では、ツェナーダイオードの動作速度が遅いので、第2の電界効果トランジスタのドレイン-ソース間電圧が耐圧よりも高くなり、第2の電界効果トランジスタが破壊される恐れがあった。
 それゆえに、この発明の主たる目的は、ノーマリーオフ型電界効果トランジスタが破壊されるのを防止することが可能な複合型半導体装置を提供することである。
 この発明に係る複合型半導体装置は、第1の電圧を受ける第1の端子と、第1の電圧よりも低い第2の電圧を受ける第2の端子と、第3の電圧と該第3の電圧よりも高い第4の電圧とのうちのいずれか一方の電圧が選択的に与えられる第3の端子と、ドレインが第1の端子に接続され、ゲートが第2の端子に接続されたノーマリーオン型の第1の電界効果トランジスタと、ドレインが第1の電界効果トランジスタのソースに接続され、ソースが第2の端子に接続され、ゲートが第3の端子に接続され、第3の端子に第3の電圧が与えられた場合は非導通になり、第3の端子に第4の電圧が与えられた場合は導通するノーマリーオフ型の第2の電界効果トランジスタと、第2の電界効果トランジスタのドレインおよびソース間に順方向に直列接続され、第2の電界効果トランジスタのドレインおよびソース間の電圧が第2の電界効果トランジスタの耐圧以下の予め定められた電圧を超えた場合に導通するN個(ただし、Nは自然数である)のユニポーラ型整流素子とを備えたものである。
 好ましくは、第3の端子の電圧が第4の電圧から第3の電圧に変化した場合において、第2の電界効果トランジスタのドレインおよびソース間の電圧が上昇を開始してからN個のユニポーラ型整流素子が導通するまでの時間は、第2の電界効果トランジスタのドレインおよびソース間の電圧が上昇を開始してから第2の電界効果トランジスタが非導通になるまでの時間の2分の1以下に設定されている。
 また好ましくは、N個のユニポーラ型整流素子の各々はショットキーダイオードである。
 また好ましくは、N個のユニポーラ型整流素子の各々は、エネルギーバンドギャップがSiよりも大きな材料を用いて形成されている。
 また好ましくは、材料は、AlGa1-xN(0≦x≦1)、SiC、ダイヤモンド、AlGa1-xAs(0≦x≦1)、InGa1-xP(0≦x≦1)、またはAlInGa1-x―yN(0≦x≦1、0≦y≦1、0≦x+y≦1)である。
 また好ましくは、第1の半導体基板上に順次積層された第1および第2の窒化物系半導体層を含む第1の半導体チップを備える。N個のショットキーダイオードは第1の半導体チップの表面のN個の領域にそれぞれ形成され、各領域には、対応のショットキーダイオードのアノード電極およびカソード電極が互いに離間して設けられている。各領域には、第2の窒化物系半導体層を貫通して第1の窒化物系半導体層に到達するリセス部が形成され、アノード電極はリセス部に形成され、カソード電極は第2の窒化物系半導体層の表面に形成されている。
 また好ましくは、第2の半導体基板上に順次積層された第3および第4の窒化物系半導体層を含む第2の半導体チップを備える。第1の電界効果トランジスタは第2の半導体チップの表面に形成され、第1の電界効果トランジスタのゲート電極、ソース電極およびドレイン電極は第2の窒化物系半導体層の表面に形成され、ゲート電極は、ソース電極およびドレイン電極の間に設けられている。
 また好ましくは、第3の窒化物系半導体層はGaNで形成され、第4の窒化物系半導体層はAlGa1-xN(0<x≦1)で形成されている。
 また好ましくは、半導体基板上に順次積層された第1および第2の窒化物系半導体層を含む半導体チップを備える。N個のショットキーダイオードは半導体チップの表面のN個の第1領域にそれぞれ形成され、第1の電界効果トランジスタは半導体チップの表面の第2領域に形成される。各第1領域には、対応のショットキーダイオードのアノード電極およびカソード電極が互いに離間して設けられ、各第1領域には、第2の窒化物系半導体層を貫通して第1の窒化物系半導体層に到達するリセス部が形成され、アノード電極はリセス部に形成され、カソード電極は第2の窒化物系半導体層の表面に形成される。第2の領域の第2の窒化物系半導体層の表面には、第1の電界効果トランジスタのゲート電極、ソース電極およびドレイン電極が形成され、ゲート電極は、ソース電極およびドレイン電極の間に設けられている。
 また好ましくは、第1の窒化物系半導体層はGaNで形成され、第2の窒化物系半導体層はAlGa1-xN(0<x≦1)で形成されている。
 また好ましくは、さらに、第1の電界効果トランジスタのゲートと第2の端子との間に介挿された第1の抵抗素子を備える。
 また好ましくは、さらに、第1の端子と第1の電界効果トランジスタのドレインとの間に介挿された第2の抵抗素子を備える。
 この発明に係る複合型半導体装置では、ノーマリーオフ型の第2の電界効果トランジスタのドレインおよびソース間にN個のダイオードを順方向に直列接続し、第2の電界効果トランジスタのドレインおよびソース間の電圧を第2の電界効果トランジスタの耐圧以下の電圧に制限する。したがって、ダイオードの動作速度はツェナーダイオードの動作速度よりも十分に速いので、第2の電界効果トランジスタが破壊されるのを防止することができる。
この発明の実施の形態1による複合型半導体装置の構成を示す回路図である。 図1に示したノーマリーオン型電界効果トランジスタのドレイン-ソース間電圧を示すタイムチャートである。 実施の形態1の比較例を示す回路図である。 図3に示したノーマリーオン型電界効果トランジスタのドレイン-ソース間電圧を示すタイムチャートである。 実施の形態1の変更例を示すタイムチャートである。 この発明の実施の形態2による複合型半導体装置の構成を示す回路図である。 図6に示したノーマリーオン型電界効果トランジスタを搭載した半導体チップの構造を示す断面図である。 本願発明の効果を説明するための図である。 図6に示したダイオード13を搭載した半導体チップの構造を示す断面図である。 図9に示したアノード電極の製造方法を示す断面図である。 図6に示したトランジスタ11およびダイオード13を搭載した半導体チップの構造を示す断面図である。 図6に示した複数のダイオード13を搭載した半導体チップの構造を示す断面図である。 図6に示した複数のダイオード13を搭載した半導体チップの他の構造を示す断面図である。 図6に示した複数のダイオード13を搭載した半導体チップのさらに他の構造を示す断面図である。 実施の形態2の比較例を示す回路図である。 本願発明と比較例の動作を比較する図である。 本願発明と比較例の動作を比較する他の図である。 本願発明と比較例の動作を比較するさらに他の図である。
 [実施の形態1]
 本願の実施の形態1による複合型半導体装置は、図1に示すように、ドレイン端子T1、ソース端子T2、ゲート端子T3、ノーマリーオン型電界効果トランジスタ1、ノーマリーオフ型電界効果トランジスタ2、およびN個(ただし、Nは自然数である)のダイオード3を備える。
 ドレイン端子T1には電源電圧V1が印加され、ソース端子T2には、電源電圧V1よりも低い電源電圧V2(たとえば接地電圧)が印加される。ゲート端子T3には、「L」レベルの電圧V3と、「H」レベルの電圧V4(>V3)とのうちのいずれか一方の電圧が選択的に印加される。
 ノーマリーオン型電界効果トランジスタ1のドレインはドレイン端子T1に接続され、そのゲートはソース端子T2に接続される。トランジスタ1は、たとえばGaNで形成されており、負のしきい値電圧VTH1を有する。トランジスタ1は、ゲート-ソース間電圧がVTH1よりも低い場合に非導通になり、ゲート-ソース間電圧がVTH1よりも高い場合に導通する。
 ノーマリーオフ型電界効果トランジスタ2のドレインはトランジスタ1のソースに接続され、そのソースはソース端子T2に接続され、そのゲートはゲート端子T3に接続される。トランジスタ2は、たとえばSiで形成されたNチャネルMOSトランジスタであり、正のしきい値電圧VTH2を有する。トランジスタ2は、ゲート-ソース間電圧がVTH2よりも低い場合に非導通になり、ゲート-ソース間電圧がVTH2よりも高い場合に導通する。
 ゲート端子T3に印加される「L」レベルの電圧V3とソース端子T2に印加される電源電圧V2との差(V3-V2)は、トランジスタ2のしきい値電圧VTH2よりも低い電圧に設定されている。したがって、「L」レベルの電圧V3がゲート端子T3に印加された場合、トランジスタ2は非導通になる。
 また、ゲート端子T3に印加される「H」レベルの電圧V4とソース端子T2に印加される電源電圧V2との差(V4-V2)は、トランジスタ2のしきい値電圧VTH2よりも高い電圧に設定されている。したがって、「H」レベルの電圧V4がゲート端子T3に印加された場合、トランジスタ2は導通する。なお、トランジスタ1,2の各々にダイオードを逆並列に接続してもよい。
 N個のダイオード3は、トランジスタ2のドレインとソースの間に、順バイアス方向に直列接続されている。各ダイオード3のしきい値電圧をVTH3とすると、N個のダイオード3のしきい値電圧の和(N×VTH3)は、トランジスタ2の耐圧以下の所定の電圧Vcに設定されている。したがって、トランジスタ2のドレイン-ソース間電圧Vdsが所定の電圧Vcを超えると、N個のダイオード3がともに導通する。このため、トランジスタ2のドレインーソース間電圧Vdsは、トランジスタ2の耐圧以下の所定の電圧Vc以下に維持され、トランジスタ2が破壊されることが防止される。
 次に、この複合型半導体装置の動作について説明する。ドレイン端子T1には電源電圧V1が印加され、ソース端子T2には電源電圧V2が印加されているものとする。ゲート端子T3に「H」レベルの電圧V4が印加されている場合、トランジスタ2が導通している。このため、トランジスタ1のゲート-ドレイン電圧は、略0Vとなり、負のしきい値電圧VTH1よりも高くなり、トランジスタ1が導通する。したがって、トランジスタ1,2がともに導通し、ソース端子T1およびドレイン端子T2間が導通する。
 図2は、図1のゲート端子T3の電圧が「H」レベルの電圧V4から「L」レベルの電圧V3に切り換えられた場合におけるトランジスタ2のドレイン-ソース間電圧Vdsを示すタイムチャートである。時刻t0において、ゲート端子T3の電圧が「H」レベルの電圧V4から「L」レベルの電圧V3に切り換えられると、所定時間だけ遅延してトランジスタ2が非導通になる(時刻t1)。
 トランジスタ2が非導通になった瞬間では、まだトランジスタ1は導通しており、トランジスタ1に電流が流れる。このため、トランジスタ1のドレイン-ソース間電圧Vdsは、急に上昇する。トランジスタ2のドレイン-ソース間電圧Vdsが所定の電圧Vcに到達すると、N個のダイオード3が導通し、Vds=Vcとなる(時刻t2)。
 -Vc<VTH1に設定されているので、-Vds<VTH1になったときから所定時間だけ遅延してトランジスタ1が非導通になる(時刻t3)。したがって、トランジスタ1,2がともに非導通になり、ソース端子T1およびドレイン端子T2間が非導通になる。トランジスタ2のドレイン-ソース間電圧Vdsは、端子T1,T2間の電圧(V1-V2)をトランジスタ1,2の抵抗値で分圧した電圧Vdになる。このようにして、複合型半導体装置は、ノーマリーオフ型のスイッチング素子として動作する。
 図3は、実施の形態1の比較例を示す回路図であって、図1と対比される図である。図3の複合型半導体装置が図1の複合型半導体装置と異なる点は、N個のダイオード3がツェナーダイオード4で置換されている点である。ツェナーダイオード4のカソードおよびアノードは、それぞれトランジスタ2のドレインおよびソースに接続されている。ツェナーダイオード4のツェナー電圧は上記所定の電圧Vcに設定されている。
 したがって、図3の複合型半導体装置は、図1の複合型半導体装置と同様に動作するとも考えられる。しかし、ツェナーダイオード4の応答速度はダイオード3の応答速度よりもかなり遅い。このため、トランジスタ2のドレイン-ソース間電圧Vdsが急に上昇して所定の電圧Vcを超えてもツェナーダイオード4が導通せず、トランジスタ2が破壊される恐れがある。
 図4は、図3のゲート端子T3の電圧が「H」レベルの電圧V4から「L」レベルの電圧V3に切り換えられた場合におけるトランジスタ2のドレイン-ソース間電圧Vdsを示すタイムチャートであって、図2と対比される図である。時刻t0において、ゲート端子T3の電圧が「H」レベルの電圧V4から「L」レベルの電圧V3に切り換えられると、所定時間だけ遅延してトランジスタ2が非導通になる(時刻t1)。
 トランジスタ2が非導通になった瞬間では、まだトランジスタ1は導通しており、トランジスタ1に電流が流れる。このため、トランジスタ1のドレイン-ソース間電圧Vdsは、急に上昇する。トランジスタ2のドレイン-ソース間電圧Vdsが所定の電圧Vcに到達しても、まだツェナーダイオード4は動作せず、トランジスタ2のドレイン-ソース間電圧Vdsは所定の電圧Vcを超えてしまう(時刻t2)。
 -Vc<VTH1に設定されているので、-Vds<VTH1になったときから所定時間だけ遅延してトランジスタ1が非導通になる(時刻t3)。したがって、トランジスタ1,2がともに非導通になり、ソース端子T1およびドレイン端子T2間が非導通になる。この後、ツェナーダイオード4が動作し(時刻t4)、トランジスタ2のドレイン-ソース間電圧Vdsは、端子T1,T2間の電圧(V1-V2)をトランジスタ1,2の抵抗値で分圧した電圧Vdになる。
 したがって、図3の複合型半導体装置では、ツェナーダイオード4の応答速度が遅いので、トランジスタ2のドレイン-ソース間電圧Vdsが所定の電圧Vcを超えてしまい、トランジスタ2が破壊される恐れがある。これに対して本願発明では、ダイオード3の応答速度が速いので、トランジスタ2のドレイン-ソース間電圧Vdsが所定の電圧Vc以下に制限され、トランジスタ2が破壊されることはない。
 なお、図5に示すように、トランジスタ2のドレイン-ソース間電圧Vdsが上昇を開始してからN個のダイオード3が導通するまでの時間(t2-t1)を、トランジスタ2のドレイン-ソース間電圧Vdsが上昇を開始してからトランジスタ1が非導通になるまでの時間(t3-t1)の2分の1以下に設定することが好ましい。これは、たとえば所定の電圧Vc、すなわちN個のダイオード3のしきい値電圧の和(N×VTH3)を調整することにより可能となる。このように設定すれば、トランジスタ2のドレイン-ソース間電圧Vdsがトランジスタ2の耐圧を超えてトランジスタ2が破壊されるのを確実に防止することができる。
 [実施の形態2]
 本願の実施の形態2による複合型半導体装置は、図6に示すように、ドレイン端子T11、ソース端子T12、ゲート端子T13、ノーマリーオン型電界効果トランジスタ11、ノーマリーオフ型電界効果トランジスタ12、N個(ただし、Nは自然数であり、たとえば4である)のダイオード13、および抵抗素子14,15を備える。
 ドレイン端子T11には電源電圧V11(150V)が印加され、ソース端子T12には接地電圧V12(0V)が印加される。ゲート端子T3には、「L」レベルの電圧V13(0V)と、「H」レベルの電圧V14(10V)のうちのいずれか一方の電圧が選択的に印加される。
 ノーマリーオン型電界効果トランジスタ11のドレインは抵抗素子(負荷抵抗)14の一方電極に接続され、抵抗素子14の他方電極はドレイン端子T11に接続される。抵抗素子14の抵抗値は、141Ωである。トランジスタ11のゲートは、抵抗素子(ゲート抵抗)15を介してソース端子T12に接続される。抵抗素子15の抵抗値は、10Ωである。トランジスタ11は、負のしきい値電圧VTH11(-3V)を有する。トランジスタ11は、ゲート-ソース間電圧がVTH11よりも低い場合に非導通になり、ゲート-ソース間電圧がVTH11よりも高い場合に導通する。
 ノーマリーオフ型電界効果トランジスタ12のソースはソース端子T12に接続され、そのドレインはトランジスタ11のソースに接続され、そのゲートはゲート端子T13に接続される。トランジスタ12は、正のしきい値電圧VTH12(+2V)を有する。トランジスタ12は、ゲート-ソース間電圧がVTH12よりも低い場合に非導通になり、ゲート-ソース間電圧がVTH12よりも高い場合に導通する。したがって、「L」レベルの電圧V13がゲート端子T13に印加された場合、トランジスタ12は非導通になる。また、「H」レベルの電圧V14がゲート端子T13に印加された場合、トランジスタ12は導通する。なお、トランジスタ12は、寄生ダイオードを内蔵している。図6では寄生ダイオードは、トランジスタ12のソースとドレインの間に接続されたダイオード12aとして表示されている。
 N個のダイオード13は、トランジスタ12のドレインとソースの間に、順バイアス方向に直列接続されている。各ダイオード13のしきい値電圧をVTH13とすると、N個のダイオード13のしきい値電圧の和(N×VTH13=4.1V)は、トランジスタ12の耐圧以下の所定の電圧Vc1に設定されている。したがって、トランジスタ12のドレイン-ソース間電圧Vdsが所定の電圧Vc1を超えると、N個のダイオード13がともに導通する。このため、トランジスタ12のドレインーソース間電圧Vdsは、トランジスタ12の耐圧以下の所定の電圧Vc1以下に維持され、トランジスタ12が破壊されることが防止される。
 ここで、トランジスタ12の耐圧をVaとすると、トランジスタ12の破壊を防止するためには、N≦Va/VTH13であることが必須である。また、Va/VTH13≦2Nであることが望ましい。これは、トランジスタ12の耐圧とオン抵抗値とはトレードオフの関係にあるので、トランジスタ12の耐圧を必要以上に大きくすると、複合型半導体装置の特性低下に繋がるからである。
 次に、この複合型半導体装置の動作について説明する。ドレイン端子T11には電源電圧V11が印加され、ソース端子T12には接地電圧V12が印加されているものとする。ゲート端子T13に「H」レベルの電圧V14が印加されている場合、トランジスタ12が導通している。このため、トランジスタ11のゲート-ドレイン電圧は、略0Vとなり、負のしきい値電圧VTH11よりも高くなり、トランジスタ11が導通する。したがって、トランジスタ11,12がともに導通し、ソース端子T11から抵抗素子14およびトランジスタ11,12を介してドレイン端子T12に電流が流れる。
 次いで、ゲート端子T13の電圧が「H」レベルの電圧V14から「L」レベルの電圧V13に切り換えられると、所定時間だけ遅延してトランジスタ12が非導通になる。トランジスタ12が非導通になった瞬間では、まだトランジスタ11は導通しており、トランジスタ11に電流が流れる。このため、トランジスタ12のドレイン-ソース間電圧Vdsは、急に上昇する。トランジスタ12のドレイン-ソース間電圧Vdsが所定の電圧Vc1に到達すると、N個のダイオード13が導通し、Vds=Vc1となる。
 -Vc1<VTH11に設定されているので、-Vds<VTH11になったときから所定時間だけ遅延してトランジスタ11が非導通になる。したがって、トランジスタ11,12がともに非導通になり、ソース端子T11およびドレイン端子T12間が非導通になる。トランジスタ12のドレイン-ソース間電圧Vdsは、端子T11,T12間の電圧(V11-V12)を抵抗素子14およびトランジスタ11,12の抵抗値で分圧した電圧Vdになる。このようにして、複合型半導体装置は、ノーマリーオフ型のスイッチング素子として動作する。
 次に、トランジスタ11,12およびダイオード13について、より詳細に説明する。本実施の形態2では、ノーマリーオン型電界効果トランジスタ11として、ヘテロ接合電界効果GaNトランジスタを用いた。トランジスタ11は、図7に示すような半導体チップ20の表面に形成されている。半導体チップ20は、半導体基板21と、その表面上に順次積層されたバッファ層22、チャネル層23、および障壁層24と、障壁層24の表面に形成されたゲート電極25、ソース電極26、およびドレイン電極27とを備える。ゲート電極25は、ソース電極26とドレイン電極27の間に設けられている。
 半導体基板21は、結晶シリコン(Si)基板である。バッファ層22は、AlGaNで形成されている。チャネル層23は、GaNで形成されている。障壁層24は、Al0.25Ga0.75Nで形成されている。チャネル層23と障壁層24のヘテロ接合面のチャネル層23側には、2次元電子ガスによるチャネルが形成される。ゲート電極25は、障壁層24の表面に順次積層されたWN層およびW層を含む。ゲート電極25と障壁層24によってショットキー接合が形成されている。すなわち、ゲート電極25および障壁層24に跨ってショットキーバリアダイオードが形成されている。
 ソース電極26およびドレイン電極27の各々は、障壁層24の表面に順次積層されたHf層、Al層、Hf層、およびAu層を含む。ソース電極26およびドレイン電極27の各々と障壁層24によって抵抗接合が形成されている。ゲート電極25とソース電極26の間の電圧が負のしきい値電圧VTH11よりも高い場合は、ドレイン電極27とソース電極26の間に電流が流れる。ゲート電極25とソース電極26の間の電圧が負のしきい値電圧VTH11よりも低い場合は、ドレイン電極27とソース電極26の間に電流が流れない。
 また、ノーマリーオフ型電界効果トランジスタ12としては、Siで形成されたNチャネル型のMOS電界効果トランジスタを用いた。
 また、ダイオード13に求められる性能は、アノードとカソードの間の電圧がしきい値電圧VTH13を超えたときに、素早くオンすることである。さらに、ダイオード13は、低コストである必要がある。そこで、本実施形態2ではダイオード13としてショットキーバリアダイオードを使用した。
 ショットキーバリアダイオードはユニポーラ整流素子であるので、リカバリーチャージが少なく、スイッチング時の損失が低減される。また、ショットキーバリアダイオードは動作時間が短いので、スイッチングが速い場合でも確実にリーク電流を抑制することができ、中間電圧(トランジスタ12のドレイン電圧)の上昇を抑えることができる。
 また、ショットキーバリアダイオード構成材料のエネルギーバンドギャップが一般的に多く使用されているSiのエネルギーバンドギャップよりも大きければ大きい程、ダイオード13の直列部品数Nが少なくて済み、dI/dVを大きく保つことができる。これは、エネルギーバンドギャップが広い半導体を使用すると、半導体と電極との仕事関数の差がより増大し、電流が流れ始める順方向電圧がより増大するためである。
 また、ノーマリーオフ型の電界効果トランジスタのソースとゲートを接続することにより、ダイオードすなわちユニポーラ型整流素子として機能させることもできる。この場合、電界効果トランジスタは低耐圧素子であってもよく、数10V程度以上の耐圧ノーマリオフ型のGaNFETを使用すれば低損失あるいは高速のスイッチングが可能となる。また、ノーマリオン型のGaNFETとユニポーラ型整流素子とを同一構造あるいは同一プロセスで作製することができるなので、集積化も可能となる。
 図8(a)は、通常の材料を用いて形成されたショットキーバリアダイオードのV-I特性を示す図であり、図8(b)は、ワイドバンドギャップ半導体材料を用いて形成されたショットキーバリアダイオードのV-I特性を示す図である。図8(a)では、直列接続されたダイオードの数Nを1~6まで変えた場合のV-I特性が示され、図8(b)では、直列接続されたダイオード13の数Nを1~4まで変えた場合のV-I特性が示されている。
 図8(a)(b)から分かるように、ある電圧Vonでオンさせるためには、通常の材料で形成されたダイオードを使用すると、6つのダイオードを直列接続する必要があるのに対し、ワイドバンドギャップ材料で形成されたダイオード13を使用すると、4つのダイオード13を直列接続すれば足りる。
 また、通常の材料で形成された6つのダイオードの直列接続体に所定の電圧V1(V1>Von)を印加した場合に流れる電流をI1とし、ワイドバンドギャップ材料で形成された4つのダイオード13の直列接続体に所定の電圧V1を印加した場合に流れる電流をI2とすると、I2>I1となる。したがって、ワイドバンドギャップ材料で形成されたダイオード13は、通常の材料で形成されたダイオードよりも大きな電流を流せると言う利点を有する。また、ダイオードの個数を少なくすることができ、低コスト化を図ることができる。
 エネルギーバンドギャップが大きい材料としては、たとえば、AlGa1-xN(0≦x≦1)、SiC、ダイヤモンド、ZnO、AlGa1-xAs(0≦x≦1)、InGa1-xP(0≦x≦1)などの材料がある。また、AlInGa1-x―yN(0≦x≦1、0≦y≦1、0≦x+y≦1)は、組成を調整することでエネルギーバンドギャップをSiよりも大きくすることが可能である。なお、上記に限らずエネルギーバンドギャップがSiよりも大きければ材料であれば、どのような材料を用いてもよい。
 ワイドバンドギャップ材料は、トランジスタ11と同じ材料であればさらに好ましい。たとえば、トランジスタ11の材料がGaNであれば、ダイオード13の材料もGaNであることが好ましい。また、トランジスタ11の材料がAlGaN/GaNヘテロ材料であれば、ダイオード13の材料もAlGaN/GaNヘテロ材料であることが好ましい。トランジスタ11とダイオード13を同じ材料で形成することができれば、トランジスタ11とダイオード13の原材料や基板、製造装置の共用が可能となり、材料費や製造費の低減に繋がる。
 本実施形態2では、トランジスタ11としてヘテロ接合電界効果GaNトランジスタを使用したので、ダイオード13としては、リセス構造を有するGaNショットキーバリアダイオード(以下、リセスGaNショットキーバリアダイオードと称す)を使用することが好ましい。
 図9は、そのようなダイオード13の構成を示す断面図である。図9において、ダイオード13は、半導体チップ30の表面に形成されている。半導体チップ30は、半導体基板31と、その表面上に順次積層されたバッファ層32、チャネル層33、および障壁層34と、半導体チップ30の表面に互いに離間して設けられたカソード電極35およびアノード電極36とを備える。
 半導体基板31は、結晶シリコン(Si)基板である。バッファ層32は、AlGaNで形成されている。チャネル層33は、GaNで形成されている。障壁層34は、Al0.25Ga0.75Nで形成されている。チャネル層33と障壁層34のヘテロ接合面のチャネル層33側には、2次元電子ガスによるチャネルが形成される。カソード電極35は、障壁層34の表面に順次積層されたHf層、Al層、Hf層、およびAu層を含む。カソード電極35と障壁層34によって抵抗接合が形成されている。
 アノード電極36は、半導体チップ30の表面のうちの所定の領域に所定の深さで形成されたリセス部(凹部)37内に形成されている。ここで、アノード電極36の形成方法について簡単に説明する。半導体基板31の表面上にバッファ層32、チャネル層33および障壁層34を形成した後、図10に示すように、所定の領域において、障壁層34の表面からチャネル層33の途中まで所定の深さだけ掘り下げてリセス部37を形成する。次に、リセス部37の底面および側面を覆うようにWN層を形成し、WN層の上にW層を積層する。アノード電極36は、積層されたWN層およびW層を含む。アノード電極36と障壁層34およびチャネル層33によってショットキー接合が形成されている。すなわち、アノード電極36と障壁層34に跨ってショットキーバリアダイオードが形成されている。また、アノード電極36とチャネル層33が接触しているので、障壁層34とチャネル層33の界面に形成される2元電子ガスとアノード電極36との間の抵抗値が低減され、ダイオード13のオン抵抗値が低減される。
 また、図11は、トランジスタ11とダイオード13を搭載した半導体チップ40の構成を示す断面図である。図11において、半導体チップ40は、半導体基板41と、その表面上に順次積層されたバッファ層42、チャネル層43、および障壁層44を含む。半導体基板41、バッファ層42、チャネル層43、および障壁層44の各々の材料は、図7および図9で説明した通りである。
 半導体チップ40の表面は、溝45によってトランジスタ領域とダイオード領域に分割されている。溝45は、障壁層44とチャネル層43の界面に形成される二次元電子ガスを2つに分断し、かつ半導体基板41を2分割しないように形成される。図11に示すように、溝45の底を半導体基板41に到達させれば、トランジスタ11とダイオード13の間のリーク電流を低減することができるので、より好ましい。
 図11中の左側のトランジスタ領域では、障壁層44の表面に、トランジスタ11のゲート電極46、ソース電極47、およびドレイン電極48が互いに離間して設けられる。ゲート電極46は、ソース電極47とドレイン電極48の間に設けられる。ゲート電極46、ソース電極47、およびドレイン電極48の各々の材料は、図7で説明した通りである。
 図11中の右側のダイオード領域では、半導体チップ40の表面に、ダイオード13のカソード電極49とアノード電極50とが互いに離間して設けられる。カソード電極49は、障壁層49の表面に形成される。アノード電極50は、障壁層44の表面からチャネル層43の途中まで掘り下げられたリセス部51に設けられる。カソード電極49とアノード電極50の各々の材料は、図9で説明した通りである。
 このように、同じ半導体チップ40にトランジスタ11とダイオード13を混載することにより、基板面積の有効利用、製造工程の低減などに伴う材料費や製造費の低減が可能となる。また、配線距離の短縮に伴う抵抗低減やインダクタンスの低減にも繋がる。
 図11では、1個のトランジスタ11と1個のダイオード13を示したが、1個のトランジスタ11と4個のダイオード13を同じ半導体チップ40に搭載可能であることは言うまでもない。
 図12は、半導体チップ40の表面に搭載された2つのダイオード13を示す断面図である。図12では、図面の簡単化のため、トランジスタ11および残りの2つのダイオード13の図示は省略されている。半導体チップ40の表面には、それぞれ複数のダイオード13を形成するための複数のダイオード領域に分割される。隣接する2つのダイオード領域は、溝52によって分割される。溝52の底は半導体基板41内に到達している。障壁層44とチャネル層44の界面の下にできるチャネル(2次元電子ガス)43aは、溝52によって分断される。
 図12中の左側のダイオード領域では、半導体チップ40の表面に、第1のダイオード13のアノード電極50とカソード電極49とが互いに離間して左右に設けられる。図12中の右側のダイオード領域では、半導体チップ40の表面に、第2のダイオード13のアノード電極50とカソード電極49とが互いに離間して左右に設けられる。
 第1のダイオード13のカソード電極49の溝52側の端部と、第2のダイオード13のアノード電極50の溝52側の端部との間の領域を覆うようにして絶縁膜53が形成される。第1のダイオード13のカソード電極49と、絶縁膜53と、第2のダイオード13のアノード電極50との上にメタル配線54が形成される。メタル配線54は、カソード電極49と同じ材料で形成されていてもよいし、アノード電極50と同じ材料で形成されていてもよいし、他の金属材料で形成されていてもよい。これにより、2つのダイオード13が直列接続される。4つのダイオード13を直列接続する場合も同様である。
 なお、図13に示すように、溝52および絶縁膜53を設けることなく、第1のダイオード13のカソード電極49から第2のダイオード13のアノード電極50までメタル配線54を形成して、2つのダイオード13を直列接続してもよい。
 また、図14に示すように、さらにメタル配線54も省略し、2つのダイオード13を近接させて配置し、第1のダイオード13のカソード電極49の端部からリセス部51に架けて第2のダイオード13のアノード電極50を形成してもよい。これにより、第1のダイオード13のカソード電極49と、第2のダイオード13のアノード電極50とが直接接続される。
 また、半導体チップ40からトランジスタ11を除去し、半導体チップ40にN個のダイオード13だけを搭載してもよい。
 また、図7~図14の例では、トランジスタ11およびダイオード13の障壁層をAl0.25Ga0.75Nで形成したが、これに限るものではなく、AlGaN、GaN、InGaN、またはAlGaInNを障壁層を形成してもよい。また、AlGaN層およびAlN層を積層して多層構造の障壁層を形成してもよい。
 また、トランジスタ11およびダイオード13のチャネル層をGaNで形成したが、これに限るものではなく、AlGaN、GaN、InGaN、またはAlGaInNでチャネル層を形成してもよい。また、GaN層およびAlGaN層を積層して多層構造のチャネル層を形成してもよい。
 また、トランジスタ11のソース電極とドレイン電極、ダイオード13のカソード電極をHf/Al/Hf/Au(Hf層、Al層、Hf層、およびAu層の積層体)で形成したが、Ti/Al、Ti/Au、Ni/Auなどの他の電極材料で形成してもよいことは言うまでもない。
 また、トランジスタ1のゲート電極、ダイオード3のアノード電極をWN/W(WN層およびW層の積層体)で形成したが、Ni/Au、Ti/Au、Ti/Al、Pd/Au、Pt/Au、WSixなどの他の電極材料で形成してもよいことは言うまでもない。
 図15は、実施の形態2の比較例を示す回路図であって、図6と対比される図である。図15の複合型半導体装置が図6の複合型半導体装置と異なる点はN個のダイオード13がツェナーダイオード60で置換されている点である。ツェナーダイオード60のカソードおよびアノードは、それぞれトランジスタ12のドレインおよびソースに接続されている。ツェナーダイオード60のツェナー電圧は上記所定の電圧Vc1に設定されている。
 図16は、図6の複合型半導体装置の動作と図15の複合型半導体装置の動作を比較するタイムチャートである。ダイオード13としては、リセスGaNショットキーバリアダイオードを使用した。各複合型半導体装置において、電源電圧V11として150Vを印加し、ゲート端子T13の電圧を「H」レベルの電圧V14=10Vから「L」レベルの電圧V13=0Vに切り換えた場合におけるトランジスタ12のドレイン-ソース間電圧Vdsを測定した。
 図16から分かるように、リセスGaNショットキーバリアダイオードを用いた複合型半導体装置では、ツェナーダイオードを用いた複合型半導体装置と比較して、Vdsのピーク電圧が小さく抑えられている。また、Vdsが立ち上がり始めてから定常状態に落ち着くまでの時間(以下、動作時間と呼ぶ)が著しく短縮されている。
 また、ドレイン端子T11に電源電圧V11として100V、200Vを印加し、150Vと同様の測定を行なった。電源電圧V11とVdsのピーク値との関係を図17に示し、電源電圧V11と動作時間の関係を図18に示す。これらの図17および図18から、リセスGaNショットキーバリアダイオードを用いた複合型半導体装置では、ツェナーダイオードを用いた複合型半導体装置と比較して、Vdsピーク値、動作時間ともに低く抑えられていることが分かる。これは、リセスGaNショットキーバリアダイオードの応答速度がツェナーダイオードの応答速度よりも速いことを示している。
 したがって、リセスGaNショットキーバリアダイオードを用いた複合型半導体装置では、トランジスタ12のドレイン-ソース間電圧Vdsが急に上昇してトランジスタ12が破壊されるのを確実に防止することができ、また、長時間高い電圧がトランジスタ12のドレイン-ソース間にかかることによりトランジスタ12が破壊されるのを確実に防止することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 T1,T11 ドレイン端子、T2,T12 ソース端子、T3,T13 ゲート端子、1,11 ノーマリーオン型電界効果トランジスタ、2,12 ノーマリーオフ型電界効果トランジスタ、3,12a,13 ダイオード、4,60 ツェナーダイオード、20,30,40 半導体チップ、21,31,41 半導体基板、22,32,42 バッファ層、23,33,43 チャネル層、43a チャネル、24,34,44 障壁層、25,46 ゲート電極、26,47 ソース電極、27,48 ドレイン電極、35,49 カソード電極、36,50 アノード電極、37,51 リセス部、45,52 溝、53 絶縁膜、54 メタル配線。

Claims (12)

  1.  第1の電圧を受ける第1の端子(T1)と、
     前記第1の電圧よりも低い第2の電圧を受ける第2の端子(T2)と、
     第3の電圧と該第3の電圧よりも高い第4の電圧とのうちのいずれか一方の電圧が選択的に与えられる第3の端子(T3)と、
     ドレインが前記第1の端子(T1)に接続され、ゲートが前記第2の端子(T2)に接続されたノーマリーオン型の第1の電界効果トランジスタ(1,11)と、
     ドレインが前記第1の電界効果トランジスタ(1,11)のソースに接続され、ソースが前記第2の端子(T2)に接続され、ゲートが前記第3の端子(T3)に接続され、前記第3の端子(T3)に前記第3の電圧が与えられた場合は非導通になり、前記第3の端子(T3)に前記第4の電圧が与えられた場合は導通するノーマリーオフ型の第2の電界効果トランジスタ(2,12)と、
     前記第2の電界効果トランジスタ(2,12)のドレインおよびソース間に順方向に直列接続され、前記第2の電界効果トランジスタ(2,12)のドレインおよびソース間の電圧が前記第2の電界効果トランジスタ(2,12)の耐圧以下の予め定められた電圧を超えた場合に導通するN個(ただし、Nは自然数である)のユニポーラ型整流素子(3,13)とを備える、複合型半導体装置。
  2.  前記第3の端子(T3)の電圧が前記第4の電圧から前記第3の電圧に変化した場合において、前記第2の電界効果トランジスタ(2,12)のドレインおよびソース間の電圧が上昇を開始してから前記N個のユニポーラ型整流素子(3,13)が導通するまでの時間は、前記第2の電界効果トランジスタ(2,12)のドレインおよびソース間の電圧が上昇を開始してから前記第2の電界効果トランジスタ(2,12)が非導通になるまでの時間の2分の1以下に設定されている、請求項1に記載の複合型半導体装置。
  3.  前記N個のユニポーラ型整流素子(13)の各々はショットキーダイオードである、請求項1に記載の複合型半導体装置。
  4.  前記N個のユニポーラ型整流素子(13)の各々は、エネルギーバンドギャップがSiよりも大きな材料を用いて形成されている、請求項3に記載の複合型半導体装置。
  5.  前記材料は、AlGa1-xN(0≦x≦1)、SiC、ダイヤモンド、AlGa1-xAs(0≦x≦1)、InGa1-xP(0≦x≦1)、またはAlInGa1-x―yN(0≦x≦1、0≦y≦1、0≦x+y≦1)である、請求項4に記載の複合型半導体装置。
  6.  第1の半導体基板(41)上に順次積層された第1および第2の窒化物系半導体層(43,44)を含む第1の半導体チップ(40)を備え、
     前記N個のショットキーダイオード(13)は前記第1の半導体チップ(40)の表面のN個の領域にそれぞれ形成され、
     各領域には、対応のショットキーダイオード(13)のアノード電極(50)およびカソード電極(49)が互いに離間して設けられ、
     各領域には、前記第2の窒化物系半導体層(44)を貫通して前記第1の窒化物系半導体層(43)に到達するリセス部(51)が形成され、
     前記アノード電極(50)は前記リセス部(51)に形成され、
     前記カソード電極(49)は前記第2の窒化物系半導体層(44)の表面に形成されている、請求項3に記載の複合型半導体装置。
  7.  第2の半導体基板(21)上に順次積層された第3および第4の窒化物系半導体層(23,24)を含む第2の半導体チップ(20)を備え、
     前記第1の電界効果トランジスタ(11)は前記第2の半導体チップ(20)の表面に形成され、
     前記第1の電界効果トランジスタ(11)のゲート電極(25)、ソース電極(26)およびドレイン電極(27)は前記第4の窒化物系半導体層(24)の表面に形成され、
     ゲート電極(25)は、ソース電極(26)およびドレイン電極(27)の間に設けられている、請求項6に記載の複合型半導体装置。
  8.  前記第3の窒化物系半導体層(23)はGaNで形成され、前記第4の窒化物系半導体層(24)はAlGa1-xN(0<x≦1)で形成されている、請求項7に記載の複合型半導体装置。
  9.  半導体基板(41)上に順次積層された第1および第2の窒化物系半導体層(43,44)を含む半導体チップ(40)を備え、
     前記N個のショットキーダイオード(13)は半導体チップ(40)の表面のN個の第1領域にそれぞれ形成され、
     前記第1の電界効果トランジスタ(11)は前記半導体チップ(40)の表面の第2領域に形成され、
     各第1領域には、対応のショットキーダイオード(13)のアノード電極(50)およびカソード電極(49)が互いに離間して設けられ、
     各第1領域には、前記第2の窒化物系半導体層を貫通して前記第1の窒化物系半導体層に到達するリセス部(51)が形成され、
     前記アノード電極(50)は前記リセス部(51)に形成され、
     前記カソード電極(49)は前記第2の窒化物系半導体層(44)の表面に形成され、
     前記第2の領域の前記第2の窒化物系半導体層(44)の表面には、前記第1の電界効果トランジスタ(11)のゲート電極(46)、ソース電極(47)およびドレイン電極(48)が形成され、
     ゲート電極(46)は、ソース電極(47)およびドレイン電極(48)の間に設けられている、請求項3に記載の複合型半導体装置。
  10.  前記第1の窒化物系半導体層(43)はGaNで形成され、前記第2の窒化物系半導体層(44)はAlGa1-xN(0<x≦1)で形成されている、請求項9に記載の複合型半導体装置。
  11.  さらに、前記第1の電界効果トランジスタ(11)のゲートと前記第2の端子(T2)との間に介挿された第1の抵抗素子(15)を備える、請求項1に記載の複合型半導体装置。
  12.  さらに、前記第1の端子(T1)と前記第1の電界効果トランジスタ(11)のドレインとの間に介挿された第2の抵抗素子(14)を備える、請求項1に記載の複合型半導体装置。
PCT/JP2010/073691 2010-01-25 2010-12-28 複合型半導体装置 WO2011089837A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080062295.5A CN102725840B (zh) 2010-01-25 2010-12-28 复合型半导体装置
JP2011550827A JP5575816B2 (ja) 2010-01-25 2010-12-28 複合型半導体装置
US13/574,993 US8766275B2 (en) 2010-01-25 2010-12-28 Composite semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-013083 2010-01-25
JP2010013083 2010-01-25
JP2010-182165 2010-08-17
JP2010182165 2010-08-17

Publications (1)

Publication Number Publication Date
WO2011089837A1 true WO2011089837A1 (ja) 2011-07-28

Family

ID=44306648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073691 WO2011089837A1 (ja) 2010-01-25 2010-12-28 複合型半導体装置

Country Status (5)

Country Link
US (1) US8766275B2 (ja)
JP (1) JP5575816B2 (ja)
CN (1) CN102725840B (ja)
TW (1) TWI422152B (ja)
WO (1) WO2011089837A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042270A (ja) * 2011-08-12 2013-02-28 Advanced Power Device Research Association トランジスタ回路、双方向スイッチ回路、ダイオード回路及びトランジスタ回路の製造方法
WO2013146570A1 (ja) * 2012-03-27 2013-10-03 シャープ株式会社 カスコード回路
JP2013222905A (ja) * 2012-04-18 2013-10-28 Sharp Corp 半導体装置および電子機器
JP2014038919A (ja) * 2012-08-14 2014-02-27 Univ Of Tokushima ダイオード、電力伝送システムおよび電源線用無線接続コネクタ
JP2015008431A (ja) * 2013-06-25 2015-01-15 株式会社東芝 半導体装置
JP2015032675A (ja) * 2013-08-01 2015-02-16 株式会社東芝 半導体装置
WO2015166523A1 (ja) * 2014-04-28 2015-11-05 株式会社日立産機システム 半導体装置および電力変換装置
US9356015B2 (en) 2012-08-28 2016-05-31 Sharp Kabushiki Kaisha Composite semiconductor device
US10084442B2 (en) 2015-07-15 2018-09-25 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205356A (ja) * 2011-03-24 2012-10-22 Sharp Corp 整流スイッチユニット、整流回路及びスイッチング電源装置
JP2013153027A (ja) * 2012-01-24 2013-08-08 Fujitsu Ltd 半導体装置及び電源装置
WO2014167876A1 (ja) * 2013-04-12 2014-10-16 シャープ株式会社 窒化物半導体装置
JP6201422B2 (ja) * 2013-05-22 2017-09-27 富士電機株式会社 半導体装置
JP6223729B2 (ja) 2013-06-25 2017-11-01 株式会社東芝 半導体装置
US9048838B2 (en) 2013-10-30 2015-06-02 Infineon Technologies Austria Ag Switching circuit
US9525063B2 (en) 2013-10-30 2016-12-20 Infineon Technologies Austria Ag Switching circuit
CN105763178A (zh) * 2014-12-17 2016-07-13 台达电子工业股份有限公司 串叠开关装置与稳压保护方法
US10128829B2 (en) * 2015-05-15 2018-11-13 Sharp Kabushiki Kaisha Composite semiconductor device
JP6701641B2 (ja) * 2015-08-13 2020-05-27 富士電機株式会社 半導体モジュール
EP3136437A1 (en) * 2015-08-27 2017-03-01 Nexperia B.V. Semiconductor device and associated methods
WO2017043611A1 (ja) * 2015-09-10 2017-03-16 古河電気工業株式会社 パワーデバイス
US9748941B2 (en) * 2015-10-27 2017-08-29 Electronics And Telecommunications Research Institute Power semiconductor module and method for stabilizing thereof
EP3193449B1 (en) * 2016-01-18 2020-03-11 Nexperia B.V. Apparatus and associated method
DE112017007345T5 (de) * 2017-03-28 2019-12-12 Mitsubishi Electric Corporation Halbleitervorrichtung
US11211484B2 (en) 2019-02-13 2021-12-28 Monolithic Power Systems, Inc. Vertical transistor structure with buried channel and resurf regions and method of manufacturing the same
US11088688B2 (en) 2019-02-13 2021-08-10 Logisic Devices, Inc. Configurations of composite devices comprising of a normally-on FET and a normally-off FET
CN111786564B (zh) * 2020-07-15 2022-03-01 江苏能华微电子科技发展有限公司 一种高效率紧凑型快充电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156457A (ja) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd ショットキーバリアダイオード及びダイオードアレイ
JP2006237430A (ja) * 2005-02-28 2006-09-07 New Japan Radio Co Ltd 窒化物半導体装置
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2008263068A (ja) * 2007-04-12 2008-10-30 Nec Electronics Corp 静電気保護回路
JP2010003959A (ja) * 2008-06-23 2010-01-07 Sanken Electric Co Ltd 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177723A (ja) * 1984-02-24 1985-09-11 Hitachi Ltd 出力回路
US5319259A (en) * 1992-12-22 1994-06-07 National Semiconductor Corp. Low voltage input and output circuits with overvoltage protection
DE19943785A1 (de) * 1998-09-25 2000-03-30 Siemens Ag Elektronische Schalteinrichtung mit mindestens zwei Halbleiterbauelementen
DE19855900B4 (de) 1998-12-03 2004-04-08 Siemens Ag Verfahren zur Verringerung von Verlusten beim Kommutierungsvorgang
US20070170897A1 (en) 2006-01-26 2007-07-26 Advanced Analogic Technologies, Inc. High-Frequency Power MESFET Buck Switching Power Supply
JP5358882B2 (ja) * 2007-02-09 2013-12-04 サンケン電気株式会社 整流素子を含む複合半導体装置
JP2008263088A (ja) 2007-04-12 2008-10-30 Rohm Co Ltd 半導体装置
JP2008264068A (ja) * 2007-04-17 2008-11-06 Kanako Shiiba 浴槽付き岩盤浴装置およびそれを備えたポータブルユニットハウス
US7696791B2 (en) * 2007-12-31 2010-04-13 Intel Corporation High-speed amplitude detector with a digital output
US8169759B2 (en) * 2008-01-28 2012-05-01 Micron Technology, Inc. Circuit and methods to protect input buffer
JP4803241B2 (ja) * 2008-11-27 2011-10-26 三菱電機株式会社 半導体モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156457A (ja) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd ショットキーバリアダイオード及びダイオードアレイ
JP2006237430A (ja) * 2005-02-28 2006-09-07 New Japan Radio Co Ltd 窒化物半導体装置
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2008263068A (ja) * 2007-04-12 2008-10-30 Nec Electronics Corp 静電気保護回路
JP2010003959A (ja) * 2008-06-23 2010-01-07 Sanken Electric Co Ltd 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042270A (ja) * 2011-08-12 2013-02-28 Advanced Power Device Research Association トランジスタ回路、双方向スイッチ回路、ダイオード回路及びトランジスタ回路の製造方法
WO2013146570A1 (ja) * 2012-03-27 2013-10-03 シャープ株式会社 カスコード回路
JP5800986B2 (ja) * 2012-03-27 2015-10-28 シャープ株式会社 カスコード回路
JP2013222905A (ja) * 2012-04-18 2013-10-28 Sharp Corp 半導体装置および電子機器
JP2014038919A (ja) * 2012-08-14 2014-02-27 Univ Of Tokushima ダイオード、電力伝送システムおよび電源線用無線接続コネクタ
US9356015B2 (en) 2012-08-28 2016-05-31 Sharp Kabushiki Kaisha Composite semiconductor device
JPWO2014034346A1 (ja) * 2012-08-28 2016-08-08 シャープ株式会社 複合型半導体装置
JP2015008431A (ja) * 2013-06-25 2015-01-15 株式会社東芝 半導体装置
JP2015032675A (ja) * 2013-08-01 2015-02-16 株式会社東芝 半導体装置
WO2015166523A1 (ja) * 2014-04-28 2015-11-05 株式会社日立産機システム 半導体装置および電力変換装置
US10084442B2 (en) 2015-07-15 2018-09-25 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
TW201201508A (en) 2012-01-01
CN102725840A (zh) 2012-10-10
JPWO2011089837A1 (ja) 2013-05-23
US20120292635A1 (en) 2012-11-22
CN102725840B (zh) 2014-12-10
US8766275B2 (en) 2014-07-01
TWI422152B (zh) 2014-01-01
JP5575816B2 (ja) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5575816B2 (ja) 複合型半導体装置
JP5492238B2 (ja) 低電圧デバイス保護付き高電圧複合半導体デバイス
JP5130906B2 (ja) スイッチ装置
US7719055B1 (en) Cascode power switch topologies
CN109427772B (zh) 用于衬底电位稳定化的具有无源电网络的双向开关
US8368121B2 (en) Enhancement-mode HFET circuit arrangement having high power and high threshold voltage
JP6097298B2 (ja) 信頼性が高められたハイパワー半導体電子部品
JP6201422B2 (ja) 半導体装置
US9160326B2 (en) Gate protected semiconductor devices
KR101922117B1 (ko) 트랜지스터를 포함하는 전자소자 및 그 동작방법
US20110305054A1 (en) Bi-directional switch, alternating-current two-wire switch, switching power source circuit, and method of driving bi-directional switch
US20090072269A1 (en) Gallium nitride diodes and integrated components
JP5036233B2 (ja) 半導体スイッチング素子および半導体回路装置
US9300223B2 (en) Rectifying circuit and semiconductor device
EP2390919A2 (en) III-Nitride switching device with an emulated diode
US9252253B2 (en) High electron mobility transistor
JP2018056506A (ja) 半導体装置
US20140021934A1 (en) Devices and components for power conversion circuits
JP2013219306A (ja) 半導体ダイオード装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062295.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574993

Country of ref document: US

Ref document number: 2011550827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844001

Country of ref document: EP

Kind code of ref document: A1