WO2013146570A1 - カスコード回路 - Google Patents

カスコード回路 Download PDF

Info

Publication number
WO2013146570A1
WO2013146570A1 PCT/JP2013/058241 JP2013058241W WO2013146570A1 WO 2013146570 A1 WO2013146570 A1 WO 2013146570A1 JP 2013058241 W JP2013058241 W JP 2013058241W WO 2013146570 A1 WO2013146570 A1 WO 2013146570A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
drain
power supply
circuit
Prior art date
Application number
PCT/JP2013/058241
Other languages
English (en)
French (fr)
Inventor
阿部 和也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380017077.3A priority Critical patent/CN104205638B/zh
Priority to US14/385,641 priority patent/US9515649B2/en
Priority to JP2014507815A priority patent/JP5800986B2/ja
Publication of WO2013146570A1 publication Critical patent/WO2013146570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches

Definitions

  • the present invention relates to a cascode circuit, and more particularly to a cascode circuit that operates normally off.
  • High voltage power transistors using SiC (silicon carbide), GaN (gallium nitride), and the like are rapidly expanding in applications such as switching power supplies.
  • a gate drive circuit normally-off operation gate
  • driving normally-off type switching elements generally used in switching power supplies and the like.
  • Drive circuit cannot be applied.
  • a cascode circuit may be configured by connecting the drain of the normally-off type switching element to the source of the normally-on type switching element.
  • FIG. 7 is a circuit diagram showing a circuit configuration of a conventional cascode circuit.
  • the cascode circuit shown in FIG. 7 includes a switching element Q1 and a switching element Q2.
  • the switching element Q1 is a normally-off type, and the switching element Q2 is a normally-on type FET (Field Effect Transistor).
  • the source of the switching element Q2 is connected to the drain of the switching element Q1.
  • the source of the switching element Q1 is connected to the gate of the switching element Q2.
  • a gate drive circuit 100 for normally-off operation is connected to the gate of the switching element Q1.
  • the gate drive element G In the gate drive circuit 100, the gate drive element G generates a gate drive signal for normally-off operation based on the control signal supplied from the signal source S, and outputs it to the gate of the switching element Q1.
  • the gate drive circuit 100 is supplied with a power supply voltage V from a power supply E via a power supply terminal P.
  • the resistor R is a gate resistor and adjusts the transmission time of the gate drive signal.
  • the capacitor C is a bypass capacitor of the gate drive circuit 100 and stabilizes the power supply voltage V supplied to the power supply terminal P.
  • the capacitor C0 is a capacitor for stabilizing the power supply E.
  • connection point P0 The connection between the source of the switching element Q1 and an external circuit (not shown) is the connection point P0, the connection between the drain of the switching element Q1 and the source of the switching element Q2 is the connection point P1, and the drain of the switching element Q2 and the external circuit ( A connection point (not shown) is defined as a connection point P2.
  • the cascode circuit can turn off the normally-on switching element Q2 when the gate drive circuit 100 for normally-off operation is turned off.
  • the turn-off operation of the cascode circuit shown in FIG. 7 will be described with reference to FIG.
  • FIG. 8 is a waveform diagram showing temporal changes in the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit shown in FIG.
  • Waveform 8a is the gate-source voltage Vgs1 of switching element Q1
  • waveform 8b is the drain-source voltage Vds1 of switching element Q1
  • waveform 8c is the gate-source voltage Vgs2 of switching element Q2
  • waveform 8d is the drain of switching element Q2.
  • the drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 are both zero.
  • the drain-source voltage Vds1 of the switching element Q1 starts increasing.
  • the voltage applied to the source of the normally-on type switching element Q2 increases, so that the gate-source voltage Vgs2 of the switching element Q2 becomes a negative voltage.
  • the magnitudes of the drain-source voltage Vds1 of the switching element Q1 and the gate-source voltage Vgs2 of the switching element Q2 are potential differences between the connection point P0 and the connection point P1, but the direction of each voltage is The sign is opposite. Therefore, the negative voltage applied to the gate-source voltage Vgs2 of the switching element Q2 increases.
  • the switching element Q2 starts a turn-off operation.
  • the switching element Q2 starts to turn off, but immediately starts switching from the on state to the off state. Not to do.
  • Switching element Q2 starts switching from the on state to the off state after a delay time ⁇ t2 from the start of the turn-off operation. Since the switching element Q2 remains on from time (t1 + ⁇ t1) to time (t2 + ⁇ t2), the potential at the connection point P1 is the same as the potential at the connection point P2. Therefore, the increase in the drain-source voltage Vds1 of the switching element Q1 directly increases the potential at the connection point P2.
  • the switching element Q2 starts switching from the on state to the off state, so that the drain-source voltage Vds2 of the switching element Q2 starts increasing.
  • the potential at the connection point P2 continues to rise.
  • the drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 indicate the potential difference between the connection point P0 and the connection point P2, and the drain-source voltage of the switching element Q1.
  • the voltage is divided according to the parasitic capacitance of the source-to-source voltage and the ratio of the parasitic capacitance between the drain and source of the switching element Q2. Therefore, the drain-source voltage Vds1 of the switching element Q1 continues to increase.
  • the switching element Q1 and the switching element Q2 complete the turn-off operation, and both are in the off state.
  • the drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 indicate the potential difference between the connection point P0 and the connection point P2, and the parasitic between the drain-source of the switching element Q1.
  • the voltage is divided according to the capacitance and the ratio of the parasitic capacitance between the drain and source of the switching element Q2.
  • the withstand voltage required for the switching element Q1 is about the same as the power supply voltage V, a switching element with a low withstand voltage is used as the switching element Q1. This is because, in a switching element such as an FET, it is known that the lower the breakdown voltage, the smaller the on-resistance, so that power loss during conduction can be reduced. When an external circuit that requires a high voltage is connected to the cascode circuit, it is necessary to use a high breakdown voltage switching element as the normally-on type switching element Q2.
  • drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 are voltages obtained by dividing the potential difference between the connection point P0 and the connection point P2 as described above. Depending on the ratio of the parasitic capacitance, a high voltage may be applied between the drain and source of the switching element Q1. Therefore, in the low breakdown voltage switching element Q1, the drain-source voltage Vds1 of the switching element Q1 may exceed the breakdown voltage and be damaged.
  • Patent Document 1 specifically discloses the following two circuit configurations.
  • a Zener diode for clamping a voltage is connected in parallel to the switching element between the drain and the source of the normally-off type switching element so that the cathode is connected to the drain of the switching element. It is.
  • the switching element can be prevented from being damaged.
  • the drain-source voltage exceeds the breakdown voltage, the energy that would normally increase the voltage becomes a power loss as a Zener breakdown. Therefore, the power conversion efficiency is lowered, and there is a concern about an adverse effect on the long-term reliability of the Zener diode.
  • a capacitor is connected in parallel between the drain and source of the normally-off type switching element to moderate the increase in drain-source voltage.
  • the present invention has been made to solve the above-mentioned problems, and prevents a normally-off type switching element from being damaged during a turn-off operation, and reduces a power loss.
  • the purpose is to provide.
  • a cascode circuit includes a first switching element that is a normally-off type, and a second switching element in which a source is connected to the drain of the first switching element. And a normally-off operation is performed by a gate driving circuit connected to the gate of the first switching element.
  • a clamp circuit that clamps a voltage between the drain and source of one switching element to a power supply voltage supplied from a power supply is further provided.
  • the second switching element is normally on, and the source of the first switching element is connected to the gate.
  • the clamp circuit includes a first diode connected in series between the drain of the first switching element and the power supply terminal so that the anode is connected to the drain of the first switching element.
  • the second switching element is a normally-off type, and a power supply voltage supplied from a power supply is input to the gate.
  • the clamp circuit includes a first diode connected in series between the drain of the first switching element and the power supply terminal so that the anode is connected to the drain of the first switching element.
  • the clamp circuit includes a capacitor connected between the cathode of the first diode and the source of the first switching element, and a resistor connected between the cathode of the first diode and the power supply terminal of the gate drive circuit. And further including.
  • the clamp circuit includes a capacitor connected between the cathode of the first diode and the source of the first switching element, and an inductor connected between the cathode of the first diode and the power supply terminal of the gate drive circuit. And a second diode connected in series between the power supply and the power supply terminal so as to connect the cathode to the power supply terminal.
  • the cascode circuit according to the present invention includes a clamp circuit, and suppresses the drain-source voltage of the first switching element to be equal to or lower than the power supply voltage supplied to the power supply terminal of the gate drive circuit. Since the power supply voltage of the gate driving circuit is a voltage supplied to the gate for driving the first switching element, it is set to be less than the gate-source breakdown voltage of the first switching element. Therefore, the power supply voltage of the gate drive circuit is less than the drain-source breakdown voltage. Therefore, the drain-source voltage of the first switching element is suppressed to be less than the drain-source breakdown voltage, and the first switching element can be prevented from being damaged.
  • the power loss of the cascode circuit is only energy consumed when the drain voltage of the first switching element exceeds the power supply voltage of the gate drive circuit in the clamp circuit. Power loss can be reduced. As described above, it is possible to realize a cascode circuit that prevents the first switching element from being damaged during the turn-off operation and that reduces power loss.
  • FIG. 2 is a waveform diagram showing temporal changes in the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit shown in FIG. It is a circuit diagram which shows the circuit structure of the cascode circuit which concerns on Embodiment 2 of this invention. It is a circuit diagram which shows the circuit structure of the cascode circuit which concerns on Embodiment 3 of this invention.
  • FIG. 5 is a waveform diagram showing temporal changes of the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit shown in FIG.
  • FIG. 8 is a waveform diagram showing temporal changes in the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit shown in FIG.
  • FIG. 1 is a circuit diagram showing a circuit configuration of a cascode circuit according to Embodiment 1 of the present invention.
  • the cascode circuit 1 shown in FIG. 1 includes a switching element Q1, a switching element Q2, and a clamp circuit 10.
  • the switching element Q1 (first switching element) is a normally-off type FET, and the switching element Q2 (second switching element) is a normally-on type power transistor.
  • the source of the switching element Q2 is connected to the drain of the switching element Q1.
  • the source of the switching element Q1 is connected to the gate of the switching element Q2.
  • a gate drive circuit 100 for normally-off operation is connected to the gate of the switching element Q1.
  • the gate drive element G In the gate drive circuit 100, the gate drive element G generates a gate drive signal for normally-off operation based on the control signal supplied from the signal source S, and outputs it to the gate of the switching element Q1.
  • the gate drive circuit 100 is supplied with a power supply voltage V from a power supply E via a power supply terminal P.
  • the resistor R is a gate resistor and adjusts the transmission time of the gate drive signal.
  • the capacitor C is a bypass capacitor of the gate drive circuit 100 and stabilizes the power supply voltage V supplied to the power supply terminal P.
  • the capacitor C0 is a capacitor for stabilizing the power supply E.
  • the clamp circuit 10 includes a diode D1, a capacitor C1, and a resistor R1.
  • the diode D1 (first diode) is connected in series between the drain of the switching element Q1 and the power supply terminal P so that the anode is connected to the drain of the switching element Q1.
  • the capacitor C1 is connected between the cathode of the diode D1 and the source of the switching element Q1.
  • the resistor R1 is a discharge resistor, and is connected in series between the cathode of the diode D1 and the power supply terminal P in order to discharge the excess charge of the capacitor C1.
  • connection point P0 The connection between the source of the switching element Q1 and an external circuit (not shown) is the connection point P0, the connection between the drain of the switching element Q1 and the source of the switching element Q2 is the connection point P1, and the drain of the switching element Q2 and the external circuit ( A connection point (not shown) is defined as a connection point P2.
  • FIG. 2 is a waveform diagram showing temporal changes in the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit 1 shown in FIG.
  • Waveform 2a is a gate-source voltage Vgs1 of switching element Q1
  • waveform 2b is a drain-source voltage Vds1 of switching element Q1
  • waveform 2c is a voltage Vc1 between terminals of capacitor C1
  • waveform 2d is a gate-source voltage of switching element Q2.
  • a voltage Vgs2 and a waveform 2e indicate the drain-source voltage Vds2 of the switching element Q2.
  • the drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 are both zero.
  • the capacitor C1 is charged with the power supply voltage V.
  • the drain-source voltage Vds1 of the switching element Q1 starts increasing.
  • the voltage applied to the source of the normally-on type switching element Q2 increases, so that the gate-source voltage Vgs2 of the switching element Q2 becomes a negative voltage.
  • the magnitudes of the drain-source voltage Vds1 of the switching element Q1 and the gate-source voltage Vgs2 of the switching element Q2 are potential differences between the connection point P0 and the connection point P1, but the direction of each voltage is The sign is opposite. Therefore, the negative voltage applied to the gate-source voltage Vgs2 of the switching element Q2 increases.
  • the switching element Q2 starts a turn-off operation.
  • the switching element Q2 starts to turn off, but immediately starts switching from the on state to the off state. Not to do.
  • Switching element Q2 starts switching from the on state to the off state after a delay time ⁇ t2 from the start of the turn-off operation. Since the switching element Q2 remains on from time (t1 + ⁇ t1) to time (t2 + ⁇ t2), the potential at the connection point P1 is the same as the potential at the connection point P2. Therefore, the increase in the drain-source voltage Vds1 of the switching element Q1 directly increases the potential at the connection point P2.
  • the drain-source voltage Vds1 of the switching element Q1 reaches the power supply voltage V supplied to the power supply terminal P of the gate drive circuit 100.
  • the current flowed through the path of connection point P2-connection point P1-connection point P0 due to the rectifying action of diode D1.
  • time t3 clamps the potential at the connection point P1 to the power supply voltage V by the clamp circuit 10, a current flows through another path of the connection point P2-connection point P1-diode D1-capacitor C1.
  • the switching element Q2 starts switching from the on state to the off state, so that the drain-source voltage Vds2 of the switching element Q2 starts increasing.
  • the drain-source voltage Vds1 of the switching element Q1 and the terminal-to-terminal voltage Vc1 of the capacitor C1 exceed the power supply voltage V by a voltage ⁇ V due to the current flowing through another path. Since the capacitor C1 has a capacitance several orders of magnitude larger than the parasitic capacitance between the drain and source of the switching element Q1, the voltage ⁇ V is smaller than the power supply voltage V. Therefore, the drain-source voltage Vds1 of the switching element Q1 does not greatly exceed the power supply voltage V.
  • the switching element Q1 and the switching element Q2 complete the turn-off operation, and both are in the off state. Since the resistor R1 consumes energy corresponding to the voltage ⁇ V stored in the capacitor C1 according to the time constant (R1 ⁇ C1), the drain-source voltage Vds1 of the switching element Q1 converges to the power supply voltage V, and the capacitor C1 The inter-terminal voltage Vc1 returns to the power supply voltage V again.
  • the gate-source breakdown voltage of the switching element Q1 is set higher than the power supply voltage V. Since the drain-source breakdown voltage of the switching element Q1 is theoretically higher than the gate-source breakdown voltage, it is higher than the power supply voltage V. Therefore, if the drain voltage of the switching element Q1 is clamped to be equal to or lower than the power supply voltage V, the drain-source voltage Vds1 of the switching element Q1 can be suppressed to be less than the drain-source breakdown voltage. It can be prevented from being damaged.
  • the cascode circuit 1 only energy consumed when the drain voltage of the switching element Q1 exceeds the power supply voltage V (energy corresponding to the voltage ⁇ V) is consumed as heat by the resistor R1, resulting in power loss.
  • the conventional cascode circuit described in Patent Document 1 all the energy corresponding to the voltage exceeding the breakdown voltage of the Zener diode or all the energy stored in the capacitor becomes power loss. Therefore, the cascode circuit 1 can reduce power loss as compared with the conventional cascode circuit.
  • the first embodiment it is possible to realize a cascode circuit that prevents the switching element Q1 from being damaged during the turn-off operation and reduces the power loss.
  • FIG. 3 is a circuit diagram showing a circuit configuration of the cascode circuit according to the second embodiment of the present invention.
  • the cascode circuit 2 shown in FIG. 3 is different from the cascode circuit 1 according to the first embodiment in that a clamp circuit 20 is provided. Note that the same components as those of the cascode circuit 1 are denoted by the same reference numerals and detailed description thereof will not be repeated.
  • the clamp circuit 20 includes a diode D1, a capacitor C1, and a diode D2.
  • the diode D1 (first diode) is connected in series between the drain of the switching element Q1 and the power supply terminal P so that the anode is connected to the drain of the switching element Q1.
  • the capacitor C1 is connected between the cathode of the diode D1 and the source of the switching element Q1.
  • the inductor L1 is connected in series between the cathode of the diode D1 and the power supply terminal P.
  • the diode D2 (second diode) is connected in series between the power supply E and the power supply terminal P so that the cathode is connected to the power supply terminal P.
  • the drain-source voltage Vds1 of the switching element Q1 and the terminal-to-terminal voltage Vc1 of the capacitor C1 exceed the power supply voltage V by a voltage ⁇ V due to the current flowing through another path. Since the capacitor C1 has a capacitance several orders of magnitude larger than the parasitic capacitance between the drain and source of the switching element Q1, the voltage ⁇ V is smaller than the power supply voltage V. The energy corresponding to the voltage ⁇ V is temporarily stored in the inductor L1, and then supplied to the gate drive circuit 100. The diode D2 prevents the energy corresponding to the voltage ⁇ V from flowing back to the power source E.
  • the drain-source voltage Vds1 of the switching element Q1 and the terminal-to-terminal voltage Vc1 of the capacitor C1 are clamped and become equal to or lower than the voltage (V + ⁇ V). Therefore, the drain-source voltage Vds1 of the switching element Q1 does not greatly exceed the power supply voltage V of the gate drive circuit 100.
  • the switching element Q1 and the switching element Q2 complete the turn-off operation, and both are in the off state.
  • the drain-source voltage Vds1 of the switching element Q1 converges to the power supply voltage V, and the inter-terminal voltage Vc1 of the capacitor C1 also returns to the power supply voltage V.
  • the switching element Q1 can be prevented from being damaged during the turn-off operation.
  • energy corresponding to the voltage ⁇ V is supplied to the gate drive circuit 100 and used for its operation, it is not consumed as heat by the resistor R1 as in the first embodiment and does not cause power loss. Therefore, power loss can be further reduced.
  • FIG. 4 is a circuit diagram showing a circuit configuration of a cascode circuit according to Embodiment 3 of the present invention.
  • the cascode circuit 3 shown in FIG. 4 is characterized in that the switching element Q2 is a normally-off power transistor and that the power supply voltage V is input to the gate of the switching element Q2 accordingly. This is different from the cascode circuit 1 according to FIG.
  • the clamp circuit 10 is the same as that in the cascode circuit 1. Note that the same components as those of the cascode circuit 1 are denoted by the same reference numerals and detailed description thereof will not be repeated.
  • FIG. 5 is a waveform diagram showing temporal changes in the gate-source voltage and the drain-source voltage of each switching element during the turn-off operation in the cascode circuit 3 shown in FIG.
  • Waveform 5a is a gate-source voltage Vgs1 of switching element Q1
  • waveform 5b is a drain-source voltage Vds1 of switching element Q1
  • waveform 5c is a voltage Vc1 between terminals of capacitor C1
  • waveform 5d is a gate-source voltage of switching element Q2.
  • a voltage Vgs2 and a waveform 5e indicate the drain-source voltage Vds2 of the switching element Q2.
  • the gate-source voltage Vgs2 of the normally-off type switching element Q2 is the power supply voltage V, and both the switching element Q1 and the switching element Q2 are in the on state.
  • the drain-source voltage Vds1 of the switching element Q1 and the drain-source voltage Vds2 of the switching element Q2 are both zero.
  • the switching element Q2 starts to turn off, but immediately starts switching from the on state to the off state. Not to do.
  • Switching element Q2 starts switching from the on state to the off state after a delay time ⁇ t2 from the start of the turn-off operation. Since the switching element Q2 remains on from time (t1 + ⁇ t1) to time (t2 + ⁇ t2), the potential at the connection point P1 is the same as the potential at the connection point P2. Therefore, the increase in the drain-source voltage Vds1 of the switching element Q1 directly increases the potential at the connection point P2.
  • the drain-source voltage Vds1 of the switching element Q1 reaches the power supply voltage V supplied to the power supply terminal P of the gate drive circuit 100.
  • the current flowed through the path of connection point P2-connection point P1-connection point P0 due to the rectifying action of diode D1.
  • time t3 clamps the potential at the connection point P1 to the power supply voltage V by the clamp circuit 10, a current flows through another path of the connection point P2-connection point P1-diode D1-capacitor C1.
  • the switching element Q2 starts switching from the on state to the off state, so that the drain-source voltage Vds2 of the switching element Q2 starts increasing.
  • the drain-source voltage Vds1 of the switching element Q1 exceeds the power supply voltage V by the voltage ⁇ V due to the current flowing through another path.
  • the gate-source voltage Vgs2 of the switching element Q2 increases from zero in the negative direction by the voltage ⁇ V. Since the capacitor C1 has a capacitance several orders of magnitude larger than the parasitic capacitance between the drain and source of the switching element Q1, the voltage ⁇ V is smaller than the power supply voltage V. Therefore, the drain-source voltage Vds1 of the switching element Q1 does not greatly exceed the power supply voltage V of the gate drive circuit 100.
  • the switching element Q1 and the switching element Q2 complete the turn-off operation, and both are in the off state. Since the resistor R1 consumes energy corresponding to the voltage ⁇ V stored in the capacitor C1 according to the time constant (R1 ⁇ C1), the drain-source voltage Vds1 of the switching element Q1 and the terminal voltage Vc1 of the capacitor C1 are the power supply. At the voltage V, the gate-source voltage Vgs2 of the switching element Q2 converges to zero.
  • the switching element Q1 is prevented from being damaged during the turn-off operation, and A cascode circuit with reduced power loss can be realized.
  • FIG. 6 is a circuit diagram showing a circuit configuration of the cascode circuit according to the fourth embodiment.
  • the cascode circuit 4 shown in FIG. 6 is different from the cascode circuit 3 according to the third embodiment in that a clamp circuit 20 is provided instead of the clamp circuit 10.
  • the clamp circuit 20 is the same as that in the cascode circuit 2 according to the second embodiment.
  • Components equivalent to those of the cascode circuit according to Embodiments 1 to 3 are denoted by the same reference numerals and detailed description thereof will not be repeated.
  • the drain-source voltage Vds1 of the switching element Q1 exceeds the power supply voltage V by the voltage ⁇ V due to the current flowing through another path.
  • the voltage ⁇ V is smaller than the power supply voltage V.
  • the gate-source voltage Vgs2 of the switching element Q2 increases from zero in the negative direction by the voltage ⁇ V.
  • the energy corresponding to the voltage ⁇ V is temporarily stored in the inductor L1, and then supplied to the gate drive circuit 100.
  • the diode D2 prevents energy corresponding to the voltage ⁇ V from flowing back to the power source E.
  • the drain-source voltage Vds1 of the switching element Q1 and the terminal-to-terminal voltage Vc1 of the capacitor C1 are clamped and become equal to or lower than the voltage (V + ⁇ V). Therefore, the drain-source voltage Vds1 of the switching element Q1 does not greatly exceed the power supply voltage V of the gate drive circuit 100.
  • the switching element Q1 and the switching element Q2 complete the turn-off operation, and both are in the off state.
  • the drain-source voltage Vds1 of the switching element Q1 and the terminal-to-terminal voltage Vc1 of the capacitor C1 both converge to the power supply voltage V, and the gate-source voltage Vgs2 of the switching element Q2 converges to zero.
  • the clamp circuit 20 can prevent the switching element Q1 from being damaged during the turn-off operation as in the third embodiment.
  • energy corresponding to the voltage ⁇ V is supplied to the gate driving circuit 100 and used for its operation, it is not consumed as heat by the resistor R1 as in the third embodiment and does not cause power loss. Therefore, power loss can be further reduced.
  • the switching element Q1 is FET and the switching element Q2 is a power transistor was demonstrated, it is not limited to this. Even when the switching element Q1 and the switching element Q2 are both FETs, the same effect can be obtained if the breakdown voltage of the switching element Q2 is equal to or higher than the breakdown voltage required for the cascode circuit. Even when the switching element Q1 is a bipolar transistor, it can be handled in the same manner by making the drain correspond to the collector, the gate correspond to the base, and the source correspond to the emitter.
  • the gate drive circuit 100 includes the signal source S, the gate drive element G, the resistor R, and the capacitor C
  • the gate drive signal is supplied from the power supply terminal P to the gate drive signal of the switching element Q1.
  • the present invention is applicable regardless of the circuit configuration as long as it is output to the gate.
  • Q1, Q2 switching element, 1, 2, 3, 4 cascode circuit, 10, 20 clamp circuit 100 gate drive circuit, G gate drive element, S signal source, P power supply terminal, R, R1 resistance, C, C0, C1 Capacitor, D1, D2 diode, L1 inductor, E power supply, V power supply voltage, P0, P1, P2 connection point, ⁇ V, (V + ⁇ V) voltage, Vc1 terminal voltage, Vds1, Vds2 drain-source voltage, Vgs1, Vgs2 gate -Source voltage, Vth2 gate threshold voltage, 2a, 2b, 2c, 2d, 2e, 5a, 5b, 5c, 5d, 5e, 8a, 8b, 8c, 8d waveform, t1, t2, t3, t4, t5, ( t1 + ⁇ t1), (t2 + ⁇ t2) time, ⁇ t1, ⁇ t2 delay time.

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 カスコード回路(1)は、ノーマリーオフ型であるスイッチング素子(Q1)と、スイッチング素子(Q2)と、クランプ回路(10)とを備える。スイッチング素子(Q2)のソースは、スイッチング素子(Q1)のドレインと接続される。カスコード回路(1)は、スイッチング素子(Q1)のゲートに接続されたゲート駆動回路(100)によって、ノーマリーオフ動作する。クランプ回路(10)は、電源(E)が接続されたゲート駆動回路(100)の電源端子(P)と、スイッチング素子(Q1)のドレインとの間に設けられる。ゲート駆動回路(100)がスイッチング素子(Q1)およびスイッチング素子(Q2)をターンオフ動作させたときに、クランプ回路(10)は、スイッチング素子(Q1)のドレイン-ソース間の電圧を、電源(E)から供給される電源電圧(V)にクランプする。

Description

カスコード回路
 本発明は、カスコード回路に関し、特に、ノーマリーオフ動作するカスコード回路に関する。
 SiC(シリコンカーバイド)やGaN(窒化ガリウム)などを用いた高耐圧のパワートランジスタは、スイッチング電源装置などへの用途が急拡大している。しかし、それらパワートランジスタは主にノーマリーオン型のスイッチング素子であるため、スイッチング電源装置などに一般的に用いられるノーマリーオフ型のスイッチング素子を駆動するゲート駆動回路(ノーマリーオフ動作用のゲート駆動回路)を適用することができない。
 そこで、ノーマリーオン型のスイッチング素子をノーマリーオフ動作させる場合に、ノーマリーオン型のスイッチング素子のソースにノーマリーオフ型のスイッチング素子のドレインを接続して、カスコード回路を構成する場合がある。このようなカスコード回路を構成した場合、ノーマリーオン型のスイッチング素子は、ノーマリーオフ動作用のゲート駆動回路でターンオフ動作させると、ノーマリーオフ型のスイッチング素子と同様にオフ状態になる。
特開2006-324839号公報
 図7は、従来のカスコード回路の回路構成を示す回路図である。図7に示すカスコード回路は、スイッチング素子Q1およびスイッチング素子Q2を備える。
 スイッチング素子Q1はノーマリーオフ型、スイッチング素子Q2はノーマリーオン型のFET(Field Effect Transistor)である。スイッチング素子Q1のドレインに、スイッチング素子Q2のソースを接続してある。スイッチング素子Q2のゲートには、スイッチング素子Q1のソースを接続してある。スイッチング素子Q1のゲートには、ノーマリーオフ動作用のゲート駆動回路100が接続してある。
 ゲート駆動回路100は、信号源Sから供給される制御信号に基づいて、ゲート駆動素子Gがノーマリーオフ動作用のゲート駆動信号を生成し、スイッチング素子Q1のゲートに出力する。ゲート駆動回路100には、電源Eから電源端子Pを介して電源電圧Vが供給されている。抵抗Rはゲート抵抗であり、ゲート駆動信号の伝達時間を調整する。コンデンサCはゲート駆動回路100のバイパスコンデンサであり、電源端子Pに供給される電源電圧Vを安定化する。コンデンサC0は電源Eの安定化用コンデンサである。
 なお、スイッチング素子Q1のソースと外部回路(図示しない)との接続を接続点P0、スイッチング素子Q1のドレインとスイッチング素子Q2のソースとの接続を接続点P1、スイッチング素子Q2のドレインと外部回路(図示しない)との接続を接続点P2とする。
 以上のような回路構成にすることで、カスコード回路は、ノーマリーオフ動作用のゲート駆動回路100でターンオフ動作させると、ノーマリーオン型のスイッチング素子Q2をオフ状態にすることができる。以下、図7に示すカスコード回路のターンオフ動作について、図8を参照しながら説明する。
 図8は、図7に示すカスコード回路において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。波形8aはスイッチング素子Q1のゲート-ソース間電圧Vgs1、波形8bはスイッチング素子Q1のドレイン-ソース間電圧Vds1、波形8cはスイッチング素子Q2のゲート-ソース間電圧Vgs2、波形8dはスイッチング素子Q2のドレイン-ソース間電圧Vds2を示す。
 始めに、スイッチング素子Q1およびスイッチング素子Q2はともにオン状態であるため、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2は、いずれもゼロである。
 時刻t1において、カスコード回路をターンオフ動作させるためのゲート駆動信号がゲート駆動回路100からスイッチング素子Q1のゲートに入力されると、スイッチング素子Q1のゲート-ソース間電圧Vgs1が電源電圧Vからゼロになる。しかし、スイッチング素子Q1はターンオフ動作を開始してすぐにオン状態からオフ状態への切換えが開始するのではなく、遅延時間Δt1後にオン状態からオフ状態への切換えが開始される。
 時刻(t1+Δt1)において、スイッチング素子Q1がオン状態からオフ状態への切換えを開始すると、スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加を始める。スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加すると、ノーマリーオン型のスイッチング素子Q2のソースに印加される電圧が増加するので、スイッチング素子Q2のゲート-ソース間電圧Vgs2が負電圧となる。スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のゲート-ソース間電圧Vgs2の電圧の大きさは、接続点P0と接続点P1との間の電位差であるが、それぞれの電圧の向きは正負が逆である。したがって、スイッチング素子Q2のゲート-ソース間電圧Vgs2に印加される負電圧が増加する。スイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始する。
 時刻t2において、スイッチング素子Q2のゲート-ソース間電圧Vgs2がスイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始するが、すぐにオン状態からオフ状態への切換えが開始するのではない。スイッチング素子Q2は、ターンオフ動作を開始してから遅延時間Δt2後にオン状態からオフ状態への切換えが開始される。時刻(t1+Δt1)から時刻(t2+Δt2)前までの間、スイッチング素子Q2はオン状態のままであるため、接続点P1の電位が接続点P2の電位と同電位となる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1の増加は、そのまま接続点P2の電位の上昇となる。
 時刻(t2+Δt2)において、スイッチング素子Q2がオン状態からオフ状態への切換えを開始することで、スイッチング素子Q2のドレイン-ソース間電圧Vds2が増加を始める。接続点P2の電位は引き続き上昇する。時刻(t2+Δt2)からは、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2が、接続点P0と接続点P2との間の電位差を、スイッチング素子Q1のドレイン-ソース間電圧の寄生容量およびスイッチング素子Q2のドレイン-ソース間の寄生容量の比に応じて分圧した電圧になる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1も引き続き増加する。
 時刻t3においては、スイッチング素子Q1およびスイッチング素子Q2がターンオフ動作を完了し、ともにオフ状態となっている。このとき、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2は、接続点P0と接続点P2との間の電位差を、スイッチング素子Q1のドレイン-ソース間の寄生容量およびスイッチング素子Q2のドレイン-ソース間の寄生容量の比に応じて分圧した電圧になっている。
 スイッチング素子Q1に必要とされる耐圧は電源電圧Vと同程度であるため、スイッチング素子Q1には低耐圧のスイッチング素子を用いる。FETなどのスイッチング素子では、低耐圧であるほどオン抵抗が小さいため導通時の電力損失を低減できることが知られているからである。また、高い電圧を必要とする外部回路をカスコード回路に接続する場合、ノーマリーオン型のスイッチング素子Q2には高耐圧のスイッチング素子を用いる必要がある。
 しかしながら、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2は、接続点P0と接続点P2との間の電位差を上記のように分圧した電圧になるので、寄生容量の比によっては、スイッチング素子Q1のドレイン-ソース間に高い電圧が印加される可能性がある。そのため、低耐圧のスイッチング素子Q1では、スイッチング素子Q1のドレイン-ソース間電圧Vds1が耐圧を超えて破損してしまうおそれがある。
 上記課題を解決するために、特許文献1に、具体的に以下の2つの回路構成が開示されている。
 第1の回路構成として、ノーマリーオフ型のスイッチング素子のドレイン-ソース間に、電圧をクランプするためのツェナーダイオードを、カソードがスイッチング素子のドレインに接続するように、スイッチング素子に並列に接続してある。この回路構成によれば、ドレイン-ソース間電圧はツェナーダイオードの降伏電圧以下になるため、スイッチング素子が破損してしまうことを防止できる。しかしながら、ドレイン-ソース間電圧が降伏電圧を超過するとき、本来ならば電圧増加となるべきエネルギーは、ツェナー降伏としてすべて電力損失になってしまう。したがって、電力変換効率が低下してしまうとともに、ツェナーダイオードの長期信頼性への悪影響も懸念される。
 第2の回路構成として、ノーマリーオフ型のスイッチング素子のドレイン-ソース間に、ドレイン-ソース間電圧の増加を緩やかにするためのコンデンサを並列に接続している。並列に接続したコンデンサで寄生容量の比を調整することで、この回路構成によっても、スイッチング素子が破損してしまうことを防止できる。しかしながら、ターンオフ動作時にコンデンサに蓄積されたエネルギーは、次のターンオン動作時に放出されて結局すべて電力損失になってしまう。ソフトスイッチング回路を追加すればコンデンサに蓄積されたエネルギーを回生できるものの、製造コストが増加したり制御が複雑になったりしてしまうため現実的ではない。
 それゆえに、本発明は、上記問題点を解決するためになされたものであり、ノーマリーオフ型のスイッチング素子がターンオフ動作時に破損してしまうことを防止し、かつ、電力損失を低減したカスコード回路を提供することを目的とする。
 上記課題を解決するために、本発明のある局面に従うと、カスコード回路は、ノーマリーオフ型である第1のスイッチング素子と、第1のスイッチング素子のドレインにソースを接続した第2のスイッチング素子とを備え、第1のスイッチング素子のゲートに接続したゲート駆動回路によりノーマリーオフ動作させる。電源が接続されるゲート駆動回路の電源端子と、第1のスイッチング素子のドレインとの間に設けられ、ゲート駆動回路が第1のスイッチング素子および第2のスイッチング素子をターンオフ動作したときに、第1のスイッチング素子のドレイン-ソース間の電圧を、電源から供給される電源電圧にクランプするクランプ回路をさらに備える。
 好ましくは、第2のスイッチング素子は、ノーマリーオン型であって、第1のスイッチング素子のソースをゲートに接続してある。クランプ回路は、アノードを第1のスイッチング素子のドレインに接続するように、第1のスイッチング素子のドレインと電源端子との間に直列に接続した第1のダイオードを含む。
 好ましくは、第2のスイッチング素子は、ノーマリーオフ型であって、電源から供給される電源電圧をゲートに入力してある。クランプ回路は、アノードを第1のスイッチング素子のドレインに接続するように、第1のスイッチング素子のドレインと電源端子との間に直列に接続した第1のダイオードを含む。
 好ましくは、クランプ回路は、第1のダイオードのカソードと第1のスイッチング素子のソースとの間に接続したコンデンサと、第1のダイオードのカソードとゲート駆動回路の電源端子との間に接続した抵抗とをさらに含む。
 好ましくは、クランプ回路は、第1のダイオードのカソードと第1のスイッチング素子のソースとの間に接続したコンデンサと、第1のダイオードのカソードとゲート駆動回路の電源端子との間に接続したインダクタと、カソードを電源端子に接続するように、電源と電源端子との間に直列に接続した第2のダイオードとをさらに含む。
 本発明に係るカスコード回路は、クランプ回路を備え、第1のスイッチング素子のドレイン-ソース間電圧を、ゲート駆動回路の電源端子に供給される電源電圧以下に抑える。ゲート駆動回路の電源電圧は、第1のスイッチング素子を駆動するためにゲートに供給する電圧であるため、第1のスイッチング素子のゲート-ソース間耐圧未満に設定してある。そのため、ゲート駆動回路の電源電圧は、ドレイン-ソース間耐圧未満となる。したがって、第1のスイッチング素子のドレイン-ソース間電圧は、ドレイン-ソース間耐圧未満に抑えられ、第1のスイッチング素子が破損してしまうことを防止できる。また、カスコード回路の電力損失は、クランプ回路において、第1のスイッチング素子のドレインの電圧がゲート駆動回路の電源電圧を超過した際に消費されるエネルギーのみとなるため、従来のカスコード回路と比べて電力損失を低減することができる。以上より、第1のスイッチング素子がターンオフ動作時に破損してしまうことを防止し、かつ、電力損失を低減したカスコード回路を実現できる。
本発明の実施の形態1に係るカスコード回路の回路構成を示す回路図である。 図1に示すカスコード回路において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。 本発明の実施の形態2に係るカスコード回路の回路構成を示す回路図である。 本発明の実施の形態3に係るカスコード回路の回路構成を示す回路図である。 図4に示すカスコード回路において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。 本発明の実施の形態4に係るカスコード回路の回路構成を示す回路図である。 従来のカスコード回路の回路構成を示す回路図である。 図7に示すカスコード回路において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。
 以下、実施の形態1に係るカスコード回路について、図1および図2を参照しながら説明する。
  (実施の形態1)
 図1は、本発明の実施の形態1に係るカスコード回路の回路構成を示す回路図である。図1に示すカスコード回路1は、スイッチング素子Q1、スイッチング素子Q2、クランプ回路10を備える。
 スイッチング素子Q1(第1のスイッチング素子)はノーマリーオフ型のFETで、スイッチング素子Q2(第2のスイッチング素子)はノーマリーオン型のパワートランジスタである。スイッチング素子Q1のドレインに、スイッチング素子Q2のソースを接続してある。スイッチング素子Q2のゲートには、スイッチング素子Q1のソースを接続してある。スイッチング素子Q1のゲートには、ノーマリーオフ動作用のゲート駆動回路100が接続してある。
 ゲート駆動回路100は、信号源Sから供給される制御信号に基づいて、ゲート駆動素子Gがノーマリーオフ動作用のゲート駆動信号を生成し、スイッチング素子Q1のゲートに出力する。ゲート駆動回路100には、電源Eから電源端子Pを介して電源電圧Vが供給されている。抵抗Rはゲート抵抗であり、ゲート駆動信号の伝達時間を調整する。コンデンサCはゲート駆動回路100のバイパスコンデンサであり、電源端子Pに供給される電源電圧Vを安定化する。コンデンサC0は電源Eの安定化用コンデンサである。
 クランプ回路10は、ダイオードD1、コンデンサC1、抵抗R1を含む。ダイオードD1(第1のダイオード)は、アノードをスイッチング素子Q1のドレインに接続するように、スイッチング素子Q1のドレインと電源端子Pとの間に直列に接続してある。コンデンサC1は、ダイオードD1のカソードとスイッチング素子Q1のソースとの間に接続してある。抵抗R1は放電抵抗であり、コンデンサC1の余剰電荷を放電させるために、ダイオードD1のカソードと電源端子Pとの間に直列に接続してある。
 なお、スイッチング素子Q1のソースと外部回路(図示しない)との接続を接続点P0、スイッチング素子Q1のドレインとスイッチング素子Q2のソースとの接続を接続点P1、スイッチング素子Q2のドレインと外部回路(図示しない)との接続を接続点P2とする。
 以下、カスコード回路1のターンオフ動作について、図2を参照しながら説明する。
 図2は、図1に示すカスコード回路1において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。波形2aはスイッチング素子Q1のゲート-ソース間電圧Vgs1、波形2bはスイッチング素子Q1のドレイン-ソース間電圧Vds1、波形2cはコンデンサC1の端子間電圧Vc1、波形2dはスイッチング素子Q2のゲート-ソース間電圧Vgs2、波形2eはスイッチング素子Q2のドレイン-ソース間電圧Vds2を示す。
 始めに、スイッチング素子Q1およびスイッチング素子Q2はともにオン状態であるため、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2は、いずれもゼロである。コンデンサC1は、電源電圧Vで充電されている。
 時刻t1において、カスコード回路1をターンオフ動作させるためのゲート駆動信号がゲート駆動回路100からスイッチング素子Q1のゲートに入力されると、スイッチング素子Q1のゲート-ソース間電圧Vgs1が電源電圧Vからゼロになる。しかし、スイッチング素子Q1はターンオフ動作を開始してすぐにオン状態からオフ状態への切換えが開始するのではなく、遅延時間Δt1後にオン状態からオフ状態への切換えが開始される。
 時刻(t1+Δt1)において、スイッチング素子Q1がオン状態からオフ状態への切換えを開始すると、スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加を始める。スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加すると、ノーマリーオン型のスイッチング素子Q2のソースに印加される電圧が増加するので、スイッチング素子Q2のゲート-ソース間電圧Vgs2が負電圧となる。スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のゲート-ソース間電圧Vgs2の電圧の大きさは、接続点P0と接続点P1との間の電位差であるが、それぞれの電圧の向きは正負が逆である。したがって、スイッチング素子Q2のゲート-ソース間電圧Vgs2に印加される負電圧が増加する。スイッチング素子Q2のゲート-ソース間電圧Vgs2がスイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始する。
 時刻t2において、スイッチング素子Q2のゲート-ソース間電圧Vgs2がスイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始するが、すぐにオン状態からオフ状態への切換えが開始するのではない。スイッチング素子Q2は、ターンオフ動作を開始してから遅延時間Δt2後にオン状態からオフ状態への切換えが開始される。時刻(t1+Δt1)から時刻(t2+Δt2)前までの間、スイッチング素子Q2はオン状態のままであるため、接続点P1の電位が接続点P2の電位と同電位となる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1の増加は、そのまま接続点P2の電位の上昇となる。
 時刻t3において、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、ゲート駆動回路100の電源端子Pに供給される電源電圧Vに達する。時刻t3前までは、ダイオードD1の整流作用により、接続点P2―接続点P1―接続点P0の経路を電流が流れていた。しかし、時刻t3からは、クランプ回路10によって接続点P1の電位を電源電圧Vにクランプするため、接続点P2―接続点P1―ダイオードD1―コンデンサC1の別の経路に電流が流れる。
 時刻(t2+Δt2)において、スイッチング素子Q2がオン状態からオフ状態へ切換えを開始することで、スイッチング素子Q2のドレイン-ソース間電圧Vds2が増加を始める。
 時刻t4において、別の経路を流れる電流によって、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1が電源電圧Vを電圧ΔVだけ超過する。コンデンサC1はスイッチング素子Q1のドレイン-ソース間の寄生容量よりも数桁大きな容量であるため、電圧ΔVは電源電圧Vと比べて小さな電圧となる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、電源電圧Vを大きく超過することはない。
 時刻t5においては、スイッチング素子Q1およびスイッチング素子Q2がターンオフ動作を完了し、ともにオフ状態となっている。抵抗R1が、時定数(R1×C1)に従って、コンデンサC1に蓄積された電圧ΔVに相当するエネルギーを消費するため、スイッチング素子Q1のドレイン-ソース間電圧Vds1は電源電圧Vに収束し、コンデンサC1の端子間電圧Vc1は再び電源電圧Vに戻っている。
 以上のようにターンオフ動作するカスコード回路1において、ゲート駆動信号の電圧は最大で電源電圧Vであることから、スイッチング素子Q1のゲート-ソース間耐圧は電源電圧Vより高く設定してある。スイッチング素子Q1のドレイン-ソース間耐圧は原理的にゲート-ソース間耐圧より高くなるため、電源電圧Vよりも高くなる。したがって、スイッチング素子Q1のドレインの電圧が電源電圧V以下になるようにクランプしてあれば、スイッチング素子Q1のドレイン-ソース間電圧Vds1は、ドレイン-ソース間耐圧未満に抑えられ、スイッチング素子Q1が破損してしまうことを防止できる。
 また、カスコード回路1では、スイッチング素子Q1のドレインの電圧が電源電圧Vを超過した際に消費されるエネルギー(電圧ΔVに相当するエネルギー)のみが抵抗R1で熱として消費されて電力損失になる。一方、特許文献1に記載された従来のカスコード回路では、ツェナーダイオードの降伏電圧を超過した電圧に相当するすべてのエネルギー、あるいは、コンデンサに蓄積されたすべてのエネルギーが電力損失になってしまう。したがって、カスコード回路1では従来のカスコード回路より電力損失を低減することもできる。
 よって、実施の形態1では、スイッチング素子Q1がターンオフ動作時に破損してしまうことを防止し、かつ、電力損失を低減したカスコード回路を実現できる。
  (実施の形態2)
 スイッチング素子Q1のドレインの電圧をクランプするクランプ回路10変更することで、電力損失を一層低減することができる。以下、実施の形態2に係るカスコード回路について、図3を参照しながら説明する。
 図3は、本発明の実施の形態2に係るカスコード回路の回路構成を示す回路図である。図3に示すカスコード回路2は、クランプ回路20を備える点が、実施の形態1に係るカスコード回路1と異なる。なお、カスコード回路1の構成要素と同等の構成要素については、同一の符号を付して詳細な説明を繰返さない。
 クランプ回路20は、ダイオードD1、コンデンサC1、ダイオードD2を含む。ダイオードD1(第1のダイオード)は、アノードがスイッチング素子Q1のドレインに接続するように、スイッチング素子Q1のドレインと電源端子Pとの間に直列に接続してある。コンデンサC1は、ダイオードD1のカソードとスイッチング素子Q1のソースとの間に接続してある。インダクタL1は、ダイオードD1のカソードと電源端子Pとの間に直列に接続してある。ダイオードD2(第2のダイオード)は、カソードが電源端子Pと接続するように、電源Eと電源端子Pとの間に直列に接続してある。
 カスコード回路2のターンオフ動作において、それぞれのスイッチング素子のドレイン-ソース間電圧などの時間変化は図2と同様であるため、以下、再び図2を参照しながら説明する。なお、スイッチング素子Q2がオン状態からオフ状態への切換えを開始する時刻(t2+Δt2)までは、実施の形態1と同様であるため、詳細な説明を繰返さない。
 時刻t4において、別の経路を流れる電流によって、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1が電源電圧Vを電圧ΔVだけ超過する。コンデンサC1はスイッチング素子Q1のドレイン-ソース間の寄生容量よりも数桁大きな容量であるため、電圧ΔVは電源電圧Vと比べて小さな電圧となる。電圧ΔVに相当するエネルギーはインダクタL1に一旦蓄積され、その後、ゲート駆動回路100に供給される。なお、ダイオードD2は、電圧ΔVに相当するエネルギーが電源Eに逆流してしまうことを防いでいる。
 このとき、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1はクランプされ、電圧(V+ΔV)以下になる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、ゲート駆動回路100の電源電圧Vを大きく超過することはない。
 時刻t5においては、スイッチング素子Q1およびスイッチング素子Q2がターンオフ動作を完了し、ともにオフ状態となっている。スイッチング素子Q1のドレイン-ソース間電圧Vds1は電源電圧Vに収束し、コンデンサC1の端子間電圧Vc1も再び電源電圧Vに戻っている。
 以上のように、実施の形態2でも実施の形態1と同様に、スイッチング素子Q1がターンオフ動作時に破損してしまうことを防止できる。それに加えて、電圧ΔVに相当するエネルギーがゲート駆動回路100に供給されてその動作に用いられるため、実施の形態1のように抵抗R1で熱として消費されて電力損失になることもない。したがって、電力損失を一層低減することができる。
  (実施の形態3)
 実施の形態1および実施の形態2では、スイッチング素子Q2がノーマリーオン型である場合について説明したが、スイッチング素子Q2がノーマリーオフ型である場合にも、本発明を適用することができる。以下、実施の形態3に係るカスコード回路について、図4および図5を参照しながら説明する。
 図4は、本発明の実施の形態3に係るカスコード回路の回路構成を示す回路図である。図4に示すカスコード回路3は、スイッチング素子Q2がノーマリーオフ型のパワートランジスタである点と、それに伴ってスイッチング素子Q2のゲートに電源電圧Vを入力してある点とが、実施の形態1に係るカスコード回路1と異なる。クランプ回路10は、カスコード回路1におけるものと等しい。なお、カスコード回路1の構成要素と同等の構成要素については、同一の符号を付して詳細な説明を繰返さない。
 以下、カスコード回路3のターンオフ動作について、図5を参照しながら説明する。
 図5は、図4に示すカスコード回路3において、ターンオフ動作時のそれぞれのスイッチング素子のゲート-ソース間電圧およびドレイン-ソース間電圧の時間変化を示す波形図である。波形5aはスイッチング素子Q1のゲート-ソース間電圧Vgs1、波形5bはスイッチング素子Q1のドレイン-ソース間電圧Vds1、波形5cはコンデンサC1の端子間電圧Vc1、波形5dはスイッチング素子Q2のゲート-ソース間電圧Vgs2、波形5eはスイッチング素子Q2のドレイン-ソース間電圧Vds2を示す。
 始めに、ノーマリーオフ型のスイッチング素子Q2のゲート-ソース間電圧Vgs2は電源電圧Vであり、スイッチング素子Q1およびスイッチング素子Q2はともにオン状態である。スイッチング素子Q1のドレイン-ソース間電圧Vds1およびスイッチング素子Q2のドレイン-ソース間電圧Vds2は、いずれもゼロである。
 時刻t1において、カスコード回路3をターンオフ動作させるためのゲート駆動信号がゲート駆動回路100からスイッチング素子Q1のゲートに入力されると、スイッチング素子Q1のゲート-ソース間電圧Vgs1が電源電圧Vからゼロになる。しかし、スイッチング素子Q1はターンオフ動作を開始してすぐにオン状態からオフ状態への切換えが開始するのではなく、遅延時間Δt1後にオン状態からオフ状態への切換えが開始される。
 時刻(t1+Δt1)において、スイッチング素子Q1がオン状態からオフ状態への切換えを開始すると、スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加を始める。スイッチング素子Q2のゲート-ソース間電圧Vgs2は、電源電圧Vとスイッチング素子Q1のドレイン-ソース間電圧Vds1との差(Vgs2=V-Vds1)であるから、スイッチング素子Q1のドレイン-ソース間電圧Vds1が増加した分、スイッチング素子Q2のゲート-ソース間電圧Vgs2は減少していく。なお、スイッチング素子Q2はノーマリーオフ型であるため、スイッチング素子Q2のゲート閾値電圧Vth2は正電圧である。スイッチング素子Q2のゲート-ソース間電圧Vgs2が減少し、スイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始する。
 時刻t2において、スイッチング素子Q2のゲート-ソース間電圧Vgs2がスイッチング素子Q2のゲート閾値電圧Vth2に達すると、スイッチング素子Q2はターンオフ動作を開始するが、すぐにオン状態からオフ状態への切換えが開始するのではない。スイッチング素子Q2は、ターンオフ動作を開始してから遅延時間Δt2後にオン状態からオフ状態への切換えが開始される。時刻(t1+Δt1)から時刻(t2+Δt2)前までの間、スイッチング素子Q2はオン状態のままであるため、接続点P1の電位が接続点P2の電位と同電位となる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1の増加は、そのまま接続点P2の電位の上昇となる。
 時刻t3において、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、ゲート駆動回路100の電源端子Pに供給される電源電圧Vに達する。時刻t3前までは、ダイオードD1の整流作用により、接続点P2―接続点P1―接続点P0の経路を電流が流れていた。しかし、時刻t3からは、クランプ回路10によって接続点P1の電位を電源電圧Vにクランプするため、接続点P2―接続点P1―ダイオードD1―コンデンサC1の別の経路に電流が流れる。
 時刻(t2+Δt2)において、スイッチング素子Q2がオン状態からオフ状態へ切換えを開始することで、スイッチング素子Q2のドレイン-ソース間電圧Vds2が増加を始める。
 時刻t4において、別の経路を流れる電流によって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が電源電圧Vを電圧ΔVだけ超過する。それと対応して、スイッチング素子Q2のゲート-ソース間電圧Vgs2は、ゼロから電圧ΔVだけ負の方向に増加する。コンデンサC1はスイッチング素子Q1のドレイン-ソース間の寄生容量よりも数桁大きな容量であるため、電圧ΔVは電源電圧Vと比べて小さな電圧となる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、ゲート駆動回路100の電源電圧Vを大きく超過することはない。
 時刻t5においては、スイッチング素子Q1およびスイッチング素子Q2がターンオフ動作を完了し、ともにオフ状態となっている。抵抗R1は、時定数(R1×C1)に従って、コンデンサC1に蓄積された電圧ΔVに相当するエネルギーを消費するため、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1は電源電圧Vに、スイッチング素子Q2のゲート-ソース間電圧Vgs2はゼロに収束している。
 以上のように、スイッチング素子Q1およびスイッチング素子Q2がいずれもノーマリーオフ型である場合でも、実施の形態1と同様に、スイッチング素子Q1がターンオフ動作時に破損してしまうことを防止し、かつ、電力損失を低減したカスコード回路を実現できる。
  (実施の形態4)
 実施の形態1に対する実施の形態2と同様に、クランプ回路の回路構成を変更することで、実施の形態3の電力損失を一層低減することができる。以下、実施の形態4に係るカスコード回路について、図6を参照しながら説明する。
 図6は、実施の形態4に係るカスコード回路の回路構成を示す回路図である。図6に示すカスコード回路4は、クランプ回路10に代えてクランプ回路20を備える点が、実施の形態3に係るカスコード回路3と異なる。クランプ回路20は、実施の形態2に係るカスコード回路2におけるものと等しい。なお、実施の形態1~実施の形態3に係るカスコード回路の構成要素と同等の構成要素については、同一の符号を付して詳細な説明を繰返さない。
 カスコード回路4のターンオフ動作において、それぞれのスイッチング素子のドレイン-ソース間電圧などの時間変化は図5と同様であるため、以下、再び図5を参照しながら説明する。なお、スイッチング素子Q2がオン状態からオフ状態へ切換えを開始する時刻(t2+Δt2)までは、実施の形態3と同様であるため、詳細な説明を繰返さない。
 時刻t4において、別の経路を流れる電流によって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が電源電圧Vを電圧ΔVだけ超過する。電圧ΔVは電源電圧Vと比べて小さな電圧である。それと対応して、スイッチング素子Q2のゲート-ソース間電圧Vgs2は、ゼロから電圧ΔVだけ負の方向に増加する。電圧ΔVに相当するエネルギーはインダクタL1に一旦蓄積され、その後、ゲート駆動回路100に供給される。なお、ダイオードD2が、電圧ΔVに相当するエネルギーが電源Eに逆流してしまうことを防いでいる。
 このとき、スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1はクランプされ、電圧(V+ΔV)以下になる。したがって、スイッチング素子Q1のドレイン-ソース間電圧Vds1が、ゲート駆動回路100の電源電圧Vを大きく超過することはない。
 時刻t5においては、スイッチング素子Q1およびスイッチング素子Q2がターンオフ動作を完了し、ともにオフ状態となっている。スイッチング素子Q1のドレイン-ソース間電圧Vds1およびコンデンサC1の端子間電圧Vc1はいずれも電源電圧Vに、スイッチング素子Q2のゲート-ソース間電圧Vgs2はゼロに収束している。
 以上のように、クランプ回路20によっても、実施の形態3と同様に、スイッチング素子Q1がターンオフ動作時に破損してしまうことを防止できる。それに加えて、電圧ΔVに相当するエネルギーがゲート駆動回路100に供給されてその動作に用いられるため、実施の形態3のように抵抗R1で熱として消費されて電力損失になることもない。したがって、電力損失を一層低減することができる。
 なお、スイッチング素子Q1がFET、スイッチング素子Q2がパワートランジスタである場合について説明したが、これに限定されるものではない。スイッチング素子Q1およびスイッチング素子Q2が、ともにFETである場合も、スイッチング素子Q2の耐圧がカスコード回路に必要とされる耐圧以上であれば、同様の効果を得ることができる。また、スイッチング素子Q1がバイポーラトランジスタである場合でも、ドレインをコレクタ、ゲートをベース、ソースをエミッタとそれぞれ対応させることで、全く同様に扱うことができる。
 さらに、ゲート駆動回路100が、信号源S、ゲート駆動素子G、抵抗R,コンデンサCを備える場合について説明したが、電源端子Pから電源電圧Vの供給を受けてゲート駆動信号をスイッチング素子Q1のゲートに出力するのであれば、その回路構成を問わず、本発明は適用可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 Q1,Q2 スイッチング素子、1,2,3,4 カスコード回路、10,20 クランプ回路、100 ゲート駆動回路、G ゲート駆動素子、S 信号源、P 電源端子、R,R1 抵抗、C,C0,C1 コンデンサ、D1,D2 ダイオード、L1 インダクタ、E 電源、V 電源電圧、P0,P1,P2 接続点、ΔV,(V+ΔV) 電圧、Vc1 端子間電圧、Vds1,Vds2 ドレイン-ソース間電圧、Vgs1,Vgs2 ゲート-ソース間電圧、Vth2 ゲート閾値電圧、2a,2b,2c,2d,2e,5a,5b,5c,5d,5e,8a,8b,8c,8d 波形、t1,t2,t3,t4,t5,(t1+Δt1),(t2+Δt2) 時刻、Δt1,Δt2 遅延時間。

Claims (5)

  1.  ノーマリーオフ型である第1のスイッチング素子と、
     前記第1のスイッチング素子のドレインをソースに接続した第2のスイッチング素子とを備え、
     前記第1のスイッチング素子のゲートに接続したゲート駆動回路によりノーマリーオフ動作させるカスコード回路であって、
     電源が接続される前記ゲート駆動回路の電源端子と、前記第1のスイッチング素子のドレインとの間に設けられ、前記ゲート駆動回路が前記第1のスイッチング素子および前記第2のスイッチング素子をターンオフ動作したときに、前記第1のスイッチング素子のドレイン-ソース間の電圧を、前記電源から供給される電源電圧にクランプするクランプ回路をさらに備える、カスコード回路。
  2.  前記第2のスイッチング素子は、ノーマリーオン型であって、前記第1のスイッチング素子のソースをゲートに接続してあり、
     前記クランプ回路は、アノードを前記第1のスイッチング素子のドレインに接続するように、前記第1のスイッチング素子のドレインと前記電源端子との間に直列に接続した第1のダイオードを含む、請求項1に記載のカスコード回路。
  3.  前記第2のスイッチング素子は、ノーマリーオフ型であって、前記電源から供給される前記電源電圧をゲートに入力してあり、
     前記クランプ回路は、アノードを前記第1のスイッチング素子のドレインに接続するように、前記第1のスイッチング素子のドレインと前記電源端子との間に直列に接続した第1のダイオードを含む、請求項1に記載のカスコード回路。
  4.  前記クランプ回路は、
     前記第1のダイオードのカソードと前記第1のスイッチング素子のソースとの間に接続したコンデンサと、
     前記第1のダイオードの前記カソードと前記ゲート駆動回路の前記電源端子との間に接続した抵抗とをさらに含む、請求項2または3に記載のカスコード回路。
  5.  前記クランプ回路は、
     前記第1のダイオードのカソードと前記第1のスイッチング素子のソースとの間に接続したコンデンサと、
     前記第1のダイオードの前記カソードと前記ゲート駆動回路の前記電源端子との間に接続したインダクタと、
     カソードを前記電源端子に接続するように、前記電源と前記電源端子との間に直列に接続した第2のダイオードとをさらに含む、請求項2または3に記載のカスコード回路。
PCT/JP2013/058241 2012-03-27 2013-03-22 カスコード回路 WO2013146570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380017077.3A CN104205638B (zh) 2012-03-27 2013-03-22 共射共基电路
US14/385,641 US9515649B2 (en) 2012-03-27 2013-03-22 Cascode circuit
JP2014507815A JP5800986B2 (ja) 2012-03-27 2013-03-22 カスコード回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012071570 2012-03-27
JP2012-071570 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146570A1 true WO2013146570A1 (ja) 2013-10-03

Family

ID=49259825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058241 WO2013146570A1 (ja) 2012-03-27 2013-03-22 カスコード回路

Country Status (4)

Country Link
US (1) US9515649B2 (ja)
JP (1) JP5800986B2 (ja)
CN (1) CN104205638B (ja)
WO (1) WO2013146570A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204354A (ja) * 2013-04-08 2014-10-27 富士通セミコンダクター株式会社 駆動回路、半導体集積回路、及び駆動回路の制御方法
JP2016019314A (ja) * 2014-07-07 2016-02-01 新電元工業株式会社 制御回路
JP2016058810A (ja) * 2014-09-08 2016-04-21 新電元工業株式会社 カスコード素子
JP2016139996A (ja) * 2015-01-28 2016-08-04 株式会社東芝 半導体装置
JP2016201693A (ja) * 2015-04-10 2016-12-01 シャープ株式会社 半導体装置
JP2018042188A (ja) * 2016-09-09 2018-03-15 株式会社東芝 スイッチングユニットおよび電源回路
JP2019033583A (ja) * 2017-08-07 2019-02-28 株式会社東芝 トランジスタ駆動回路およびゲート制御回路
JP2021190760A (ja) * 2020-05-27 2021-12-13 株式会社パウデック 半導体回路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9735238B2 (en) * 2014-01-15 2017-08-15 Virginia Tech Intellectual Properties, Inc. Avoiding internal switching loss in soft switching cascode structure device
JP6639103B2 (ja) 2015-04-15 2020-02-05 株式会社東芝 スイッチングユニット及び電源回路
WO2017043611A1 (ja) * 2015-09-10 2017-03-16 古河電気工業株式会社 パワーデバイス
JP7292874B2 (ja) 2018-12-26 2023-06-19 株式会社東芝 電流検出回路
JP7204538B2 (ja) 2019-03-06 2023-01-16 株式会社東芝 半導体集積回路と半導体集積回路の調整方法
JP7434129B2 (ja) 2020-09-24 2024-02-20 株式会社東芝 電流検出回路、電流検出システム、および電源回路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291485U (ja) * 1989-01-06 1990-07-19
JPH1051285A (ja) * 1996-05-28 1998-02-20 Mitsubishi Electric Corp 電圧制御型トランジスタの駆動回路
JP2006158185A (ja) * 2004-10-25 2006-06-15 Toshiba Corp 電力用半導体装置
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2011010487A (ja) * 2009-06-26 2011-01-13 Toshiba Corp 電力変換装置
WO2011089837A1 (ja) * 2010-01-25 2011-07-28 シャープ株式会社 複合型半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910738A (en) * 1995-04-07 1999-06-08 Kabushiki Kaisha Toshiba Driving circuit for driving a semiconductor device at high speed and method of operating the same
DE19926715C1 (de) * 1999-06-11 2001-01-18 Siemens Ag Verfahren und Vorrichtung zum Abschalten einer Kaskodenschaltung mit spannungsgesteuerten Halbleiterschaltern
CN101454979B (zh) * 2006-05-29 2013-03-27 皇家飞利浦电子股份有限公司 开关电路
US7719055B1 (en) * 2007-05-10 2010-05-18 Northrop Grumman Systems Corporation Cascode power switch topologies
US7974061B2 (en) * 2007-09-10 2011-07-05 Bourns, Inc. Common gate connected high voltage transient blocking unit
US8228114B1 (en) * 2009-09-30 2012-07-24 Arkansas Power Electronics International, Inc. Normally-off D-mode driven direct drive cascode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291485U (ja) * 1989-01-06 1990-07-19
JPH1051285A (ja) * 1996-05-28 1998-02-20 Mitsubishi Electric Corp 電圧制御型トランジスタの駆動回路
JP2006158185A (ja) * 2004-10-25 2006-06-15 Toshiba Corp 電力用半導体装置
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2011010487A (ja) * 2009-06-26 2011-01-13 Toshiba Corp 電力変換装置
WO2011089837A1 (ja) * 2010-01-25 2011-07-28 シャープ株式会社 複合型半導体装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204354A (ja) * 2013-04-08 2014-10-27 富士通セミコンダクター株式会社 駆動回路、半導体集積回路、及び駆動回路の制御方法
JP2016019314A (ja) * 2014-07-07 2016-02-01 新電元工業株式会社 制御回路
JP2016058810A (ja) * 2014-09-08 2016-04-21 新電元工業株式会社 カスコード素子
JP2016139996A (ja) * 2015-01-28 2016-08-04 株式会社東芝 半導体装置
JP2016201693A (ja) * 2015-04-10 2016-12-01 シャープ株式会社 半導体装置
JP2018042188A (ja) * 2016-09-09 2018-03-15 株式会社東芝 スイッチングユニットおよび電源回路
JP2019033583A (ja) * 2017-08-07 2019-02-28 株式会社東芝 トランジスタ駆動回路およびゲート制御回路
JP2021190760A (ja) * 2020-05-27 2021-12-13 株式会社パウデック 半導体回路
JP7374486B2 (ja) 2020-05-27 2023-11-07 株式会社パウデック 半導体回路

Also Published As

Publication number Publication date
JPWO2013146570A1 (ja) 2015-12-14
CN104205638A (zh) 2014-12-10
US20150061752A1 (en) 2015-03-05
US9515649B2 (en) 2016-12-06
CN104205638B (zh) 2017-07-04
JP5800986B2 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5800986B2 (ja) カスコード回路
US8957642B2 (en) Enhancement mode III-nitride switch with increased efficiency and operating frequency
US20200382112A1 (en) GaN Switch with Integrated Failsafe Pulldown Circuit
JP4968487B2 (ja) ゲートドライブ回路
US9397636B2 (en) System and method for driving transistors
US9461547B2 (en) Converter circuitry
US8536847B2 (en) Semiconductor device
KR102004771B1 (ko) 전원 공급 장치
JPWO2013046420A1 (ja) 半導体駆動回路およびそれを用いた電力変換装置
US20160380531A1 (en) Power factor correction circuit and power supply device
JP2016208080A (ja) スイッチングユニット及び電源回路
US8199540B2 (en) High voltage gain power converter
CN101326717A (zh) 发射极开关结构的驱动电路
JP2014193022A (ja) スイッチング回路および電力変換装置
US10224918B2 (en) Active gate bias driver
US10367501B1 (en) Semiconductor device
US20200274528A1 (en) Diode Circuit
JP2017017775A (ja) 力率改善回路および電源装置
KR101969117B1 (ko) 액티브 클램프 포워드 컨버터 및 그 구동방법
JP2015167433A (ja) チョッパ回路
US20190044454A1 (en) Rectifying element and voltage converter comprising such a rectifying element
JP2020188673A (ja) 電気回路及び電源装置
US20110080760A1 (en) Rectifier driving circuit
US20140159685A1 (en) Control device and power supply device
CN110417257B (zh) Buck软开关模块、buck电路、一字型和t字型三电平电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507815

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14385641

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768811

Country of ref document: EP

Kind code of ref document: A1