WO2011081115A1 - 水硬性組成物用早強剤 - Google Patents

水硬性組成物用早強剤 Download PDF

Info

Publication number
WO2011081115A1
WO2011081115A1 PCT/JP2010/073491 JP2010073491W WO2011081115A1 WO 2011081115 A1 WO2011081115 A1 WO 2011081115A1 JP 2010073491 W JP2010073491 W JP 2010073491W WO 2011081115 A1 WO2011081115 A1 WO 2011081115A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic composition
hydraulic
inorganic salt
compound
alkali metal
Prior art date
Application number
PCT/JP2010/073491
Other languages
English (en)
French (fr)
Inventor
濱井利正
吉川洋平
光田義徳
福島哲朗
下田政朗
名嘉良仁
吉浪雄亮
川上博行
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010027267A external-priority patent/JP5554080B2/ja
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201080059715.4A priority Critical patent/CN102695686B/zh
Priority to ES10840971T priority patent/ES2762205T3/es
Priority to EP10840971.5A priority patent/EP2520553B1/en
Publication of WO2011081115A1 publication Critical patent/WO2011081115A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators

Definitions

  • the present invention relates to an early strengthening agent for a hydraulic composition, an additive composition for a hydraulic composition, a hydraulic composition, a method for producing a hydraulic composition, and a method for producing a cured product of the hydraulic composition.
  • Concrete products are kneaded with materials such as cement, aggregate, water, and dispersant, placed in various molds, and commercialized through a curing (hardening) process. It is important to develop high strength in the initial age from the viewpoint of improving the productivity, that is, the rotation rate of the formwork.
  • materials such as cement, aggregate, water, and dispersant
  • curing hardening
  • (1) using early strong cement as cement, (2) admixture Measures are taken such as reducing the amount of water in the cement composition using various polycarboxylic acid compounds, and (3) performing steam curing as a curing method.
  • Today there is a case where further shortening of the curing process is desired due to demands for higher productivity, and for example, it may be necessary to develop high strength in a curing time of 16 hours in the manufacture of concrete products. .
  • steam curing time is usually shortened, but steam curing leads to a rise in energy costs associated with the use of steam, which reduces energy costs, that is, shortens steam curing time and curing temperature. From the point of view, a method without steam curing is eagerly desired.
  • JP-A-6-199555 discloses calcium nitrate and calcium nitrite as hardening-promoting admixtures that shorten the setting time of hydraulic cement compositions at low temperatures without inducing or accelerating the corrosion of steel reinforcements.
  • An equal curing accelerator component an admixture consisting of C2 to C6 glycol components present in an amount effective to increase the curing acceleration of the curing accelerator component is described.
  • JP 2008-519752 discloses a method of using untreated glycerin containing 1 to 10% by weight of an alkali metal inorganic salt as a cement additive in order to improve the compressive strength of cement.
  • JP 2009-256201 discloses an early strengthening agent for a hydraulic composition containing a glycol ether compound or a glycerin derivative.
  • JP 2009-256202 discloses an additive composition for hydraulic compositions comprising a glycol ether compound or a glycerin derivative and a copolymer.
  • Japanese Patent Application Laid-Open No. 2010-089972 discloses the manufacture of a hydraulic composition comprising a ground hydraulic powder and a polymer distributed on April 22, 2010. Summary of invention
  • the present invention provides water comprising a compound represented by the following general formula (1) [hereinafter referred to as compound (1)] and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates.
  • compound (1) a compound represented by the following general formula (1)
  • inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates.
  • An early strengthening agent for a hydraulic composition wherein the molar ratio of the compound (1) to the inorganic salt A is 5/95 to 45/55 of the compound (1) / inorganic salt A. is there.
  • X is a hydroxy group or an amino group.
  • the present invention provides a hydraulic powder comprising a compound represented by the following general formula (1) and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, as described below.
  • a method for producing a hydraulic composition comprising a step of adding the compound represented by the formula (1) / inorganic salt A so that the molar ratio is 5/95 to 45/55.
  • X is a hydroxy group or an amino group.
  • the present invention also provides a hydraulic powder comprising an aggregate, water, a compound (1), and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a compound ( 1) A step of preparing a hydraulic composition by adding a molar ratio of / inorganic salt A to 5/95 to 45/55, and a step of filling the obtained hydraulic composition into a mold and curing it.
  • the present invention also provides a hydraulic powder, aggregate, water, glycerin, one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a naphthalene dispersant.
  • a glycerin and an inorganic salt A so that the molar ratio of glycerin / inorganic salt A is 5/95 to 45/55 to prepare a hydraulic composition, and forming the obtained hydraulic composition into a formwork And a step of removing the cured hydraulic composition from the mold to obtain a cured product of the hydraulic composition, starting the preparation of the hydraulic composition and then removing the mold
  • This is a method for producing a cured product of a hydraulic composition, which takes 4 to 10 hours to complete.
  • this invention is the additive composition for hydraulic compositions containing the said early strengthening agent for hydraulic compositions, and a dispersing agent.
  • this invention is a hydraulic composition containing the said early strengthening agent for hydraulic compositions, hydraulic powder, an aggregate, and water.
  • this invention is a hydraulic composition containing the said additive composition for hydraulic compositions, hydraulic powder, an aggregate, and water. Furthermore, this invention is a manufacturing method of the hardening body of the said hydraulic composition which does not carry out steam curing at the process of filling a hydraulic composition in a mold and making it harden
  • the object of the present invention is to improve the strength of a hardened body of a hydraulic composition such as a concrete product in about 8 hours after preparation without preparing the hydraulic composition and then curing it. It is to provide an early strengthening agent for a hydraulic composition that improves the properties of the hydraulic composition. In addition, it is possible to obtain a concrete product having excellent surface aesthetics while achieving such an improvement in initial strength. It is to provide a strong agent.
  • the present invention includes the following forms.
  • the method for producing a hydraulic composition wherein the molar ratio of the compound represented by the general formula (1) / inorganic salt A is 5/95 to 45/55.
  • the compound (1) includes an embodiment using glycerin where X is a hydroxy group and an embodiment using 3-amino-1,2-propanediol where X is an amino group.
  • the present invention includes the following form 1.
  • compound (1) For hydraulic compositions comprising a compound represented by the following general formula (1) [hereinafter referred to as compound (1)] and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates
  • compound (1) a compound represented by the following general formula (1)
  • inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates
  • X is a hydroxy group or an amino group.
  • the present invention includes the following form 2.
  • It contains glycerin, one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a naphthalene dispersant, and the molar ratio of glycerin to inorganic salt A is 5 for glycerin / inorganic salt A.
  • the additive composition for hydraulic compositions which is / 95 to 45/55.
  • the concrete 8 hours approximately after preparation 7N / mm 2 or more, preferably 8N / mm 2 or more intensity to the expression i.e. short early strength early strengthening agent for hydraulic compositions improving and An additive composition for a hydraulic composition using the same is provided.
  • short-term early strengthening is improved, working time can be shortened by shortening the curing time, and the productivity of concrete products is improved.
  • such effects can be obtained without any special changes in equipment and processes at the concrete product manufacturing site.
  • the quick strength agent for hydraulic compositions which improves short-term intensity
  • the present invention and its embodiment 1 will be described in detail below.
  • the early strengthening agent for a hydraulic composition of the present invention comprises the compound (1) and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and the compound (1) and the inorganic salt A.
  • the molar ratio of the compound (1) / inorganic salt A is 5/95 to 45/55. From the viewpoint of improving the short-term early strength of the hydraulic composition, it is preferably 10/90 to 40/60, more preferably 20/80 to 40/60, still more preferably 20/80 to 30/70.
  • the molar ratio is calculated by setting the total number of moles of each inorganic salt as the number of moles of the inorganic salt A.
  • the inorganic salt A is preferably an alkali metal sulfate from the viewpoint of improving the short-term early strength of the hydraulic composition.
  • the inorganic salt A may take the form of a hydrate.
  • a value converted to an anhydride is used.
  • the alkali metal constituting the salt include sodium, potassium, and lithium, and sodium and lithium are preferable from the viewpoint of improving the short-term strength of the hydraulic composition.
  • Compound (1) is preferably glycerin from the viewpoint of strength development after 8 hours.
  • the early strengthening agent for a hydraulic composition of the present invention is preferably used so that the added amount thereof is 0.01 to 10 parts by weight with respect to 100 parts by weight of the hydraulic powder from the viewpoint of early strength development of the cured body. More preferred is 0.01 to 5 parts by weight, still more preferred is 0.05 to 3 parts by weight, still more preferred is 0.1 to 2 parts by weight.
  • the early strengthening agent for a hydraulic composition of the present invention can be used by mixing with a hydraulic powder or the like at the time of preparing the hydraulic composition in the same manner as a normal early strengthening agent. Moreover, it is set as the hydraulic powder containing the early strengthening agent for hydraulic compositions of this invention, and a hydraulic composition may be prepared using this.
  • the early strengthening agent for a hydraulic composition of the present invention includes a phosphate ester polymer, a polycarboxylic acid copolymer, a sulfonic acid copolymer, a naphthalene polymer, a melamine polymer, a phenol polymer, It is preferably used in combination with a component known as a dispersant such as a lignin polymer.
  • the dispersant may be an admixture containing other components.
  • the early strengthening agent for a hydraulic composition of the present invention can be used for various inorganic hydraulic powders that exhibit curability by a hydration reaction, including various cements.
  • the additive composition for hydraulic composition of the present invention may be in the form of powder or liquid. In the case of a liquid form, those using water as a solvent or a dispersion medium (such as an aqueous solution) are preferable from the viewpoint of workability and reduction of environmental load.
  • the early strengthening agent for hydraulic composition of the present invention may be an aqueous solution from the viewpoint of easy handling.
  • the concentration is preferably 5 to 50% by weight from the viewpoint of solubility of the inorganic salt A, and more preferably 10 to 50% by weight.
  • cement examples include ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, and eco-cement (for example, JIS R5214).
  • hydraulic powder other than cement blast furnace slag, fly ash, silica fume and the like may be included, and non-hydraulic limestone fine powder and the like may be included.
  • Silica fume cement or blast furnace cement mixed with cement may be used.
  • the additive composition for hydraulic compositions containing the early strengthening agent for hydraulic compositions of this invention and a dispersing agent can be provided.
  • the additive composition for hydraulic composition of the present invention contains compound (1), inorganic salt A, and dispersant, and the molar ratio of compound (1) to inorganic salt A is compound (1) / inorganic.
  • the salt A is 5/95 to 45/55.
  • As the compound (1) glycerin is preferable from the viewpoint of strength development after 8 hours.
  • a phosphate ester polymer As the dispersant, a phosphate ester polymer, a polycarboxylic acid copolymer, a sulfonic acid copolymer, a naphthalene polymer, a melamine polymer, a phenol polymer, a lignin polymer, or the like can be used.
  • a phosphate ester polymer and a polycarboxylic acid copolymer are preferable.
  • the phosphate ester polymer is a polymer having a phosphate group, and a polymer having a polyoxyalkylene group is preferable.
  • a monomer 1 represented by the following general formula (C1) a monomer 2 represented by the following general formula (C2), and a monomer 3 represented by the following general formula (C3)
  • a polymer obtained by copolymerization a monomer 1 represented by the following general formula (C1)
  • C2 a monomer 2 represented by the following general formula (C2)
  • C3 monomer 3 represented by the following general formula (C3)
  • a polymer obtained by copolymerization a polymer obtained by copolymerization.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group
  • R 3 is a hydrogen atom or —COO (AO) n X
  • AO is an oxyalkylene group or oxystyrene group having 2 to 4 carbon atoms
  • p is a number of 0 or 1
  • n is an average added mole number of AO
  • X represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • R 4 is a hydrogen atom or a methyl group
  • R 5 is an alkylene group having 2 to 12 carbon atoms
  • m4 is a number of 1 to 30
  • M is a hydrogen atom, an alkali metal or an alkaline earth metal (1/2 atom ).
  • R 6 and R 8 are each independently a hydrogen atom or a methyl group
  • R 7 and R 9 are each independently an alkylene group having 2 to 12 carbon atoms
  • m5 and m6 are each independently 1 to 30
  • M represents a hydrogen atom, an alkali metal or an alkaline earth metal (1/2 atom).
  • the polycarboxylic acid copolymer is a polymer having a carboxyl group, and a polymer having a polyoxyalkylene group is preferable.
  • R 13 , R 14 hydrogen atom or —CH 3
  • R 15 hydrogen atom or —COO (AO) n
  • a 2 alkylene group having 2 to 4 carbon atoms
  • X 1 hydrogen atom or alkyl group having 1 to 18 carbon atoms
  • m ' number from 0 to 2
  • n ' Number from 2 to 300
  • p ' The number of 0 or 1 is shown.
  • R 16 , R 17 , R 18, which may be the same or different, are a hydrogen atom, —CH 3 or (CH 2 ) r COOM 2 , and (CH 2 ) r COOM 2 is COOM 1 or another (CH 2 ) r COOM 2 and anhydride may be formed, in which case M 1 and M 2 of those groups are not present.
  • M 1 and M 2 each represents a hydrogen atom, an alkali metal, an alkaline earth metal (1/2 atom), an ammonium group, an alkylammonium group or a substituted alkylammonium group r: 0 to 2 ]
  • the total content of compound (1) and inorganic salt A is preferably 5 to 95% by weight, more preferably 10 to 50% by weight, and still more preferably. It is 10 to 30% by weight, still more preferably 15 to 30% by weight, still more preferably 20 to 30% by weight. From the viewpoint of improving demolding strength, that is, improving short-term early strength, 5% by weight or more is preferable, and from the viewpoint of uniform stabilization of the product, 95% by weight or less is preferable.
  • the additive composition for hydraulic composition of the present invention is used at a ratio of 0.01 to 5 parts by weight of the total content of compound (1) and inorganic salt A with respect to 100 parts by weight of hydraulic powder.
  • the amount is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight. With reference to the amount used, the contents of the compound (1) and the inorganic salt A in the additive composition for hydraulic composition of the present invention can be determined.
  • the dispersant is used at a ratio of 0.01 to 10 parts by weight with respect to 100 parts by weight of the hydraulic powder from the viewpoint of improving the fluidity of the concrete. It is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 1 part by weight.
  • the weight ratio of the total content of the compound (1) and the inorganic salt A and the total amount of the dispersant is the dispersant.
  • Total content of compound (1) and inorganic salt A] 5/95 to 96/4, more preferably 5/95 to 65/35, still more preferably 5/95 to 50 / 50, still more preferably 5/95 to 30/70, still more preferably 5/95 to 20/80.
  • the total content of compound (1), inorganic salt A and dispersant is 10 to 100% by weight in the composition from the viewpoint of easy handling of the product. %, More preferably 10 to 60% by weight, still more preferably 20 to 40% by weight.
  • the additive composition for hydraulic compositions of the present invention is compound (1) with respect to 100 parts by weight of the hydraulic powder from the viewpoint of improving short-term and early strength of the hydraulic composition of the hydraulic composition.
  • the total amount of the inorganic salt A and the dispersant is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, more preferably 0.2 to 3 parts by weight. .
  • the early strengthening agent of the present invention can be used by pre-dissolving in water used for concrete, mortar, etc., and can be used by mixing with powder such as cement in advance. It can also be added during the period from pouring to kneading, or it can be added later to concrete or mortar once kneaded.
  • concrete or mortar or the like can be kneaded using a product obtained by coating the early strength agent of the present invention with a water-soluble film or the like, and can be gradually released over time.
  • the early strengthening agent of the present invention can be divided into the compound (1) and the inorganic salt A, and each can be added separately for use, and the addition method can also be applied to the cement powder or the water used. They can be used individually by any method as necessary, such as mixing.
  • the initial strength expression may be improved by devising an addition method such as a method of later adding to concrete or mortar once kneaded.
  • the additive composition for hydraulic composition of the present invention can be used for various inorganic hydraulic powders that exhibit curability by hydration reaction, including various cements.
  • various cements For example, normal, early strength, very early strength, moderate heat, white and other Portland cement, and mixed cement such as alumina cement, fly ash cement, blast furnace cement, silica cement and the like can be mentioned. It can also be used for powders called latent hydraulic powders such as fly ash and blast furnace slag. Furthermore, it is also possible to use a powder in which two or more of the above powders are used in an arbitrary ratio.
  • the additive composition for hydraulic composition of the present invention may be in the form of powder or liquid. In the case of a liquid form, those using water as a solvent or a dispersion medium (such as an aqueous solution) are preferable from the viewpoint of workability and reduction of environmental load.
  • the cement mentioned above can be used.
  • the additive composition for hydraulic compositions of the present invention can also contain other additives.
  • resin soap saturated or unsaturated fatty acid, sodium hydroxystearate, lauryl sulfate, alkylbenzene sulfonic acid (salt), alkane sulfonate, polyoxyalkylene alkyl (phenyl) ether, polyoxyalkylene alkyl (phenyl) ether sulfate (salt) ), AE agents such as polyoxyalkylene alkyl (phenyl) ether phosphate (salt), protein material, alkenyl succinic acid, ⁇ -olefin sulfonate; oxy such as gluconic acid, glucoheptonic acid, alabonic acid, malic acid, citric acid
  • Delayers such as carboxylic acids, dextrins, monosaccharides, oligosaccharides, polysaccharides, etc .; foaming agents; thickeners; silica s
  • waterproofing agent such as blast furnace slag; fluidizing agent; dimethylpolysiloxane, polyalkylene glycol fatty acid ester, mineral oil, oil and fat, Antifoaming agents such as oxyalkylene-based, alcohol-based, amide-based; antifoaming agents; fly ash; high-performance water reducing agents such as melamine sulfonic acid formalin condensate-based, aminosulfonic acid-based; silica fume; nitrite, phosphate, Antirust agent such as zinc oxide; Cellulose type such as methylcellulose, hydroxyethylcellulose, ⁇ -1,3-g Water-soluble polymers such as natural products such as cans and xanthan gum, polyacrylic acid amide, polyethylene glycol, ethylene oxide adducts of oleyl alcohol or synthetic products such as a reaction product of this with vinylcyclohexene diepoxide; (meth) acrylic acid Examples thereof include polymer emulsions such as alky
  • the additive composition for hydraulic composition of the present invention is used in the field of ready-mixed concrete, concrete vibration products, for self-leveling, for refractories, for plaster, for gypsum slurry, for lightweight or heavy concrete, for AE, It is useful in any field of various concretes such as repairing, prepacked, trayy, ground improvement, grout, cold, aerial concrete, and sprayed mortar.
  • This invention provides the hydraulic composition containing the early strengthening agent for hydraulic compositions of the said invention, hydraulic powder, an aggregate, and water.
  • the hydraulic composition of the present invention is mortar, concrete or the like containing water and hydraulic powder (cement).
  • the aggregate include fine aggregate and coarse aggregate.
  • the fine aggregate is preferably mountain sand, land sand, river sand and crushed sand, and the coarse aggregate is preferably mountain gravel, land gravel, river gravel and crushed stone.
  • lightweight aggregates may be used.
  • the term “aggregate” is based on “Concrete Overview” (published on June 10, 1998, published by Technical Shoin).
  • Aggregates preferably do not contain or have a low content of minerals selected from siliceous minerals (quartz, cristobalite, tridymite, opal, etc.), glass (volcanic glass, etc.) and silicate minerals (mica, clay minerals, etc.). .
  • the mineral content is preferably 5% by weight or less, more preferably 3% by weight or less.
  • the hydraulic composition has a water / hydraulic powder ratio [weight percentage (%) of water and hydraulic powder in the slurry, usually abbreviated as W / P.
  • W / P weight percentage of water and hydraulic powder in the slurry
  • C. Abbreviated as C.
  • W / P water / hydraulic powder ratio
  • C. water / hydraulic powder ratio
  • the W / P range is preferably 20 to 65%, more preferably 20 to 60%, further 30 to 55%, and even more preferably 30 to 50%.
  • the hydraulic composition of the present invention can contain a dispersant as required. Therefore, the hydraulic composition of the present invention may be a hydraulic composition containing the additive composition for hydraulic composition of the present invention, hydraulic powder, aggregate, and water.
  • the hydraulic composition of the present invention comprises a compound (1) / inorganic compound (1) and one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates in a hydraulic powder.
  • the salt A can be produced through a step of adding so that the molar ratio of the salt A is 5/95 to 45/55.
  • the total amount of the compound (1) and the inorganic salt A is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the hydraulic powder from the viewpoint of improving the short-term rapid strength of the hydraulic composition. 0.2 to 5 parts by weight is more preferable, and 0.2 to 3 parts by weight is still more preferable.
  • the hydraulic composition containing the early strengthening agent for hydraulic composition of the present invention, a hydraulic powder, water, and further, an aggregate and / or a dispersing agent as necessary is cured.
  • a cured body of a hydraulic composition such as a concrete product can be produced.
  • it is suitable for manufacture of the concrete product which fills a formwork with a hydraulic composition at the point which can shorten mold release time by expression of early strength.
  • hydraulic powder, aggregate, water, compound (1), and inorganic salt A are mixed, and the molar ratio of compound (1) / inorganic salt A is 5/95 to 45.
  • the time from the start of the preparation of the hydraulic composition to the demolding indicates the strength required for demolding. From the viewpoint of obtaining and improving the production cycle, 4 to 24 hours are preferable, from the viewpoint of short-term early strength by the early strengthening agent of the present invention, 4 to 10 hours are more preferable, and 6 to 10 hours are still more preferable.
  • the hydraulic composition containing the early strengthening agent of the present invention does not require energy such as steam heating in order to promote curing, and does not cure the hydraulic composition such as concrete products without steam curing. It can also be manufactured.
  • the time from contact of water to the hydraulic powder in the preparation of the hydraulic composition when producing concrete products without steam curing, and the time from demolding to the required strength for demolding and the production cycle 4 to 24 hours are preferable, 4 to 16 hours are more preferable, 4 to 10 hours are more preferable, 6 to 10 hours are further preferable, and 7 to 9 hours are still more preferable.
  • the strength of the concrete product at the time of demolding (JIS A 1108) is preferably 7 N / mm 2 or more, and more preferably 8 N / mm 2 or more, from the viewpoint of not causing damage during demolding.
  • the method for producing a cured body of the hydraulic composition of the present invention is excellent for the environment because it improves the productivity of the cured body of the hydraulic composition such as a concrete product.
  • the hardened body of the hydraulic composition using formwork include civil engineering products such as various block products for revetment, box culvert products, segment products used for tunnel construction, bridge pier girder products, etc.
  • Products for construction include curtain wall products, pillars, beams, building member products used for floor boards, and the like.
  • the additive composition for a hydraulic composition of the present invention contains glycerin, one or more inorganic salts A selected from alkali metal sulfates and alkali metal thiosulfates, and a naphthalene-based dispersant.
  • the molar ratio of the inorganic salt A is 5/95 to 45/55 in terms of glycerin / inorganic salt A, and from the viewpoint of improving the short-term strength of the hydraulic composition, it is preferably 10/90 to 45/55, more preferably 20 / 80 to 45/55, more preferably 25/75 to 40/60.
  • the molar ratio is calculated by setting the total number of moles of each inorganic salt as the number of moles of the inorganic salt A.
  • the inorganic salt A is preferably an alkali metal sulfate from the viewpoint of improving the short-term early strength of the hydraulic composition.
  • the inorganic salt A may take the form of a hydrate.
  • a value converted to an anhydride is used.
  • the alkali metal constituting the salt include sodium, potassium, and lithium, and sodium and lithium are preferable from the viewpoint of improving the short-term strength of the hydraulic composition.
  • sulfate is preferable, one or more inorganic salts selected from sodium sulfate and lithium sulfate are more preferable, and sodium sulfate is more preferable.
  • naphthalene-based dispersants have sulfonic acid groups, they adsorb on the surface of the hydraulic powder, repel between the hydraulic powder particles by the three-dimensional action of the rigid structure of the naphthalene group, and flow of the hydraulic composition It is thought to impart sex. Even if ettringite formation, calcium hydroxide formation and precipitation are promoted on hydraulic powder, sulfonic acid groups have strong adsorption power, so they can also be adsorbed on ettringite and calcium hydroxide, and the rigid structure of naphthalene groups Has a low affinity for water and a high adsorption rate to the hydraulic powder particles, so that it is considered that the effect of imparting fluidity does not decrease.
  • naphthalene-based dispersants include polymer compounds having a naphthalenesulfonic acid skeleton, such as naphthalenesulfonic acid formaldehyde condensate.
  • the weight average molecular weight of the naphthalene dispersant is preferably 200000 or less, more preferably 100000 or less, still more preferably 80000 or less, and even more preferably 50000 or less. Further, the weight average molecular weight is preferably 1000 or more, more preferably 3000 or more, further preferably 4000 or more, and more preferably 5000 or more.
  • naphthalene dispersant a 5 wt% aqueous solution having a pH of 3 to 12 at 20 ° C. can be used.
  • Naphthalene-based dispersants can be used in liquid and powder form.
  • a commercial item can be used as a naphthalene type dispersing agent, for example, Kao Co., Ltd. Mighty 150 is mentioned.
  • Examples of the method for producing a naphthalenesulfonic acid formaldehyde condensate include a method of obtaining a condensate by a condensation reaction of naphthalenesulfonic acid and formaldehyde. You may neutralize the said condensate. Moreover, you may remove the water insoluble matter byproduced by neutralization. For example, in order to obtain naphthalenesulfonic acid, 1.2 to 1.4 mol of sulfuric acid is used per 1 mol of naphthalene and reacted at 150 to 165 ° C. for 2 to 5 hours to obtain a sulfonated product. Next, formalin is added dropwise at 85 to 95 ° C.
  • This aqueous solution can be used as it is as a naphthalene dispersant. Further, if necessary, the aqueous solution can be dried and pulverized to obtain a powdery naphthalenesulfonic acid formaldehyde condensate water-soluble salt, which may be used as a powdery naphthalene dispersant. Drying and powdering can be performed by spray drying, drum drying, freeze drying, or the like. Although the naphthalenesulfonic acid formaldehyde condensate can be obtained by the above method, the desired product can be obtained by other conditions / methods.
  • the weight ratio of the total content of glycerin and inorganic salt A to the naphthalene dispersant is a naphthalene dispersant from the viewpoint of short-term early strength.
  • Total content of glycerin and inorganic salt A] 5/95 to 96/4, more preferably 5/95 to 65/35, still more preferably 5/95 to 50/50, Even more preferably, it is 10/90 to 40/60, and even more preferably 20/80 to 40/60.
  • test Examples 1-1 to 6-7 relate to Embodiment 1 of the present invention
  • Test Examples 21-1 to 24-5 relate to Embodiment 2 of the present invention.
  • Compressive strength is shown in Tables 2 to 9 as the strength ratio (%) relative to the strength of the standard product.
  • the comparative product indicated as the reference is a system in which the early strengthening agent is not added but only the dispersing agent is added, and the added amount of the dispersing agent so that the flow value measured by the following flow test is in the range of 190 to 250 mm. Adjusted. Within this flow value range, it is considered that the influence on the initial strength due to the difference in dispersibility is small.
  • the addition amount of the dispersant was increased in consideration of the decrease in the mortar flow due to the early strengthening agent. However, since the increase in the dispersant tends to lower the initial strength, the limit was to increase the reference addition amount by 0.1 parts by weight (vs.
  • Tables 3 to 8 show the strengths of the specimens as strength ratios.
  • Tables 4 and 5 and Tables 6 and 7 are evaluations at the same time.
  • the method for obtaining the strength ratios for Tables 3 to 8 will be described in detail.
  • the relative strength is obtained from the evaluation results for the same period when the dispersant (1) alone is used in the evaluation for the same period as 100.
  • Test Example 1-7 in Table 2 are determined in Test Example 1-7 in Table 2, and Test Examples 2-8, 3-17, and 4-7 in Tables 3 to 5 using glycerin, inorganic salt A, and dispersant (1) under the same conditions as above.
  • a coefficient is calculated so that each relative intensity becomes the same value (354), and this coefficient is multiplied by the measured intensity value of each test example. Using these, the relative value to the measured value of the strength of each reference product was calculated. Therefore, in each table, Test Example 1-7 and Test Examples 2-8, 3-17, 4-7, and 5-3 have the same relative strength value.
  • Test Examples 1-5 to 1-9 are the products of the present invention, and the others are comparative products.
  • Table 2 shows the evaluation results when glycerin and sodium sulfate are used as early strengthening agents and the molar ratio of glycerin and sodium sulfate is changed with a constant addition amount. It can be seen that the early strengthening agent of the present invention has a greater strength ratio after 8 hours than when glycerin or sodium sulfate is used alone, and the effect of the combined use at a specific molar ratio of glycerin and sodium sulfate is remarkable.
  • Test Examples 2-7 to 2-9 are the products of the present invention, and the others are comparative products.
  • Table 3 shows the evaluation results comparing the early strengthening agent of the present invention with sodium chloride and calcium thiocyanate, which are generally used as early strengthening agents. It can be seen that the early strength agent of the present invention has a strength ratio after 8 hours greater than that of the comparative product when the addition amount is 1.00 parts by weight or more. Further, when 2.00 parts by weight of the early strengthening agent of the present invention is used, it is cured at 20 ° C. for 8 hours, and the strength higher than steam curing at 50 ° C. for 3 hours is obtained without using the early strengthening agent shown in the reference example. It turns out that it is obtained.
  • Test Examples 3-13 and 3-17 are the products of the present invention, and the others are comparative products.
  • Test Examples 3-29 and 3-33 are the products of the present invention, and the others are comparative products.
  • Tables 4 and 5 show the evaluation results when glycerin and various inorganic salts are combined.
  • the early strength agent of the present invention has a strength ratio after 8 hours larger than the combination of glycerin and an inorganic salt other than the inorganic salt A used in the present invention, and only the combination of the present invention has an effect of improving short-term early strength. I understand that it is expensive.
  • Test Examples 4-5 and 4-7 are the products of the present invention, and the others are comparative products.
  • Tables 6 and 7 show the evaluation results when various alcohols and sodium sulfate are combined.
  • the early strength agent of the present invention has a strength ratio after 8 hours larger than the combination of alcohol other than glycerin and sodium sulfate, and it can be seen that only the combination of the present invention is highly effective in improving short-term early strength.
  • Test Examples 5-2 to 5-4 are the products of the present invention, and the others are comparative products.
  • Table 8 shows the evaluation results when comparing the early strengthening agent of the present invention with the admixture disclosed in JP-A-6-199555.
  • the strength ratio after 8 hours of the early strengthening agent of the present invention is larger than the admixture of JP-A-6-199555 (Test Examples 5-12 to 5-14), and the early strengthening agent of the present invention improves short-term early strength. It turns out that an effect is high.
  • Test Examples 6-4 and 6-6 are the products of the present invention, and the others are comparative products.
  • Table 9 shows the evaluation results when various compounds are combined with sodium sulfate.
  • the early strengthening agent of the present invention has a strength ratio after 8 hours larger than the combination of a compound other than the compound (1) of the present invention and sodium sulfate, and only the combination of the present invention has a high effect of improving short-term early strength. I understand. It can also be seen that the early strength agent of the present invention also increases the strength ratio after 24 hours.
  • the addition amount is the addition amount (parts by weight) to the mortar based on the effective content (solid content) of each component with respect to 100 parts by weight of cement.
  • the components used are as follows.
  • Test Examples 21-1 to 24-5 will be described in detail regarding the second embodiment of the present invention.
  • (1) Preparation of mortar Mortar was prepared in the same manner as above, except that the amount of alcohol (glycerin, etc.), inorganic salt, dispersant added to 100 parts by weight of cement (parts by weight) is as shown in Tables 10-13. Alcohol (glycerin, etc.), inorganic salt, dispersant and water are mixed so that the addition amounts shown in Tables 10 to 13 are mixed, and the hydraulic properties of a 25% by weight aqueous solution of alcohol, inorganic salt and dispersant are added. An additive composition for the composition was prepared.
  • Compressive strength is also shown in Tables 10 to 13 with relative values with the reference product as 100.
  • the reference product is a system in which glycerin and inorganic salt A are not added but only a dispersant is added. The added amount of the dispersant was determined so that the flow value measured by the following flow test in the reference product was within the range of the target flow value.
  • the target flow value is 210 ⁇ 30 mm
  • the target flow value is 260. ⁇ 20 mm.
  • Test Example 21-7 the relative intensity was obtained within the evaluation results of the simultaneous period, assuming that the dispersant (21) alone was used in the simultaneous evaluation as 100, and then the criteria were defined in Test Example 21-7 in Table 10, which is the same as this.
  • the measured relative strength values of Test Examples 22-5, 23-3, and 24-2 in Tables 11 to 13 using glycerin, inorganic salt A, and dispersant (21) under the same conditions are the same ( 381) is obtained, and the coefficient obtained by multiplying each coefficient by the coefficient is used as the corrected relative intensity. Therefore, in each table, Test Example 21-7 and Test Examples 22-5, 23-3, and 24-2 have the same relative strength value.
  • Test Examples 21-5 to 21-9 are the products of the present invention, and the others are comparative products.
  • Table 10 shows the evaluation results when glycerin, sodium sulfate, and a naphthalene-based dispersant are used and the molar ratio of glycerin and sodium sulfate is changed with a constant addition amount.
  • the product of the present invention can maintain a mortar flow and has a greater strength ratio after 8 hours than when glycerin or sodium sulfate is used alone, and glycerin and sodium sulfate are combined in a specific molar ratio with the naphthalene dispersant. It turns out that the effect by doing is remarkable.
  • Test Example 22-5 is the product of the present invention, and the others are comparative products.
  • Table 11 shows the evaluation results when various dispersants are used for glycerin and inorganic salt A.
  • Dispersant (21) which is a naphthalene-based dispersant, is used in a system in which glycerin and inorganic salt A are used in combination at a specific molar ratio (Test Examples 22-4 and 22-5), thereby reducing the mortar flow. It can be seen that the strength ratio after 8 hours is large and the effect of improving short-term strength is high.
  • Test Examples 23-3, 23-5, 23-7 are products of the present invention, and the others are comparative products.
  • Table 12 shows the evaluation results when glycerin and various inorganic salts are combined.
  • Test Example 24-2 is the product of the present invention, and the others are comparative products.
  • Table 13 shows the evaluation results when various alcohols and sodium sulfate are combined.
  • the addition amount is the addition amount (parts by weight) to mortar based on the effective amount (solid content) of each component with respect to 100 parts by weight of cement.
  • the components used are as follows.
  • Dispersant (21) Naphthalenesulfonic acid formalin condensate (Kao Corporation Mighty 150)
  • Dispersant (22) Methoxypolyethylene glycol monomethacrylate (23 mol) / 2-hydroxyethyl methacrylate phosphate ester (mixture of mono and di) [45/55 mol ratio] copolymer (weight average molecular weight 35000) Manufactured according to the examples of JP-A-2006-52381.
  • Dispersant (23) methoxypolyethylene glycol monomethacrylate (23 mol) / methacrylic acid copolymer (Nippon Shokubai Aqualock FC900)
  • Dispersant (24) polyoxyethylene allyl ether (30 mol) / maleic acid copolymer (NOF Co., Ltd. Marialim-AKM-60F)
  • Dispersant (25) Polyoxyethylene alkylene ether / acrylic acid copolymer (Nippon Shokubai Aqualock HW-60)
  • Dispersant (26) Methoxypolyethylene glycol monomethacrylate (120 mol) / methacrylic acid copolymer (Kao Corporation Mighty 21ES)

Abstract

 グリセリン等の特定の化合物(1)と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなる水硬性組成物用早強剤であって、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である水硬性組成物用早強剤を提供する。

Description

水硬性組成物用早強剤
 本発明は、水硬性組成物用早強剤、水硬性組成物用添加剤組成物、水硬性組成物、水硬性組成物の製造方法、及び水硬性組成物の硬化体の製造方法に関する。
 コンクリート製品は、セメント、骨材、水、及び分散剤等の材料を混練し、様々な型枠に打設し、養生(硬化)工程を経て製品化される。初期材齢に高い強度を発現することは、生産性、即ち型枠の回転率の向上の観点から重要であり、そのために、(1)セメントとして早強セメントを使用する、(2)混和剤として各種ポリカルボン酸系化合物を使用してセメント組成物中の水量を減少させる、(3)養生方法として蒸気養生を行う、などの対策が講じられている。今日では、より高い生産性の要求等から、養生工程の更なる短縮化が望まれることがあり、例えば、コンクリート製品の製造において養生時間16時間で高い強度を発現することが必要な場合がある。通常、養生工程において、蒸気などの加熱作業工程など複雑な工程が組み込まれているが、これら工程の変更による初期強度の向上対策は実用的な手法とはなりにくい。そこで、工程変更を伴わずに簡単に初期強度の高いコンクリート製品が得られる方法が、製造コスト等の点から、市場では切望されている。
 また、通常、蒸気養生の養生時間の短縮化が図られているが、蒸気養生は蒸気使用に伴うエネルギーコストの高騰に繋がり、エネルギーコストの削減、即ち蒸気養生時間の短縮及び養生温度の低減の観点からも蒸気養生を行わない方法が切望されている。
 特開平6-199555には、鋼製の強化材の腐食を誘起又は促進することなく、低温において水硬セメント組成物の硬化時間を短縮する、硬化促進性混和剤として、硝酸カルシウム、亜硝酸カルシウム等硬化促進剤成分、硬化促進剤成分の硬化促進性を増加させるのに有効な量で存在するC2ないしC6のグリコール成分よりなる混和剤が記載されている。特表2008-519752には、セメントの圧縮強さを向上させるために、1~10重量%のアルカリ金属無機塩を含んでいる未処理グリセリンをセメント添加物として使用する方法が開示されている。
 特開平2009-256201(WO―A 2009/119897に対応する)は、グリコールエーテル化合物又はグリセリン誘導体を含む水硬性組成物用早強剤を開示している。 
 特開平2009-256202(WO―A 2009/119893に対応する)は、グリコールエーテル化合物又はグリセリン誘導体及び共重合体を含む水硬性組成物用添加剤組成物を開示している。
 特開平2010-089972は、2010年4月22日頒布され、粉砕した水硬性粉体と重合体を含む水硬性組成物の製造を開示している。
発明の要約
 本発明は、下記一般式(1)で表される化合物〔以下、化合物(1)という〕と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなる水硬性組成物用早強剤であって、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である水硬性組成物用早強剤である。
Figure JPOXMLDOC01-appb-C000005
〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
 また、本発明は、水硬性粉体に、下記一般式(1)で表される化合物と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、下記一般式(1)で表される化合物/無機塩Aのモル比が5/95~45/55となるように添加する工程を有する水硬性組成物の製造方法である。
Figure JPOXMLDOC01-appb-C000006
〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
 また、本発明は、水硬性粉体に、骨材と、水と、化合物(1)と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、化合物(1)/無機塩Aのモル比が5/95~45/55となるように添加し、水硬性組成物を調製する工程と、得られた水硬性組成物を型枠に充填し硬化させる工程と、硬化した水硬性組成物を型枠から脱型する工程とを有し、水硬性組成物の調製を開始してから脱型するまでの時間が4~10時間である水硬性組成物の硬化体の製造方法である。
Figure JPOXMLDOC01-appb-C000007
〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
 また、本発明は、水硬性粉体に、骨材と、水と、グリセリンと、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aと、ナフタレン系分散剤とをグリセリンと無機塩Aとをグリセリン/無機塩Aのモル比が5/95~45/55となるように添加し、水硬性組成物を調製する工程と、得られた水硬性組成物を型枠に充填し硬化させる工程と、硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程とを有し、水硬性組成物の調製を開始してから脱型するまでの時間が4~10時間である水硬性組成物の硬化体の製造方法である。
 さらに、本発明は、上記水硬性組成物用早強剤と分散剤とを含有する水硬性組成物用添加剤組成物である。
 さらに、本発明は、上記水硬性組成物用早強剤と、水硬性粉体と、骨材と、水とを含有する水硬性組成物である。
 さらに、本発明は、上記水硬性組成物用添加剤組成物と、水硬性粉体と、骨材と、水とを含有する水硬性組成物である。
 さらに、本発明は、水硬性組成物を型枠に充填し硬化させる工程で、蒸気養生をしない上記水硬性組成物の硬化体の製造方法である。
発明の詳細な説明
 本発明の課題は、水硬性組成物を調製後、熱を加える養生をすることなしに調製後8時間程度でコンクリート製品等の水硬性組成物硬化体の強度を向上させる、即ち、短期早強性を向上させる水硬性組成物用早強剤を提供することであり、また、このような初期強度の向上を達成しつつ表面美観に優れたコンクリート製品等が得られる、水硬性組成物用早強剤を提供することである。
 本発明は次の形態を含む。
 A. 化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である上記水硬性組成物用早強剤。
 B. 化合物(1)が、一般式(1)中のXがヒドロキシ基の化合物である、上記水硬性組成物用早強剤。
 C. 分散剤がナフタレン系分散剤である上記水硬性組成物用添加剤組成物。
 D. 化合物(1)と無機塩Aの合計量が、水硬性粉体100重量部に対し0.01~10重量部である上記水硬性組成物。
 E. 一般式(1)で表される化合物/無機塩Aのモル比が5/95~45/55である水硬性組成物の上記製造方法。 
 本発明では、化合物(1)として、Xがヒドロキシ基であるグリセリンを用いる態様と、Xがアミノ基である3-アミノ-1,2-プロパンジオールを用いる態様を含む。
 本発明は、次の形態1を含む。 下記一般式(1)で表される化合物〔以下、化合物(1)という〕と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなる水硬性組成物用早強剤であって、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である水硬性組成物用早強剤。
Figure JPOXMLDOC01-appb-C000008
〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
 本発明は、次の形態2を含む。 グリセリンと、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aと、ナフタレン系分散剤とを含有し、グリセリンと無機塩Aのモル比がグリセリン/無機塩Aで5/95~45/55である、水硬性組成物用添加剤組成物。
 本発明によれば、コンクリートを調製後8時間程度で7N/mm2以上、好ましくは8N/mm2以上の強度を発現させる、即ち短期早強性を向上させる水硬性組成物用早強剤及びこれを用いた水硬性組成物用添加剤組成物が提供される。本発明の早強剤を用いると、短期早強性が向上し、養生時間の短縮により作業時間を短縮でき、コンクリート製品の生産性が向上する。しかも、こうした効果を、コンクリート製品製造現場の設備や工程の特別な変更なしに得ることができる。
 また、混練後、養生なしに短期強度又は初期強度を向上させる、水硬性組成物用早強剤を提供する。
 本発明とその形態1を以下詳述する。 
<水硬性組成物用早強剤>
 本発明の水硬性組成物用早強剤は、化合物(1)とアルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなり、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である。 水硬性組成物の短期早強性向上の観点から好ましくは10/90~40/60、より好ましくは20/80~40/60、更に好ましくは20/80~30/70である。無機塩Aを2種以上用いる場合は、各無機塩のモル数の合計を無機塩Aのモル数としてモル比を計算する。化合物(1)と無機塩Aとをこの範囲のモル比で用いることで、養生なしに短期強度、例えばコンクリートを調製後8時間程度における水硬性組成物硬化体の強度を向上させることができる。
 無機塩Aは、水硬性組成物の短期早強性を向上の観点からアルカリ金属硫酸塩が好ましい。無機塩Aは水和物の形態をとっていても良い。水和物の形態をとっている無機塩Aを用いる場合の重量等は無水物に換算した値を用いる。塩を構成するアルカリ金属は、ナトリウム、カリウム、リチウムが挙げられ、水硬性組成物の短期早強性向上の観点からナトリウム及びリチウムが好ましい。無機塩Aとしては、硫酸ナトリウム(Na2SO4)、硫酸カリウム(K2SO4)、硫酸リチウム(Li2SO4)、チオ硫酸ナトリウム(Na223)、チオ硫酸カリウム(K223)、チオ硫酸リチウム(Li223)が挙げられ、水硬性組成物の短期早強性向上の観点から硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上の無機塩であることが好ましく、硫酸ナトリウムがより好ましい。
 本発明の効果発現の機構は不明であるが、化合物(1)と無機塩Aが相乗的に作用することで早期に強度が発現すると考えられる。具体的には、水硬性組成物の初期硬化では、該組成物中に含まれる石膏成分の溶解促進によるアルミネート(C3A)のエトリンガイトの生成と、エーライト(C3S)由来の水酸化カルシウムの生成及び析出の2種の反応が生じており、化合物(1)と無機塩Aが主として作用する反応が異なっており、化合物(1)がエトリンガイトの生成を、無機塩Aが水酸化カルシウムの生成及び析出に作用していると考えられる。これを反映して、初期強度が高い硬化体を与える、エトリンガイトの生成速度と水酸化カルシウムの生成速度に最適な比率は化合物(1)/無機塩Aのモル比によって支配されていることが観測される。
 化合物(1)としては、8時間後の強度発現の観点から、グリセリンが好ましい。
 本発明の水硬性組成物用早強剤は、硬化体の早期強度発現の観点から水硬性粉体100重量部に対する添加量が0.01~10重量部となるように用いられることが好ましく、より好ましくは0.01~5重量部、更に好ましくは0.05~3重量部、より更に好ましくは0.1~2重量部である。
 本発明の水硬性組成物用早強剤は、通常の早強剤と同様、水硬性組成物の調製時に水硬性粉体等と混合して使用できる。また、本発明の水硬性組成物用早強剤を含有させた水硬性粉体とし、これを用いて水硬性組成物を調製してもよい。
 本発明の水硬性組成物用早強剤は、リン酸エステル系重合体、ポリカルボン酸系共重合体、スルホン酸系共重合体、ナフタレン系重合体、メラミン系重合体、フェノール系重合体、リグニン系重合体等の分散剤として知られている成分と併用されることが好ましい。分散剤は他の成分を配合した混和剤であっても良い。
 本発明の水硬性組成物用早強剤は、各種セメントを始めとし、水和反応によって硬化性を示すあらゆる無機系の水硬性粉体に使用することができる。本発明の水硬性組成物用添加剤組成物は粉末状でも液体状でもよい。液体状の場合は、作業性、環境負荷低減の観点から、水を溶媒ないし分散媒とするもの(水溶液等)が好ましい。
 本発明の水硬性組成物用早強剤は、取扱いを容易にする観点から、水溶液としても良い。その場合の濃度は無機塩Aの溶解性の観点から5~50重量%が好ましく、10~50重量%がより好ましい。
 セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、エコセメント(例えばJIS R5214等)が挙げられる。セメント以外の水硬性粉体として、高炉スラグ、フライアッシュ、シリカヒューム等が含まれてよく、また、非水硬性の石灰石微粉末等が含まれていてよい。セメントと混合されたシリカヒュームセメントや高炉セメントを用いてもよい。
<水硬性組成物用添加剤組成物>
 本発明では、本発明の水硬性組成物用早強剤と分散剤とを含有する水硬性組成物用添加剤組成物を提供することができる。本発明の水硬性組成物用添加剤組成物は、化合物(1)と、無機塩Aと、分散剤とを含有し、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である。化合物(1)としては、8時間後の強度発現の観点から、グリセリンが好ましい。分散剤はリン酸エステル系重合体、ポリカルボン酸系共重合体、スルホン酸系共重合体、ナフタレン系重合体、メラミン系重合体、フェノール系重合体、リグニン系重合体等の用いることができるが、水硬性組成物硬化体の短期早強性向上の観点から、リン酸エステル系重合体及びポリカルボン酸系共重合体が好ましい。
 リン酸エステル系重合体は、リン酸基を有する重合体であり、ポリオキシアルキレン基を有する重合体が好ましい。例えば、特開2006-52381に記載の化合物が挙げられる。即ち、下記一般式(C1)で表される単量体1と、下記一般式(C2)で表される単量体2と、下記一般式(C3)で表される単量体3とを、共重合して得られる重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000009
〔式中、R1及びR2は、それぞれ独立に水素原子又はメチル基、R3は水素原子又は-COO(AO)nX、AOは炭素数2~4のオキシアルキレン基又はオキシスチレン基、pは0又は1の数、nはAOの平均付加モル数であり、3~200の数、Xは水素原子又は炭素数1~18のアルキル基を表す。〕
Figure JPOXMLDOC01-appb-C000010
〔式中、R4は水素原子又はメチル基、R5は炭素数2~12のアルキレン基、m4は1~30の数、Mは水素原子、アルカリ金属又はアルカリ土類金属(1/2原子)を表す。〕
Figure JPOXMLDOC01-appb-C000011
〔式中、R6及びR8は、それぞれ独立に水素原子又はメチル基、R7及びR9は、それぞれ独立に炭素数2~12のアルキレン基、m5及びm6は、それぞれ独立に1~30の数、Mは水素原子、アルカリ金属又はアルカリ土類金属(1/2原子)を表す。〕
 ポリカルボン酸系共重合体は、カルボキシル基を有する重合体であり、ポリオキシアルキレン基を有する重合体が好ましい。例えば、下記一般式(D1-1)で示される単量体(イ)と、下記一般式(D1-2)で示される単量体(ロ)とを構成単位として含む共重合体である。
Figure JPOXMLDOC01-appb-C000012
〔式中、
R13、R14:水素原子又は-CH3
R15:水素原子又は-COO(AO)nX
A2:炭素数2~4のアルキレン基
X1:水素原子又は炭素数1~18のアルキル基
m’:0~2の数
n’:2~300の数
p’:0又は1の数
を示す。〕
Figure JPOXMLDOC01-appb-C000013
〔式中、
R16、R17、R18:同一でも異なっていてもよく、水素原子、-CH3又は(CH2)rCOOM2であり、(CH2)rCOOM2はCOOM1又は他の(CH2)rCOOM2と無水物を形成していてもよく、その場合、それらの基のM1、M2は存在しない。
M1、M2:水素原子、アルカリ金属、アルカリ土類金属(1/2原子)、アンモニウム基、アルキルアンモニウム基又は置換アルキルアンモニウム基
r:0~2の数を示す。〕
 本発明の水硬性組成物用添加剤組成物において、化合物(1)及び無機塩Aの含有量の合計は、5~95重量%が好ましく、より好ましくは10~50重量%、更により好ましくは10~30重量%、更により好ましくは15~30重量%、更により好ましくは20~30重量%である。脱型強度の向上、即ち短期早強性の向上の観点から5重量%以上が好ましく、また、製品の均一安定化の観点から95重量%以下が好ましい。
 本発明の水硬性組成物用添加剤組成物は、水硬性粉体100重量部に対して、化合物(1)及び無機塩Aの含有量の合計が0.01~5重量部の割合で使用されることが好ましく、更に好ましくは0.05~3重量部、より好ましくは0.1~2重量部である。この使用量を目安として、本発明の水硬性組成物用添加剤組成物中の化合物(1)及び無機塩Aの含有量を決めることができる。
 本発明の水硬性組成物用添加剤組成物は、コンクリートの流動性向上の観点から、水硬性粉体100重量部に対して、分散剤が0.01~10重量部の割合で使用されることが好ましく、更に好ましくは0.1~5重量部、より好ましくは0.2~1重量部である。
 また、本発明の水硬性組成物用添加剤組成物においては、短期早強性の観点から、化合物(1)及び無機塩Aの含有量の合計と分散剤の総量の重量比が、分散剤/〔化合物(1)及び無機塩Aの含有量の合計〕=5/95~96/4であることが好ましく、より好ましくは5/95~65/35、更により好ましくは5/95~50/50、更により好ましくは5/95~30/70、更により好ましくは5/95~20/80である。
 また、本発明の水硬性組成物用添加剤組成物においては、製品の扱いやすさの観点から、化合物(1)、無機塩A及び分散剤の合計含有量が当該組成物中10~100重量%であることが好ましく、より好ましくは10~60重量%、更により好ましくは20~40重量%である。
 また、本発明の水硬性組成物用添加剤組成物は、水硬性組成物の水硬性組成物の短期早強性向上の観点から、水硬性粉体100重量部に対して、化合物(1)、無機塩A及び分散剤の合計で0.1~10重量部の割合で使用されることが好ましく、更に好ましくは0.2~5重量部、より好ましくは0.2~3重量部である。
 本発明の早強剤は、コンクリートやモルタル等に使用する水に予め溶解させて使用することができ、また予めセメント等の粉体に混合しておき使用することができ、また注水と同時に添加して使用することができ、また注水から練り上がりまでの間に添加することができ、また一旦練り上がったコンクリートもしくはモルタル等に後から添加して使用することもできる。また、本発明の早強剤を水溶性フィルム等によりコーティングした物を用い、コンクリートもしくはモルタル等を混練し、経時的に徐放させて使用することもできる。更に、本発明の早強剤を化合物(1)と無機塩Aに分け、各々を別々に添加して使用することもでき、その添加方法についても、上記のセメント粉体や使用する水等に混合するなど、必要に応じて、任意の方法で個別に使用することができる。更に、一旦練り上がったコンクリートもしくはモルタル等に後から添加する方法等、添加方法を工夫することで、初期強度発現が向上する場合もある。
 本発明の水硬性組成物用添加剤組成物は、各種セメントを始めとし、水和反応によって硬化性を示すあらゆる無機系の水硬性粉体に使用することができる。例えば、普通、早強、超早強、中庸熱、白色等のポルトランドセメントや、アルミナセメント、フライアッシュセメント、高炉セメント、シリカセメント等の混合セメントが挙げられる。また、フライアッシュや高炉スラグ等の潜在水硬性粉体と呼ばれる粉体にも使用することができる。更に、上記の粉体を任意の割合で2種以上併用した粉体についても使用可能である。本発明の水硬性組成物用添加剤組成物は粉末状でも液体状でもよい。液体状の場合は、作業性、環境負荷低減の観点から、水を溶媒ないし分散媒とするもの(水溶液等)が好ましい。セメントは前述したものを用いることができる。
 本発明の水硬性組成物用添加剤組成物は、その他の添加剤を含有することもできる。例えば、樹脂石鹸、飽和もしくは不飽和脂肪酸、ヒドロキシステアリン酸ナトリウム、ラウリルサルフェート、アルキルベンゼンスルホン酸(塩)、アルカンスルホネート、ポリオキシアルキレンアルキル(フェニル)エーテル、ポリオキシアルキレンアルキル(フェニル)エーテル硫酸エステル(塩)、ポリオキシアルキレンアルキル(フェニル)エーテルリン酸エステル(塩)、蛋白質材料、アルケニルコハク酸、α-オレフィンスルホネート等のAE剤;グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸、クエン酸等のオキシカルボン酸系、デキストリン、単糖類、オリゴ糖類、多糖類等の糖系、糖アルコール系等の遅延剤;起泡剤;増粘剤;珪砂;塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム、臭化カルシウム、沃化カルシウム等の可溶性カルシウム塩、塩化鉄、塩化マグネシウム等の塩化物等、水酸化カリウム、水酸化ナトリウム、炭酸塩、蟻酸(塩)、アルカノールアミン等の本発明以外の早強剤又は促進剤;発泡剤;樹脂酸(塩)、脂肪酸エステル、油脂、シリコーン、パラフィン、アスファルト、ワックス等の防水剤;高炉スラグ;流動化剤;ジメチルポリシロキサン系、ポリアルキレングリコール脂肪酸エステル系、鉱油系、油脂系、オキシアルキレン系、アルコール系、アミド系等の消泡剤;防泡剤;フライアッシュ;メラミンスルホン酸ホルマリン縮合物系、アミノスルホン酸系等の高性能減水剤;シリカヒューム;亜硝酸塩、燐酸塩、酸化亜鉛等の防錆剤;メチルセルロース、ヒドロキシエチルセルロース等のセルロース系、β-1,3-グルカン、キサンタンガム等の天然物系、ポリアクリル酸アミド、ポリエチレングリコール、オレイルアルコールのエチレンオキシド付加物もしくはこれとビニルシクロヘキセンジエポキシドとの反応物等の合成系等の水溶性高分子;(メタ)アクリル酸アルキル等の高分子エマルジョンが挙げられる。これらの成分は、水硬性組成物用分散剤に配合されていてもよい。
 また、本発明の水硬性組成物用添加剤組成物は、生コンクリート、コンクリート振動製品分野の外、セルフレベリング用、耐火物用、プラスター用、石膏スラリー用、軽量又は重量コンクリート用、AE用、補修用、プレパックド用、トレーミー用、地盤改良用、グラウト用、寒中用、空中打設コンクリートおよび、吹き付けモルタル等の種々のコンクリートの何れの分野においても有用である。
<水硬性組成物>
 本発明は、上記本発明の水硬性組成物用早強剤と、水硬性粉体と、骨材と、水とを含有する水硬性組成物を提供する。
 本発明の水硬性組成物は、水及び水硬性粉体(セメント)を含有する、モルタル、コンクリート等である。骨材として細骨材や粗骨材等が挙げられ、細骨材は山砂、陸砂、川砂、砕砂が好ましく、粗骨材は山砂利、陸砂利、川砂利、砕石が好ましい。用途によっては、軽量骨材を使用してもよい。なお、骨材の用語は、「コンクリート総覧」(1998年6月10日、技術書院発行)による。骨材は、シリカ質鉱物(石英、クリストバライト、トリジマイト、オパール等)、ガラス(火山ガラス等)及びシリケート鉱物(雲母、粘土鉱物等)から選ばれる鉱物を含まない、もしくは含有量が少ないものが好ましい。具体的には、前記鉱物の含有量が5重量%以下、更には3重量%以下であるものが好ましい。
 該水硬性組成物は、水/水硬性粉体比〔スラリー中の水と水硬性粉体の重量百分率(%)、通常W/Pと略記されるが、粉体がセメントの場合、W/Cと略記される。〕が65重量%以下、更に60%以下、更に55%以下、より更に50%以下であることが好ましい。また、20%以上、更に30%以上が好ましい。従って、W/Pの範囲として、20~65%、更に20~60%、更に30~55%、より更に30~50%が好ましい。
 また、本発明の水硬性組成物は、必要に応じて、分散剤を含有することができる。よって、本発明の水硬性組成物は、本発明の水硬性組成物用添加剤組成物と、水硬性粉体と、骨材と、水とを含有する水硬性組成物であってよい。
 本発明の水硬性組成物は、水硬性粉体に、化合物(1)と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、化合物(1)/無機塩Aのモル比が5/95~45/55となるように添加する工程を経て製造することができる。その場合、化合物(1)と無機塩Aの合計量が、水硬性組成物の短期早強性向上の観点から水硬性粉体100重量部に対し0.01~10重量部であることが好ましく、0.2~5重量部がより好ましく、0.2~3重量部が更に好ましい。
 また、本発明では、上記本発明の水硬性組成物用早強剤と水硬性粉体と水と、更に、必要に応じて骨材及び/又は分散剤とを含有する水硬性組成物を硬化させてコンクリート製品等の水硬性組成物の硬化体を製造することができる。なかでも、早期強度の発現によって脱型時間を短くできる点で、水硬性組成物を型枠に充填し硬化させるコンクリート製品の製造に好適である。具体的な製造方法としては、水硬性粉体に、骨材と、水と、化合物(1)と、無機塩Aとを、化合物(1)/無機塩Aのモル比が5/95~45/55、好ましくは10/90~40/60、より好ましくは20/80~40/60、更に好ましくは20/80~30/70となるように添加し、水硬性組成物を調製する工程と、得られた水硬性組成物を型枠に充填し硬化させる工程と、硬化した水硬性組成物を型枠から脱型する工程とを有する水硬性組成物の硬化体の製造方法が挙げられる。本発明の早強剤を含有する水硬性組成物は、硬化を促進されるため、水硬性組成物の調製から脱型するまでの時間を短縮することが可能である。本発明では、水硬性組成物の調製を開始してから脱型するまでの時間、すなわち、水硬性粉体に水を接触させてから脱型するまでの時間は、脱型に必要な強度を得る観点と製造サイクルを向上する観点から4~24時間が好ましく、本発明の早強剤による短期早強性の観点から4~10時間がより好ましく、6~10時間が更に好ましい。
 また、本発明の早強剤を含有する水硬性組成物は、硬化を促進するために蒸気加熱等のエネルギーを必要とせず、蒸気養生をしないでコンクリート製品等の水硬性組成物の硬化体を製造することも可能となる。蒸気養生をしないでコンクリート製品を製造する場合の水硬性組成物の調製で水硬性粉体に水を接触させてから脱型するまでの時間は、脱型に必要な強度を得る観点と製造サイクルを向上する観点から4~24時間が好ましく、4~16時間がより好ましく、4~10時間がより好ましく、6~10時間が更に好ましく、7~9時間がより更に好ましい。脱型時のコンクリート製品の強度(JIS A 1108)は、脱型時の破損を生じない観点から、7N/mm2以上が好ましく、8N/mm2以上がより好ましい。
 本発明の水硬性組成物の硬化体の製造方法は、コンクリート製品等の水硬性組成物の硬化体の生産性を向上させることから環境に対しても優れたものである。型枠を用いる水硬性組成物の硬化体としては、土木用製品では、護岸用の各種ブロック製品、ボックスカルバート製品、トンネル工事等に使用されるセグメント製品、橋脚の桁製品等が挙げられ、建築用製品では、カーテンウォール製品、柱、梁、床板に使用される建築部材製品等が挙げられる。
 本発明の形態2は上記のとおりである。但し、以下を詳述する。 
<水硬性組成物用添加剤組成物>
 本発明の水硬性組成物用添加剤組成物は、グリセリンと、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aと、ナフタレン系分散剤とを含有し、グリセリンと無機塩Aのモル比がグリセリン/無機塩Aで5/95~45/55、水硬性組成物の短期早強性向上の観点から、好ましくは10/90~45/55、より好ましくは20/80~45/55、更に好ましくは25/75~40/60である。無機塩Aを2種以上用いる場合は、各無機塩のモル数の合計を無機塩Aのモル数としてモル比を計算する。グリセリンと無機塩Aとをこの範囲のモル比で用いることで、例えば、蒸気養生工程を含まないで短期強度、例えばコンクリートを調製後8時間程度における水硬性組成物硬化体の強度を向上させることができる。
 無機塩Aは、水硬性組成物の短期早強性を向上の観点からアルカリ金属硫酸塩が好ましい。無機塩Aは水和物の形態をとっていても良い。水和物の形態をとっている無機塩Aを用いる場合の重量等は無水物に換算した値を用いる。塩を構成するアルカリ金属は、ナトリウム、カリウム、リチウムが挙げられ、水硬性組成物の短期早強性向上の観点からナトリウム及びリチウムが好ましい。無機塩Aとしては、硫酸ナトリウム(Na2SO4)、硫酸カリウム(K2SO4)、硫酸リチウム(Li2SO4)、チオ硫酸ナトリウム(Na223)、チオ硫酸カリウム(K223)、チオ硫酸リチウム(Li223)が挙げられる。これらの中でも、硫酸塩が好ましく、硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上の無機塩がより好ましく、硫酸ナトリウムが更にこのましい。
 本発明の効果発現の機構は不明であるが、グリセリンと無機塩Aが相乗的に作用することで早期に強度が発現すると考えられる。また、グリセリンと無機塩Aが強度を発現する際に、これらがナフタレン系分散剤による流動性付与効果を阻害しないと考えられる。具体的には、水硬性組成物の初期硬化では、該組成物中に含まれる石膏成分の溶解促進によるアルミネート(C3A)のエトリンガイトの生成と、エーライト(C3S)由来の水酸化カルシウムの生成及び析出の2種の反応が生じており、主として、グリセリンがエトリンガイトの生成を、また、無機塩Aが水酸化カルシウムの生成及び析出に作用していると考えられる。これを反映して、初期強度が高い硬化体を与える、エトリンガイトの生成速度と水酸化カルシウムの生成速度に最適な比率、グリセリン/無機塩Aのモル比によって支配されていることが観測された。ナフタレン系分散剤は、スルホン酸基を有するので水硬性粉体表面に吸着し、ナフタレン基の剛直な構造の立体的な作用で水硬性粉体粒子間を反発させて、水硬性組成物の流動性を付与すると考えられる。水硬性粉体上でエトリンガイトの生成、水酸化カルシウムの生成及び析出が促進されても、スルホン酸基は吸着力が強いのでエトリンガイトや水酸化カルシウムにも吸着でき、また、ナフタレン基の剛直な構造は水との親和性が低く水硬性粉体粒子への吸着速度が高いため、流動性の付与の効果が低下しないと考えられる。
 ナフタレン系分散剤としては、ナフタレンスルホン酸骨格を有する高分子化合物が挙げられ、例えばナフタレンスルホン酸ホルムアルデヒド縮合物が挙げられる。ナフタレン系分散剤の重量平均分子量は200000以下が好ましく、100000以下がより好ましく、80000以下が更に好ましく、50000以下がより好ましい。また、重量平均分子量は1000以上が好ましく、3000以上がより好ましく、4000以上がさらに好ましく、5000以上がより好ましい。したがって、1000~200000が好ましく、3000~100000がより好ましく、4000~80000が更に好ましく、5000~50000がより更に好ましい。ナフタレン分散剤は、5重量%水溶液の20℃のpHが3~12であるものを用ることができる。ナフタレン系分散剤は液状及び粉末状のものを用いることができる。ナフタレン系分散剤として市販品を用いることができ、例えば、花王(株)製マイテイ150が挙げられる。
 ナフタレンスルホン酸ホルムアルデヒド縮合物の製造方法は、例えば、ナフタレンスルホン酸とホルムアルデヒドとを縮合反応により縮合物を得る方法が挙げられる。前記縮合物の中和を行っても良い。また、中和で副生する水不溶解物を除去しても良い。例えば、ナフタレンスルホン酸を得るために、ナフタレン1モルに対して、硫酸1.2~1.4モルを用い、150~165℃で2~5時間反応させてスルホン化物を得る。次いで、該スルホン化物1モルに対して、ホルムアルデヒドとして0.95~0.99モルとなるようにホルマリンを85~95℃で、3~6時間かけて滴下し、滴下後95~105℃で縮合反応を行う。要すれば縮合物に、水と中和剤を加え、80~95℃で中和工程を行う。中和剤は、ナフタレンスルホン酸と未反応硫酸に対してそれぞれ1.0~1.1モル倍添加することが好ましい。また中和による生じる水不溶解物を除去、好ましくは濾過により分離しても良い。これらの工程によって、ナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩の水溶液が得られる。この水溶液をナフタレン系分散剤としてそのまま使用することができる。更に必要に応じて該水溶液を乾燥、粉末化して粉末状のナフタレンスルホン酸ホルムアルデヒド縮合物水溶性塩を得ることができ、これを粉末状のナフタレン系分散剤として用いてもよい。乾燥、粉末化は、噴霧乾燥、ドラム乾燥、凍結乾燥等により行うことができる。上記方法により、ナフタレンスルホン酸ホルムアルデヒド縮合物を得る事ができるが、その他の条件/方法にて目的物を得る事ができる。
 また、本発明の水硬性組成物用添加剤組成物においては、短期早強性の観点から、グリセリン及び無機塩Aの含有量の合計とナフタレン系分散剤との重量比が、ナフタレン系分散剤/〔グリセリン及び無機塩Aの含有量の合計〕=5/95~96/4であることが好ましく、より好ましくは5/95~65/35、更により好ましくは5/95~50/50、更により好ましくは10/90~40/60、更により好ましくは20/80~40/60である。
実施例
 次の試験例は本発明の実施または比較について述べる。 試験例は本発明の例示または比較について述べるものであり、 本発明を限定するためではない。
 試験例1-1より6-7は本発明の形態1に関し、試験例21-1より24-5は本発明の形態2に関する。
<モルタルの調製及び評価>
(1)モルタルの調製
 表1に示す配合条件で、モルタルミキサー((株)ダルトン製 万能混合撹拌機 型式:5DM-03-γ)を用いて、セメント(C)、細骨材(S)を投入し空練りを10秒行い、目標スランプ21±1cm、目標空気連行量2±1%となるよう、水硬性組成物用添加剤組成物(固形分25重量%の水溶液として用いた)を含む練り水(W)を加え、低速回転にて60秒、更に高速回転にて120秒間本混練りした。なお、早強剤と分散剤のセメント100重量部に対する添加量(重量部)は表2~9の通りであり、表2~9に示す添加量となるように練り水に添加して用いた。
Figure JPOXMLDOC01-appb-T000014
・セメント(C):普通ポルトランドセメント(太平洋セメント(株)の普通ポルトランドセメント/住友大阪セメント(株)の普通ポルトランドセメント=1/1、重量比)、密度3.16g/cm
・細骨材(S):城陽産、山砂、FM=2.67、密度2.56g/cm3
・水(W):水道水
(2)モルタル評価
 モルタルについて、以下に示す試験法にしたがって、脱型強度、スランプフローをそれぞれ評価した。評価結果を表2~9に示した。
(2-1)供試体強度の評価
 JIS A 1132に基づき、円柱型プラモールド(底面の直径:5cm、高さ10cm)の型枠に、二層詰め方式によりモルタルを充填し、20℃の室内にて気中(20℃)養生を行い硬化させ供試体を作製した。モルタル調製から8時間後又は24時間後に硬化した供試体を型枠から脱型し、JIS A 1108に基づいて供試体の圧縮強度を測定した。参考例2~4は表3の条件で蒸気養生を行った。蒸気養生にはMARUI社製三連式恒温湿潤養生槽試験機を用いた。
 圧縮強度は、基準品の強度に対する相対値を強度比(%)として表2~9に併記した。基準と示した比較品は、早強剤を添加せず、分散剤のみを添加した系であり、下記フロー試験により測定されるフロー値が190~250mmの範囲となるように分散剤の添加量を調整した。このフロー値の範囲であれば、分散性の違いによる初期強度への影響が小さいと考えられる。比較品以外で早強剤を添加するものでは、早強剤によるモルタルフローが低下すること考慮して分散剤の添加量を増加させた。ただし、分散剤の増加は初期強度を低下させる傾向があるので、基準の添加量に0.1重量部(対セメント100重量部)増加させることを限度とした。各表内(試験例番号の枝番号の前の番号が共通するもの)では同時期の評価結果であるが、評価時期の違いにより同じ早強剤及び分散剤を用いても強度に若干の差があったので、各表間で対比できるように表3~8では強度比で供試体強度を示した。表4と5、表6と7は同時期の評価である。
 表3~8についての強度比の求め方を具体的に説明すると、同時期の評価で分散剤(1)のみを用いた場合を100として同時期の評価結果内で相対強度を求め、次いで基準を表2の試験例1-7に定め、これと同じ条件でグリセリン、無機塩A、分散剤(1)を用いた表3~5中の試験例2-8、3-17、4-7、5-3の強度の測定値について、それぞれの相対強度が同じ値(354)となるような係数をそれぞれ求め、この係数を各試験例の強度の測定値に乗じたものをそれぞれの補正後の測定値とし、それらを用いて各基準品の強度の測定値に対する相対値を算出した。従って、各表中、試験例1-7と試験例2-8、3-17、4-7、5-3は、相対強度の値が同じとなっている。
(2-2)フロー試験
 前記の方法にて調製したモルタルを、JIS R 5201に基づき、直ちにフローコーンに2層詰めし、フローコーンを正しく上の方に取り去り、最大と認める方向と、これに直角な方向の長さを測定した。尚、JIS R 5201記載の落下運動は行っていない。
Figure JPOXMLDOC01-appb-T000015
*試験例1-5~1-9が本発明品であり、それ以外は比較品である。
 表2は、早強剤としてグリセリンと硫酸ナトリウムを用い、添加量を一定としてグリセリンと硫酸ナトリウムのモル比を変えた場合の評価結果である。本発明の早強剤は、グリセリン又は硫酸ナトリウムを単独で使用した時よりも8時間後の強度比が大きく、グリセリンと硫酸ナトリウムの特定モル比での併用による効果が顕著であることがわかる。
Figure JPOXMLDOC01-appb-T000016
*試験例2-7~2-9が本発明品であり、それ以外は比較品である。
 表3は、本発明の早強剤と、一般に早強剤として使用されている塩化ナトリウム及びチオシアン酸カルシウムとを比較した評価結果である。本発明の早強剤は、添加量1.00重量部以上で8時間後の強度比が比較品よりも大きいことがわかる。また、本発明の早強剤を2.00重量部用いると20℃8時間の養生で、参考例で示した早強剤を使用せずに蒸気養生50℃3時間に匹敵する以上の強度が得られることがわかる。
Figure JPOXMLDOC01-appb-T000017
*試験例3-13及び3-17が本発明品であり、それ以外は比較品である。
Figure JPOXMLDOC01-appb-T000018
*試験例3-29及び3-33が本発明品であり、それ以外は比較品である。
 表4及び5は、グリセリンと種々の無機塩とを組み合わせた場合の評価結果である。本発明の早強剤は、8時間後の強度比がグリセリンと本発明に用いられる無機塩A以外の無機塩との組み合わせよりも大きく、本発明の組み合わせのみが短期早強性の向上効果が高いことがわかる。
Figure JPOXMLDOC01-appb-T000019
*試験例4-5及び4-7が本発明品であり、それ以外は比較品である。
Figure JPOXMLDOC01-appb-T000020
 表中のものは全て比較品である。
 表6及び7は、種々のアルコールと硫酸ナトリウムとを組み合わせた場合の評価結果である。本発明の早強剤は、8時間後の強度比がグリセリン以外のアルコールと硫酸ナトリウムの組み合わせよりも大きく、本発明の組み合わせのみが短期早強性の向上効果が高いことがわかる。
Figure JPOXMLDOC01-appb-T000021
*試験例5-2~5-4が本発明品であり、それ以外は比較品である。
 表8は、本発明の早強剤と、特開平6-199555に開示されている混和剤とを比較した場合の評価結果である。本発明の早強剤の8時間後の強度比が特開平6-199555の混和剤(試験例5-12~5-14)よりも大きく、本発明の早強剤が短期早強性の向上効果が高いことがわかる。
Figure JPOXMLDOC01-appb-T000022
*試験例6-4、6-6が本発明品であり、それ以外は比較品である。
 表9は、種々の化合物と硫酸ナトリウムとを組み合わせた場合の評価結果である。本発明の早強剤は、8時間後の強度比が本発明の化合物(1)以外の化合物と硫酸ナトリウムの組み合わせよりも大きく、本発明の組み合わせのみが短期早強性の向上効果が高いことがわかる。また、本発明の早強剤は、24時間後の強度比も大きくなることがわかる。
 表2~9中、添加量は、セメント100重量部に対する各成分の有効分(固形分)に基づくモルタルへの添加量(重量部)である。また、用いた成分は以下のものである。
・グリセリン(EO1):グリセリン1モルにエチレンオキサイドを平均1モル付加した付加物
・分散剤(1):マイテイ21HP(花王(株)製、一般式(D1-1)で示される単量体と一般式(D1-2)で示される単量体とを構成単位として含むポリカルボン酸系分散剤)
 また、各化合物の分子量は以下のものを用いた。
・Na2SO4:142.04
・Li2SO4:109.95
・K2SO4:174.27
・Na223:158.11
・Na2CO3:105.989
・NaNO3:84.99
・(NH42SO4:132.14
・CaSO4:136.14
・グリセリン:92
・ジエチレングリコール:106.12
・エチレングリコール:62.07
・トリエタノールアミン:149.19
・カテコール:142.04
・グリセリン(EO1):120
・フルフリルアルコール:98.1
・グリセリン酸:106.077
・グリセロリン酸:172.074
・1,2-プロパンジオール:76.09
・3-アミノ-1,2-プロパンジオール:91.11
・3-メトキシ-1,2-プロパンジオール:106.12
 以下に、試験例21-1より24-5を本発明の形態2に関して詳述する。
(1)モルタルの調製
 モルタルの調製を上記と同様に行った、但し、なお、アルコール(グリセリン等)、無機塩、分散剤のセメント100重量部に対する添加量(重量部)は表10~13の通りであり、表10~13に示す添加量となるようアルコール(グリセリン等)、無機塩、分散剤及び水を混合し、アルコール、無機塩及び分散剤の合計で25重量%の水溶液の水硬性組成物用添加剤組成物を調製した。
(2)モルタル評価
 モルタルについて、以下に示す試験法にしたがって、脱型強度、スランプフローをそれぞれ評価した。評価結果を表10~13に示した。
(2-1)硬化体の強度の評価
 JIS A 1132に基づき、円柱型プラモールド(底面の直径:5cm、高さ10cm)の型枠に、二層詰め方式によりモルタルを充填し、20℃の室内にて大気中で養生を行い硬化体を作製した。モルタル調製から8時間後又は24時間後に硬化体を型枠から脱型し、JIS A 1108に基づいて硬化体の圧縮強度を測定した。
 圧縮強度は、基準品を100とした相対値も表10~13に併記した。基準品はグリセリン及び無機塩Aを添加せず、分散剤のみを添加した系である。基準品で下記フロー試験により測定されるフロー値が、目標フロー値の範囲に入るように分散剤の添加量を決定した。なお、コンクリート粘性が低くできる分散剤(21)~(24)については、目標フロー値を210±30mmとし、コンクリート粘性が高くなる分散剤(25)及び(26)については、目標フロー値を260±20mmとした。
 表10~13中、試験例番号の枝番号の前の番号が共通するものは、同時期の評価結果を示すが、評価時期の違いにより、同じ条件でアルコール(グリセリン又はその他のアルコール)、無機塩A及び分散剤を用いても強度の測定値に若干の差が生じた。これを考慮せずに単に各表中の基準品に対する強度の相対値を示すと、他の表中の相対値と対比した場合に優劣を判断しにくいため、各表間で簡単に対比するには、強度の測定値を補正して算出した相対強度を示すのが適当である。そこで、同時期の評価で分散剤(21)のみを用いた場合を100として同時期の評価結果内で各相対強度を求め、次いで基準を表10の試験例21-7に定め、これと同じ条件でグリセリン、無機塩A、分散剤(21)を用いた表11~13中の試験例22-5、23-3、24-2の強度の測定値について、それぞれの相対強度が同じ値(381)となるような係数をそれぞれ求め、この係数を前記の各相対強度に乗じたものをそれぞれの補正後の相対強度とした。従って、各表中、試験例21-7と試験例22-5、23-3、24-2は、相対強度の値が同じとなっている。
(2-2)流動性評価
 前記の方法にて調製したモルタルを、落下運動は行っていない点を除いてJIS R 5201に基づきフロー試験を行った。基準品の測定値に対する相対値(相対モルタルフロー)も表10~13に併記した。分散剤の構造の違いにより流動発現性が異なるので、相対モルタルフローは各分散剤についてそれぞれの分散剤のみを用いた場合を基準とした。
Figure JPOXMLDOC01-appb-T000023
*試験例21-5~21-9が本発明品であり、それ以外は比較品である。
 表10は、グリセリンと硫酸ナトリウムとナフタレン系分散剤とを用い、添加量を一定としてグリセリンと硫酸ナトリウムのモル比を変えた場合の評価結果である。本発明品は、モルタルフローを維持でき、且つグリセリン又は硫酸ナトリウムを単独で使用した時よりも8時間後の強度比が大きく、ナフタレン系分散剤に対してグリセリンと硫酸ナトリウムを特定モル比で併用することによる効果が顕著であることがわかる。
Figure JPOXMLDOC01-appb-T000024
*試験例22-5が本発明品であり、それ以外は比較品である。
 表11は、グリセリンと無機塩Aに、種々の分散剤を用いた場合の評価結果である。ナフタレン系分散剤である分散剤(21)は、グリセリンと無機塩Aとを特定のモル比で併用した系に用いる(試験例22-4、22-5)ことで、モルタルフローが低下することなく、且つ8時間後の強度比が大きく、短期早強性の向上効果が高いことがわかる。
Figure JPOXMLDOC01-appb-T000025
*試験例23-3、23-5、23-7が本発明品であり、それ以外は比較品である。
 表12は、グリセリンと種々の無機塩とを組み合わせた場合の評価結果である。
Figure JPOXMLDOC01-appb-T000026
*試験例24-2が本発明品であり、それ以外は比較品である。
 表13は、種々のアルコールと硫酸ナトリウムとを組み合わせた場合の評価結果である。
 表10~13中、添加量は、セメント100重量部に対する各成分の有効分(固形分)に基づくモルタルへの添加量(重量部)である。また、用いた成分は以下のものである。
・分散剤(21):ナフタレンスルホン酸ホルマリン縮合物(花王(株) マイテイ150)
・分散剤(22):メトキシポリエチレングリコールモノメタクリレート(23モル)/2-ヒドロキシエチルメタクリレートリン酸エステル(モノ体及びジ体の混合物)〔45/55モル比〕共重合体(重量平均分子量35000)、特開2006-52381の実施例に準じて製造した。
・分散剤(23):メトキシポリエチレングリコールモノメタクリレート(23モル)/メタクリル酸共重合体((株)日本触媒 アクアロック FC900)
・分散剤(24):ポリオキシエチレンアリルエーテル(30モル)/マレイン酸共重合体(日油(株) マリアリム-AKM-60F)
・分散剤(25):ポリオキシエチレンアルキレンエーテル/アクリル酸共重合体((株)日本触媒 アクアロック HW-60)
・分散剤(26):メトキシポリエチレングリコールモノメタクリレート(120モル)/メタクリル酸共重合体(花王(株) マイテイ21ES)

Claims (16)

  1.  下記一般式(1)で表される化合物〔以下、化合物(1)という〕と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとからなる水硬性組成物用早強剤であって、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55である水硬性組成物用早強剤。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
  2.  無機塩Aが、硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上である請求項1記載の水硬性組成物用早強剤。
  3.  化合物(1)が、一般式(1)中のXがヒドロキシ基の化合物である、請求項1又は2記載の水硬性組成物用早強剤。
  4.  請求項1ないし3のいずれかに記載の水硬性組成物用早強剤と分散剤とを含有する水硬性組成物用添加剤組成物。
  5.  分散剤がナフタレン系分散剤である請求項4記載の水硬性組成物用添加剤組成物。
  6.  請求項1ないし3のいずれかに記載の水硬性組成物用早強剤と、水硬性粉体と、骨材と、水とを含有する水硬性組成物。
  7.  請求項4又は5記載の水硬性組成物用添加剤組成物と、水硬性粉体と、骨材と、水とを含有する水硬性組成物。
  8.  化合物(1)と無機塩Aの合計量が、水硬性粉体100重量部に対し0.01~10重量部である請求項6又は7記載の水硬性組成物。
  9.  水硬性粉体に、下記一般式(1)で表される化合物と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、下記一般式(1)で表される化合物/無機塩Aのモル比が5/95~45/55となるように添加する工程を有する水硬性組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
  10.  無機塩Aが、硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上である請求項9記載の水硬性組成物の製造方法。
  11.  水硬性粉体に、骨材と、水と、化合物(1)と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、化合物(1)/無機塩Aのモル比が5/95~45/55となるように添加し、水硬性組成物を調製する工程と、得られた水硬性組成物を型枠に充填し硬化させる工程と、硬化した水硬性組成物を型枠から脱型する工程とを有し、水硬性組成物の調製を開始してから脱型するまでの時間が4~10時間である水硬性組成物の硬化体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
  12.  水硬性粉体に、骨材と、水と、グリセリンと、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aと、ナフタレン系分散剤とをグリセリンと無機塩Aとをグリセリン/無機塩Aのモル比が5/95~45/55となるように添加し、水硬性組成物を調製する工程と、得られた水硬性組成物を型枠に充填し硬化させる工程と、硬化した水硬性組成物を型枠から脱型して水硬性組成物の硬化体を得る工程とを有し、水硬性組成物の調製を開始してから脱型するまでの時間が4~10時間である水硬性組成物の硬化体の製造方法。
  13.  水硬性組成物を型枠に充填し硬化させる工程で、蒸気養生をしない請求項11又は12記載の水硬性組成物の硬化体の製造方法。
  14.  無機塩Aが、硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上である請求項11ないし13いずれかに記載の水硬性組成物の硬化体の製造方法。
  15.  下記一般式(1)で表される化合物〔以下、化合物(1)という〕と、アルカリ金属硫酸塩及びアルカリ金属チオ硫酸塩から選ばれる1種以上の無機塩Aとを、化合物(1)と無機塩Aのモル比が化合物(1)/無機塩Aで5/95~45/55となる量を水硬性組成物に添加する早強剤としての使用。
    Figure JPOXMLDOC01-appb-C000004
    〔式中、Xは、ヒドロキシ基又はアミノ基である。〕
  16.  無機塩Aが、硫酸ナトリウム及び硫酸リチウムから選ばれる1種以上である請求項15に記載の早強剤としての使用。
PCT/JP2010/073491 2009-12-28 2010-12-27 水硬性組成物用早強剤 WO2011081115A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080059715.4A CN102695686B (zh) 2009-12-28 2010-12-27 水硬性组合物用早强剂
ES10840971T ES2762205T3 (es) 2009-12-28 2010-12-27 Acelerador de endurecimiento para una composición hidráulica
EP10840971.5A EP2520553B1 (en) 2009-12-28 2010-12-27 Hardening accelerator for hydraulic composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-296731 2009-12-28
JP2009296731 2009-12-28
JP2010027267A JP5554080B2 (ja) 2010-02-10 2010-02-10 水硬性組成物用添加剤組成物
JP2010-027267 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011081115A1 true WO2011081115A1 (ja) 2011-07-07

Family

ID=44226520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073491 WO2011081115A1 (ja) 2009-12-28 2010-12-27 水硬性組成物用早強剤

Country Status (5)

Country Link
EP (1) EP2520553B1 (ja)
CN (1) CN102695686B (ja)
ES (1) ES2762205T3 (ja)
MY (1) MY155733A (ja)
WO (1) WO2011081115A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133870A1 (en) 2011-03-28 2012-10-04 Kao Corporation Method for producing cured article from hydraulic composition
JP2014122139A (ja) * 2012-12-21 2014-07-03 Kao Corp 水硬性組成物
WO2014148549A1 (ja) * 2013-03-22 2014-09-25 花王株式会社 水硬性組成物
JPWO2014112487A1 (ja) * 2013-01-15 2017-01-19 デンカ株式会社 高強度セメント混和材およびコンクリート製品の製造方法
JP2018171744A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 セメント混練物の打設方法
JP7312385B1 (ja) 2022-03-31 2023-07-21 住友大阪セメント株式会社 コンクリート組成物の製造方法、及び、コンクリートの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118052A1 (de) * 2013-01-30 2014-08-07 Sika Technology Ag Beschleuniger für mineralische bindemittel
US9802863B1 (en) 2016-03-09 2017-10-31 Flashfill Services, Llc Accelerating set times of flowable fill compositions with dry calcium chloride, and methods of utilizing and producing the same
US10322971B1 (en) 2016-04-21 2019-06-18 MK1 Construction Services Fast-setting flowable fill compositions, and methods of utilizing and producing the same
US10851016B1 (en) 2017-02-28 2020-12-01 J&P Invesco Llc Trona accelerated compositions, and methods of utilizing and producing the same
WO2018200563A1 (en) * 2017-04-25 2018-11-01 GCP Applied Technologies, Inc. Agents for enhancing cement strength
US11434169B1 (en) 2018-04-25 2022-09-06 J&P Invesco Llc High-strength flowable fill compositions
US10919807B1 (en) 2018-04-25 2021-02-16 J&P Invesco Llc High-strength flowable fill compositions
CN115215575B (zh) * 2021-09-02 2023-10-31 宁夏永能新材料有限公司 一种水泥促凝剂及其制备方法
WO2024036369A1 (en) * 2022-08-16 2024-02-22 Boral Resources (Wa) Limited Cementitious compositions and related methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199555A (ja) 1992-01-28 1994-07-19 Wr Grace & Co Connecticut グリコールを組み入れる水硬セメント硬化促進性混和剤
JP2000233959A (ja) * 1999-02-10 2000-08-29 Taiheiyo Cement Corp クリンカ粉砕物、およびこれを含む早強性セメント組成物、コンクリート並びにコンクリート製品
JP2006052381A (ja) 2004-07-15 2006-02-23 Kao Corp リン酸エステル系重合体
JP2006282414A (ja) * 2005-03-31 2006-10-19 Nof Corp セメント用強度向上剤、ポリカルボン酸系共重合体水溶液およびセメント組成物
JP2008519752A (ja) 2004-11-12 2008-06-12 ユニヴァーシタ デグリ ストゥディ ディ ミラノ 改善された圧縮強度セメント
WO2009119897A1 (ja) 2008-03-26 2009-10-01 花王株式会社 水硬性組成物用早強剤
WO2009119893A1 (ja) 2008-03-26 2009-10-01 花王株式会社 水硬性組成物用添加剤組成物
JP2010089972A (ja) 2008-10-03 2010-04-22 Kao Corp 水硬性組成物の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666963B2 (en) * 2005-07-21 2010-02-23 Akzo Nobel N.V. Hybrid copolymers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199555A (ja) 1992-01-28 1994-07-19 Wr Grace & Co Connecticut グリコールを組み入れる水硬セメント硬化促進性混和剤
JP2000233959A (ja) * 1999-02-10 2000-08-29 Taiheiyo Cement Corp クリンカ粉砕物、およびこれを含む早強性セメント組成物、コンクリート並びにコンクリート製品
JP2006052381A (ja) 2004-07-15 2006-02-23 Kao Corp リン酸エステル系重合体
JP2008519752A (ja) 2004-11-12 2008-06-12 ユニヴァーシタ デグリ ストゥディ ディ ミラノ 改善された圧縮強度セメント
JP2006282414A (ja) * 2005-03-31 2006-10-19 Nof Corp セメント用強度向上剤、ポリカルボン酸系共重合体水溶液およびセメント組成物
WO2009119897A1 (ja) 2008-03-26 2009-10-01 花王株式会社 水硬性組成物用早強剤
WO2009119893A1 (ja) 2008-03-26 2009-10-01 花王株式会社 水硬性組成物用添加剤組成物
JP2009256201A (ja) 2008-03-26 2009-11-05 Kao Corp 水硬性組成物用早強剤
JP2009256202A (ja) 2008-03-26 2009-11-05 Kao Corp 水硬性組成物用添加剤組成物
JP2010089972A (ja) 2008-10-03 2010-04-22 Kao Corp 水硬性組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"THE CONCRETE", 10 June 1998, GIJUTSU SHOIN CO., LTD.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133870A1 (en) 2011-03-28 2012-10-04 Kao Corporation Method for producing cured article from hydraulic composition
US9011596B2 (en) 2011-03-28 2015-04-21 Kao Corporation Method for producing cured article from hydraulic composition
JP2014122139A (ja) * 2012-12-21 2014-07-03 Kao Corp 水硬性組成物
JPWO2014112487A1 (ja) * 2013-01-15 2017-01-19 デンカ株式会社 高強度セメント混和材およびコンクリート製品の製造方法
WO2014148549A1 (ja) * 2013-03-22 2014-09-25 花王株式会社 水硬性組成物
JP2014208574A (ja) * 2013-03-22 2014-11-06 花王株式会社 水硬性組成物
JP2018171744A (ja) * 2017-03-31 2018-11-08 住友大阪セメント株式会社 セメント混練物の打設方法
JP7312385B1 (ja) 2022-03-31 2023-07-21 住友大阪セメント株式会社 コンクリート組成物の製造方法、及び、コンクリートの製造方法

Also Published As

Publication number Publication date
CN102695686B (zh) 2015-04-01
EP2520553B1 (en) 2019-11-06
CN102695686A (zh) 2012-09-26
EP2520553A4 (en) 2017-04-26
ES2762205T3 (es) 2020-05-22
EP2520553A1 (en) 2012-11-07
MY155733A (en) 2015-11-17

Similar Documents

Publication Publication Date Title
WO2011081115A1 (ja) 水硬性組成物用早強剤
US10273188B2 (en) Powder composition for rapid suspension
JP2014221715A (ja) 長い加工時間(プロセスタイム)と高い初期強度をもつ水硬性結合材のための混和剤
JP5537407B2 (ja) 水硬性組成物用早強剤
EP2687497B1 (en) Dispersing agent for hydraulic compositions
JP5744702B2 (ja) 水硬性組成物用添加剤
JP6054736B2 (ja) 水硬性組成物
JP5759766B2 (ja) 水硬性組成物の硬化体の製造方法
JP5965256B2 (ja) 水硬性組成物
JP5342187B2 (ja) コンクリート用混和剤
JP5554080B2 (ja) 水硬性組成物用添加剤組成物
JP6362531B2 (ja) 水硬性組成物
JP6564307B2 (ja) 水硬性組成物用早強剤
JP6564293B2 (ja) 水硬性組成物用早強剤
WO2019116695A1 (ja) 水硬性組成物用添加剤、および水硬性組成物
JP6300365B2 (ja) 水中不分離性速硬コンクリートおよびその製造方法
WO2014148549A1 (ja) 水硬性組成物
JP7273017B2 (ja) 水硬性組成物用粉末増粘剤組成物
JP5311910B2 (ja) コンクリート製品の製造方法
JP7020668B2 (ja) 水硬性組成物用添加剤、および水硬性組成物の調製方法
JPS6235988B2 (ja)
JP6401986B2 (ja) 水硬性組成物
JP2024042172A (ja) 繊維補強モルタル組成物及びそのモルタル
JP2018171833A (ja) 高耐久速硬性モルタルまたはコンクリートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010840971

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE