JP2017017775A - 力率改善回路および電源装置 - Google Patents

力率改善回路および電源装置 Download PDF

Info

Publication number
JP2017017775A
JP2017017775A JP2015129107A JP2015129107A JP2017017775A JP 2017017775 A JP2017017775 A JP 2017017775A JP 2015129107 A JP2015129107 A JP 2015129107A JP 2015129107 A JP2015129107 A JP 2015129107A JP 2017017775 A JP2017017775 A JP 2017017775A
Authority
JP
Japan
Prior art keywords
node
terminal
power factor
factor correction
correction circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015129107A
Other languages
English (en)
Inventor
片岡 耕太郎
Kotaro Kataoka
耕太郎 片岡
野村 勝
Masaru Nomura
野村  勝
周治 若生
Shuji Wakao
周治 若生
弘樹 五十嵐
Hiroki Igarashi
弘樹 五十嵐
柴田 晃秀
Akihide Shibata
晃秀 柴田
岩田 浩
Hiroshi Iwata
浩 岩田
竹史 塩見
Takeshi Shiomi
竹史 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015129107A priority Critical patent/JP2017017775A/ja
Priority to US15/177,543 priority patent/US9793793B2/en
Priority to CN201610457033.8A priority patent/CN106300957A/zh
Publication of JP2017017775A publication Critical patent/JP2017017775A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】高効率で部品点数の少ない力率改善回路を提供する。【解決手段】双方向スイッチ20は、逆直列に接続されたMOSFET21、22を含み、ノードN1、N2の間に接続される。コンデンサ41、42は、出力端子53、54の間に直列接続される。ダイオード31は、ノードN1とコンデンサ41の一端との間に、ノードN1側から電流が流れるように接続される。ダイオード32は、ノードN1とコンデンサ42の他端との間に、ノードN1側へ電流が流れるように接続される。ノードN1は入力端子51に接続され、ノードN2はコイル11を介して入力端子52に接続される。正電圧入力時にはMOSFET21がスイッチングし、負電圧入力時にはMOSFET22がスイッチングする。【選択図】図1

Description

本発明は、力率改善回路、および、これを用いた電源装置に関する。
従来から、直列接続された2個のコンデンサを含み、ダイオードブリッジを含まない倍電圧型ブリッジレス力率改善回路が知られている。2個のコンデンサの一方は正電圧入力時に電力を蓄積し、他方は負電圧入力時に電力を蓄積する。倍電圧型ブリッジレス力率改善回路によれば、直列接続された2個のコンデンサを用いて、昇圧比を小さくすることができる。また、ダイオードブリッジを含まないので、電力損失を低減することができる。
図11は、特許文献1に記載された倍電圧型ブリッジレス力率改善回路の回路図である。図11に示す力率改善回路9は、コイルL1、FET(Field Effect Transistor :電界効果トランジスタ):T1、T2、ダイオードD1〜D4、および、コンデンサC1、C2を備えている。力率改善回路9の入力側には交流電源7が接続され、出力側には負荷8が接続される。
正電圧入力時(交流電源7の第1端子(図面では上側の端子)の電位が第2端子の電位よりも高いとき)には、FET:T1がスイッチングする。FET:T1がオン状態のときには、コイルL1にエネルギーが蓄積される。FET:T1がオフ状態のときには、コイルL1からエネルギーが放出され、昇圧された電力がコンデンサC1に充電される。負電圧入力時(交流電源7の第1端子の電位が第2端子の電位よりも低いとき)には、FET:T2がスイッチングする。FET:T2がオン状態のときには、コイルL1にエネルギーが蓄積される。FET:T2がオフ状態のときには、コイルL1からエネルギーが放出され、昇圧された電力がコンデンサC2に充電される。負荷8には、直列接続されたコンデンサC1、C2から電力が供給される。したがって、負荷8に印加される電圧は、コイルL1とFET:T1を含む昇圧回路で生成された電圧の2倍になる。
力率改善回路9は、入力電流が入力電圧に比例するようにFET:T1、T2のデューティ比(1周期のうちでFETがオン状態になる時間の割合)を制御することにより、力率を改善する。力率改善回路9は、4個のダイオードからなるダイオードブリッジを入力側に含まない。したがって、電流がダイオードを通過する際の電力損失を抑えることができる。また、一般的な昇圧型力率改善回路と比べて昇圧比が半分になるので、効率を高くすることができる。
特開2012−19637号公報
図11に示す力率改善回路9には、4個のダイオードD1〜D4が必要とされる。このうちダイオードD3、D4は、主に電流の逆流を防止する機能を有する。ダイオードD4は、正電圧入力時に、交流電源7の第1端子からFET:T2の寄生ダイオードとコイルL1を経由して交流電源7の第2端子に電流が流れ続けることを防止する。ダイオードD3は、負電圧入力時に、交流電源7の第2端子からコイルL1とFET:T1の寄生ダイオードを経由して交流電源7の第1端子に電流が流れ続けることを防止する。
力率改善回路に含まれる整流素子(ダイオード)の個数は、少ないことが好ましい。整流素子の個数が少ないほど、回路を小型・低コスト化することができる。また、整流素子の個数が少ないほど、電流が整流素子を通過する際の電力損失を抑えることもできる。この点から見れば、図11に示す力率改善回路9には改善すべき点がある。
それ故に、本発明は、高効率で部品点数の少ない力率改善回路、および、これを用いた電源装置を提供することを目的とする。
第1の発明は、力率改善回路であって、
第1および第2入力端子と、
第1および第2出力端子と、
コイルと、
逆直列に接続された第1および第2トランジスタを含み、一端が第1ノードに接続され、他端が第2ノードに接続された双方向スイッチと、
一端が前記第1出力端子に接続され、他端が前記第2ノードに接続された第1コンデンサと、
一端が前記第2ノードに接続され、他端が前記第2出力端子に接続された第2コンデンサと、
前記第1ノードと前記第1コンデンサの一端との間に、前記第1ノード側から電流が流れるように接続された第1整流素子と、
前記第1ノードと前記第2コンデンサの他端との間に、前記第1ノード側へ電流が流れるように接続された第2整流素子とを備え、
前記第1および第2入力端子の間に、前記コイルおよび前記双方向スイッチを経由する電流経路を有し、
前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の少なくとも一方に接続されていることを特徴とする。
第2の発明は、第1の発明において、
前記第1トランジスタは、ドレイン端子と、前記第2ノードに接続されたソース端子とを有するMOSFETまたはHEMTであり、
前記第2トランジスタは、前記第1トランジスタのドレイン端子に接続されたドレイン端子と、前記第1ノードに接続されたソース端子とを有するMOSFETまたはHEMTであることを特徴とする。
第3の発明は、第1の発明において、
前記第1トランジスタは、ソース端子と、前記第1ノードに接続されたドレイン端子とを有するMOSFETまたはHEMTであり、
前記第2トランジスタは、前記第1トランジスタのソース端子に接続されたソース端子と、前記第2ノードに接続されたドレイン端子とを有するMOSFETまたはHEMTであることを特徴とする。
第4の発明は、第1の発明において、
前記第1トランジスタは、コレクタ端子と、前記第2ノードに接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであり、
前記第2トランジスタは、前記第1トランジスタのコレクタ端子に接続されたコレクタ端子と、前記第1ノードに接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであることを特徴とする。
第5の発明は、第1の発明において、
前記第1トランジスタは、エミッタ端子と、前記第1ノードに接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであり、
前記第2トランジスタは、前記第1トランジスタのエミッタ端子に接続されたエミッタ端子と、前記第2ノードに接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであることを特徴とする。
第6の発明は、第2〜第5のいずれかの発明において、
前記第1入力端子の電位が前記第2入力端子の電位よりも高いときには、前記第1トランジスタがスイッチングし、前記第1入力端子の電位が前記第2入力端子の電位よりも低いときには、前記第2トランジスタがスイッチングすることを特徴とする。
第7の発明は、第6の発明において、
前記第1入力端子の電位が前記第2入力端子の電位よりも高いときには、前記第2トランジスタはオン状態に制御され、前記第1入力端子の電位が前記第2入力端子の電位よりも低いときには、前記第1トランジスタはオン状態に制御されることを特徴とする。
第8の発明は、第2〜第5のいずれかの発明において、
前記双方向スイッチは、前記第1および第2トランジスタに逆並列に接続された整流素子をさらに含むことを特徴とする。
第9の発明は、第1の発明において、
前記コイルは、前記第1入力端子と前記第1ノードとの間に接続されていることを特徴とする。
第10の発明は、第1の発明において、
前記コイルは、前記第2ノードと前記第2入力端子との間に接続されていることを特徴とする。
第11の発明は、第1の発明において、
前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の両方に接続されていることを特徴とする。
第12の発明は、力率改善回路であって、
第1および第2入力端子と、
第1および第2出力端子と、
コイルと、
逆直列に接続された第1および第2トランジスタを含み、一端が第1ノードに接続され、他端が第2ノードに接続された第1双方向スイッチと、
一端が前記第1出力端子に接続され、他端が第3ノードに接続された第1コンデンサと、
一端が前記第3ノードに接続され、他端が前記第2出力端子に接続された第2コンデンサと、
前記第2ノードと前記第3ノードとの間に接続された第2双方向スイッチと、
前記第1ノードと前記第1コンデンサの一端との間に、前記第1ノード側から電流が流れるように接続された第1整流素子と、
前記第1ノードと前記第2コンデンサの他端との間に、前記第1ノード側へ電流が流れるように接続された第2整流素子と、
前記第2ノードと前記第1コンデンサの一端との間に、前記第2ノード側から電流が流れるように接続された第3整流素子と、
前記第2ノードと前記第2コンデンサの他端との間に、前記第2ノード側へ電流が流れるように接続された第4整流素子とを備え、
前記第1および第2入力端子の間に、前記コイルおよび前記第1双方向スイッチを経由する電流経路を有し、
前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の少なくとも一方に接続されていることを特徴とする。
第13の発明は、電源装置であって、
第1〜第12のいずれかの発明に係る力率改善回路と、
DC/DCコンバータとを備える。
上記第1の発明によれば、コイルと双方向スイッチを含む昇圧回路で生成された電圧を2個のコンデンサに交互に印加することにより、昇圧回路で生成された電圧の2倍の電圧を出力することができる。このため、耐圧の小さい小型の素子を用いて力率改善回路を構成し、回路を小型・低コスト化することができる。また、昇圧回路における昇圧比が小さいので、スイッチング損失を低減して、力率改善回路の効率を高くすることができる。また、整流素子の個数は2個でよい。したがって、高効率で部品点数の少ない力率改善回路を提供することができる。
上記第2の発明によれば、2個のMOSFET(または2個のHEMT)のドレイン端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。また、2個のトランジスタを1個のヒートシンクに接続できるので、2個のトランジスタ間の距離を小さくし、電流経路の寄生インダクタンスを小さくし、力率改善回路のノイズを小さくすることができる。また、2個のトランジスタのソース端子を第1および第2入力端子に接続することにより、双方向スイッチの制御回路がノイズなどの影響を受けることを防止すると共に、2個のトランジスタのソース端子の電位を安定化させて、力率改善回路を安定的に動作させることができる。
上記第3の発明によれば、2個のMOSFET(または2個のHEMT)のソース端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
上記第4の発明によれば、2個のIGBT(またはバイポーラトランジスタ)のコレクタ端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。また、2個のトランジスタを1個のヒートシンクに接続できるので、2個のトランジスタ間の距離を小さくし、電流経路の寄生インダクタンスを小さくし、力率改善回路のノイズを小さくすることができる。また、2個のトランジスタのエミッタ端子を第1および第2入力端子に接続することにより、双方向スイッチの制御回路がノイズなどの影響を受けることを防止すると共に、2個のトランジスタのエミッタ端子の電位を安定化させて、力率改善回路を安定的に動作させることができる。
上記第5の発明によれば、2個のIGBT(またはバイポーラトランジスタ)のエミッタ端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
上記第6の発明によれば、入力電圧の極性に応じて第1および第2トランジスタがスイッチングすることにより、コイルと双方向スイッチを含む昇圧回路で生成された電圧を2個のコンデンサに交互に印加し、昇圧回路で生成された電圧の2倍の電圧を出力することができる。
上記第7の発明によれば、第1および第2トランジスタのうちスイッチングしないほうのトランジスタをオン状態に制御することにより、当該トランジスタに内蔵された寄生ダイオードにおける電圧降下による損失を低減することができる。
上記第8の発明によれば、第1および第2トランジスタが寄生ダイオードを内蔵しない場合でも、第1および第2トランジスタに整流素子を逆並列に接続することにより双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
上記第9の発明によれば、第1入力端子側に設けられたコイルと双方向スイッチとを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサに印加することができる。
上記第10の発明によれば、第2入力端子側に設けられたコイルと双方向スイッチとを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサに印加することができる。また、2個のコンデンサの接続点は、コイルを介さずに第2入力端子に接続されるので、コモンモードノイズを小さくすることができる。
上記第11の発明によれば、第1および第2入力端子側に設けられた2個のコイルと双方向スイッチとを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサに印加することができる。また、2個のコイルを用いることにより、各コイルのインダクタンスを小さくすることができる。
上記第12の発明によれば、入力電圧に応じて第2双方向スイッチの導通状態を制御することにより、昇圧比を抑えて高効率で倍電圧昇圧を行う動作モードと、倍電圧昇圧を行わない動作モードとを選択することができる。したがって、広い入力電圧の範囲に対して一定の電圧を出力し、入力電圧が低いときでも高効率な力率改善回路を提供することができる。
第13の発明によれば、本発明の力率改善回路を用いて、高効率で部品点数の少ない電源装置を提供することができる。
本発明の第1の実施形態に係る力率改善回路の回路図である。 図1に示す力率改善回路の正電圧入力時の電流経路を示す図である。 図1に示す力率改善回路の負電圧入力時の電流経路を示す図である。 本発明の第2の実施形態に係る力率改善回路の回路図である。 本発明の第3の実施形態に係る力率改善回路の回路図である。 本発明の第3の実施形態の一変形例に係る力率改善回路の双方向スイッチの回路図である。 本発明の第4の実施形態に係る力率改善回路の回路図である。 図7に示す力率改善回路の第2動作モードかつ正電圧入力時の電流経路を示す図である。 図7に示す力率改善回路の第2動作モードかつ負電圧入力時の電流経路を示す図である。 本発明の第5の実施形態に係る電源装置のブロック図である。 従来の力率改善回路の回路図である。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る力率改善回路の回路図である。図1に示す力率改善回路1は、コイル11、Nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor :金属酸化物半導体電界効果トランジスタ)21、22、ダイオード31、32、コンデンサ41、42、入力端子51、52、および、出力端子53、54を備えている。MOSFET21、22は、それぞれ、寄生ダイオード23、24を内蔵している。
MOSFET21のドレイン端子は、ノードN1に接続される。MOSFET21のソース端子は、MOSFET22のソース端子に接続される。MOSFET22のドレイン端子は、ノードN2に接続される。これにより、逆直列に接続された2個のMOSFET21、22を含み、一端がノードN1に接続され、他端がノードN2に接続された双方向スイッチ20が構成される。寄生ダイオード23のアノード端子とカソード端子は、それぞれ、MOSFET21のソース端子とドレイン端子に接続される。寄生ダイオード24についても、これと同様である。
コンデンサ41の一端(図面では上端)は、出力端子53とダイオード31のカソード端子とに接続される。コンデンサ41の他端とコンデンサ42の一端(図面では上端)は、ノードN2に接続される。コンデンサ42の他端は、出力端子54とダイオード32のアノード端子とに接続される。ダイオード31のアノード端子とダイオード32のカソード端子は、ノードN1に接続される。このようにコンデンサ41、42は、出力端子53、54の間に直列接続される。ダイオード31は、ノードN1とコンデンサ41の一端との間に、ノードN1側から電流が流れるように接続される。ダイオード32は、ノードN1とコンデンサ42の他端との間に、ノードN1側へ電流が流れるように接続される。
入力端子51は、ノードN1に接続される。ノードN2は、コイル11の一端(図面では右端)に接続される。コイル11の他端は、入力端子52に接続される。双方向スイッチ20がオン状態のとき、入力端子51、52の間には、ノードN1、双方向スイッチ20、ノードN2、および、コイル11を経由する電流経路が形成される。このように力率改善回路1は、入力端子51、52の間に、コイル11および双方向スイッチ20を経由する電流経路を有する。コイル11は、ノードN2と入力端子52との間に接続される。
力率改善回路1の入力側には交流電源7が接続され、出力側には負荷8が接続される。入力端子51には交流電源7の一方の端子(図面では上側の端子。以下、第1端子という)が接続され、入力端子52には交流電源7の他方の端子(図面では下側の端子。以下、第2端子という)が接続される。出力端子53には負荷8の一方の端子が接続され、出力端子54には負荷8の他方の端子が接続される。双方向スイッチ20の一端(ノードN1)には、交流電源7の第1端子から入力端子51を経由して電力が供給される。双方向スイッチ20の他端(ノードN2)には、交流電源7の第2端子から入力端子52とコイル11を経由して電力が供給される。
コイル11は、昇圧動作(詳細は後述)を行うときに、電力を充電および放電する。コイル11のインダクタンスは、例えば、100μH〜1mHである。コイル11のインダクタンスは、この範囲外の値でもよい。ダイオード31、32は、それぞれ、第1および第2整流素子として機能する。ダイオード31、32には、例えば、FRD(Fast Recovery Diode )やSiC(シリコンカーバイド)ダイオードなどが使用される。コンデンサ41、42は、電力を蓄積して出力を平滑化する。コンデンサ41、42には、例えば、電界コンデンサが使用される。コンデンサ41、42の静電容量は、例えば、100μF〜10mFである。コンデンサ41、42の静電容量は、この範囲外の値でもよい。
以下、図2および図3を参照して、力率改善回路1の動作を説明する。力率改善回路1は、入力端子51の電位が入力端子52の電位よりも高いとき(以下、正電圧入力時という)と、入力端子51の電位が入力端子52の電位よりも低いとき(以下、負電圧入力時という)とで異なる動作を行う。
図2は、正電圧入力時の電流経路を示す図である。正電圧入力時、かつ、双方向スイッチ20がオン状態のときには、図2に一点鎖線で示す経路P1に電流が流れる。電流は、交流電源7の第1端子から、入力端子51、ノードN1、MOSFET21、MOSFET22、ノードN2、コイル11、および、入力端子52を経由して、交流電源7の第2端子に流れる。電流が経路P1を流れている間、コイル11の両端には交流電源7から電圧が印加され、コイル11にエネルギーが蓄積される。
正電圧入力時、かつ、双方向スイッチ20がオフ状態のときには、図2に破線で示す経路P2に電流が流れる。電流は、交流電源7の第1端子から、入力端子51、ノードN1、ダイオード31、コンデンサ41、ノードN2、コイル11、および、入力端子52を経由して、交流電源7の第2端子に流れる。電流が経路P2を流れている間、コイル11は交流電源7に直列接続され、コイル11からエネルギーが放出される。このとき、交流電源7から供給された電圧を昇圧した電圧がコンデンサ41に印加され、コンデンサ41は昇圧電圧によって充電される。
正電圧入力時には、双方向スイッチ20のスイッチング(オン/オフ制御)は、MOSFET21の状態を制御することにより行われる。MOSFET21をオフ状態に制御したとき、MOSFET22の状態にかかわらず、双方向スイッチ20はオフ状態になる。MOSFET21をオン状態に制御したとき、MOSFET22がオフ状態でも、電流はMOSFET22内の寄生ダイオード24を経由して流れるので、双方向スイッチ20はオン状態になる。ただし、寄生ダイオード24における電圧降下による損失を低減するために、MOSFET21をオン状態に制御するときには、MOSFET22もオン状態に制御することが好ましい。特に、正電圧入力時には、MOSFET22をオン状態に保ちながら、MOSFET21をスイッチングさせることが好ましい。これにより、寄生ダイオード24における電圧降下による損失を低減することができる。
図3は、負電圧入力時の電流経路を示す図である。負電圧入力時、かつ、双方向スイッチ20がオン状態のときには、図3に一点鎖線で示す経路P3に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、コイル11、ノードN2、MOSFET22、MOSFET21、ノードN1、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P3を流れている間、コイル11の両端には交流電源7から電圧が印加され、コイル11にエネルギーが蓄積される。
負電圧入力時、かつ、双方向スイッチ20がオフ状態のときには、図3に破線で示す経路P4に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、コイル11、ノードN2、コンデンサ42、ダイオード32、ノードN1、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P4を流れている間、コイル11は交流電源7に直列接続され、コイル11からエネルギーが放出される。このとき、交流電源7から供給された電圧を昇圧した電圧がコンデンサ42に印加され、コンデンサ42は昇圧電圧によって充電される。
負電圧入力時には、双方向スイッチ20のスイッチングは、MOSFET22の状態を制御することにより行われる。MOSFET22をオフ状態に制御したとき、MOSFET21の状態にかかわらず、双方向スイッチ20はオフ状態になる。MOSFET22をオン状態に制御したとき、MOSFET21がオフ状態でも、電流はMOSFET21内の寄生ダイオード23を経由して流れるので、双方向スイッチ20はオン状態になる。ただし、寄生ダイオード23における電圧降下による損失を低減するために、MOSFET22をオン状態に制御するときには、MOSFET21もオン状態に制御することが好ましい。特に、負電圧入力時には、MOSFET21をオン状態に保ちながら、MOSFET22をスイッチングさせることが好ましい。これにより、寄生ダイオード23における電圧降下による損失を低減することができる。
力率改善回路1には、測定回路と制御回路(いずれも図示せず)が設けられる。測定回路は、交流電源7から力率改善回路1に供給された電圧と電流を随時測定する。制御回路は、電圧と電流の測定結果に基づき、電流が電圧に比例するようにMOSFET21、22のデューティ比を制御する。
コンデンサ41は正電圧入力時に充電され、コンデンサ42は負電圧入力時に充電される。コンデンサ41、42は出力端子53、54の間に直列接続されるので、出力端子53、54間の電圧は、コンデンサ41の両端電圧V1とコンデンサ42の両端電圧V2との和に等しい。電圧V1と電圧V2は等しいので、力率改善回路1の出力電圧(出力端子53、54間の電圧)は電圧V1の2倍になる。力率改善回路1は、コイル11と双方向スイッチ20を含む昇圧回路で生成された電圧の2倍の電圧を負荷8に印加する。
以下、本実施形態に係る力率改善回路1の効果を説明する。力率改善回路1によれば、コイル11と双方向スイッチ20を含む昇圧回路で生成された電圧を2個のコンデンサ41、42に交互に印加することにより、昇圧回路で生成された電圧の2倍の電圧を出力することができる。このため、耐圧の小さい小型の素子を用いて力率改善回路1を構成することができる。したがって、力率改善回路1を小型・低コスト化することができる。また、昇圧回路における昇圧比が小さいので、昇圧電圧が高いほど大きくなるスイッチング損失を低減して、力率改善回路1の効率を高くすることができる。
また、図11に示す力率改善回路9には4個のダイオードが必要とされるが、力率改善回路1に含まれるダイオードの個数は2個である。このように力率改善回路1には、整流素子の個数が少ないという効果もある。上述したように、力率改善回路9では、ダイオードD4は正電圧入力時に不要な電流が流れ続けることを防止し、ダイオードD3は負電圧入力時に不要な電流が流れ続けることを防止する。このため、力率改善回路9にとって、ダイオードD3、D4は不可欠の要素である。力率改善回路9では、FET:T1、T2は順直列に接続されており、その両端に交流電源7から電力が供給されるからである。
これに対して力率改善回路1では、MOSFET21、22は逆直列に接続されており、その両端に交流電源7から電力が供給される。正電圧入力時には、MOSFET21がスイッチングし、昇圧電圧によってコンデンサ41が充電される。負電圧入力時には、MOSFET22がスイッチングし、昇圧電圧によってコンデンサ42が充電される。このため、力率改善回路1には、力率改善回路9のダイオードD3、D4に相当する素子は不要である。したがって、力率改善回路1によれば、力率改善回路9よりも整流素子の数を減らし、効率を高くすることができる。
また、力率改善回路9では、コンデンサC1を充電するときに、電流はダイオードD1、D3を通過する。これに対して力率改善回路1では、コンデンサ41を充電するときに、電流はダイオード31だけを通過する(図2)。したがって、力率改善回路1によれば、力率改善回路9よりも整流素子における損失を低減することができる。
以上に示すように、本実施形態に係る力率改善回路1は、第1および第2入力端子51、52と、第1および第2出力端子53、54と、コイル11と、逆直列に接続された第1および第2トランジスタ(MOSFET21、22)を含み、一端が第1ノードN1に接続され、他端が第2ノードN2に接続された双方向スイッチ20と、一端が第1出力端子53に接続され、他端が第2ノードN2に接続された第1コンデンサ41と、一端が第2ノードN2に接続され、他端が第2出力端子54に接続された第2コンデンサ42と、第1ノードN1と第1コンデンサ41の一端との間に、第1ノードN1側から電流が流れるように接続された第1整流素子(ダイオード31)と、第1ノードN1と第2コンデンサ42の他端との間に、第1ノード側へ電流が流れるように接続された第2整流素子(ダイオード32)とを備えている。力率改善回路1は、第1および第2入力端子51、52の間に、コイル11および双方向スイッチ20を経由する電流経路を有する。コイル11は、第2ノードN2と入力端子52との間に接続される。
したがって、本実施形態に係る力率改善回路1によれば、第2入力端子52側に設けられたコイル11と双方向スイッチ20を含む昇圧回路で生成された電圧を2個のコンデンサ41、42に交互に印加することにより、昇圧回路で生成された電圧の2倍の電圧を出力することができる。このため、耐圧の小さい小型の素子を用いて力率改善回路1を構成し、回路を小型・低コスト化することができる。また、昇圧回路における昇圧比が小さいので、スイッチング損失を低減して、力率改善回路1の効率を高くすることができる。また、整流素子の個数は2個でよい。したがって、高効率で部品点数の少ない力率改善回路1を提供することができる。
また、第1トランジスタは、ソース端子と、第1ノードN1に接続されたドレイン端子とを有するMOSFET21であり、第2トランジスタは、第1トランジスタのソース端子に接続されたソース端子と、第2ノードN2に接続されたドレイン端子とを有するMOSFET22である。したがって、2個のMOSFET21、22のソース端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチ20を構成し、これを用いて高効率で部品点数の少ない力率改善回路1を提供することができる。
また、第1入力端子51の電位が第2入力端子52の電位よりも高いときには、第1トランジスタがスイッチングし、第1入力端子51の電位が第2入力端子52の電位よりも低いときには、第2トランジスタがスイッチングする。このように入力電圧の極性に応じて第1および第2トランジスタがスイッチングすることにより、コイル11と双方向スイッチ20を含む昇圧回路で生成された電圧を2個のコンデンサ41、42に交互に印加し、昇圧回路で生成された電圧の2倍の電圧を出力することができる。
また、第1入力端子51の電位が第2入力端子52の電位よりも高いときには、第2トランジスタはオン状態に制御され、第1入力端子51の電位が第2入力端子52の電位よりも低いときには、第1トランジスタはオン状態に制御される。このように第1および第2トランジスタのうちスイッチングしないほうのトランジスタをオン状態に制御することにより、当該トランジスタに内蔵された寄生ダイオードにおける電圧降下による損失を低減することができる。
本実施形態に係る力率改善回路1については、以下の変形例を構成することができる。例えば、双方向スイッチは、逆直列に接続された2個のPチャネル型のトランジスタを含んでいてもよい。また、双方向スイッチは、エミッタ端子同士を接続した2個のIGBT(Insulated Gate Bipolar Transistor :絶縁ゲートバイポーラトランジスタ)、または、エミッタ端子同士を接続した2個のバイポーラトランジスタを含んでいてもよい。この双方向スイッチでは、IGBTまたはバイポーラトランジスタごとに、FRDなどが外付けされる。FRDのアノード端子はIGBTまたはバイポーラトランジスタのエミッタ端子に接続され、FRDのカソード端子はIGBTまたはバイポーラトランジスタのコレクタ端子に接続される。
このように第1トランジスタは、エミッタ端子と、第1ノードN1に接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであり、第2トランジスタは、第1トランジスタのエミッタ端子に接続されたエミッタ端子と、第2ノードN2に接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであってもよい。この場合でも、2個のIGBT(またはバイポーラトランジスタ)のエミッタ端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
また、双方向スイッチは、第1および第2トランジスタに逆並列に接続された整流素子(FRD)を含んでいてもよい。これにより、第1および第2トランジスタが寄生ダイオードを内蔵しない場合でも、第1および第2トランジスタに整流素子を逆並列に接続することにより双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
また、双方向スイッチは、ソース端子同士を接続した2個のGaN−HEMT(GaN-High Electron Mobility Transistor :窒化ガリウム高電子移動度トランジスタ)を含んでいてもよい。GaN−HEMTがノーマリーオフ型である場合には、GaN−HEMTごとにFRDなどが外付けされる。GaN−HEMTがノーマリーオン型である場合には、GaN−HEMTごとにシリコンMOSFETをカスコード接続することが好ましい。このように2個のHEMTのソース端子同士を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチを構成し、これを用いて高効率で部品点数の少ない力率改善回路を提供することができる。
(第2の実施形態)
図4は、本発明の第2の実施形態に係る力率改善回路の回路図である。図4に示す力率改善回路2は、コイル12、Nチャネル型のMOSFET21、22、ダイオード31、32、コンデンサ41、42、入力端子51、52、および、出力端子53、54を備えている。以下に示す各実施形態において、各実施形態の構成要素のうち先に述べた実施形態と同一の構成要素については、同一の参照符号を付して説明を省略する。
力率改善回路2は、第1の実施形態に係る力率改善回路1において、コイルの接続位置を変更したものである。力率改善回路2では、入力端子51は、コイル12の一端(図面では左端)に接続される。コイル12の他端は、双方向スイッチ20の一端(ノードN1)に接続される。ノードN1には、ダイオード31のアノード端子とダイオード32のカソード端子も接続される。双方向スイッチ20の他端(ノードN2)は、コンデンサ41の他端(図面では下端)、コンデンサ42の一端(図面では上端)、および、入力端子52に接続される。双方向スイッチ20がオン状態のとき、入力端子51、52の間には、コイル12、ノードN1、双方向スイッチ20、および、ノードN2を経由する電流経路が形成される。このように力率改善回路2は、入力端子51、52の間に、コイル12および双方向スイッチ20を経由する電流経路を有する。コイル12は、入力端子51とノードN1との間に接続される。
力率改善回路2は、第1の実施形態に係る力率改善回路1と同様に動作する。正電圧入力時には、MOSFET21がスイッチングし、交流電源7から供給された電圧を昇圧した電圧によってコンデンサ41が充電される。負電圧入力時には、MOSFET22がスイッチングし、交流電源7から供給された電圧を昇圧した電圧によってコンデンサ42が充電される。力率改善回路2は、コイル12と双方向スイッチ20を含む昇圧回路で生成された電圧の2倍の電圧を負荷8に印加する。
したがって、本実施形態に係る力率改善回路2によれば、力率改善回路1と同様に、回路を小型・低コスト化し、効率を高くし、整流素子の個数を減らし、整流素子における損失を低減することができる。
また、力率改善回路2は以下の効果を有する。力率改善回路1では、コンデンサ41、42の接続点(以下、中点という)は、コイル11を介して交流電源7の第2端子に接続される。このため、コイル11の両端の電圧の変動によって、コモンモードノイズが発生することがある。これに対して力率改善回路2では、中点は、コイルを介さずに交流電源7の第2端子に接続される。このため、中点の電位は交流電源7の第2端子の電位に常に等しくなり、出力端子53と中点との間の電位差の実効値は出力端子54と中点との間の電位差の実効値に等しくなる。したがって、本実施形態に係る力率改善回路2によれば、力率改善回路1よりもコモンモードノイズを小さくすることができる。
以上に示すように、本実施形態に係る力率改善回路2では、コイル12は、第1入力端子51と第1ノードN1と間に接続されている。したがって、第1入力端子51側に設けられたコイル12と双方向スイッチ20とを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサ41、42に印加することができる。また、2個のコンデンサ41、42の接続点は、コイルを介さずに第2入力端子52に接続されるので、コモンモードノイズを小さくすることができる。
本実施形態に係る力率改善回路2については、以下の変形例を構成することができる。例えば、変形例に係る力率改善回路は、2個のコイルを備えていてもよい。この力率改善回路では、一方のコイルは入力端子51と双方向スイッチ20の一端(ノードN1)との間に接続され、他方のコイルは双方向スイッチ20の他端(ノードN2)と入力端子52との間に接続される。
この力率改善回路では、コイルは、第1入力端子51と第1ノードN1との間、および、第2ノードN2と第2入力端子52との間の両方に接続されている。したがって、第1および第2入力端子51、52側に設けられた2個のコイルと双方向スイッチ20とを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサ41、42に印加することができる。また、2個のコイルを用いることにより、各コイルのインダクタンスを小さくすることができる。このように、力率改善回路では、コイルは、第1入力端子51と第1ノードN1との間、および、第2ノードN2と第2入力端子52との間の少なくとも一方に接続されていればよい。
また、双方向スイッチは、逆直列に接続された2個のPチャネル型のトランジスタを含んでいてもよい。また、双方向スイッチは、エミッタ端子同士を接続した2個のIGBT、エミッタ端子同士を接続した2個のバイポーラトランジスタ、または、ソース端子同士を接続した2個のGaN−HEMTを含んでいてもよい。
(第3の実施形態)
図5は、本発明の第3の実施形態に係る力率改善回路の回路図である。図5に示す力率改善回路3は、コイル12、Nチャネル型のMOSFET26、27、ダイオード31、32、コンデンサ41、42、入力端子51、52、および、出力端子53、54を備えている。MOSFET26、27は、それぞれ、寄生ダイオード28、29を内蔵している。
力率改善回路3は、第2の実施形態に係る力率改善回路2において、双方向スイッチの構成を変更したものである。力率改善回路3では、MOSFET26のソース端子は、ノードN2に接続される。MOSFET26のドレイン端子は、MOSFET27のドレイン端子に接続される。MOSFET27のソース端子は、ノードN1に接続される。これにより、逆直列に接続された2個のMOSFET26、27を含み、一端がノードN1に接続され、他端がノードN2に接続された双方向スイッチ25が構成される。寄生ダイオード28のアノード端子とカソード端子は、それぞれ、MOSFET26のソース端子とドレイン端子に接続される。寄生ダイオード29についても、これと同様である。
力率改善回路3は、第1および第2の実施形態に係る力率改善回路1、2と同様に動作する。正電圧入力時には、MOSFET26がスイッチングし、交流電源7から供給された電圧を昇圧した電圧によってコンデンサ41が充電される。負電圧入力時には、MOSFET27がスイッチングし、交流電源7から供給された電圧を昇圧した電圧によってコンデンサ42が充電される。力率改善回路3は、コイル12と双方向スイッチ25を含む昇圧回路で生成された電圧の2倍の電圧を負荷8に印加する。
力率改善回路3では、正電圧入力時にMOSFET26をオン状態に制御するときには、MOSFET27もオン状態に制御することが好ましい。特に、正電圧入力時には、MOSFET27をオン状態に保ちながら、MOSFET26をスイッチングさせることが好ましい。これにより、寄生ダイオード29における電圧降下による損失を低減することができる。また、負電圧入力時にMOSFET27をオン状態に制御するときには、MOSFET26もオン状態に制御することが好ましい。特に、負電圧入力時には、MOSFET26をオン状態に保ちながら、MOSFET27をスイッチングさせることが好ましい。これにより、寄生ダイオード28における電圧降下による損失を低減することができる。
したがって、本実施形態に係る力率改善回路3によれば、力率改善回路1、2と同様に、回路を小型・低コスト化し、効率を高くし、整流素子の個数を減らし、整流素子における損失を低減することができる。
また、力率改善回路3は以下の効果を有する。一般に、MOSFETを内蔵した半導体チップでは、MOSFETのドレイン端子は、パッケージの放熱板取り付け部の金属部分に接続される。力率改善回路3では、MOSFET26のドレイン端子の電位はMOSFET27のドレイン端子の電位に等しいので、MOSFET26、27を1個のヒートシンクに接続することができる。
力率改善回路3では、電流経路の寄生インダクタンスを小さくするために、MOSFET26、27間の距離が小さいことが好ましい。MOSFET26、27に個別にヒートシンクを取り付けた場合、ヒートシンクの電位が異なるので、ヒートシンク間にある程度の沿面距離または空間距離を設ける必要がある。MOSFET26、27が1個のヒートシンクを共用することにより、MOSFET26、27間の距離を小さくし、電流経路の寄生インダクタンスを小さくし、力率改善回路3のノイズを小さくすることができる。
一般に、発熱量が異なる2個の素子が1個のヒートシンクを共用する場合、発熱量が多い素子から発熱量が少ない素子に熱が伝わるので、ヒートシンクを共用することが好ましいとは限らない。力率改善回路3では、正電圧入力時にはMOSFET26がスイッチングし、負電圧入力時にはMOSFET27がスイッチングするので、MOSFET26における発熱量はMOSFET27における発熱量にほぼ等しい。したがって、力率改善回路3では、MOSFET26、27が1個のヒートシンクを共有した場合に問題は発生せず、効果だけを得ることができる。
また、力率改善回路では、双方向スイッチの制御信号は、MOSFETのソース端子の電位を基準として生成される。力率改善回路1、2では、MOSFET21、22の制御回路(図示せず)は、MOSFET21、22の接続点に接続される。このため、MOSFET21、22が共にオフ状態のときには、各種のサージやノイズによって、MOSFET21、22の接続点の電位が双方向スイッチ20の両端の電位よりも低くなることがある。このとき、MOSFET21、22のスイッチングの基準電位を与えるソース端子が、フローティング状態になる。
力率改善回路3では、MOSFET26の制御回路(図示せず)は双方向スイッチ20の他端(ノードN2)に接続され、MOSFET27の制御回路(図示せず)は双方向スイッチ20の一端(ノードN1)に接続される。このため、MOSFET26、27の制御回路は、交流電源7に直接接続される。したがって、力率改善回路3によれば、制御回路がノイズやサージの影響を受けることを防止し、制御回路がノイズやサージの影響を受けて放射ノイズを発生することを防止することができる。また、MOSFET26、27のスイッチングの基準電位を与えるソース端子の電位を安定化させ、ノイズを削減し、回路を安定的に動作させることができる。
以上に示すように、本実施形態に係る力率改善回路3では、第1トランジスタは、ドレイン端子と、第2ノードN2に接続されたソース端子とを有するMOSFET26であり、第2トランジスタは、第1トランジスタのドレイン端子に接続されたドレイン端子と、第1ノードN1に接続されたソース端子とを有するMOSFET27である。
したがって、2個のMOSFET26、27のドレイン端子を接続して、逆直列に接続された2個のトランジスタを含む双方向スイッチ25を構成し、これを用いて高効率で部品点数の少ない力率改善回路3を提供することができる。また、2個のトランジスタを1個のヒートシンクに接続できるので、2個のトランジスタ間の距離を小さくし、電流経路の寄生インダクタンスを小さくし、力率改善回路3のノイズを小さくすることができる。また、2個のトランジスタのソース端子を第1および第2入力端子51、52に接続することにより、双方向スイッチ25の制御回路がノイズなどの影響を受けることを防止すると共に、2個のトランジスタのソース端子の電位を安定化させて、力率改善回路3を安定的に動作させることができる。
本実施形態に係る力率改善回路3については、以下の変形例を構成することができる。例えば、変形例に係る力率改善回路では、コイルは、第1入力端子51と第1ノードN1との間、および、第2ノードN2と第2入力端子52との間の両方に接続されていてもよい。また、双方向スイッチは、逆直列に接続された2個のPチャネル型のトランジスタを含んでいてもよい。また、双方向スイッチは、コレクタ端子同士を接続した2個のIGBT、コレクタ端子同士を接続した2個のバイポーラトランジスタ、または、ドレイン端子同士を接続した2個のGaN−HEMTを含んでいてもよい。
図6は、第3の実施形態の一変形例に係る力率改善回路の双方向スイッチの回路図である。図6に示す双方向スイッチ65は、IGBT66、67、および、FRD68、69を含んでいる。IGBT66のエミッタ端子は、ノードN2に接続される。IGBT66のコレクタ端子は、IGBT67のコレクタ端子に接続される。IGBT67のエミッタ端子は、ノードN1に接続される。FRD68、69は、それぞれ、IGBT66、67に外付けされる。FRD68のアノード端子とカソード端子は、それぞれ、IGBT66のエミッタ端子とコレクタ端子に接続される。FRD69についても、これと同様である。
双方向スイッチ65を備えた力率改善回路でも、力率改善回路3と同様の効果が得られる。力率改善回路3の効果の説明において、MOSFET26をIGBT66、MOSFET27をIGBT67、ソース端子をエミッタ端子、ドレイン端子をコレクタ端子と読み替えれば、双方向スイッチ65を備えた率改善回路についても同様の説明を適用することができる。
このように第1トランジスタは、コレクタ端子と、第2ノードN2に接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであり、第2トランジスタは、第1トランジスタのコレクタ端子に接続されたコレクタ端子と、第1ノードに接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであってもよい。また、第1トランジスタは、ドレイン端子と、第2ノードN2に接続されたソース端子とを有するHEMTであり、第2トランジスタは、第1トランジスタのコレクタ端子に接続されたコレクタ端子と、第1ノードに接続されたエミッタ端子とを有するHEMTであってもよい。これらの場合でも、第1および第2トランジスタがMOSFETである場合と同様の効果が得られる。
(第4の実施形態)
図7は、本発明の第4の実施形態に係る力率改善回路の回路図である。図7に示す力率改善回路4は、コイル12、MOSFET26、27、71〜74、ダイオード31、32、コンデンサ41、42、入力端子51、52、および、出力端子53、54を備えている。MOSFET26、27、71〜74は、それぞれ、寄生ダイオード28、29、75〜78を内蔵している。力率改善回路4は、第3の実施形態に係る力率改善回路3にMOSFET71〜74を追加したものである。以下、力率改善回路3との相違点を説明する。
力率改善回路4では、コンデンサ41の他端(図面では下端)とコンデンサ42の一端(図面では上端)は、ノードN3に接続される。MOSFET71のドレイン端子は、双方向スイッチ25の他端(ノードN2)に接続される。MOSFET71のソース端子は、MOSFET72のソース端子に接続される。MOSFET72のドレイン端子は、ノードN3に接続される。これにより、逆直列に接続された2個のMOSFET71、72を含み、一端がノードN2に接続され、他端がノードN3に接続された双方向スイッチ70が構成される。寄生ダイオード75のアノード端子とカソード端子は、それぞれ、MOSFET71のソース端子とドレイン端子に接続される。寄生ダイオード76についても、これと同様である。
MOSFET73のソース端子とMOSFET74のドレイン端子は、双方向スイッチ25の他端(ノードN2)に接続される。MOSFET73のドレイン端子は、ダイオード31のカソード端子、コンデンサ41の一端、および、出力端子53に接続される。MOSFET74のソース端子は、ダイオード32のアノード端子、コンデンサ42の他端、および、出力端子54に接続される。寄生ダイオード77のアノード端子とカソード端子は、それぞれ、MOSFET73のソース端子とドレイン端子に接続される。寄生ダイオード78についても、これと同様である。
このように双方向スイッチ70は、ノードN2とノードN3との間に接続されている。MOSFET73は、ノードN2とコンデンサ41の一端との間にノードN2側から電流が流れるように接続される。MOSFET74は、ノードN2とコンデンサ42の他端との間にノードN2側へ電流が流れるように接続される。MOSFET73、74は、整流素子として機能する。
力率改善回路4は、世界各国で使用可能な、各国の商用電源に対応した力率改善回路である。各国の商用電源の電圧は、概ね100V〜240Vの範囲内にある。このため、従来の昇圧型力率改善回路は、入力電圧が240V(ピーク電圧は約340V)を多少超えても安定的に動作するように、入力電圧のレベルにかかわらず、入力電圧を所定レベル(例えば、約400V)に昇圧する。このため、入力電圧が低いときには、昇圧比が大きくなり、昇圧回路における損失が大きくなる。このように従来の昇圧型力率改善回路には、入力電圧が低いときに効率が低いという問題がある。
この問題を解決するために、力率改善回路4は、動作モードを切り替える機能を有する。力率改善回路4は、例えば140Vを閾値として、各国の商用電源の電圧を100V〜130Vのグループと200V〜240Vのグループとに分類する。力率改善回路4は、入力電圧(交流電源7から供給された電圧)と閾値を比較し、比較結果に基づき双方向スイッチ70の状態を制御する。入力電圧が閾値より低いときには、双方向スイッチ70はオン状態に制御され、力率改善回路4は倍電圧昇圧を行う第1動作モードで動作する。入力電圧が閾値より高いときには、双方向スイッチ70はオフ状態に制御され、力率改善回路4は倍電圧昇圧を行わない第2動作モードで動作する。
第1動作モードでは、双方向スイッチ70は常にオン状態に制御され、MOSFET73、74はオフ状態に制御される。このとき、力率改善回路4は、第3の実施形態に係る力率改善回路3と実質的に同じ回路になり、力率改善回路3と同様に動作する。力率改善回路4は、第1動作モードでは、コイル12と双方向スイッチ25を含む昇圧回路で生成された電圧の2倍の電圧を負荷8に印加する。このとき昇圧比は一般的な昇圧回路の半分になるので、入力電圧が低くても効率を高くすることができる。
第2動作モードでは、双方向スイッチ70は常にオフ状態に制御される。また、正電圧入力時にはMOSFET74をオン状態に制御し、負電圧入力時にはMOSFET73をオン状態に制御することが好ましい。
図8は、第2動作モードかつ正電圧入力時の電流経路を示す図である。第2動作モード、正電圧入力時、かつ、双方向スイッチ25がオン状態のときには、図8に一点鎖線で示す経路P5に電流が流れる。電流は、交流電源7の第1端子から、入力端子51、コイル12、ノードN1、MOSFET27、MOSFET26、ノードN2、および、入力端子52を経由して、交流電源7の第2端子に流れる。電流が経路P5を流れている間、コイル12の両端には交流電源7から電圧が印加され、コイル12にはエネルギーが蓄積される。
第2動作モード、正電圧入力時、かつ、双方向スイッチ25がオフ状態のときには、図8に破線で示す経路P6に電流が流れる。電流は、交流電源7の第1端子から、入力端子51、コイル12、ノードN1、ダイオード31、コンデンサ41、コンデンサ42、MOSFET74、ノードN2、および、入力端子52を経由して、交流電源7の第2端子に流れる。電流が経路P6を流れている間、コイル12は交流電源7と直列接続され、コイル12に蓄積されたエネルギーは放出される。したがって、交流電源7から供給された電圧を昇圧した電圧がコンデンサ41、42を直列接続した回路に印加され、コンデンサ41、42はそれぞれ昇圧電圧の半分の電圧で充電される。
図9は、第2動作モードかつ負電圧入力時の電流経路を示す図である。第2動作モード、負電圧入力時、かつ、双方向スイッチ25がオン状態のときには、図9に一点鎖線で示す経路P7に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、ノードN2、MOSFET26、MOSFET27、ノードN1、コイル12、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P7に流れている間、コイル12の両端には交流電源7から電圧が印加され、コイル12にはエネルギーが蓄積される。
第2動作モード、負電圧入力時、かつ、双方向スイッチ25がオフ状態のときには、図9に破線で示す経路P8に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、ノードN2、MOSFET73、コンデンサ41、コンデンサ42、ダイオード32、ノードN1、コイル12、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P8に流れている間、コイル12は交流電源7と直列接続され、コイル12に蓄積されたエネルギーは放出される。したがって、交流電源7から供給された電圧を昇圧した電圧がコンデンサ41、42を直列接続した回路に印加され、コンデンサ41、42はそれぞれ昇圧電圧の半分の電圧で充電される。したがって、力率改善回路4は、第2動作モードでは、コイル12と双方向スイッチ25を含む昇圧回路で生成された電圧をそのまま負荷8に印加する。
力率改善回路4の動作モードは、例えば、力率改善回路4を交流電源7に接続したときに入力電圧と閾値を比較し、そのときの比較結果に応じて選択される。また、入力電圧が大幅に変動する国にも対応するために、力率改善回路4は、入力電圧と閾値を繰り返し比較し、比較結果に応じて動作モードを適宜選択してもよい。
力率改善回路4は、入力電圧が閾値より低いときには、倍電圧昇圧を行う第1動作モードで動作する。第1動作モードでは、力率改善回路4は、昇圧比を抑えて高効率で動作する。入力電圧が閾値より高いときは、力率改善回路4は、倍電圧昇圧を行わない第2動作モードで動作する。したがって、本実施形態に係る力率改善回路4によれば、広い範囲の入力電圧に対して一定の電圧を出力し、入力電圧が低いときでも効率を高くすることができる。
以上に示すように、本実施形態に係る力率改善回路4は、第1および第2入力端子51、52と、第1および第2出力端子53、54と、コイル12と、逆直列に接続された第1および第2トランジスタ(MOSFET26、27)を含み、一端が第1ノードN1に接続され、他端が第2ノードN2に接続された第1双方向スイッチ25と、一端が第1出力端子53に接続され、他端が第3ノードN3に接続された第1コンデンサ41と、一端が第3ノードN3に接続され、他端が第2出力端子54に接続された第2コンデンサ42と、第2ノードN2と第3ノードN3との間に接続された第2双方向スイッチ70と、第1ノードN1と第1コンデンサ41の一端との間に、第1ノードN1側から電流が流れるように接続された第1整流素子(ダイオード31)と、第1ノードN1と第2コンデンサ42の他端との間に、第1ノードN1側へ電流が流れるように接続された第2整流素子(ダイオード32)と、第2ノードN2と第1コンデンサの一端との間に、第2ノードN2側から電流が流れるように接続された第3整流素子(MOSFET73)と、第2ノードN2と第2コンデンサ42の他端との間に、第2ノードN2側へ電流が流れるように接続された第4整流素子(MOSFET74)とを備えている。力率改善回路4は、第1および第2入力端子51、52の間に、コイル12および第1双方向スイッチ25を経由する電流経路を有する。コイル12は、第1入力端子51と第1ノードN1との間に接続されている。
したがって、本実施形態に係る力率改善回路4によれば、入力電圧に応じて第2双方向スイッチ70の導通状態を制御することにより、昇圧比を抑えて高効率で倍電圧昇圧を行う第1動作モードと、倍電圧昇圧を行わない第2動作モードとを選択することができる。したがって、広い入力電圧の範囲に対して一定の電圧を出力し、入力電圧が低いときでも高効率な力率改善回路4を提供することができる。
本実施形態に係る力率改善回路4についても、各種の変形例を構成することができる。例えば、変形例に係る力率改善回路は、コイル12に代えて、双方向スイッチ25の他端と入力端子52との間に接続されたコイルを備えていてもよく、コイル12と共に、双方向スイッチ25の他端と入力端子52との間に接続されたコイルを備えていてもよい。また、変形例に係る力率改善回路は、逆直列に接続された2個のIGBT、2個のバイポーラトランジスタ、または、2個のGaN−HEMTを含む双方向スイッチを備えていてもよい。また、動作モードの選択に用いる閾値は、140V以外でもよい。
また、双方向スイッチ70には、ノードN2、N3間を電気的に接続するか否かを切り替える任意の双方向スイッチを用いることができる。例えば、2個のPチャネル型のトランジスタを逆直列に接続して構成された双方向スイッチを用いてもよく、リレーなど他のスイッチ素子を用いた双方向スイッチを用いてもよい。また、第3および第4整流素子として、MOSFET73、74に代えて、ダイオードを用いてもよい。
(第5の実施形態)
図10は、本発明の第5の実施形態に係る電源装置の構成を示す回路図である。図10に示す電源装置5は、力率改善回路81、および、DC/DCコンバータ82を備えている。力率改善回路81は、第1〜第4の実施形態およびその変形例に係る力率改善回路のいずれかである。DC/DCコンバータ82は、力率改善回路81の出力電圧を所望レベルの直流電圧に変換する。電源装置5は、商用電源の電力を受けるための差込プラグ83を有する。電源装置5は、負荷84に接続して使用される。
本実施形態によれば、第1〜第4の実施形態およびその変形例に係る力率改善回路を用いて、高効率で部品点数の少ない電源装置5を提供することができる。
なお、第1〜第4の実施形態およびその変形例に係る力率改善回路の特徴をその性質に反しない限り任意に組み合わせて、複数の実施形態または変形例の特徴を有する力率改善回路を構成してもよい。
1、2、3、4、81…力率改善回路
5…電源装置
11、12…コイル
20、25、65、70…双方向スイッチ
21、22、26、27、71〜74…MOSFET
23、24、28、29、68、69、75〜78…寄生ダイオード
31、32…ダイオード
41、42…コンデンサ
51、52…入力端子
53、54…出力端子
66、67…IGBT
68、69…FRD
82…DC/DCコンバータ
上記第13の発明によれば、本発明の力率改善回路を用いて、高効率で部品点数の少ない電源装置を提供することができる。
コイル11は、昇圧動作(詳細は後述)を行うときに、電力を充電および放電する。コイル11のインダクタンスは、例えば、100μH〜1mHである。コイル11のインダクタンスは、この範囲外の値でもよい。ダイオード31、32は、それぞれ、第1および第2整流素子として機能する。ダイオード31、32には、例えば、FRD(Fast Recovery Diode )やSiC(シリコンカーバイド)ダイオードなどが使用される。コンデンサ41、42は、電力を蓄積して出力を平滑化する。コンデンサ41、42には、例えば、電コンデンサが使用される。コンデンサ41、42の静電容量は、例えば、100μF〜10mFである。コンデンサ41、42の静電容量は、この範囲外の値でもよい。
以上に示すように、本実施形態に係る力率改善回路2では、コイル12は、第1入力端子51と第1ノードN1と間に接続されている。したがって、第1入力端子51側に設けられたコイル12と双方向スイッチ20とを用いて昇圧回路を構成し、昇圧回路で生成された電圧を2個のコンデンサ41、42に印加することができる。また、2個のコンデンサ41、42の接続点は、コイルを介さずに第2入力端子52に接続されるので、コモンモードノイズを小さくすることができる。
双方向スイッチ65を備えた力率改善回路でも、力率改善回路3と同様の効果が得られる。力率改善回路3の効果の説明において、MOSFET26をIGBT66、MOSFET27をIGBT67、ソース端子をエミッタ端子、ドレイン端子をコレクタ端子と読み替えれば、双方向スイッチ65を備えた率改善回路についても同様の説明を適用することができる。
図9は、第2動作モードかつ負電圧入力時の電流経路を示す図である。第2動作モード、負電圧入力時、かつ、双方向スイッチ25がオン状態のときには、図9に一点鎖線で示す経路P7に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、ノードN2、MOSFET26、MOSFET27、ノードN1、コイル12、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P7流れている間、コイル12の両端には交流電源7から電圧が印加され、コイル12にはエネルギーが蓄積される。
第2動作モード、負電圧入力時、かつ、双方向スイッチ25がオフ状態のときには、図9に破線で示す経路P8に電流が流れる。電流は、交流電源7の第2端子から、入力端子52、ノードN2、MOSFET73、コンデンサ41、コンデンサ42、ダイオード32、ノードN1、コイル12、および、入力端子51を経由して、交流電源7の第1端子に流れる。電流が経路P8流れている間、コイル12は交流電源7と直列接続され、コイル12に蓄積されたエネルギーは放出される。したがって、交流電源7から供給された電圧を昇圧した電圧がコンデンサ41、42を直列接続した回路に印加され、コンデンサ41、42はそれぞれ昇圧電圧の半分の電圧で充電される。したがって、力率改善回路4は、第2動作モードでは、コイル12と双方向スイッチ25を含む昇圧回路で生成された電圧をそのまま負荷8に印加する。
以上に示すように、本実施形態に係る力率改善回路4は、第1および第2入力端子51、52と、第1および第2出力端子53、54と、コイル12と、逆直列に接続された第1および第2トランジスタ(MOSFET26、27)を含み、一端が第1ノードN1に接続され、他端が第2ノードN2に接続された第1双方向スイッチ25と、一端が第1出力端子53に接続され、他端が第3ノードN3に接続された第1コンデンサ41と、一端が第3ノードN3に接続され、他端が第2出力端子54に接続された第2コンデンサ42と、第2ノードN2と第3ノードN3との間に接続された第2双方向スイッチ70と、第1ノードN1と第1コンデンサ41の一端との間に、第1ノードN1側から電流が流れるように接続された第1整流素子(ダイオード31)と、第1ノードN1と第2コンデンサ42の他端との間に、第1ノードN1側へ電流が流れるように接続された第2整流素子(ダイオード32)と、第2ノードN2と第1コンデンサ41の一端との間に、第2ノードN2側から電流が流れるように接続された第3整流素子(MOSFET73)と、第2ノードN2と第2コンデンサ42の他端との間に、第2ノードN2側へ電流が流れるように接続された第4整流素子(MOSFET74)とを備えている。力率改善回路4は、第1および第2入力端子51、52の間に、コイル12および第1双方向スイッチ25を経由する電流経路を有する。コイル12は、第1入力端子51と第1ノードN1との間に接続されている。
(第5の実施形態)
図10は、本発明の第5の実施形態に係る電源装置の構成を示すブロック図である。図10に示す電源装置5は、力率改善回路81、および、DC/DCコンバータ82を備えている。力率改善回路81は、第1〜第4の実施形態およびその変形例に係る力率改善回路のいずれかである。DC/DCコンバータ82は、力率改善回路81の出力電圧を所望レベルの直流電圧に変換する。電源装置5は、商用電源の電力を受けるための差込プラグ83を有する。電源装置5は、負荷84に接続して使用される。
1、2、3、4、81…力率改善回路
5…電源装置
11、12…コイル
20、25、65、70…双方向スイッチ
21、22、26、27、71〜74…MOSFET
23、24、28、29、75〜78…寄生ダイオード
31、32…ダイオード
41、42…コンデンサ
51、52…入力端子
53、54…出力端子
66、67…IGBT
68、69…FRD
82…DC/DCコンバータ

Claims (13)

  1. 第1および第2入力端子と、
    第1および第2出力端子と、
    コイルと、
    逆直列に接続された第1および第2トランジスタを含み、一端が第1ノードに接続され、他端が第2ノードに接続された双方向スイッチと、
    一端が前記第1出力端子に接続され、他端が前記第2ノードに接続された第1コンデンサと、
    一端が前記第2ノードに接続され、他端が前記第2出力端子に接続された第2コンデンサと、
    前記第1ノードと前記第1コンデンサの一端との間に、前記第1ノード側から電流が流れるように接続された第1整流素子と、
    前記第1ノードと前記第2コンデンサの他端との間に、前記第1ノード側へ電流が流れるように接続された第2整流素子とを備え、
    前記第1および第2入力端子の間に、前記コイルおよび前記双方向スイッチを経由する電流経路を有し、
    前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の少なくとも一方に接続されていることを特徴とする、力率改善回路。
  2. 前記第1トランジスタは、ドレイン端子と、前記第2ノードに接続されたソース端子とを有するMOSFETまたはHEMTであり、
    前記第2トランジスタは、前記第1トランジスタのドレイン端子に接続されたドレイン端子と、前記第1ノードに接続されたソース端子とを有するMOSFETまたはHEMTであることを特徴とする、請求項1に記載の力率改善回路。
  3. 前記第1トランジスタは、ソース端子と、前記第1ノードに接続されたドレイン端子とを有するMOSFETまたはHEMTであり、
    前記第2トランジスタは、前記第1トランジスタのソース端子に接続されたソース端子と、前記第2ノードに接続されたドレイン端子とを有するMOSFETまたはHEMTであることを特徴とする、請求項1に記載の力率改善回路。
  4. 前記第1トランジスタは、コレクタ端子と、前記第2ノードに接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであり、
    前記第2トランジスタは、前記第1トランジスタのコレクタ端子に接続されたコレクタ端子と、前記第1ノードに接続されたエミッタ端子とを有するIGBTまたはバイポーラトランジスタであることを特徴とする、請求項1に記載の力率改善回路。
  5. 前記第1トランジスタは、エミッタ端子と、前記第1ノードに接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであり、
    前記第2トランジスタは、前記第1トランジスタのエミッタ端子に接続されたエミッタ端子と、前記第2ノードに接続されたコレクタ端子とを有するIGBTまたはバイポーラトランジスタであることを特徴とする、請求項1に記載の力率改善回路。
  6. 前記第1入力端子の電位が前記第2入力端子の電位よりも高いときには、前記第1トランジスタがスイッチングし、前記第1入力端子の電位が前記第2入力端子の電位よりも低いときには、前記第2トランジスタがスイッチングすることを特徴とする、請求項2〜5のいずれかに記載の力率改善回路。
  7. 前記第1入力端子の電位が前記第2入力端子の電位よりも高いときには、前記第2トランジスタはオン状態に制御され、前記第1入力端子の電位が前記第2入力端子の電位よりも低いときには、前記第1トランジスタはオン状態に制御されることを特徴とする、請求項6に記載の力率改善回路。
  8. 前記双方向スイッチは、前記第1および第2トランジスタに逆並列に接続された整流素子をさらに含むことを特徴とする、請求項2〜5のいずれかに記載の力率改善回路。
  9. 前記コイルは、前記第1入力端子と前記第1ノードとの間に接続されていることを特徴とする、請求項1に記載の力率改善回路。
  10. 前記コイルは、前記第2ノードと前記第2入力端子との間に接続されていることを特徴とする、請求項1に記載の力率改善回路。
  11. 前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の両方に接続されていることを特徴とする、請求項1に記載の力率改善回路。
  12. 第1および第2入力端子と、
    第1および第2出力端子と、
    コイルと、
    逆直列に接続された第1および第2トランジスタを含み、一端が第1ノードに接続され、他端が第2ノードに接続された第1双方向スイッチと、
    一端が前記第1出力端子に接続され、他端が第3ノードに接続された第1コンデンサと、
    一端が前記第3ノードに接続され、他端が前記第2出力端子に接続された第2コンデンサと、
    前記第2ノードと前記第3ノードとの間に接続された第2双方向スイッチと、
    前記第1ノードと前記第1コンデンサの一端との間に、前記第1ノード側から電流が流れるように接続された第1整流素子と、
    前記第1ノードと前記第2コンデンサの他端との間に、前記第1ノード側へ電流が流れるように接続された第2整流素子と、
    前記第2ノードと前記第1コンデンサの一端との間に、前記第2ノード側から電流が流れるように接続された第3整流素子と、
    前記第2ノードと前記第2コンデンサの他端との間に、前記第2ノード側へ電流が流れるように接続された第4整流素子とを備え、
    前記第1および第2入力端子の間に、前記コイルおよび前記第1双方向スイッチを経由する電流経路を有し、
    前記コイルは、前記第1入力端子と前記第1ノードとの間、および、前記第2ノードと前記第2入力端子との間の少なくとも一方に接続されていることを特徴とする、力率改善回路。
  13. 請求項1〜12のいずれかに記載の力率改善回路と、
    DC/DCコンバータとを備えた、電源装置。
JP2015129107A 2015-06-26 2015-06-26 力率改善回路および電源装置 Pending JP2017017775A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015129107A JP2017017775A (ja) 2015-06-26 2015-06-26 力率改善回路および電源装置
US15/177,543 US9793793B2 (en) 2015-06-26 2016-06-09 Power factor correction circuit and power supply device
CN201610457033.8A CN106300957A (zh) 2015-06-26 2016-06-22 功率因数改善电路和电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129107A JP2017017775A (ja) 2015-06-26 2015-06-26 力率改善回路および電源装置

Publications (1)

Publication Number Publication Date
JP2017017775A true JP2017017775A (ja) 2017-01-19

Family

ID=57831364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129107A Pending JP2017017775A (ja) 2015-06-26 2015-06-26 力率改善回路および電源装置

Country Status (1)

Country Link
JP (1) JP2017017775A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053975A1 (ja) * 2017-09-13 2019-03-21 日本電産株式会社 交直変換回路
JP2019080408A (ja) * 2017-10-23 2019-05-23 日立ジョンソンコントロールズ空調株式会社 直流電源装置、及び空気調和機
CN111684701A (zh) * 2018-02-07 2020-09-18 沃思电子埃索斯有限责任两合公司 获取电能的装置以及具有这种装置的能量发生器
JP2021145433A (ja) * 2020-03-11 2021-09-24 日産自動車株式会社 力率改善回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944188B1 (en) * 2007-11-08 2011-05-17 Ernest H. Wittenbreder, Jr Power converter circuits having bipolar outputs and bipolar inputs
JP2015035851A (ja) * 2013-08-07 2015-02-19 株式会社村田製作所 スイッチング電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944188B1 (en) * 2007-11-08 2011-05-17 Ernest H. Wittenbreder, Jr Power converter circuits having bipolar outputs and bipolar inputs
JP2015035851A (ja) * 2013-08-07 2015-02-19 株式会社村田製作所 スイッチング電源装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053975A1 (ja) * 2017-09-13 2019-03-21 日本電産株式会社 交直変換回路
JPWO2019053975A1 (ja) * 2017-09-13 2020-10-15 日本電産株式会社 交直変換回路
JP2019080408A (ja) * 2017-10-23 2019-05-23 日立ジョンソンコントロールズ空調株式会社 直流電源装置、及び空気調和機
CN111684701A (zh) * 2018-02-07 2020-09-18 沃思电子埃索斯有限责任两合公司 获取电能的装置以及具有这种装置的能量发生器
JP2021513318A (ja) * 2018-02-07 2021-05-20 ウルト エレクトロニク アイソス ゲーエムベーハー ウント コンパニー カーゲー 電気エネルギーを得る装置及びこのような装置を有するエネルギー発生器
JP7491647B2 (ja) 2018-02-07 2024-05-28 ウルト エレクトロニク アイソス ゲーエムベーハー ウント コンパニー カーゲー 電気エネルギーを得る装置及びこのような装置を有するエネルギー発生器
JP2021145433A (ja) * 2020-03-11 2021-09-24 日産自動車株式会社 力率改善回路
JP7325059B2 (ja) 2020-03-11 2023-08-14 日産自動車株式会社 力率改善回路

Similar Documents

Publication Publication Date Title
US9793793B2 (en) Power factor correction circuit and power supply device
US8957642B2 (en) Enhancement mode III-nitride switch with increased efficiency and operating frequency
US8344764B2 (en) Circuit arrangement including voltage supply circuit
KR101462733B1 (ko) 역률 보상 장치
US10389232B2 (en) Bridgeless power factor correction circuit having a snubber circuit
US9270166B2 (en) Power factor improvement circuit
KR101846426B1 (ko) 정류기 회로를 갖는 회로 장치
JP2017017775A (ja) 力率改善回路および電源装置
JP2016059180A (ja) スイッチング電源
US20230275526A1 (en) Rectifying element and voltage converter comprising such a rectifying element
JP2022553339A (ja) 例えば力率補正で使用するための、インバータ回路及び方法
JP5527187B2 (ja) 半導体装置
US10498213B2 (en) Drive circuit and semiconductor module utilizing a capacitance ratio between different switches
JP6264098B2 (ja) チョッパ回路
JP2017055544A (ja) 力率改善回路および電源装置
CN115776245A (zh) 电压转换器
US11190107B2 (en) Auxiliary power supply circuit, power supply apparatus, and power supply circuit
JP7337618B2 (ja) 半導体装置
US9231493B1 (en) Rectifier with auxiliary voltage output
KR102077825B1 (ko) 부스트 컨버터
KR102381873B1 (ko) 전력 변환 장치 및 그 제어 방법
JP6096681B2 (ja) 三相インバータ回路及びドライバ回路
JP7143754B2 (ja) 電源装置の保護回路及び電源装置
JP2018153037A (ja) 直流変換装置
JP2023034562A (ja) 整流回路、並びに、それを用いる半導体装置および電源装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206