WO2011058781A1 - 熱源システム - Google Patents

熱源システム Download PDF

Info

Publication number
WO2011058781A1
WO2011058781A1 PCT/JP2010/061112 JP2010061112W WO2011058781A1 WO 2011058781 A1 WO2011058781 A1 WO 2011058781A1 JP 2010061112 W JP2010061112 W JP 2010061112W WO 2011058781 A1 WO2011058781 A1 WO 2011058781A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
range
load
number control
control device
Prior art date
Application number
PCT/JP2010/061112
Other languages
English (en)
French (fr)
Inventor
松尾 実
上田 憲治
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP10829741.7A priority Critical patent/EP2500667B1/en
Priority to US13/389,223 priority patent/US9206994B2/en
Priority to KR1020127001593A priority patent/KR101383526B1/ko
Priority to CN201080035129.6A priority patent/CN102472519B/zh
Priority to KR1020147000156A priority patent/KR101471813B1/ko
Publication of WO2011058781A1 publication Critical patent/WO2011058781A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat source system including a plurality of heat source units such as a turbo refrigerator.
  • a heat source system including a plurality of heat source devices such as a centrifugal chiller is known as a means for realizing district air conditioning and air conditioning in factories and the like.
  • This heat source system controls the number of activated heat source units according to the required heat amount required by the external load. When performing this number control, it is required to obtain an energy saving effect by operating the activated heat source machine with high efficiency.
  • Patent Document 1 obtains the relationship between the coefficient of performance of an inverter-driven turbo chiller determined by the temperature of the cooling water supplied to the condenser and the load factor, and controls the inverter so that the coefficient of performance is equal to or greater than a predetermined value. Technology is disclosed.
  • the number control device that controls the number of heat source units needs to have a relationship between the coefficient of performance of each heat source unit and the load factor in advance. . For this reason, for example, when a new heat source device is added, an operation of newly inputting the relationship between the coefficient of performance of the added heat source device and the load factor to the number control device occurs.
  • the heat source device expansion work is a work that occurs in a system that has already been introduced to a customer, it is required to perform the work quickly with as few work steps as possible.
  • the present invention has been made in view of such circumstances, and provides a heat source system that can eliminate the need for manual adjustment in the number control device when the system is introduced or when a heat source device is added.
  • the present invention employs the following means.
  • the first aspect of the present invention controls a plurality of heat source units connected in parallel and activation and stop of the plurality of heat source units, and applies a load corresponding to a required load to the activated heat source unit.
  • Each of the heat source units has COP information unique to each of the heat source units indicating a relationship among an operation state, a coefficient of performance, and a load factor, and the COP that is held
  • An appropriate operating range which is a load range in which the coefficient of performance is equal to or greater than a predetermined value, is determined from information at a predetermined timing, and the appropriate operating range is transmitted to the number control device at a predetermined timing. It is to provide a heat source system that controls the number of units and assigns loads so that a machine is operated within an appropriate operating range of the heat source machine.
  • each heat source device has COP information indicating the relationship between its own coefficient of performance and the load factor, and the load range where the coefficient of performance is a predetermined value or more from this COP information. Is determined at a predetermined timing, and the appropriate operation range is transmitted to the number control device at a predetermined timing.
  • the number control device itself does not hold COP information of each heat source machine in advance, it is possible to grasp the appropriate operation range of each heat source machine based on the COP information notified from each heat source machine. It becomes possible to distribute the load within the proper operation range to the heat source unit.
  • manual adjustment such as registration of COP information for the number control device can be made unnecessary when a system is introduced in a building or when a heat source device is added.
  • each of the heat source devices has the operable range and the appropriate operation when the operable range is set due to restrictions on the devices constituting each of the heat source devices.
  • a first load range that satisfies both of the ranges, and transmits the first load range to the number control device, wherein the number control device operates each heat source unit within the first load range of the heat source unit. As described above, the number control and the load assignment may be performed.
  • an appropriate load range can be determined by operation in consideration of not only the proper operation range but also the operable range restricted by the performance and safety of each device constituting the heat source machine. .
  • the number control device can operate each heat source unit in a more appropriate load range, and it is possible to prevent the deterioration of the equipment in each heat source unit and to extend the service life.
  • each of the heat source machines is configured to replace the first load range when the first load range is narrower than a predetermined range.
  • the operable range is transmitted to the number control device, and the number control device is operated within the operable range for the heat source machine in which the operable range is notified instead of the first load range. It is also possible to perform unit control and load allocation.
  • the heat source unit has a second load range for further increasing the operation efficiency of the heat source unit and a condition for adopting the second load range in association with each other.
  • the second load range is transmitted to the number control device, and the number control device is notified of the second load range.
  • the number control and the load assignment may be performed so that the vehicle is operated within the second load range.
  • Examples of the heat source apparatus employed in the heat source system include an inverter-driven or fixed rotation speed turbo compressor having a variable rotation speed, a condenser that condenses the refrigerant compressed by the turbo compressor,
  • An example is a turbo refrigerator that includes an expansion valve that expands the generated refrigerant and an evaporator that evaporates the expanded refrigerant and cools cold water.
  • the second aspect of the present invention controls a plurality of heat source units connected in parallel and activation and stop of the plurality of heat source units, and applies a load corresponding to a required load to the activated heat source unit.
  • Each of the heat source units has COP information unique to each of the heat source units indicating a relationship among an operation state, a coefficient of performance, and a load factor, and the COP that is held
  • Information related to information is transmitted to the number control device at a predetermined timing, and the number control device has a predetermined coefficient of performance in each heat source device based on the information related to the COP information notified from each heat source device.
  • a proper operation range that is a load range that is equal to or greater than the value is determined for each heat source unit, and unit control and load allocation are performed so that each heat source unit is operated within the proper operation range of the heat source unit.
  • each heat source device has COP information indicating the relationship between its coefficient of performance and load factor, and information related to this COP information (for example, COP information itself or COP information).
  • information indicating the relationship between the coefficient of performance corresponding to the current operating condition and the load factor) is transmitted from each heat source unit to the number control device at a predetermined timing.
  • the number control device determines an appropriate operation range that is a load range in which the coefficient of performance is a predetermined value or more for each heat source unit based on the information on the COP information notified from each heat source unit, and each heat source unit has its heat source unit The number of units is controlled and the load is allocated so that the vehicle is operated within the proper operation range.
  • FIG. 1 is an overall configuration diagram of a heat source system according to a first embodiment of the present invention. It is the figure which showed an example of the turbo refrigerator applied to the heat source system of FIG. It is the figure which showed an example of the turbo refrigerator applied to the heat source system of FIG. It is the figure which showed typically the structure of the control system regarding the number control of the heat source system shown in FIG. It is the figure which showed an example of the COP map. It is the figure which showed the control flow regarding the number control of the heat source machine which the number control apparatus of the heat source system which concerns on 1st Embodiment of this invention performs. It is the figure which showed an example of the heat source machine for demonstrating the effect
  • FIG. 1 shows a schematic configuration of a heat source system 1 according to the present embodiment.
  • the heat source system 1 is installed in a building or factory facility, for example.
  • the heat source system 1 includes three heat source units 11, 12, and 13 that apply cold heat to cold water (heat medium) supplied to an external load 3 such as an air conditioner or a fan coil.
  • an external load 3 such as an air conditioner or a fan coil.
  • These heat source devices 11, 12, and 13 are installed in parallel to the external load 3.
  • Cold water pumps 21, 22, and 23 for pumping cold water are installed on the upstream side of the respective heat source units 11, 12, and 13 as viewed from the cold water flow.
  • cold water from the return header 32 is sent to the heat source devices 11, 12, and 13.
  • Each of the chilled water pumps 21, 22, and 23 is driven by an inverter motor, and thereby the variable flow rate is controlled by changing the rotation speed.
  • cold water obtained in each of the heat source machines 11, 12 and 13 is collected.
  • the cold water collected in the supply header 31 is supplied to the external load 3.
  • the cold water that has been subjected to air conditioning or the like by the external load 3 and raised in temperature is sent to the return header 32.
  • the cold water is branched at the return header 32 and sent to the heat source units 11, 12, and 13.
  • a chilled water flow meter 24 that measures the flow rate flowing out of the chilled water pump 21 is provided.
  • the output of the cold water flow meter 24 is sent to a heat source unit control device 74-1 (see FIG. 4) of the heat source unit 11 described later.
  • a chilled water inlet temperature sensor 29 for measuring the temperature of the chilled water flowing into the heat source device 11 is provided in the chilled water pipe on the upstream side of the heat source device 11.
  • the output of the cold water inlet temperature sensor 29 is sent to a heat source machine control device 74-1 (see FIG. 4) described later. If the bypass valve 34 of the bypass pipe 33 is fully closed, a temperature sensor 29b provided in the cold water pipe upstream of the return header 32 may be used instead of the cold water inlet temperature sensor.
  • FIG. 2 shows a detailed configuration when a turbo refrigerator is applied to the heat source units 11, 12, and 13.
  • the heat source device 11 is configured to realize a two-stage compression and two-stage expansion subcool cycle.
  • the turbo chiller 11 includes a turbo compressor 60 that compresses refrigerant, a condenser 62 that condenses the high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 60, and liquid refrigerant condensed by the condenser 62.
  • a subcooler 63 that provides supercooling, a high-pressure expansion valve 64 that expands the liquid refrigerant from the subcooler 63, and an intermediate stage that is connected to the high-pressure expansion valve 64 and connected to the intermediate stage of the turbo compressor 60 and the low-pressure expansion valve 65.
  • a cooler 67 and an evaporator 66 for evaporating the liquid refrigerant expanded by the low-pressure expansion valve 65 are provided.
  • the turbo compressor 60 is a centrifugal two-stage compressor, and is driven by an electric motor 72 whose rotational speed is controlled by an inverter 70.
  • the output of the inverter 70 is controlled by the heat source machine control device 74-1.
  • the turbo compressor 60 may be a fixed speed compressor having a constant rotation speed.
  • An inlet guide vane (hereinafter referred to as “IGV”) 76 for controlling the flow rate of the intake refrigerant is provided at the refrigerant inlet of the turbo compressor 60, and the capacity control of the turbo refrigerator 11 can be performed.
  • the condenser 62 is provided with a condensed refrigerant pressure sensor Pc for measuring the condensed refrigerant pressure.
  • the output of the sensor Pc is transmitted to the heat source machine control device 74-1.
  • the subcooler 63 is provided on the downstream side of the refrigerant flow of the condenser 62 so as to supercool the condensed refrigerant.
  • a temperature sensor Ts for measuring the refrigerant temperature after supercooling is provided.
  • the condenser 62 and the subcooler 63 are inserted with a cooling heat transfer tube 80 for cooling them.
  • the cooling water flow rate is measured by a flow meter F2
  • the cooling water outlet temperature is measured by a temperature sensor Tcout
  • the cooling water inlet temperature is measured by a temperature sensor Tcin.
  • the cooling water is exhausted to the outside in a cooling tower (not shown), and then led to the condenser 62 and the subcooler 63 again.
  • the intermediate cooler 67 is provided with a pressure sensor PM for measuring the intermediate pressure.
  • the evaporator 66 is provided with a pressure sensor PE for measuring the evaporation pressure.
  • Cold water having a rated temperature (for example, 7 ° C.) is obtained by absorbing heat in the evaporator 66.
  • a cold water heat transfer tube 82 for cooling the cold water supplied to the external load is inserted into the evaporator.
  • the cold water flow rate is measured by the flow meter F1
  • the cold water outlet temperature is measured by the temperature sensor Tout
  • the cold water inlet temperature is measured by Tin.
  • a hot gas bypass pipe 79 is provided between the vapor phase portion of the condenser 62 and the vapor phase portion of the evaporator 66.
  • a hot gas bypass valve 78 for controlling the flow rate of the refrigerant flowing in the hot gas bypass pipe 79 is provided. By adjusting the hot gas bypass flow rate with the hot gas bypass valve 78, it is possible to control the capacity of a very small region that is not sufficiently controlled by the IGV 76.
  • the condenser 62 and the subcooler 63 are provided, heat is exchanged with the cooling water exhausted to the outside in the cooling tower by the refrigerant, and the cooling water is warmed.
  • an air heat exchanger 90 is disposed instead of the condenser 62 and the subcooler 63 as shown in FIG. 3, and the air heat exchanger 90 performs heat exchange between the outside air and the refrigerant. It is good.
  • the heat source units 11, 12, and 13 applied to the present embodiment are not limited to the above-described turbo refrigerator having only the cooling function, and for example, have only the heating function or both the cooling function and the heating function. It may be what you are doing.
  • the medium exchanged with the refrigerant may be water or air.
  • or 3rd heat source machine 11,12,13 may be unified by the same kind of refrigerator, and several types of refrigerators may be mixed.
  • FIG. 4 is a diagram schematically showing a configuration of a control system related to the number control of the heat source system 1 shown in FIG.
  • the heat source device control devices 74-1, 74-2, and 74-3 for controlling the heat source devices 11, 12, and 13 are connected to the number control device 100 via the communication medium 101. It is configured to allow bidirectional communication.
  • Each of the heat source unit control devices 74-1, 74-2, 74-3 has a coefficient of performance (hereinafter referred to as “COP”) and a load factor for each predetermined cooling water inlet temperature in each of the heat source units 11, 12, and 13. It has a COP map showing the relationship.
  • FIG. 5 shows an example of the COP map. As shown in FIG. 5, in the COP map, the load factor is shown on the horizontal axis, the COP is shown on the vertical axis, and a characteristic indicating the relationship between the COP and the load factor at each cooling water inlet temperature (hereinafter “COP characteristic”). Is described).
  • This COP map can be obtained, for example, by a test before shipment of each of the heat source units 11, 12, and 13.
  • a known technique is used for creating the COP map.
  • a COP map is prepared for each of the cooling operation mode and the heating operation mode for the heat source unit capable of the cooling and heating operation.
  • this COP map is a heat source machine that excludes the COP characteristics of the heat source machine as a whole or the characteristics of the auxiliary machines, including the characteristics of auxiliary equipment (for example, cold / hot water pump, cooling water pump, cooling tower, etc.) in each heat source machine.
  • the COP characteristic of a single body is shown.
  • the cooling water inlet temperature measured by the cooling water inlet temperature sensor provided in the cooling water piping of the heat source machine 11 is input to the heat source machine control device 74-1.
  • the heat source controller 74-2 and the heat source controller 74-3 are notified of the coolant inlet temperature from the coolant inlet temperature sensors provided in the respective coolant pipes.
  • Each of the heat source device control devices 74-1, 74-2, 74-3 has a cooling water inlet notified from the cooling water inlet temperature sensor in the COP map corresponding to the current operation mode (cooling operation mode or cooling operation mode).
  • the COP characteristic corresponding to the temperature is acquired, an appropriate operation range in this characteristic is obtained, and this proper operation range is notified to the unit control device 100.
  • the proper operating range is, for example, a range of a load factor indicating a COP of a predetermined ratio or more (for example, 80% or more) with respect to the peak value of the COP characteristic corresponding to the current cooling water inlet temperature.
  • the rate range is determined as the proper operating range.
  • the heat source unit control device of the heat source unit is Since there is no COP map corresponding to the current operation mode, the proper operation range is output as 0 (zero)%. Thus, about the heat source machine which does not have the function corresponding to the present operation mode in the heat source system 1, 0% is output as an appropriate operation range at that time.
  • the number control device 100 starts the heat source devices 11, 12, and 13 based on the proper operation range notified from each of the heat source device control devices 74-1, 74-2, and 74-3 and the required load notified from the external load.
  • auxiliary devices such as the cold water pump 21 are also controlled.
  • step SA1 when the number control device 100 acquires the appropriate operation range from each of the heat source device control devices 74-1, 74-2, 74-3 (step SA1 in FIG. 6), the appropriate operation range of the currently activated heat source device. Is extracted, the total SUMmax is calculated, and it is determined whether the total SUMmax exceeds the required load of the heat source system 1 (step SA2 in FIG. 6). . As a result, when the total SUMmax is equal to or less than the required load, the number of operating heat source units is increased so as to cover the current required load (step SA3 in FIG. 6), and the process proceeds to step SA7.
  • step SA2 If the total SUMmax exceeds the required load of the heat source system 1 in step SA2, then the minimum load (minimum load factor of the appropriate operation range) in the appropriate operation range of the currently activated heat source unit is subsequently determined.
  • the total SUMmin is extracted, and it is determined whether or not the total SUMmin is below the required load (step SA4 in FIG. 6). As a result, when the total SUMmin is equal to or greater than the required load, the number of operations is reduced within a range that can cover the current required load (step SA5 in FIG. 6), and the process proceeds to step SA7. If the total SUMmin is lower than the required load of the heat source system 1 in step SA4, the number of operating units is maintained (step SA6 in FIG. 6), and the process proceeds to step SA7. Note that the change in the number of units in steps SA3 and SA5 is performed based on, for example, preset priority order of starting or stopping of each heat source unit.
  • step SA7 the required load is distributed (for example, equally) to the currently activated heat source unit, and the cooling water flow rate command value corresponding to the load assigned to each heat source unit is controlled by each heat source unit.
  • the device is notified (step SA8 in FIG. 6).
  • each of the heat source device control devices 74-1, 74-2, 74-3 obtains its proper operation range at a predetermined time interval, notifies the number control device 100 of this proper operation range, and the number control device By repeatedly executing the series of processes shown in FIG. 6 at predetermined time intervals 100, it is possible to always operate each heat source unit in its proper operation range.
  • each of the heat source machine control devices 74-1, 74-2, 74-3 includes the COP map of its own heat source machine. Since an appropriate operating range is obtained from the COP map according to the current operating condition and this appropriate operating range is notified to the number control device 100, the number control device 100 has COP characteristics and the like regarding each heat source unit under its control. Even if it is not, the proper operation range of each heat source machine can be grasped at any time, and the load within the proper operation range can be distributed to each heat source machine. This eliminates the need for manual adjustment such as registration of a COP map for the number control device when a system is introduced in a building or when a heat source device is added.
  • this embodiment demonstrated the case where it had a COP characteristic for every cooling water inlet temperature, it may replace with this and may have a COP characteristic for every outdoor temperature, for example.
  • the COP characteristic shown in FIG. 5 since each cooling water inlet temperature is set discretely, the COP characteristic may not exist depending on the cooling water inlet temperature. In this case, an appropriate operation range may be determined by calculating a COP characteristic corresponding to the current coolant inlet temperature by performing an interpolation process or the like.
  • each of the heat source device control devices 74-1, 74-2, 74-3 extracts a COP characteristic corresponding to the cooling water inlet temperature from the COP map, and appropriately determines from this COP characteristic.
  • the operating range is obtained and notified to the unit control device 100.
  • the COP map itself or the COP characteristic corresponding to the cooling water inlet temperature at each time is displayed on each of the heat source device control devices 74-1, 74-2.
  • 74-3 may be notified to the number control device 100. In this case, the number control device 100 determines an appropriate operation range in each of the heat source units 11, 12, and 13.
  • Each of the heat source units 11, 12, and 13 has a COP map in which the output heat amount is adopted instead of the load factor of the COP map shown in FIG. 5, and an appropriate operation range regarding the output heat amount is determined from the COP map. It is good also as determining and notifying these to the unit control apparatus 100.
  • FIG. Moreover, although this embodiment demonstrated the case where three heat source machines were provided, it does not specifically limit about the installation number of heat source machines.
  • each heat source apparatus control device has an operable range as information, is an appropriate operating range in the COP characteristic, and is a load factor range (first load) that is an operable range. This is different from the first embodiment in that the range) is notified to the number control device 100.
  • first load load factor range
  • the allowable operating range is determined from the performance and safety aspects. For example, in a turbo compressor, if surging or choke occurs, stability is lacking, and therefore, an operable load range is determined so as to avoid these regions. Also, in the inverter that drives the turbo compressor, an operable load range is determined from the viewpoint of preventing overcurrent. In this way, the operable load range of the heat source device as a whole is automatically determined from the operable range of each component included in the heat source device.
  • each heat source device control device has its own operable range, and can be determined based on the appropriate operating range obtained by the same method as in the first embodiment and the functional limitations of the heat source device.
  • a load range that satisfies both of the ranges is extracted, and this load range is notified to the unit control device.
  • the number control device performs the number control of the heat source devices by executing the control flow shown in FIG. 6 based on the load range notified from each heat source device control device.
  • each heat source unit can be operated in a more appropriate load range in the number control device. As a result, it is possible to prevent deterioration of the equipment in each heat source machine, and to extend the service life.
  • the operable range when the load range that satisfies both the appropriate operation range and the operable range is narrower than the predetermined range, the operable range is notified to the unit control device.
  • a specific operable range may be notified to the number control device.
  • the operation possible range in order to suppress the load factor of the heating operation in order to suppress the occurrence of the defrost operation ( The second load range) is determined, and this operable range is notified to the unit control device 100.
  • the number control device it is possible to assign a load to each heat source device in a load range where defrost operation does not occur, and it is possible to operate each heat source device in an efficient load range.
  • a heat recovery machine that connects a load to both the condenser 104 and the evaporator 105 as shown in FIG. 7, generates hot water in the condenser 104, and generates cold water in the evaporator 105.
  • the hot water having a certain temperature must be generated also on the condenser 104 side.
  • the compressor 106 is stopped by the temperature judgment on the evaporator 105 side, and the hot water is raised to the target temperature on the condenser 104 side. Inconvenience that it is not possible will occur.
  • Heat source system 11 12, 13 Heat source unit 74-1, 74-2, 74-3 Heat source unit controller 60
  • Turbo compressor 62 Condenser 64 High pressure expansion valve 65
  • Low pressure expansion valve 66 Evaporator

Abstract

 システム導入時や熱源機の増設時において、台数制御装置における人手による調整を不要とすること。並列に接続された複数の熱源機と、複数の熱源機の起動及び停止を制御するとともに、起動している熱源機に対して要求負荷に応じた負荷を割り当てる台数制御装置100とを備え、各熱源機は、運転状況と成績係数と負荷率との関係を示した各熱源機固有のCOPマップをそれぞれ保有しており、各熱源機は該COPマップから運転状況に応じた適正運転範囲を決定して台数制御装置100へ通知し、台数制御装置100は各熱源機から通知された適正運転範囲に基づいて熱源機の台数制御及び負荷の割り当てを行う熱源システムを提供する。

Description

熱源システム
 本発明は、例えば、ターボ冷凍機等の複数台の熱源機を備えた熱源システムに関する。
 従来、地域冷暖房や工場等の冷暖房等を実現するものとして、ターボ冷凍機等の熱源機を複数台備えた熱源システムが知られている。この熱源システムは、外部負荷が要求する要求熱量に応じて熱源機の起動台数を制御する。この台数制御を行う際に、起動された熱源機を高効率で運転させることにより、省エネルギー効果を得ることが求められる。
 特許文献1には、凝縮器に供給される冷却水温度によって決まるインバータ駆動ターボ冷凍機の成績係数と負荷率との関係を得ておき、成績係数が所定値以上となるようにインバータを制御する技術が開示されている。
特開2005-114295号公報
 ところで、特許文献1に記載された公知技術では、熱源機の台数制御を行う台数制御装置が、その配下にある各熱源機の成績係数と負荷率との関係を予め保有している必要が生ずる。このため、例えば、新しい熱源機を増設した場合には、増設した熱源機の成績係数と負荷率との関係を台数制御装置に対して新たに入力するという作業が生じる。特に、熱源機の増設作業については、既に客先に導入されているシステムに対して発生する作業となることから、できるだけ作業工程を少なくし、迅速に作業を行うことが求められている。
 本発明は、このような事情に鑑みてなされたものであって、システム導入時や熱源機の増設時において、台数制御装置における人手による調整を不要とすることのできる熱源システムを提供する。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明の第一の態様は、並列に接続された複数の熱源機と、複数の前記熱源機の起動及び停止を制御するとともに、起動している熱源機に対して要求負荷に応じた負荷を割り当てる台数制御装置とを備え、各前記熱源機は、運転状況と成績係数と負荷率との関係を示した各前記熱源機固有のCOP情報をそれぞれ保有しているとともに、保有している前記COP情報から成績係数が所定値以上となる負荷範囲である適正運転範囲を所定のタイミングで決定し、該適正運転範囲を所定のタイミングで前記台数制御装置に送信し、前記台数制御装置は、各熱源機がその熱源機の適正運転範囲内で運転されるように、台数制御及び負荷の割り当てを行う熱源システムを提供することである。
 上記本発明の第一の態様によれば、各熱源機が自身の成績係数と負荷率との関係を示したCOP情報を備えており、このCOP情報から成績係数が所定値以上となる負荷範囲である適正運転範囲を所定のタイミングで決定し、この適正運転範囲を所定のタイミングで台数制御装置に送信する。これにより、台数制御装置自身が各熱源機のCOP情報を予め保有していなくても、各熱源機から通知されるCOP情報に基づいて各熱源機の適正運転範囲を把握することができ、各熱源機に対して適正運転範囲内における負荷を配分することが可能となる。この結果、ビル等におけるシステム導入時や、熱源機の増設時において、台数制御装置に対するCOP情報の登録等の人手による調整を不要とすることができる。
 上記本発明の第一の態様に係る熱源システムにおいて、各前記熱源機は、各前記熱源機を構成する機器の制約により運転可能範囲が設定されている場合に、前記運転可能範囲と前記適正運転範囲とを両方満足する第1負荷範囲を決定し、該第1負荷範囲を前記台数制御装置へ送信し、前記台数制御装置は、各前記熱源機がその熱源機の第1負荷範囲内で運転されるように、台数制御及び負荷の割り当てを行うこととしてもよい。
 このような構成によれば、適正運転範囲だけでなく、熱源機を構成する各機器の性能や安全性から制約される運転可能範囲も考慮して運転により適切な負荷範囲を決定することができる。この結果、台数制御装置は各熱源機をより適切な負荷範囲で運転させることができ、各熱源機における機器の劣化等の防止や長寿命化を図ることが可能となる。
 上記本発明の第一の態様に係る熱源システムにおいて、各前記熱源機は、前記第1負荷範囲が予め設定されている所定の範囲よりも狭かった場合に、前記第1負荷範囲に代えて前記運転可能範囲を前記台数制御装置に送信し、前記台数制御装置は、前記第1負荷範囲に代えて前記運転可能範囲が通知された前記熱源機については、その運転可能範囲内で運転されるように台数制御及び負荷の割り当てを行うこととしてもよい。
 このような構成によれば、適正運転範囲と運転可能範囲との両方を満足する負荷範囲が狭く、全ての熱源機を起動させたとしても要求負荷を満足できないという事象を回避することができる。
 上記本発明の第一の態様に係る熱源システムにおいて、前記熱源機は、その熱源機における運転効率をより高めるための第2負荷範囲とその第2負荷範囲を採用する条件とを対応付けて保有しており、前記第2負荷範囲を採用する条件を満たした場合に、前記第2負荷範囲を前記台数制御装置に送信し、前記台数制御装置は、前記第2負荷範囲が通知された熱源機については、その第2負荷範囲内で運転されるように台数制御及び負荷の割り当てを行うこととしてもよい。
 このような構成によれば、適正運転範囲内で熱源機を運転させたとしても運転効率が低下してしまうような事象が発生する場合に、このような事象を回避するための他の運転負荷範囲を採用して熱源機の台数制御及び熱源機への負荷分担を行うことができる。この結果、運転効率をさらに向上させることができる。
 上記熱源システムに採用される前記熱源機としては、例えば、回転数可変とされたインバータ駆動または回転数固定のターボ圧縮機と、前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させ、冷水を冷却する蒸発器とを備えるターボ冷凍機が一例として挙げられる。
 本発明の第二の態様は、並列に接続された複数の熱源機と、複数の前記熱源機の起動及び停止を制御するとともに、起動している熱源機に対して要求負荷に応じた負荷を割り当てる台数制御装置とを備え、各前記熱源機は、運転状況と成績係数と負荷率との関係を示した各前記熱源機固有のCOP情報をそれぞれ保有しているとともに、保有している前記COP情報に関する情報を前記台数制御装置に所定のタイミングで送信し、前記台数制御装置は、各前記熱源機から通知されたそれぞれの前記COP情報に関する情報に基づいて、各前記熱源機における成績係数が所定値以上となる負荷範囲である適正運転範囲を前記熱源機毎に決定し、各熱源機がその熱源機の適正運転範囲内で運転されるように、台数制御及び負荷の割り当てを行う熱源システムを提供することである。
 上記本発明の第二の態様によれば、各熱源機が自身の成績係数と負荷率との関係を示したCOP情報を備えており、このCOP情報に関する情報(例えば、COP情報自体またはCOP情報のうち、現在の運転状況に該当する成績係数と負荷率との関係を示す情報)が所定のタイミングで各熱源機から台数制御装置へ送信される。台数制御装置は、各熱源機から通知されたCOP情報に関する情報に基づいて、熱源機毎に成績係数が所定値以上となる負荷範囲である適正運転範囲を決定し、各熱源機がその熱源機の適正運転範囲内で運転されるように、台数制御及び負荷の割り当てを行う。
 これにより、台数制御装置自身が各熱源機のCOP情報を予め保有していなくても、各熱源機から通知されるCOP情報に関する情報に基づいて各熱源機の適正運転範囲を把握することができ、各熱源機に対して適正運転範囲内における負荷を配分することが可能となる。この結果、ビル等におけるシステム導入時や、熱源機の増設時において、台数制御装置に対するCOP情報の登録等の人手による調整を不要とすることができる。
 本発明によれば、システム導入時や熱源機の増設時において、台数制御装置に対する人手による調整を不要とすることができるという効果を奏する。
本発明の第1実施形態に係る熱源システムの全体構成図である。 図1の熱源システムに適用されるターボ冷凍機の一例を示した図である。 図1の熱源システムに適用されるターボ冷凍機の一例を示した図である。 図1に示した熱源システムの台数制御に関する制御系の構成を模式的に示した図である。 COPマップの一例を示した図である。 本発明の第1実施形態に係る熱源システムの台数制御装置が行う熱源機の台数制御に関する制御フローを示した図である。 本発明の第3実施形態に係る熱源システムの作用を説明するための熱源機の一例を示した図である。 図1の熱源システムに適用されるターボ冷凍機の一例を示した図である。
〔第1実施形態〕
 以下に、本発明の第1実施形態に係る熱源システムについて、図面を参照して説明する。
 図1には、本実施形態にかかる熱源システム1の概略構成が示されている。熱源システム1は、例えば、ビルや工場設備に設置される。図1に示すように、熱源システム1は、空調機やファンコイル等の外部負荷3に供給する冷水(熱媒)に対して冷熱を与える熱源機11,12,13を3台備えている。これら熱源機11,12,13は、外部負荷3に対して並列に設置されている。
 冷水流れからみた各熱源機11,12,13の上流側には、それぞれ、冷水を圧送する冷水ポンプ21,22,23が設置されている。これら冷水ポンプ21,22,23によって、リターンヘッダ32からの冷水が各熱源機11,12,13へと送られる。各冷水ポンプ21,22,23は、インバータモータによって駆動されるようになっており、これにより、回転数を可変とすることで可変流量制御される。
 サプライヘッダ31には、各熱源機11,12,13において得られた冷水が集められるようになっている。サプライヘッダ31に集められた冷水は、外部負荷3に供給される。外部負荷3にて空調等に供されて昇温した冷水は、リターンヘッダ32に送られる。冷水は、リターンヘッダ32において分岐され、各熱源機11,12,13に送られる。
 冷水ポンプ21の下流側には、冷水ポンプ21から流出する流量を計測する冷水流量計24が設けられている。この冷水流量計24の出力は、後述する熱源機11の熱源機制御装置74-1(図4参照)へと送られる。
 熱源機11の上流側の冷水配管には、熱源機11へと流入する冷水温度を計測するための冷水入口温度センサ29が設けられている。この冷水入口温度センサ29の出力は、後述する熱源機制御装置74-1(図4参照)へと送られる。なお、バイパス配管33のバイパス弁34が全閉であれば、冷水入口温度センサに代えて、リターンヘッダ32の上流側の冷水配管に設けた温度センサ29bを用いても良い。
 熱源機12及び熱源機13についても、熱源機11と同様に、冷水流量計や冷水入口温度センサが設けられている。ただし、図1では、理解の容易のためにターボ冷凍機11に対してのみこれらの構成が示されている。
 図2には、熱源機11,12,13にターボ冷凍機を適用した場合の詳細構成が示されている。同図では、理解の容易のため、3台並列に設けられた熱源機のうち、一つの第1熱源機11のみが示されている。
 熱源機11は、2段圧縮2段膨張サブクールサイクルを実現する構成となっている。このターボ冷凍機11は、冷媒を圧縮するターボ圧縮機60と、ターボ圧縮機60によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器62と、凝縮器62にて凝縮された液冷媒に対して過冷却を与えるサブクーラ63と、サブクーラ63からの液冷媒を膨張させる高圧膨張弁64と、高圧膨張弁64に接続されるとともにターボ圧縮機60の中間段および低圧膨張弁65に接続される中間冷却器67と、低圧膨張弁65によって膨張させられた液冷媒を蒸発させる蒸発器66とを備えている。
 ターボ圧縮機60は、遠心式の2段圧縮機であり、インバータ70によって回転数制御された電動モータ72によって駆動されている。インバータ70は、熱源機制御装置74-1によってその出力が制御されている。なお、ターボ圧縮機60は、回転数一定の固定速の圧縮機であってもよい。ターボ圧縮機60の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)76が設けられており、ターボ冷凍機11の容量制御が可能となっている。
 凝縮器62には、凝縮冷媒圧力を計測するための凝縮冷媒圧力センサPcが設けられている。センサPcの出力は、熱源機制御装置74-1に送信される。
 サブクーラ63は、凝縮器62の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。サブクーラ63の冷媒流れ下流側直後には、過冷却後の冷媒温度を計測する温度センサTsが設けられている。
 凝縮器62及びサブクーラ63には、これらを冷却するための冷却伝熱管80が挿通されている。冷却水流量は流量計F2により、冷却水出口温度は温度センサTcoutにより、冷却水入口温度は温度センサTcinにより計測されるようになっている。冷却水は、図示しない冷却塔において外部へと排熱された後に、再び凝縮器62及びサブクーラ63へと導かれるようになっている。
 中間冷却器67には、中間圧力を計測するための圧力センサPMが設けられている。
 蒸発器66には、蒸発圧力を計測するための圧力センサPEが設けられている。蒸発器66において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器には、外部負荷へ供給される冷水を冷却するための冷水伝熱管82が挿通されている。冷水流量は流量計F1により、冷水出口温度は温度センサToutにより、冷水入口温度はTinにより計測されるようになっている。
 凝縮器62の気相部と蒸発器66の気相部との間には、ホットガスバイパス管79が設けられている。そして、ホットガスバイパス管79内を流れる冷媒の流量を制御するためのホットガスバイパス弁78が設けられている。ホットガスバイパス弁78によってホットガスバイパス流量を調整することにより、IGV76では制御が十分でない非常に小さな領域の容量制御が可能となっている。
 また、図2に示したターボ冷凍機11では、凝縮器62及びサブクーラ63を設け、冷媒により冷却塔において外部へと排熱した冷却水との間で熱交換を行い、冷却水を温める場合について述べたが、例えば、図3に示すように凝縮器62及びサブクーラ63に代えて空気熱交換器90を配置し、空気熱交換器90において外気と冷媒との間で熱交換を行うような構成としてもよい。
 また、本実施形態に適用される熱源機11,12,13は、上述した冷房機能のみを有するターボ冷凍機に限定されず、例えば、暖房機能のみ、或いは、冷房機能及び暖房機能の両方を有しているものであってもよい。また、冷媒と熱交換される媒体は、水でも空気でもよい。また、第1乃至第3熱源機11,12,13は同一種類の冷凍機で統一されていてもよいし、数種類の冷凍機が混在していてもよい。
 図4は、図1に示した熱源システム1の台数制御に関する制御系の構成を模式的に示した図である。図4に示したように、各熱源機11,12,13をそれぞれ制御する熱源機制御装置74-1,74-2,74-3は、台数制御装置100と通信媒体101を介して接続されており、双方向の通信が可能な構成とされている。
 各熱源機制御装置74-1,74-2,74-3は、それぞれの熱源機11,12,13における所定の冷却水入口温度毎の成績係数(以下「COP」という。)と負荷率との関係を示したCOPマップを有している。図5にCOPマップの一例を示す。図5に示すように、COPマップは、横軸に負荷率が示され、縦軸にCOPが示され、各冷却水入口温度におけるCOPと負荷率との関係を示す特性(以下「COP特性」という)が記載されている。このCOPマップは、例えば、各熱源機11,12,13の出荷前における試験により得ることが可能である。なお、COPマップの作成については、公知の技術を採用する。
 ここで、COPマップは冷房運転の場合と、暖房運転の場合とで異なることから、冷暖房運転が可能な熱源機については、冷房運転モードと暖房運転モードのそれぞれのモードに対してCOPマップが用意されている。
 また、このCOPマップは、各熱源機における補機(例えば、冷温水ポンプ、冷却水ポンプ、冷却塔等)の特性も含めた熱源機全体としてのCOP特性あるいは補機の特性を除いた熱源機単体のCOP特性を示したものである。
 上述したように、熱源機制御装置74-1には、熱源機11の冷却水配管に設けられた冷却水入口温度センサによって計測された冷却水入口温度が入力される。また、同様に、熱源機制御装置74-2及び熱源機制御装置74-3にもそれぞれの冷却水配管に設けられた冷却水入口温度センサから冷却水入口温度が通知される。各熱源機制御装置74-1,74-2,74-3は、現在の運転モード(冷房運転モードまたは冷房運転モード)に対応するCOPマップにおいて、冷却水入口温度センサから通知された冷却水入口温度に対応するCOP特性を取得し、この特性における適正運転範囲を求め、この適正運転範囲を台数制御装置100へ通知する。
 適正運転範囲は、例えば、現在の冷却水入口温度に対応するCOP特性のピーク値に対して所定割合以上(例えば、80%以上)のCOPを示している負荷率の範囲を特定し、この負荷率範囲を適正運転範囲として決定する。
 なお、例えば、熱源システム1における現在の運転モードが暖房運転モードである場合に、暖房運転モードの機能を有していない熱源機が存在した場合には、その熱源機の熱源機制御装置は、現在の運転モードに対応するCOPマップをそもそも有していないことから、適正運転範囲を0(ゼロ)%として出力する。このように、熱源システム1における現在の運転モードに対応する機能を有していない熱源機については、そのときの適正運転範囲として0%を出力する。
 台数制御装置100は、各熱源機制御装置74-1,74-2,74-3から通知される適正運転範囲及び外部負荷から通知される要求負荷に基づいて熱源機11,12,13の起動、停止を各熱源機制御装置74-1,74-2,74-3に指示するほか、例えば、冷水ポンプ21等の補機の制御も行う。
 以下、台数制御装置100が行う各種制御内容のうち、本発明に関わる熱源機11,12,13の台数制御に関する一連の処理手順について図6を参照して説明する。
 まず、台数制御装置100は、各熱源機制御装置74-1,74-2,74-3から適正運転範囲を取得すると(図6のステップSA1)、現在起動している熱源機の適正運転範囲における最大負荷(適正運転範囲の最大負荷率)を抽出し、これらの合計SUMmaxを算出し、この合計SUMmaxが熱源システム1の要求負荷を上回っているか否かを判定する(図6のステップSA2)。この結果、合計SUMmaxが要求負荷以下の場合には、現在の要求負荷を賄えるように、熱源機の運転台数を増加させ(図6のステップSA3)、ステップSA7に進む。
 また、ステップSA2において、合計SUMmaxが熱源システム1の要求負荷を上回っていた場合には、続いて、現在起動している熱源機の適正運転範囲における最少負荷(適正運転範囲の最少負荷率)を抽出し、これらの合計SUMminを算出し、この合計SUMminが要求負荷を下回っているか否かを判定する(図6のステップSA4)。この結果、合計SUMminが要求負荷以上の場合には、現在の要求負荷を賄える範囲で運転数を減少させ(図6のステップSA5)、ステップSA7に進む。また、上記ステップSA4において、合計SUMminが熱源システム1の要求負荷を下回っていた場合には、運転台数を維持し(図6のステップSA6)、ステップSA7に進む。なお、ステップSA3及びSA5における台数の変更については、例えば、予め設定されている各熱源機の起動または停止の優先順位に基づいて行われる。
 ステップSA7では、現在起動している熱源機に対して要求負荷を所定の割合で分配(例えば、等分)し、各熱源機に割り当てた負荷に対応する冷却水流量指令値を各熱源機制御装置に通知する(図6のステップSA8)。
 そして、各熱源機制御装置74-1,74-2,74-3が所定の時間間隔で自身の適正運転範囲を求め、この適正運転範囲を台数制御装置100に通知し、また、台数制御装置100が図6に示した一連の処理を所定時間間隔で繰り返し実行することにより、各熱源機をその適正運転範囲で常に運転させることが可能となる。
 以上、説明してきたように、本実施形態に係る熱源システム1によれば、各熱源機制御装置74-1,74-2,74-3が自身の熱源機のCOPマップを備えており、このCOPマップからその時々の運転状況に応じた適正運転範囲を求め、この適正運転範囲を台数制御装置100に通知するので、台数制御装置100は配下にある各熱源機に関するCOP特性等を有していなくても、各熱源機の適正運転範囲を随時把握することができ、各熱源機に対して適正運転範囲内における負荷を配分することが可能となる。
 これにより、ビル等におけるシステム導入時や、熱源機の増設時において、台数制御装置に対するCOPマップの登録等の人手による調整を不要とすることができる。
 なお、本実施形態では、冷却水入口温度毎にCOP特性を有する場合について説明したが、これに代えて、例えば、外気温度毎にCOP特性を有することとしてもよい。また、例えば、図5に示したCOP特性では、各冷却水入口温度が離散的に設定されているため、冷却水入口温度によってはCOP特性が存在しない場合がある。この場合には、補間処理等を行うことにより現在の冷却水入口温度に応じたCOP特性を演算によって求め、適正運転範囲を決定すればよい。
 また、本実施形態では、各熱源機制御装置74-1,74-2,74-3がCOPマップの中からその時々の冷却水入口温度に応じたCOP特性を抽出し、このCOP特性から適正運転範囲を求めて台数制御装置100へ通知していたが、これに代えて、COPマップ自体あるいはその時々の冷却水入口温度に応じたCOP特性を各熱源機制御装置74-1,74-2,74-3から台数制御装置100へ通知することとしてもよい。この場合には、台数制御装置100が、各熱源機11,12,13における適正運転範囲を決定する。
 また、各熱源機11,12,13は、図5に示したCOPマップの負荷率に代えて出力熱量が採用されたCOPマップを有しており、このCOPマップから出力熱量に関する適正運転範囲を決定し、これらを台数制御装置100に通知することとしてもよい。
 また、本実施形態では、熱源機を3台備える場合について説明したが、熱源機の設置台数については特に限定されない。
〔第2実施形態〕
 次に、本発明の第2実施形態に係る熱源システムについて説明する。本実施形態に係る熱源システムでは、各熱源機制御装置が運転可能範囲を情報として保有しており、上記COP特性における適正運転範囲であり、かつ、運転可能範囲である負荷率範囲(第1負荷範囲)を台数制御装置100に通知する点で、上記第1実施形態とは異なる。
 以下、本実施形態に係る熱源システムについて具体的に説明する。
 熱源機が備えるターボ圧縮機、ターボ圧縮機を駆動するインバータ等においては、その性能面や安全面等から運転許容範囲が決められている。例えば、ターボ圧縮機ではサージングやチョークが発生してしまうと安定性に欠けるため、これらの領域を避けるように運転可能な負荷範囲が決められている。また、ターボ圧縮機を駆動するインバータにおいても過電流防止等の面から運転可能な負荷範囲が決められている。このように、熱源機が備える各構成の運転可能範囲から熱源機全体としての運転可能な負荷範囲が自ずと決まってくる。
 本実施形態では、各熱源機制御装置が自身の運転可能範囲を有しており、上記第1実施形態と同様の方法によって求めた適正運転範囲と、熱源機の機能上の制約から決まる運転可能範囲との両方を満足する負荷範囲を抽出し、この負荷範囲を台数制御装置に通知することとする。
 台数制御装置は、各熱源機制御装置から通知された負荷範囲に基づいて図6に示した制御フローを実行することにより、熱源機の台数制御を実施する。
 このように、本実施形態に係る熱源システムによれば、適正運転範囲だけでなく、熱源機を構成する各機器の性能や安全性から制約される運転可能範囲も考慮して運転に適切な負荷範囲を決定し、この負荷範囲を台数制御装置に通知するので、台数制御装置においては各熱源機をより適切な負荷範囲で運転させることが可能となる。これにより、各熱源機における機器の劣化等を防止することができ、長寿命化を図ることが可能となる。
〔第3実施形態〕
 次に、本発明の第3実施形態に係る熱源システムについて説明する。上述した第2実施形態においては、適正運転範囲と運転可能範囲との両方を満足する負荷範囲を台数制御装置へ通知することとしたが、上記条件を満たす負荷範囲が非常に狭い場合には、熱源機の運転がままならず、全ての熱源機を起動したとしても要求負荷を賄いきれない等といった不都合が生じるおそれがある。このような場合に備え、本実施形態に係る熱源システムでは、適正運転範囲と運転可能範囲との両方を満足する負荷範囲が所定の閾値以下である場合には、運転可能範囲を台数制御装置に通知することとしている。
 これにより、適正運転範囲と運転可能範囲との両方を満足する負荷範囲が狭く、要求負荷を満足できないようなことを回避することができる。
 また、本実施形態では、適正運転範囲と運転可能範囲との両方を満足する負荷範囲が所定の範囲よりも狭い場合に、運転可能範囲を台数制御装置に通知することとしていたが、例えば、所定の条件を満たす場合に、特定の運転可能範囲を台数制御装置に通知することとしてもよい。
 例えば、図8に示すように、空気熱交換器90によって冷媒と空気との間で熱交換を行うことにより、暖房運転を行う熱源機の場合、外気温度が低く、かつ、湿度が高い場合に暖房運転を行うと、着霜が発生しやすくなり運転継続に支障をきたす。この場合、暖房運転を一時的に冷房運転に切り替えることにより、霜を除去するデフロスト運転(除霜運転)が通常行われる。しかしながら、このようなデフロスト運転を行ってしまうと、本来は暖房運転を行わなければならないところ、その反対の冷房運転を実施しなければならないため、運転効率が大幅に低下する。
 そこで、例えば、外気温度が所定温度以下であり、かつ、湿度が所定湿度以上であった場合には、デフロスト運転の発生を抑制するために、暖房運転の負荷率を抑えるように運転可能範囲(第2負荷範囲)を決めておき、この運転可能範囲を台数制御装置100へ通知するようにする。これにより、台数制御装置においては、デフロスト運転が発生しない負荷範囲で各熱源機に負荷を割り当てることができ、各熱源機を効率のよい負荷範囲で運転させることが可能となる。
 また、例えば、熱源機として、図7に示すように凝縮器104及び蒸発器105の両方に負荷をつなげ、凝縮器104において温水を生成し、蒸発器105において冷水を生成するような熱回収機を適用する場合、蒸発器105側で生成される冷水の温度が目標値に達した時点で圧縮機106の運転を停止させるという制御ロジックが組まれることがある。この場合、凝縮器104側でもある程度の温度の温水を生成しなければならないところ、蒸発器105側における温度判断により圧縮機106が停止されてしまい、凝縮器104側では温水を目標温度まで上昇させることができないといった不都合が生ずることとなる。
 このような場合には、蒸発器105側における冷水温度があまりにも早く目標温度に達することを回避し、換言すると、所定の時間をかけてゆっくりと冷水温度が目標温度に達するように調整することが好ましい。
 そこで、例えば、図7に示すように、凝縮器104と蒸発器105との両方に負荷が存在するような場合には、蒸発器106側における負荷の上限を抑制するような運転可能範囲(第2負荷範囲)を設定しておき、この運転可能範囲を台数制御装置100へ通知することとする。これにより、凝縮器側における温水温度が満足される前に、蒸発器105側における冷水温度が目標温度を満足することを防止できる。
1 熱源システム
11,12,13 熱源機
74-1,74-2,74-3 熱源機制御装置
60 ターボ圧縮機
62 凝縮器
64 高圧膨張弁
65 低圧膨張弁
66 蒸発器

Claims (6)

  1.  並列に接続された複数の熱源機と、
     複数の前記熱源機の起動及び停止を制御するとともに、起動している熱源機に対して要求負荷に応じた負荷を割り当てる台数制御装置と
    を備え、
     各前記熱源機は、運転状況と成績係数と負荷率との関係を示した各前記熱源機固有のCOP情報をそれぞれ保有しているとともに、保有している前記COP情報から成績係数が所定値以上となる負荷範囲である適正運転範囲を所定のタイミングで決定し、該適正運転範囲を所定のタイミングで前記台数制御装置に送信し、
     前記台数制御装置は、各熱源機がその熱源機の適正運転範囲内で運転されるように、台数制御及び負荷の割り当てを行う熱源システム。
  2.  各前記熱源機は、各前記熱源機を構成する機器の制約により運転可能範囲が設定されている場合に、前記運転可能範囲と前記適正運転範囲とを両方満足する第1負荷範囲を決定し、該第1負荷範囲を前記台数制御装置へ送信し、
     前記台数制御装置は、各前記熱源機がその熱源機の第1負荷範囲内で運転されるように、台数制御及び負荷の割り当てを行う請求項1に記載の熱源システム。
  3.  各前記熱源機は、前記第1負荷範囲が予め設定されている所定の範囲よりも狭かった場合に、前記第1負荷範囲に代えて前記運転可能範囲を前記台数制御装置に送信し、
     前記台数制御装置は、前記第1負荷範囲に代えて前記運転可能範囲が通知された前記熱源機については、その運転可能範囲内で運転されるように台数制御及び負荷の割り当てを行う請求項2に記載の熱源システム。
  4.  前記熱源機は、その熱源機における運転効率をより高めるための第2負荷範囲とその第2負荷範囲を採用する条件とを対応付けて保有しており、前記第2負荷範囲を採用する条件を満たした場合に、前記第2負荷範囲を前記台数制御装置に送信し、
     前記台数制御装置は、前記第2負荷範囲が通知された熱源機については、その第2負荷範囲内で運転されるように台数制御及び負荷の割り当てを行う請求項1から請求項3のいずれかに記載の熱源システム。
  5.  前記熱源機は、
     回転数可変とされたインバータ駆動または回転数固定のターボ圧縮機と、
     前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
     凝縮された冷媒を膨張させる膨張弁と、
     膨張された冷媒を蒸発させ、冷水を冷却する蒸発器と
    を備えるターボ冷凍機である請求項1から請求項4のいずれかに記載の熱源システム。
  6.  並列に接続された複数の熱源機と、
     複数の前記熱源機の起動及び停止を制御するとともに、起動している熱源機に対して要求負荷に応じた負荷を割り当てる台数制御装置と
    を備え、
     各前記熱源機は、運転状況と成績係数と負荷率との関係を示した各前記熱源機固有のCOP情報をそれぞれ保有しているとともに、保有している前記COP情報に関する情報を前記台数制御装置に所定のタイミングで送信し、
     前記台数制御装置は、各前記熱源機から通知されたそれぞれの前記COP情報に関する情報に基づいて、各前記熱源機における成績係数が所定値以上となる負荷範囲である適正運転範囲を前記熱源機毎に決定し、各熱源機がその熱源機の適正運転範囲内で運転されるように、台数制御及び負荷の割り当てを行う熱源システム。
PCT/JP2010/061112 2009-11-13 2010-06-30 熱源システム WO2011058781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10829741.7A EP2500667B1 (en) 2009-11-13 2010-06-30 Heat source system
US13/389,223 US9206994B2 (en) 2009-11-13 2010-06-30 Heat source system
KR1020127001593A KR101383526B1 (ko) 2009-11-13 2010-06-30 열원 시스템
CN201080035129.6A CN102472519B (zh) 2009-11-13 2010-06-30 热源系统
KR1020147000156A KR101471813B1 (ko) 2009-11-13 2010-06-30 열원 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-259889 2009-11-13
JP2009259889A JP5404333B2 (ja) 2009-11-13 2009-11-13 熱源システム

Publications (1)

Publication Number Publication Date
WO2011058781A1 true WO2011058781A1 (ja) 2011-05-19

Family

ID=43991445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061112 WO2011058781A1 (ja) 2009-11-13 2010-06-30 熱源システム

Country Status (6)

Country Link
US (1) US9206994B2 (ja)
EP (1) EP2500667B1 (ja)
JP (1) JP5404333B2 (ja)
KR (2) KR101471813B1 (ja)
CN (1) CN102472519B (ja)
WO (1) WO2011058781A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404333B2 (ja) * 2009-11-13 2014-01-29 三菱重工業株式会社 熱源システム
EP2679421B1 (en) * 2011-02-21 2019-11-13 Hitachi, Ltd. Vehicle air conditioning system
JP5558400B2 (ja) * 2011-03-30 2014-07-23 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法
JP5738116B2 (ja) 2011-08-04 2015-06-17 三菱重工業株式会社 ターボ冷凍機の性能評価装置およびその方法
JP5685782B2 (ja) * 2012-01-06 2015-03-18 オリオン機械株式会社 チラーの連結運転方法及びシステム
JP5787792B2 (ja) * 2012-02-29 2015-09-30 三菱重工業株式会社 熱源システムの台数制御装置及びその方法並びに熱源システム
JP5984456B2 (ja) * 2012-03-30 2016-09-06 三菱重工業株式会社 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
JP6056270B2 (ja) * 2012-08-28 2017-01-11 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機
JP6104638B2 (ja) * 2012-09-21 2017-03-29 三菱重工業株式会社 熱源システム及びその制御方法
JP5447627B1 (ja) * 2012-09-26 2014-03-19 ダイキン工業株式会社 熱源システム制御装置
CN103968478B (zh) * 2013-02-01 2018-02-23 Lg电子株式会社 冷却系统及其控制方法
JP5931774B2 (ja) * 2013-02-25 2016-06-08 三菱重工業株式会社 ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
US9995509B2 (en) * 2013-03-15 2018-06-12 Trane International Inc. Cascading heat recovery using a cooling unit as a source
US10408712B2 (en) 2013-03-15 2019-09-10 Vertiv Corporation System and method for energy analysis and predictive modeling of components of a cooling system
JP6257993B2 (ja) * 2013-10-18 2018-01-10 日立ジョンソンコントロールズ空調株式会社 冷凍システムおよび冷凍システムの台数制御方法
JP6249331B2 (ja) * 2013-11-01 2017-12-20 三菱重工サーマルシステムズ株式会社 熱源制御装置、熱源システム及び熱源制御方法
JP6288496B2 (ja) 2013-12-03 2018-03-07 三菱重工サーマルシステムズ株式会社 熱源機運転台数制御装置、熱源システム、制御方法及びプログラム
JP6219160B2 (ja) * 2013-12-24 2017-10-25 三菱重工サーマルシステムズ株式会社 ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
WO2015125305A1 (ja) * 2014-02-24 2015-08-27 三菱電機株式会社 熱源システム
JP6381927B2 (ja) * 2014-02-25 2018-08-29 三菱重工サーマルシステムズ株式会社 ヒートポンプシステムおよびその運転方法
JP6301784B2 (ja) * 2014-08-28 2018-03-28 荏原冷熱システム株式会社 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
KR20160043402A (ko) * 2014-10-13 2016-04-21 엘지전자 주식회사 칠러용 컨트롤러 및 칠러의 제어방법
JP6482826B2 (ja) * 2014-11-12 2019-03-13 三菱重工サーマルシステムズ株式会社 熱源システム及びその制御装置並びに制御方法
CN107003044A (zh) 2014-11-14 2017-08-01 开利公司 利用热能存储的节能循环
JP6599124B2 (ja) * 2015-04-22 2019-10-30 高砂熱学工業株式会社 熱源機及び熱源システム
JP6361074B2 (ja) * 2015-05-13 2018-07-25 三菱重工サーマルシステムズ株式会社 台数制御装置、エネルギー供給システム、台数制御方法及びプログラム
JP6617478B2 (ja) * 2015-09-01 2019-12-11 中国電力株式会社 熱源機器の機器特性モデルを生成する方法及びシステム、及びプログラム
DE112016006763T5 (de) * 2016-04-19 2019-01-03 Mitsubishi Electric Corporation Klimatisierungssystem, Klimatisierungssteuerverfahren und Programm
CN108626923B (zh) 2017-03-15 2021-10-22 约克广州空调冷冻设备有限公司 一种空调系统的控制结构以及控制方法
US11873998B2 (en) * 2019-01-28 2024-01-16 Johnson Controls Tyco IP Holdings LLP Central plant with secondary strong prevention
DE102022203519A1 (de) 2022-04-07 2023-10-12 Efficient Energy Gmbh Wärmepumpe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114295A (ja) 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd 熱源システム及び制御装置
JP2008134013A (ja) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk 冷熱源機の運転制御方法及びこれを用いた冷熱源システム
JP2008157490A (ja) * 2006-12-21 2008-07-10 Yokogawa Electric Corp 冷凍機の運転制御装置および冷凍機の運転制御方法
JP2009204262A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機および熱源システムならびにこれらの制御方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873649A (en) * 1988-06-10 1989-10-10 Honeywell Inc. Method for operating variable speed heat pumps and air conditioners
JP3410774B2 (ja) 1993-07-23 2003-05-26 株式会社荏原製作所 冷温水システムの運転制御方法
JPH0875275A (ja) 1994-09-01 1996-03-19 Ebara Corp 複数台の圧縮機を具備する冷凍機の運転制御方法
US5735134A (en) * 1996-05-30 1998-04-07 Massachusetts Institute Of Technology Set point optimization in vapor compression cycles
JP3277323B2 (ja) 1998-06-24 2002-04-22 株式会社山武 熱源機器制御装置
JP2001108281A (ja) 1999-10-08 2001-04-20 Mitsubishi Heavy Ind Ltd 冷凍機制御装置及び冷凍機制御方法
US6532754B2 (en) * 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
US6701725B2 (en) * 2001-05-11 2004-03-09 Field Diagnostic Services, Inc. Estimating operating parameters of vapor compression cycle equipment
US6564563B2 (en) * 2001-06-29 2003-05-20 International Business Machines Corporation Logic module refrigeration system with condensation control
JP3901972B2 (ja) 2001-09-07 2007-04-04 三菱重工業株式会社 ビル設備用制御装置に用いられる通信端末装置
US6938432B2 (en) 2002-01-10 2005-09-06 Espec Corp. Cooling apparatus and a thermostat with the apparatus installed therein
JP3978080B2 (ja) * 2002-05-23 2007-09-19 東芝キヤリア株式会社 空気調和機
JP3985609B2 (ja) 2002-07-04 2007-10-03 ソニー株式会社 コンデンサーマイクロホン
EP1537367B8 (de) * 2002-08-28 2012-03-14 Remo Meister Zweistufenverdampfung mit integrierter flüssigkeitsunterkühlung und saugdampfüberhitzung in frequenzgesteuerter modultechnik
JP4050600B2 (ja) * 2002-08-30 2008-02-20 荏原冷熱システム株式会社 連結式冷温水機の運転台数制御方法及び運転台数制御装置
US7058457B2 (en) 2003-03-04 2006-06-06 Noritz Corporation Hot water supply system
CN2606291Y (zh) * 2003-03-05 2004-03-10 广东科龙电器股份有限公司 双压缩机系统房间空调器的电路控制系统
JP3851285B2 (ja) 2003-03-14 2006-11-29 株式会社三菱地所設計 制御装置
CN1534242A (zh) * 2003-04-02 2004-10-06 张沈杰 变容量中央空调
JP2004308950A (ja) 2003-04-03 2004-11-04 Toyota Tsusho Corp 空調熱源設備
JP4727142B2 (ja) * 2003-12-18 2011-07-20 三菱重工業株式会社 ターボ冷凍機およびその圧縮機ならびにその制御方法
US7275377B2 (en) * 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
JP2006153324A (ja) 2004-11-26 2006-06-15 Yamatake Corp 運転台数制御方法および装置
JP4513545B2 (ja) * 2004-12-21 2010-07-28 株式会社日立製作所 冷凍機の台数制御装置と冷熱供給システム
JP2006207929A (ja) 2005-01-28 2006-08-10 Daikin Ind Ltd 空調システムの最適運転制御システムおよび最適運転制御方法
WO2006085406A1 (ja) 2005-02-08 2006-08-17 Kazuo Miwa 建物のエネルギー管理システム
JP4457928B2 (ja) * 2005-03-15 2010-04-28 ダイキン工業株式会社 冷凍装置
JP2006283989A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム
JP2006292329A (ja) 2005-04-14 2006-10-26 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御装置ならびにその制御方法
JP4458486B2 (ja) 2005-08-02 2010-04-28 日立アプライアンス株式会社 空調システム及び空調管理装置
JP2007071401A (ja) 2005-09-02 2007-03-22 Hitachi Ltd 空気調和機
CN101297168A (zh) * 2005-10-26 2008-10-29 开利公司 具有受脉宽调制的部件和可变速压缩机的制冷系统
JP2007240131A (ja) 2006-03-03 2007-09-20 Es Systems Kk 熱源機廻りの最適化制御
CN1851354A (zh) * 2006-05-25 2006-10-25 上海交通大学 变频式水环热泵空调机组
JP2008232531A (ja) 2007-03-20 2008-10-02 Toshiba Corp リモート性能監視装置及びリモート性能監視方法
EP2256422B1 (en) * 2008-03-27 2018-11-07 Mitsubishi Electric Corporation Air conditioning management system, air conditioning system, program, and recording medium
JP4667496B2 (ja) 2008-11-17 2011-04-13 三菱電機株式会社 空気調和装置
JP2010156494A (ja) 2008-12-26 2010-07-15 Daikin Ind Ltd 負荷処理バランス設定装置
JP2010270970A (ja) 2009-05-21 2010-12-02 Mitsubishi Heavy Ind Ltd 熱源システム及びその制御方法並びにプログラム
JP5398395B2 (ja) 2009-07-17 2014-01-29 東洋熱工業株式会社 冷凍機の台数制御方法
US8452459B2 (en) 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
JP5240134B2 (ja) 2009-09-07 2013-07-17 日立電線株式会社 冷水循環システム
JP5404333B2 (ja) * 2009-11-13 2014-01-29 三菱重工業株式会社 熱源システム
JP5642085B2 (ja) * 2009-11-18 2014-12-17 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
CA2797794C (en) 2010-05-05 2019-01-15 Greensleeves, LLC Energy chassis and energy exchange device
JP5523972B2 (ja) * 2010-07-29 2014-06-18 三菱重工業株式会社 ターボ冷凍機の性能評価装置
JP5452409B2 (ja) 2010-07-30 2014-03-26 株式会社日立製作所 熱サイクルシステム
JP5511578B2 (ja) * 2010-08-06 2014-06-04 三菱重工業株式会社 冷凍機制御装置
JP5558400B2 (ja) * 2011-03-30 2014-07-23 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114295A (ja) 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd 熱源システム及び制御装置
JP2008134013A (ja) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk 冷熱源機の運転制御方法及びこれを用いた冷熱源システム
JP2008157490A (ja) * 2006-12-21 2008-07-10 Yokogawa Electric Corp 冷凍機の運転制御装置および冷凍機の運転制御方法
JP2009204262A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機および熱源システムならびにこれらの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500667A4

Also Published As

Publication number Publication date
JP5404333B2 (ja) 2014-01-29
US9206994B2 (en) 2015-12-08
US20120174609A1 (en) 2012-07-12
CN102472519B (zh) 2014-07-30
KR20120039650A (ko) 2012-04-25
EP2500667A4 (en) 2018-04-04
KR20140022097A (ko) 2014-02-21
EP2500667A1 (en) 2012-09-19
KR101383526B1 (ko) 2014-04-08
CN102472519A (zh) 2012-05-23
KR101471813B1 (ko) 2014-12-10
EP2500667B1 (en) 2020-01-22
JP2011106699A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5404333B2 (ja) 熱源システム
JP5558400B2 (ja) 熱源システム及び熱源システムの台数制御方法
JP5787792B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
US8413456B2 (en) Refrigeration apparatus
JP5495499B2 (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
WO2013099898A1 (ja) 冷凍装置
WO2013145844A1 (ja) 熱源システム及びその制御装置並びにその制御方法
JP2014102050A (ja) 冷凍装置
CN107655164A (zh) 一种水系统空调室内机电子膨胀阀开度控制方法
JP2007298235A (ja) 熱源システムおよびその制御方法
JP6855160B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP5517891B2 (ja) 空気調和装置
JP2021076347A (ja) 冷凍サイクル装置
JP7332817B2 (ja) 空気調和装置
JP2009236398A (ja) 空気調和装置
KR20140091794A (ko) 공기 조화기 및 그 제어 방법
JP2019007651A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035129.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001593

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010829741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389223

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE