WO2011055558A1 - 船舶の船尾構造 - Google Patents

船舶の船尾構造 Download PDF

Info

Publication number
WO2011055558A1
WO2011055558A1 PCT/JP2010/052461 JP2010052461W WO2011055558A1 WO 2011055558 A1 WO2011055558 A1 WO 2011055558A1 JP 2010052461 W JP2010052461 W JP 2010052461W WO 2011055558 A1 WO2011055558 A1 WO 2011055558A1
Authority
WO
WIPO (PCT)
Prior art keywords
stern
hull
propeller shaft
ship
propeller
Prior art date
Application number
PCT/JP2010/052461
Other languages
English (en)
French (fr)
Inventor
松本 大輔
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117027787A priority Critical patent/KR101330372B1/ko
Priority to EP10828119.7A priority patent/EP2497710B1/en
Priority to EP14183842.5A priority patent/EP2821334B1/en
Priority to US13/318,373 priority patent/US8499705B2/en
Priority to CN201080022421.4A priority patent/CN102438891B/zh
Publication of WO2011055558A1 publication Critical patent/WO2011055558A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a stern structure of a ship.
  • a one-machine one-shaft (one main machine and one propeller) system and a two-machine two-shaft (two main machines and two propellers) system are known.
  • the one-machine one-axis system or the two-machine two-axis system is often adopted.
  • the ship adopting the former is also called a uniaxial ship, and the ship adopting the latter is called a biaxial ship.
  • Examples of arranging two propellers at the stern include an overlapping propeller (OLP) system, an interlock propeller system, and a system in which propellers are arranged side by side.
  • OLP overlapping propeller
  • the two propellers are arranged so as to be shifted back and forth, and arranged so that a part of the two propellers overlap when viewed from the stern.
  • the propulsion performance can be improved by about 5 to 10% from that of a single-axle ship.
  • the blades of the other propeller are placed between the blades of one propeller. In the system in which the propellers are arranged side by side, the propellers are arranged at the same position in the captain direction.
  • the propellers are placed near the center of the hull due to the slow flow near the hull center line and the stern vertical vortex like the bilge vortex. It is preferable to do. In that case, the following effects are obtained.
  • a normal uniaxial ship propeller position generates a slow flow longitudinal vortex like a bilge vortex rotating inwardly and symmetrical to the hull centerline.
  • Propellers are more efficient when operated in slow flow areas than when not. Therefore, the propulsion efficiency can be improved by rotating the propeller in the vicinity of the vertical vortex and collecting the slow flow and vertical vortex near the hull centerline.
  • an outward rotation is often adopted as the propeller rotation direction so that the vertical vortex near the center of the hull can be efficiently collected to improve the propulsion performance.
  • Patent Document 1 (WO 2006/095774) describes a technique in which an OLP is employed in a uniaxial stern type stern structure.
  • 1A and 1B are schematic views showing a part of a stern configuration of a biaxial ship disclosed in Patent Document 1.
  • FIG. 1A is a schematic view of the stern of the biaxial ship as viewed from the bottom
  • FIG. 1B is a schematic view of the A-A ′ section of FIG. 1A as viewed from the stern.
  • the biaxial ship 100 has a uniaxial stern and has a starboard propeller 110, a port propeller 120, and a rudder 105 at the stern.
  • the starboard propeller 110 is connected to one end of a starboard propeller shaft 112 inserted through the starboard stern tube 111.
  • the other end of the starboard propeller shaft 112 is connected to the starboard main engine 131 inside the hull.
  • the starboard main machine 131 rotates the starboard propeller 110 via the starboard propeller shaft 112.
  • the port propeller 120 is connected to one end of a port propeller shaft 122 inserted into the port stern tube 121, as with the starboard propeller 110.
  • the other end of the port propeller shaft 122 is connected to the port main engine 132 inside the hull.
  • the port side main machine 132 rotates the port side propeller 120 via the port side propeller shaft 122.
  • the starboard stern tube 111 and the stern hull 103 and the port stern tube 121 and the stern hull 103 are connected by bracket fins 109 and 108, respectively.
  • the rudder 105 is provided behind the starboard propeller 110 and the portside propeller 120, on the hull center line C.
  • bracket fins 109 and 108 are provided for reinforcement.
  • the bracket fins 109 and 108 alone are not sufficient to compensate for the insufficient strength.
  • the propulsion efficiency may be reduced due to the resistance of the bracket fins 109 and 108 themselves.
  • An object of the present invention is to provide a stern structure of a ship that can reinforce a propeller shaft support structure, suppress an increase in resistance due to hull additions such as bossing and bracket fins, and improve propulsion efficiency, and a ship using the stern structure Is to provide.
  • the stern structure of the ship of the present invention includes a plurality of propellers, a plurality of propeller shafts, and a stern structure.
  • the plurality of propeller shafts are provided corresponding to the plurality of propellers and connected to the plurality of propellers.
  • the stern structure is provided coupled to the rear of the stern hull, and includes a portion of the plurality of propeller shafts extending rearward from the stern hull.
  • the inside of the stern structure is inside the hull.
  • the stern structure supports a plurality of propeller shafts inside the hull.
  • the stern structure includes an upper surface portion, a lower surface portion, and a side surface portion.
  • the upper surface portion extends rearward from the stern hull, extends outward with respect to the hull center line, and is provided so as to cover the upper side of the propeller shaft.
  • the lower surface portion extends rearward from the stern hull, extends outward with respect to the hull center line, and is provided so as to cover the lower portion of the propeller shaft.
  • the side surface portion extends rearward from the stern hull, and is provided so as to connect the upper surface portion and the lower surface portion and cover the side of the propeller shaft.
  • the upper surface portion is a first curved surface portion that forms a curved surface that continuously and smoothly connects the stern hull and the side surface portion from above.
  • a lower surface part is a 2nd curved surface part which comprises the curved surface which couple
  • the upper surface portion is a first flat surface portion that constitutes a plane that continuously connects the stern hull and the side surface portion from above.
  • a lower surface part is the 2nd plane part which comprises the plane which couple
  • the ship's stern structure of the present invention includes a plurality of propellers, a plurality of propeller shaft tubes, and a stern structure.
  • the plurality of propeller shaft tubes are provided corresponding to the plurality of propellers, and are inserted through the plurality of propeller shafts connected to the plurality of propellers.
  • the stern structure is provided behind the stern hull, and supports a portion of the plurality of propeller shaft tubes extending rearward from the stern hull.
  • the stern structure includes side fins and upper fins. The side fins extend rearward from the stern hull, extend outward with respect to the hull center line, and are coupled to the side of the plurality of propeller shaft tubes to support the plurality of propeller shaft tubes.
  • the upper fin is provided behind the stern hull, extends downward from the bottom of the stern hull, and is coupled to the upper side of the plurality of propeller shaft tubes to support the plurality of propeller shaft tubes. Side fins and upper fins are combined with the stern hull to match the direction of the streamline around the hull
  • the stern hull has a uniaxial stern type stern structure.
  • a ship of the present invention is a ship having the stern structure of a ship according to any one of the above paragraphs.
  • a stern structure that reinforces the propeller shaft support structure and suppresses an increase in resistance due to an additive such as a bracket fin and improves propulsion efficiency in a ship.
  • FIG. 1A is a schematic diagram showing a part of the stern configuration of the biaxial ship of Patent Document 1.
  • FIG. 1B is a schematic diagram showing a part of the stern configuration of the biaxial ship of Patent Document 1.
  • FIG. 2A is a schematic diagram showing a partial configuration of the stern structure of the ship according to the first embodiment of the present invention.
  • FIG. 2B is a schematic diagram showing a partial configuration of the stern structure of the ship according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a partial configuration of a modified example of the stern structure of the ship according to the first embodiment of the present invention.
  • FIG. 4A is a schematic diagram showing a partial configuration of a stern structure of a ship according to a second embodiment of the present invention.
  • FIG. 4B is a schematic diagram showing a partial configuration of the stern structure of the ship according to the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a partial configuration of a modified example of the stern structure of the ship according to the second embodiment of the present invention.
  • FIG. 2A and 2B are schematic views showing a partial configuration of the stern structure of a ship according to the first embodiment of the present invention.
  • FIG. 2A is a schematic view of the stern structure of the ship as viewed from the bottom of the ship
  • FIG. 2B is a schematic view of the BB ′ cross section as viewed from the stern of FIG. 2A.
  • the biaxial ship 1 which has the uniaxial stern type stern structure which is a kind of multi-axis ship as a ship is demonstrated to an example.
  • the biaxial ship 1 includes a stern structure 4, a starboard propeller 10, a starboard propeller shaft pipe 11, a portside propeller 20, a portside propeller shaft pipe 21, and a rudder 5.
  • the starboard propeller 10 is provided on the starboard side of the stern hull 3, which is the lower part of the stern of the hull.
  • the starboard propeller 10 is connected to one end of a starboard propeller shaft 12 inserted into the starboard propeller shaft tube 11.
  • the other end of the starboard propeller shaft 12 is connected to the starboard main engine 31 inside the hull.
  • the starboard main machine 31 rotates the starboard propeller 10 via the starboard propeller shaft 12.
  • the port propeller 20 is provided on the port side of the stern hull 3 of the stern.
  • the port propeller 20 is connected to one end of a port propeller shaft 22 inserted into the port propeller shaft tube 21.
  • the other end of the port propeller shaft 22 is connected to the port main engine 32 inside the hull.
  • the port side main machine 32 rotates the port side propeller 20 via the port side propeller shaft 22.
  • the propeller shafts 22 and 12 are rotatably held by bearings in the left and right propeller shaft tubes 21 and
  • starboard propeller shaft tube 11 and the portside propeller shaft tube 21 are outer cylinders (tubes) for protecting the starboard propeller shaft 12 and the portside propeller shaft 22, respectively, and are exemplified by stern tubes.
  • the present invention is not limited thereto, and any form may be used.
  • the stern structure 4 extends rearward from the stern hull 3 and extends outward with respect to the hull centerline C, and a part of the starboard propeller shaft tube 11 and the port propeller shaft tube 21 protrudes from the stern hull 3 (extends backward).
  • the part is included. And it couple
  • starboard propeller shaft tube 11 is taken into the hull (inside of stern structure 4 (4a)) to the vicinity of starboard propeller 10 as compared with the case of FIG. 1A.
  • the port propeller shaft tube 21 is taken into the interior of the hull (inside the stern structure 4 (4b)) to the vicinity of the port propeller 20 as compared with the case of FIG. 1A.
  • the stern structure 4 extends from the position where the starboard propeller shaft tube 11 and the portside propeller shaft tube 21 protrude from the stern hull 3 to the vicinity of the stern direction tip of the skeg 9 at the bottom of the stern hull 3.
  • the stern hull 3 refers to a portion having a structure similar to the stern structure in a uniaxial ship having a skeg along the hull centerline.
  • the stern of the biaxial ship 1 in this Embodiment is comprised by the stern hull 3 and the stern structure 4 being united. The same applies hereinafter.
  • the rudder 5 is provided on the hull center line C behind the starboard propeller 10 and the portside propeller 20.
  • the left and right propellers 20 and 10 are arranged in the vicinity of the hull center line C with the hull center line C symmetrically arranged with a distance d between the propeller chips so that the propeller blades do not interfere with each other.
  • the distance d between the propeller tips is preferably set close to the hull center line C so that there is no fear of contact between the propeller blades and a low-speed flow can be captured.
  • the influence of cavitation on the rear propeller by the front propeller is large, so it is preferable that the two propellers do not overlap. That is, it is more preferable to satisfy 0 ⁇ d ⁇ 0.5 Dp (Dp: propeller diameter).
  • Dp propeller diameter
  • the stern structure 4 includes a starboard stern structure 4a and a port stern structure 4b.
  • the starboard stern structure 4a includes curved surface portions 42, 43, and 44.
  • the curved surface portion 42 is provided along the outside of the starboard propeller shaft tube 11 protruding rearward from the stern hull 3 (outside as seen from the hull center line C). Thereby, the outer side of the starboard propeller shaft tube 11 is covered with the curved surface portion 42 by a predetermined distance (for example, up to the vicinity of the stern side tip of the skeg 9) from the position protruding from the stern hull 3.
  • One surface of the curved surface portion 43 is coupled to the upper side of the skeg 9 extending below the stern hull 3, and the other surface is joined to the upper surface of the curved surface portion 42.
  • the upper side of the starboard propeller shaft tube 11 is covered with the curved surface portion 43 by a predetermined distance from the portion protruding from the stern hull 3.
  • One side of the curved surface portion 44 is coupled to the lower side of the skeg 9 extending below the stern hull 3, and the other surface is joined to the lower side of the curved surface portion 42.
  • the lower side of the starboard propeller shaft tube 11 is covered with the curved surface portion 44 by a predetermined distance from the portion protruding from the stern hull 3. That is, the starboard propeller shaft tube 11 is included in the hull of the biaxial ship 1 in a curved surface formed by these curved surface portions 42, 43, 44.
  • the port side stern structure 4b includes curved surface portions 52, 53, and 54.
  • the curved surface portion 52 is provided along the outer side (outside as viewed from the hull center line C) of the port propeller shaft tube 21 protruding rearward from the stern hull 3.
  • the outer side of the port propeller shaft tube 21 is covered with the curved surface portion 52 by a predetermined distance (for example, up to the vicinity of the stern side tip of the skeg 9) from the position protruding from the stern hull 3.
  • One side of the curved surface portion 53 is coupled to the upper side of the skeg 9 extending below the stern hull 3 and the other surface is joined to the upper side of the curved surface portion 52.
  • the upper side of the port propeller shaft tube 21 is covered with the curved surface portion 53 by a predetermined distance from the portion protruding from the stern hull 3.
  • One side of the curved surface portion 54 is coupled to the lower side of the skeg 9 extending below the stern hull 3, and the other surface is joined to the lower side of the curved surface portion 52.
  • the lower side of the port propeller shaft tube 21 is covered with the curved surface portion 54 by a predetermined distance from the portion protruding from the stern hull 3. That is, the port propeller shaft tube 21 is a curved surface formed by these curved surface portions 52, 53, 54 and is included in the hull of the biaxial ship 1.
  • the starboard stern structure 4a and the port stern structure 4b are symmetric with respect to the hull center line C.
  • the starboard stern structure 4a and the port stern structure 4b are, for example, continuously joined together by the same steel plate as the stern hull 3 (example: joined by welding), and a part of the hull of the biaxial ship 1 is formed. It is composed.
  • the left and right propeller shaft tubes 21, 11 protruding outside the stern hull 3 are taken into the hull to the vicinity of the left and right propellers 20, 10. In this way, the left and right propeller shafts 20 and 10 can be arranged in the ship and integrated with the stern structure.
  • the starboard stern structure 4a and the port stern structure 4b can be configured in a small shape without increasing the shape of the protruding portion as in the case of using an appendage such as a boshing, and the support strength can be increased. it can. That is, it is possible to reduce the hull additions, suppress the increase in resistance, and improve the propulsion efficiency.
  • the curved surface portions 43 and 44 and the curved surface portions 53 and 54 are smoothly coupled to the stern hull 3 like a curve (curved surface) that can be expressed by a continuous function so that the influence on the propulsion performance of the ship is reduced.
  • the shape is not limited to the shape shown in FIG. 2B and is not particularly limited as long as the shape has a less influence on the propulsion performance of the ship.
  • the curved surface portions 42 and 52 may be shared by the members of the left and right propeller shaft tubes 11 and 21.
  • the curved surface portion 42 may be integrated into one or both of the curved surface portions 43 and 44.
  • the curved surface portions 42, 43, and 44 may be integrated.
  • the curved surface portion 52 may be integrated into one or both of the curved surface portions 53 and 54. Furthermore, the curved surface portions 52, 53, 54 may be integrated. Further, in the left and right side stern structures 4b and 4a, the left and right side propeller shaft tubes 21 and 11 may not be provided, and the left and right side propeller shafts 22 and 12 may be exposed. In this case, the propeller shafts 22 and 12 are rotatably held by bearings in the stern structures 4b and 4a.
  • the left and right propeller shaft tubes 21 and 11 protruding outside the hull can be arranged inside the hull. Thereby, the left and right propeller shaft tubes 21 and 11 can be firmly supported. That is, the strength of the support structure can be greatly increased.
  • the stern structure 4 and the stern hull 3 are smoothly coupled, resistance increase and flow separation due to the left and right propeller shaft tubes 21 and 11 can be prevented, and the propulsion performance can be improved. . Further, by taking a part of the left and right propeller shaft tubes 21 and 11 protruding outside the hull into the hull, the length of the propeller shaft tube protruding outside the hull is reduced. It is not necessary to use any additional material, and the weight can be reduced, resistance increase and flow separation can be prevented, and the propulsion performance can be improved.
  • FIG. 3 is a schematic diagram showing a partial configuration of a modified example of the stern structure of the ship according to the first embodiment of the present invention.
  • FIG. 3 is a schematic view of the B-B ′ cross section seen from the stern of FIG. 2A.
  • the stern structure 4 in this figure includes a starboard stern structure 4a and a port stern structure 4b.
  • the starboard stern structure 4a includes a curved surface portion 46 and flat surface portions 47 and 48.
  • the curved surface portion 46 is provided along the outer side of the starboard propeller shaft tube 11 protruding rearward from the stern hull 3 (outside as viewed from the hull center line C). Thereby, the outer side of the starboard propeller shaft tube 11 is covered with the curved surface portion 46 by a predetermined distance from the portion protruding from the stern hull 3.
  • One of the flat portions 47 is coupled above the skeg 9 extending below the stern hull 3, and the other is joined above the curved surface portion 46.
  • the upper side of the starboard propeller shaft tube 11 is covered with the flat portion 47 by a predetermined distance from the portion protruding from the stern hull 3.
  • One of the plane portions 48 is coupled to the lower side of the skeg 9 extending below the stern hull 3, and the other is joined to the lower side of the curved surface portion 46.
  • the lower side of the starboard propeller shaft tube 11 is covered with the flat portion 48 by a predetermined distance from the portion protruding from the stern hull 3. That is, the starboard propeller shaft tube 11 is included in the hull of the biaxial ship 1 with the curved surface formed by the curved surface portion 46 and the flat surface formed by the flat surface portions 47 and 48.
  • the port stern structure 4b includes a curved surface portion 56 and flat surface portions 57 and 58.
  • the curved surface portion 56 is provided along the outside of the port propeller shaft tube 21 projecting rearward from the stern hull 3 (outside as seen from the hull center line C). Accordingly, the outside of the port propeller shaft tube 21 is covered with the curved surface portion 56 by a predetermined distance from the portion protruding from the stern hull 3.
  • One of the flat portions 57 is coupled above the skeg 9 extending below the stern hull 3 and the other is joined above the curved surface portion 56.
  • the upper side of the port propeller shaft tube 21 is covered with the flat portion 57 by a predetermined distance from the portion protruding from the stern hull 3.
  • One of the flat portions 58 is coupled to the lower side of the skeg 9 extending below the stern hull 3 and the other is joined to the lower side of the curved surface portion 56.
  • the lower side of the port propeller shaft tube 21 is covered with the flat portion 58 by a predetermined distance from the portion protruding from the stern hull 3. That is, the port propeller shaft tube 21 is included in the hull of the biaxial ship 1 with the curved surface formed by the curved surface portion 58 and the flat surface formed by the flat surface portions 57 and 58.
  • the starboard stern structure 4a and the port stern structure 4b are symmetric with respect to the hull center line C.
  • the starboard stern structure 4a and the port stern structure 4b are, for example, continuously joined together by the same steel plate as the stern hull 3 (example: joined by welding), and a part of the hull of the biaxial ship 1 is formed. It is composed.
  • the left and right propeller shaft tubes 21 and 11 protruding outside the hull are taken into the hull to the vicinity of the left and right propellers 20 and 10. In this way, the left and right propeller shafts 20 and 10 can be arranged in the ship and integrated with the stern structure.
  • the starboard stern structure 4a and the port stern structure 4b can be configured in a small shape without increasing the shape of the protruding portion as in the case of using an appendage such as a boshing, and the support strength can be increased. it can. That is, it is possible to reduce the hull additions, suppress the increase in resistance, and improve the propulsion efficiency.
  • the curved surface portions 46 and 56 may be shared by the members of the left and right propeller shaft tubes 21 and 11. Further, the curved surface portion 46 may be integrated by being incorporated into one or both of the flat surface portions 47 and 48. Furthermore, the curved surface portion 46 and the flat surface portions 47 and 48 may be integrated. Similarly, the curved surface portion 56 may be integrated into one or both of the flat surface portions 57 and 58. Furthermore, the curved surface portion 56 and the flat surface portions 57 and 58 may be integrated.
  • the stern structure 4 shown in FIG. 2B and the stern structure 4 shown in FIG. 3 can be used in combination.
  • the upper side is the flat plane portions 57 and 47 and the lower side is the curved surface portions 44 and 54, or vice versa. In this case, the same effect as described above can be obtained.
  • FIG. 4A and 4B are schematic views showing a partial configuration of a stern structure of a ship according to the second embodiment of the present invention.
  • FIG. 4A is a schematic view of the stern structure of the ship as viewed from the bottom of the ship
  • FIG. 4B is a schematic view of a CC ′ section as viewed from the stern of FIG. 4A.
  • the biaxial ship 1 which has the uniaxial stern type stern structure which is a kind of multi-axis ship as a ship is demonstrated to an example.
  • the biaxial ship 1 includes a stern structure 6, a starboard propeller 10, a starboard propeller shaft tube 11, a portside propeller 20, a portside propeller shaft tube 21, and a rudder 5.
  • the stern structure 6 extends rearward from the stern hull 3 and extends parallel or outward from the stern hull 3 to the hull center line C, and a part of the starboard propeller shaft tube 11 and the portside propeller shaft tube 21 protrudes from the stern hull 3. It is a bracket fin (62, 63, 72, 73) joined (example: joined by welding) to a portion (extended rearward). That is, the number and structure of the bracket fins in the present embodiment are different from those in the case of FIG. 1A.
  • the stern structure 6 includes a starboard stern structure 6a and a port stern structure 6b.
  • the starboard stern structure 6a and the port stern structure 6b are provided symmetrically with respect to the hull center line C.
  • the stern structures 6b and 6a on both the left and right sides are each configured by combining a plurality of bracket fins.
  • the starboard stern structure 6 a includes a starboard upper bracket fin 62 and a starboard side bracket fin 63.
  • the starboard upper bracket fin 62 is provided substantially in parallel with the hull center line C (skeg 9 extending below the stern hull 3), one connected to the starboard propeller shaft tube 11 and the other to the bottom surface of the stern hull 3. ing.
  • the starboard upper bracket fin 62 has a predetermined length from a position in the middle of the starboard propeller shaft tube 11 (for example, to the vicinity of the stern side tip of the skeg 9).
  • the starboard side bracket fins 63 are provided substantially perpendicular to the hull center line C (skeg 9 of the stern hull 3), one connected to the starboard propeller shaft tube 11 and the other to the skeg 9 of the stern hull 3. Has been.
  • the starboard side bracket fin 63 extends a predetermined distance (eg, to the vicinity of the stern side tip of the skeg 9) from the position where the starboard propeller shaft tube 11 protrudes from the stern hull 3.
  • the starboard propeller shaft tube 11 is supported by a starboard upper bracket fin 62 and a starboard side bracket fin 63.
  • the port stern structure 6 b includes a port upper bracket fin 72 and a port side bracket fin 73.
  • the portside upper bracket fins 72 are provided substantially in parallel with the hull center line C (skeg 9 of the stern hull 3), one connected to the port propeller shaft tube 21 and the other to the bottom surface of the stern hull 3.
  • the port-side upper bracket fin 72 has a predetermined length from the middle position of the port-side propeller shaft tube 21 (for example, to the vicinity of the stern side tip of the skeg 9).
  • the port side side bracket fins 73 are provided substantially perpendicular to the hull center line C (skeg 9 of the stern hull 3), one connected to the port propeller shaft tube 21 and the other to the skeg 9 of the stern hull 3. ing.
  • the port side side bracket fin 73 extends a predetermined distance (eg, to the vicinity of the stern side tip of the skeg 9) from the position where the port propeller shaft tube 21 protrudes from the stern hull 3.
  • the port propeller shaft tube 21 is supported by a port upper bracket fin 72 and a port side bracket fin 73.
  • a plurality of bracket fins 72, 73/62, 63 provide a space between the left and right propeller shaft tubes 21, 11 and the stern hull 3. By connecting, the strength of the support structure of the left and right propeller shaft tubes 21 and 11 can be increased.
  • the mounting angle of the plurality of bracket fins 72, 73/62, 63 is substantially matched with the streamline direction around the stern hull 3. Thereby, resistance deterioration due to the plurality of bracket fins 72, 73/62, 63 can be suppressed to a minimum.
  • bracket fins 72, 73/62, 63 since the flow around the stern hull 3 is slow in an enlarged ship such as an oil tanker or a bulk carrier, resistance deterioration due to the plurality of bracket fins 72, 73/62, 63 becomes relatively small.
  • a plurality of bracket fins are arranged in the direction in which the bilge vortex is increased, that is, the forward flow of each of the left and right propellers 20 and 10 is opposite (twisted) in the direction opposite to the rotation direction of each propeller. 72, 73/62, and 63 are adjusted. Thereby, propeller efficiency can be improved and propulsion performance can be improved.
  • FIG. 5 is a schematic diagram showing a partial configuration of a modified example of the stern structure of the ship according to the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a CC ′ section viewed from the stern of FIG. 4A.
  • the stern structure 6 in this figure includes a starboard stern structure 6a and a port stern structure 6b.
  • the starboard stern structure 6a and the port stern structure 6b are provided symmetrically with respect to the hull center line C.
  • the stern structures 6b and 6a on both the left and right sides are each configured by combining a plurality of bracket fins.
  • the starboard stern structure 6 a includes a starboard upper bracket fin 66 and starboard side bracket fins 67.
  • the starboard upper bracket fin 66 is provided in a state of being inclined toward the hull center line C (skeg 9 extending below the stern hull 3), one on the starboard propeller shaft tube 11 and the other on the skeg 9 of the stern hull 3. Are connected to the top of each.
  • the starboard upper bracket fin 66 has a predetermined length from the middle position of the starboard propeller shaft tube 11 (for example, to the vicinity of the stern side tip of the skeg 9).
  • the starboard side bracket fins 67 are provided substantially perpendicular to the hull center line C (skeg 9 of the stern hull 3), one on the starboard propeller shaft tube 11 and the other below the skeg 9 on the stern hull 3. Are combined.
  • the starboard side bracket fin 67 extends from the position where the starboard propeller shaft 11 protrudes from the stern hull 3 by a predetermined distance (eg, to the vicinity of the stern side tip of the skeg 9).
  • the starboard propeller shaft tube 11 is supported by a starboard upper bracket fin 66 and a starboard side bracket fin 67.
  • the port stern structure 6 b includes a port upper bracket fin 76 and a port side bracket fin 77.
  • the port-side upper bracket fins 76 are provided in a state of being inclined toward the hull center line C (skeg 9 of the stern hull 3), one on the port propeller shaft tube 21 and the other on the upper part of the skeg 9 on the stern hull 3. Each is connected.
  • the port-side upper bracket fin 76 has a predetermined length (for example, from the vicinity of the stern-side tip of the skeg 9) from a position in the middle of the port-side propeller shaft tube 21.
  • the port side side fins 77 are provided substantially perpendicular to the hull center line C (skeg 9 of the stern hull 3), one on the port propeller shaft tube 21 and the other below the skeg 9 on the stern hull 3. Are combined.
  • the port side side bracket fins 77 extend from the position where the port propeller shaft tube 21 protrudes from the stern hull 3 by a predetermined distance (eg, to the vicinity of the stern side tip of the skeg 9).
  • the port propeller shaft tube 21 is supported by a port upper bracket fin 76 and a port side bracket fin 77.
  • the present invention is not limited to the invention according to each of the above embodiments, and can be appropriately changed without departing from the scope of the invention.
  • the present invention can be applied to a so-called POD type in which a propeller is driven by a small motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 船舶の船尾構造は、複数のプロペラと、複数のプロペラ軸と、船尾構造体とを具備する。複数のプロペラ軸管は、複数のプロペラに対応して設けられ、複数のプロペラに接続される複数のプロペラ軸を挿通されている。船尾構造体は、船尾船体3から後方に伸び、船体中心線Cに対し外側に広がり、複数のプロペラ軸のうち船尾船体3から後方に伸びた部分を内包する。船尾構造体の内側は船体の内部である。船尾構造体は複数のプロペラ軸管を船体の内部で支持する。

Description

船舶の船尾構造
 本発明は、船舶の船尾構造に関する。
 船舶の推進装置の一例として、一機一軸(一機の主機と一基のプロペラ)の方式、及び二機二軸(二機の主機と二基のプロペラ)の方式が知られている。一般商船の推進装置としては、これら一機一軸方式、又は二機二軸方式を採用することが多い。それぞれ、前者を採用した船舶は一軸船、後者を採用した船舶は二軸船とも呼ばれている。
 また、近年の船舶の大型化に伴い、一軸船ではプロペラの荷重度の増加に伴う推進効率の低下、キャビテーション範囲の拡大に伴う船体振動の増加、及びエロージョンの発生が問題となるケースがある。それら問題は船舶を二軸船とすることで解決できることが知られている。二軸船とすると、一基当たりのプロペラ荷重度が低減され、プロペラ効率が向上し、キャビテーション発生範囲が低減できるからである。
 船尾に二基のプロペラを配置する例としては、オーバーラッピングプロペラ(OLP;Overlapping Propellers)の方式、インターロックプロペラの方式、及び、プロペラを左右並列する方式などがある。OLP方式では、二基のプロペラを前後にずらして配置し、船尾から見た場合に二基のプロペラの一部が重なるように配置する。OLP方式を採用することで推進性能が一軸船から5~10%程度改善できる。また、インターロックプロペラ方式では、一方のプロペラの翼と翼との間に他方のプロペラの翼が入るように配置する。プロペラを左右並列する方式では、プロペラを船長方向の同じ位置に並べて配置する。
 ここで、一軸船型の船尾構造に二基のプロペラを配置する際のプロペラの位置関係は、船体中心線付近の遅い流れやビルジ渦のような船尾の縦渦との関係から船体中心近傍に配置することが好ましい。その場合、以下の効果がある。船尾において、通常の一軸船のプロペラの位置では船体中心線に対称な一組の内回りに回転するビルジ渦のような遅い流れの縦渦が発生する。プロペラは流れの遅い場所で作動する方が、そうでない場合と比較して効率が良くなる。そのため、その縦渦付近にてプロペラを回転させ、船体中心線付近の遅い流れや縦渦を回収することで、推進効率を向上させることができる。OLP方式の場合では、船体中心近傍の縦渦を効率良く回収して推進性能向上が図られるよう、プロペラ回転方向は外回りが採用されることが多い。
 例えば、特許文献1(WO2006/095774号公報)には、一軸船型の船尾構造にOLPを採用した場合の技術が記載されている。図1A及び図1Bは、特許文献1の二軸船の船尾の構成の一部を示す模式図である。ただし、図1Aは二軸船の船尾を船底側から見た模式図であり、図1Bは船尾から見た図1AのA-A’断面の模式図である。二軸船100は、一軸船型の船尾を有し、船尾に右舷プロペラ110、左舷プロペラ120、及び舵105を備えている。右舷プロペラ110は、右舷船尾管111内に挿通されている右舷プロペラ軸112の一端に接続されている。右舷プロペラ軸112は、他端を船体内部の右舷主機131に接続されている。右舷主機131は、右舷プロペラ軸112を介して右舷プロペラ110を回転させる。また、左舷プロペラ120は、右舷プロペラ110と同様に、左舷船尾管121内に挿通されている左舷プロペラ軸122の一端に接続されている。左舷プロペラ軸122は、他端を船体内部の左舷主機132に接続されている。左舷主機132は左舷プロペラ軸122を介して左舷プロペラ120を回転させる。また、右舷船尾管111と船尾船体103との間、及び左舷船尾管121と船尾船体103との間はそれぞれブラケットフィン109、108にて結合されている。また、舵105は、右舷プロペラ110及び左舷プロペラ120の後方、船体中心線C上に設けられている。
 ところが、発明者は、今回、研究により以下の事実を発見した。
 船体中心近傍の縦渦を効率良く回収すべくOLPを採用し、船尾中央部分を薄くしてプロペラ軸を近づけると、プロペラ軸を支える構造が強度不足になる。そのため、上記の特許文献1では、補強用にブラケットフィン109、108を設けている。しかし、ブラケットフィン109、108だけでは強度不足を補うには十分ではない可能性が考えられる。また、ブラケットフィン109、108自体の抵抗により、推進効率が低下してしまう可能性が考えられる。
 更に、ブラケットフィンを用いずボッシングを用いて強度不足を補う方法も考えられる。しかし、ボッシングの長さが長くなるため、この場合にも、そのボッシングの抵抗により推進効率が低下してしまう可能性が考えられる。このように、二軸船のプロペラ軸の支持構造の強度を向上させるためにシャフトブラケットやボッシングなどの付加物を設けると、それらによる副部抵抗の増加に伴い推進性能が悪化してしまう可能性がある。
WO2006/095774号公報
 本発明の目的は、プロペラ軸の支持構造を補強しつつ、且つボッシングやブラケットフィン等の船体付加物による抵抗増加を抑え、推進効率を向上させることができる船舶の船尾構造及びそれを用いた船舶を提供することである。
 本発明の船舶の船尾構造は、複数のプロペラと、複数のプロペラ軸と、船尾構造体とを具備する。複数のプロペラ軸は、複数のプロペラに対応して設けられ、複数のプロペラに接続される。船尾構造体は、船尾船体の後方に結合して設けられ、複数のプロペラ軸のうち船尾船体から後方に伸びた部分を内包する。船尾構造体の内側は船体の内部である。船尾構造体は複数のプロペラ軸を船体の内部で支持する。
 上記の船舶の船尾構造において、船尾構造体は、上面部と、下面部と、側面部とを含む。上面部は、船尾船体から後方に伸び、船体中心線に対し外側に広がり、プロペラ軸の上方を覆うように設けられている。下面部は、船尾船体から後方に伸び、船体中心線に対し外側に広がり、プロペラ軸の下方を覆うように設けられている。側面部は、船尾船体から後方に伸び、上面部と下面部とを結合し、プロペラ軸の側方を覆うように設けられている。
 上記の船舶の船尾構造において、上面部は、船尾船体と側面部とを上側から連続的に滑らかに結合する曲面を構成する第1曲面部である。下面部は、船尾船体と側面部とを下側から連続的に滑らかに結合する曲面を構成する第2曲面部である。
 上記の船舶の船尾構造において、上面部は、船尾船体と側面部とを上側から連続的に結合する平面を構成する第1平面部である。下面部は、船尾船体と側面部とを下側から連続的に結合する平面を構成する第2平面部である。
 本発明の船舶の船尾構造は、複数のプロペラと、複数のプロペラ軸管と、船尾構造体とを具備する。複数のプロペラ軸管は、複数のプロペラに対応して設けられ、複数のプロペラに接続される複数のプロペラ軸を挿通されている。船尾構造体は、船尾船体の後方に設けられ、複数のプロペラ軸管のうち船尾船体から後方に伸びた部分を支持する。船尾構造体は、側方フィンと、上方フィンとを備える。側方フィンは、船尾船体から後方に伸び、船体中心線に対し外側に広がり、複数のプロペラ軸管の側方に結合して複数のプロペラ軸管を支持する。上方フィンは、船尾船体の後方に離れて設けられ、船尾船体の底部から下方に伸び、複数のプロペラ軸管の上方に結合して複数のプロペラ軸管を支持する。側方フィン及び上方フィンは、船体周りの流線方向と一致するように船尾船体と結合される
 上記の船舶の船尾構造において、船尾船体は、一軸船型の船尾構造を有する。
 本発明の船舶は、上記各段落のいずれか一に記載の船舶の船尾構造を有する船舶である。
 発明により、船舶において、プロペラ軸の支持構造を補強しつつ、且つブラケットフィン等の付加物による抵抗増加を抑え、推進効率を向上させる船尾構造を提供することができる。
図1Aは、特許文献1の二軸船の船尾の構成の一部を示す模式図である。 図1Bは、特許文献1の二軸船の船尾の構成の一部を示す模式図である。 図2Aは、本発明の第1の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。 図2Bは、本発明の第1の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。 図3は、本発明の第1の実施の形態における船舶の船尾構造の変形例の一部の構成を示す模式図である。 図4Aは、本発明の第2の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。 図4Bは、本発明の第2の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。 図5は、本発明の第2の実施の形態における船舶の船尾構造の変形例の一部の構成を示す模式図である。
 以下、本発明の船尾構造及びそれを用いた船舶の実施の形態について添付図面を参照して説明する。
(第1の実施の形態)
 まず、本発明の第1の実施に係る船舶の船尾構造の構成について説明する。図2A及び図2Bは、本発明の第1の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。ただし、図2Aは船舶の船尾構造を船底側から見た模式図であり、図2Bは図2Aの船尾から見たB-B’断面の模式図である。ここでは、船舶として、多軸船の一種である一軸船型の船尾構造を有する二軸船1を例に説明する。図2Aに示されるように、二軸船1は、船尾構造体4、右舷プロペラ10、右舷プロペラ軸管11、左舷プロペラ20、左舷プロペラ軸管21、及び舵5を備えている。
 右舷プロペラ10は、船体の船尾の下方部分である船尾船体3の右舷に設けられている。右舷プロペラ10は、右舷プロペラ軸管11内に挿入されている右舷プロペラ軸12の一端に接続されている。右舷プロペラ軸12は、他端を船体内部の右舷主機31に接続されている。右舷主機31は、右舷プロペラ軸12を介して右舷プロペラ10を回転させる。また、同様に、左舷プロペラ20は、船尾の船尾船体3の左舷に設けられている。左舷プロペラ20は、左舷プロペラ軸管21内に挿入されている左舷プロペラ軸22の一端に接続されている。左舷プロペラ軸22は、他端を船体内部の左舷主機32に接続されている。左舷主機32は、左舷プロペラ軸22を介して左舷プロペラ20を回転させる。各プロペラ軸22、12は、左右両舷のプロペラ軸管21、11や各船尾構造体4b、4a内部で軸受により回転可能に保持されている。
 ただし、右舷プロペラ軸管11及び左舷プロペラ軸管21は、それぞれ右舷プロペラ軸12及び左舷プロペラ軸22を保護するための外筒(管)であり、船尾管に例示される。ただし、それに限定されず、どのような形態のものでもよい。
 船尾構造体4は、船尾船体3から船体後方に伸び、船体中心線Cに対し外側に広がり、右舷プロペラ軸管11及び左舷プロペラ軸管21の一部が船尾船体3から突き出した(後方に伸びた)部分を内包している。そして、船尾船体3と結合して、二軸船1の船体の一部を成している。すなわち、右舷プロペラ軸管11は、図1Aの場合と比較して、右舷プロペラ10の近傍まで、船体の内部(船尾構造体4(4a)の内部)に取り込まれている。同様に、左舷プロペラ軸管21は、図1Aの場合と比較して、左舷プロペラ20の近傍まで、船体の内部(船尾構造体4(4b)の内部)に取り込まれている。そして、船尾構造体4は、右舷プロペラ軸管11及び左舷プロペラ軸管21が船尾船体3から突き出す位置から、船尾船体3底部のスケグ9の船尾方向の先端近傍まで伸びている。
 ここでの船尾船体3は、船体中心線に沿ったスケグを有する一軸船における船尾構造と同様の構造を有する部分をいう。そして、本実施の形態における二軸船1の船尾は、船尾船体3と船尾構造体4とが一体となって構成されている。以下、本明細書において同様である。
 舵5は、右舷プロペラ10及び左舷プロペラ20の後方、船体中心線C上に設けられている。
 左右両舷のプロペラ20、10は、お互いのプロペラ翼が干渉しない程度のプロペラチップ間距離dを隔てて船体中心線Cを対称に並べられ、船体中心線C近傍に配置されている。ここで、プロペラチップ間距離dは、プロペラ翼同士の接触の恐れがなく、かつ、低速の流れを捉えられるように船体中心線Cに近く設定されることが好ましい。また、OLP方式とすると前側のプロペラによる後側のプロペラへのキャビテーションの影響が大きいため、両プロペラが重ならないことが好ましい。すなわち、0≦d≦0.5Dp(Dp:プロペラ径)とすることがより好ましい。このように二軸船では、プロペラを近接させて用いることが好ましい。
 図2Bに示されるように、船尾構造体4は、右舷船尾構造体4aと左舷船尾構造体4bとを備える。
 右舷船尾構造体4aは、曲面部42、43、44から構成されている。曲面部42は、船尾船体3から後方に突き出している右舷プロペラ軸管11の外側(船体中心線Cから見て外側)に沿うように設けられている。それにより、右舷プロペラ軸管11の外側は、船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ曲面部42に覆われている。曲面部43は、船尾船体3の下方に延びるスケグ9の上方に一方を結合され、他方を曲面部42の上方に接合されている。それにより、右舷プロペラ軸管11の上側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部43に覆われている。曲面部44は、船尾船体3の下方に延びるスケグ9の下方に一方を結合され、他方を曲面部42の下方に接合されている。それにより、右舷プロペラ軸管11の下側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部44に覆われている。すなわち、これら曲面部42、43、44により形成される曲面で、右舷プロペラ軸管11は、二軸船1の船体に内包されている。
 同様に、左舷船尾構造体4bは、曲面部52、53、54から構成されている。曲面部52は、船尾船体3から後方に突き出している左舷プロペラ軸管21の外側(船体中心線Cから見て外側)に沿うように設けられている。それにより、左舷プロペラ軸管21の外側は、船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ曲面部52に覆われている。曲面部53は、船尾船体3の下方に延びるスケグ9の上方に一方を結合され、他方を曲面部52の上方に接合されている。それにより、左舷プロペラ軸管21の上側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部53に覆われている。曲面部54は、船尾船体3の下方に延びるスケグ9の下方に一方を結合され、他方を曲面部52の下方に接合されている。それにより、左舷プロペラ軸管21の下側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部54に覆われている。すなわち、これら曲面部52、53、54により形成される曲面で、左舷プロペラ軸管21は、二軸船1の船体に内包されている。
 右舷船尾構造体4aおよび左舷船尾構造体4bは、船体中心線Cに対し対称である。右舷船尾構造体4aおよび左舷船尾構造体4bは、例えば、共に船尾船体3と同一の鋼板で連続的に結合されて(例示:溶接により接合されて)、二軸船1の船体の一部を構成している。それにより、船尾船体3の外側に突き出していた左右両舷のプロペラ軸管21、11を左右両舷のプロペラ20、10の近傍まで船体内部に取り込んでいる。このようにして、左右両舷のプロペラ軸20、10を船内に配置して、船尾構造と一体化させることができる。それにより、右舷船尾構造体4aおよび左舷船尾構造体4bをボッシングのような付加物を用いた場合のような太く突き出た形状にすることなく、小さい形状で構成でき、かつ支持強度を高めることができる。すなわち、船体付加物を減らし、それによる抵抗増加を抑え、推進効率を向上させることができる。
 曲面部43、44や曲面部53、54は、船舶の推進性能への影響が少なくなるように船尾船体3と連続関数で表せる曲線(曲面)のように滑らかに結合される。形状については、図2Bの形状に限定されず、船舶の推進性能への影響が少なくなるような形状であれば、特に限定されない。また、曲面部42、52は、左右両舷のプロペラ軸管11、21の部材で兼用されていても良い。また、曲面部42は、曲面部43、44のいずれか又は両方に取り込まれて一体であっても良い。更に、曲面部42、43、44は一体であっても良い。同様に、曲面部52は、曲面部53、54のいずれか又は両方に取り込まれて一体であっても良い。更に、曲面部52、53、54は一体であっても良い。また、左右両舷の船尾構造体4b、4a内部においては、左右両舷のプロペラ軸管21、11が無く、左右両舷のプロペラ軸22、12が剥き出しであっても良い。その場合、各プロペラ軸22、12は、各船尾構造体4b、4a内部で軸受により回転可能に保持される。
 以上のように、本実施に係る船舶の船尾構造及びそれを用いた船舶において、船尾構造体4により左右両舷のプロペラ軸管21、11と船尾船体3との間をつなげる又は覆うことで、船体外に突き出していた左右両舷のプロペラ軸管21、11を船体内部に配置することができる。これにより、左右両舷のプロペラ軸管21、11を強固に支持することができる。すなわち、その支持構造の強度を大幅に増加させることができる。
 また、船尾構造体4と船尾船体3とを滑らかに結合されているので、左右両舷のプロペラ軸管21、11による抵抗増加や流れの剥離を防止して、推進性能を向上させることができる。更に、船体外に突き出していた左右両舷のプロペラ軸管21、11の一部を船体内部に取り込むことで、船体外に突き出すプロペラ軸管の長さが減少するため、ブラケットフィンやボッシングのような付加物を用いる必要が無く、軽量化でき、抵抗増加や流れの剥離を防止して、推進性能を向上させることができる。
 図3は、本発明の第1の実施の形態における船舶の船尾構造の変形例の一部の構成を示す模式図である。図3は図2Aの船尾から見たB-B’断面の模式図である。この図における船尾構造体4は、右舷船尾構造体4aと左舷船尾構造体4bとを備えている。
 右舷船尾構造体4aは、曲面部46、平面部47、48から構成されている。曲面部46は、船尾船体3から後方に突き出している右舷プロペラ軸管11の外側(船体中心線Cから見て外側)に沿うように設けられている。それにより、右舷プロペラ軸管11の外側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部46に覆われている。平面部47は、船尾船体3の下方に延びるスケグ9の上方に一方を結合され、他方を曲面部46の上方に接合されている。それにより、右舷プロペラ軸管11の上側は、船尾船体3から突き出す箇所から所定の距離だけ平面部47に覆われている。平面部48は、船尾船体3の下方に延びるスケグ9の下方に一方を結合され、他方を曲面部46の下方に接合されている。それにより、右舷プロペラ軸管11の下側は、船尾船体3から突き出す箇所から所定の距離だけ平面部48に覆われている。すなわち、これら曲面部46により形成される曲面と、平面部47、48により形成される平面で、右舷プロペラ軸管11は、二軸船1の船体に内包されている。
 同様に、左舷船尾構造体4bは、曲面部56、平面部57、58から構成されている。曲面部56は、船尾船体3から後方に突き出している左舷プロペラ軸管21の外側(船体中心線Cから見て外側)に沿うように設けられている。それにより、左舷プロペラ軸管21の外側は、船尾船体3から突き出す箇所から所定の距離だけ曲面部56に覆われている。平面部57は、船尾船体3の下方に延びるスケグ9の上方に一方を結合され、他方を曲面部56の上方に接合されている。それにより、左舷プロペラ軸管21の上側は、船尾船体3から突き出す箇所から所定の距離だけ平面部57に覆われている。平面部58は、船尾船体3の下方に延びるスケグ9の下方に一方を結合され、他方を曲面部56の下方に接合されている。それにより、左舷プロペラ軸管21の下側は、船尾船体3から突き出す箇所から所定の距離だけ平面部58に覆われている。すなわち、これら曲面部58により形成される曲面と、平面部57、58により形成される平面で、左舷プロペラ軸管21は、二軸船1の船体に内包されている。
 右舷船尾構造体4aおよび左舷船尾構造体4bは、船体中心線Cに対し対称である。右舷船尾構造体4aおよび左舷船尾構造体4bは、例えば、共に船尾船体3と同一の鋼板で連続的に結合されて(例示:溶接により接合されて)、二軸船1の船体の一部を構成している。それにより、船体外に突き出している左右両舷のプロペラ軸管21、11を左右両舷のプロペラ20、10の近傍まで船体内部に取り込んでいる。このようにして、左右両舷のプロペラ軸20、10を船内に配置して、船尾構造と一体化させることができる。それにより、右舷船尾構造体4aおよび左舷船尾構造体4bをボッシングのような付加物を用いた場合のような太く突き出た形状にすることなく、小さい形状で構成でき、かつ支持強度を高めることができる。すなわち、船体付加物を減らし、それによる抵抗増加を抑え、推進効率を向上させることができる。
 曲面部46、56は、左右両舷のプロペラ軸管21、11の部材で兼用されていても良い。また、曲面部46は、平面部47、48のいずれか又は両方に取り込まれて一体化されていても良い。更に、曲面部46、平面部47、48は一体であっても良い。同様に、曲面部56は、平面部57、58のいずれか又は両方に取り込まれて一体化されていても良い。更に、曲面部56、平面部57、58は一体であっても良い。
 以上のように、本実施に係る船舶の船尾構造及びそれを用いた船舶において、この場合にも、図2Aや図2Bの場合と同様の効果を得ることができる。また、それに加えて、船尾構造体4における曲面部43、44や曲面部53、54のような曲面形状を用いないため、板曲げが不要となり、製造を容易にすることができる。
 上記図2Bの船尾構造体4と図3の船尾構造体4とは、組み合わせて使用することも可能である。例えば、船尾構造体4のうち、上側を平面形状の平面部57、47とし、下側を曲面部44、54とする場合、又はその逆の場合である。この場合にも上記と同様の効果を得ることができる。
(第2の実施の形態)
 まず、本発明の第2の実施に係る船舶の船尾構造の構成について説明する。図4A及び図4Bは、本発明の第2の実施の形態に係る船舶の船尾構造の一部の構成を示す模式図である。ただし、図4Aは船舶の船尾構造を船底側から見た模式図であり、図4Bは図4Aの船尾から見たC-C’断面の模式図である。ここでは、船舶として、多軸船の一種である一軸船型の船尾構造を有する二軸船1を例に説明する。図4Aに示されるように、二軸船1は、船尾構造体6、右舷プロペラ10、右舷プロペラ軸管11、左舷プロペラ20、左舷プロペラ軸管21、及び舵5を備えている。
 右舷プロペラ10及び左舷プロペラ20、舵5については、第1の実施の形態と同様であるので、その説明を省略する。
 船尾構造体6は、船尾船体3から後方に伸び、船尾船体3から船体中心線Cに対し平行又は外側に広がり、右舷プロペラ軸管11及び左舷プロペラ軸管21の一部が船尾船体3から突き出した(後方に伸びた)部分に結合(例示:溶接で接合)されたブラケットフィン(62、63、72、73)である。すなわち、本実施の形態におけるブラケットフィンは、図1Aの場合と比較して、その数及び構成が異なっている。
 船尾構造体6は、右舷船尾構造体6aと左舷船尾構造体6bとを備えている。右舷船尾構造体6aと左舷船尾構造体6bとは船体中心線Cに対し対称に設けられている。左右両舷の船尾構造体6b、6aはそれぞれ複数のブラケットフィンを組み合わせた構成である。
 右舷船尾構造体6aは、右舷上方ブラケットフィン62と、右舷側方ブラケットフィン63とを備えている。右舷上方ブラケットフィン62は、船体中心線C(船尾船体3の下方に延びるスケグ9)と略平行に設けられ、一方は右舷プロペラ軸管11に、他方は船尾船体3の底面部にそれぞれ結合されている。右舷上方ブラケットフィン62は、右舷プロペラ軸管11の途中の位置から所定の長さ(例示:スケグ9の船尾側先端の近傍まで)を有している。また、右舷側方ブラケットフィン63は、船体中心線C(船尾船体3のスケグ9)に対し略垂直に設けられ、一方は右舷プロペラ軸管11に、他方は船尾船体3のスケグ9にそれぞれ結合されている。右舷側方ブラケットフィン63は、右舷プロペラ軸管11が船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ伸びている。右舷プロペラ軸管11は、右舷上方ブラケットフィン62及び右舷側方ブラケットフィン63により支持されている。
 左舷船尾構造体6bは、左舷上方ブラケットフィン72と、左舷側方ブラケットフィン73とを備えている。左舷上方ブラケットフィン72は、船体中心線C(船尾船体3のスケグ9)と略平行に設けられ、一方は左舷プロペラ軸管21に、他方は船尾船体3の底面部にそれぞれ結合されている。左舷上方ブラケットフィン72は、左舷プロペラ軸管21の途中の位置から所定の長さ(例示:スケグ9の船尾側先端の近傍まで)を有している。また、左舷側方ブラケットフィン73は船体中心線C(船尾船体3のスケグ9)に対し略垂直に設けられ、一方は左舷プロペラ軸管21に、他方は船尾船体3のスケグ9にそれぞれ結合されている。左舷側方ブラケットフィン73は、左舷プロペラ軸管21が船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ伸びている。左舷プロペラ軸管21は、左舷上方ブラケットフィン72及び左舷側方ブラケットフィン73により支持されている。
 以上のように、本実施に係る船舶の船尾構造及びそれを用いた船舶において、複数のブラケットフィン72、73/62、63により左右舷のプロペラ軸管21、11と船尾船体3との間をつなげることで、左右舷のプロペラ軸管21、11の支持構造の強度を増加させることができる。
 加えて、複数のブラケットフィン72、73/62、63の取り付け角度を船尾船体3の周りの流線方向と略一致させることが好ましい。それにより、複数のブラケットフィン72、73/62、63による抵抗悪化を最小限に抑制することができる。
 また、油タンカーやバルクキャリアのような肥大船では船尾船体3の周りの流れが遅いので、複数のブラケットフィン72、73/62、63による抵抗悪化が相対的に小さくなる。その場合、ビルジ渦を増加させる方向、すなわち、左右両舷のプロペラ20、10の各々の前方の流れが各プロペラの回転方向と逆方向になるような(ひねるような)方向に複数のブラケットフィン72、73/62、63の角度を調整する。それにより、プロペラ効率を向上させ推進性能を向上させることができる。
 図5は、本発明の第2の実施の形態における船舶の船尾構造の変形例の一部の構成を示す模式図である。図5は図4Aの船尾から見たCC’断面の模式図である。この図における船尾構造体6は、右舷船尾構造体6aと左舷船尾構造体6bとを備えている。右舷船尾構造体6aと左舷船尾構造体6bとは船体中心線Cに対し対称に設けられている。左右両舷の船尾構造体6b、6aはそれぞれ複数のブラケットフィンを組み合わせた構成である。
 右舷船尾構造体6aは、右舷上方ブラケットフィン66と、右舷側方ブラケットフィン67とを備えている。右舷上方ブラケットフィン66は、船体中心線C(船尾船体3の下方に延びるスケグ9)に向かって傾けられた状態で設けられ、一方は右舷プロペラ軸管11に、他方は船尾船体3のスケグ9の上部にそれぞれ結合されている。右舷上方ブラケットフィン66は、右舷プロペラ軸管11の途中の位置から所定の長さ(例示:スケグ9の船尾側先端の近傍まで)を有している。また、右舷側方ブラケットフィン67は船体中心線C(船尾船体3のスケグ9)に対し略垂直に設けられ、一方は右舷プロペラ軸管11に、他方は船尾船体3のスケグ9の下方にそれぞれ結合されている。右舷側方ブラケットフィン67は、右舷プロペラ軸管11が船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ伸びている。右舷プロペラ軸管11は、右舷上方ブラケットフィン66及び右舷側方ブラケットフィン67により支持されている。
 左舷船尾構造体6bは、左舷上方ブラケットフィン76と、左舷側方ブラケットフィン77とを備えている。左舷上方ブラケットフィン76は、船体中心線C(船尾船体3のスケグ9)に向かって傾けられた状態で設けられ、一方は左舷プロペラ軸管21に、他方は船尾船体3のスケグ9の上部にそれぞれ結合されている。左舷上方ブラケットフィン76は、左舷プロペラ軸管21の途中の位置から所定の長さ(例示:スケグ9の船尾側先端の近傍まで)を有している。また、左舷側方ブラケットフィン77は船体中心線C(船尾船体3のスケグ9)に対し略垂直に設けられ、一方は左舷プロペラ軸管21に、他方は船尾船体3のスケグ9の下方にそれぞれ結合されている。左舷側方ブラケットフィン77は、左舷プロペラ軸管21が船尾船体3から突き出す箇所から所定の距離(例示:スケグ9の船尾側先端の近傍まで)だけ伸びている。左舷プロペラ軸管21は、左舷上方ブラケットフィン76及び左舷側方ブラケットフィン77により支持されている。
 以上のように、本実施に係る船舶の船尾構造及びそれを用いた船舶において、この場合にも、図4Aや図4Bの場合と同様の効果を得ることができる。なお、この場合にも、船尾構造体6の各ブラケットフィンの取り付け角度を、船尾船体3の周りの流線方向と一致させることが好ましくこの場合にも、図4Aや図4Bの場合と同様の効果を得ることができる。
 なお、本発明は、上記各実施の形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲おいて、適宜変更が可能である。例えば、プロペラの配置にOLPやインターロックプロペラを採用することも可能であり、その場合にも上記と同様の効果を得ることができる。また、小型モータでプロペラを駆動するPOD型と呼ばれるものにも適用可能である。また、第1の実施の形態において、更に多くの複数の平面又は曲面を用いてプロペラ軸管を内包する船尾構造体を形成することも可能である。更に、3枚以上のブラケットフィンを用いてプロペラ軸管を支持することも可能である。そして、更にこれらを組み合わせることも可能である。また、各実施の形態の技術は互いに技術的矛盾の発生しない限り、相互に適用可能である。
 本発明はいくつかの実施の形態と併せて上述されたが、これらの実施の形態は本発明を説明するために単に提供されたものであることは当業者にとって明らかであり、意義を限定するように添付のクレームを解釈するために頼ってはならない。
 この出願は、2009年11月5日に出願された特許出願番号2009-254297号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。

Claims (7)

  1.  複数のプロペラと、
     前記複数のプロペラに対応して設けられ、前記複数のプロペラに接続される複数のプロペラ軸と、
     船尾船体の後方に結合して設けられ、前記複数のプロペラ軸のうち前記船尾船体から後方に伸びた部分を内包する船尾構造体と
     を具備し、
     前記船尾構造体の内側は船体の内部であり、
     前記船尾構造体は前記複数のプロペラ軸を前記船体の内部で支持する
     船舶の船尾構造。
  2.  請求項1に記載の船舶の船尾構造であって、
     前記船尾構造体は、
      前記船尾船体から後方に伸び、前記船体中心線に対し外側に広がり、前記プロペラ軸の上方を覆うように設けられた上面部と、
      前記船尾船体から後方に伸び、前記船体中心線に対し外側に広がり、前記プロペラ軸の下方を覆うように設けられた下面部と、
      前記船尾船体から後方に伸び、前記上面部と前記下面部とを結合し、前記プロペラ軸の側方を覆うように設けられた側面部と
      を含む
     船舶の船尾構造。
  3.  請求項2に記載の船舶の船尾構造であって、
     前記上面部は、前記船尾船体と前記側面部とを上側から連続的に滑らかに結合する曲面を構成する第1曲面部であり、
     前記下面部は、前記船尾船体と前記側面部とを下側から連続的に滑らかに結合する曲面を構成する第2曲面部である
     船舶の船尾構造。
  4.  請求項2に記載の船舶の船尾構造であって、
     前記上面部は、前記船尾船体と前記側面部とを上側から連続的に結合する平面を構成する第1平面部であり、
     前記下面部は、前記船尾船体と前記側面部とを下側から連続的に結合する平面を構成する第2平面部である
     船舶の船尾構造。
  5.  複数のプロペラと、
     前記複数のプロペラに対応して設けられ、前記複数のプロペラに接続される複数のプロペラ軸を挿通された複数のプロペラ軸管と、
     船尾船体の後方に結合して設けられ、前記複数のプロペラ軸管のうち前記船尾船体から後方に伸びた部分を支持する船尾構造体と
     を具備し、
     前記船尾構造体は、
      前記船尾船体から後方に伸び、船体中心線に対し外側に広がり、前記複数のプロペラ軸管の側方に結合して前記複数のプロペラ軸管を支持する側方フィンと、
      前記船尾船体の後方に離れて設けられ、前記船尾船体の底部から下方に伸び、前記複数のプロペラ軸管の上方に結合して前記複数のプロペラ軸管を支持する上方フィンと
     を備え、
     前記側方フィン及び前記上方フィンは、船体周りの流線方向と一致するように前記船尾船体と結合される
     船舶の船尾構造。
  6.  請求項2又は5に記載の船舶の船尾構造であって、
     前記船尾船体は、一軸船型の船尾構造を有する
     船舶の船尾構造。
  7.  請求項1乃至6のいずれか一項に記載の船舶の船尾構造を有する船舶。
PCT/JP2010/052461 2009-11-05 2010-02-18 船舶の船尾構造 WO2011055558A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117027787A KR101330372B1 (ko) 2009-11-05 2010-02-18 선박의 선미 구조
EP10828119.7A EP2497710B1 (en) 2009-11-05 2010-02-18 Stern structure for ship
EP14183842.5A EP2821334B1 (en) 2009-11-05 2010-02-18 Stern structure of ship
US13/318,373 US8499705B2 (en) 2009-11-05 2010-02-18 Stern structure of ship
CN201080022421.4A CN102438891B (zh) 2009-11-05 2010-02-18 船舶的船尾结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009254297A JP2011098639A (ja) 2009-11-05 2009-11-05 船舶の船尾構造
JP2009-254297 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011055558A1 true WO2011055558A1 (ja) 2011-05-12

Family

ID=43969800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052461 WO2011055558A1 (ja) 2009-11-05 2010-02-18 船舶の船尾構造

Country Status (6)

Country Link
US (1) US8499705B2 (ja)
EP (2) EP2821334B1 (ja)
JP (1) JP2011098639A (ja)
KR (1) KR101330372B1 (ja)
CN (1) CN102438891B (ja)
WO (1) WO2011055558A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192947B (zh) * 2013-03-29 2016-08-24 中船重工(武汉)船舶与海洋工程装备设计有限公司 一种三尾三桨单体高速船型
KR102130721B1 (ko) * 2013-09-26 2020-08-05 대우조선해양 주식회사 비틀림 스트럿 및 그 비틀림 스트럿의 설치구조
CN104149965A (zh) * 2014-08-19 2014-11-19 刘书雄 一种用于小型船舶的动力装置
JP6226241B2 (ja) * 2014-11-18 2017-11-08 三菱重工業株式会社 シャフトブラケットを有する近接二軸船の推進装置、船舶
CN105584586A (zh) * 2016-03-08 2016-05-18 上海船舶研究设计院 一种小型lng运输船双全回转拉式桨推进的尾部结构
JP6246960B1 (ja) * 2017-01-25 2017-12-13 三菱重工業株式会社 船舶の推進装置及び船舶
JP7326172B2 (ja) * 2020-01-17 2023-08-15 三菱重工業株式会社 船舶
US11981410B2 (en) 2021-08-06 2024-05-14 Peter Van Diepen Stern bulbs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724877Y1 (ja) * 1969-08-15 1972-08-04
JPS501077B1 (ja) * 1970-12-12 1975-01-14
JPH08150983A (ja) * 1994-11-29 1996-06-11 Ishikawajima Harima Heavy Ind Co Ltd 船舶の抵抗低減装置
WO2006095774A1 (ja) 2005-03-11 2006-09-14 Kabushiki Kaisha Kawasaki Zosen 船舶の船尾構造
JP2009254297A (ja) 2008-04-17 2009-11-05 Cosmo Seiki Inc 釣りエサ用容器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB100299A (ja) * 1915-04-20 Fiat San Giorgio Societa Anoni
GB109089A (en) * 1916-08-29 1917-08-29 Henry De Morgan Snell Improvements in or relating to the Propulsion of Ships and similar Vessels.
US2331073A (en) * 1942-07-10 1943-10-05 Albert H Harvey Propulsion apparatus
GB578785A (en) * 1944-04-08 1946-07-11 Thomas Charles Tobin Improvements relating to ships' propeller shaft bossings
GB703777A (en) * 1951-05-10 1954-02-10 Pleuger K G Improvements in driving mechanism for ships and the like
US3236570A (en) * 1962-12-26 1966-02-22 Satterthwaite James Glenn Demountable stern housing for marine bearings and method of using the same
NO132307C (ja) * 1969-04-21 1975-10-22 Uljanik Brodogradiliste I Tvor
JPS533749B2 (ja) 1973-05-08 1978-02-09
GB1547184A (en) * 1975-04-04 1979-06-06 Vignano G B T Di Method of designing the underwater afterbody of a screw-driven ship
JPH0724877Y2 (ja) * 1988-08-20 1995-06-05 株式会社ケンウッド スピーカの構造
JPH03132497A (ja) * 1989-10-16 1991-06-05 Yamanaka Zosen Kk 船舶の推進機構
JPH0526796U (ja) * 1991-03-11 1993-04-06 川崎重工業株式会社 船舶の推進装置
US7798875B1 (en) * 2006-10-20 2010-09-21 Brunswick Corporation Helical marine strut
EP3075647B1 (en) * 2015-03-30 2017-09-13 B. Financial S.r.L. Walkable structure of docking in boats

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724877Y1 (ja) * 1969-08-15 1972-08-04
JPS501077B1 (ja) * 1970-12-12 1975-01-14
JPH08150983A (ja) * 1994-11-29 1996-06-11 Ishikawajima Harima Heavy Ind Co Ltd 船舶の抵抗低減装置
WO2006095774A1 (ja) 2005-03-11 2006-09-14 Kabushiki Kaisha Kawasaki Zosen 船舶の船尾構造
JP2009254297A (ja) 2008-04-17 2009-11-05 Cosmo Seiki Inc 釣りエサ用容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2497710A4 *

Also Published As

Publication number Publication date
JP2011098639A (ja) 2011-05-19
KR101330372B1 (ko) 2013-11-15
KR20120011051A (ko) 2012-02-06
EP2497710A4 (en) 2014-06-11
EP2821334A2 (en) 2015-01-07
CN102438891B (zh) 2015-05-20
CN102438891A (zh) 2012-05-02
EP2821334B1 (en) 2018-09-05
EP2821334A3 (en) 2015-02-25
EP2497710B1 (en) 2019-09-04
US8499705B2 (en) 2013-08-06
US20120042819A1 (en) 2012-02-23
EP2497710A1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011055558A1 (ja) 船舶の船尾構造
KR102042906B1 (ko) 이중 반전 프로펠러 추진 방식의 선박
WO2011055557A1 (ja) 船舶の推進装置
JP5095521B2 (ja) 船体構造
WO2013094534A1 (ja) 鋼船又は軽合金船
JP5453625B2 (ja) 二軸推進器付船舶
JP4909380B2 (ja) 船舶
JP6548062B2 (ja) 船尾用ダクト、船尾用付加物、船尾用ダクトの設計方法、及び船尾用ダクトを装備した船舶
JP5675264B2 (ja) 船舶及び推進装置
JP2018020584A (ja) 船舶
WO2016080002A1 (ja) シャフトブラケットを有する近接二軸船の推進装置、船舶
JP2016107715A (ja) 舵および舵ユニットならびに船舶
JP2019156309A (ja) 船尾フィン及び船舶
JP2007022447A (ja) 2軸船
JP2011098704A (ja) 推進機関及びそれを用いた船舶
JP7422839B2 (ja)
JP2011098702A (ja) 推進装置及びそれを用いた船舶
JP2010195302A (ja) 2軸2舵船
JP5196504B2 (ja) 船舶
JP6203349B1 (ja) 船舶用舵
JP2011098696A (ja) 推進装置、及びそれを用いた船舶
JPH03132497A (ja) 船舶の推進機構
WO2013153665A1 (ja) 船舶用舵
JP2014151773A (ja) ツインスケグ型船体構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022421.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010828119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13318373

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117027787

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE