WO2011071064A1 - 有機薄膜の成膜装置および有機材料成膜方法 - Google Patents

有機薄膜の成膜装置および有機材料成膜方法 Download PDF

Info

Publication number
WO2011071064A1
WO2011071064A1 PCT/JP2010/071980 JP2010071980W WO2011071064A1 WO 2011071064 A1 WO2011071064 A1 WO 2011071064A1 JP 2010071980 W JP2010071980 W JP 2010071980W WO 2011071064 A1 WO2011071064 A1 WO 2011071064A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor
organic material
film forming
film
trap
Prior art date
Application number
PCT/JP2010/071980
Other languages
English (en)
French (fr)
Inventor
敏夫 根岸
弘 藤本
秀行 平岩
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201080055842.7A priority Critical patent/CN102639746B/zh
Priority to JP2011545224A priority patent/JP5474089B2/ja
Priority to KR1020127014728A priority patent/KR101379646B1/ko
Publication of WO2011071064A1 publication Critical patent/WO2011071064A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to an organic thin film forming apparatus, and more particularly to a film forming apparatus and an organic material film forming method for heating and evaporating a material little by little.
  • Organic thin films to which light-emitting materials made of organic substances are added emit light with a color depending on the type of light-emitting material when an electric current flows in the film thickness direction. Recently, display devices and illumination devices using organic thin films Has been put into practical use and has been mass-produced.
  • the optimal content is determined.
  • the vapor arrival speed of one organic material fluctuates, the content rate changes, and the content rate in the film thickness direction fluctuates. If a portion that does not have the optimum content for light emission is formed, the light emission amount of the light emitting layer is reduced.
  • a film forming apparatus in which when an organic material used for film formation is heated and evaporated little by little, the vapor amount of the organic material released from the discharge apparatus is constant.
  • a film forming apparatus capable of recovering and reusing an organic material from vapor not used for film formation is provided.
  • the present invention provides a film formation tank in which an object to be formed is disposed, a vapor generation device that generates vapor of an organic material, and the vapor generated by the vapor generation device.
  • An organic thin film forming apparatus in which the vapor is discharged into the film forming tank from a discharge port formed in the discharging apparatus, wherein the vapor generating apparatus
  • a material supply device for supplying a material
  • an evaporation device for supplying the organic material from the material supply device to evaporate the organic material
  • a buffer unit for depositing and re-evaporating the vapor generated in the evaporation device
  • a buffer temperature control device for controlling the temperature of the buffer unit, the vapor generated by the evaporation device is supplied to the discharge device through the buffer unit, and the organic thin film is applied to the film formation target Film forming equipment It is.
  • the present invention is a film forming apparatus having a plurality of the steam generating apparatuses.
  • the present invention includes a film thickness monitor that detects a part of the vapor emitted from the buffer unit, and the buffer temperature control device controls the temperature of the buffer unit based on the detection value of the film thickness monitor.
  • this invention is a film-forming apparatus with which the said material supply apparatus rotates the axis
  • the present invention is the film forming apparatus, wherein the evaporation apparatus includes a material supply amount measuring unit that measures the amount of the organic material supplied from the material supply apparatus.
  • the material supply amount measuring means includes a receiving member that receives the organic material supplied from the material supply device, and a temperature measurement analyzer that calculates the supply amount of the organic material from a temperature change of the receiving member.
  • a film forming apparatus the buffer unit is formed of a plurality of thin metal wires, the thin metal wires partially overlap each other, and a flow path is formed by a gap between the thin metal wires and the thin metal wires.
  • the present invention is the film forming apparatus in which the buffer unit is configured by a plurality of nets, and a flow path is formed in a gap between the nets of the nets.
  • the number of meshes per unit area of the first mesh among the plurality of meshes is a second mesh positioned on the downstream side of the first mesh of the steam flowing in the buffer unit.
  • the number of meshes per unit area is less than the number of meshes.
  • the present invention is a film forming apparatus in which a backflow prevention gas supply device for supplying a backflow prevention gas is connected to the material supply device.
  • the steam generation device is configured such that the traveling direction of the steam that has passed through the buffer unit is a first direction that is inside the discharge device, and a second direction that is not inside the discharge device. It is the film-forming apparatus which has the switching apparatus switched between.
  • the steam generating device includes a trap device in which a trap part in contact with the steam is disposed inside the trap tank, and the trap tank is configured to be evacuated, and the trap part is evaporated.
  • a low-temperature apparatus that cools the trap temperature to a temperature lower than the temperature, and the second direction is a film-forming apparatus provided inside the trap tank.
  • the present invention also includes a film formation tank in which a film formation target is disposed, a vapor generation apparatus that generates vapor of an organic material, and a discharge apparatus that is supplied with the vapor generated by the vapor generation apparatus.
  • An organic thin film forming apparatus in which the vapor is discharged into the film forming tank from a discharge port formed in the discharge apparatus, wherein the vapor generating apparatus supplies the organic material
  • a supply device, an evaporation device for evaporating the organic material supplied from the material supply device, and a trap part in contact with the vapor are arranged inside the trap tank, and the inside of the trap tank is configured to be evacuated.
  • the steam generation device includes a film thickness sensor, the steam generation device generates a part of the steam before reaching the switching device, the film thickness sensor, A film forming apparatus configured to grow the organic thin film on a film thickness sensor.
  • this invention is a film-forming apparatus which has the said some vapor generating apparatus connected to the said said discharge
  • the present invention is a film forming apparatus in which the organic materials having different chemical structures are arranged in the material supply apparatuses of the plurality of vapor generation apparatuses.
  • this invention is a film-forming apparatus from which the said organic material arrange
  • the discharge device is connected to an evaporation container in which an auxiliary material that is an organic compound contained in a smaller amount than the organic material is disposed in the organic thin film, and the vapor of the auxiliary material is The film forming apparatus is configured to be introduced into the discharge apparatus at a lower introduction speed than the vapor of the organic material.
  • the present invention includes a sub trap device in which a trap portion in contact with the vapor of the sub material is disposed inside the trap tank, and the inside of the trap tank is configured to be evacuated.
  • the generated vapor of the secondary material is a film forming apparatus configured to be switched to be introduced into the discharge device and the secondary trap device. Further, the present invention supplies an organic material to the heating unit at a predetermined rate, generates steam, introduces the steam into the buffer unit, precipitates the organic material in the buffer unit, and deposits the organic material deposited in the buffer unit.
  • This is an organic material film forming method in which re-evaporation is performed and the re-evaporated vapor is discharged to a substrate to form a film.
  • the present invention is an organic material film forming method in which a part of the vapor derived from the buffer unit is measured, and the temperature of the buffer unit is controlled based on the measured value.
  • the temperature of the buffer unit is lowered from the evaporation temperature of the organic material so that the vapor is deposited in the buffer unit when the substrate is replaced, and is deposited in the buffer unit during film formation on the substrate.
  • the temperature of the buffer unit is raised above the evaporation temperature of the organic material so that the organic material re-evaporates.
  • the composition of the film thickness direction of the organic thin film with which multiple types of organic material was mixed can be made constant.
  • an organic thin film having a constant quality in the film thickness direction can be obtained.
  • steam conventionally discarded can be collect
  • the internal side view for demonstrating the film-forming apparatus of the 1st example of this invention Drawing for explaining the positional relationship of a plurality of vapor generators of the film forming apparatus
  • the internal side view for demonstrating the film-forming apparatus of the 2nd example of this invention The internal side view for demonstrating the film-forming apparatus of the 3rd example of this invention
  • FIGS. 1 and 2 represents a film forming apparatus of the first example of the present invention.
  • FIG. 1 is a cross-sectional view of the film forming apparatus 2 when viewed from the side
  • FIG. 2 is an internal layout view viewed from above.
  • the film forming apparatus 2 includes a film forming tank 11 and a discharge device 12.
  • a plurality of vapor generating devices 13 a, 13b are connected.
  • the steam generators 13a and 13b have the same internal structure here.
  • the steam generators indicated by reference numeral 13 show the interiors of the two steam generators 13a and 13b together.
  • the steam generators 13 a and 13 b are connected to the end portion on the same side in the longitudinal direction of the discharge device 12, but even if connected to the same end portion, one and the other are connected to the opposite end portion. It may be.
  • the film formation tank 11 is provided with a carry-in port 81 and a carry-out port 82 that are opened and closed when the film formation target 15 is carried in and out.
  • the carry-in port 81, the carry-out port 82, and a partition valve 29 described later are closed, the vacuum exhaust system 19 is operated, and the inside of the film forming tank 11 is evacuated to make a vacuum atmosphere.
  • the vacuum exhaust system 19 is continuously operated to evacuate the inside of the film forming tank 11.
  • the discharge device 12 includes a main body portion 35 and a discharge plate 36 that closes the opening of the main body portion 35.
  • a plurality of discharge ports 37 are formed in the discharge plate 36.
  • the discharge device 12 is disposed in the film formation tank 11, and the inside of the discharge device 12 is evacuated by the vacuum exhaust system 19 through the discharge port 37.
  • An organic material having the same or different chemical structure is disposed in each of the steam generators 13a and 13b.
  • one is an organic compound of an organic thin film base material (material constituting the organic thin film), and the other is a dopant contained in the organic thin film of the base material (for example, a light emitting material).
  • the content is different, and the organic compound of the base material and the organic compound of the dopant are separated from the base material in the separate steam generators 13a and 13b.
  • the vapor generating devices 13a and 13b can be operated simultaneously to co-deposit the base material and the dopant.
  • different materials can be arranged in the steam generators 13a and 13b and operated separately to form a laminated film.
  • Each of the steam generation devices 13a and 13b is configured to generate a vapor of the disposed organic material and supply it to the same discharge device 12.
  • the discharge device 12 is configured to discharge the vapor supplied from each of the vapor generation devices 13a and 13b into the film formation tank 11 from another discharge port 37 for each type of organic material, or the main body.
  • a cavity is formed in the part 35, and the steam generated by each of the steam generators 13 a and 13 b is supplied to the same cavity, mixed in the cavity, and discharged from the discharge ports 37 into the film formation tank 11. It is configured.
  • the discharge device 12 has the main body 35 and the discharge plate 36 disposed inside the film formation tank 11. However, if the airtightness of the film formation tank 11 is maintained, the discharge plate 36 is formed. A part or all of the main body 35 can be disposed outside the film formation tank 11 while being positioned inside the film formation tank 11.
  • a moving device 17 is disposed above the discharge device 12 in the film formation tank 11. Inside the film formation tank 11, a substrate disposed on the holder 16 through the carry-in port 81 or a film formation target 15 in which the substrate and the mask are integrated is carried into the film formation tank 11 from the outside. 17, the carried holder 16 and the film formation target 15 are moved together, temporarily stopped at a position directly above the discharge device 12, and then formed into a film, and then transferred from the carry-out port 82 to the outside of the film formation tank 11. Is configured to do.
  • a loading / unloading chamber (not shown) or another vacuum processing chamber (not shown) is connected to the outside of the carry-in port 81 and the carry-out port 82.
  • the film forming surface on which the organic thin film of the film forming object 15 is formed is directed to the discharge device 12, is located immediately above the discharge device 12, and temporarily stops in a state of facing the discharge plate 36 of the discharge device 12.
  • the vapor of the organic material is discharged from the discharge port 37 of the discharge device 12, the vapor uniformly reaches the film formation surface, and an organic thin film is formed on the film formation surface.
  • the film formation target 15 may be formed by passing the position directly above the discharge device 12 without being stationary.
  • Each of the steam generation devices 13a and 13b includes an exchange device 30, a material supply device 20, an evaporation device 40, a buffer device 50, and a trap device 60, respectively.
  • the exchange device 30 is connected to the material supply device 20, the material supply device 20 is connected to the evaporation device 40, the evaporation device 40 is connected to the buffer device 50, and the buffer device 50 is connected to the switching device 10.
  • the switching device 10 is connected to the trap device 60 and the discharge device 12.
  • the material supply device 20 includes a storage container 21, a hollow cylindrical portion 23, and a linear bar 25.
  • the lower part of the storage container 21 is inclined in a funnel shape, and an opening is formed at the lower end of the funnel-shaped portion.
  • the cylindrical portion 23 is connected to the storage container 21 with the inside communicating with the opening at the lower end thereof.
  • the rod-like body 25 is vertically inserted into the cylindrical portion 23 and the storage container 21.
  • the upper part of the rod-shaped body 25 is located above the funnel-shaped part of the storage container 21, and the lower part is located in the cylindrical part 23.
  • the rod-like body 25 is provided with a spiral projection 26 that extends in the vertical direction while rotating.
  • a powder organic material is disposed in the storage container 21.
  • the distance between the outer periphery of the protrusion 26 and the inner peripheral surface of the cylindrical part 23 is formed to be narrower than the size of the particles of the organic material. It is comprised so that it may not fall through the clearance gap between the parts 23.
  • the organic material when a powdery organic material is disposed in the storage container 21, the organic material is configured to ride on the protrusion 26. However, the spiral inclination of the protrusion 26 causes the rod-like body 25 to be stationary. Since the organic material is formed at an angle at which the organic material does not slide or fall on the projection 26 in the state, the organic material inside the accumulation container 21 passes through the cylindrical portion 23 on the projection 26 when the rod-like body 25 is stationary. Will not fall.
  • the evaporation apparatus 40 has an evaporation tank 41, a through hole is provided in the ceiling of the evaporation tank 41, and the lower end of the cylindrical portion 23 is inserted into the evaporation tank 41 in an airtight manner from the through hole.
  • the lower end of the cylindrical portion 23 is narrowed in a funnel shape, and a drop port 24 is formed at the tip thereof.
  • the internal space of the cylindrical portion 23 and the internal space of the evaporation tank 41 are connected by the drop port 24. ing.
  • the evaporation tank 41 is disposed inside the film formation tank 11.
  • the space between the protrusion 26 and the protrusion 26 has an upper end connected to the internal space of the storage container 21 and a lower end connected to the internal space of the evaporating tank 41 via the internal space of the cylindrical portion 23 and the drop port 24. ing.
  • a rotating device 28 is connected to the rod-shaped body 25, and the rod-shaped body 25 is configured to be rotatable about its vertical central axis. When the rod-shaped body 25 rotates in a predetermined direction, the organic material located on the protrusion 26 is pushed out, falls from the lower end of the gap between the protrusion 26 and the protrusion 26, passes through the tubular portion 23, and evaporates from the dropping port 24 to the evaporation tank 41. Enter inside.
  • the fall amount is proportional to the rotation amount, and the relationship between the fall amount and the rotation amount is obtained in advance.
  • the rod-like body 25 rotates slowly by a rotation amount that drops a necessary amount of organic material with respect to the single film formation target. Accordingly, the organic material is dropped and supplied from the material supply device 20 to the evaporation device 40 little by little.
  • the vapor generation apparatuses 13a and 13b have different chemical structures in the storage containers 21.
  • the organic material of the organic thin film and the organic material of the color former are arranged separately.
  • the content in the organic thin film is greatly different between the base material and the coloring material.
  • the exchange device 30 has an exchange chamber 31 that is a vacuum tank, and the exchange chamber 31 is disposed on the ceiling of the film formation tank 11.
  • a partition valve 29 is provided between the exchange chamber 31 and the film formation tank 11, and the atmosphere in the exchange chamber 31 and the atmosphere in the film formation tank 11 can be connected via the partition valve 29. ing.
  • the storage container 21 is provided with a moving device, and the storage container 21 is configured to be movable up and down together with the cylindrical portion 23 and the rod-shaped body 25.
  • the storage container 21 is disposed in the film forming tank 11 and is located immediately below the partition valve 29.
  • the partition valve 29 When the partition valve 29 is closed, the inside of the film forming tank 11 is in an atmospheric atmosphere.
  • the inside of the film forming tank 11 can be made into a vacuum atmosphere by operating the vacuum exhaust system 19 separated from the film forming tank 11 and connected to the film forming tank 11.
  • the exchange chamber 31 is provided with a door 32. When the door 32 is opened, the exchange chamber 31 can be connected to the atmosphere.
  • An evacuation system 33 is connected to the exchange chamber 31, and the exchange chamber 31 is evacuated by the evacuation system 33 with the partition valve 29 and the door 32 being closed.
  • the storage container 21 located immediately below the partition valve 29 is moved upward together with the cylindrical portion 23 and the rod-shaped body 25, and is allowed to pass through the partition valve 29. 23 and the rod-shaped body 25 are carried into the exchange chamber 31.
  • the partition valve 29 is closed, the inside of the film formation tank 11 is separated from the exchange chamber 31, the vacuum exhaust system 33 is separated from the exchange chamber 31, the atmosphere is introduced into the exchange chamber 31, and the inside of the exchange chamber 31 is at atmospheric pressure. To. At this time, the vacuum atmosphere in the film formation tank 11 is maintained.
  • the door 32 is opened, the inside of the storage container 21 and the air atmosphere are connected by the door 32, and an organic material is put into the storage container 21 in the air atmosphere.
  • the organic material charged into the storage container 21 does not slide or fall on the protrusions 26.
  • the door 32 is closed, the exchange chamber 31 is evacuated by the evacuation system 33, and the exchange chamber 31 is evacuated to a pressure similar to that of the film formation tank 11. .
  • the inside of the storage container 21 and the inside of the cylindrical portion 23 are also evacuated.
  • the partition valve 29 is opened, the storage container 21 is moved into the film formation tank 11 together with the cylindrical portion 23 and the rod-shaped body 25, and the partition container 29 is positioned below the partition valve 29. Close the valve 29.
  • ⁇ Evaporation device> The dropping port 24 described above is located above the bottom surface of the evaporation tank 41, and the organic material dropped from the dropping port 24 of the material supply device 20 collides with the bottom surface of the evaporation tank 41 and is in contact with the bottom surface. Stand still on the bottom.
  • An evaporation heating device 42 for heating the evaporation tank 41 is provided around the evaporation tank 41.
  • the evaporation heating device 42 such as a resistance heating element is connected to a heating power supply 44 and generates heat when energized by the heating power supply 44 to heat the evaporation tank 41.
  • the bottom surface of the evaporation tank 41 is heated by the evaporation heating device 42. Therefore, the bottom surface of the evaporation tank 41 comes into contact with the organic material supplied from the material supply device 20 and heats the organic material. This is a heating unit 43.
  • the organic material has an evaporation temperature that is the temperature at which evaporation starts, and when heated, the organic material does not evaporate immediately even if the temperature is raised to the evaporation temperature, so the organic material is heated to a temperature higher than the evaporation temperature.
  • the evaporation rate increases at higher temperatures, but the higher the temperature, the greater the amount of decomposition.
  • the heat generation of the evaporation heating device 42 is controlled by the amount of current supplied by the heating power supply 44, and the heating unit 43 is set to a vapor generation temperature that is higher than the evaporation temperature of the organic material disposed on the surface thereof. .
  • the vapor generation temperature is so high that no decomposition of the organic material occurs.
  • the organic material on the heating unit 43 is heated to the vapor generation temperature and evaporated to generate an organic material vapor.
  • the organic material supplied from the material supply device 20 is brought into contact with the heating member, and the heating member is heated by the evaporation heating device 42,
  • the heating member serves as the heating unit 43 to generate steam.
  • a material supply amount measuring means 100 for measuring the mass of the organic material dropped from the dropping port 24 may be provided inside the evaporation tank 41.
  • the material supply amount measuring unit 100 includes a material receiving member 101 and a temperature measurement analysis device 102.
  • the temperature measurement analyzer 102 measures the temperature of the material receiving member 101.
  • the material receiving member 101 is heated to a constant temperature by the evaporation heating device 42, but when the organic material falls, the temperature temporarily decreases due to the heat capacity and heat of vaporization of the organic material.
  • a correspondence table is created by measuring the amount of material drop and temperature change in advance.
  • the temperature measurement analysis device 102 calculates the fall amount of the organic material from the temperature of the material receiving member 101 and the correspondence table.
  • the evaporation tank 41 and the discharge device 12 are connected by a connecting pipe 45 (45 1 to 45 3 ), and a buffer device 50 is provided in the middle thereof.
  • the connecting pipe 45 between the buffer device 50 and the discharge device 12 is provided with a switching device 10 composed of a three-way valve.
  • a trap tank 61 of a trap device 60 described later is connected to the switching device 10, and the buffer device 50 is connected to either the discharge device 12 or the trap device 60 by the operation of the switching device 10. It is configured.
  • the buffer device 50 may not be connected to either.
  • the trap tank 61 is connected to the inside of the film forming tank 11 or the vacuum exhaust system 19. Here, it is connected to the inside of the film formation tank 11.
  • the film formation tank 11 is continuously evacuated by the vacuum exhaust system 19 connected to the film formation tank 11, and when the buffer device 50 is connected to the discharge device 12, The evaporation tank 41 is evacuated by the evacuation system 19 through the discharge device 12.
  • the buffer device 50 is evacuated through the trap device 60.
  • the rod-shaped body 25 rotates slowly, and an amount of organic material supplied to one film formation target is supplied to the heating unit 43 little by little.
  • the organic material that has come into contact with the heating unit 43 evaporates in a short time, and the organic material located on the heating unit 43 does not increase.
  • the organic material has a constant evaporation rate. Steam is generated.
  • a backflow prevention gas supply system 49 is connected to the cylindrical portion 23, and a backflow prevention gas is introduced so that vapor generated in the evaporation tank 41 does not enter the storage container 21. Further, the backflow preventing gas suppresses the temperature rise of the cylindrical portion 23, thereby preventing the organic material in the cylindrical portion 23 from being dissolved or sublimated.
  • the backflow prevention gas is heated to a temperature substantially the same as the temperature in the evaporation tank 41.
  • the backflow prevention gas is a rare gas such as argon. Since the pressure in the evaporation tank 41 and the pressure in the film formation tank 11 are lower in the film formation tank 11, the vapor flows out in the direction of the film formation tank 11 together with the backflow preventing gas.
  • the buffer device 50 has a buffer tank 51, one end of connecting pipe 45 1 connected to the opening 48 of the evaporation tank 41, the other end connected to the opening 53 of the buffer tank 51, the connection pipe 45 1 The steam moves toward the buffer tank 51.
  • a heat insulating device 46 is wound around the connecting pipe 45 (45 1 to 45 3 ), and heat is generated by energization from the heat insulating power supply 47.
  • the connecting pipe 45 is an organic material disposed in the steam generating device 13. The temperature is raised to a temperature equal to or higher than the evaporation temperature.
  • a buffer section 52 having a plurality of thin flow paths through which gas flows is arranged inside the buffer tank 51, and when the steam flows in the flow path, the steam collides with the wall surface of the flow path in the buffer section 52.
  • the buffer section 52 has the thin metal wires partially overlapped, and the gap between the thin metal wires is used as the flow path.
  • the buffer section 52 can be configured by stacking a plurality of metal nets.
  • a buffer temperature control device 55 is installed around the buffer tank 51.
  • the buffer power supply 56 energizes the buffer temperature control device 55
  • the buffer temperature control device 55 generates heat, and the buffer tank 51 and the buffer section are heated. And 52 are heated.
  • the temperature of the buffer temperature control device 55 can be controlled by the energization amount of the buffer power source 56. Further, the buffer temperature control device 55 may have means for cooling the buffer unit 52. If the temperature of the buffer layer 51 is set lower than the evaporation temperature of the organic material by the buffer temperature control device 55, the organic material is deposited in the buffer layer 51 and accumulated in the buffer unit 52.
  • the buffer temperature controller 55 is controlled by a detection value of a film thickness sensor 86 described later.
  • the temperature of the buffer unit 52 is raised, and when larger than the desired value, the temperature of the buffer unit 52 is lowered.
  • the gas inlet opening 53 of the buffer tank 51 is covered with a buffer unit 52, and in the buffer unit 52, a gap between the nets and the nets or an overlapping part of the nets is a flow path for the vapor and the backflow preventing gas.
  • the steam flows in the buffer unit 52.
  • the buffer tank 51 an opening 57 is provided for the outflow, one end of the connecting pipe 45 2 is connected to the opening 57, the other end is connected to the switching device 10.
  • the switching device 10 is connected to the main body 35 of the discharge device 12 and the trap tank 61 of the trap device 60 by connecting pipes 45 3 and 69, respectively.
  • the switching device 10 is configured to connect the buffer device 50 to one of the discharge device 12 and the trap device 60, and flows out of the buffer tank 51 when the buffer device 50 is connected to the discharge device 12.
  • the steam thus introduced is introduced into the main body 35 of the discharge device 12 and is introduced into the trap tank 61 of the trap device 60 when connected to the trap device 60.
  • the amount of vapor generated may vary due to fluctuations in the material falling speed.
  • organic materials are powders, it is difficult to drop a certain amount at the same speed.
  • the evaporation rate can be easily controlled and a certain amount of vapor can be supplied.
  • the organic material is accumulated in the buffer device 50 at a temperature close to the evaporation temperature that is equal to or lower than the evaporation temperature, the temperature can be rapidly raised to the evaporation temperature or higher. Further, since the organic material is accumulated in the buffer device 50 for a short time, the organic material is not deteriorated.
  • the organic material is accumulated in the buffer device 50 while the film formation target 15 is replaced, and control is performed so that vapor is released from the buffer device 50 during film formation.
  • steam is supplied from the evaporation device 40, the buffer device 50 is brought to the evaporation temperature or lower, and the buffer device 50 is connected to the trap tank 61 by the switching device 10.
  • the rotational speed of the rotating device 28 is controlled based on the measurement result of the material supply amount measuring means 100.
  • the buffer device 50 is brought to the evaporation temperature or higher, and when the detection value of the film thickness sensor 86 becomes constant, the buffer device 50 is connected to the discharge device 12 by the switching device 10.
  • the buffer temperature control device 55 is controlled by a detection value of a film thickness sensor 86 described later.
  • the vapor may be supplied from the evaporation device 40 to the buffer device 50 at a supply amount slower than the film formation speed, or the vapor from the evaporation device 40 may be stopped. If it is detected from the detection value of the film thickness sensor 86 that the film formation of the specified thickness is completed, the connection destination of the switching device 10 is switched to the trap tank 61, and the temperature of the buffer device 50 is lowered below the evaporation temperature.
  • a cooling medium pipe 63 is wound around the trap tank 61, and the liquid cooling medium cooled from the circulation device 66 is supplied to the cooling medium pipe 63, and the trap tank 61 and the trap unit 62 are connected to the trap apparatus 60. It is cooled to a trap temperature that is lower than the evaporation temperature of the organic material that generated the supplied vapor.
  • the cooling medium flowing through the cooling medium pipe 63 returns to the circulation device 66, is cooled in the circulation device 66, and is supplied again to the cooling medium pipe 63.
  • a waste pipe 68 is connected to the trap tank 61, and a discharge port 67, which is the other end of the waste pipe 68, is disposed in the film forming tank 11.
  • the vapor that comes into contact with the surface of the trap part 62 in the trap tank 61 is deposited on the surface of the trap part 62 and is removed from the gas flowing in the trap tank 61. Accordingly, the gas discharged from the discharge port 67 does not contain much organic material vapor, and most of the gas introduced as the backflow prevention gas is evacuated by the evacuation of the evacuation system 19.
  • the organic material deposited on the trap part 62 can be recovered by taking the trap part 62 out of the trap tank 61 and peeling or re-evaporating it.
  • the film forming apparatus 3 of the present invention does not include the trap device 60, and switches the connection between the discharge device 12 of the buffer device 50 and the waste pipe 68 by the switching device 10.
  • the discharge port 67 at the tip of the disposal pipe 68 can be arranged at a position different from the lower side of the film formation target 15 in the film formation tank 11, or the discharge port can be connected to a vacuum exhaust device (second example).
  • Other configurations are the same as those of the film forming apparatus 2 of FIG.
  • the trap part 62 is spaced apart and arranged with a gap, and is composed of a plurality of metal plates through which steam and backflow prevention gas flow, but a collection of metal fibers and a plurality of metal A net may be laminated. These do not have to be made of metal.
  • a sampling device 84 is attached to a path (here, the connecting pipe 45 2 ) through which the vapor flows between the buffer device 50 and the switching device 10, and the sampling device 84 is provided with a thin film. Vapor before passing through the buffer section 52 and reaching the switching device 10 is extracted from the hole 85 together with the backflow prevention gas, and is connected at a position different from the position where the film formation target 15 passes in the film formation tank 11. some of the tubes 45 within 2 is released.
  • a film thickness sensor 86 is disposed close to the position facing the pore 85, and the gas released from the pore 85 into the film formation tank 11 reaches the film thickness sensor 86, and is in the reaching gas.
  • An organic thin film is formed on the surface of the film thickness sensor 86 by the vapor of the organic material.
  • the relationship between the film thickness of the organic thin film grown on the surface of the film thickness sensor 86 and the film thickness of the organic thin film grown on the film forming object 15 held on the holder 16 and positioned on the discharge device 12 has been examined in advance. Even if the vapor discharged from the buffer device 50 is guided to the trap device 60, the film thickness of the organic thin film formed on the surface of the film thickness sensor 86 is measured by the measurement device 87 connected to the film thickness sensor 86. The film thickness of the organic thin film when the vapor guided to the trap device 60 reaches the surface of the film formation target 15 can be obtained. From the film formation time, the film formation speed on the surface of the film formation target 15 can also be obtained by measurement with the film thickness sensor 86 and the measuring device 87.
  • the temperature of the buffer temperature control device 55 is controlled, and the amount of reevaporation from the buffer device 50 is controlled. Further, the end of film formation is detected based on the detection value of the film thickness sensor 86.
  • the switching device 10 connects the buffer device 50 to the discharge device 12, and then holds one film formation target 15 on the holder 16 and positions it above the discharge device 12.
  • the composition and thickness of the organic thin film formed on the film formation target 15 are determined, and are necessary for forming the organic thin film of one film formation target 15, and are evaporated in the plurality of vapor generating apparatuses 13a and 13b.
  • the rod-shaped body 25 is rotated by the rotating device 28 so that the supply speed becomes a predetermined value, and the organic material on the spiral protrusion 26 moves downward from above in the cylindrical portion 23.
  • the organic material falls into the evaporation tank 41 from the drop port 24 at the lower end of the cylindrical portion 23.
  • the supply speed is a value corresponding to the rotation speed, and the rotation speed is also a value corresponding to the required amount.
  • the generated vapor of each organic material is temporarily stored in the buffer device 50 and re-evaporated, so that the vapor is supplied to the discharge device 12 at a stable supply rate.
  • a composition is formed on the surface of the film formation target 15 with a predetermined film thickness in the film thickness direction. An organic thin film with a predetermined value is formed.
  • the discharge device 12 is provided with a heater 38 and generates heat when energized by a power source 39 to heat the main body 35 and the discharge plate 36.
  • a power source 39 to heat the main body 35 and the discharge plate 36.
  • release apparatus 12 is heated to the temperature more than the highest evaporation temperature among the evaporation temperature of the supplied vapor
  • the film formation target 15 on the discharge device 12 is moved from the discharge device 12 after an organic thin film having a predetermined thickness is formed, and the film formation target that has not been formed is placed on the discharge device 12.
  • the buffer device 50 may be connected to the trap device 60 by the switching device 10 while the film formation target 15 is not disposed on the discharge device 12.
  • the structure of the plurality of vapor generating apparatuses 13a and 13b included in the film forming apparatuses 2 and 3 is the same, but may be different.
  • the organic compound serving as a base material is a vapor generating apparatus 13 c having the same structure as the vapor generating apparatuses 13 a and 13 b of the film forming apparatuses 2 and 3 of the first and second examples. 12 and a vapor generator 14 having an evaporation vessel 71 in which an organic compound 72 as a dopant material is disposed is connected to the same release device 12.
  • An amount of the organic compound 72 which is a dopant material of the vapor generating device 14 is arranged in an evaporation container 71 with respect to a plurality of substrates.
  • the wound evaporator heating device 78 such as a resistance heating element
  • evaporator vessel 71 is connected to the discharge unit 12 by a connecting pipe 45 5.
  • the connection pipe 45 3 which connects the second example deposition apparatus steam generating apparatus 13a, 13b switching device 10 and discharge device 12 shown in a few.
  • the heating power supply 79 energizes the evaporation heating device 78 to generate heat, thereby heating the evaporation container 71.
  • the internal organic compound 72 reaches a temperature equal to or higher than its evaporation temperature, an organic compound vapor is generated inside the evaporation container 71.
  • the switching device 70 is provided consisting of a three-way valve.
  • the switching device 70 is connected to a trap device 60, and by switching the switching device 70, the vapor generated in the evaporation container 71 can be supplied to both the discharge device 12 and the trap device 60. Yes.
  • the trapping device 60 can also prevent the evaporation container 71 from being connected to either.
  • the vapor of the organic compound 72 generated inside the evaporation container 71 is supplied to the discharge device 12.
  • the organic compound vapor generated in the evaporation tank 41 is supplied from the buffer device 50 into the discharge device 12
  • the vapor generated in the evaporation container 71 is supplied to the discharge device 12, and Both vapors generated in the evaporation tank 41 are introduced into the discharge device 12.
  • a carrier gas supply system 73 is connected to the evaporation container 71 so that the vapor generated in the evaporation container 71 can be carried on the carrier gas flow and supplied to the discharge device 12 together with the carrier gas. ing.
  • the switching device 70 blocks the discharge device 12 and the evaporation container 71 and connects the evaporation container 71 to the trap device 90. Can do.
  • the trap device 90 has a trap tank 77, the inside of which is connected to the inside of the film forming tank 11, and is configured to be evacuated by the evacuation system 19. Inside the trap tank 77, a trap portion 96 that comes into contact with steam is provided, and around the trap tank 77, a cooling medium pipe 93 is wound.
  • the cooling medium pipe 93 is connected to the circulation device 92, supplied with a liquid cooling medium cooled from the circulation device 92, and flows through the cooling medium pipe 93.
  • the temperature of the trap tank 77 and the trap section 96 is cooled by the cooling medium flowing in the cooling medium pipe 93 to a trap temperature that is lower than the evaporation temperature of the vapor flowing in the trap tank 77.
  • Each cooling medium pipe 63, 93 and each circulation device 66, 92 constitute a low temperature device.
  • the carrier gas and a very small amount of organic compound vapor emitted from the trap device 90 are evacuated by the evacuation of the evacuation system 19.
  • the organic compound adhering to the trap parts 62 and 96 can be recovered and reused.
  • a film thickness sensor 76 is arranged.
  • the film thickness sensor 76 is connected to the measuring device 74.
  • the sampling device 75 and the film thickness sensor 76 are the same as the sampling device 84 between the buffer device 50 and the switching device 10 and the film thickness sensor 86 that faces the sampling device 84, and the trap device 90 with vapor alone or together with the carrier gas. in a state where it flows and in a part of the steam flowing through the connecting pipe 45 5 is released into the film forming chamber 11 from the pores 95 of the sampling device 75, it reaches the film thickness sensor 76, a thin film on its surface Form. The thickness of the formed film is measured by the measuring device 74, and the film forming speed is obtained from the time of formation. When the determined deposition rate reaches a predetermined value, the dopant vapor can be supplied from the evaporation vessel 71 to the discharge device 12.
  • the film formation target The thin film can be formed on the surface of the object 15.
  • the vapors respectively flowing into the trap devices 60 and 90 from the evaporation container 71 and the buffer device 50 are switched by the switching devices 10 and 70 so as to be supplied to the discharge device 12 together with the carrier gas. 12 and the film formation target 15 face each other while moving still or moving, and an organic thin film to which a dopant is added is formed on the surface of the film formation target 15.
  • the film formation speed is measured by the film thickness sensor 76 and the measuring device 74, and the heating power source 79 is used for evaporation around the evaporation container 71.
  • the dopant is not disposed in the storage container 21, but is disposed in the evaporation container 71.
  • the base material organic compound and the dopant organic compound are mixed. It can also be arranged in the storage container 21. However, it is easier to manage the evaporation rate by arranging the storage container 21 and the evaporation container 71 separately.
  • the base material vapor may flow backward from the connection pipe 45 3 to the connection pipe 45 5 . Since the pressure in the connecting pipe 45 3 to the connecting pipe 45 5 is in the molecular flow region, the reverse flow can be prevented by forming the check baffle 110 in the connecting pipe 45 5 .
  • the adsorption / desorption temperature between multiple steam generators also varies from one steam generator to another depending on the type of organic material, and the optimal variation in steam generation can be achieved according to the type of organic material (chemical structure). It is set to a valid value.
  • one vapor generation device can be connected to one discharge device 12, and in this case, since the organic thin film is formed at a constant film formation rate by the buffer device 50, the film quality is increased in the film thickness direction. Can form a uniform organic thin film.
  • the organic material can be collected by the trap device 60.
  • the number of the nets of the laminated nets per unit area is closer to the far side of the openings 53 and farther from the far side. There are more nets that are the same as the nets or far away. With this arrangement, it is possible to prevent the inside of the buffer device 50 from being blocked during storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 蒸発槽41内に少量ずつ供給された有機材料が、加熱部43に接触して加熱され、蒸気となってバッファ装置50に導入される。バッファ装置50には、流路を有するバッファ部52が設けられており、流路を流れる蒸気はバッファ部52に衝突し、バッファ部52に固体の有機材料となって付着する。バッファ部52の表面が固体の有機材料で覆われていると、蒸発槽41内の蒸気発生量の変動はバッファ部52によって打ち消され、放出装置12からの蒸気放出が安定する。放出装置12からの蒸気放出が安定するまでは、蒸気をトラップ装置60に導き、トラップ部62表面に析出させておくと、回収して再利用することができる。

Description

有機薄膜の成膜装置および有機材料成膜方法
 本発明は有機薄膜の成膜装置にかかり、特に、材料を少量ずつ加熱して蒸発させる成膜装置および有機材料成膜方法に関する。
 有機物から成る発光材料が添加された有機薄膜は、膜厚方向に電流が流れると発光材料の種類に応じた色の光で発光することから、最近では、有機薄膜を用いた表示装置や照明装置が実用化され、量産化されるようになっている。
 しかしながら、多量の有機材料を加熱すると、加熱中の有機材料の一部は短時間で蒸発するものの、大部分の有機材料は長時間加熱されてしまうため、有機材料が変質し、品質が高い有機薄膜を得ることができない。
 それに対し、基板毎に一定量の有機材料を少しずつ加熱装置に供給し、有機材料を少量ずつ加熱して蒸気を発生させようとすると、一枚の基板に対する一定量の有機材料の供給を開始し、終了するまでの間に、供給量が変動し、成膜対象物の成膜速度も変動してしまう。
 特に、同じ成膜対象物にホストとなる有機材料の蒸気と、発光材料となる有機材料の蒸気とを一緒に到達させて発光層を形成する場合は、最適な含有率が決まっているため、一方の有機材料の蒸気の到達速度が変動すると含有率が変化し、膜厚方向の含有率が変動してしまう。発光に最適な含有率にならない部分が形成されると、発光層の発光量が低下してしまう。
 また、従来では、成膜対象物に向かって放出されない有機材料の蒸気は廃棄されていたため、放出装置からの蒸気放出量が安定するまで成膜を開始しないようにすると、無駄になる有機材料が増加するという問題もある。
特開2002-249868号公報
 成膜に用いる有機材料を少量ずつ加熱して蒸発させる際に、放出装置から放出される有機材料の蒸気量が一定である成膜装置を提供する。
 また、成膜に用いられない蒸気から有機材料を回収し、再利用できる成膜装置を提供する。
 上記課題を解決するために、本発明は、成膜対象物が配置される成膜槽と、有機材料の蒸気が生成される蒸気生成装置と、前記蒸気生成装置で生成された前記蒸気が供給される放出装置とを有し、前記放出装置に形成された放出口から、前記成膜槽内に前記蒸気が放出される有機薄膜の成膜装置であって、前記蒸気生成装置は、前記有機材料を供給する材料供給装置と、前記材料供給装置から前記有機材料が供給され、前記有機材料を蒸発する蒸発装置と、前記蒸発装置で生成された前記蒸気を析出および再蒸発するバッファ部と、前記バッファ部の温度を制御するバッファ用温度制御装置とを有し、前記蒸発装置で生成された前記蒸気は前記バッファ部を通って前記放出装置に供給され、前記成膜対象物に前記有機薄膜が形成される成膜装置である。
 また、本発明は、複数の前記蒸気生成装置を有する成膜装置である。
 また、本発明は、前記バッファ部から出た蒸気の一部を検出する膜厚モニタを有し、前記バッファ用温度制御装置は、前記膜厚モニタの検出値に基づき、前記バッファ部の温度を制御する成膜装置である。
 また、本発明は、前記材料供給装置は、螺旋を有する軸を回転させて前記有機材料を前記蒸発装置に落下させる成膜装置である。
 また、本発明は、前記蒸発装置は、前記材料供給装置から供給された前記有機材料の量を測定する材料供給量測定手段を有する成膜装置である。
 また、本発明は、前記材料供給量測定手段は、前記材料供給装置から供給された前記有機材料を受ける受部材と前記受部材の温度変化から前記有機材料の供給量を算出する温度測定解析装置を有する成膜装置である。
 また、本発明は、前記バッファ部は、複数の金属細線が集合して成り、前記金属細線が互いに部分的に重なり合い、前記金属細線と前記金属細線との隙間によって流路が形成された成膜装置である。
 また、本発明は、前記バッファ部は、複数の網から構成され、前記網の網目と前記網目の隙間に流路が形成された成膜装置である。
 また、本発明は、複数の前記網のうち、第一の網の単位面積当たりの網目個数は、前記バッファ部内を流れる前記蒸気の前記第一の網よりも下流側に位置する第二の網の単位面積当たりの網目個数以下にされている成膜装置である。
 また、本発明は、前記材料供給装置には、逆流防止ガスを供給する逆流防止ガス供給装置が接続された成膜装置である。
 また、本発明は、前記蒸気生成装置は、前記バッファ部を通過した前記蒸気の進行方向を、前記放出装置内部である第一の方向と、前記放出装置の内部以外に向かう第二の方向との間で切り換える切替装置を有する成膜装置である。
 また、本発明は、前記蒸気生成装置は、前記蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成されたトラップ装置と、前記トラップ部を前記蒸発温度より低温なトラップ温度に冷却する低温装置とを有し、前記第二の方向は、前記トラップ槽内部にされた成膜装置である。
 また、本発明は、成膜対象物が配置される成膜槽と、有機材料の蒸気が生成される蒸気生成装置と、前記蒸気生成装置で生成された前記蒸気が供給される放出装置とを有し、前記放出装置に形成された放出口から、前記成膜槽内に前記蒸気が放出される有機薄膜の成膜装置であって、前記蒸気生成装置は、前記有機材料を供給する前記材料供給装置と、前記材料供給装置から供給される前記有機材料を蒸発する蒸発装置と、前記蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成されたトラップ装置と、前記トラップ部を前記蒸発温度より低温であるトラップ温度に冷却する低温装置と、前記蒸発装置で生成された前記蒸気の進行方向を、前記放出装置と前記トラップ部のいずれか一方に切り替える切替装置とを有し、前記蒸発装置で生成され前記蒸気が前記放出装置に供給されて、前記成膜対象物に前記有機薄膜が形成される成膜装置である。
 また、本発明は、前記蒸気生成装置は、膜厚センサーを有し、前記蒸気生成装置で生成され、前記切替装置に到達する前の前記蒸気の一部が前記膜厚センサーに導かれ、前記膜厚センサー上に前記有機薄膜が成長するように構成された成膜装置である。
 また、本発明は、同一の前記放出装置に接続された複数の前記蒸気生成装置を有する成膜装置である。
 また、本発明は、複数の前記蒸気生成装置の前記材料供給装置には、異なる化学構造の前記有機材料がそれぞれ配置された成膜装置である。
 また、本発明は、複数の前記蒸気生成装置の前記材料供給装置に配置された前記有機材料は、形成される前記有機薄膜中の含有率が異なる成膜装置である。
 また、本発明は、前記放出装置には、前記有機薄膜内に、前記有機材料よりも少量含有される有機化合物である副材料が配置された蒸発用容器が接続され、前記副材料の蒸気は、前記有機材料の蒸気よりも小さい導入速度で前記放出装置内に導入されるように構成された成膜装置である。
 また、本発明は、前記副材料の蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成された副トラップ装置を有し、前記蒸発用容器内で生成された前記副材料の蒸気は、前記放出装置と前記副トラップ装置に切り替えて導入させることができるように構成された成膜装置である。
 また、本発明は、有機材料を所定量の速度で加熱部に供給し、蒸気を発生させ、前記蒸気をバッファ部に導入し、前記バッファ部内で析出させ、前記バッファ部で析出した有機材料を再蒸発させ、前記再蒸発させた蒸気を基板に放出し成膜させる有機材料成膜方法である。
 また、本発明は、前記バッファ部から導出される蒸気の一部を測定し、前記測定された値に基づき前記バッファ部の温度を制御する、有機材料成膜方法である。
 また、本発明は、前記基板の入替え時に前記バッファ部内に前記蒸気を析出するように前記バッファ部の温度を前記有機材料の蒸発温度より下げ、前記基板への成膜時に前記バッファ部内に析出した前記有機材料が再蒸発するように前記バッファ部の温度を前記有機材料の蒸発温度より上げる、有機材料成膜方法である。
 本願によれば、必要な量の原料を供給しながら短時間で加熱して蒸発させ、かつ、成膜速度を安定させることができる。
 本発明によれば、複数種類の有機材料が混合された有機薄膜の膜厚方向の組成を一定にすることができる。
 単一の有機材料で有機薄膜を形成する場合は、膜厚方向の品質が一定の有機薄膜を得ることができる。
 また、従来は廃棄されていた蒸気をトラップ装置によって有機材料の種類毎に個別に回収できるので、再利用することができる。
本発明の第一例の成膜装置を説明するための内部側面図 その成膜装置の複数の蒸気発生装置の位置関係を説明するための図面 本発明の第二例の成膜装置を説明するための内部側面図 本発明の第三例の成膜装置を説明するための内部側面図
2~5……成膜装置
10、70……切替装置
11……成膜槽
12……放出装置
13a、13b……蒸気生成装置
15……成膜対象物
21……蓄積容器
41……蒸発槽
43……加熱部
45、451~455……接続管
50……バッファ装置
52……バッファ部
60、90……トラップ装置
71……蒸発用容器
<全体の構成>
 図1、2の符号2は、本発明の第一例の成膜装置を示している。
 図1は、この成膜装置2を側面から見たときの断面図であり、図2は、上方から見た内部の配置図である。図1に示すように、この成膜装置2は、成膜槽11と、放出装置12とを有しており、図2に示すように、同じ放出装置12に、複数の蒸気生成装置13a、13b(図1では2台)が接続されている。
 蒸気生成装置13a、13bは、ここでは内部構造は同じであり、図1では、符号13で示す蒸気生成装置によって、二台の蒸気生成装置13a、13bの内部が一緒に示されている。
 図2では、蒸気生成装置13a、13bは放出装置12の長手方向同じ側の端部に接続されているが、同じ端部に接続しても、一方と他方が反対側の端部に接続されていてもよい。
 成膜槽11には成膜対象物15を搬入・搬出するとき開閉する搬入口81と搬出口82とが設けられている。
 先ず、搬入口81と、搬出口82と、後述する仕切バルブ29とを閉じ、真空排気系19を動作させ、成膜槽11の内部を真空排気し、真空雰囲気にする。真空排気系19は継続的に動作させ、成膜槽11の内部を真空排気する。
 放出装置12は、本体部35と、本体部35の開口を塞ぐ放出板36とを有している。放出板36には、複数の放出口37が形成されている。
 放出装置12は成膜槽11内に配置されており、放出装置12の内部は、放出口37を介して、真空排気系19によって真空排気される。
 各蒸気生成装置13a、13b内には、同一又は異なる化学構造の有機材料が配置されている。
 異なる化学構造の場合は、例えば、一方が有機薄膜の母材(有機薄膜を構成する材料)の有機化合物であり、他方が母材の有機薄膜中に含有されるドーパント(例えば発光材)であり、形成される有機薄膜中の含有率(重量百分率)は異なっており、母材の有機化合物とドーパントの有機化合物とは、別々の蒸気生成装置13a、13b内に母材の方がドーパントよりも多く配置されている。この場合、蒸気生成装置13a、13bを同時に稼動させ母材とドーパントを共蒸着することができる。もしくは、蒸気生成装置13a、13bに異なる材料を配置し、別々に稼動させて積層膜を形成することもできる。
 各蒸気生成装置13a、13bは、配置された有機材料の蒸気を生成して同じ放出装置12にそれぞれ供給するように構成されている。
 放出装置12は、各蒸気生成装置13a、13bから供給された蒸気をそれぞれ有機材料の種類ごとに別の放出口37から成膜槽11の内部に放出するように構成されているか、又は、本体部35内に空洞が形成され、各蒸気生成装置13a、13bが生成した蒸気は同じ空洞に供給され、空洞内で混合されて各放出口37から成膜槽11の内部に放出されるように構成されている。
 この例では放出装置12は、本体部35と放出板36とが成膜槽11の内部に配置されているが、成膜槽11の気密性を維持した状態であれば、放出板36を成膜槽11の内部に位置させながら、本体部35の一部又は全部を成膜槽11の外部に配置することもできる。
 成膜槽11内の放出装置12の上方位置には、移動装置17が配置されている。成膜槽11の内部には、成膜槽11の外部から、搬入口81を通ってホルダ16に配置された基板もしくは基板とマスクが一体とされた成膜対象物15が搬入され、移動装置17は、搬入されたホルダ16と成膜対象物15とを一緒に移動させ、放出装置12の真上位置で一旦静止させて成膜した後、搬出口82から成膜槽11の外部に搬出するように構成されている。
 搬入口81と搬出口82の外部には、仕込取出室(図示なし)もしくは他の真空処理室(図示なし)が接続され、搬入口81からの成膜対象物15の搬入と、搬出口82からの成膜対象物15の搬出の際には、成膜槽11内の真空雰囲気が維持されるようになっている。
 成膜対象物15の有機薄膜を形成する成膜面は放出装置12に向けられており、放出装置12の真上に位置し、放出装置12の放出板36と対面した状態で一旦静止して放出装置12の放出口37から有機材料の蒸気を放出させると、蒸気が成膜面に均一に到着し、成膜面に有機薄膜が形成される。成膜対象物15を静止させず、放出装置12の真上位置を通過させて成膜してもよい。
 複数の蒸気生成装置13a、13bから異なる有機材料の蒸気が放出装置12に供給され、放出装置12から放出されて各有機材料の蒸気が成膜対象物15の成膜面に到達すると、複数種類の有機材料の蒸気が均一に混合されたガスが到達し、有機薄膜が形成される。
 蒸気生成装置13a、13bの構成を説明する。
 各蒸気生成装置13a、13bは、交換装置30、材料供給装置20、蒸発装置40、バッファ装置50、トラップ装置60をそれぞれ有している。
 交換装置30は、材料供給装置20と接続され、材料供給装置20は蒸発装置40に接続され、蒸発装置40はバッファ装置50に接続され、バッファ装置50は切替装置10に接続されている。切替装置10は、トラップ装置60と、放出装置12に接続されている。
<材料供給装置>
 材料供給装置20は、蓄積容器21と、中空の筒状部23と、直線状の棒状体25とを有している。蓄積容器21は、下部が漏斗状に傾斜され、漏斗状の部分の下端に開口が形成されている。筒状部23は、蓄積容器21に、その下端の開口に内部が連通して接続されている。棒状体25は、筒状部23と蓄積容器21の内部に鉛直に挿通されている。棒状体25の上部は蓄積容器21の漏斗状の部分よりも上方に位置し、下部は筒状部23内に位置している。
 棒状体25には、回転しながら鉛直方向に伸びる螺旋状の突起26が設けられている。蓄積容器21内には、粉体の有機材料が配置されている。筒状部23内では、突起26の外周と筒状部23の内周面との間の距離は、有機材料の粒子の大きさよりも狭く形成されており、有機材料は、突起26と筒状部23の間の隙間を通って落下しないように構成されている。
 また、蓄積容器21内に粉体状の有機材料が配置されると、有機材料は突起26上に乗るように構成されているが、突起26の螺旋状の傾斜は、棒状体25が静止した状態では有機材料が突起26上を滑落又は転落しない角度に形成されているので、棒状体25が静止した状態では蓄積容器21の内部の有機材料が、筒状部23内部を突起26上を通って落下することはない。
 蒸発装置40は、蒸発槽41を有しており、蒸発槽41の天井には、貫通孔が設けられ、筒状部23の下端は貫通孔から蒸発槽41内に気密に挿入されている。筒状部23の下端は漏斗状に窄まっており、その先端には落下口24が形成されており、筒状部23の内部空間と蒸発槽41の内部空間は、落下口24によって接続されている。ここでは蒸発槽41は成膜槽11の内部に配置されている。
 突起26と突起26との間の空間は、上端が蓄積容器21の内部空間に接続され、下端が筒状部23の内部空間と落下口24を介して、蒸発槽41の内部空間と接続されている。
 棒状体25には回転装置28が接続されており、棒状体25は、その鉛直な中心軸線を中心に回転できるようにされている。
 棒状体25が所定方向に回転すると、突起26上に位置する有機材料は押し出され、突起26と突起26の隙間の下端から落下し、筒状部23を通って、落下口24から蒸発槽41の内部に入る。
 蓄積容器21内に有機材料が配置された状態では、落下量は回転量に比例しており、落下量と回転量の関係は予め求められている。一個の成膜対象物に薄膜を形成する際には、棒状体25は、一個の成膜対象物に対して必要な量の有機材料が落下する回転量だけゆっくり回転する。従って、材料供給装置20から蒸発装置40に有機材料が少量ずつ落下して供給される。
 この例では、各蒸気生成装置13a、13bの蓄積容器21内に、互いに異なる化学構造であり、例えば有機薄膜の母材の有機材料と発色剤の有機材料とが、別々に配置されているものとする。有機薄膜中の含有量は、母材と発色材とで大きく異なる。
<交換装置>
 交換装置30は、真空槽である交換室31を有しており、交換室31は成膜槽11の天井に配置されている。
 交換室31と成膜槽11との間には、仕切バルブ29が設けられ、交換室31内の雰囲気と成膜槽11内の雰囲気とは、仕切バルブ29を介して接続できるように構成されている。
 蓄積容器21には移動装置が設けられており、蓄積容器21は、筒状部23と棒状体25と一緒に上下移動可能に構成されている。
 成膜作業の際には、蓄積容器21は成膜槽11内に配置され、仕切バルブ29の真下に位置しており、仕切バルブ29が閉じられた状態では、成膜槽11内部は大気雰囲気から分離され、成膜槽11に接続された真空排気系19を動作させて成膜槽11内を真空雰囲気にできる。
 交換室31には扉32が設けられており、扉32を開けると交換室31を大気雰囲気に接続できるようにされている。
 交換室31には真空排気系33が接続されており、仕切バルブ29と扉32とを閉じた状態で真空排気系33によって交換室31内を真空排気し、交換室31が成膜槽11と同程度の真空雰囲気になったところで、仕切バルブ29の直下に位置する蓄積容器21を筒状部23と棒状体25と共に上方に移動させ、仕切バルブ29を通過させ、蓄積容器21を筒状部23と棒状体25と共に交換室31内に搬入する。
 次いで、仕切バルブ29を閉じ、成膜槽11内を交換室31から切り離し、真空排気系33を交換室31から切り離した後、交換室31内に大気を導入し、交換室31内を大気圧にする。このとき、成膜槽11内の真空雰囲気は維持されている。
 その状態で扉32を開け、蓄積容器21の内部と大気雰囲気とを扉32で接続し、大気雰囲気中で有機材料を蓄積容器21内に投入する。このとき、上述したように、蓄積容器21内に投入された有機材料は、突起26上を滑落や転落しない。
 蓄積容器21内に有機材料が配置された後、扉32を閉じ、真空排気系33によって交換室31内を真空排気し、交換室31内が成膜槽11と同程度の圧力まで真空排気する。このとき、蓄積容器21の内部や筒状部23の内部も真空排気される。
 交換室31内が真空排気された後、仕切バルブ29を開け、蓄積容器21を筒状部23と棒状体25と共に成膜槽11内に移動させ、仕切バルブ29の下方に位置したところで、仕切バルブ29を閉じる。
<蒸発装置>
 上述した落下口24は、蒸発槽41の底面の上方に位置しており、材料供給装置20の落下口24から落下した有機材料は、蒸発槽41の底面に衝突し、底面と接触している状態で底面上で静止する。
 蒸発槽41の周囲には蒸発槽41を加熱する蒸発用加熱装置42が設けられている。抵抗発熱体等の蒸発用加熱装置42は加熱用電源44に接続されており、加熱用電源44によって通電されると発熱し、蒸発槽41を加熱する。
 従って、蒸発装置40では、蒸発用加熱装置42によって蒸発槽41の底面が加熱されるため、蒸発槽41の底面が、材料供給装置20から供給された有機材料と接触して有機材料を加熱する加熱部43である。
 有機材料は蒸発を開始する温度である蒸発温度を有しており、加熱されたときに蒸発温度に昇温しても直ぐに蒸発しないので、有機材料は蒸発温度よりも高温に加熱される。高温になると蒸発速度は早くなるが、温度が高いほど分解する量が多くなる。
 蒸発用加熱装置42の発熱は加熱用電源44の通電量によって制御されており、加熱部43は、その表面に配置された有機材料の蒸発温度よりも高い温度である蒸気生成温度にされている。蒸気生成温度は有機材料の分解が生じない程度に高温である。加熱部43上の有機材料は蒸気生成温度に昇温されて蒸発し、有機材料の蒸気が発生する。
 なお、蒸発槽41の底面上に加熱用部材を配置し、加熱用部材に材料供給装置20から供給された有機材料を接触させ、蒸発用加熱装置42によって加熱用部材を加熱する場合は、その加熱用部材が加熱部43となって蒸気が発生する。
 また、蒸発槽41内部には、落下口24から落下した有機材料の質量を計測する材料供給量測定手段100を設けても良い。例えば材料供給量測定手段100は、材料受部材101と温度測定解析装置102を有する。温度測定解析装置102は、材料受部材101の温度を測定する。材料受部材101は蒸発用加熱装置42により一定温度に加熱されているが、有機材料が落下すると有機材料の熱容量と気化熱により一時的に温度が低下する。事前に材料の落下量と温度変化を測定しておき対応表が作成される。温度測定解析装置102は、材料受部材101の温度と対応表から有機材料の落下量を算出する。
 蒸発槽41と放出装置12は、接続管45(451~453)によって接続されており、その途中には、バッファ装置50が設けられている。
 また、バッファ装置50と放出装置12の間の接続管45には、三方弁から成る切替装置10が設けられている。切替装置10には、後述するトラップ装置60のトラップ槽61が接続されており、切替装置10の動作により、バッファ装置50は、放出装置12とトラップ装置60のいずれか一方に接続されるように構成されている。バッファ装置50がどちらにも接続されないようにしてもよい。
 トラップ槽61は、成膜槽11の内部又は真空排気系19に接続されている。ここでは成膜槽11の内部に接続されている。
 成膜時には、成膜槽11は、成膜槽11に接続された真空排気系19によって継続して真空排気されており、バッファ装置50が放出装置12に接続されていると、バッファ装置50と蒸発槽41とは、放出装置12を介して真空排気系19によって真空排気される。バッファ装置50がトラップ装置60に接続されていると、バッファ装置50はトラップ装置60を介して真空排気される。
 材料供給装置20内では、棒状体25はゆっくり回転し、一個の成膜対象物に対して供給される量の有機材料は、少量ずつ加熱部43に供給される。
 加熱部43と接触した有機材料は短時間で蒸発し、加熱部43上に位置する有機材料は増加しないようにされており、その結果、蒸発槽41内では、一定の蒸発速度で有機材料の蒸気が発生している。
 筒状部23には、逆流防止ガス供給系49が接続されており、蒸発槽41で発生した蒸気が蓄積容器21内に入らないように逆流防止ガスが導入される。また、逆流防止ガスは筒状部23の温度の上昇を抑制することで、筒状部23内の有機材料が、溶解または昇華することを防止する。蒸発槽41内で逆流防止ガスは蒸発槽41内の温度と略同じ温度に加熱される。逆流防止ガスはアルゴン等の希ガスである。
 蒸発槽41内の圧力と成膜槽11内の圧力は、成膜槽11の方が低いので、蒸気は逆流防止ガスと共に、成膜槽11の方向に流出する。
<バッファ装置>
 バッファ装置50はバッファ槽51を有しており、一端が蒸発槽41の開口48に接続された接続管451は、その他端がバッファ槽51の開口53に接続され、接続管451内を、蒸気は、バッファ槽51内に向けて移動する。
 なお、接続管45(451~453)には保温装置46が巻き付けられており、保温用電源47からの通電によって発熱し、接続管45を、この蒸気生成装置13に配置された有機材料の蒸発温度以上の温度に昇温させている。
 バッファ槽51の内部には、気体が流れる細い流路を複数有するバッファ部52が配置されており、流路内を蒸気が流れると、蒸気がバッファ部52内の流路の壁面に衝突する。
 一例では、バッファ部52は、金属細線が部分的に重なり合い、金属細線の隙間が流路にされており、具体的には、金属製の網を複数枚積層して構成することもできる。
 バッファ槽51の周囲には、バッファ用温度制御装置55が設置されており、バッファ用電源56がバッファ用温度制御装置55に通電するとバッファ用温度制御装置55は発熱し、バッファ槽51とバッファ部52とを加熱する。
 バッファ用温度制御装置55の温度はバッファ用電源56の通電量によって制御可能となっている。また、バッファ用温度制御装置55は、バッファ部52を冷却する手段を有していても良い。バッファ用温度制御装置55によりバッファ層51の温度を、有機材料の蒸発温度より低くすれば、バッファ層51内で有機材料が析出しバッファ部52に蓄積される。
 また、バッファ用温度制御装置55によりバッファ層51の温度を、有機材料の蒸発温度より高くすれば、バッファ層51内で有機材料が再蒸発しバッファ層51から放出される。さらに、バッファ用温度制御装置55は後述する膜厚センサ86の検出値により制御される。
  具体的には、膜厚センサ86の検出値が所望より小さいときには、バッファ部52の温度を上げ、所望より大きいときには、バッファ部52の温度を下げる。バッファ槽51の気体流入用の開口53は、バッファ部52によって覆われており、バッファ部52内では、網と網が重なった隙間や網の目の重なり部分が蒸気と逆流防止ガスの流路になり、バッファ部52内を蒸気が流れる。
 バッファ槽51には、流出用の開口57が設けられており、この開口57に接続管452の一端が接続され、他端が切替装置10に接続されている。
 また、切替装置10は、接続管453、69によって、放出装置12の本体部35とトラップ装置60のトラップ槽61にそれそれ接続されている。
 切替装置10は、バッファ装置50を放出装置12とトラップ装置60のいずれか一方に接続するように構成されており、バッファ装置50が放出装置12に接続されている場合は、バッファ槽51から流出した蒸気は、放出装置12の本体部35に導入され、トラップ装置60に接続されている場合は、トラップ装置60のトラップ槽61内に導入される。
 有機材料を落下させ蒸発して有機材料の蒸気を発生させる場合は、材料の落下速度の変動により蒸気発生量が変動する場合がある。特に有機材料は粉体のため、一定量を同速度で落下させることは難しい。しかし、バッファ装置50に一度蓄積し、それを再蒸発させれば、蒸発速度の制御が容易で、一定量の蒸気を供給することができる。また、バッファ装置50を、蒸発温度以下の蒸発温度に近い温度で有機材料を蓄積しておけば、蒸発温度以上に速やかに昇温することができる。また、有機材料がバッファ装置50に蓄積される時間は短時間であるから、有機材料が劣化することもない。
 具体的には、成膜対象物15を交換する間に、バッファ装置50に有機材料を蓄積し、成膜時にバッファ装置50から蒸気を放出するように制御する。
 蓄積時には、蒸発装置40から蒸気を供給し、バッファ装置50を蒸発温度以下にし、バッファ装置50を切替装置10でトラップ槽61に接続する。バッファ装置50で蓄積される量を制御するために、材料供給量測定手段100の測定結果に基づき、回転装置28の回転数が制御される。
 成膜開始時には、バッファ装置50を蒸発温度以上にし、膜厚センサ86の検出値が一定になったところで、バッファ装置50を切替装置10で放出装置12に接続する。成膜時にはバッファ装置50の温度を制御するために、バッファ用温度制御装置55を後述する膜厚センサ86の検出値により制御する。成膜時には、バッファ装置50に成膜速度より遅い供給量で蒸発装置40から蒸気を供給してもよいし、蒸発装置40からの蒸気を停止しても良い。膜厚センサ86の検出値により規定厚さの成膜が終了したことが検出されれば、切替装置10の接続先をトラップ槽61に切り替え、バッファ装置50の温度を蒸発温度以下に下げる。
<トラップ装置>
 切替装置10が、バッファ装置50をトラップ装置60に接続している場合、バッファ装置50から放出された蒸気はトラップ槽61内に導入される。
 トラップ槽61の内部には、トラップ槽61内に導入された蒸気が接触する金属製のトラップ部62を有している。
 トラップ槽61には冷却媒体管63が巻き回されており、循環装置66から冷却された液体状の冷却媒体が冷却媒体管63に供給され、トラップ槽61とトラップ部62が、トラップ装置60に供給される蒸気を発生させた有機材料の蒸発温度よりも低い温度であるトラップ温度に冷却されている。冷却媒体管63を流れた冷却媒体は循環装置66に戻り、循環装置66内で冷却されて冷却媒体管63に再供給される。
 トラップ槽61には廃棄管68の一端が接続されており、廃棄管68の他端である排出口67は成膜槽11内に配置されている。
 トラップ槽61内でトラップ部62の表面と接触した蒸気はトラップ部62の表面に析出し、トラップ槽61内を流れる気体から除去される。従って、排出口67から排出されるガスには有機材料の蒸気はほどんど含有されておらず、逆流防止ガスとして導入されたガスが大部分であり、真空排気系19の真空排気によって真空排気される。
 トラップ部62に析出した有機材料は、トラップ槽61の内部からトラップ部62を取り出し、剥離もしくは再蒸発させることで回収することができる。
 なお、図3に示すように、本発明の成膜装置3は、トラップ装置60を設けず、切替装置10により、バッファ装置50の放出装置12と、廃棄管68との間の接続を切り替え、廃棄管68の先端の排出口67を、成膜槽11の成膜対象物15の下方とは異なる位置に配置したり、排出口を真空排気装置に接続することもできる(第二例)。他の構成は、図1の成膜装置2と同じである。
 トラップ部62は、離間して隙間を持って配置され、隙間を蒸気や逆流防止ガスが流れる複数の金属製板で構成されているが、金属製の繊維の集合物や、金属製の複数の網を積層させて構成してもよい。なお、これらは金属製でなくてもよい。
<膜厚センサ>
 本発明の成膜装置2、3では、バッファ装置50と切替装置10との間の蒸気が流れる経路(ここでは接続管452)にサンプリング装置84が取り付けられ、サンプリング装置84に設けられた細孔85から、バッファ部52を通過して切替装置10に到達する前の蒸気が逆流防止ガスと共に抽出され、成膜槽11内の、成膜対象物15の通過位置とは異なる位置で、接続管452内の一部が放出されている。
 細孔85と対面する位置には、近接して膜厚センサ86が配置されており、細孔85から成膜槽11内に放出されたガスは膜厚センサ86に到達し、到達ガス中の有機材料の蒸気によって膜厚センサ86表面に有機薄膜が形成される。
 膜厚センサ86表面に成長する有機薄膜の膜厚と、ホルダ16に保持されて放出装置12上に位置する成膜対象物15に成長する有機薄膜の膜厚との関係は予め調べられており、バッファ装置50から放出された蒸気がトラップ装置60に導かれていても、膜厚センサ86が接続された測定装置87による測定によって、膜厚センサ86表面に形成された有機薄膜の膜厚から、トラップ装置60に導かれた蒸気が成膜対象物15表面に到達するときの有機薄膜の膜厚を求めることができる。成膜時間から、膜厚センサ86と測定装置87の測定によって、成膜対象物15表面での成膜速度を求めることもできる。膜厚センサ86の検出値に基づいて、バッファ用温度制御装置55の温度が制御され、バッファ装置50からの再蒸発量が制御される。また、膜厚センサ86の検出値に基づいて、成膜の終了時が検出される。
<成膜作業>
 成膜作業を開始する場合、切替装置10によって、バッファ装置50を放出装置12に接続した後、一枚の成膜対象物15をホルダ16に保持して放出装置12の上方に位置させる。
 成膜対象物15に形成される有機薄膜の組成と膜厚は決められており、一個の成膜対象物15の有機薄膜の形成に必要で、複数の蒸気生成装置13a、13b内で蒸発させる、各種類の有機材料の必要量はわかっており、各蒸気生成装置13a、13b内で、配置された有機材料の必要量を、材料供給装置20から一定の供給量速度(供給量速度=必要量/成膜時間)で、蒸発槽41内に落下させ、加熱部43によって蒸気を生成する。
 ここでは、回転装置28によって、供給速度が決められた値になるように、棒状体25を回転させて、螺旋の突起26上の有機材料が、筒状部23内で上方から下方に移動し、有機材料は、筒状部23下端の落下口24から蒸発槽41内に落下する。供給速度は、回転速度に応じた値であり、回転数も、必要量に応じた値である。
 生成した各有機材料の蒸気は、一時的にバッファ装置50に蓄積され再蒸発することで、安定した供給量速度で放出装置12に供給される。所定の放出量速度(単位時間当たりの蒸気の放出量)で放出口37から成膜槽11内に放出されると、成膜対象物15表面に、所定の膜厚で、膜厚方向に組成が所定値で一定な有機薄膜が形成される。
 放出装置12は、ヒータ38が設けられており、電源39によって通電されると発熱し、本体部35や放出板36を加熱する。複数の有機材料の蒸気が供給される場合、放出装置12は、供給される蒸気の蒸発温度のうち、最高の蒸発温度以上の温度に加熱されている。
 放出装置12上の成膜対象物15は、所定膜厚の有機薄膜が形成された後、放出装置12上から移動され、未成膜の成膜対象物が放出装置12上に配置される。
 必要量の有機材料の供給が終了すると、棒状体25の回転は停止しているから、放出装置12上に成膜対象物15が位置しないときには、加熱部43上に有機材料は配置せず、無駄な蒸気は生成されないようになっている。
 ただし、成膜対象物15が放出装置12上に配置されていない間は、切替装置10によってバッファ装置50をトラップ装置60に接続してもよい。
 なお、第一、第二例の成膜装置2、3では、各成膜装置2、3が有する複数の蒸気生成装置13a、13bの構造は同じであったが、異なっていても良い。例えば、図4に示す成膜装置4では、母材となる有機化合物は第一、第二例の成膜装置2、3の蒸気生成装置13a、13bと同じ構造の蒸気生成装置13cを放出装置12に接続すると共に、同じ放出装置12に、ドーパント材料である有機化合物72が配置された蒸発用容器71を有する蒸気発生装置14が接続されている。
 この蒸気発生装置14のドーパント材料である有機化合物72は、複数枚の基板に対する分量が蒸発用容器71に配置されている。
 蒸発用容器71の周囲には、抵抗発熱体等の蒸発用加熱装置78が巻き回されており、蒸発用容器71は、接続管455によって放出装置12に接続されている。ここでは、第一、第二例の成膜装置2、3で示した蒸気生成装置13a、13bの切替装置10と放出装置12との間を接続する接続管453に接続されている。
 そして、加熱用電源79によって、蒸発用加熱装置78に通電して発熱させ、蒸発用容器71を加熱する。内部の有機化合物72がその蒸発温度以上の温度になると、蒸発用容器71の内部で有機化合物蒸気が発生する。
 蒸発用容器71と放出装置12の間(ここでは、接続管455の途中)には、三方弁から成る切替装置70が設けられている。
 この切替装置70にはトラップ装置60が接続されており、切替装置70の切替によって、蒸発用容器71内で発生した蒸気は、放出装置12とトラップ装置60のどちらにも供給できるようになっている。トラップ装置60によって蒸発用容器71がどちらにも接続されないようにすることもできる。
 蒸発用容器71が放出装置12に接続されると、蒸発用容器71の内部で発生した有機化合物72の蒸気は放出装置12に供給される。このとき、バッファ装置50から、放出装置12内に、蒸発槽41内で生成された有機化合物蒸気が供給されていると、放出装置12には、蒸発用容器71内で生成された蒸気と、蒸発槽41内で生成された蒸気の両方が、放出装置12内に導入される。
 蒸発用容器71には、キャリアガス供給系73が接続されており、蒸発用容器71内で生成された蒸気が、キャリアガス流に乗って、キャリアガスと共に放出装置12に供給できるように構成されている。
 蒸発用容器71からの放出装置12への蒸気供給を停止するときは、切替装置70によって放出装置12と蒸発用容器71との間を遮断し、蒸発用容器71をトラップ装置90に接続することができる。
 トラップ装置90は、トラップ槽77を有しており、その内部は、成膜槽11の内部に接続されており、真空排気系19によって真空排気されるように構成されている。
 トラップ槽77の内部には、蒸気が接触するトラップ部96が設けられており、トラップ槽77の周囲には、冷却媒体管93が巻き回されている。
 冷却媒体管93は、循環装置92に接続され、循環装置92から冷却された液体状の冷却媒体が供給され、冷却媒体管93内を流れるようになっている。
 トラップ槽77とトラップ部96の温度は、冷却媒体管93内を流れる冷却媒体によって、トラップ槽77内を流れる蒸気の蒸発温度よりも低温であるトラップ温度に冷却されるようにされている。各冷却媒体管63、93と各循環装置66、92とで、それぞれ低温装置が構成されている。
 トラップ部96がそのトラップ温度に冷却された状態で、有機化合物72の蒸気が単独又はキャリアガスと共に、蒸発用容器71からトラップ装置90に向けて流れ、トラップ槽77内に導入されると、その蒸気は、トラップ部96と接触し、トラップ部96の表面に付着する。
 成膜槽11の内部は真空排気系19によって真空排気されているから、トラップ装置90から放出されたキャリアガス及びごく少量の有機化合物の蒸気は、真空排気系19の真空排気によって排気される。
 トラップ部62、96に付着した有機化合物は回収して再利用することができる。
 なお、接続管455の切替装置70と蒸発用容器71との間には、サンプリング装置75が取り付けられており、サンプリング装置75に設けられた細孔95と近接して対面する位置には、膜厚センサ76が配置されている。膜厚センサ76は、測定装置74に接続されている。
 このサンプリング装置75と膜厚センサ76は、バッファ装置50と切替装置10との間のサンプリング装置84と、それに対面する膜厚センサ86と同様であり、蒸気が単独で又はキャリアガスと共にトラップ装置90に流入している状態で、接続管455内を流れる蒸気の一部がサンプリング装置75の細孔95から成膜槽11内に放出され、膜厚センサ76に到達し、その表面に薄膜を形成する。形成された膜厚の厚みは測定装置74によって測定され、形成された時間とから、成膜速度が求められる。
 求めた成膜速度が予め決められた値になると、蒸発用容器71からドーパントの蒸気を放出装置12に供給できるようになる。
 ドーパントによる成膜速度と、バッファ装置50から放出装置12に供給される蒸気による、膜厚センサ86で求めた成膜速度とが、両方ともそれぞれ予め決められた値になったとき、成膜対象物15の表面に薄膜を形成できる状態になる。
 このときに蒸発用容器71とバッファ装置50からトラップ装置60、90にそれぞれ流入していた蒸気は、切替装置10、70によって、キャリアガスと共に放出装置12に供給されるように切換えられ、放出装置12と成膜対象物15とが静止又は移動しながら対面し、ドーパントが添加された有機薄膜が成膜対象物15表面に形成される。
 成膜対象物15表面に有機薄膜を形成している間でも、成膜速度は、膜厚センサ76と測定装置74によって測定されており、加熱用電源79は、蒸発用容器71周囲の蒸発用加熱装置78への通電量を制御し、接続管455内の蒸気圧力が一定になるように、蒸発用容器71内での蒸気発生速度を制御している。
 なお、上記第三例ではドーパントを蓄積容器21内には配置せず、蒸発用容器71に配置したが、蒸発用容器を設けずに、母材の有機化合物とドーパントの有機化合物を混合して蓄積容器21内に配置することもできる。但し、蓄積容器21と蒸発用容器71とに別々に配置して蒸発速度を管理する方が容易である。
 ドーパントは母材よりも蒸発量が少ないため、母材の蒸気が接続管453から接続管455に逆流する場合がある。接続管453から接続管455内の圧力は分子流領域であるので、接続管455内に逆止バッフル110を形成することで逆流を防止することができる。
<その他>
 上記各実施例では、一台の放出装置12に二台の蒸気生成装置13a、13bを接続したが、一台の放出装置12に、三台以上の蒸気生成装置を接続することもできる。
 複数の蒸気生成装置間の蒸気生成温度は、有機材料の種類によって蒸気生成装置毎に異なっており、有機材料の種類(化学構造)と有機薄膜の組成に応じて分解せずに蒸気発生が安定する最適な値に設定されている。
 また、複数の蒸気生成装置間の吸着脱離温度も、有機材料の種類によって蒸気生成装置毎に異なっており、有機材料の種類(化学構造)に応じて、蒸気発生の変動を一定化できる最適な値に設定されている。
 また、一台の放出装置12に一台の蒸気生成装置を接続することもでき、この場合には、バッファ装置50によって有機薄膜が一定の成膜速度で形成されるため、膜厚方向に膜質が均一な有機薄膜を形成することができる。また、トラップ装置60による有機材料の回収も行うことができる。
 なお、バッファ槽51内で、蒸気が流入する開口53からの距離が異なる網の網目を比較すると、積層された網の網目の単位面積当たりの個数は、前記開口53に近い方と遠い方の網とで同じか、遠い方の網の方を多くしている。この配置により、バッファ装置50内で蓄積時に内部が閉塞することを防止できる。

Claims (22)

  1.  成膜対象物が配置される成膜槽と、
     有機材料の蒸気が生成される蒸気生成装置と、
     前記蒸気生成装置で生成された前記蒸気が供給される放出装置とを有し、
     前記放出装置に形成された放出口から、前記成膜槽内に前記蒸気が放出される有機薄膜の成膜装置であって、
     前記蒸気生成装置は、前記有機材料を供給する材料供給装置と、
     前記材料供給装置から前記有機材料が供給され、前記有機材料を蒸発する蒸発装置と、
     前記蒸発装置で生成された前記蒸気を析出および再蒸発するバッファ部と、
     前記バッファ部の温度を制御するバッファ用温度制御装置とを有し、
     前記蒸発装置で生成された前記蒸気は前記バッファ部を通って前記放出装置に供給され、前記成膜対象物に前記有機薄膜が形成される成膜装置。
  2.  複数の前記蒸気生成装置を有する請求項1に記載の成膜装置。
  3.  前記バッファ部から出た蒸気の一部を検出する膜厚モニタを有し、
     前記バッファ用温度制御装置は、前記膜厚モニタの検出値に基づき、前記バッファ部の温度を制御する請求項1または2に記載の成膜装置。
  4.  前記材料供給装置は、螺旋を有する軸を回転させて前記有機材料を前記蒸発装置に落下させる請求項1乃至3のいずれか1項に記載の成膜装置。
  5.  前記蒸発装置は、前記材料供給装置から供給された前記有機材料の量を測定する材料供給量測定手段を有する請求項1乃至4のいずれか1項に記載の成膜装置。
  6.  前記材料供給量測定手段は、前記材料供給装置から供給された前記有機材料を受ける受部材と前記受部材の温度変化から前記有機材料の供給量を算出する温度測定解析装置を有する請求項5に記載の成膜装置。
  7.  前記バッファ部は、複数の金属細線が集合して成り、前記金属細線が互いに部分的に重なり合い、前記金属細線と前記金属細線との隙間によって流路が形成された請求項1乃至6のいずれか1項に記載の成膜装置。
  8.  前記バッファ部は、複数の網から構成され、
     前記網の網目と前記網目の隙間に流路が形成された請求項1乃至6のいずれか1項に記載の成膜装置。
  9.  複数の前記網のうち、第一の網の単位面積当たりの網目個数は、前記バッファ部内を流れる前記蒸気の前記第一の網よりも下流側に位置する第二の網の単位面積当たりの網目個数以下にされている請求項8に記載の成膜装置。
  10.  前記材料供給装置には、逆流防止ガスを供給する逆流防止ガス供給装置が接続された請求項1乃至9のいずれか1項に記載の成膜装置。
  11.  前記蒸気生成装置は、前記バッファ部を通過した前記蒸気の進行方向を、前記放出装置内部である第一の方向と、前記放出装置の内部以外に向かう第二の方向との間で切り換える切替装置を有する請求項1乃至10のいずれか1項に記載の成膜装置。
  12.  前記蒸気生成装置は、
     前記蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成されたトラップ装置と、
     前記トラップ部を前記蒸発温度より低温なトラップ温度に冷却する低温装置とを有し、
     前記第二の方向は、前記トラップ槽内部にされた請求項11に記載の成膜装置。
  13.  成膜対象物が配置される成膜槽と、
     有機材料の蒸気が生成される蒸気生成装置と、
     前記蒸気生成装置で生成された前記蒸気が供給される放出装置とを有し、
     前記放出装置に形成された放出口から、前記成膜槽内に前記蒸気が放出される有機薄膜の成膜装置であって、
     前記蒸気生成装置は、
     前記有機材料を供給する前記材料供給装置と、
     前記材料供給装置から供給される前記有機材料を蒸発する蒸発装置と、
     前記蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成されたトラップ装置と、
     前記トラップ部を前記蒸発温度より低温であるトラップ温度に冷却する低温装置と、
     前記蒸発装置で生成された前記蒸気の進行方向を、前記放出装置と前記トラップ部のいずれか一方に切り替える切替装置とを有し、
     前記蒸発装置で生成され前記蒸気が前記放出装置に供給されて、前記成膜対象物に前記有機薄膜が形成される成膜装置。
  14.  前記蒸気生成装置は、膜厚センサーを有し、
     前記蒸気生成装置で生成され、前記切替装置に到達する前の前記蒸気の一部が前記膜厚センサーに導かれ、
     前記膜厚センサー上に前記有機薄膜が成長するように構成された請求項13に記載の成膜装置。
  15.  同一の前記放出装置に接続された複数の前記蒸気生成装置を有する請求項13または14に記載の成膜装置。
  16.  複数の前記蒸気生成装置の前記材料供給装置には、異なる化学構造の前記有機材料がそれぞれ配置された請求項15に記載の成膜装置。
  17.  複数の前記蒸気生成装置の前記材料供給装置に配置された前記有機材料は、形成される前記有機薄膜中の含有率が異なる請求項15に記載の成膜装置。
  18.  前記放出装置には、前記有機薄膜内に、前記有機材料よりも少量含有される有機化合物である副材料が配置された蒸発用容器が接続され、前記副材料の蒸気は、前記有機材料の蒸気よりも小さい導入速度で前記放出装置内に導入されるように構成された請求項1乃至17のいずれか1項に記載の成膜装置。
  19.  前記副材料の蒸気が接触するトラップ部がトラップ槽の内部に配置され、前記トラップ槽内部が真空排気可能に構成された副トラップ装置を有し、
     前記蒸発用容器内で生成された前記副材料の蒸気は、前記放出装置と前記副トラップ装置に切り替えて導入させることができるように構成された請求項18に記載の成膜装置。
  20.  有機材料を所定量の速度で加熱部に供給し、蒸気を発生させ、
     前記蒸気をバッファ部に導入し、前記バッファ部内で析出させ、
     前記バッファ部で析出した有機材料を再蒸発させ、
     前記再蒸発させた蒸気を基板に放出し成膜させる有機材料成膜方法。
  21.  前記バッファ部から導出される蒸気の一部を測定し、
     前記測定された値に基づき前記バッファ部の温度を制御する、
     請求項20に記載の有機材料成膜方法。
  22.  前記基板の入替え時に前記バッファ部内に前記蒸気を析出するように前記バッファ部の温度を前記有機材料の蒸発温度より下げ、
     前記基板への成膜時に前記バッファ部内に析出した前記有機材料が再蒸発するように前記バッファ部の温度を前記有機材料の蒸発温度より上げる、
     請求項20または21に記載の有機材料成膜方法。
PCT/JP2010/071980 2009-12-09 2010-12-08 有機薄膜の成膜装置および有機材料成膜方法 WO2011071064A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080055842.7A CN102639746B (zh) 2009-12-09 2010-12-08 有机薄膜的成膜装置以及有机材料成膜方法
JP2011545224A JP5474089B2 (ja) 2009-12-09 2010-12-08 有機薄膜の成膜装置および有機材料成膜方法
KR1020127014728A KR101379646B1 (ko) 2009-12-09 2010-12-08 유기 박막의 성막 장치 및 유기 재료 성막 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009279944 2009-12-09
JP2009-279944 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011071064A1 true WO2011071064A1 (ja) 2011-06-16

Family

ID=44145608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071980 WO2011071064A1 (ja) 2009-12-09 2010-12-08 有機薄膜の成膜装置および有機材料成膜方法

Country Status (5)

Country Link
JP (1) JP5474089B2 (ja)
KR (1) KR101379646B1 (ja)
CN (1) CN102639746B (ja)
TW (1) TWI461554B (ja)
WO (1) WO2011071064A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195916A (ja) * 2010-03-23 2011-10-06 Hitachi Zosen Corp 蒸着装置
WO2012039383A1 (ja) * 2010-09-22 2012-03-29 株式会社アルバック 真空処理装置及び有機薄膜形成方法
JP2014031555A (ja) * 2012-08-06 2014-02-20 Kaneka Corp 真空蒸着装置
WO2014027578A1 (ja) * 2012-08-13 2014-02-20 株式会社カネカ 真空蒸着装置及び有機el装置の製造方法
JP2014523486A (ja) * 2011-06-22 2014-09-11 アイクストロン、エスイー Oledの堆積方法および装置
JP2015063724A (ja) * 2013-09-25 2015-04-09 日立造船株式会社 真空蒸着装置
JP2015086451A (ja) * 2013-10-31 2015-05-07 株式会社アルバック 蒸発装置、成膜装置
WO2017189443A1 (en) 2016-04-25 2017-11-02 Innovative Advanced Materials, Inc. Effusion cells, deposition systems including effusion cells, and related methods
EP3396731A1 (en) * 2017-04-10 2018-10-31 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus
JP6959680B1 (ja) * 2020-11-13 2021-11-05 株式会社シンクロン 成膜装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874469B2 (ja) * 2012-03-19 2016-03-02 東京エレクトロン株式会社 トラップ装置及び成膜装置
KR102035146B1 (ko) * 2014-05-26 2019-10-22 가부시키가이샤 아루박 성막 장치, 유기막의 막후 측정 방법 및 유기막용 막후 센서
DE102014109194A1 (de) * 2014-07-01 2016-01-07 Aixtron Se Vorrichtung und Verfahren zum Erzeugen eines Dampfes für eine CVD- oder PVD-Einrichtung
CN104120399B (zh) * 2014-08-04 2016-07-06 熊丹 真空镀膜装置及其真空镀膜方法
WO2017191796A1 (ja) * 2016-05-06 2017-11-09 株式会社アルバック 薄膜製造装置、薄膜製造方法
WO2017195674A1 (ja) * 2016-05-13 2017-11-16 株式会社アルバック 有機薄膜製造装置、有機薄膜製造方法
KR102098455B1 (ko) * 2017-12-26 2020-04-07 주식회사 포스코 연속 증착 장치 및 연속 증착 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247631A (ja) * 1992-03-04 1993-09-24 Matsushita Electric Ind Co Ltd 合成樹脂被膜の形成装置及び形成方法
JP2000012532A (ja) * 1998-06-17 2000-01-14 Nec Corp 高分子膜の成長方法
JP2006274370A (ja) * 2005-03-30 2006-10-12 Hitachi Zosen Corp 蒸着装置
JP2006348369A (ja) * 2005-06-20 2006-12-28 Canon Inc 蒸着装置及び蒸着方法
JP2009079244A (ja) * 2007-09-26 2009-04-16 Canon Inc 成膜装置及び成膜方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185694C (zh) * 1999-06-26 2005-01-19 特利康控股有限公司 在基体上形成膜的方法和装置
JP4599727B2 (ja) * 2001-02-21 2010-12-15 株式会社デンソー 蒸着装置
US7625601B2 (en) * 2005-02-04 2009-12-01 Eastman Kodak Company Controllably feeding organic material in making OLEDs
CN101591764B (zh) * 2008-05-29 2013-03-20 昆山维信诺显示技术有限公司 材料成膜方法及其制备的有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247631A (ja) * 1992-03-04 1993-09-24 Matsushita Electric Ind Co Ltd 合成樹脂被膜の形成装置及び形成方法
JP2000012532A (ja) * 1998-06-17 2000-01-14 Nec Corp 高分子膜の成長方法
JP2006274370A (ja) * 2005-03-30 2006-10-12 Hitachi Zosen Corp 蒸着装置
JP2006348369A (ja) * 2005-06-20 2006-12-28 Canon Inc 蒸着装置及び蒸着方法
JP2009079244A (ja) * 2007-09-26 2009-04-16 Canon Inc 成膜装置及び成膜方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195916A (ja) * 2010-03-23 2011-10-06 Hitachi Zosen Corp 蒸着装置
WO2012039383A1 (ja) * 2010-09-22 2012-03-29 株式会社アルバック 真空処理装置及び有機薄膜形成方法
JP2014523486A (ja) * 2011-06-22 2014-09-11 アイクストロン、エスイー Oledの堆積方法および装置
JP2014031555A (ja) * 2012-08-06 2014-02-20 Kaneka Corp 真空蒸着装置
WO2014027578A1 (ja) * 2012-08-13 2014-02-20 株式会社カネカ 真空蒸着装置及び有機el装置の製造方法
CN104540975A (zh) * 2012-08-13 2015-04-22 株式会社钟化 真空蒸镀装置以及有机el装置的制造方法
JPWO2014027578A1 (ja) * 2012-08-13 2016-07-25 株式会社カネカ 真空蒸着装置及び有機el装置の製造方法
US9496527B2 (en) 2012-08-13 2016-11-15 Kaneka Corporation Vacuum deposition device and method of manufacturing organic EL device
JP2015063724A (ja) * 2013-09-25 2015-04-09 日立造船株式会社 真空蒸着装置
JP2015086451A (ja) * 2013-10-31 2015-05-07 株式会社アルバック 蒸発装置、成膜装置
WO2017189443A1 (en) 2016-04-25 2017-11-02 Innovative Advanced Materials, Inc. Effusion cells, deposition systems including effusion cells, and related methods
CN109477200A (zh) * 2016-04-25 2019-03-15 创新先进材料股份有限公司 泻流单元和含有泻流单元的沉积系统以及相关方法
JP2019515132A (ja) * 2016-04-25 2019-06-06 イノベイティブ アドバンスド マテリアルズ,インク.Innovative Advanced Materials,Inc. 流出セル、流出セルを含む蒸着システム、及び関連方法
EP3455385A4 (en) * 2016-04-25 2020-02-26 Innovative Advanced Materials, Inc. EFFUSION CELLS, DEPOSITION SYSTEMS WITH EFFUSION CELLS AND RELATED METHODS
CN109477200B (zh) * 2016-04-25 2020-11-27 创新先进材料股份有限公司 泻流单元和含有泻流单元的沉积系统以及相关方法
JP7197364B2 (ja) 2016-04-25 2022-12-27 イノベイティブ アドバンスド マテリアルズ,インク. 流出セル、流出セルを含む蒸着システム、及び関連方法
EP3396731A1 (en) * 2017-04-10 2018-10-31 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus
US11534790B2 (en) 2017-04-10 2022-12-27 Samsung Display Co., Ltd. Apparatus and method of manufacturing display apparatus
JP6959680B1 (ja) * 2020-11-13 2021-11-05 株式会社シンクロン 成膜装置
WO2022102355A1 (ja) * 2020-11-13 2022-05-19 株式会社シンクロン 成膜装置
JP2022078588A (ja) * 2020-11-13 2022-05-25 株式会社シンクロン 成膜装置

Also Published As

Publication number Publication date
TW201132776A (en) 2011-10-01
CN102639746B (zh) 2014-03-12
TWI461554B (zh) 2014-11-21
KR20120080655A (ko) 2012-07-17
KR101379646B1 (ko) 2014-03-28
CN102639746A (zh) 2012-08-15
JP5474089B2 (ja) 2014-04-16
JPWO2011071064A1 (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5474089B2 (ja) 有機薄膜の成膜装置および有機材料成膜方法
JP5114288B2 (ja) 成膜装置、有機薄膜形成方法
JP4402016B2 (ja) 蒸着装置及び蒸着方法
KR101128745B1 (ko) 증기 방출 장치, 유기 박막 증착 장치 및 유기 박막 증착 방법
KR101132581B1 (ko) 유기 재료 증기 발생 장치, 성막원, 성막 장치
TW200907078A (en) Deposition source, deposition apparatus, and film forming method
EP2746423A1 (en) Evaporator, deposition arrangement, deposition apparatus and methods of operation thereof
JP2009084674A (ja) 蒸着源、蒸着装置
WO2006001205A1 (ja) 蒸発装置、蒸着装置および蒸着装置における蒸発装置の切替方法
KR101128747B1 (ko) 유기 박막 제조 방법
TW201842224A (zh) 鍍膜裝置以及用於在真空下於基板上進行反應性氣相沉積的方法
JP5091678B2 (ja) 成膜用材料の推定方法、解析方法、及び成膜方法
KR20100044862A (ko) 고체 물질을 위한 진공 증발 장치
JP2008519905A (ja) 気化した有機材料の付着の制御
WO2013028977A2 (en) Apparatus and method for the evaporation and deposition of materials
CN101057349A (zh) 用于控制有机材料的蒸发的方法和设备
KR101286803B1 (ko) 유기 화합물 증기 발생 장치 및 유기 박막 제조 장치
JP4974877B2 (ja) 成膜源、成膜装置
JP6276007B2 (ja) 蒸着装置、成膜方法及び有機el装置の製造方法
JP2012087328A (ja) 成膜装置及び成膜方法
JP2016079420A (ja) 有機薄膜形成装置
JP2022135270A (ja) 気化装置及び蒸着装置
JP2009161797A (ja) 成膜源、成膜装置
JP2021527165A (ja) 蒸発性材料を格納するためのカートリッジおよびその方法
JP2017537226A (ja) 基板上に層を堆積するための装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055842.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545224

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014728

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835984

Country of ref document: EP

Kind code of ref document: A1