WO2011074261A1 - 管状品の検査装置およびその検査方法 - Google Patents

管状品の検査装置およびその検査方法 Download PDF

Info

Publication number
WO2011074261A1
WO2011074261A1 PCT/JP2010/007299 JP2010007299W WO2011074261A1 WO 2011074261 A1 WO2011074261 A1 WO 2011074261A1 JP 2010007299 W JP2010007299 W JP 2010007299W WO 2011074261 A1 WO2011074261 A1 WO 2011074261A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
camera
tubular product
tubular
tubular article
Prior art date
Application number
PCT/JP2010/007299
Other languages
English (en)
French (fr)
Inventor
康平 佐藤
博継 戸江
貴史 皐月
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2010549741A priority Critical patent/JP4816817B2/ja
Priority to EP10837292.1A priority patent/EP2515072A4/en
Priority to CN201080057352.0A priority patent/CN102713506B/zh
Priority to CA2779873A priority patent/CA2779873C/en
Publication of WO2011074261A1 publication Critical patent/WO2011074261A1/ja
Priority to US13/493,133 priority patent/US9116134B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Definitions

  • the present invention relates to an apparatus for inspecting a tubular article, and in particular, the whole area of the end face of the tubular article is imaged with a camera, image processing is performed to measure the outer diameter and thickness of the tubular article, and the inner surface of the tubular article is defective.
  • the present invention relates to an inspection apparatus that detects
  • the tubular product in the present invention is a tube whose inner periphery or outer periphery has a shape other than circular, for example, a deformed tube, specifically, a shape in which a fin portion protrudes along the tube axis direction on the inner periphery or the outer periphery.
  • a finned tube used as a heat transfer tube in an ethylene plant or the like.
  • a method for automatically measuring the outer diameter and thickness of the tubular product there are a method of bringing a measuring instrument into contact, a method using a laser, a method using a camera, and the like.
  • the method of bringing the measuring instrument into contact is, for example, a method as described in Patent Document 1, and the measuring device tends to be large-scale.
  • the devices disclosed in each patent document have various problems.
  • halation occurs on the image captured by the camera due to the reflected light irradiated to the tube end surface, and the outer and inner contours of the tube are identified from the image. Difficult to do.
  • this device irradiates the inner peripheral surface as well as the end surface of the tube, so that there is no significant difference in brightness between the tube end surface and the inner peripheral surface on the image captured by the camera, and the inner contour of the tube is specified from the image. It is difficult to do.
  • the dimension measuring apparatus disclosed in Patent Document 2 it is difficult for the dimension measuring apparatus disclosed in Patent Document 3 to specify the outer and inner contours of the tube from the image captured by the camera. Furthermore, the dimension measuring device disclosed in the document can measure only a partial region in the circumferential direction of the tube. In order to measure the entire circumferential direction of the tube, a special mechanism for rotating the tube or each camera (including each light source) around the central axis of the tube is required, and the measuring apparatus becomes large.
  • the inner surface inspection that detects surface defects such as cracks and scratches that may exist on the inner peripheral surface of the pipe.
  • the inspection of the inner surface of the tube is performed by visual observation by an operator, and there is a concern that defects may be overlooked. For this reason, automation of the inner surface inspection of the pipe is also required.
  • An object of the present invention is to provide a tubular product inspection apparatus having the following characteristics (1) and (2) and an inspection method thereof.
  • the outer diameter and thickness of the tube can be inspected using a camera.
  • a long tubular product can be inspected with a small inspection device.
  • an object of the present invention is to provide a tubular product inspection device having the following characteristic (3) in addition to the above characteristics (1) and (2), and an inspection method therefor. (3) It is possible to automatically inspect surface defects such as cracks and scratches on the inner peripheral surface of the pipe.
  • the gist of the present invention is as follows.
  • the inspection device A camera that is disposed on the central axis of the tubular article and images the entire end face of the tubular article;
  • a first light source that emits light that is inclined with respect to the central axis of the tubular article from the outside of the imaging area of the camera, and that illuminates the outer peripheral edge of the tubular article over the entire circumference; It is arranged between the first light source and the camera, emits light that is inclined with respect to the central axis of the tubular product from the outside of the imaging area of the camera, and completely covers the inner peripheral edge on the end surface side of the tubular product.
  • a second light source that illuminates over the circumference, Illuminating the tubular article with the first light source and the second light source, imaging the tubular article with the camera, and calculating the outer diameter and thickness of the tubular article based on the captured image;
  • a tubular product inspection device characterized by the above.
  • the first light source and the second light source are movable in the central axis direction of the tubular article.
  • the first light source and the second light source are preferably configured by arranging a large number of LEDs (light emitting diodes) in a ring shape.
  • the inspection apparatus of (I) preferably includes a support member that supports the first light source, the second light source, and the camera, and has a transparent plate that contacts the end face of the tubular product.
  • These inspection devices are further arranged between the second light source and the camera, emit light that is inclined with respect to the central axis of the tubular product from the outside of the imaging region of the camera, and A third light source for illuminating the inner peripheral surface on the end face side over the entire circumference; While illuminating the tubular product with the third light source, the tubular product can be imaged by the camera, and a surface defect on the inner peripheral surface of the tubular product can be detected based on the captured image.
  • a method for inspecting a tubular product is (Step 1) While illuminating each of the outer peripheral edge and the inner peripheral edge on the end face side of the tubular article with an individual light source over the entire circumference, the whole area of the end face of the tubular article is imaged with a camera. (Step 2) including a series of steps of calculating the outer diameter and thickness of the tubular article based on the captured image; A method for inspecting a tubular product characterized by the above.
  • the inspection method of (II) further includes (Step 3) illuminating the entire inner surface of the tubular article with the light source different from the light source over the entire circumference of the end face side of the tubular article. Taking an image with a camera, (Step 4) A configuration including a series of steps of detecting a surface defect on the inner peripheral surface of the tubular article based on the captured image can be provided.
  • the tubular product inspection device and the inspection method thereof according to the present invention have the following significant effects (1) and (2).
  • (1) The outer diameter and thickness of the pipe can be inspected with high accuracy using a camera.
  • (2) A long tubular product can be inspected with a small inspection device.
  • the tubular product inspection apparatus and method according to the present invention have the following significant effects (3).
  • (3) It is possible to automatically inspect surface defects such as cracks and scratches on the inner peripheral surface of the pipe.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the inspection apparatus of the present invention.
  • 2A and 2B are sectional views for explaining an inspection method using the inspection apparatus of the present invention.
  • FIG. 2A shows an illumination state at the time of dimensional inspection
  • FIG. 2B shows an illumination at the time of inner surface inspection.
  • Each state is shown.
  • 3A and 3B are schematic views of an image captured by the present invention.
  • FIG. 3A shows an image for dimensional inspection
  • FIG. 3B shows an image for inner surface inspection.
  • FIG. 4 is a schematic diagram of an image obtained when the inspection method of the present invention is employed to perform a dimensional inspection of an internally finned tube.
  • FIG. 5 is a diagram showing an actual image captured by the camera during the dimension inspection of the internally finned tube.
  • FIGS. 5A to 5C show the position of the light source from an arbitrary position to the center of the tube to be inspected. An example in the case of moving in the range of ⁇ 10 mm in the axial direction is shown.
  • FIG. 6 is a view showing an example of a wire mesh that constitutes a support member that supports a camera and a light source and is brought into contact with a tubular product.
  • FIG. 6A is a cross-shaped wire mesh, and FIG. A grid-like wire mesh is shown.
  • the inventors of the present invention In order to accurately measure the dimensions of a tubular product while reducing the size of an inspection apparatus that uses a camera, the inventors of the present invention, when imaging the end face of a tube with a camera, It was found that it is effective to illuminate each with a separate light source all around. Furthermore, in order to automate the inner surface inspection of tubular products, it has been found that it is effective to use a camera used for dimensional inspection while illuminating the inner peripheral surface on the tube end surface side with a separate light source. .
  • the present invention has been completed based on these findings. Below, the preferable aspect of the inspection apparatus and inspection method of the tubular goods of this invention is demonstrated.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the inspection device of the present invention.
  • the inspection apparatus of the present invention is applied to a dimensional inspection for measuring the outer diameter D and the wall thickness t of the tubular product 10 with the tubular product 10 as an inspection object, and further, the inner peripheral surface of the tubular product 10. It is also applied to an inner surface inspection for detecting 12 surface defects.
  • the tubular product 10 to be inspected is not only a simple steel pipe whose inner and outer circumferences are circular in the cross section, but also the inner and outer shapes in the cross section are not strictly circular but regular.
  • a tubular product that changes with time for example, a deformed tube such as an internally finned tube or an externally finned tube is also included.
  • the tubular article 10 shows the case where it is a normal pipe
  • the inspection apparatus includes one camera 1 for imaging and a light source for illumination. It is effective to use a plurality of illuminations as the light source. Further, when an annular light source is used, the number of parts of the device can be reduced and further miniaturization can be realized.
  • a case where the first annular light source 2A, the second annular light source 2B, and the third annular light source 2C are used as light sources is shown.
  • the camera 1 is disposed at a predetermined distance from the end surface 11 of the tubular product 10 such that the optical center axis coincides with the central axis of the tubular product 10 and the entire end surface 11 of the tubular product 10 is used as an imaging region. .
  • the camera 1 is used for both the dimension inspection and the inner surface inspection.
  • the camera 1 employed here is a CCD camera, and the number of pixels in which the resolution when imaging the end face 11 of the tubular article 10 separated by a predetermined distance is comparable or higher than that of a measuring instrument such as a micrometer.
  • the first annular light source 2 ⁇ / b> A, the second annular light source 2 ⁇ / b> B, and the third annular light source 2 ⁇ / b> C have a tubular product 10 such that the central axis thereof coincides with the central axis of the tubular product 10, that is, the optical central axis of the camera 1.
  • the first annular light source 2A arranged closest to the tubular article 10 and the second annular light source 2B arranged next are illumination for dimensional inspection.
  • the third annular light source 2 ⁇ / b> C arranged farthest from 10 is illumination for inner surface inspection.
  • First annular light source 2A is a light that the optical axis M 1 is emitted at an inclination angle theta 1 with respect to the central axis of the tubular article 10, the entire circumference is limited only to the outer peripheral edge of the end face 11 of the tubular product 10 Illuminate over.
  • the second annular light source 2B has an entire circumference limited only to the inner peripheral edge on the end face 11 side of the tubular product 10 by the light whose optical axis M 2 is emitted at an inclination angle ⁇ 2 with respect to the central axis of the tubular product 10. Illuminate over.
  • Third annular light source 2C the by light optical axis M 3 is emitted at an inclination angle theta 3 with respect to the central axis of the tubular article 10, is limited only to the inner circumferential surface 12 of the end face 11 of the tubular product 10 Illuminate the entire circumference.
  • each annular light source 2A, 2B, 2C is arranged so that the center axis of each ring coincides with the center axis of the tubular article 10, it is possible to illuminate a limited area uniformly over the entire circumference.
  • First annular light source 2A of the inclination angle theta 1 of the optical axis M 1, and the inclination angle theta 2 of the optical axis M 2 of the second annular light source 2B is an end face 11 of the time dimensional inspection, limited areas (tubular article 10 This is set in consideration of illuminating only the outer peripheral edge and the inner peripheral edge) and that the light reflected by the end face 11 does not enter the camera 1. For this purpose, it is preferable to set within a range of, for example, 60 ° or more and less than 90 °. More preferably, it is in the range of 70 ° to 80 °. By setting to such a range, the camera 1 can capture an image in which the outer and inner contours of the tubular article 10 are emphasized.
  • the illumination width in the tube axis direction of the outer peripheral edge of the tubular product 10 illuminated by the first annular light source 2A allows a range of 5 mm to 10 mm from the tube end.
  • the illumination width in the tube axis direction of the inner peripheral edge of the tubular article 10 illuminated by the second annular light source 2B also allows a range of 5 mm to 10 mm from the tube end.
  • the light emitted from the first annular light source 2A and the second annular light source 2B is not limited to linear light but may be light that slightly spreads from the center of the optical axis of the light. However, any light does not illuminate the end surface 11 of the tubular article 10 and illuminates only the outer peripheral edge and the inner peripheral edge on the end surface 11 side of the tubular article 10 as described above.
  • the inclination angle ⁇ 3 of the optical axis M 3 of the third annular light source 2C is the length of a region that can be imaged and inspected by the camera 1 by illuminating the inner peripheral surface 12 of the tubular article 10 from the end surface 11 deeply during the inner surface inspection. This is set in consideration of the fact that the light is reflected on the end face 11 and does not enter the camera 1. For this purpose, it is preferable to set within a range of 10 ° to 30 °, for example.
  • the light emitted from the third annular light source 2C is light that spreads to some extent from the center of its own optical axis. However, this light also illuminates the inner peripheral surface 12 including the inner peripheral edge on the end surface 11 side of the tubular product 10 without illuminating the end surface 11 of the tubular product 10 as described above.
  • the first annular light source 2A, the second annular light source 2B, and the third annular light source 2C for example, a large number of LEDs are arranged at equal intervals in the circumferential direction in a base material such as a synthetic resin formed in an annular shape. Things can be used. A group of LEDs arranged in the circumferential direction may be embedded in two or three rows. Instead of the LED, a laser device that emits visible light with a small light spreading range from the center of the optical axis may be used.
  • the camera 1, the first annular light source 2A, the second annular light source 2B, and the third annular light source 2C are integrally supported by the support member 5.
  • the support member 5 has, for example, a disc-shaped transparent plate 6 that faces the end surface 11 of the tube 10 at the front end and abuts against the end surface 11 of the tubular product 10 at the time of inspection, and an annular shape that holds the camera 1 at the rear end. It has a plate 7, and the transparent plate 6 and the annular plate 7 are connected by a plurality of guide bars 8 parallel to the central axis of the tubular product 10.
  • Each of the annular light sources 2A, 2B, and 2C is configured to be movable in the central axis direction of the tubular article 10 along the guide rod 8, and is fixed to the guide rod 8 with a screw or the like at an appropriate position.
  • each posture and position can be stabilized, and a highly accurate inspection can be performed.
  • Appropriate positions of the annular light sources 2A, 2B, and 2C are set according to the dimensions of the tubular article 10 to be inspected. For example, if the outer diameter is the inner diameter at D o and inspected tubular article 10 is D i, as the position of the first annular light source 2A, the front end surface of the transparent plate 6 abuts against the end face 11 of the tubular product 10 to set the distance x 1 to the exit port of the first annular light source 2A. This distance x 1 first determines the calculated value Calx 1 (1) below.
  • Calx 1 (d 1 / 2 ⁇ D o / 2) / tan ⁇ 1 (1)
  • d 1 in the equation is the diameter of the exit opening in the first annular light source 2A are arranged
  • theta 1 is a tilt angle of the optical axis M 1 of the first annular light source 2A.
  • the distance x 1, the light of the first annular light source 2A is the location of the calculated values Calx 1 determined by the fine adjustment so as to illuminate the outer peripheral edge without illuminating the end face 11.
  • This distance x 3 first determines the calculated value Calx 3 (3) below.
  • d 3 in the equation is the diameter of the exit port in the third annular light source 2C are arranged, theta 3 is a tilt angle of the optical axis M 3 of the third annular light source 2C, L is The distance from the tube end to the intersection of the optical axis of the annular light source 2C and the inner surface of the tube. L can be determined as 1 ⁇ 2 of the region length from the tube end of the tubular article 10 that the inspector wants to illuminate with the light from the third annular light source 2C during the inner surface inspection.
  • the distance x 3, the light of the third annular light source 2C is determined by finely adjusting the position of the calculated values Calx 3 to illuminate the inner surface to include an inner peripheral edge of the end face 11 side.
  • Each annular light source 2A, 2B, 2C has a function of individually adjusting the light amount. Since the illuminance is attenuated according to the distance from the exit to the illumination target, the light quantity of the third annular light source 2C that is the farthest to the illumination target tubular product 10 is set relatively high, and the tubular product 10 This is because the light amount of the first annular light source 2A that is the closest to the second annular light source 2B is set lower than the light amount of the second annular light source 2B, and the illuminance is uniformed by the annular light sources 2A, 2B, and 2C.
  • FIG. 2 is a cross-sectional view for explaining an inspection method using the inspection apparatus of the present invention.
  • FIG. 2 (a) shows an illumination state at the time of dimensional inspection
  • FIG. 2 (b) shows an inner surface inspection.
  • Each lighting state is shown.
  • 3A and 3B are schematic views of an image captured according to the present invention.
  • FIG. 3A shows an image obtained by dimensional inspection
  • FIG. 3B shows an image obtained by inner surface inspection.
  • the support member 5 shown in FIG. 1 is not shown.
  • the tubular article 10 shows a case where it is a normal tube having a concentric cross section.
  • the transparent plate 6 of the support member 5 shown in FIG. 1 is in contact with the end surface 11 of the tubular product 10 to be inspected.
  • the first annular light source 2A and the second annular light source 2B are turned on, so that only the outer peripheral edge and inner peripheral edge on the end face 11 side are illuminated without illuminating the end face 11 of the tubular article 10 Illuminate.
  • the entire area of the end surface 11 of the tubular article 10 is imaged by the camera 1.
  • the image obtained by this imaging is obtained by illuminating only the outer peripheral edge and the inner peripheral edge on the end face 11 side of the tubular article 10, by performing image processing such as binarization processing, FIG.
  • the luminance of the end face 11 of the non-illuminated tubular product, the pixels corresponding to the outside and the inside of the end product 11 is remarkably low, and corresponds to each of the outer contour 13 and the inner contour 14 of the tubular product which is the boundary.
  • the pixels to be enhanced are clearly emphasized by illumination, and the luminance is increased.
  • the outer contour 13 and the inner contour 14 of the tubular product can be specified based on the obtained image, and the outer diameter D and the wall thickness t of the tubular product can be calculated from the position information of those pixels. become.
  • the third annular light source 2C is turned on instead of the first annular light source 2A and the second annular light source 2B.
  • the third annular light source 2C is turned on instead of the first annular light source 2A and the second annular light source 2B.
  • the image obtained by this imaging is an illumination of only the inner peripheral surface 12 on the end surface 11 side of the tubular article 10, by performing image processing such as binarization processing, it is shown in FIG.
  • the brightness corresponding to the inner peripheral surface 12 on the end surface 11 side of the illuminated tubular product increases in brightness, and the end surface 11 of the non-illuminated tubular product and the inner peripheral surface 12 on the back side of the tubular product are respectively increased.
  • the corresponding pixels have low luminance, and the pixels corresponding to the outer side of the end surface 11 and the inner side of the inner peripheral surface 12 of the tubular product have lower luminance.
  • the pixel corresponding to the surface defect portion appears higher or lower than the luminance of the peripheral inner surface.
  • the above-described image processing, calculation of the outer diameter and thickness of the tubular product, and determination of surface defects on the inner peripheral surface of the tubular product are executed by a computer connected to the camera 1.
  • FIG. 4 is a schematic diagram of an image obtained when the inspection method of the present invention is employed to perform a dimensional inspection of an internally finned tube. Even when a dimensional inspection is performed with an inner finned tube as an inspection target, the inner surface of the first annular light source 2A and the second annular light source 2B shown in FIGS. By imaging the entire area of the end surface of the finned tube and performing image processing, as shown in FIG. 4, the luminance is remarkably reduced at the pixels corresponding to the end surface 11 of the inner surface finned tube, outside and inside, The brightness is increased in pixels corresponding to the outer contour 13 of the inner finned tube which is the boundary and the inner contour 14 including the fin portion.
  • the outer contour 13 and inner contour 14 of the inner finned tube can be specified based on the obtained image, and the outer diameter, thickness, and fin portion of the inner finned tube can be determined from the position information of these pixels. It becomes possible to calculate the height.
  • FIG. 5 is a diagram showing an actual image captured by the camera at the time of dimensional inspection of a tube with an inner fin.
  • FIGS. 5 (a) to 5 (c) show the inner surface fin of the inspection target from any position of the light source. An example in the case of moving in the range of ⁇ 10 mm in the attached central axis direction is shown.
  • the white lines of the lattice reflect the wire mesh used as a transparent plate that comes into contact with the end face of the inner finned tube.
  • an actual image shown in FIG. 5A is obtained.
  • a position that is 10mm moved away from the inner-fin tube, i.e. subjected to image a distance x 1 and the distance x 2 + 10mm and the placed position FIG.
  • the actual image shown in 5 (b) is obtained.
  • FIG. 5 (c ) Is obtained. It can be seen that the real images shown in FIGS. 5A to 5C are equally clear.
  • each light source 2A, the position of 2B from the position set based on the distance x 1 and the distance x 2 is calculated according to the above equation (1) and (2), within a range of ⁇ 10 mm in the axial direction of the tube If set, inspection can be performed with the same accuracy.
  • a wire mesh can be used as the transparent plate 6 constituting the support member 5 shown in FIG. An example is shown in FIG. 6 below.
  • FIG. 6 is a view showing an example of a wire mesh that constitutes a support member that supports a camera and a light source and is brought into contact with a tubular product.
  • FIG. 6A is a cross-shaped wire mesh, and FIG. A grid-like wire mesh is shown.
  • an outer contour 13 and an inner contour 14 of the tubular product to be inspected are also shown.
  • the wire mesh 21 shown in the figure can be manufactured by punching a metal disc having a thickness of about 2 mm to 3 mm.
  • the width of the wire 22 of the wire mesh 21 is about 2 mm to 3 mm.
  • the thickness and width of the mesh wire 22 is about 2 mm to 3 mm is that if it is too small, the rigidity will be low, and it will be inadvertently deformed when it comes into contact with the tubular product. This is because the net line is reflected extensively in the captured image, making it difficult to specify the contour of the tubular product.
  • the wire mesh 21 having a cross-shaped mesh line 22 is suitable for inspecting a normal tube having a concentric cross section as a tubular product.
  • positioning can be easily performed by aligning the center of the tubular product with the intersection of the mesh wire 22 at the center.
  • the wire mesh 21 can also be used for inspection of an outer finned tube.
  • the wire mesh 21 in which the mesh lines 22 are in a lattice form is suitable for inspecting an internally finned tube as a tubular product.
  • an opening between the mesh wires 22 is formed at the center so that the mesh wire 22 intersects only the outer contour 13 of the inner finned tube. That is, all of the inner contour 14 of the inner finned tube is included in the central opening. For this reason, it is possible to identify the inner contour 14 from the image captured by the camera without any trouble.
  • the shape of the inner periphery or the outer periphery is not limited to a simple shape steel pipe, but the inner periphery or the outer periphery in the cross section, such as an inner finned tube and an outer finned tube.
  • the inspection device does not require any special mechanism for rotating the tubular product or the camera (including the light source) around the central axis of the tubular product, and the device can be downsized.
  • the tubular product inspection apparatus and the inspection method of the present invention can be automated including the inspection of the inner surface of the tubular product.
  • the present invention can be effectively used for dimensional inspection for quality assurance of tubular products, and further for inner surface inspection.

Abstract

 検査装置は、管状品の端面の全域を撮像するカメラと、管状品の端面側の外周縁のみを全周にわたって照明する第1の光源と、管状品の端面側の内周縁のみを全周にわたって照明する第2の光源と、管状品の端面側の内周面のみを全周にわたって照明する第3の光源を備え、第1の光源および第2の光源により管状品を照明しながら、カメラにより管状品を撮像し、撮像した画像に基づいて管状品の外径および肉厚を算出するとともに、第3の光源により管状品を照明しながら、カメラにより管状品を撮像し、撮像した画像に基づいて管状品の内周面の表面欠陥を検出する。これにより、装置の小型化を実現しつつ、カメラを用いて精度良く管状品の外径および肉厚の寸法検査を行え、さらに内表面検査を行える。

Description

管状品の検査装置およびその検査方法
 本発明は、管状品を検査する装置に関し、特に、管状品の端面の全域をカメラで撮像し、画像処理を行って管状品の外径、肉厚を測定し、さらに管状品の内面の欠陥を検出する検査装置に関する。
 本発明における管状品とは、その横断面の内周または外周の形状が円形以外のもの、たとえば異形管、具体例として内周面または外周面に管軸方向に沿ってフィン部が突出した形状を有してエチレンプラントなどで伝熱管として使用されるフィン付管を含む。
 管状品の外径および肉厚を自動で測定する方法としては、測定器具を接触させる方法、レーザを用いる方法、カメラを用いる方法などがある。
 測定器具を接触させる方法は、例えば、特許文献1に記載されるような方法があり、測定装置が大規模になりがちである。
 レーザを用いる方法では、管状品の周方向全体を測定するために、管状品またはレーザ装置(受光素子を含む)を回転させる格別な機構が必要であり、測定器具を接触させる方法と同様に、測定装置が大規模になる。このため、両者の方法では、長い管状品の肉厚の測定が困難である。
 これらの方法に対し、カメラを用いる方法は、簡易な構成で、管状品の寸法検査ができ、しかも容易に自動化できる技術として大いに期待できる。カメラを用いて管の外径および肉厚を測定する従来技術として、下記の特許文献2から特許文献4に開示される技術がある。
 しかし、各特許文献に開示されている装置は、様々な問題を有する。たとえば、特許文献2に開示された寸法測定装置を用いると、管端面に照射された光の反射光によりカメラで撮像した画像上にハレーションが発生し、画像から管の外輪郭および内輪郭を特定することが困難である。さらに、この装置は、管の端面とともに内周面も光を照射するため、カメラで撮像した画像上で管端面と内周面の輝度に有意差が生じにくく、画像から管の内輪郭を特定するのは困難である。
 特許文献3に開示された寸法測定装置も、特許文献2に開示された寸法測定装置と同様に、カメラで撮像した画像から管の外輪郭および内輪郭を特定することが困難である。さらに、同文献に開示された寸法測定装置は、管の周方向の一部の領域しか測定できない。管の周方向全体を測定するためには、管または各カメラ(各光源を含む)を管の中心軸周りに回転させる格別な機構が必要であり、測定装置が大規模になる。
 特許文献4に開示された寸法測定方法では、管を間に挟んでカメラと光源を配置しなければならないため、測定装置が大規模となる。したがって、長い管の測定は困難である。
 また、管の品質を保証するためには、管の外径および肉厚を測定する寸法検査に加え、管の内周面に存在し得る割れやキズなどの表面欠陥を検出する内表面検査が行われる。従来、管の内表面検査は、作業者の目視観察により行われることから、欠陥の見落としが懸念される。このため、管の内表面検査も自動化が求められている。
特開昭51-81641号公報 特開平5-240619号公報 特開平5-240620号公報 特開2009-115526号公報
 本発明の目的は、次の(1)および(2)の特性を有する管状品の検査装置およびその検査方法を提供することである。
 (1)カメラを用いて、管の外径および肉厚の寸法を検査できること。
 (2)小型の検査装置で、長尺の管状品を検査できること。
 さらに、本発明の目的は、上記(1)および(2)の特性に加え、次の(3)の特性を有する管状品の検査装置およびその検査方法を提供することである。
 (3)自動的に、管の内周面の割れやキズなどの表面欠陥を検査できること。
 本発明の要旨は、次の通りである。
 (I)管状品を検査する装置であって、
 当該検査装置は、
 前記管状品の中心軸上に配置され、前記管状品の端面の全域を撮像するカメラと、
 このカメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の外周縁を全周にわたって照明する第1の光源と、
 この第1の光源と前記カメラの間に配置され、前記カメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の内周縁を全周にわたって照明する第2の光源と、を備え、
 前記第1の光源および前記第2の光源により前記管状品を照明しながら、前記カメラにより前記管状品を撮像し、撮像した画像に基づいて前記管状品の外径および肉厚を算出すること、
を特徴とする管状品の検査装置。
 上記(I)の検査装置は、前記第1の光源および前記第2の光源が、前記管状品の前記中心軸方向に移動可能であることが好ましい。
 上記(I)の検査装置は、前記第1の光源および前記第2の光源が、多数のLED(発光ダイオード)を環状に並べて構成されることが好ましい。
 上記(I)の検査装置は、前記第1の光源、前記第2の光源および前記カメラを支持し、前記管状品の前記端面に当接する透明板を有する支持部材を備えることが好ましい。
 これらの検査装置は、さらに、前記第2の光源と前記カメラの間に配置され、前記カメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の内周面を全周にわたって照明する第3の光源を備え、
 前記第3の光源により前記管状品を照明しながら、前記カメラにより前記管状品を撮像し、撮像した画像に基づいて前記管状品の内周面の表面欠陥を検出する構成にすることができる。
 (II)管状品を検査する方法であって、
 当該検査方法は、
 (ステップ1)前記管状品の端面側の外周縁および内周縁のそれぞれを全周にわたり個別の光源によって照明しながら、前記管状品の前記端面の全域をカメラによって撮像すること、
 (ステップ2)撮像した画像に基づいて前記管状品の外径および肉厚を算出すること、の一連の各ステップを含むこと、
を特徴とする管状品の検査方法。
 上記(II)の検査方法は、さらに、(ステップ3)前記管状品の前記端面側の内周面を全周にわたり前記光源と異なる光源によって照明しながら、前記管状品の前記端面の全域を前記カメラによって撮像すること、
 (ステップ4)撮像した画像に基づいて前記管状品の内周面の表面欠陥を検出すること、の一連の各ステップを含む構成にすることができる。
 本発明の管状品の検査装置およびその検査方法は、次の(1)および(2)の顕著な効果を有する。
 (1)カメラを用いて、高精度に管の外径および肉厚の寸法を検査できること。
 (2)小型の検査装置で、長尺の管状品を検査できること。
 さらに、本発明の管状品の検査装置およびその検査方法は、上記(1)および(2)の効果に加え、次の(3)の顕著な効果を有する。
 (3)自動的に、管の内周面の割れやキズなどの表面欠陥を検査できること。
図1は、本発明の検査装置の構成を模式的に示す断面図である。 図2は、本発明の検査装置を用いた検査方法を説明するための断面図であり、図2(a)は寸法検査時の照明状態を、図2(b)は内表面検査時の照明状態をそれぞれ示す。 図3は、本発明により撮像した画像の模式図であり、図3(a)は寸法検査のための画像を、図3(b)は内表面検査のための画像をそれぞれ示す。 図4は、本発明の検査方法を採用して内面フィン付管の寸法検査を行った場合に得られる画像の模式図である。 図5は、内面フィン付管の寸法検査時にカメラで撮像された実画像を示す図であり、図5(a)~(c)は、光源の位置を任意の位置から検査対象の管の中心軸方向に±10mmの範囲で移動させた場合の例を示している。 図6は、カメラおよび光源を支持する支持部材を構成し管状品に当接させる金網の例を示す図であり、同図(a)は十字状の網線の金網、同図(b)は格子状の網線の金網を示す。
 本発明者らは、カメラを用いる検査装置を小型化しつつ、管状品の寸法を精度良く測定するためには、カメラによって管の端面を撮像する際に、その端面側の外周縁および内周縁のそれぞれを全周にわたり個別の光源によって照明するのが有効であることを知見した。さらに、管状品の内表面検査を自動化するには、管端面側の内周面を別途の光源によって照明しながら、寸法検査で用いるカメラを兼用して撮像するのが有効であることを知見した。
 本発明は、これらの知見に基づき完成させたものである。以下に、本発明の管状品の検査装置およびその検査方法の好ましい態様について説明する。
 1.検査装置
 図1は、本発明の検査装置の構成を模式的に示す断面図である。同図に示すように、本発明の検査装置は、管状品10を検査対象とし、管状品10の外径Dおよび肉厚tを測定する寸法検査に適用され、さらに管状品10の内周面12の表面欠陥を検出する内表面検査にも適用される。検査対象の管状品10には、横断面内で内周および外周の形状が円形である単純な形状の鋼管のみならず、横断面内で内周または外周の形状が厳密には円形でなく規則的に変化する管状品、たとえば内面フィン付管、外面フィン付管などの異形管も含まれる。図1では、管状品10は、その横断面が同心円である通常の管である場合を示している。検査装置は、撮像用に一つのカメラ1と、照明用の光源を備える。光源としては、複数個の照明を用いるのが有効であり、さらに環状光源を用いると、装置の部品点数の削減や、さらなる小型化を実現することができる。ここでは、光源として、第1の環状光源2A、第2の環状光源2Bおよび第3の環状光源2Cを用いる場合を示す。
 カメラ1は、光学中心軸が管状品10の中心軸と一致し、管状品10の端面11の全域を撮像領域とするように、管状品10の端面11から所定の距離を隔てて配置される。カメラ1は、寸法検査時および内表面検査時の両方に兼用される。ここで採用するカメラ1は、CCDカメラであり、所定の距離を隔てた管状品10の端面11を撮像したときの分解能が、マイクロメータなどの計測器と比較し、同程度以上となる画素数を有する。
 第1の環状光源2A、第2の環状光源2Bおよび第3の環状光源2Cは、各々の中心軸が管状品10の中心軸、すなわちカメラ1の光学中心軸と一致するように、管状品10からカメラ1までの間に順に配置され、いずれも、カメラ1の撮像領域の外側から管状品10の中心軸に対して内向きに傾斜する環状の光を出射する。これらのうちで、管状品10の最も近くに配置される第1の環状光源2A、およびその次に配置される第2の環状光源2Bは、いずれも寸法検査のための照明であり、管状品10から最も遠ざかって配置される第3の環状光源2Cは、内表面検査のための照明である。
 第1の環状光源2Aは、その光軸Mが管状品10の中心軸に対して傾斜角度θで出射した光により、管状品10の端面11側の外周縁のみに限定して全周にわたり照明する。第2の環状光源2Bは、その光軸Mが管状品10の中心軸に対して傾斜角度θで出射した光により、管状品10の端面11側の内周縁のみに限定して全周にわたり照明する。第3の環状光源2Cは、その光軸Mが管状品10の中心軸に対して傾斜角度θで出射した光により、管状品10の端面11側の内周面12のみに限定して全周にわたり照明する。
 各環状光源2A、2B、2Cは、各々の環の中心軸が管状品10の中心軸と一致するように配置されるため、限定した領域を全周にわたって均一に照明することができる。
 第1の環状光源2Aの光軸Mの傾斜角度θ、および第2の環状光源2Bの光軸Mの傾斜角度θは、寸法検査時に、限定した領域(管状品10の端面11側の外周縁および内周縁)のみを照明すること、端面11で反射する光がカメラ1に入射しないことを考慮して設定する。このためには、たとえば60°以上で90°未満の範囲内で設定するのが好ましい。より好ましくは、70°~80°の範囲内である。このような範囲に設定することにより、カメラ1は、管状品10の外輪郭および内輪郭を強調した画像を撮像できる。
 第1の環状光源2Aで照明される管状品10の外周縁の管軸方向の照明幅は、管端から5mm~10mmの範囲を許容する。第2の環状光源2Bで照明される管状品10の内周縁の管軸方向の照明幅も、管端から5mm~10mmの範囲を許容する。すなわち、第1の環状光源2Aおよび第2の環状光源2Bから出射される光は、厳密に直線状の光に限らず、自身の光軸中心から僅かに広がる光でもよい。ただし、いずれの光も、管状品10の端面11を照明することなく、上述の通り、管状品10の端面11側の外周縁と内周縁のみを限定して照明する。
 第3の環状光源2Cの光軸Mの傾斜角度θは、内表面検査時に、管状品10の内周面12を端面11から奥深くまで照明してカメラ1で撮像し検査できる領域の長さを拡大すること、端面11で反射する光がカメラ1に入射しないことを考慮して設定する。このためには、たとえば10°~30°の範囲内で設定するのが好ましい。
 第3の環状光源2Cから出射される光は、自身の光軸中心からある程度広がる光とする。ただし、この光も、管状品10の端面11を照明することなく、上述の通り、管状品10の端面11側の内周縁を含む内周面12を限定して照明する。
 第1の環状光源2A、第2の環状光源2Bおよび第3の環状光源2Cとしては、例えば、環状に成形した合成樹脂などの基材に、多数のLEDを周方向で等間隔に並べて埋設したものを用いることができる。周方向に配列した一群のLEDを2列または3列で埋設しても構わない。LEDに代えて、光軸中心からの光の広がり範囲が小さくて可視光を出射するレーザ装置を用いることもできる。
 これらのカメラ1、第1の環状光源2A、第2の環状光源2Bおよび第3の環状光源2Cは、支持部材5によって一体に支持されている。支持部材5は、例えば、前端に、管10の端面11と対向し検査時に管状品10の端面11に当接する円板状の透明板6を有するとともに、後端に、カメラ1を保持する環状板7を有し、透明板6と環状板7とを管状品10の中心軸と平行な複数本のガイド棒8で連結した構成である。各環状光源2A、2B、2Cは、それぞれ、ガイド棒8に沿って管状品10の中心軸方向に移動可能に構成され、適切な位置でネジなどによってガイド棒8に固定される。
 このように、支持部材5を用いて、カメラ1、および各環状光源2A、2B、2Cを一体に支持することにより、それぞれの姿勢および位置が安定し、精度の高い検査を行うことができる。
 各環状光源2A、2B、2Cの適切な位置は、検査対象とする管状品10の寸法に応じて設定される。例えば、外径がDで内径がDである管状品10を検査対象とする場合、第1の環状光源2Aの位置として、管状品10の端面11に当接する透明板6の前端面から第1の環状光源2Aにおける出射口までの距離xを設定する。この距離xは、まず、下記の(1)式で計算値Calxを求める。
 Calx=(d/2-D/2)/tanθ ・・・(1)
 ただし、同式中のdは、第1の環状光源2Aにおいて出射口が配列されている直径であり、θは第1の環状光源2Aの光軸Mの傾斜角度である。距離xは、第1の環状光源2Aの光が端面11を照明することなく外周縁を照明するように計算値Calxの位置を微調整して決定する。
 第2の環状光源2Bの位置として、透明板6の前端面から第2の環状光源2Bにおける出射口までの距離xを設定する。この距離xは、まず、下記の(2)式で計算値Calxを求める。
 Calx=(d/2+D/2)/tanθ ・・・(2)
 ただし、同式中のdは、第2の環状光源2Bにおいて出射口が配列されている直径であり、θは第2の環状光源2Bの光軸Mの傾斜角度である。距離xは、第2の環状光源2Bの光が端面11を照明することなく内周縁を照明するように計算値Calxの位置を微調整して決定する。
 第3の環状光源2Cの位置として、透明板6の前端面から第3の環状光源2Cにおける出射口までの距離xを設定する。この距離xは、まず、下記の(3)式で計算値Calxを求める。
 Calx=(d/2+D/2)/tanθ-L ・・・(3)
 ただし、同式中のdは、第3の環状光源2Cにおいて出射口が配列されている直径であり、θは第3の環状光源2Cの光軸Mの傾斜角度であり、Lは、管端からの、環状光源2Cの光軸と管内面の交点の距離である。Lは、内表面検査時、検査者が第3の環状光源2Cからの光で照明させたいと考えている、管状品10の管端からの領域長さの1/2として決めることができる。距離xは、第3の環状光源2Cの光が端面11側の内周縁を含むように管内面を照明するように計算値Calxの位置を微調整して決定する。
 各環状光源2A、2B、2Cは、それぞれ個別に光量を調整する機能を有する。出射口から照明対象までの距離に応じて照度が減衰することから、照明対象の管状品10までの距離が最も遠い第3の環状光源2Cの光量を比較的高めに設定するとともに、管状品10までの距離が最も近い第1の環状光源2Aの光量を第2の環状光源2Bの光量よりも低く設定し、各環状光源2A、2B、2Cによる照度の均一化を図るためである。
 2.検査方法
 図2は、本発明の検査装置を用いた検査方法を説明するための断面図であり、図2(a)は寸法検査時の照明状態を、図2(b)は内表面検査時の照明状態をそれぞれ示す。図3は、本発明により撮像した画像の模式図であり、図3(a)は寸法検査での画像を、図3(b)は内表面検査での画像を示す。なお、図2では、前記図1に示す支持部材5は表示されていない。図2および図3では、管状品10は、その横断面が同心円である通常の管である場合を示している。
 図2(a)に示すように、管状品10の寸法検査に際しては、検査対象とする管状品10の端面11に、前記図1に示す支持部材5の透明板6を当接させた状態に維持し、その後に、第1の環状光源2Aおよび第2の環状光源2Bを点灯し、これにより、管状品10の端面11を照明することなく、その端面11側の外周縁および内周縁のみを照明する。この照明状態で、カメラ1により管状品10の端面11の全域を撮像する。
 この撮像で得られる画像は、管状品10の端面11側の外周縁および内周縁のみを照明したものであることから、2値化処理などの画像処理を施すことにより、図3(a)に示すように、照明されていない管状品の端面11、その外側および内側のそれぞれに相当する画素で輝度が著しく低くなり、これらの境界である管状品の外輪郭13および内輪郭14のそれぞれに相当する画素が照明によって鮮明に強調され輝度が高くなる。これにより、得られた画像に基づいて管状品の外輪郭13および内輪郭14を特定することができ、それらの画素の位置情報から管状品の外径Dおよび肉厚tを算出することが可能になる。算出した管状品の外径Dおよび肉厚tは、画像上で鮮明に全周にわたって現れた管状品の外輪郭13および内輪郭14によるものであることから、精度が高く、最大値および最小値を保証するものでもあり、信頼性に優れる。
 次に、図2(b)に示すように、管状品10の内表面検査に際しては、第1の環状光源2Aおよび第2の環状光源2Bに代えて第3の環状光源2Cを点灯し、これにより、管状品10の端面11を照明することなく、その端面11側の内周面12のみを照明する。この照明状態で、カメラ1により管状品10の端面11の全域を撮像する。
 この撮像で得られる画像は、管状品10の端面11側の内周面12のみを照明したものであることから、2値化処理などの画像処理を施すことにより、図3(b)に示すように、照明された管状品の端面11側の内周面12に相当する画素で輝度が高くなり、照明されていない管状品の端面11および管状品の奥側の内周面12のそれぞれに相当する画素で輝度が低く、端面11の外側および管状品内周面12のより内側のそれぞれに相当する画素で輝度が一層低くなる。内周面12に表面欠陥が存在する場合、その表面欠陥の部分に相当する画素は周辺の内面の輝度より高くまたは低く現れる。これにより、十分な輝度差を持った画像を得ることができ、その画素の輝度情報から表面欠陥を判定し検出することが可能になる。
 以上説明した画像処理、管状品の外径および肉厚の算出、および管状品内周面の表面欠陥の判定は、カメラ1に接続したコンピュータで実行される。
 図4は、本発明の検査方法を採用して内面フィン付管の寸法検査を行った場合に得られる画像の模式図である。内面フィン付管を検査対象とし寸法検査を行う場合であっても、前記図1および図2に示す第1の環状光源2Aおよび第2の環状光源2Bを点灯した状態で、カメラ1によって、内面フィン付管の端面の全域を撮像し、画像処理を施すことにより、図4に示すように、内面フィン付管の端面11、その外側および内側のそれぞれに相当する画素で輝度が著しく低くなり、これらの境界である内面フィン付管の外輪郭13、およびフィン部を含む内輪郭14のそれぞれに相当する画素で輝度が高くなる。これにより、得られた画像に基づいて内面フィン付管の外輪郭13および内輪郭14を特定することができ、それらの画素の位置情報から内面フィン付管の外径、肉厚およびフィン部の高さを算出することが可能になる。
 図5は、内面フィン付管の寸法検査時にカメラで撮像された実画像を示す図であり、図5(a)~(c)は、光源の位置を任意の位置から検査対象の管内面フィン付の中心軸方向に±10mmの範囲で移動させた場合の一例を示している。同図中で、格子の白線は、内面フィン付管の端面に当接させる透明板として用いた金網が写りこんだものである。
 上述した通り、前記図1および図2に示す第1の環状光源2Aおよび第2の環状光源2Bの位置は、上記の式(1)および式(2)に従って算出した距離xおよび距離xに基づいて設定する。この位置に各光源2A、2Bを置いてカメラによる撮像を行った場合、図5(a)に示す実画像が得られる。また、各光源2A、2Bを、この位置から、内面フィン付管から遠ざかる方向に10mm移動させた位置、すなわち距離xおよび距離xを+10mmとした位置に置いて撮像を行った場合、図5(b)に示す実画像が得られる。一方、各光源2A、2Bを、内面フィン付管に近づく方向に10mm移動させた位置、すなわち距離xおよび距離xを-10mmとした位置に置いて撮像を行った場合、図5(c)に示す実画像が得られる。図5(a)~(c)に示す実画像は、同等に鮮明であることが認められる。したがって、各光源2A、2Bの位置は、上記の式(1)および式(2)に従って算出した距離xおよび距離xに基づいて設定した位置から、管軸方向に±10mmの範囲内に設定されていれば、同等の精度で検査を行うことができる。
 前記図1に示す支持部材5を構成し管状品10に当接させる透明板6としては、金網を用いることができる。その一例を下記の図6に示す。
 図6は、カメラおよび光源を支持する支持部材を構成し管状品に当接させる金網の例を示す図であり、同図(a)は十字状の網線の金網、同図(b)は格子状の網線の金網を示す。なお、同図では、検査対象の管状品の外輪郭13および内輪郭14も示している。同図に示す金網21は、厚みが2mm~3mm程度の金属製の円板に打ち抜き加工を施すことにより作製することができる。金網21の網線22の幅は、2mm~3mm程度である。網線22の厚みおよび幅を2mm~3mm程度とするのは、あまりに小さいと、剛性が低くなり、管状品との当接の際に不用意に変形するからであり、大き過ぎると、カメラで撮像した画像に網線が広範に写りこみ、管状品の輪郭の特定が困難になるからである。
 図6(a)に示すように、網線22が十字状の金網21は、管状品として横断面が同心円である通常の管を検査するのに好適である。この金網21では、その中心の網線22の交差点に管状品の中心を合わせることにより、位置決めが容易に行える。しかも、網線22と管状品の外輪郭13および内輪郭14との交差点がそれぞれ4箇所で済むため、カメラで撮像した画像から支障なく外輪郭13および内輪郭14を特定することが可能である。この金網21は、外面フィン付管の検査に用いることもできる。
 図6(b)に示すように、網線22が格子状の金網21は、管状品として内面フィン付管を検査するのに好適である。この金網21では、網線22が内面フィン付管の外輪郭13とのみ交差するように、その中心に網線22同士の開口が形成される。すなわち、その中心の開口に、内面フィン付管の内輪郭14のすべてが含まれる。このため、カメラで撮像した画像から支障なく内輪郭14を特定することが可能である。
 本発明の管状品の検査装置およびその検査方法によれば、単純な形状の鋼管のみならず、内面フィン付管や外面フィン付管などといったように、横断面内で内周または外周の形状が厳密には円形でなく規則的に変化する管状品も検査対象とし、精度良く外径および肉厚の寸法検査を行うことができる。しかも、検査装置には、管状品またはカメラ(光源を含む)を管状品の中心軸周りに回転させる格別な機構は一切不要であり、装置の小型化を実現することができる。これらに加え、本発明の管状品の検査装置およびその検査方法によれば、管状品の内表面検査も含めて自動化することができる。
 本発明は、管状品の品質保証のために行う寸法検査、さらには内表面検査に有効に利用できる。
  1:カメラ、  2A:第1の環状光源、  2B:第2の環状光源、
  2C:第3の環状光源、  5:支持部材、  6:透明板、
  7:環状板、  8:ガイド棒、
  10:管状品、  11:端面、  12:内周面、
  13:外輪郭、  14:内輪郭、
  21:金網、  22:網線、
  D:管状品の外径、  t:管状品の肉厚
 

Claims (7)

  1.  管状品を検査する装置であって、
     当該検査装置は、
     前記管状品の中心軸上に配置され、前記管状品の端面の全域を撮像するカメラと、
     このカメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の外周縁を全周にわたって照明する第1の光源と、
     この第1の光源と前記カメラの間に配置され、前記カメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の内周縁を全周にわたって照明する第2の光源と、を備え、
     前記第1の光源および前記第2の光源により前記管状品を照明しながら、前記カメラにより前記管状品を撮像し、撮像した画像に基づいて前記管状品の外径および肉厚を算出すること、
    を特徴とする管状品の検査装置。
  2.  前記第1の光源および前記第2の光源が、前記管状品の前記中心軸方向に移動可能であること、
    を特徴とする請求項1に記載の管状品の検査装置。
  3.  前記第1の光源および前記第2の光源が、多数のLED(発光ダイオード)を環状に並べて構成されること、
    を特徴とする請求項1または2に記載の管状品の検査装置。
  4.  前記第1の光源、前記第2の光源および前記カメラを支持し、前記管状品の前記端面に当接する透明板を有する支持部材を備えること、
    を特徴とする請求項1~3のいずれかに記載の管状品の検査装置。
  5.  さらに、前記第2の光源と前記カメラの間に配置され、前記カメラの撮像領域の外側から前記管状品の中心軸に対して傾斜する光を出射し、前記管状品の前記端面側の内周面を全周にわたって照明する第3の光源を備え、
     前記第3の光源により前記管状品を照明しながら、前記カメラにより前記管状品を撮像し、撮像した画像に基づいて前記管状品の内周面の表面欠陥を検出すること、
    を特徴とする請求項1~4のいずれかに記載の管状品の検査装置。
  6.  管状品を検査する方法であって、
     当該検査方法は、
     (ステップ1)前記管状品の端面側の外周縁および内周縁のそれぞれを全周にわたり個別の光源によって照明しながら、前記管状品の前記端面の全域をカメラによって撮像すること、
     (ステップ2)撮像した画像に基づいて前記管状品の外径および肉厚を算出すること、の一連の各ステップを含むこと、
    を特徴とする管状品の検査方法。
  7.  さらに、(ステップ3)前記管状品の前記端面側の内周面を全周にわたり前記光源と異なる光源によって照明しながら、前記管状品の前記端面の全域を前記カメラによって撮像すること、
     (ステップ4)撮像した画像に基づいて前記管状品の内周面の表面欠陥を検出すること、の一連の各ステップを含むこと、
    を特徴とする請求項6に記載の管状品の検査方法。
     
PCT/JP2010/007299 2009-12-17 2010-12-16 管状品の検査装置およびその検査方法 WO2011074261A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010549741A JP4816817B2 (ja) 2009-12-17 2010-12-16 管状品の検査装置
EP10837292.1A EP2515072A4 (en) 2009-12-17 2010-12-16 DEVICE AND METHOD FOR INSPECTING TUBULAR PRODUCT
CN201080057352.0A CN102713506B (zh) 2009-12-17 2010-12-16 管状物的检查装置及其检查方法
CA2779873A CA2779873C (en) 2009-12-17 2010-12-16 Inspection apparatus for tubular product and inspection method therefor
US13/493,133 US9116134B2 (en) 2009-12-17 2012-06-11 Inspection apparatus for tubular product and inspection method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009286554 2009-12-17
JP2009-286554 2009-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/493,133 Continuation US9116134B2 (en) 2009-12-17 2012-06-11 Inspection apparatus for tubular product and inspection method therefor

Publications (1)

Publication Number Publication Date
WO2011074261A1 true WO2011074261A1 (ja) 2011-06-23

Family

ID=44167031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007299 WO2011074261A1 (ja) 2009-12-17 2010-12-16 管状品の検査装置およびその検査方法

Country Status (6)

Country Link
US (1) US9116134B2 (ja)
EP (1) EP2515072A4 (ja)
JP (1) JP4816817B2 (ja)
CN (1) CN102713506B (ja)
CA (1) CA2779873C (ja)
WO (1) WO2011074261A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169570A (ja) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp 管状体検査装置及び管状体検査方法
US20140071267A1 (en) * 2012-09-13 2014-03-13 Alstom Technology Ltd Method and system for determining quality of tubes
JP2014052317A (ja) * 2012-09-07 2014-03-20 Oji Holdings Corp 一軸配向をもつ物品の複屈折測定方法及び装置
JP2015219008A (ja) * 2014-05-13 2015-12-07 Jfeスチール株式会社 パイプ真円度測定装置
JP2018112454A (ja) * 2017-01-11 2018-07-19 株式会社アセット・ウィッツ 管材の内面自動検査装置及び管材内面の自動検査方法
JP2018205098A (ja) * 2017-06-02 2018-12-27 株式会社アセット・ウィッツ 管材内面自動検査装置
IT201900006925A1 (it) * 2019-05-16 2020-11-16 Sica Spa Sistema di controllo della qualità di lavorazione di tubi in materiale termoplastico
KR102584174B1 (ko) * 2022-09-26 2023-10-05 창원대학교 산학협력단 인공지능 방식의 자동차용 솔레노이드 밸브 플런저 검사 시스템

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2708844T3 (pl) * 2012-09-13 2021-10-11 General Electric Technology Gmbh Sposób i system określania jakości rur
EP2957859B1 (de) * 2014-06-18 2018-08-08 Sturm Maschinen- & Anlagenbau GmbH Prüfvorrichtung und verfahren zum prüfen von innenwandungen eines hohlkörpers
CN104089644A (zh) * 2014-06-23 2014-10-08 梧州恒声电子科技有限公司 一种t铁类线棒材控制工艺
CN104048699A (zh) * 2014-06-23 2014-09-17 梧州恒声电子科技有限公司 一种t铁类线棒材控制方法
JP6839928B2 (ja) * 2016-04-26 2021-03-10 株式会社三井ハイテック 異形積層鉄心の測定方法
CN106383130A (zh) * 2016-10-25 2017-02-08 广东技术师范学院 一种基于机器视觉的短钢管表面缺陷检测装置
DE102017100375A1 (de) * 2017-01-10 2018-07-12 Wente / Thiedig Gmbh Innengewindeprüfsystem, Verfahren zur Innengewindeprüfung sowie Computerprogramm
WO2018154910A1 (ja) * 2017-02-27 2018-08-30 新日鐵住金株式会社 真空脱ガス槽の診断支援装置、診断支援方法、診断方法、及び補修方法
JP2019002725A (ja) * 2017-06-13 2019-01-10 コニカミノルタ株式会社 欠陥検査装置
CN107228637B (zh) * 2017-07-31 2019-04-16 中国人民解放军军械工程学院 基于激光三角法的管状物内轮廓测量方法
JP6937647B2 (ja) * 2017-09-28 2021-09-22 日東電工株式会社 光学表示パネルの損傷検査方法
US11655617B2 (en) 2019-04-26 2023-05-23 Cnh Industrial America Llc System and method for monitoring the wear on a rotating ground engaging tool of an agricultural implement
CZ308462B6 (cs) * 2019-06-25 2020-09-02 ÄŚeskĂ© vysokĂ© uÄŤenĂ­ technickĂ© v Praze Zařízení pro měření vnitřních stěn otvorů pomocí triangulačního snímače měření vzdálenosti
DK181421B1 (en) * 2022-05-12 2023-11-02 Vestas Aircoil As Method of determining a wall thickness reduction, %WR of pipes fixed in pipe sheet holes, system therefore and use of the method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181641A (ja) 1975-01-16 1976-07-17 Kawasaki Steel Co Paipusunhosokuteisochi
JPS6212845A (ja) * 1985-07-10 1987-01-21 Kirin Brewery Co Ltd 壜のねじ口部欠陥検出装置
JPH01312402A (ja) * 1988-06-10 1989-12-18 Taihei Kogyo Kk フエライトコアの肉厚検査方式
JPH0293347A (ja) * 1988-09-21 1990-04-04 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai 瓶口部外観検査用照明装置
JPH02194309A (ja) * 1988-11-28 1990-07-31 Heuft Qualiplus Bv 物体の壁の内側の検査装置
JPH05240619A (ja) 1992-02-27 1993-09-17 Sumitomo Metal Ind Ltd 管の外径・肉厚測定装置
JPH05240620A (ja) 1992-02-26 1993-09-17 Sumitomo Metal Ind Ltd 管の外径・肉厚測定装置
JPH0651812U (ja) * 1992-12-21 1994-07-15 株式会社ミツトヨ 画像処理型測定機
JP2005134294A (ja) * 2003-10-31 2005-05-26 Daido Steel Co Ltd 円筒状部品の形状検査方法および形状検査装置
JP2009115526A (ja) 2007-11-05 2009-05-28 Daido Steel Co Ltd 被検査物の真円度測定方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098340A (ja) * 1983-11-04 1985-06-01 Sapporo Breweries Ltd 壜検査装置
JPS63133045A (ja) * 1986-11-25 1988-06-04 Matsushita Electric Works Ltd 検査用照明器具
JPS63225156A (ja) * 1987-03-16 1988-09-20 Toyo Seikan Kaisha Ltd 容器内面検査方法
JPH0774729B2 (ja) * 1990-08-03 1995-08-09 住友金属工業株式会社 内面異形管の内面形状検出方法
JP2783394B2 (ja) * 1991-10-01 1998-08-06 日立エンジニアリング株式会社 ボトルシ−ルの外観検査装置とその方法
JP3393475B2 (ja) 1992-08-04 2003-04-07 オムロン株式会社 プログラマブル・コントローラ
JPH0749315A (ja) * 1993-08-04 1995-02-21 Yamatake Honeywell Co Ltd 容器の検査装置
US6022124A (en) * 1997-08-19 2000-02-08 Ppt Vision, Inc. Machine-vision ring-reflector illumination system and method
JPH11326241A (ja) * 1998-05-21 1999-11-26 Asahi Glass Co Ltd ガラス物品等の開口部欠点の検出方法および装置
JP3031466B1 (ja) * 1999-03-11 2000-04-10 東洋ガラス株式会社 食品容器の形状計測方法
JP4292352B2 (ja) * 1999-07-22 2009-07-08 株式会社デンソー 画像計測方法
JP2002328094A (ja) * 2001-05-02 2002-11-15 Nidec Tosok Corp Ledリング照明及びそれを備えた画像検査装置
JP3770611B2 (ja) * 2002-10-22 2006-04-26 株式会社シーライブ 外観検査装置
FR2846424B1 (fr) * 2002-10-25 2006-02-03 Bsn Glasspack Procede et dispositif d'eclairage pour detecter des defaut et/ou de manque de matiere sur la bague d'un recipient transparent ou translucide
JP2004212122A (ja) * 2002-12-27 2004-07-29 Kirin Techno-System Corp 多面ミラーを備えた撮像装置
JP4437672B2 (ja) * 2003-05-06 2010-03-24 株式会社ユタカ 頭部付きネジの検査方法
JP4440742B2 (ja) * 2003-09-17 2010-03-24 シーシーエス株式会社 検査光照射方法及び検査光照射装置
JP2007240432A (ja) * 2006-03-10 2007-09-20 Omron Corp 欠陥検査装置および欠陥検査方法
CN100458358C (zh) * 2007-07-10 2009-02-04 浙江大学 一种基于轴向立体视觉的逆向测量方法与装置
CN101802308B (zh) * 2007-07-17 2012-08-22 伦斯雷尔公司 用于分析铁道车辆车轮的系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181641A (ja) 1975-01-16 1976-07-17 Kawasaki Steel Co Paipusunhosokuteisochi
JPS6212845A (ja) * 1985-07-10 1987-01-21 Kirin Brewery Co Ltd 壜のねじ口部欠陥検出装置
JPH01312402A (ja) * 1988-06-10 1989-12-18 Taihei Kogyo Kk フエライトコアの肉厚検査方式
JPH0293347A (ja) * 1988-09-21 1990-04-04 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai 瓶口部外観検査用照明装置
JPH02194309A (ja) * 1988-11-28 1990-07-31 Heuft Qualiplus Bv 物体の壁の内側の検査装置
JPH05240620A (ja) 1992-02-26 1993-09-17 Sumitomo Metal Ind Ltd 管の外径・肉厚測定装置
JPH05240619A (ja) 1992-02-27 1993-09-17 Sumitomo Metal Ind Ltd 管の外径・肉厚測定装置
JPH0651812U (ja) * 1992-12-21 1994-07-15 株式会社ミツトヨ 画像処理型測定機
JP2005134294A (ja) * 2003-10-31 2005-05-26 Daido Steel Co Ltd 円筒状部品の形状検査方法および形状検査装置
JP2009115526A (ja) 2007-11-05 2009-05-28 Daido Steel Co Ltd 被検査物の真円度測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2515072A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169570A (ja) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp 管状体検査装置及び管状体検査方法
JP2014052317A (ja) * 2012-09-07 2014-03-20 Oji Holdings Corp 一軸配向をもつ物品の複屈折測定方法及び装置
JP2016020916A (ja) * 2012-09-13 2016-02-04 アルストム テクノロジー リミテッドALSTOM Technology Ltd 管の品質を測定するための方法およびシステム
CN110095058A (zh) * 2012-09-13 2019-08-06 通用电器技术有限公司 用于确定管道的质量的方法和系统
JP2014055955A (ja) * 2012-09-13 2014-03-27 Alstom Technology Ltd 管の品質を測定するための方法およびシステム
CN103884275A (zh) * 2012-09-13 2014-06-25 阿尔斯通技术有限公司 用于确定管道的质量的方法和系统
US20140071266A1 (en) * 2012-09-13 2014-03-13 Alstom Technology Ltd Method and system for determining quality of tubes
TWI512262B (zh) * 2012-09-13 2015-12-11 Alstom Technology Ltd 用於判定管之品質之方法及系統
US20140071267A1 (en) * 2012-09-13 2014-03-13 Alstom Technology Ltd Method and system for determining quality of tubes
US9485473B2 (en) 2012-09-13 2016-11-01 Alstom Technology Ltd Method and system for determining quality of tubes
US9491412B2 (en) * 2012-09-13 2016-11-08 General Electric Technology Gmbh Method and system for determining quality of tubes
JP2015219008A (ja) * 2014-05-13 2015-12-07 Jfeスチール株式会社 パイプ真円度測定装置
JP2018112454A (ja) * 2017-01-11 2018-07-19 株式会社アセット・ウィッツ 管材の内面自動検査装置及び管材内面の自動検査方法
JP2018205098A (ja) * 2017-06-02 2018-12-27 株式会社アセット・ウィッツ 管材内面自動検査装置
IT201900006925A1 (it) * 2019-05-16 2020-11-16 Sica Spa Sistema di controllo della qualità di lavorazione di tubi in materiale termoplastico
WO2020230075A1 (en) * 2019-05-16 2020-11-19 Sica S.P.A. Quality control system for the processing of thermoplastic pipes and tubes
KR102584174B1 (ko) * 2022-09-26 2023-10-05 창원대학교 산학협력단 인공지능 방식의 자동차용 솔레노이드 밸브 플런저 검사 시스템

Also Published As

Publication number Publication date
CA2779873A1 (en) 2011-06-23
US9116134B2 (en) 2015-08-25
US20120249778A1 (en) 2012-10-04
JP4816817B2 (ja) 2011-11-16
CN102713506A (zh) 2012-10-03
EP2515072A4 (en) 2016-05-11
CA2779873C (en) 2014-08-12
CN102713506B (zh) 2014-09-17
JPWO2011074261A1 (ja) 2013-04-25
EP2515072A1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4816817B2 (ja) 管状品の検査装置
RU2426981C2 (ru) Осветительное устройство для цилиндрических объектов
WO2011064969A1 (ja) 検査装置、三次元形状測定装置、構造物の製造方法
JP2010008392A (ja) ウエーハ欠陥検査装置
US20110128368A1 (en) Hole Inspection Method and Apparatus
JP4847128B2 (ja) 表面欠陥検査装置
JP5481484B2 (ja) 3次元物体を2次元平面画像に光学的に変換する装置および方法
JP6772084B2 (ja) 表面欠陥検査装置および表面欠陥検査方法
JP2012242233A (ja) 管内面検査方法、及び管内面検査装置
JP5589888B2 (ja) 表面検査装置の評価装置及び表面検査装置の評価方法
JP2012229978A (ja) 孔内周面撮影装置
US20080192471A1 (en) System and method for inside can inspection
JP2011089939A (ja) 外観検査装置及び印刷半田検査装置
JP2011163954A (ja) 線材表面探傷装置
JP2004163425A (ja) 外観検査装置
JP2009236760A (ja) 画像検出装置および検査装置
JP2010286339A (ja) 光源の指向性検査方法およびその装置
KR101520636B1 (ko) 불규칙 표면의 영상 취득을 위한 광학적 조명 방법 및 장치
JP4794383B2 (ja) ゴムホースの外観検査装置
JP5994413B2 (ja) リング状物品の欠肉の検査装置
JP2013257245A (ja) 物品の検査装置
KR20120086333A (ko) 적응 초점을 갖는 고속 광학 검사 시스템
JP2017138106A (ja) 表面欠陥判別方法
JP3154425U (ja) 透光体の検査方法及び検査装置
JP2007198762A (ja) 欠陥検出方法および欠陥検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010549741

Country of ref document: JP

Ref document number: 201080057352.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 965/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2779873

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010837292

Country of ref document: EP