WO2015166523A1 - 半導体装置および電力変換装置 - Google Patents

半導体装置および電力変換装置 Download PDF

Info

Publication number
WO2015166523A1
WO2015166523A1 PCT/JP2014/061811 JP2014061811W WO2015166523A1 WO 2015166523 A1 WO2015166523 A1 WO 2015166523A1 JP 2014061811 W JP2014061811 W JP 2014061811W WO 2015166523 A1 WO2015166523 A1 WO 2015166523A1
Authority
WO
WIPO (PCT)
Prior art keywords
jfet
mosfet
source
voltage
cascode
Prior art date
Application number
PCT/JP2014/061811
Other languages
English (en)
French (fr)
Inventor
敏 井堀
佐々木 康
清隆 冨山
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2016515771A priority Critical patent/JPWO2015166523A1/ja
Priority to PCT/JP2014/061811 priority patent/WO2015166523A1/ja
Publication of WO2015166523A1 publication Critical patent/WO2015166523A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present invention relates to a semiconductor device and a power conversion device.
  • silicon carbide SiC: silicon carbide
  • gallium nitride GaN: gallium nitride
  • Si silicon carbide
  • gallium nitride GaN: gallium nitride
  • Si silicon carbide
  • gallium nitride gallium nitride
  • These materials are semiconductor elements having characteristics that the breakdown voltage is about 10 times, the thermal conductivity is about 3 times, the melting point is about 2 times, and the saturation electron velocity is about 2 times compared to Si. Since it has a high dielectric breakdown voltage, the drift layer for ensuring the withstand voltage can be thinned to about 1/10, and the on-voltage of the power semiconductor can be lowered.
  • Patent Document 1 JP 2011-166673 A
  • This publication states that “a normally-on type SiC-JFET 2 and a normally-off type Si-MOSFET 4 constituting a hybrid power device are cascode-connected by connecting the sources and drains of the FETs 2 and 4 to each other.
  • the gate of JFET 2 and the source of Si-MOSFET 4 are connected via a resistor 10 for adjusting the switching speed, and a capacitor 12 is connected in parallel to this resistor 10 so that the first half during the switching period of the hybrid power device.
  • a hybrid power device is disclosed in which switching speed is increased to reduce switching loss, and in the second half part, the switching speed is decreased to prevent oscillation from occurring (see abstract).
  • Patent Document 1 describes a hybrid power device in which a normally-on type SiC-JFET (Junction Field Effect Transistor) and a normally-off type Si-MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) are connected in cascode, Switching between the gate of the SiC-JFET and the source of the Si-MOSFET as a control means for controlling the switching speed of the hybrid power device in order to reduce the switching loss while suppressing the occurrence of There is described an analog circuit comprising a speed adjusting resistor (speed adjusting resistor) and a capacitor connected to the gate of the SiC-JFET.
  • a speed adjusting resistor speed adjusting resistor
  • the switching speed is controlled to be slow by increasing the value of the resistor for adjusting the switching speed provided between the gate of the SiC-JFET and the source of the Si-MOSFET.
  • the surge overvoltage is applied between the gate of the high voltage SiC-JFET and the source of the low voltage Si-MOSFET due to the displacement current caused by dV / dt generated when the high voltage SiC-JFET is switched.
  • the low breakdown voltage Si-MOSFET was destroyed. That is, when the switching speed adjustment resistor is increased to reduce the generated noise and the switching speed is controlled to be slow, the cascode type hybrid power device cannot be controlled properly. It was newly discovered that the problem that a highly reliable power converter cannot be achieved because destruction cannot be prevented.
  • an object of the present invention is to provide a semiconductor device and a power conversion device that can prevent element destruction, have high reliability, and are inexpensive.
  • a cascode JFET formed by connecting a source of a normally-on type wide bandgap semiconductor JFET and a drain of a normally-off type MOSFET and connecting a gate of the widebandgap semiconductor JFET and a source of the MOSFET.
  • a first resistor provided between a gate of the wide band gap semiconductor JFET and a source of the MOSFET, and a constant voltage diode connected in parallel to the first resistor.
  • the semiconductor device can be appropriately protected from a surge overvoltage caused by a displacement current caused by dV / dt due to switching of the semiconductor device itself, and can be configured with an inexpensive low withstand voltage Si-MOSFET, so that high reliability is achieved. You can enjoy the benefits of both cost reduction and price reduction.
  • FIG. 2 is a configuration diagram of a normally-on type n-channel JFET and characteristics of gate voltage and drain current.
  • the maximum drain current IDSS flows when the voltage VGS between the gate and the source is 0 V, the drain current is controlled by the magnitude of the reverse voltage, and the voltage VGS between the gate and the source is off in a region larger than VGS (OFF) on the negative side. It becomes.
  • FIG. 3 is a basic configuration diagram of a cascode JFET.
  • the JFET has a great advantage that the manufacturing process is easy compared with the MOSFET because the gate has a junction structure and no oxide film, but is generally a normally-on type. In application to a power conversion device that operates under a high voltage, a normally-off type switching element is preferable.
  • cascode JFET in which a normally-on high breakdown voltage SiC-JFET and a normally-off low breakdown voltage Si-MOSFET are connected in cascade, a normally-off operation as a cascode JFET is achieved.
  • the advantage of the cascode type JFEET is that the switching element responsible for high breakdown voltage can be composed of a SiC-JFET having a junction type structure without an oxide film. Therefore, the reliability of a gate insulating film such as a high breakdown voltage SiC-MOSFET It is in the point which can avoid the problem in.
  • the cascode JFET is switched as a cascode JFET 31 by connecting the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET and controlling the voltage VGS of the gate (G2) of the low breakdown voltage Si-MOSFET. Operate.
  • the drive circuit 8 receives a PWM signal from a host microcomputer (not shown), the gate voltage VGS is applied to the gate (G) and the source (Sc) through the gate resistor Rg and the capacitor Cgs between the gate and the source, and the Si-MOSFET is turned on. On / off control.
  • the capacitor Cgs inserted between the gate and the source is not an essential component. That is, since a high voltage applied to the switching element is handled by the SiC-JFET, the Si-MOSFET may be used for controlling on / off as a cascode JFET, and can be configured with a low withstand voltage element. .
  • the advantage of the cascode type JFET 31 is that the Si-MOSFET for controlling on / off can be constituted by a low breakdown voltage switching element.
  • the Si-MOSFET is destroyed. Therefore, the rated voltage of the Si-MOSFET greatly depends on this surge overvoltage.
  • the cascode JFET is configured with a Si-MOSFET having a rated voltage value equal to or higher than the surge overvoltage value, or the surge overvoltage is not applied to the Si-MOSFET.
  • the Si-MOSFET having a high withstand voltage (having a high rated voltage value) is expensive and has a large element size, which causes problems in terms of the price and miniaturization of the semiconductor device.
  • FIG. 4 is a configuration diagram of a cascode JFET for one arm in a conventional inverse converter.
  • a resistor RGJ for adjusting the switching speed is provided between the gate of the SiC-JFET and the source of the Si-MOSFET.
  • U phase, V phase, W phase the three phases constituting the inverse converter 3.
  • One arm is a series connection of a cascode JFET on the upper arm side connected to the (+) potential side of the DC intermediate circuit and a cascode JFET on the lower arm side connected to the ( ⁇ ) potential side of the DC intermediate circuit. It is the thing of the structure which was made.
  • each of the V phase and the W phase is similarly configured by one arm of cascode type JFET elements.
  • FIG. 5 is a waveform of each part in the configuration shown in FIG.
  • the vertical axis represents voltage
  • the horizontal axis represents time
  • the drive circuit 8U shows the transient characteristic waveform of the voltage at each part when the cascode JFET is turned on (FIG. 5 (a)) and when it is turned off (FIG. 5 (b)).
  • the drain current IDU is also shown, but the current is only the transient characteristic waveform and the current value range is not described.
  • FIG. 5A shows a transient characteristic waveform when the cascode type JFET 41 is turned on from the off state (the cascode type JFET 42 is turned off from the on state).
  • a steep voltage of dVPN / dt depending on the voltage VPN of the DC intermediate circuit is present between the drain (D) and the source (S) of the cascode JFET 42 in the off state.
  • a displacement current IGDj flows from the drain (D1) of the SiC-JFET constituting the cascode JFET 42 to the source (S) through the gate (G1) and the resistor RGJ for adjusting the switching speed.
  • a surge overvoltage of the number (1) is applied between the gate (G1) of the high breakdown voltage SiC-JFET and the source (S2) of the low breakdown voltage Si-MOSFET.
  • VGJD RGJ * IGDj ------------------ Number (1)
  • a surge overvoltage close to the number (1) is applied between the drain (D2) and the source (S2) (voltage VDSDm) of the low breakdown voltage Si-MOSFET of the cascode JFET.
  • VDSDm increases as the resistance RGJ for adjusting the switching speed increases.
  • EMC electromagnetic environment compatibility
  • it is effective to reduce dVPN / dt by controlling the switching speed to be slow, but if the resistance RGJ for adjusting the switching speed is increased, the switching speed is reduced.
  • a higher surge overvoltage is applied between the drain (D2) and the source (S2) of the withstand voltage Si-MOSFET, leading to overvoltage breakdown of the MOSFET.
  • FIG. 5B shows a transient characteristic waveform when the cascode type JFET 41 is turned off from the on state (the cascode type JFET 42 is turned on from the off state).
  • a steep dVPN / dt voltage depending on the voltage VPN of the DC intermediate circuit is applied between the drain (D) and the source (S) of the cascode type JFET 41 that shifts to the off state.
  • a displacement current IGUj flows from the drain (D1) of the SiC-JFET constituting the cascode type JFET 41 to the source (S) through the gate (G1) and the resistor RGJ for adjusting the switching speed.
  • a voltage of the number (2) is applied between the gate (G1) of the high voltage SiC-JFET of the cascode JFET 1 and the source (S2) of the low voltage Si-MOSFET.
  • VGJU RGJ * IGUj ------------- Number (2)
  • a surge overvoltage close to the voltage of the number (2) is applied between the drain (D2) and the source (S2) (voltage VDSUm) of the low breakdown voltage Si-MOSFET. That is, a surge overvoltage of voltage VDSUm ⁇ 21.5 V is applied between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 1.
  • FIG. 1 is a configuration diagram of the power conversion apparatus according to the first embodiment.
  • 1 includes a forward converter 1 for supplying power to an AC machine 4, a smoothing capacitor 2, an inverse converter 3, a control circuit 5, a cooling fan 6, a digital operation panel 7, and a drive circuit 8.
  • the voltage detection circuit 9 is provided.
  • FIG. 1 shows a case where an AC power source is used as an arbitrary input power source.
  • the forward converter 1 converts an alternating voltage into a direct voltage.
  • the smoothing capacitor 2 is provided in the DC intermediate circuit, and smoothes the DC voltage converted by the forward converter 1.
  • the inverse converter 3 converts a DC voltage into an AC voltage having an arbitrary frequency.
  • a semiconductor device having a cascode JFET in which a normally-on type SiC-JFET and a normally-off type Si-MOSFET are connected in cascade is mounted as a typical wide band gap semiconductor element.
  • the three-phase output U-phase, V-phase, and W-phase are each composed of three arms (up, Vp, Wp) each having a cascode JFET connected in series.
  • one arm is composed of two cascode-type JFETs 61 and 62 surrounded by a dotted line, but is not limited to this configuration.
  • Three semiconductor devices (2 in 1) composed of two cascode JFETs constituting one arm may be used, or U phase, V phase, and W phase.
  • One semiconductor device (6 in 1) composed of six cascode JFETs corresponding to three arms may be used.
  • the form of the semiconductor device may be a power module structure, a three-terminal structure (for example, TO-220) or a transfer mold structure, and the structure is not limited.
  • the normally-on type high-voltage JFET is silicon carbide (SiC).
  • the normally-off type low-breakdown-voltage MOSFET is not limited to silicon (Si), and the normally-on type high-breakdown-voltage GaN-JFET and the normally-off-type low-breakdown-voltage Si-MOSFET configuration are not limited to the normally-on type JFET.
  • the normally-off type MOSFET may be configured with only a wide band gap semiconductor element such as silicon carbide (SiC) or gallium nitride (GaN).
  • the cooling fan 6 cools the power modules in the forward converter 1 and the reverse converter 3.
  • the digital operation panel 7 sets, changes, abnormal states, and monitor displays various control data of the power conversion device. For example, an acceleration time when driving the AC motor 4 or a deceleration time when stopping the AC motor 4 can be set. Acceleration / deceleration time, which is one of the control data, is stored in a storage unit (not shown), and a microcomputer (not shown) controls acceleration / deceleration of the AC motor 4 based on this data.
  • the operation panel 7 is provided with a display unit capable of displaying an abnormality, and is displayed on the display unit when an abnormality is detected in the power conversion device.
  • the type of the operation panel 7 of the present embodiment is not particularly limited. However, the operation panel 7 is configured as a digital operation panel so that the operation can be performed while viewing the display on the display unit in consideration of the operability of the apparatus user. .
  • the display unit is not necessarily configured integrally with the operation panel 7, but it is desirable that the display unit be configured integrally so that an operator of the operation panel 7 can operate while viewing the display.
  • Various control data of the power converter input from the operation panel 7 is stored in a storage unit (not shown).
  • the control circuit 5 controls the switching elements of the inverter 3 based on various control data input from the digital operation panel 7 and controls the entire power converter 10.
  • An arithmetic unit is mounted, and is configured to perform necessary control processing according to various control data input from the digital operation panel 7.
  • a microcomputer control arithmetic unit
  • the current detector CT detects the U-phase and W-phase line currents of the AC machine.
  • the detection position of the current detector CT may be on the input side to the inverse converter 3, and is not limited to the detection position in the above example.
  • the drive circuit 8 drives the switching element of the inverse converter 3 based on a command from the control circuit 5.
  • a switching regulator circuit (DC / DC converter) is mounted in the drive circuit 8, and each DC voltage necessary for the operation of the power converter is generated and supplied to each component.
  • the voltage detection circuit 9 detects the DC voltage VPN of the DC intermediate circuit.
  • FIG. 6 is a configuration diagram of a cascode JFET according to an example of the present embodiment.
  • the control operation of the cascode JFET is as described with reference to FIG.
  • a constant voltage diode ZD1 is connected in parallel with a resistor RGJ for adjusting the switching speed between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET.
  • the constant voltage diode ZD1 may be any diode that can be clamped to a predetermined breakdown voltage, such as a Zener diode. This is the same in the embodiments described later.
  • the constant voltage diode ZD1 is connected in parallel to the resistor RGJ for adjusting the switching speed.
  • the constant voltage diode ZD1 is a surge overvoltage applied between the gate (G1) and the source (S2) of the high voltage SiC-JFET due to the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET switches. Can be clamped to a constant voltage.
  • the voltage applied between the drain (D2) and source (S2) (voltage VDSDm) of the low breakdown voltage Si-MOSFET can be suppressed, and the low breakdown voltage Si-MOSFET can be protected from surge overvoltage.
  • the constant voltage diode ZD1 may be selected such that its breakdown voltage is smaller than the rated voltage value (withstand voltage value) of the low withstand voltage Si-MOSFET.
  • FIG. 7 shows the transient characteristic waveform of each part when the cascode JFET 61 is turned on and off by the drive circuit 8U in the configuration circuit of FIG.
  • the vertical axis represents voltage
  • the horizontal axis represents time, and shows the transient characteristic waveform of the voltage of each part.
  • the drain current IDU is also shown, but the current is only the transient characteristic waveform and the current value range is not described.
  • FIG. 7A is a transient characteristic waveform when the cascode JFET 61 is turned on from the off state (the cascode JFET 62 is turned off from the on state) in the same mode as in FIG. 5A, and the cascode type in the off state.
  • a steep voltage of dVPN / dt depending on the voltage VPN of the DC intermediate circuit is applied between the drain (D) and the source (S) of the JFET 62, and this voltage change constitutes the cascode type JFET 62.
  • the displacement current IGDj flows from the drain (D1) of the SiC-JFET to the source (S) through the gate (G1) and the resistor RGJ for adjusting the switching speed. Due to the displacement current IGDj, the high breakdown voltage SiC-JFET A voltage of the number (1) is applied between the gate (G1) of the transistor and the source (S) of the low breakdown voltage Si-MOSFET.
  • a surge overvoltage is also applied between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 62 by the action of the constant voltage diode ZD1, but the constant voltage diode ZD1 It can be seen that the surge overvoltage is clamped to a constant voltage (VDSDm ⁇ 14.7 V) due to the operation.
  • a cascode switching element in which a normally-on type high breakdown voltage SiC-JFET and a normally-off type low breakdown voltage Si-MOSFET are connected in cascade is formed, and the gate (G1) of the SiC-JFET and the Si-MOSFET
  • the high breakdown voltage SiC- The surge overvoltage applied between the gate (G1) and the source (S2) of the high voltage SiC-JFET generated by the displacement current caused by dVPN / dt generated when the JFET is switched can be clamped to a constant voltage.
  • the surge overvoltage applied between the drain (D2) and source (S2) (voltage VDSDm) of the low breakdown voltage Si-MOSFET can also be clamped to a constant voltage, and the low breakdown voltage Si-MOSFET can be appropriately selected from the surge overvoltage. Therefore, it is possible to provide a highly reliable power conversion device.
  • the surge overvoltage can be reliably clamped to the constant voltage by connecting the constant voltage diode ZD1 in parallel with the resistor for adjusting the switching speed. Therefore, even if a cascode JFET is composed of a high breakdown voltage SiC-JFET and a low breakdown voltage Si-MOSFET, the low breakdown voltage Si-MOSFET can be protected from destruction due to surge overvoltage, and the rated voltage is about 20V (> 14.7V). A low breakdown voltage Si-MOSFET can be used, and both high reliability and low price can be enjoyed.
  • the constant voltage value of the constant voltage diode connected in parallel to the resistor for adjusting the switching speed is selected, it can be constituted by a low withstand voltage Si-MOSFET having a rated voltage of about 10V or 15V. It is obvious.
  • FIG. 7B is a transient characteristic waveform when the cascode type JFET 61 is turned off from the on state (the cascode type JFET 62 is turned on from the off state) in the same mode as in FIG. 5B, and the cascode that shifts to the off state.
  • a steep voltage of dVPN / dt depending on the voltage VPN of the DC intermediate circuit is applied between the drain (D) and the source (S) of the type JFET 61, and this voltage change causes the cascode type JFET 61 to A displacement current IGUj flows from the drain (D1) of the SiC-JFET to be configured to the source (S) through the gate (G1) and the resistor RGJ for adjusting the switching speed.
  • the surge overvoltage is clamped to a constant voltage (VDSUm ⁇ 14.3 V) between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 61 by the action of the constant voltage diode ZD1.
  • FIG. 8 shows a modification of the cascode JFET according to the first embodiment.
  • the cascode JFET 81 is representatively described among the cascode JFET 61 and the cascode JFET 62 in FIG. 6, but the other cascode JFET has the same configuration.
  • FIG. 8A shows a resistor RGJ connected to adjust the switching speed of a cascode type JFET provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET, and a cascode type.
  • constant voltage diodes ZD1 and ZD2 are reversed and connected in parallel to a capacitor CGJ that adjusts the voltage application time to the JFET.
  • the constant voltage diodes ZD1 and ZD2 can protect the switching element from surge overvoltage caused by displacement current caused by dVPN / dt due to switching of the switching element (cascode JFET) itself.
  • FIG. 8B shows a resistor RGJ and a capacitor CGJ connected to adjust the switching speed of the cascode JFET provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET.
  • the constant voltage diode ZD1 and the diode D12 are opposite to each other, and a circuit connected in series is connected in parallel.
  • the constant voltage diode ZD1 and the diode D12 can protect the switching element from a surge overvoltage caused by a displacement current caused by dVPN / dt due to switching of the switching element itself.
  • FIG. 8C shows a resistor RGJ and a capacitor CGJ connected to adjust the switching speed of the cascode JFET provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET.
  • a circuit of a resistor RGJ1 connected in series with the constant voltage diode ZD1 is connected in parallel.
  • the constant voltage diode ZD1 can protect the switching element from surge overvoltage caused by a displacement current caused by dVPN / dt due to switching of the switching element itself.
  • the resistor RGJ1 can suppress the current to the constant voltage diode ZD1, and can increase the reliability of the constant voltage diode ZD1.
  • FIG. 8D shows a resistance RGJ and a capacitor CGJ connected to adjust the switching speed of the cascode type JFET provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET.
  • a circuit in which constant voltage diodes ZD1 and ZD2 and a resistor RGJ1 are connected in series is connected in parallel.
  • the constant voltage diodes ZD1 and ZD2 can protect the switching element from surge overvoltage caused by a displacement current caused by dVPN / dt due to switching of the switching element itself.
  • the resistor RGJ1 can suppress the current to the constant voltage diodes ZD1 and ZD2, and can increase the reliability of the constant voltage diodes ZD1 and ZD2.
  • FIG. 8E shows a resistor RGJ and a capacitor CGJ connected to adjust the switching speed of the cascode JFET provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET.
  • a circuit in which a constant voltage diode ZD1, a diode D12, and a resistor RGJ1 are connected in series is connected in parallel.
  • the constant voltage diode ZD1 and the diode D12 can protect the switching element from a surge overvoltage caused by a displacement current caused by dVPN / dt due to switching of the switching element itself.
  • the resistor RGJ1 can suppress the current to the constant voltage diode ZD1 and the diode D12, and can increase the reliability of the constant voltage diode ZD1 and the diode D12.
  • 8A to 8E are the same as those in FIG. 6 in terms of the effect of protecting the low breakdown voltage Si-MOSFET.
  • FIG. 9 is a configuration diagram of a cascode JFET according to the third embodiment.
  • connection point of the constant voltage diode element ZD1 is different from the configuration of FIG. 6 shown in the first embodiment.
  • the resistance RGJ which is provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET to increase the switching speed and is controlled to be slow
  • the high breakdown voltage SiC- A surge overvoltage is applied between the gate (G1) and source (S2) of the high breakdown voltage SiC-JFET due to the displacement current caused by dVPN / dt generated when the JFET switches, and the low breakdown voltage Si-MOSFET is applied by this surge overvoltage. Destroys.
  • the constant voltage diode ZD1 is connected in parallel between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET.
  • the constant voltage diode ZD1 performs a function of diverting a part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET is switched, and the displacement current flowing to the resistor RGJ for adjusting the switching speed.
  • FIG. 10 shows the transient characteristic waveform of each part when the cascode JFET 1 is turned on and off by the drive circuit 8U.
  • the vertical axis represents voltage
  • the horizontal axis represents time
  • the voltage transient characteristics of each part are shown.
  • FIG. 10A shows a transient characteristic waveform when the cascode JFET 91 is turned on from the off state (cascode JFET 92 is turned off from the on state) in the configuration circuit of FIG. 9 in the same mode as in FIG. is there.
  • the constant voltage diode ZD1 performs a function of diverting a part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET is switched, and the displacement current flowing to the resistor RGJ for adjusting the switching speed. By reducing it, the surge overvoltage applied between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET can be suppressed.
  • a surge overvoltage is also applied between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 92 by the action of the constant voltage diode ZD1, but the action of the constant voltage diode ZD1. It can be seen that the surge overvoltage is clamped to a constant voltage (VDSDm ⁇ 14.5 V).
  • cascode JFET cascode switching element in which a normally-on type high breakdown voltage SiC-JFET and a normally-off type low breakdown voltage Si-MOSFET are connected in cascade is formed, and the gate (G1) of the SiC-JFET and the Si-MOSFET A resistor RJG for adjusting the switching speed of the cascode type JFET and a constant voltage connected in parallel between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET.
  • the gate (G1) and the source (S2) of the high voltage SiC-JFET are generated by the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET switches.
  • the surge overvoltage applied between them can be reduced.
  • the surge overvoltage applied between the drain (D2) and source (S2) (voltage VDSDm) of the low withstand voltage Si-MOSFET can be clamped to a constant voltage, and the low withstand voltage Si-MOSFET can be appropriately selected from the surge overvoltage.
  • a power converter that can be protected and has high reliability can be provided.
  • FIG. 10B is a transient characteristic waveform when the cascode JFET 91 is turned off from the on state (cascode JFET 92 is turned on from the off state) in the configuration circuit of FIG. 9 in the same mode as in FIG. 5B. is there.
  • the constant voltage diode ZD1 functions to shunt a part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET is switched, and flows to the resistor RGJ for adjusting the switching speed.
  • a surge overvoltage close to the voltage of the number (2) is applied between the drain (D2) and the source (S2) (voltage VDSUm) of the low breakdown voltage Si-MOSFET of the cascode JFET 91.
  • the surge overvoltage is clamped to a constant voltage (VDSUm ⁇ 12.9V) between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode type JFET 91 by the action of the constant voltage diode ZD1.
  • FIG. 11 is a configuration diagram showing a modification of the cascode JFET according to the fourth embodiment.
  • the cascode type JFET 91 and the cascode type JFET 92 in FIG. 9 only the cascode type JFET 111 is typically described, but the other cascode type JFET has the same configuration.
  • FIG. 11A shows a resistor RGJ provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET and connected to adjust the switching speed, and to the cascode JFET.
  • a capacitor CGJ for adjusting the voltage application time and a circuit in which a constant voltage diode ZD1 and a resistor RDJ1 are connected in series between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET. is there.
  • the constant voltage diode ZD1 diverts a part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET switches, and reduces the displacement current flowing to the resistor RGJ for adjusting the switching speed. Can do. Thereby, the surge overvoltage between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 111 can be suppressed, and the low breakdown voltage Si-MOSFET can be protected. Further, the resistor RDJ1 can suppress a current to the constant voltage diode ZD1, and can improve the reliability of the constant voltage diode ZD1.
  • FIG. 11B shows a resistor RGJ and a capacitor CGJ provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET and connected to adjust the switching speed, and a low breakdown voltage.
  • constant voltage diodes ZD1 and ZD2 are connected in reverse and in series between the drain (D2) and source (S2) of the Si-MOSFET, and a resistor RDJ1 is connected in series.
  • the constant voltage diodes ZD1 and ZD2 divert part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET switches, and reduce the displacement current flowing to the resistor RGJ for adjusting the switching speed. Can be made.
  • the surge overvoltage between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 111 can be suppressed, and the low breakdown voltage Si-MOSFET can be protected.
  • the resistor RDJ1 can suppress the current to the constant voltage diodes ZD1 and ZD2, and can increase the reliability of the constant voltage diodes ZD1 and ZD2.
  • FIG. 11C shows a resistor RGJ and a capacitor CGJ, which are provided between the gate (G1) of the SiC-JFET and the source (S2) of the Si-MOSFET, and are connected to adjust the switching speed.
  • a constant voltage diode ZD1 and a diode D12 are connected in reverse and in series between the drain (D2) and source (S2) of the Si-MOSFET, and a circuit in which a resistor RDJ1 is connected in series is connected in parallel. .
  • a part of the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET is switched is shunted by the constant voltage diode ZD1 and the diode D12, and the displacement current flowing to the resistor RGJ for adjusting the switching speed is divided. Can be reduced. Thereby, the surge overvoltage between the drain (D2) and the source (S2) of the low breakdown voltage Si-MOSFET of the cascode JFET 111 can be suppressed, and the low breakdown voltage Si-MOSFET can be protected. Further, the resistor RDJ1 can suppress the current to the constant voltage diode ZD1 and the diode D12, and can increase the reliability of the constant voltage diode ZD1 and the diode D12.
  • 11A to 11C are the same as those in FIG. 9 in terms of the effect of protecting the low breakdown voltage Si-MOSFET.
  • Example 5 will be described with reference to FIGS.
  • FIG. 12 is a configuration diagram of a cascode JFET according to the fifth embodiment.
  • FIG. 12A shows an external terminal that can connect the speed adjusting resistor RGJ and capacitor CGJ of the cascode JFET and the constant voltage diode element for suppressing surge overvoltage in the circuit configuration of FIG. 8C according to the second embodiment.
  • This is a semiconductor device in which the gate terminal (GS) of the SiC-JFET and the source terminal (SS) of the Si-MOSFET are provided individually.
  • the circuit configuration of FIG. 8C is taken up as a representative, but other circuit configurations shown in the first or second embodiment may be used.
  • the source terminal (SS) of the Si-MOSFET As the source terminal (SS) of the Si-MOSFET, the source terminal (S) through which the main current ID flows and the control terminal (SS) are separated.
  • the physical distance between the gate terminal (GS) of the SiC-JFET and the source terminal (SS) of the Si-MOSFET can be configured as short as possible. It is.
  • the difference from FIG. 8C in the modification of the first embodiment is that the speed adjusting resistor RGJ, the capacitor CGJ, and the surge overvoltage suppressing constant voltage diode element are not inside the module package constituting the semiconductor device. .
  • the speed adjusting resistor RGJ, the capacitor element CGJ, and the surge overvoltage suppressing constant voltage diode element ZD1 etc. Can be freely selected, and so-called design freedom can be greatly improved.
  • the speed adjusting resistor element RGJ, the capacitor element CGJ, and the surge overvoltage suppressing constant voltage diode element ZD1 may be mounted on the drive substrate 8 or another substrate in FIG.
  • FIG. 12B is a circuit configuration of FIG. 11A according to the fourth embodiment, in which a cascode JFET speed adjustment resistor RGJ and capacitor CGJ can be connected to a surge overvoltage suppressing constant voltage diode element ZD1 and the like.
  • This is a semiconductor device in which a SiC-JFET gate terminal (GS), a Si-MOSFET drain terminal (DS), and a Si-MOSFET control source terminal (SS) are individually provided as external terminals.
  • the circuit configuration of FIG. 11A is taken up as a representative, but other circuit configurations shown in the third or fourth embodiment may be used.
  • the source terminal of the Si-MOSFET As the source terminal of the Si-MOSFET, the source terminal (S) through which the main current ID flows and the control source terminal (SS) are separated. This allows the physical distance between the gate terminal (GS) of the SiC-JFET and the control source terminal (SS) of the Si-MOSFET in consideration of prevention of malfunction of the gate (G1) due to the main current ID. It is designed so that it can be configured as short as possible.
  • FIG. 11 is different from FIG. 11 in the fourth embodiment in that the speed adjusting resistor RGJ, the capacitor CGJ, and the surge overvoltage suppressing constant voltage diode element ZD1 are not inside the module package constituting the semiconductor device.
  • constants such as the speed adjusting resistor element RGJ and the capacitor element CGJ and the surge overvoltage suppressing constant voltage diode element ZD1 can be obtained. It can be freely selected, and so-called design freedom can be greatly improved.
  • the speed adjusting resistor RGJ and the surge overvoltage suppressing constant voltage diode element ZD1 are externally attached, the circuit is easily affected by noise.
  • the physical distance between the terminal and the SS terminal is made as short as possible), and the influence of malfunction due to the noise can be suppressed. This effect is the same even when other circuit configurations shown in the fourth embodiment are adopted.
  • the speed adjusting resistance element RGJ, the capacitor element CGJ, and the constant voltage diode element ZD1 for suppressing surge overvoltage may be mounted on the drive board 8 or another board in FIG.
  • FIG. 13 is a bird's-eye view of the semiconductor device according to the fifth embodiment.
  • the semiconductor device includes a forward converter 1 that converts an AC voltage into a DC voltage and an inverse converter 3 that converts the DC voltage into an AC voltage having an arbitrary frequency.
  • the inverse converter 3 As a typical wide band gap semiconductor element, there are six cascode JFETs each of which is a normally-on type SiC-JFET element and a normally-off type Si-MOSFET element connected in cascade (three phases). It is installed.
  • GSU is a gate terminal of the SiC-JFET element of the U-phase upper arm
  • SSU is a control source terminal of the Si-MOSFET element of the U-phase upper arm
  • DSU is a drain terminal of the Si-MOSFET element
  • GSV is a gate terminal of the SiC-JFET element of the V-phase upper arm
  • SSV is a control source terminal of the Si-MOSFET element of the V-phase upper arm.
  • Terminals GSX, SSX, DSX, GSY, SSY, DSY, GSZ, SSZ, DSZ, DSV, GSW, SSW, DSW of U-phase lower arm, V-phase lower arm, W-phase lower arm, and W-phase upper arm are also symbols. Although not described, each terminal is provided.
  • Constants such as a speed adjustment resistor element and capacitor element, and a constant voltage diode element for suppressing surge overvoltage by providing a terminal that can connect the speed adjustment element and the constant voltage diode element for suppressing surge overvoltage outside the semiconductor device. Since the switching speed can be freely controlled, so-called design freedom can be greatly improved, and sufficient reliability can be ensured.
  • the form of the semiconductor device in Examples 1 to 5 is a power module configuration, but it may be a three-terminal structure (for example, TO-220) or a transfer mold structure, and is not an example in which the structure is limited.
  • the terminal has a lead terminal structure in which the solder can be connected.
  • a screw terminal structure or a press fit structure which is not a solder connection structure may be used, and the structure is not limited.
  • each of the embodiments according to the present application is a cascode switching element (cascode JFET) in which a normally-on type high breakdown voltage SiC-JFET and a normally-off type low breakdown voltage Si-MOSFET are connected in cascade.
  • a switching element composed of a constant voltage diode connected in parallel to a resistor for adjusting the switching speed of a cascode JFET provided between the gate of the SiC-JFET and the source of the Si-MOSFET.
  • the surge overvoltage applied between the gate (G1) and source (S2) of the high voltage SiC-JFET is determined by the displacement current caused by dVPN / dt generated when the high voltage SiC-JFET switches.
  • Low voltage Si-MOSFET is overpowered because it can be clamped to voltage Can protect against destruction can provide highly reliable power conversion apparatus.
  • a voltage clamp element is provided, even if a cascode JFET is composed of a high breakdown voltage SiC-JFET and a low breakdown voltage Si-MOSFET, the low breakdown voltage Si-MOSFET can be protected from destruction due to surge overvoltage, and the rated voltage is A low-voltage Si-MOSFET having a low withstand voltage of about 20 V can be formed, and a low-cost and highly reliable cascode JFET can be provided.

Landscapes

  • Inverter Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electronic Switches (AREA)

Abstract

 発生ノイズを抑制する目的で、スイッチング速度調整用の抵抗とコンデンサ容量の値を大きくしてスイッチング速度を遅く制御した場合には、カスコード型のハイブリッドパワーデバイスを上手くスイッチング制御することができず、素子の破壊を防止できないため信頼性の高い電力変換装置を達成できないという課題が発生する。 ノーマリオン型ワイドバンドギャップ半導体JFETのソースとノーマリオフ型MOSFETのドレインとを接続し、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとを接続してなるカスコード型JFETを有する半導体装置であって、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとの間に設けられた第一の抵抗と、前記第一の抵抗に並列に接続された定電圧ダイオードを備える構成とする。

Description

半導体装置および電力変換装置
 本発明は、半導体装置および電力変換装置に関する。
 近年、シリコン(Si)の物性値限界を乗り越える性能を有したワイドバンドギャップ半導体素子として炭化ケイ素(SiC:シリコンカーバイト)や窒化ガリウム(GaN:ガリュームナイトライド)などが注目を浴び、次世代のパワー半導体素子として期待されている。これらの材料は、Siに比べ、絶縁破壊電圧は約10倍、熱伝導率は約3倍、融点は約2倍、飽和電子速度は約2倍という特徴を兼ね備えた半導体素子であり、特に、高い絶縁破壊電圧を持つため、耐圧を確保するためのドリフト層を1/10程度まで薄くできパワー半導体のオン電圧を低くすることが可能である。
 このことは、これらの材料でパワー半導体を構成すれば、従来の代表的パワー半導体素子であるIGBT(Si)と比較して、発生損失を大幅に低減することができ、しいては、電力変換装置の大幅な小型化が達成できることが期待される。
 また、本技術分野の背景技術として、特開2011-166673号公報(特許文献1)がある。この公報には、「ハイブリッドパワーデバイスを構成するノーマリオン型のSiC-JFET2とノーマリオフ型のSi-MOSFET4とは、各FET2、4のソース及びドレインを互いに接続することによりカスコード接続されており、SiC-JFET2のゲートとSi-MOSFET4のソースはスイッチング速度調整用の抵抗10を介して接続されている。そして、この抵抗10にコンデンサ12を並列接続することにより、ハイブリッドパワーデバイスのスイッチング期間中の前半部分ではスイッチング速度を速くしてスイッチング損失を低減し、後半部分ではスイッチング速度を遅くして発振の発生を防止するハイブリッドパワーデバイス」(要約参照)が開示されている。
特開2011-166673号公報
 前記特許文献1には、ノーマリオン型のSiC-JFET(Junction Field Effect Transistor)とノーマリオフ型のSi-MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)とをカスコード接続してなるハイブリッドパワーデバイスにおいて、共振の発生を抑制しつつ、スイッチング損失を低減できるようにするために、ハイブリッドパワーデバイスのスイッチング速度を制御する制御手段として、SiC-JFETのゲートとSi-MOSFETのソースとの間に設けられたスイッチング速度調整用の抵抗(速度調整抵抗)と、SiC-JFETのゲートに接続されたコンデンサとからなるアナログ回路が記載されている。
 しかし、前記特許文献1のハイブリッドパワーデバイスでは、SiC-JFETのゲートとSi-MOSFETのソースとの間に設けられたスイッチング速度を調整するための抵抗の値を大きくしてスイッチング速度を遅く制御した場合、高耐圧SiC-JFETがスイッチングする際に発生するdV/dtに起因した変位電流により、サージ過電圧が高耐圧SiC-JFETのゲートと低耐圧Si-MOSFETのソース間に印可され、このサージ過電圧により低耐圧Si-MOSFETが破壊することがわかった。すなわち、発生ノイズを抑制する目的で、スイッチング速度調整用の抵抗の値を大きくしてスイッチング速度を遅く制御した場合には、カスコード型のハイブリッドパワーデバイスを上手くスイッチング制御することができず、素子の破壊を防止できないため信頼性の高い電力変換装置を達成できないという課題が発生することを新たに突き止めた。
 そこで本発明は、素子の破壊を防止でき、信頼性が高く、安価な半導体装置および電力変換装置を提供することを目的とする。
 上記目的を達成するため、ノーマリオン型ワイドバンドギャップ半導体JFETのソースとノーマリオフ型MOSFETのドレインとを接続し、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとを接続してなるカスコード型JFETを有する半導体装置であって、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとの間に設けられた第一の抵抗と、前記第一の抵抗に並列に接続された定電圧ダイオードを備える構成とする。
 また、ノーマリオン型ワイドバンドギャップ半導体JFETのソースとノーマリオフ型MOSFETのドレインとを接続し、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとを接続してなるカスコード型JFETを有する半導体装置であって、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとの間に設けられた第一の抵抗と、前記MOSFETのドレインとソースの間に設けられた定電圧ダイオードと、を備える構成とする。
 本発明によれば、半導体装置自身のスイッチングによるdV/dtに伴う変位電流に起因したサージ過電圧から半導体装置を適切に保護でき、また、安価な低耐圧Si-MOSFETで構成できるので、高信頼性化と低価格化の両方の利点を享受できる。
電力変換装置の主回路構成図である。 nチャネルJFETのゲート電圧とドレイン電流の特性図である。 カスコード型JFETの構成図である。 逆変換器における1アーム分のカスコード型JFETの構成図である。 図4における構成時の各部の波形である。 図4における構成時の各部の波形である。 実施例に係わるカスコード型JFETの構成図である。 図6における構成時の各部の波形である。 図6における構成時の各部の波形である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 図9の構成時における各部の波形である。 図9の構成時における各部の波形である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である 実施例に係わるカスコード型JFETの構成図である 実施例に係わるカスコード型JFETの構成図である。 実施例に係わるカスコード型JFETの構成図である。 実施例に係わる半導体装置の鳥瞰図である。
 以下では図面を用いて実施例について説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、以下に説明する各実施例は図示例に限定されるものではない。
<基本的なカスコード型JFETの構成>
 まず、図2および3を用いて、電力変換装置の逆変換器における代表的なワイドバンドギャップ半導体素子である、ノーマリオン型のSiC-JFETとノーマリオフ型のSi-MOSFETがカスケードに接続されたカスコード型のJFET(以下、カスコード型JFETという)を有する半導体装置について説明する。
 図2は、ノーマリオン型nチャネルJFETの構成図、およびゲート電圧とドレイン電流の特性図である。ゲートとソース間の電圧VGSが0Vで最大のドレイン電流IDSSが流れ、逆電圧の大きさでドレイン電流が制御され、ゲートとソース間の電圧VGSがVGS(OFF)より負側に大きい領域でオフとなる。
 図3は、カスコード型JFETの基本的な構成図である。JFETは、ゲートが接合型構造であり酸化膜がないため、MOSFETに比べ、製造プロセスが容易という大きな利点を有するが、一般的にノーマリオン型である。高い電圧下で動作させる電力変換装置への応用においては、ノーマリオフ型のスイッチング素子が好ましい。
 このため、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETをカスケードに接続したカスコード型JFETを構成することにより、カスコード型JFETとしてノーマリオフ動作するため、ワイドバンドギャップ半導体装置として有望である。カスコード型JFETの利点は、高耐圧を担うスイッチング素子を酸化膜のない接合型構造であるSiC-JFETで構成することができるため、高耐圧のSiC-MOSFETのようなゲート絶縁膜の信頼性面における問題を回避できる点にある。
 カスコード型JFETは、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)を接続し、低耐圧Si-MOSFETのゲート(G2)の電圧VGSを制御することにより、カスコード型JFET31としてスイッチング動作する。ドライブ回路8は、図示しない上位のマイコンからPWM信号を受け、ゲート抵抗Rgとゲートとソース間のコンデンサCgsを通して、ゲート電圧VGSがゲート(G)とソース(Sc)に印加され、Si-MOSFETをオン・オフ制御する。ゲートとソース間に挿入されたコンデンサCgsは必須の部品ではない。すなわち、スイッチング素子に印加される高い電圧はSiC-JFETが受け持つので、Si-MOSFETはカスコード型JFETとしてのオン・オフを制御するためのものであればよく、低耐圧の素子で構成可能である。
 このように、カスコード型JFET31において、オン・オフを制御するSi-MOSFETを低耐圧のスイッチング素子で構成できる点がカスコード型JFET31の利点である。しかし一方で、スイッチングによって、Si-MOSFETの定格電圧以上のサージ過電圧が低耐圧Si-MOSFETに印可された場合、Si-MOSFETは破壊されてしまう問題がある。そのため、Si-MOSFETの定格電圧は、このサージ過電圧に大きく依存する。よって、サージ過電圧からSi-MOSFETを保護するためには、カスコード型JFETをサージ過電圧値以上の定格電圧値を有するSi-MOSFETで構成するか、または、サージ過電圧がSi-MOSFETに印加されないような構成にする必要がある。前者の場合、高耐圧な(高い定格電圧値を有する)Si-MOSFETは、高価であり、素子サイズも大きくなるので、半導体装置の価格および小型化の面で問題がある。
<従来の逆変換器におけるカスコード型JFETの課題>
 次に、図4および5を用い、本願が解決する課題として新たに突き止めた、カスコード型JFETを用いる従来の逆変換機における問題点を説明する。
 図4は、従来の逆変換器における1アーム分のカスコード型JFETの構成図である。図3のカスコード型JFETの構成図において、SiC-JFETのゲートとSi-MOSFETのソース間にスイッチング速度を調整するための抵抗RGJを設けている。ここでは、逆変換器3を構成する三相分(U相、V相、W相)の内、代表的にU相の1アームのみについて記載している。1アームとは、直流中間回路の(+)電位側に接続された上アーム側のカスコード型JFETと直流中間回路の(-)電位側に接続された下アーム側のカスコード型JFETを直列に接続した構成のものである。当然、V相もW相も、同様に各々1アーム分のカスコード型JFET素子で構成されている。
 図5は、図4における構成時の各部の波形である。縦軸を電圧、横軸を時間とし、ドライブ回路8Uによりカスコード型JFETのターンオン時(図5(a))とターンオフ時(図5(b))における各部の電圧の過渡特性波形を示している。また、電圧以外にドレイン電流IDUも示してあるが、電流については過渡特性波形のみで、電流値のレンジについては記載していない。
 図5(a)は、カスコード型JFET41がオフ状態からオン(カスコード型JFET42はオン状態からオフ)した際の過渡特性波形を示す。カスコード型JFET41がオフ状態からオンに移行すると、オフ状態にあるカスコード型JFET42のドレイン(D)とソース(S)間には、直流中間回路の電圧VPNに依存した、dVPN/dtの急峻な電圧が印可されることになる。この急峻な電圧変化により、カスコード型JFET42を構成するSiC-JFETのドレイン(D1)からゲート(G1)とスイッチング速度を調整するための抵抗RGJを通してソース(S)へ変位電流IGDjが流れる。
 この変位電流IGDjに起因して、高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S2)間には、数(1)のサージ過電圧が印可される。
VGJD=RGJ*IGDj------------------数(1)
このため、カスコード型JFET42の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSDm)には、数(1)に近いサージ過電圧が印可されることになる。
 数(1)より、スイッチング速度を調整するための抵抗RGJが大きい程、VDSDmは大きくなることが分かる。EMC(電磁環境両立性)を考慮し、スイッチング速度を遅く制御してdVPN/dtを抑制することがノイズ発生の低減に有効であるが、スイッチング速度を調整するための抵抗RGJを大きくすると、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間に、より高いサージ過電圧が印可されることになり、MOSFETが過電圧破壊に至る。高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S2)との間に設けられたスイッチング速度を調整するための抵抗RGJを大きくして、スイッチング速度を遅く制御した場合(EMC対応:スイッチング速度を遅く制御してdVPN/dtを抑制することがノイズ発生の低減に有効)、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、数(1)のサージ過電圧が高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可される。
 よって、カスコード型JFET41がオフ状態からオンした際に、カスコード型JFET42における低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間には、電圧VDSDm≒49.6Vもの高いサージ過電圧がかかり、このサージ過電圧により低耐圧Si-MOSFETが過電圧破壊することになる。本願において、この点が、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETとをカスケード接続したカスコード型JFETの課題となっていることを突き止めた。
 図5(b)は、カスコード型JFET41がオン状態からオフ(カスコード型JFET42はオフ状態からオン)した際の過渡特性波形を示す。オフ状態に移行するカスコード型JFET41のドレイン(D)とソース(S)間には、直流中間回路の電圧VPNに依存した、dVPN/dtの急峻な電圧が印可されることになり、この電圧変化により、カスコード型JFET41を構成するSiC-JFETのドレイン(D1)からゲート(G1)とスイッチング速度を調整するための抵抗RGJを通してソース(S)へ変位電流IGUjが流れる。
 この変位電流IGUjに起因して、カスコード型JFET1の高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S2)間には、数(2)の電圧が印可される。
VGJU=RGJ*IGUj---------------数(2)
このため、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSUm)には、数(2)の電圧に近いサージ過電圧が印可される。すなわち、カスコード型JFET1の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間には、電圧VDSUm≒21.5Vのサージ過電圧が印加されることになる。
 よって、カスコード型JFET41がオン状態からオフした際に、カスコード型JFET42の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間には、電圧VDSDm≒21.5Vもの高いサージ過電圧がかかり、このサージ過電圧により低耐圧Si-MOSFETが過電圧破壊することになる。本願において、この点が、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETとをカスケード接続したカスコード型JFETの課題となっていることを突き止めた。
 以下、上述した課題を解決することができる半導体装置とその半導体装置を有する電力変換装置の実施例1を図1、6、7を用いて説明する。
 図1は、実施例1に係る電力変換装置の構成図である。図1の電力変換装置10は、交流機4に電力を供給するための順変換器1、平滑用コンデンサ2、逆変換器3、制御回路5、冷却ファン6、デジタル操作パネル7、ドライブ回路8、電圧検出回路9を備えて構成される。図1では、任意の入力電源として交流電源を用いた場合を示す。順変換器1は、交流電圧を直流電圧に変換する。平滑用コンデンサ2は、直流中間回路に備えられ、順変換器1によって変換された直流電圧を平滑にする。逆変換器3は、直流電圧を任意の周波数の交流電圧に変換する。
 逆変換器3内には、代表的なワイドバンドギャップ半導体素子として、ノーマリオン型のSiC-JFETとノーマリオフ型のSi-MOSFETがカスケードに接続されたカスコード型のJFETを有する半導体装置が搭載されており、三相出力のU相、V相、W相に各々カスコード型JFETを直列に接続した1アーム(図の点線部分)が3個(Up、Vp、Wp)で構成される。
 1アームは、例えば図6に示すように、点線で囲んだカスコード型JFET61および62の2個で構成されているが、この構成に限定したものではない。1アームを構成する2個のカスコード型JFETからなる半導体装置(2in1)を3個(U相分、V相分、W相分)使用してもよいし、U相、V相、W相の3アーム分である6個のカスコード型JFETからなる半導体装置(6in1)を1個使用してもよい。さらには、この半導体装置の形態は、パワーモジュール構造でも三端子構造(例えば、TO-220)でもトランスファモールド構造でもよく、構造を限定したものではない。
 以下の実施例では、代表的なノーマリオン型としての高耐圧SiC-JFETとノーマリオフ型としての低耐圧Si-MOSFET構成で説明するが、ノーマリオン型の高耐圧JFETが炭化ケイ素(SiC)で、ノーマリオフ型の低耐圧MOSFETがシリコン(Si)で構成されることを限定したものではなく、ノーマリオン型の高耐圧GaN-JFETとノーマリオフ型の低耐圧Si-MOSFET構成でも、ノーマリオン型のJFETとノーマリオフ型のMOSFETが炭化ケイ素(SiC)や窒化ガリウム(GaN)などワイドバンドギャップ半導体素子のみでの構成でもよい。
 冷却ファン6は、順変換器1及び逆変換器3内のパワーモジュールを冷却する。デジタル操作パネル7は、電力変換装置の各種制御データを設定、変更、異常状態及びモニタ表示を行う。例えば、交流電動機4を駆動する際の加速時間や停止させる場合の減速時間などを設定することができる。制御データの一つである加速・減速時間は図示しない記憶部に格納され、このデータに基づいて、図示しないマイコンが交流電動機4の加速・減速を制御する。
 操作パネル7には異常表示が可能な表示部が設けられており、電力変換装置における異常が検出されると当該表示部に表示される。本実施例の操作パネル7としては、特に種類が限られるものではないが、デジタル操作パネルとして装置使用者の操作性を考慮して表示部の表示を見ながら操作が行えるように構成している。なお、表示部は必ずしも操作パネル7と一体に構成する必要はないが、操作パネル7の操作者が、表示を見ながら操作できるように一体構成とすることが望ましい。操作パネル7から入力された電力変換装置の各種制御データは図示しない記憶部に格納される。
 制御回路5は、デジタル操作パネル7によって入力される各種の制御データに基づいて逆変換器3のスイッチング素子を制御すると共に、電力変換装置10全体の制御を司る働きをするもので、マイコン(制御演算装置)が搭載されており、デジタル操作パネル7から入力される各種の制御データに応じて必要な制御処理が行えるように構成されている。 
内部構成は省略するが、各種の制御データが格納された記憶部の記憶データからの情報に基づいて演算を行うマイコン(制御演算装置)が搭載されている。
  電流検出器CTは、交流機のU相、W相の線電流を検出する。V相の線電流は、交流条件(iu+iv+iw=0)から、iv=-(iu+iw)として求められる。図1では電流検出器CTを2個用いた例を示したが、CTを3個使用し、各U相、V相、W相の線電流を検出してもよい。また、電流検出器CTの検出位置は、逆変換器3への入力側でもよく、上記一例の検出位置に限定されるものではない。
 ドライブ回路8は、制御回路5からの指令に基づいて逆変換器3のスイッチング素子を駆動する。ドライブ回路8内にはスイッチングレギュレータ回路(DC/DCコンバータ)が搭載されており、電力変換装置の運転に必要な各直流電圧を生成し、これらを各構成に対して供給する。電圧検出回路9は、直流中間回路の直流電圧VPNを検出する。
 また、入力電源として交流電源ではなく、直流電源を供給する場合には、直流端子P(+)側に直流電源の(+)側を接続し、直流端子N(-)側に直流電源の-側を接続すればよい。さらには、交流端子RとSとTを接続し、この接続点に直流電源の(+)側を接続し、直流端子N(-)側に直流電源の(-)側を接続してもよいし、逆に、直流端子P(+)側に直流電源の(+)側を接続し、交流端子RとSとTを接続し、この接続点に直流電源の(-)側を接続してもよい。
 図6は、本実施例の一例に係わるカスコード型JFETの構成図である。カスコード型JFETの制御動作については、図3で説明した通りである。図4のカスコード型JFETの構成図と比較して、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)間にスイッチング速度を調整するための抵抗RGJに定電圧ダイオードZD1を並列に設けている。定電圧ダイオードZD1は、例えばツェナーダイオードなど、予め定められた降伏電圧にクランプできるものであればよい。これは、後述する実施例においても同様である。
 カスコード型JFETのスイッチング動作によるdVPN/dtを抑制しノイズ発生を低減する目的で、高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S2)との間に設けられたスイッチング速度を調整するための抵抗RGJを大きくし、スイッチング速度を遅く制御した場合、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、サージ過電圧が低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に印可され、このサージ過電圧により低耐圧Si-MOSFETが過電圧破壊する点については、図5における波形で説明した通りである。
 このため、低耐圧Si-MOSFETの破壊を保護する目的で、スイッチング速度を調整するための抵抗RGJに定電圧ダイオードZD1を並列に接続した構成である。定電圧ダイオードZD1は、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可されるサージ過電圧を定電圧にクランプできる。その結果、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSDm)に印加される電圧を抑制し、低耐圧Si-MOSFETをサージ過電圧から保護することができる。この時、定電圧ダイオードZD1は、その降伏電圧が低耐圧Si-MOSFETの定格電圧値(耐圧値)より小さいものを選ぶとよい。
 図7は、図6の構成回路において、ドライブ回路8Uによりカスコード型JFET61のターンオン時とターンオフ時における各部の過渡特性波形を示したものである。縦軸を電圧、横軸を時間にとり、各部の電圧の過渡特性波形を示している。また、電圧以外にドレイン電流IDUも示してあるが、電流については過渡特性波形のみで、電流値のレンジについては記載していない。
 図7(a)は、図5(a)と同様のモードで、カスコード型JFET61がオフ状態からオン(カスコード型JFET62はオン状態からオフ)した際の過渡特性波形で、オフ状態にあるカスコード型JFET62のドレイン(D)とソース(S)間には、直流中間回路の電圧VPNに依存した、dVPN/dtの急峻な電圧が印可されることになり、この電圧変化により、カスコード型JFET62を構成するSiC-JFETのドレイン(D1)からゲート(G1)とスイッチング速度を調整するための抵抗RGJを通してソース(S)へ変位電流IGDjが流れ、この変位電流IGDjに起因して、高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S)間には、数(1)の電圧が印可される。
 しかし、本実施例では、定電圧ダイオードZD1の作用により、カスコード型JFET62の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間にもサージ過電圧が印加されるが、定電圧ダイオードZD1の働きによりサージ過電圧が定電圧にクランプ(VDSDm≒14.7V)されていることが分かる。
 図5(a)における低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間に印加される電圧(VDSDm≒49.6V)値と比較すれば、定電圧ダイオードZD1によるサージ過電圧の抑制効果は明白である。
 すなわち、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETをカスケードに接続したカスコード型スイッチング素子(カスコード型JFET)を構成し、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、カスコード型JFETのスイッチング速度を調整するための抵抗RJGに並列に接続された定電圧ダイオードZD1で構成された半導体装置を備えることにより、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により発生する、高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可されるサージ過電圧を定電圧にクランプできる。このため、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSDm)に印加されるサージ過電圧も定電圧にクランプすることが可能で、サージ過電圧から低耐圧Si-MOSFETを適切に保護でき、信頼性の高い電力変換装置を提供することができる。
 以上、本発明の実施例では、スイッチング速度を調整するための抵抗に並列に定電圧ダイオードZD1を接続することにより、サージ過電圧を確実に定電圧にクランプすることができる。このため、高耐圧SiC-JFETと低耐圧Si-MOSFETでカスコード型JFETを構成しても、低耐圧Si-MOSFETをサージ過電圧による破壊から保護でき、定格電圧が20V程度(>14.7V)の低耐圧Si-MOSFETで構成することが可能となり、高い信頼性化と低価格化の両面を享受することができる。
 なお、スイッチング速度調整用の抵抗に並列に接続する定電圧ダイオードの定電圧値をさらに低い物を選定すれば、定格電圧が10Vあるいは15V程度の低耐圧Si-MOSFETで構成することも可能であることは明白である。
 図7(b)は、図5(b)と同様のモードで、カスコード型JFET61がオン状態からオフ(カスコード型JFET62はオフ状態からオン)した際の過渡特性波形で、オフ状態に移行するカスコード型JFET61のドレイン(D)とソース(S)間には、直流中間回路の電圧VPNに依存した、dVPN/dtの急峻な電圧が印可されることになり、この電圧変化により、カスコード型JFET61を構成するSiC-JFETのドレイン(D1)からゲート(G1)とスイッチング速度を調整するための抵抗RGJを通してソース(S)へ変位電流IGUjが流れる。
 この変位電流IGUjに起因して、カスコード型JFET61の高耐圧SiC-JFETのゲート(G1)と低耐圧Si-MOSFETのソース(S2)間には、数(2)の電圧が印可され、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSUm)には、数(2)の電圧に近いサージ過電圧が印可される。
 本実施例では、カスコード型JFET61の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間には、定電圧ダイオードZD1の働きによりサージ過電圧が定電圧にクランプ(VDSUm≒14.3V)されていることが分かる。
  図5(b)における低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間に印加される電圧(VDSUm≒21.5V)値と比較すれば、定電圧ダイオードZD1によるサージ過電圧の抑制効果が分かる。
 以下、図8を用いて、実施例1におけるカスコード型JFETの変形例について説明する。
 図8は、実施例1に係わるカスコード型JFETの変形例である。本実施例は、図6におけるカスコード型JFET61とカスコード型JFET62の内、代表的にカスコード型JFET81についてのみ記載しているが、もう一つのカスコード型JFETについても同様の構成である。
 図8(a)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けたカスコード型JFETのスイッチング速度を調整するために接続された抵抗RGJと、カスコード型JFETへの電圧印加の時間を調整するコンデンサCGJに対し、定電圧ダイオードZD1とZD2が逆向き、かつ、直列に接続した回路を並列に接続した構成である。定電圧ダイオードZD1とZD2により、スイッチング素子(カスコード型JFET)自身のスイッチングによるdVPN/dtに伴う変位電流に起因したサージ過電圧からスイッチング素子を保護することができる。
 図8(b)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けたカスコード型JFETのスイッチング速度を調整するために接続された抵抗RGJとコンデンサCGJに対し、定電圧ダイオードZD1とダイオードD12が逆向き、かつ、直列に接続された回路が並列に接続した構成である。定電圧ダイオードZD1とダイオードD12は、スイッチング素子自身のスイッチングによるdVPN/dtに伴う変位電流に起因したサージ過電圧からスイッチング素子を保護することができる。
 図8(c)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けたカスコード型JFETのスイッチング速度を調整するために接続された抵抗RGJとコンデンサCGJに対し、定電圧ダイオードZD1と直列に接続した抵抗RGJ1の回路が並列に接続した構成である。定電圧ダイオードZD1は、スイッチング素子自身のスイッチングによるdVPN/dtに伴う変位電流に起因したサージ過電圧からスイッチング素子を保護することができる。また、抵抗RGJ1は、定電圧ダイオードZD1への電流を抑制し、定電圧ダイオードZD1の信頼性を高めることができる。
 図8(d)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けたカスコード型JFETのスイッチング速度を調整するために接続した抵抗RGJとコンデンサCGJに対し、定電圧ダイオードZD1およびZD2と抵抗RGJ1を直列に接続した回路が並列に接続した構成である。定電圧ダイオードZD1とZD2は、スイッチング素子自身のスイッチングによるdVPN/dtに伴う変位電流に起因したサージ過電圧からスイッチング素子を保護することができる。また、抵抗RGJ1は、定電圧ダイオードZD1とZD2への電流を抑制し、定電圧ダイオードZD1とZD2の信頼性を高めることができる。
 図8(e)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けたカスコード型JFETのスイッチング速度を調整するために接続された抵抗RGJとコンデンサCGJに対し、定電圧ダイオードZD1とダイオードD12と抵抗RGJ1が直列に接続された回路を並列に接続した構成である。定電圧ダイオードZD1とダイオードD12は、スイッチング素子自身のスイッチングによるdVPN/dtに伴う変位電流に起因したサージ過電圧からスイッチング素子を保護することができる。また、抵抗RGJ1は、定電圧ダイオードZD1とダイオードD12への電流を抑制し、定電圧ダイオードZD1とダイオードD12の信頼性を高めることができる。
 図8(a)から(e)に示した本変形例は、いずれも低耐圧Si-MOSFETを保護するという効果については図6と同様である。
 以下、図9を用いて別の実施例について説明する。
 図9は、実施例3に係わるカスコード型JFETの構成図である。
 実施例1で示した図6の構成とは、定電圧ダイオード素子ZD1の接続点が異なる。
 SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、スイッチング速度を調整するための抵抗RGJを大きくして、スイッチング速度を遅く制御した場合、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、サージ過電圧が高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可され、このサージ過電圧により低耐圧Si-MOSFETが破壊する。
 このため、低耐圧Si-MOSFETの破壊を保護するために、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に並列に定電圧ダイオードZD1を接続した構成である。定電圧ダイオードZD1は、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部を分流する働きを行い、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることにより、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に印加するサージ過電圧を抑制し低耐圧Si-MOSFETを保護する。
 図10は、ドライブ回路8Uによりカスコード型JFET1のターンオン時とターンオフ時における各部の過渡特性波形を示したものである。縦軸を電圧に、横軸を時間にとり、各部の電圧の過渡特性波形を示している。
 図10(a)は、図9の構成回路において、図5(a)と同様のモードで、カスコード型JFET91がオフ状態からオン(カスコード型JFET92はオン状態からオフ)した際の過渡特性波形である。定電圧ダイオードZD1は、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部を分流する働きを行い、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることにより、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に印加するサージ過電圧を抑制できる。
 本実施例により、定電圧ダイオードZD1の作用により、カスコード型JFET92の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間にもサージ過電圧が印加されるが、定電圧ダイオードZD1の働きによりサージ過電圧が定電圧にクランプ(VDSDm≒14.5V)されていることが分かる。
 図5(a)におけるカスコード型JFET42の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間に印加される電圧(VDSDm≒49.6V)値と比較すれば、定電圧ダイオードZD1によるサージ過電圧の抑制効果は明白である。
 すなわち、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETをカスケードに接続したカスコード型スイッチング素子(カスコード型JFET)を構成し、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、カスコード型JFETのスイッチング速度を調整するための抵抗RJGと低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に並列に接続された定電圧ダイオードZD1で構成されたスイッチング素子を備えることにより、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可されるサージ過電圧を低減することができる。さらに、低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間(電圧VDSDm)に印加されるサージ過電圧も定電圧にクランプすることが可能で、サージ過電圧から低耐圧Si-MOSFETを適切に保護でき信頼性の高い電力変換装置を提供することができる。
 図10(b)は、図9の構成回路において、図5(b)と同様のモードで、カスコード型JFET91がオン状態からオフ(カスコード型JFET92はオフ状態からオン)した際の過渡特性波形である。定電圧ダイオードZD1は、同様に、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部を分流する働きを行い、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることにより、カスコード型JFET91の低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間(電圧VDSUm)には、数(2)の電圧に近いサージ過電圧が印可される。
 本実施例では、定電圧ダイオードZD1の作用により、カスコード型JFET91の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間にもサージ過電圧が定電圧にクランプ(VDSUm≒12.9V)されていることが分かる。
 図5(b)におけるカスコード型JFET52の低耐圧Si-MOSFETのドレーン(D2)とソース(S2)間に印加される電圧(VDSUm≒21.5V)値と比較すれば、定電圧ダイオードZD1によるサージ過電圧の抑制効果が分かる。
 以下、図11を用い、実施例3におけるカスコード型JFETの変形例について説明する。
 図11は、実施例4におけるカスコード型JFETの変形例を示す構成図である。図9におけるカスコード型JFET91とカスコード型JFET92の内、代表的にカスコード型JFET111についてのみ記載しているが、もう一つのカスコード型JFETについても同様の構成である。
 図11(a)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、スイッチング速度を調整するために接続された抵抗RGJと、、カスコード型JFETへの電圧印加の時間を調整するコンデンサCGJと、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に定電圧ダイオードZD1と抵抗RDJ1を直列に接続した回路が並列に接続された構成である。定電圧ダイオードZD1により、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部が分流し、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることができる。そして、それにより、カスコード型JFET111の低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間のサージ過電圧を抑制し、低耐圧Si-MOSFETを保護する事ができる。また、抵抗RDJ1は、定電圧ダイオードZD1への電流を抑制し、定電圧ダイオードZD1の信頼性を高めることができる。
 図11(b)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、スイッチング速度を調整するために接続された抵抗RGJとコンデンサCGJと、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に定電圧ダイオードZD1とZD2を逆向き、かつ、直列に接続し、さらに抵抗RDJ1を直列に接続した回路を並列に接続した構成である。定電圧ダイオードZD1とZD2により、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部が分流し、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることができる。そして、それにより、カスコード型JFET111の低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間のサージ過電圧を抑制し、低耐圧Si-MOSFETを保護する事ができる。また、抵抗RDJ1は、定電圧ダイオードZD1とZD2への電流を抑制し、定電圧ダイオードZD1とZD2の信頼性を高めることができる。
 図11(c)は、SiC-JFETのゲート(G1)とSi-MOSFETのソース(S2)との間に設けられ、スイッチング速度を調整するために接続された抵抗RGJとコンデンサCGJと、低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間に定電圧ダイオードZD1とダイオードD12を逆向き、かつ、直列に接続し、さらに抵抗RDJ1を直列に接続した回路を並列に接続した構成である。定電圧ダイオードZD1とダイオードD12により、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流の一部が分流し、スイッチング速度を調整するための抵抗RGJへ流れる変位電流を減少させることができる。そして、それにより、カスコード型JFET111の低耐圧Si-MOSFETのドレイン(D2)とソース(S2)間のサージ過電圧を抑制し、低耐圧Si-MOSFETを保護する事ができる。また、抵抗RDJ1は、定電圧ダイオードZD1とダイオードD12への電流を抑制し、定電圧ダイオードZD1とダイオードD12の信頼性を高めることができる。
 図11(a)から(c)は、いずれも低耐圧Si-MOSFETを保護するという効果については図9と同様である。
 以下、図12および13を用い、実施例5について説明する。
 図12は、実施例5に係わるカスコード型JFETの構成図である。
図12(a)は、実施例2にかかる図8(c)の回路構成において、カスコード型JFETの速度調整用抵抗RGJおよびコンデンサCGJとサージ過電圧抑制用の定電圧ダイオード素子を接続できる外部端子としてSiC-JFETのゲート端子(GS)とSi-MOSFETのソース端子(SS)が各々個別に設けられた半導体装置である。ここで、代表的に図8(c)の回路構成をとりあげたが、実施例1または実施例2に示す他の回路構成にしてもよい。
 Si-MOSFETのソース端子(SS)として、主電流IDが流れるソース端子(S)と制御用端子(SS)が分離されている。これは、ゲート(G1)の誤動作防止などを考慮してSiC-JFETのゲート端子(GS)とSi-MOSFETのソース端子(SS)の物理的距離を可能な限り最短で構成できるようにした配慮である。
 実施例1の変形例における図8(c)と異なる点は、速度調整用抵抗RGJやコンデンサCGJとサージ過電圧抑制用の定電圧ダイオード素子が、半導体装置を構成するモジュールパッケージ内部にないことである。速度調整用抵抗RGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などを外部で接続する端子を有することにより、速度調整用抵抗素子RGJやコンデンサ素子CGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などの定数を自由に選定でき、いわゆる設計の自由度を大幅に向上できる。
 なお、速度調整用抵抗RGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などを外付けする場合、ノイズの影響を受け易くなってしまうが、図12(a)の回路構成をとることにより(GS端子とSS端子の物理的距離を可能な限り最短で構成)、そのノイズによる誤動作の影響を抑制することができる。この効果は、実施例2に示す他の回路構成をとった場合でも同様である。
 また、速度調整用抵抗素子RGJやコンデンサ素子CGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などを、例えば図1におけるドライブ基板8や別の基板に搭載してもよい。
 図12(b)は、実施例4にかかる図11(a)の回路構成において、カスコード型JFETの速度調整用抵抗RGJおよびコンデンサCGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などをそれぞれ接続できる外部端子としてSiC-JFETのゲート端子(GS)とSi-MOSFETのドレイン端子(DS)とSi-MOSFETの制御用ソース端子(SS)とがそれぞれ個別に設けられた半導体装置である。ここで、代表的に図11(a)の回路構成をとりあげたが、実施例3または実施例4に示す他の回路構成にしてもよい。
 ここで、Si-MOSFETのソース端子として、主電流IDが流れるソース端子(S)と制御用ソース端子(SS)が分離されている。これは、主電流IDに起因するゲート(G1)の誤動作防止などを考慮して、SiC-JFETのゲート端子(GS)とSi-MOSFETの制御用ソース端子(SS)の物理的距離を可能な限り最短で構成できるように配慮したものである。
 実施例4における図11と異なる点は、速度調整用抵抗RGJやコンデンサCGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1が、半導体装置を構成するモジュールパッケージ内部にはないことである。速度調整用抵抗とサージ過電圧抑制用の定電圧ダイオード素子を外部で接続する端子を有することにより、速度調整用抵抗素子RGJやコンデンサ素子CGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などの定数を自由に選定でき、いわゆる設計の自由度を大幅に向上できる。
 なお、速度調整用抵抗RGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などを外付けする場合、ノイズの影響を受け易くなってしまうが、図12(b)の回路構成をとることにより(GS端子とSS端子の物理的距離を可能な限り最短で構成)、そのノイズによる誤動作の影響を抑制することができる。この効果は、実施例4に示す他の回路構成をとった場合でも同様である。
また、速度調整用抵抗素子RGJやコンデンサ素子CGJとサージ過電圧抑制用の定電圧ダイオード素子ZD1などを、例えば図1におけるドライブ基板8や別の基板に搭載してもよい。
 図13は、実施例5に係わる半導体装置の鳥瞰図である。交流電圧を直流電圧に変換する順変換器1と直流電圧を任意の周波数の交流電圧に変換する逆変換器3で構成された半導体装置である。
 逆変換器3内には、代表的なワイドバンドギャップ半導体素子として、ノーマリオン型SiC-JFET素子とノーマリオフ型Si-MOSFET素子がカスケードに接続されたカスコード型JFETが各々6素子(三相分)搭載されている。
 GSUはU相上アームのSiC-JFET素子のゲート端子、SSUはU相上アームのSi-MOSFET素子の制御用ソース端子であり、DSUはSi-MOSFET素子のドレイン端子である。また、GSVはV相上アームのSiC-JFET素子のゲート端子、SSVはV相上アームのSi-MOSFET素子の制御用ソース端子である。U相下アーム、V相下アーム、W相下アーム、W相上アームの各々の端子GSX、SSX、DSX、GSY、SSY、DSY、GSZ、SSZ、DSZ、DSV、GSW、SSW、DSWも記号は記載していないがそれぞれの端子が設けられている。
 速度調整用素子とサージ過電圧抑制用の定電圧ダイオード素子を接続できる端子を半導体装置の外部に設けたことにより、速度調整用抵抗素子やコンデンサ素子とサージ過電圧抑制用の定電圧ダイオード素子などの定数を自由に選定できるため、スイッチング速度を自由に制御可能であり、いわゆる設計の自由度を大幅に向上させることができ、さらに信頼性を十分に確保することができる。
 ここで、実施例1~5における半導体装置の形態は、パワーモジュール構成であるが、三端子構造(例えば、TO-220)でもトランスファモールド構造でもよく、構造を限定した実施例ではない。また、半導体装置の形態では、端子がはんだ接続可能なリード端子構造であるが、はんだ接続構造ではないネジ端子構造であってもプレスフィット構造でもよく、構造を限定した実施例ではない。
 以上、これまで説明してきたように、本願に係わる各実施例は、ノーマリオン型の高耐圧SiC-JFETとノーマリオフ型の低耐圧Si-MOSFETをカスケードに接続したカスコード型スイッチング素子(カスコード型JFET)を構成し、SiC-JFETのゲートとSi-MOSFETのソースとの間に設けられたカスコード型JFETのスイッチング速度を調整するための抵抗に並列に接続された定電圧ダイオードで構成されたスイッチング素子を備えることにより、高耐圧SiC-JFETがスイッチングする際に発生するdVPN/dtに起因した変位電流により、高耐圧SiC-JFETのゲート(G1)とソース(S2)間に印可されるサージ過電圧を定電圧にクランプできるため、低耐圧Si-MOSFETを過電圧破壊から保護でき信頼性の高い電力変換装置を提供できる。
 また、電圧クランプ素子が設けられているため、高耐圧SiC-JFETと低耐圧Si-MOSFETでカスコード型JFETを構成しても、低耐圧Si-MOSFETをサージ過電圧による破壊から保護でき、定格電圧が20V程度の低耐圧Si-MOSFETで構成することが可能となり、低価格で信頼性の高いカスコード型JFETを提供できる。
1…順変換器、2…平滑用コンデンサ、3…逆変換器、4…交流電動機、5…制御回路、8…ドライブ回路、10…電力変換装置、VPN…直流中間回路の電圧、31、41、42、61、62、81a~e、91、92、111a~c、121a、b…カスコード型JFET、RGJ…抵抗、CGJ…コンデンサ、ZD1、ZD2…定電圧ダイオード、D12…ダイオード、EMC…Electro Magnetic Compatibility、*…乗算演算子

Claims (15)

  1.  ノーマリオン型ワイドバンドギャップ半導体JFETのソースとノーマリオフ型MOSFETのドレインとを接続し、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとを接続してなるカスコード型JFETを有する半導体装置であって、
     前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとの間に設けられた第一の抵抗と、
     前記第一の抵抗に並列に接続された定電圧ダイオードを備える半導体装置。
  2.  請求項1に記載の半導体装置であって、
     前記定電圧ダイオードはツェナーダイオードであり、該ツェナーダイオードの降伏電圧は、前記MOSFETの定格電圧より低いことを特徴とする半導体装置。
  3.  請求項1に記載の半導体装置であって、
     前記第一の抵抗に並列に接続されたコンデンサを備えることを特徴とする半導体装置。
  4.  請求項3に記載の半導体装置であって、
     前記定電圧ダイオードに直列に接続された第二の抵抗を備えることを特徴とする電力変換装置。
  5.  請求項3または4に記載の半導体装置であって、
     前記定電圧ダイオードの順方向とは逆向き、かつ、直列に接続された定電圧ダイオードまたはダイオードを備えることを特徴とする半導体装置。
  6.  請求項1乃至5のいずれかに記載の半導体装置であって、
     前記ワイドギャップ型半導体JFETのゲートと前記MOSFETのソースとの間の接続は、前記ワイドギャップ型半導体JFETのゲート端子と前記MOSFETのソース端子によりなされていることを特徴とする半導体装置。
  7.  ノーマリオン型ワイドバンドギャップ半導体JFETのソースとノーマリオフ型MOSFETのドレインとを接続し、前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとを接続してなるカスコード型JFETを有する半導体装置であって、
     前記ワイドバンドギャップ半導体JFETのゲートと前記MOSFETのソースとの間に設けられた第一の抵抗と、
     前記MOSFETのドレインとソースの間に設けられた定電圧ダイオードと、
     を備える半導体装置。
  8.  請求項7に記載の半導体装置であって、
     前記定電圧ダイオードはツェナーダイオードであり、該ツェナーダイオードの降伏電圧は、前記MOSFETの定格電圧より低いことを特徴とする半導体装置。
  9.  請求項7に記載の半導体装置であって、
     前記第一の抵抗に並列に接続されたコンデンサを備えることを特徴とする半導体装置。
  10.  請求項9に記載の半導体装置であって、
     前記定電圧ダイオードに直列に接続された第二の抵抗を備えることを特徴とする電力変換装置。
  11.  請求項9または10に記載の半導体装置であって、
     前記定電圧ダイオードの順方向とは逆向きに、かつ、直列に接続された定電圧ダイオードあるいはダイオードを備えることを特徴とする半導体装置。
  12.  請求項7乃至11のいずれかに記載の半導体装置であって、
     前記ワイドギャップ型半導体JFETのゲートと前記MOSFETのソースとの間の接続および前記MOSFETのソースとドレインとの間の接続は、前記ワイドギャップ型半導体JFETのゲート端子と前記MOSFETのソース端子およびドレイン端子によりなされていることを特徴とする半導体装置。
  13.  交流電圧を直流電圧に変換する順変換器と、
     順変換器に変換された直流電力を平滑する平滑用コンデンサと、
     平滑された直流電圧を任意の周波数の交流電圧に変換する逆変換器と、
     前記逆変換器を駆動するドライブ回路と、
     前記ドライブ回路を制御する制御部と、
     を備え、
     前記逆変換器は、ノーマリオフ型ワイドギャップ半導体JFETとノーマリオン型MOSFETを有するカスコード型JFETを備え、
     前記カスコード型JFETには、第一の抵抗と第一の定電圧ダイオードが接続されている電力変換装置。
  14.  請求項13に記載の電力変換装置であって、
     前記カスコード型JFETには、コンデンサが接続されていることを特徴とする電力変換装置。
  15.  請求項14に記載の電力変換装置であって、
     前記カスコード型JFETには、第二の定電圧ダイオードまたはダイオードまたは第二の抵抗が接続されていることを特徴とする電力変換装置。
PCT/JP2014/061811 2014-04-28 2014-04-28 半導体装置および電力変換装置 WO2015166523A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016515771A JPWO2015166523A1 (ja) 2014-04-28 2014-04-28 半導体装置および電力変換装置
PCT/JP2014/061811 WO2015166523A1 (ja) 2014-04-28 2014-04-28 半導体装置および電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061811 WO2015166523A1 (ja) 2014-04-28 2014-04-28 半導体装置および電力変換装置

Publications (1)

Publication Number Publication Date
WO2015166523A1 true WO2015166523A1 (ja) 2015-11-05

Family

ID=54358277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061811 WO2015166523A1 (ja) 2014-04-28 2014-04-28 半導体装置および電力変換装置

Country Status (2)

Country Link
JP (1) JPWO2015166523A1 (ja)
WO (1) WO2015166523A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022206A1 (ja) * 2017-07-26 2019-01-31 株式会社デンソー 半導体装置
JP2019029997A (ja) * 2017-07-26 2019-02-21 株式会社デンソー 半導体装置
JP2020145576A (ja) * 2019-03-06 2020-09-10 株式会社東芝 半導体集積回路と半導体集積回路の調整方法
US11063582B2 (en) 2019-08-27 2021-07-13 Kabushiki Kaisha Toshiba Current detection circuit
CN113725209A (zh) * 2021-07-29 2021-11-30 西安交通大学 一种SiC/Si Cascode器件用多芯片并联结构
US11360126B2 (en) 2018-12-26 2022-06-14 Kabushiki Kaisha Toshiba Current detecting circuit
US11686748B2 (en) 2020-09-24 2023-06-27 Kabushiki Kaisha Toshiba Current detecting circuit, current detecting system, and power source circuit
US11710734B2 (en) 2018-11-07 2023-07-25 Denso Corporation Cascode-connected JFET-MOSFET semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836207B2 (ja) * 2018-08-06 2021-02-24 株式会社デンソー 駆動回路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2011029386A (ja) * 2009-07-24 2011-02-10 Sharp Corp 半導体装置および電子機器
JP2011049741A (ja) * 2009-08-26 2011-03-10 Sharp Corp 半導体装置および電子機器
WO2011089837A1 (ja) * 2010-01-25 2011-07-28 シャープ株式会社 複合型半導体装置
JP2011166673A (ja) * 2010-02-15 2011-08-25 Denso Corp ハイブリッドパワーデバイス
JP2013042270A (ja) * 2011-08-12 2013-02-28 Advanced Power Device Research Association トランジスタ回路、双方向スイッチ回路、ダイオード回路及びトランジスタ回路の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444045B2 (ja) * 1995-09-20 2003-09-08 株式会社日立製作所 半導体回路およびその駆動方法並びに半導体素子
DE19902520B4 (de) * 1999-01-22 2005-10-06 Siemens Ag Hybrid-Leistungs-MOSFET
JP2002152024A (ja) * 2000-11-14 2002-05-24 Mitsubishi Electric Corp パワー半導体スイッチング素子のスナバ回路及びパワー半導体装置
JP4788592B2 (ja) * 2006-12-20 2011-10-05 株式会社デンソー 逆流防止回路
JP2010136089A (ja) * 2008-12-04 2010-06-17 Fuji Electric Systems Co Ltd Igbtのサージ電圧抑制回路
US20120262220A1 (en) * 2011-04-13 2012-10-18 Semisouth Laboratories, Inc. Cascode switches including normally-off and normally-on devices and circuits comprising the switches
JP5290354B2 (ja) * 2011-05-06 2013-09-18 シャープ株式会社 半導体装置および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324839A (ja) * 2005-05-18 2006-11-30 Fuji Electric Holdings Co Ltd 複合型半導体装置
JP2011029386A (ja) * 2009-07-24 2011-02-10 Sharp Corp 半導体装置および電子機器
JP2011049741A (ja) * 2009-08-26 2011-03-10 Sharp Corp 半導体装置および電子機器
WO2011089837A1 (ja) * 2010-01-25 2011-07-28 シャープ株式会社 複合型半導体装置
JP2011166673A (ja) * 2010-02-15 2011-08-25 Denso Corp ハイブリッドパワーデバイス
JP2013042270A (ja) * 2011-08-12 2013-02-28 Advanced Power Device Research Association トランジスタ回路、双方向スイッチ回路、ダイオード回路及びトランジスタ回路の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101259B2 (en) 2017-07-26 2021-08-24 Denso Corporation Semiconductor device
JP2019029997A (ja) * 2017-07-26 2019-02-21 株式会社デンソー 半導体装置
WO2019022206A1 (ja) * 2017-07-26 2019-01-31 株式会社デンソー 半導体装置
US11710734B2 (en) 2018-11-07 2023-07-25 Denso Corporation Cascode-connected JFET-MOSFET semiconductor device
US11680964B2 (en) 2018-12-26 2023-06-20 Kabushiki Kaisha Toshiba Current detecting circuit
US11360126B2 (en) 2018-12-26 2022-06-14 Kabushiki Kaisha Toshiba Current detecting circuit
US10833670B2 (en) 2019-03-06 2020-11-10 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and adjustment method for semiconductor integrated circuit
JP7204538B2 (ja) 2019-03-06 2023-01-16 株式会社東芝 半導体集積回路と半導体集積回路の調整方法
CN111669159A (zh) * 2019-03-06 2020-09-15 株式会社东芝 半导体集成电路及其调整方法
JP2020145576A (ja) * 2019-03-06 2020-09-10 株式会社東芝 半導体集積回路と半導体集積回路の調整方法
CN111669159B (zh) * 2019-03-06 2024-04-09 株式会社东芝 半导体集成电路及其调整方法
US11063582B2 (en) 2019-08-27 2021-07-13 Kabushiki Kaisha Toshiba Current detection circuit
US11569810B2 (en) 2019-08-27 2023-01-31 Kabushiki Kaisha Toshiba Current detection circuit
US11838008B2 (en) 2019-08-27 2023-12-05 Kabushiki Kaisha Toshiba Current detection circuit
US11686748B2 (en) 2020-09-24 2023-06-27 Kabushiki Kaisha Toshiba Current detecting circuit, current detecting system, and power source circuit
CN113725209A (zh) * 2021-07-29 2021-11-30 西安交通大学 一种SiC/Si Cascode器件用多芯片并联结构

Also Published As

Publication number Publication date
JPWO2015166523A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015166523A1 (ja) 半導体装置および電力変換装置
US7940503B2 (en) Power semiconductor arrangement including conditional active clamping
CN107181420B (zh) 逆变器驱动装置以及半导体模块
US8730699B2 (en) Current-source power converter using normally-on field effect transistors
JP2013027307A (ja) Igbt駆動方法
JP5673449B2 (ja) 半導体装置
US20190252964A1 (en) Conversion circuit
JP2010166793A (ja) 双方向スイッチ及びスイッチング素子
JP2014064373A (ja) 駆動制御装置及び駆動制御方法
JP5393728B2 (ja) 半導体装置
WO2014192327A1 (ja) 電力変換装置および制御方法
JP2019165347A (ja) 駆動装置及びパワーモジュール
Frank et al. Real-time adjustable gate current control IC solves dv/dt problems in electric drives
US10784768B2 (en) Conversion circuit and conversion circuitry
WO2014128942A1 (ja) 半導体素子の駆動装置
WO2015001603A1 (ja) 半導体スイッチング素子の駆動回路およびそれを用いた電力変換装置
JP2014050179A (ja) 半導体装置
WO2015186233A1 (ja) 電力変換装置およびワイドバンドギャップ半導体素子の制御方法
US20230412167A1 (en) Power Electronic Module Comprising a Gate-Source Control Unit
JP6298735B2 (ja) 半導体駆動装置ならびにそれを用いた電力変換装置
EP3493343B1 (en) Circuit arrangement
JP5836510B1 (ja) 電力変換装置
JP5578231B2 (ja) インバータ回路
US20220149839A1 (en) Semiconductor device
JP6312946B1 (ja) 電力用半導体素子の駆動回路およびモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891032

Country of ref document: EP

Kind code of ref document: A1