WO2006095774A1 - 船舶の船尾構造 - Google Patents

船舶の船尾構造 Download PDF

Info

Publication number
WO2006095774A1
WO2006095774A1 PCT/JP2006/304479 JP2006304479W WO2006095774A1 WO 2006095774 A1 WO2006095774 A1 WO 2006095774A1 JP 2006304479 W JP2006304479 W JP 2006304479W WO 2006095774 A1 WO2006095774 A1 WO 2006095774A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
stern
hull
ship
wake
Prior art date
Application number
PCT/JP2006/304479
Other languages
English (en)
French (fr)
Inventor
Yasunori Iwasaki
Kazuyuki Ebira
Hideaki Okumura
Original Assignee
Kabushiki Kaisha Kawasaki Zosen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kawasaki Zosen filed Critical Kabushiki Kaisha Kawasaki Zosen
Priority to EP06715399.9A priority Critical patent/EP1892183B8/en
Priority to PL06715399T priority patent/PL1892183T3/pl
Priority to JP2007507151A priority patent/JP4781350B2/ja
Priority to CN2006800076911A priority patent/CN101137538B/zh
Priority to ES06715399.9T priority patent/ES2552008T3/es
Publication of WO2006095774A1 publication Critical patent/WO2006095774A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • B63B2003/425Shaft brackets having features not related to structural construction, e.g. hydrodynamic properties or bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a stern structure of a ship provided with an overlapping propeller (OLP) that reduces the generation of bearing force and cavity of a propeller.
  • OHP overlapping propeller
  • the overlapping propeller of Patent Document 1 has a pair of left and right propellers arranged so that their centers are located near the centers of the left and right bilge vortices, and the direction of rotation of both propellers is opposite to the bilge vortex. Set outwardly, shift the position of these propeller reference lines in the ship length direction with the same force slightly, bring them close to each other within the limits where their planes of rotation do not overlap each other in plan view, and the rakes of both propellers It is a propulsion device that is formed so as to incline toward each other in the direction away from the propeller.
  • Patent Document 2 discloses an overlapping propeller that collects the rotational flow of the front propeller with the rear propeller by making the rotation directions of the left and right propellers the same direction. It has been.
  • Patent Document 1 Japanese Utility Model Publication No. 5-26796
  • Patent Document 2 Japanese Utility Model Publication No. 4 123899
  • An object of the present invention is to sharpen the stern surface shape of the stern hull in the propeller plane, provide a bracket fin in a ship having a uniaxial stern type stern hull equipped with an overlapping propeller, or The purpose is to reduce the propeller bearing force and reduce the occurrence of cavitation by providing wake improvement fins.
  • the stern structure of a ship has a pair of left and right propellers arranged such that their propeller axis centers are located near the centers of the left and right bilge vortices, and at least one The direction of rotation of the two propellers is set in the opposite direction of the bilge vortex, that is, outward, and the propeller rotation surfaces are brought closer to each other within the limit that they do not overlap each other in plan view, and the rakes of both propellers move away from each other.
  • overlapping propellers In a ship having a single-shaft stern hull equipped with propulsion devices (hereinafter referred to as “overlapping propellers”) that are inclined to each other in the direction of force, at least 0.4 R in the vertical direction of the propeller axis (R is the propeller radius)
  • R is the propeller radius
  • the stern hull shape of the stern hull is less than 15 degrees with respect to the hull center line and the water line shape is extended to the tip. Characterized in that the sharp I ⁇ virtual width of the end positions (both width) as 600mm or less.
  • the reason for sharpening the hull in the vertical direction of the propeller axis at least 0.4R is that the overlapping propeller passes near the hull center line in this region. This is because there is a region with a slow flow velocity which becomes a problem when doing so.
  • R is the propeller radius
  • the reason why the angle at the rear edge of the waterline surface is 15 degrees or less is that if it exceeds 15 degrees, the flow behind the hull becomes slow due to peeling.
  • a vessel having a stern hull of a single-shaft type equipped with an overlapping propeller has a gap between the stern tube and the stern hull through which the propeller shaft that projects both stern hull forces forward from the stern end is inserted.
  • the stern tube passing through the propeller shaft of the overlapping propeller has the forward repulsive propeller shaft protruding from the stern end, and the gap between the stern tube and the hull in the ship length direction is closed by the bracket fin.
  • the vortex is weakened by blocking the separation vortex generated by the stern bottom force by the bracket fin, and the rotational component of the flow entering the propeller surface near the hull center line is reduced.
  • the initiating speed of cavitation beginning of cavitation
  • the bearing force is a relatively large thrust generated in the propeller wing passing through the slow flow near the hull center line, and a relatively small thrust generated in the propeller wing passing through the fast flow outside the hull.
  • Force due to non-uniformity with thrust By providing bracket fins, the rotational component of the flow entering the propeller surface near the hull centerline is reduced, and the thrust generated on the propeller blades passing near the hull centerline is reduced.
  • the fluid force of each propeller blade acts in the direction of averaging with respect to the propeller shaft, reducing the bearing force.
  • the reducing the stern separation vortex the effect of reducing the viscous resistance of the hull is obtained. It is.
  • a wake improvement fin for improving the wake distribution that is accelerated by the rotation of the front propeller and flows into the rear propeller
  • the stern structure of the ship provided on the stern hull above the propeller shaft toward the overlapping area when the front propeller and the rear propeller rotate by urging to the part where the flow velocity variation of the wake flow is large. It is.
  • the wake distribution that is accelerated by the rotation of the front propeller and flows into the rear propeller can be improved by the wake improvement fin provided in the stern hull in front of the front propeller.
  • this wake improvement fin can moderate the large speed change of the wake, that is, it can be changed to a flow field in which the degree of acceleration of the wake is reduced and the speed gradient becomes gentle. As a result, it is possible to reduce the bearing force and suppress the occurrence of the cavity.
  • the wake improvement fin is an area where the front propeller and the rear propeller overlap. Therefore, it is preferable to provide a symmetric direction along the stern hull in the direction of the force at the part where the flow velocity variation of the wake is large.
  • left and right side wake improvement fins may be provided in steps, or wake improvement fins may be provided only on one side.
  • the waterline surface of the stern hull in the range of at least 0.4R in the vertical direction of the axis of the propeller (R is the propeller radius)
  • the imaginary width (both widths) at the tip position when the rear end angle of the waterline surface is 15 degrees or less with respect to the hull center line and the waterline surface shape is extended to the tip is 600 mm or less. It is a stern structure of a ship in which the gap between the stern tube and the stern hull through which the propeller shafts projecting from the stern hulls in front of the stern end are inserted with bracket fins.
  • the flow of the fluid in the propeller surface is increased by sharpening the shape of the waterline surface in a certain range above and below the axial center height of the propeller. Equalizes the inflow velocity entering the propeller blades when rotating. Also provide a bracket fin This reduces the rotational component of the flow entering the propeller surface near the hull centerline, thereby reducing the thrust generated on the propeller blades passing near the hull centerline. Together, these actions can cause the hydrodynamic force of each propeller blade to act in a direction that makes the propeller shaft uniform, thereby further reducing the bearing force.
  • the waterline surface of the stern hull in the range of at least 0.4R in the vertical direction of the axis of the propeller (R is the propeller radius)
  • the imaginary width (both widths) at the tip position when the rear end angle of the waterline surface is 15 degrees or less with respect to the hull center line and the waterline surface shape is extended to the tip is 600 mm or less.
  • the wake improvement fin for improving the wake distribution that is accelerated by the rotation of the front propeller and flows into the rear propeller is provided on the stern hull above the propeller shaft. This is the stern structure of a ship that is installed in a large area of the ship.
  • a vessel having a stern hull of a single-shaft type equipped with an overlapping propeller has a gap between the stern tube and the stern hull through which the propeller shaft that projects both stern hull forces ahead of the stern end is inserted.
  • a wake improvement fin for improving the wake distribution that flows into the rear propeller after being closed by the bracket prop and rotated by the rotation of the front propeller is placed on the stern hull above the propeller shaft.
  • the action of the bracket fin and the action of the wake improvement fin are in phase. It can be used in a very manner to further reduce the bearing force and suppress the occurrence of vibration.
  • the waterline surface of the stern hull in the range of at least 0.4R in the vertical direction of the axis of the propeller (R is the propeller radius)
  • the imaginary width (both widths) at the tip position when the rear end angle of the waterline surface is 15 degrees or less with respect to the hull center line and the waterline surface shape is extended to the tip is 600 mm or less.
  • the gap between the stern tube and the stern hull through which the propeller shafts projecting from the stern hulls in front of the stern end are blocked by bracket fins and accelerated by the rotation of the front propeller.
  • the wake improvement fins for improving the wake distribution flowing into the rear propeller are applied to the stern hull above the propeller shaft by force toward the part where the flow velocity variation of the wake flow is large, or the front propeller and the rear propeller. And rotate Tokinio one burlap region countercurrent force connexion, a stern structure of a ship formed by providing.
  • the bracket fin is within a range of the outer diameter of the stern tube, and the proximal end portion force of the bracket fin is also directed toward the stern direction so as to be gradually upward or downward straight or curved.
  • the flow velocity of the rotating flow that flows into the propeller can be adjusted. That is, when the bracket fin is directed upward toward the stern end, the flow velocity in the rotational direction of the rotational flow is reduced, so that the effect of suppressing the cavity and reducing the bearing force is enhanced.
  • the bracket fin is directed downward toward the stern end, the flow velocity in the rotational direction increases, so the propulsion efficiency is further improved.
  • the bracket fin is linearly extended from the base end portion of the bracket fin in the stern direction, and at the vicinity of the tip end portion of the bracket fin. The same effect as described above can be obtained even when the stern tube is formed into a straight line or curved shape gradually upward or downward by force in the stern direction within the range of the outer diameter of the stern tube.
  • the rotation direction of the forward propeller located on the bow side is set to the opposite direction to the bilge vortex, that is, outward, and the rear propeller located on the stern side.
  • the rotation direction of the front propeller is set in the same direction as the front propeller, that is, inward, the rotatory flow formed by the rotation of the front propeller is recovered by the propeller located on the stern side while collecting the bilge vortex rotation flow with the front propeller. be able to.
  • the bearing force can be made equal to or less than that of a shaft ship, and generation of harmful cavitation can be effectively suppressed.
  • FIG. 1 (a) and (b) are rear views of the overlapping propeller viewed from the rear of the stern.
  • the form of (a) shows the case where both the left and right side propellers are outward
  • the form of (b) shows the port side propeller (propeller located on the bow side) is outward and the starboard propeller (propeller located on the stern side).
  • the inside case is shown.
  • FIG. 2 is a plan view of the same.
  • FIG. 3 is a partially enlarged plan view near the stern end of the stern hull.
  • FIG. 4 is a wake distribution and propeller arrangement diagram according to the present invention.
  • FIG. 5 is a wake distribution diagram at the stern of a conventional uniaxial ship.
  • FIG. 6 Side cross-sectional shape of bracket fin, (a) shows blade shape, (b) shows arc blade shape, and (c) shows plate shape.
  • FIG. 7 is a side sectional view when the bracket fin is formed in a curved shape.
  • FIG. 9 is a side view of the starboard when the wake improvement fins are provided symmetrically on both sides of the stern hull in front of the propeller (the bracket fins 8 are shown in perspective).
  • FIG. 10 Similarly, it is a plan view (only the stern hull and wake improvement fins are indicated by solid lines, and the others are indicated by virtual lines).
  • FIG. 11 (a), (b), and (c) are diagrams showing three different modes in which wake improvement fins are provided.
  • FIG. 12 In an overlapping propeller hull, only the front propeller is rotated. The result of having measured the wake distribution which flows into a back propeller by experiment is shown. This figure is a wake distribution diagram when there is no wake improvement fin.
  • FIG. 13 is a wake distribution diagram when wake improvement fins are also provided.
  • Figures 1 (a) and 1 (b) are rear views of the overlapping propeller as viewed from the ship and the rearward force of the tail, and Figure 2 is a plan view of the same. Note that the left and right propellers may be located in front of either the left or right side.
  • two propellers 1 and 2 (left and right props 1 and 2) have propeller shafts 3 and 4 at the hull center line C. They are arranged symmetrically.
  • the height direction position and the ship width direction position of both propellers 1 and 2 are set so that the propeller shafts 3 and 4 of both propellers 1 and 2 are located near the centers of the left and right bilge vortices Bl and B2, respectively.
  • the rotation directions Rl and R2 of both propellers 1 and 2 are set in the opposite direction to the bilge vortices Bl and B2, that is, outward.
  • the positions of the propellers 1 and 2 in the direction of the ship length of the propellers 1 and 2 are shifted the same or slightly, and their propellers 1 and 2 are brought close to each other within a limit that the planes of rotation do not overlap each other in plan view.
  • These rakes la, 2a are formed to incline each other in the direction of the propeller force of the opponent and away!
  • the front and rear positions of the propeller bosses 5 and 6 on both sides are the same, and the starboard propeller 1 and the port side propeller 2 are projected radially from the propeller labs 5 and 6, respectively.
  • the rake la of starboard propeller 1 is formed to tilt backward with the surface force orthogonal to propeller shaft 3, and rake 2a of port propeller 2 is formed to tilt forward with the surface force orthogonal to propeller shaft 4.
  • port propeller 2 is a propeller located on the bow side (also referred to as “forward propeller”) and starboard propeller 1 is a propeller located on the stern side (also referred to as “rear propeller”).
  • the rake of the front propeller as shown in Fig. 2 always tilts forward, and the rake of the rear propeller always tilts backward.
  • the rotation direction R2 of the propeller located on the bow side is set in the direction opposite to or outward from the bilge vortex B2, and the propeller located on the stern side, that is, starboard propeller 1
  • the rotation direction R3 is set in the same direction as the propeller on the bow side (port propeller 2), that is, inward. This allows the propeller on the bow side (port propeller 2) to collect the bilge vortex rotation flow, while the starboard propeller 1 collects the rotation flow formed by the rotation of the propeller on the bow side (port propeller 2). Can do.
  • the force that positions the starboard propeller forward and starboard propeller backwards The position may be reversed. In that case, set the forward propeller in the opposite direction of the bilge vortex, that is, outward.
  • Fig. 1 (a) and (b) the dotted line shows the hull diagram of the stern part, and the hull form shown in this figure is formed symmetrically with respect to the hull center line C, and goes toward the stern end. V, a stern hull with a gradual narrowing shape.
  • the symmetric bilge vortices Bl and B2 described above exist in the flow of the stern portion of such a single-shaft type.
  • the arrows indicate the direction of water flow of the bilge vortices Bl and B2, and the bilge vortices Bl and B2 turn inward toward the center of the hull. Is formed.
  • the propeller shafts 3 and 4 are arranged near the center of the bilge vortex Bl and B2, and the propeller rotation directions Rl and R2 are the rotation directions of the bilge vortices Bl and B2. Set the direction to the opposite direction. As a result, effective utilization of the left and right bilge vortices Bl and B2 can be achieved and the hull efficiency can be improved.
  • a pair of propeller shafts 3, 4 and a stern tube 3a, 4a through which a pair of propeller shafts 3, 4 are inserted in front of the stern hull S and the stern tubes 3a, 4a are substantially parallel to each other. (Depending on the arrangement of the main engine, it extends in the stern direction of a C shape or an inverted C shape), and each propeller
  • Propellers 1 and 2 are installed on propeller labs 5 and 6 at the tip of shafts 3 and 4.
  • a rudder is provided on the hull center line C behind the propeller.
  • the stern hull S is formed in an acute angled chevron cross-section sharpened toward the stern as follows. ing.
  • the angle ⁇ is set to 15 degrees or less (0-15 °) with respect to the hull center line C, and the imaginary width (both widths) W at the tip position when the waterline shape is extended to the tip is 600 mm or less. In this way, the stern hull S is sharpened.
  • the flow of fluid in the range of at least 0.4R in the vertical direction increases, and the inflow speed entering the propeller blades when the propeller rotates is made uniform.
  • the bearing force is reduced and the flow of the fluid near the hull center line C is increased, thereby suppressing the occurrence of the cavity in the propeller blade.
  • the reason for sharpening (sharpening) the hull in the range of at least 0.4R (R is the propeller radius) in the vertical direction of the axis of the propeller is that the overlapping propeller is the centerline of the hull. It is also a force that is a region with a slow flow velocity, which becomes a problem when passing near.
  • the reason why the angle at the rear edge of the waterline surface is set to 15 degrees or less is that if the angle exceeds 15 degrees, the flow behind the hull becomes slow due to peeling.
  • bracket fins 8 as additional structures are provided between the sharpened stern hull S and the stern tubes 3a and 4a through which the propeller shafts 3 and 4 are inserted. .
  • almost the entire gap between the stern hull S and the stern tubes 3a, 4a protrudes horizontally from the two hulls S ahead of the stern end, and toward the stern hull S from the stern tubes 3a, 4a. It is closed by an extended bracket fin 8.
  • bracket fins 8 are provided, it is clear if the wake distribution diagram in the stern portion of the present invention in FIG. 4 is compared with the wake distribution diagram in the stern portion of the conventional uniaxial ship in FIG. As shown, the separation vortex generated from the stern bottom is blocked by the bracket fins 8 to weaken the vortex and reduce the rotational component of the flow entering the propeller surface near the hull centerline C.
  • the numerical values on the curves in Fig. 4 and Fig. 5 indicate the values obtained by making the ship's velocity in the dimensionless by the ship's speed, and the arrows show the vector's velocity in the propeller plane.
  • the bearing force is reduced.
  • the bracket fin 8 is not provided, the propeller blade that passes through the slow and flow around the hull center line C is relatively large. Force that causes non-uniformity between the normal thrust and the relatively small thrust generated in the propeller wing that passes through the fast flow outside the hull Entering the propeller surface near the hull center line C by installing bracket fins 8
  • the rotational component of the flow decreases and the thrust generated on the propeller blades passing near the hull center line C is reduced.
  • the fluid force of each propeller blade acts in the direction of averaging with respect to the propeller shaft, and the bearing force is reduced.
  • the stern tubes 3a and 4a (propeller shafts 3 and 4) are firmly supported on the hull side by the bracket fins 8. By reducing the stern separation vortex, the effect of reducing the viscous resistance of the hull can be obtained.
  • the longitudinal direction of the bracket fin 8 in the ship length direction is such that its center line 8a extends linearly in the stern direction, and its overall shape is
  • the shape may be any of a wing shape, a semicircular wing shape, and a plate shape.
  • bracket fin 8 when the bracket fin 8 is directed upward toward the stern end, the flow velocity in the direction of rotation of the rotating flow is reduced, so that the effect of suppressing the cavity and reducing the bearing force is enhanced.
  • the bracket fin 8 when the bracket fin 8 is directed downward at the stern end, the propulsion efficiency is further improved because the flow velocity in the rotational direction increases.
  • the reason that the knuckle angle is set to 20 degrees or less in the vertical direction is that the bracket fin itself becomes a resistance when it exceeds 20 degrees.
  • the bracket fin 8 is provided horizontally between the stern tubes 3a, 4a and the stern hull S (in a direction perpendicular to the hull center line C).
  • the diameter (outer diameter) of the stern tubes 3a and 4a passing through the propeller shaft be smaller.
  • the bracket fin 8 having a wing cross-sectional shape is gradually curved from the base end to the tip in the stern direction, and in this example, has a downward curved shape.
  • the curved bracket fins 8 are arranged so as to be within the range of the outer diameter of the stern tube 3a. That is, the bracket fin 8 of FIG. 9 has a base end portion at the upper end position of the stern tube 3a and extends in the stern direction from here as a base point, and the rear end portion of the bracket fin 8 ends at the lower end position of the stern tube 3a. Yes.
  • bracket fin 8 may be provided straight in the stern direction without being curved, or the stern may be provided straight. It may be provided so as to be inclined downward or upward within the range of the outer diameter of the tube 3a.
  • FIG. 12 shows the experimentally measured results of the wake distribution flowing into the rear propeller 1 with only the front propeller 2 rotated in the overlapping propeller hull form. 12 shows the wake distribution when the wake improvement fin 13 described later is not provided, and FIG. 13 shows the wake distribution when the wake improvement fin 13 is provided.
  • the rear propeller 1 has a fast axial speed accelerated by the front propeller 2 and the front propeller 2 and the rear propeller 1 overlap.
  • Part (also referred to as “overlap region”) 11 (FIG. 12) flows, and the rotational flow of the front propeller 2 flows in the same rotational direction as the rear propeller 1.
  • the front of the propeller should be improved to improve the flow distribution flowing into the rear propeller 1 (wake distribution). It is desirable to install wake improvement fins 13 to control the stern flow on the stern hull.
  • FIG. 9 shows a case where the wake improvement fin 13 for improving the wake distribution that is accelerated by the rotation of the front propeller 2 and flows into the rear propeller 1 is provided in the stern hull S above the propeller shaft 3.
  • FIG. 4 is a side view of the starboard side (the bracket fin 8 is shown in perspective).
  • Figure 10 is a plan view (only the stern hull S and wake improvement fin 13 are shown by solid lines, and the others are shown by imaginary lines).
  • FIGS. 11 (a), 11 (b), and 11 (c) are diagrams showing three different modes in which the wake improvement fin 13 is provided.
  • the wake improvement fin 13 is provided toward the portion 12 (the overlap region 11 in the illustrated example) where the flow velocity change amount is large.
  • the wake improvement fin 13 is located above the propeller shafts 3 and 4 (stern pipes 3a and 3b), and both repulsive forces of the stern hull S project horizontally. It extends along the stern hull S to the vicinity of the stern end S1.
  • the wake improvement fin 13 has a substantially triangular shape that is substantially similar to the bracket fin 8 described above.
  • the wake improvement fin 13 may have either a plate shape or a wing shape, and it does not necessarily have to extend horizontally toward the stern end S1, as in the bracket fin 8 in FIG. It may extend to the vicinity of the stern end in a downward curve, or it may extend in an upward curve although not shown. Further, the wake improvement fin 13 may be extended straightly downward or inclined upward near the stern end.
  • the wake distribution with the wake improvement fins has a wake distribution that reduces the bearing force.
  • the wake improvement fins 13 are provided along the sharpened stern hull S and the bracket fins 8 are provided simultaneously.
  • the tip of the stern hull S is provided. This is preferable in order to synergistically exhibit the effects of the sharpening, bracket fin 8 and wake improvement fin 13.
  • the wake improvement fins 13 may be provided symmetrically from the stern hull S to both sides as shown in FIG. 11 (a). Any wake improvement fins 13 are provided so as to enter the rotation plane of the propeller, and directed to the portion 12 where the flow velocity change amount is large and directed to the Z or overlap region 11.
  • the wake improvement fins 13 and 13 for the port side and the starboard side are arranged in a stepped manner (the port side fin is upward and the starboard side fin is downward). May be.
  • the region 12 with the large variation in flow velocity is generated obliquely downward from the front propeller 2 to the rear propeller 1, and therefore, the region 12 with the large variation in flow velocity is directed toward the Z or overlap region 1 1.
  • a port side fin and a starboard side fin are disposed.
  • the wake improvement fins 13 may be provided only on the front propeller side. This is because the vicinity of the end of the propeller mainly contributes to the generation of thrust, and the speed change of the wake here can be mitigated.
  • the overlapping propeller that is effective in the present invention is effective for reducing bearing force and suppressing the occurrence of harmful cavitation, and is applicable not only to low-speed ships but also to medium- and high-speed ships.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶において、プロペラ1,2の軸心の上下方向少なくとも0.4R(Rはプロペラ半径)の範囲の船尾船体Sの水線面形状について、その水線面の後端部角度αを船体中心線に対して15度以下とし、且つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を600mm以下とする。更にプロペラ軸3,4が挿通する船尾管3a,4aと船尾船体Sとの間にブラケットフィン8を設けてもよい。また、前方プロペラ2の回転によって加速されて後方プロペラ1へ流入する後流分布を改善するための伴流改善フィン13をプロペラ軸3,4より上方の船尾船体Sに設けてもよい。

Description

明 細 書
船舶の船尾構造
技術分野
[0001] 本発明は、プロペラのベアリングフォース及びキヤビテーシヨンの発生の減少を図つ たオーバーラッピングプロペラ (OLP)を備えた船舶の船尾構造に関する。
背景技術
[0002] 船舶の大型化'高速ィ匕に伴い、一軸船においてはプロペラの荷重度が増大し、プ 口ペラの効率が低下する。プロペラの効率を向上させ、推進性能を改善するために、 2基のプロペラを装備する技術がある。 2基のプロペラを装備すると、プロペラ 1基当 たりの負荷が半減し、プロペラの効率が向上する。この場合、船体の抵抗増加を極力 避けること、船殻効率を低下させないこと、が重要であり、これを実現し得る従来技術 として二重反転プロペラやオーバラッピングプロペラが知られている。
[0003] この中で、二重反転プロペラのように推進器軸系や主機関制御装置が複雑化され ずに推進性能を向上させる装置としては、オーバーラッピングプロペラがある(例えば 特許文献 1参照)。
[0004] 特許文献 1のオーバーラッピングプロペラは、左右 1対のプロペラをそれらの中心が 左右のビルジ渦の中心近くに位置するように配置して両プロペラの回転方向をビル ジ渦と反対方向つまり外回りに設定し、これらのプロペラの基準線の船長方向の位置 を同じ力僅かにずらし且つそれらの回転面が平面視にて互いにラップしない限度内 で相互に近づけるとともに両プロペラをそれらのレーキが相手方のプロペラから遠ざ 力る方向へ相互に傾くように形成した推進装置である。
[0005] なお、特許文献 2では、左右舷のプロペラの回転方向をいずれも同一方向にするこ とにより、前側のプロペラの回転流を後側のプロペラで回収するようにしたオーバーラ ッビングプロペラが開示されて 、る。
特許文献 1:実開平 5— 26796号公報
特許文献 2:実開平 4 123899号公報
発明の開示 発明が解決しょうとする課題
[0006] し力しながら、通常の一軸船型の船舶は、プロペラ面内で且つ船体中心線付近に 非常に遅 、流体の流れが存在し、また船体中心線より離れるほど流体の流れは速く なる(図 5の伴流分布図参照)。特許文献 1のようなプロペラの中心が船体中心に一 致しな 、プロペラを回転させる場合には、プロペラの翼が一回転中に遅!、流れと速 い流れの中を交互に通過するため、プロペラの翼に力かる荷重が大きく変動し、一軸 船と比較してベアリングフォースが過大となる。
[0007] またプロペラの翼が船体中心線付近の非常に遅い流れの中を通過するために、通 常の設計ではプロペラの翼の広い範囲にキヤビテーシヨンが発生しプロペラ表面の エロージョンの起こる原因となる。
課題を解決するための手段
[0008] 本発明の目的は、オーバーラッピングプロペラを装備した一軸船型の船尾船体を 有する船舶において、プロペラ面内の船尾船体の水線面形状を尖鋭ィ匕したり、ブラ ケットフインを設けたり、或いは伴流改善フィンを設けたりする等によってプロペラのべ ァリングフォースの低減及びキヤビテーシヨンの発生を低減させることにある。
[0009] 上記課題を解決するために本発明の船舶の船尾構造は、左右 1対のプロペラをそ れらのプロペラ軸心が左右のビルジ渦の中心近くに位置するように配置し、少なくとも 一つのプロペラの回転方向をビルジ渦と反対方向つまり外回りに設定し、各プロペラ 回転面が平面視にて相互にラップしない限度内で相互に近づけると共に両プロペラ をそれらのレーキが相手方のプロペラ力 遠ざ力る方向へ相互に傾くように形成した 推進装置 (以下、「オーバーラッピングプロペラ」 、う)を装備した一軸船型の船尾船 体を有する船舶において、プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ 半径)の範囲の船尾船体の水線面形状を、その水線面の後端部角度を船体中心線 に対して 15度以下とすると共に水線面形状を先端まで延長した際の先端位置での 仮想幅(両幅)を 600mm以下として先鋭ィ匕したことを特徴とする。
[0010] 力かる構成によれば、オーバーラッピングプロペラを装備した一軸船型の船尾船体 を有する船舶においてプロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半 径)の範囲の船尾船体を船尾方向に向力つて先鋭ィ匕することができる。そして、これ により、プロペラ面内の流体の流れを増速させ、プロペラが一回転する際のプロペラ の翼に入る流入速度を均一にすることにより、ベアリングフォースを減少させ、更に船 体中心線付近の流体の流れが増速することにより、プロペラの翼に発生するキヤビテ ーシヨンが抑制される。
[0011] プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船体を先 鋭ィ匕 (シャープに)する理由は、この領域にオーバーラッピングプロペラが船体中心 線付近を通過する際に問題となる流速の遅い領域が存在するからである。なお、推 進効率との兼ね合いである力 キヤビテーシヨン、ベアリングフォースを軽減する観点 力 はプロペラ軸心の上下方向 0. 6Rの範囲の船尾船体を先鋭ィ匕するのが好ましい 。また、水線面の後端部角度を 15度以下としたのは、 15度を超えると剥離などにより 船体後方の流れが遅くなるからである。
[0012] また、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に ぉ 、て、船尾端より前方の船尾船体両舷力も突出したプロペラ軸が挿通する船尾管 と船尾船体との間隙をブラケットフィンで塞いだ船舶の船尾構造である。
[0013] すなわち、オーバーラッピングプロペラのプロペラ軸を揷通する船尾管は、船尾端 より前方両舷力 プロペラ軸が突出しており、その船尾管と船体の船長方向の間隙を ブラケットフィンによって塞ぐことにより、船尾船底力 生ずる剥離渦をブラケットフィン が塞き止めることにより渦を弱め、船体中心線付近のプロペラ面に入る流れの回転成 分が減少する。その結果、キヤビテーシヨンが発生しやすい船体中心線付近におい てプロペラ回転方向への流入速度が低下することにより、キヤビテーシヨンの初生 (キ ャビテーシヨンの出始め)が抑制される。
[0014] 一方、ベアリングフォースは、船体中心線付近の遅い流れの中を通過するプロペラ 翼に発生する比較的大きな推力と、船体外側の速い流れの中を通過するプロペラ翼 に発生する比較的小さな推力との不均一に起因する力 ブラケットフィンを設けること によって船体中心線付近のプロペラ面に入る流れの回転成分が減少し、船体中心 線付近を通過するプロペラ翼に発生する推力を低下させる結果、各プロペラ翼の流 体力がプロペラ軸に対して平均化する方向に作用し、ベアリングフォースを低減させ る。同時に船尾剥離渦を弱めることによって、船体の粘性抵抗を低減する効果が得ら れる。
[0015] また、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に おいて、前方プロペラの回転によって加速されて後方プロペラへ流入する後流分布 を改善するための伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の 流速変化量の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転し たときにオーバーラップする領域に向かって、設けた船舶の船尾構造である。
[0016] 力かる構成によれば、前方プロペラの回転によって加速されて後方プロペラへ流入 する後流分布を、前方プロペラの前方の船尾船体に設けた伴流改善フィンによって 改善することができる。すなわち、この伴流改善フィンによって後流の大きな速度変 化を緩やかにする、つまり、後流の加速の度合いを小さくすると共にその速度勾配も 緩やかになるような流場に変えることができる。その結果、ベアリングフォースの低減 やキヤビテーシヨンの発生を抑制することができる。
[0017] なお、同じ一軸船型と言っても伴流分布は船によって異なるが、通常の一軸船型を 用いた OLPの場合、伴流改善フィンを、前方プロペラと後方プロペラがオーバラップ する領域であって、後流の流速変化量の大きい部位に向力 方向に、船尾船体に沿 つて両舷対称に設けることが好ましい。もっとも伴流分布によっては左右舷の伴流改 善フィンを段違いに設けることもあり得るし、伴流改善フィンを片舷のみに設けることも あり得る。
[0018] 更に、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に おいて、プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船 尾船体の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以 下とし且つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600 mm以下として尖鋭ィ匕すると共に、船尾端より前方の船尾船体両舷カゝら突出したプロ ペラ軸が挿通する船尾管と船尾船体との間隙をブラケットフィンで塞いでなる船舶の 船尾構造である。
[0019] 力かる構成によれば、プロペラの軸心高さ付近の上下一定範囲の水線面形状を先 鋭ィ匕することにより、プロペラ面内の流体の流れを増カロさせ、プロペラが一回転する 際のプロペラの翼に入る流入速度を均一化する。し力もブラケットフィンを設けること により、船体中心線付近のプロペラ面に入る流れの回転成分を減少させることによつ て、船体中心線付近を通過するプロペラ翼に発生する推力を低下させる。これらの 作用が相俟って、各プロペラ翼の流体力をプロペラ軸に対して均一化させる方向に 作用させて、ベアリングフォースをより一層減少させ得る。
[0020] 更に船体中心線付近の流体の流れを増速することにより、プロペラの翼におけるキ ャビテーシヨンの初生が抑制される。そのうえ、キヤビテーシヨンが発生しやすい船体 中心線付近においてプロペラ回転方向への流入速度が低下することにより、キヤビテ ーシヨンの初生がより一層抑制される。また同時に船尾剥離渦が整流されることによ つて、船体の粘性抵抗を低減する効果が得られる。
[0021] また、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に おいて、プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船 尾船体の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以 下とし且つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600 mm以下として尖鋭ィ匕すると共に、前方プロペラの回転によって加速されて後方プロ ペラへ流入する後流分布を改善するための伴流改善フィンを、プロペラ軸より上方の 船尾船体に前記後流の流速変化量の大きい部位に向力つて設けてなる船舶の船尾 構造である。
[0022] 力かる構成によれば、上述した船尾船体の先鋭ィ匕による作用と伴流改善フィンによ る作用とが相乗的に発揮され、より一層のベアリングフォース低減とキヤビテーシヨン 発生抑制作用が得られる。
[0023] また、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に ぉ 、て、船尾端より前方の船尾船体両舷力も突出したプロペラ軸が挿通する船尾管 と船尾船体との間隙をブラケットフィンで塞ぐと共に、前方プロペラの回転によってカロ 速されて後方プロペラへ流入する後流分布を改善するための伴流改善フィンを、プ 口ペラ軸より上方の船尾船体に、前記後流の流速変化量の大きい部位に向力つて若 しくは前方プロペラと後方プロペラとが回転したときにオーバーラップする領域に向か つて、設けてなる船舶の船尾構造である。
[0024] 力かる構成によれば、ブラケットフィンによる作用と伴流改善フィンによる作用とが相 乗的に発揮され、より一層のベアリングフォース低減とキヤビテーシヨン発生抑制作用 が得られる。
[0025] また、オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶に おいて、プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船 尾船体の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以 下とし且つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600 mm以下として尖鋭ィ匕すると共に、船尾端より前方の船尾船体両舷カゝら突出したプロ ペラ軸が挿通する船尾管と船尾船体との間隙をブラケットフィンで塞ぎ、かつ、前方 プロペラの回転によって加速されて後方プロペラへ流入する後流分布を改善するた めの伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の流速変化量 の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転したときにォ 一バーラップする領域に向力つて、設けてなる船舶の船尾構造である。
[0026] 力かる構成によれば、上述した船尾船体の先鋭化、ブラケットフィンおよび伴流改 善フィンによる 3つの作用が相乗的に発揮され、更に一層のベアリングフォース低減 とキヤビテーシヨン発生抑制作用が得られる。
[0027] また、上述の船尾構造において、ブラケットフィンを、船尾管の外径の範囲内で、該 ブラケットフィンの基端部力も船尾方向に向力つて徐々に上向き、又は下向きの直線 或いは曲線形状に形成した場合、プロペラへ流入する回転流の流速を調整すること ができる。すなわち、ブラケットフィンを船尾端に向かって上方に向けた場合、回転流 の回転方向の流速が小さくなるので、よりキヤビテーシヨンの抑制とベアリングフォー スの低減効果が高くなる。また、ブラケットフィンを船尾端に向力つて下方に向けた場 合、回転方向の流速が大きくなるので、より一層推進効率が向上する。
[0028] また、上述の船尾構造にお!、て、ブラケットフィンを、該ブラケットフィンの基端部か ら船尾方向に向力つて直線的に延設すると共に、該ブラケットフィンの先端部付近か ら船尾管の外径の範囲内で船尾方向に向力つて徐々に上向き、又は下向きの直線 或いは曲線形状に形成した場合も、前記と同様な作用が得られる。
[0029] また、上述した船尾構造にお!、て、船首側に位置する前方プロペラの回転方向を ビルジ渦と反対方向つまり外回りに設定すると共に、船尾側に位置する後方プロペラ の回転方向を前方プロペラと同じ方向つまり内回りに設定した場合、前方プロペラで ビルジ渦回転流の回収を図りつつ、この前方プロペラの回転により形成された回転 流を船尾側に位置するプロペラによって回収することができる。
発明の効果
[0030] 本発明によれば、オーバーラッピングプロペラであっても、ベアリングフォースがー 軸船と同等以下にすることができ、また有害なキヤビテーシヨンの発生を有効に抑え ることがでさる。
[0031] また、プロペラ軸を揷通する船尾管と船尾船体の間隙をブラケットフィンで塞ぐこと により、ベアリングフォースの低減とキヤビテーシヨンの発生抑制が得られると共に、船 体抵抗も最大 2%程度減少できる。
[0032] また、伴流改善フィンを設けることによつても、ベアリングフォースの低減とキヤビテ ーシヨンの発生抑制効果が得られる。
[0033] また、船尾船体の先鋭化、ブラケットフィン、および伴流改善フィンを相互に組み合 わせることによって、それらのもつ作用効果を相乗的に発揮させて、より一層のベアリ ングフォースの低減とキヤビテーシヨンの発生抑制効果が得られる。
図面の簡単な説明
[0034] [図 1] (a) (b)はそれぞれオーバーラッピングプロペラを船尾部の後方から見た背面 図である。(a)の形態は左右舷のプロペラがいずれも外回りの場合を示し、(b)の形 態は左舷プロペラ(船首側に位置するプロペラ)は外回りで右舷プロペラ (船尾側に 位置するプロペラ)が内回りの場合を示す。
[図 2]同平面図である。
[図 3]船尾船体の船尾端付近の一部拡大平面図である。
[図 4]本発明に係る伴流分布とプロペラ配置図である。
[図 5]従来の一軸船の船尾部における伴流分布図である。
[図 6]ブラケットフィンの側断面形状で、(a)は翼形状、(b)は円弧翼形状、(c)は板形 状の場合を示す。
[図 7]ブラケットフィンを曲線形状に形成した場合の側断面図である。
[図 8]船尾船体と船尾管との間にブラケットフィンを設けた場合の船尾端付近の横断 面図である。
[図 9]伴流改善フィンをプロペラ前方の船尾船体に両舷対称に設けたときの右舷の側 面図である(ブラケットフィン 8を透視的に示す)。
[図 10]同じく平面図である(船尾船体と伴流改善フィンのみ実線で示し、他は仮想線 で示してある)。
[図 11] (a) (b) (c)は伴流改善フィンを設ける 3つの異なった態様を示す図である [図 12]オーバーラッピングプロペラ船型において、前方プロペラのみを回転させた状 態において、後方プロペラに流入する後流分布を実験により計測した結果を示す。 本図は伴流改善フィンが無い場合の伴流分布図である。
[図 13]同じく伴流改善フィンを設けた場合の伴流分布図である。
符号の説明
1…(後方)プロペラ
2· · · (前方)プロペラ
la、 2a…レーキ
lc、 2c…プロペラ回転軌跡
3、 4…プロペラ軸
3a、 4a…船尾管
5, 6…プロペラボス
7…舵
8…ブラケットフィン
11…オーバーラップ領域
12· ··流速変化量の大き 、部位
13· ··伴流改善フィン
Β1、 Β2· ··ビノレジ渦
R1、R2, R3…プロペラ回転方向
O…プロペラ軸心
S…船尾船体
発明を実施するための最良の形態 [0036] 以下、本発明の実施形態を図面を参照しながら説明する。図 1 (a) (b)はオーバー ラッピングプロペラを船、尾部の後方力も前方に向力つて見た背面図、図 2は同平面図 である。なお、左右舷のプロペラは左右どちらが前方に位置していてもよぐ図 2は一 例である。
[0037] 図 1 (a)および図 2に示すように、 2基すなわち左右 1対のプロペラ 1, 2 (右舷器 1, 左舷器 2)が、そのプロペラ軸 3, 4を船体中心線 Cに対称にして配設されている。
[0038] 両プロペラ 1, 2の高さ方向位置と船幅方向位置は、両プロペラ 1, 2のプロペラ軸 3 , 4が左右のビルジ渦 Bl, B2の中心近くにそれぞれ位置するように設定され、両プロ ペラ 1, 2の回転方向 Rl, R2は、ビルジ渦 Bl, B2と反対方向つまり外回りに設定さ れている。そして、これらのプロペラ 1, 2の基準線の船長方向の位置を同じか僅かに ずらし且つそれらの回転面が平面視にて相互にラップしない限度内で相互に近づけ ると共に両プロペラ 1, 2をそれらのレーキ la, 2aが相手方のプロペラ力 遠ざ力る方 向へ相互に傾くように形成されて!、る。
[0039] 図 2に示すように、両舷のプロペラボス 5, 6の前後位置は同じで、これらプロペラボ ス 5, 6に右舷プロペラ 1と左舷プロペラ 2がそれぞれ放射状に突設されている。そし て、右舷プロペラ 1のレーキ laはプロペラ軸 3に直交する面力 後方へ傾くように形 成され、また、左舷プロペラ 2のレーキ 2aはプロペラ軸 4に直交する面力 前方へ傾く ように形成されている。図 2では、左舷プロペラ 2は船首側に位置するプロペラ(「前方 プロペラ」とも 、う)であり、右舷プロペラ 1は船尾側に位置するプロペラ(「後方プロべ ラ」ともいう)である。この場合図 2に示す如ぐ前方プロペラのレーキは必ず前方へ、 後方プロペラのレーキは必ず後方へ傾く。
[0040] 図 1 (b)に示す形態では、船首側に位置するプロペラすなわち左舷プロペラの回転 方向 R2をビルジ渦 B2と反対方向つまり外回りに設定すると共に、船尾側に位置する プロペラすなわち右舷プロペラ 1の回転方向 R3を、船首側のプロペラ(左舷プロペラ 2)と同じ方向つまり内回りに設定してある。これにより、船首側のプロペラ (左舷プロ ペラ 2)によってはビルジ渦回転流を回収しつつ、右舷プロペラ 1によっては船首側の プロペラ (左舷プロペラ 2)の回転により形成された回転流を回収することができる。こ の例では左舷プロペラを前方に、右舷プロペラを後方に位置させている力 この前後 位置は逆であってもよい。その場合前方のプロペラをビルジ渦と反対方向つまり外回 りに設定する。
[0041] 図 1 (a) (b)おいて、点線は船尾部の船体線図を示し、この図に示す船型は、船体 中心線 Cを基準にして対称に形成され、船尾端に行くにつれて漸進的に狭まった形 状を有する、 V、わゆる一軸船型の船尾船体である。
[0042] このような一軸船型の船尾部の流れには、図 4の本発明に係る伴流分布とプロペラ 配置図に示すように、前述した左右対称のビルジ渦 Bl, B2が存在する。図中、矢印 はビルジ渦 Bl, B2の水流の方向を示し、ビルジ渦 Bl, B2は船体中心に向力 内回 り、船尾後方力 見て右舷では反時計回り、左舷では時計回りの回転流を形成して いる。
[0043] 図 1 (a)において述べたように、プロペラ軸 3, 4をこのビルジ渦 Bl, B2の中心近く に配置し、プロペラ回転方向 Rl, R2をビルジ渦 Bl, B2の回転方向とは逆向きの外 回りに設定する。これにより左右舷のビルジ渦 Bl, B2の有効利用が達成され船殻効 率の向上を図ることが可能となる。
[0044] 図 2に示すように、船尾端より前方の船尾船体 Sの両舷カゝら一対のプロペラ軸 3, 4 およびプロペラ軸 3, 4を挿通した船尾管 3a, 4aが略平行に船尾方向に延びており( 主機の配置によってはハの字形又は逆ハの字形に船尾方向に延びる)、それぞれの プロペラ
軸 3, 4の先端に設けたプロペラボス 5, 6にプロペラ 1, 2が設けられている。
[0045] 図 1および図 4に示すように、プロペラ 1, 2は回転軌跡 lc、 2cに沿って回転し、また
、図 2に示すようにプロペラの後方には船体中心線 C上に舵が設けられている。
[0046] 図 2および図 3 (船尾端の一部拡大平面図)にも示すように、船尾船体 Sは船尾方 向に向けて以下の如く先鋭ィ匕された鋭角状の山形断面に形成されている。
[0047] すなわち、プロペラの軸心 Oの少なくとも上下方向 0. 4R(Rはプロペラ半径)の範 囲、好ましくは上下方向 0. 6Rの範囲の水線面形状について、その水線面の後端部 角度 αを船体中心線 Cに対して 15度以下 (0〜15° )とし、且つ水線面形状を先端 まで延長した際の先端位置での仮想幅(両幅) Wを 600mm以下になるようにして、 船尾船体 Sの先鋭ィ匕を図って 、る。 [0048] 力かる構成によれば、図 4の本発明の船尾部における伴流分布図と図 5の従来の 一軸船の船尾部における伴流分布図とを比較すれば明らかなように、プロペラ軸心 Oの高さ付近少なくとも上下方向 0. 4Rの範囲の流体の流れが増加し、プロペラがー 回転する際のプロペラの翼に入る流入速度が均一化される。これにより、ベアリングフ オースが減少すると共に、船体中心線 C付近の流体の流れが増速することにより、プ 口ペラ翼におけるキヤビテーシヨンの発生が抑制される。
[0049] ここで、プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船 体を先鋭化 (シャープに)する理由は、この領域がオーバーラッピングプロペラが船 体中心線付近を通過する際に問題となる流速の遅い領域である力もである。また、推 進効率との兼ね合いである力 キヤビテーシヨン、ベアリングフォースを軽減する観点 力 はプロペラ軸心の上下方向 0. 6Rの範囲の船体を先鋭化するのが好ましい。ま た、水線面の後端部角度を 15度以下としたのは、 15度を超えると剥離などにより船 体後方の流れが遅くなるからである。
[0050] 図 2に示すように、先鋭ィ匕された船尾船体 Sとプロペラ軸 3, 4を挿通する船尾管 3a , 4aとの間に、付加構造物であるブラケットフィン 8が設けられている。すなわち、船尾 船体 Sと船尾管 3a, 4aの間の間隙のほぼ全体が船尾端より前方の両舷船体 Sから水 平方向に突出した、船尾管 3a, 4aから船尾船体 Sの方向に向けて延びるブラケットフ イン 8によって塞がれた形になっている。
[0051] このようなブラケットフィン 8を設けること〖こより、図 4の本発明の船尾部における伴流 分布図と図 5の従来の一軸船の船尾部における伴流分布図とを比較すれば明らか なように、船尾船底から生ずる剥離渦をブラケットフィン 8が塞き止めて渦を弱めて、 船体中心線 C付近のプロペラ面に入る流れの回転成分を減少させる。なお、図 4およ び図 5中の曲線上の数値は船長方向の流速を船速で無次元化した値を示し、矢印 はプロペラ面内の流速をベクトル表示したものである。
[0052] その結果、キヤビテーシヨンが発生しやす 、船体中心線付近にぉ 、てプロペラ回 転方向への流入速度が低下することにより、キヤビテーシヨンの初生が抑制される。
[0053] 同時にベアリングフォースも減少させる。すなわち、ブラケットフィン 8を設けない場 合、船体中心線 C付近の遅 、流れの中を通過するプロペラ翼に発生する比較的大き な推力と、船体外側の速い流れの中を通過するプロペラ翼に発生する比較的小さな 推力との不均一化が問題となる力 ブラケットフィン 8を設けることによって船体中心 線 C付近のプロペラ面に入る流れの回転成分が減少し、船体中心線 C付近を通過す るプロペラ翼に発生する推力を低下させる。これによつて、各プロペラ翼の流体力を プロペラ軸に対して平均化させる方向に作用し、ベアリングフォースを低減させる。こ のブラケットフィン 8によって船尾管 3a, 4a (プロペラ軸 3, 4)が強固に船体側に支持 されることにもなる。また船尾剥離渦を弱めることによって、船体の粘性抵抗の低減効 果も得られる。
[0054] 上記ブラケットフィン 8の船長方向の縦断面形状は、図 6 (a)〜(c)に示すように、そ の中心線 8aが船尾方向に向けて直線的に延び、その全体形状は翼形状、半円弧 翼形状、板状のいずれの形状に形成されてもよい。
[0055] 図 6 (a)において想像線で示すように、ブラケットフィン 8の後端部より任意の位置に おいて上方向、又は下方向に Θ =0〜20度の角度でナックルさせてもよい。或いは 、図 7に示すように、ブラケットフィン 8が船側から見た中心線 8aが船尾方向に向かつ て徐々に上向き、又は下向きに Θ =0〜20度の角度をもつような曲線形状に構成し てもよい。そうすれば、プロペラへ流入する回転流の流速を調整することができる。す なわち、ブラケットフィン 8を船尾端に向かって上方に向けた場合、回転流の回転方 向の流速が小さくなるので、よりキヤビテーシヨンの抑制とベアリングフォースの低減 効果が高くなる。また、ブラケットフィン 8を船尾端に向力つて下方に向けた場合、回 転方向の流速が大きくなるので、より推進効率が向上する。
[0056] ここで、ナックル角を上下向きにいずれも 20度以下としたのは 20度を超えるとブラ ケットフイン自体が抵抗となるためである。
[0057] 図 8に示す例では、ブラケットフィン 8は、船尾管 3a, 4aと船尾船体 Sとの間に水平( 船体中心線 Cに直交する方向)に設けられるが、ブラケットフィン 8の最大厚みがプロ ペラ軸を揷通する船尾管 3a, 4aの直径 (外径)以下とするのが抵抗増加を抑制する 上で好ましい。
[0058] また、図 9の右舷側面図に示す例では、翼断面形状のブラケットフィン 8を、その基 端部から船尾方向に向かって先端まで徐々に、この例では下向きの曲線形状になる ように形成してもよい。この場合、船尾管 3aの外径の範囲内に曲線形状のブラケット フィン 8が収まるように配置される。つまり、図 9のブラケットフィン 8は、その基端部が 船尾管 3aの上端位置にあり、ここを基点として船尾方向に延び、ブラケットフィン 8の 後端部は船尾管 3aの下端位置で終わっている。なお、ブラケットフィン 8を曲線形状 にせずに、図 6 (a)〜(c)のような直線状に延びるブラケットフィン 8を船尾方向に向か つて、真っ直ぐ水平に設けてもよいし、或いは船尾管 3aの外径の範囲内で、下向き 又は上向きに傾斜させて設けてもよい。ブラケットフィン 8全体に亘つて下向き、又は 上向きの曲線配置或いは直線傾斜配置にした場合には、ブラケットフィン 8のもつ作 用効果を高めることができる。
[0059] ところで、オーバーラッピングプロペラ (OLP)船型においては(図 2参照)、後方に 設置された後方プロペラ 1に流入する流れ (後流)は前方プロペラ 2の回転流の影響 を大きく受ける。そのため、後方プロペラ 1は従来の一軸船で知られているような伴流 分布とは異なった、複雑な流場 (後流分布)の中で作動することになる。この点を調べ るために、模型実験が行われた。図 12, 13はオーバーラッピングプロペラ船型にお いて、前方プロペラ 2のみを回転させた状態において、後方プロペラ 1に流入する後 流分布を実験により計測した結果を示す。図 12は後述する伴流改善フィン 13が無い 場合、図 13は伴流改善フィン 13を設けた場合の伴流分布を示す。
[0060] オーバーラッピングプロペラ船、型(図 2参照)では、後方プロペラ 1には前方プロペラ 2で加速された軸方向の速い流速が前方プロペラ 2と後方プロペラ 1とがオーバーラ ップしている部分 (この部分を「オーバーラップ領域」ともいう) 11 (図 12)に流入し、さ らに後方プロペラ 1と同じ回転方向に前方プロペラ 2の回転流が流入する。
[0061] 実験結果では、図 12に示すように、プロペラ軸の上方のオーバーラップ領域 11を 含んだ斜めの領域に大きな後流分布の変動量を有する領域、すなわち、流速変化 量の大きい部位 12を有する領域が存在することが判明した。特にこのオーバーラッ プ領域 11の上方部において l—Wxが 1. 0力ら 0. 5へと変化し、急激な速度変化を 生じて 、ることが分かる。その速度勾配も急であることが分かる。
[0062] このような伴流分布の中を後方プロペラ 1が回転したときには、オーバーラップ領域 11における流速変化量の大きい部位 12を通過する前後に亘つてプロペラによるスラ ストが小から大へと急激に変化し、このスラストのアンバランスによってベアリングフォ ースも急激に増大することになる。
[0063] そこで、オーバーラッピングプロペラ(OLP)船型における、力かるベアリングフォー スの問題をでき得る限り解決するために、後方プロペラ 1に流入する流れ分布 (後流 分布)を改善すベぐプロペラ前方の船尾船体に、船尾流れを制御するための伴流 改善フィン 13を設置することが望ましい。
[0064] 図 9は、前方プロペラ 2の回転によって加速されて後方プロペラ 1へ流入する後流 分布を改善するための伴流改善フィン 13を、プロペラ軸 3より上方の船尾船体 Sに設 けた場合の右舷側面図である(ブラケットフィン 8を透視的に示す)。図 10はその平面 図(船尾船体 Sと伴流改善フィン 13のみ実線で示し、他は仮想線で示してある)であ る。図 11 (a) (b) (c)は伴流改善フィン 13を設ける 3つの異なった態様を示す図であ る。
[0065] 図 13の伴流分布図において示すように、伴流改善フィン 13がこの流速変化量の大 きい部位 12 (この図示例ではオーバーラップ領域 11)に向かって設けられている。す なわち、図 9および図 10に示す例では、伴流改善フィン 13は、プロペラ軸 3、 4 (船尾 管 3a、 3b)より上方であって、船尾船体 Sの両舷力も水平に突設され、船尾船体 Sに 沿って船尾端 S1付近まで延びている。平面視では図 10に示すように、伴流改善フィ ン 13は、前述したブラケットフィン 8とほぼ相似形のなすような略三角形状をしている 。伴流改善フィン 13は、ブラケットフィン 8と同様、板状、翼形状いずれであってもよく 、また、必ずしも船尾端 S1に向力つて水平に延びる必要もなぐ図 9のブラケットフィ ン 8のように下向きの曲線状に船尾端付近まで延びていてもよいし、又は、図示はし ていないが上向き曲線状に延びてもよい。また、伴流改善フィン 13が船尾端付近ま で直線状に下向きに、又は上向きに傾斜させて延びたものであってもよい。
[0066] 図 13に示すように、力かる伴流改善フィン 13を船尾船体 Sに設けた場合、図 12に おける前述した大きな速度変化が緩和され、速度変化の勾配も緩和される。すなわ ち、力かる伴流改善フィン 13を設けることによって、前方プロペラ 2の後方の流場を変 ィ匕させることできるのである。このような改善された伴流分布の中を後方プロペラ 1が 回転したときにはスラストのアンバランスが少なくなり、ベアリングフォースの増大が抑 えられる。同時にキヤビテーシヨンの発生も抑制される。伴流改善フィン 13を設けた 場合には、伴流改善フィン 13がない場合と比べて、ベアリングフォースは約 10分の 1 に低減し、プロペラ面直上に働くキヤビテーシヨンによる変動圧は約半分に低下させ ることができることが模型試験の結果力 判明している。
[0067] このように、図 13に示すように伴流改善フィン 13を設けた場合には、図 12の伴流 改善フィンが無い場合に比べて、後流分布が密となっている(流速変化量が大きい) 部分が、伴流改善フィン 13を設けることによって少なくなつていることがわかる。また、 プロペラと同じ方向の回転流も伴流改善フィンを設けた場合には減少していることが わかる。それを周方向の速度分布でみると、伴流改善フィン有りの方が無しよりも速 度変化が小さぐ速度変動の周期が長くなつていることがわかる。この結果より、伴流 改善フィン有りの方がベアリングフォースを減少させる後流分布であるといえる。
[0068] 図 9および図 10に示すように、伴流改善フィン 13を、前述した尖鋭ィ匕された船尾船 体 Sに沿って設けると共に、ブラケットフィン 8を同時に設けるの力 船尾船体 Sの先 鋭化、ブラケットフィン 8および伴流改善フィン 13のそれぞれの作用効果を相乗的に 発揮させるうえで好ましい。
[0069] 上記伴流改善フィン 13を設ける態様として、図 11 (a)に示すように、伴流改善フィ ン 13は船尾船体 Sから両舷に対称に設けてもよい。いずれの伴流改善フィン 13も、 プロペラの回転面内に入るように、また、流速変化量の大きい部位 12に向力つて及 び Z又はオーバーラップ領域 11に向力つて設ける。
[0070] また、同図(b)に示すように左舷用と右舷用の伴流改善フィン 13、 13を段違い (左 舷側のフィンを上方に、右舷側のフィンを下方に)に配設してもよい。図 12の流速変 化量の大きい部位 12が前方プロペラ 2から後方プロペラ 1へと斜め下方に発生する から、この流速変化量の大きい部位 12に向力つて及び Z又はオーバーラップ領域 1 1に向力つて左舷側フィンと右舷側フィンを配設することになる。
[0071] また、同図(c)に示すように伴流改善フィン 13を前方プロペラ側にのみ設けてもよ い。これはプロペラの端部付近が推力発生に主に寄与する部位であり、ここでの後流 の速度変化を緩和できればょ 、からである。
産業上の利用可能性 本発明に力かるオーバーラッピングプロペラは、ベアリングフォースを低減し、有害 なキヤビテーシヨンの発生を抑えるのに有効であり、低速船に限らず、中高速船にも 適用可能である。

Claims

請求の範囲
[1] 左右 1対のプロペラをそれらのプロペラ軸心が左右のビルジ渦の中心近くに位置す るように配置し、少なくとも一つのプロペラの回転方向をビルジ渦と反対方向つまり外 回りに設定し、各プロペラ回転面が平面視にて相互にラップしない限度内で相互に 近づけると共に両プロペラをそれらのレーキが相手方のプロペラから遠ざかる方向へ 相互に傾くように形成した推進装置(以下、「オーバーラッピングプロペラ」 t 、う)を装 備した一軸船型の船尾船体を有する船舶において、
プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船尾船体 の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以下とする と共に水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600mm 以下として先鋭ィ匕したことを特徴とする船舶の船尾構造。
[2] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
船尾端より前方の船尾船体両舷から突出したプロペラ軸が挿通する船尾管と船尾 船体との間隙をブラケットフィンで塞いだことを特徴とする船舶の船尾構造。
[3] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
前方プロペラの回転によって加速されて後方プロペラへ流入する後流分布を改善 するための伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の流速変 化量の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転したとき にオーバーラップする領域に向力つて、設けたことを特徴とする船舶の船尾構造。
[4] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船尾船体 の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以下とし且 つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600mm以下 として尖鋭ィ匕すると共に、
船尾端より前方の船尾船体両舷から突出したプロペラ軸が挿通する船尾管と船尾 船体との間隙をブラケットフィンで塞いだことを特徴とする船舶の船尾構造。
[5] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船尾船体 の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以下とし且 つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600mm以下 として尖鋭ィ匕すると共に、
前方プロペラの回転によって加速されて後方プロペラへ流入する後流分布を改善 するための伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の流速変 化量の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転したとき にオーバーラップする領域に向力つて、設けたことを特徴とする船舶の船尾構造。
[6] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
船尾端より前方の船尾船体両舷から突出したプロペラ軸が挿通する船尾管と船尾 船体との間隙をブラケットフィンで塞ぐと共に、
前方プロペラの回転によって加速されて後方プロペラへ流入する後流分布を改善 するための伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の流速変 化量の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転したとき にオーバーラップする領域に向力つて、設けたことを特徴とする船舶の船尾構造。
[7] オーバーラッピングプロペラを装備した一軸船型の船尾船体を有する船舶におい て、
プロペラの軸心の上下方向少なくとも 0. 4R(Rはプロペラ半径)の範囲の船尾船体 の水線面形状を、その水線面の後端部角度を船体中心線に対して 15度以下とし且 つ水線面形状を先端まで延長した際の先端位置での仮想幅(両幅)を 600mm以下 として尖鋭ィ匕すると共に、
船尾端より前方の船尾船体両舷から突出したプロペラ軸が挿通する船尾管と船尾 船体との間隙をブラケットフィンで塞ぎ、かつ、
前方プロペラの回転によって加速されて後方プロペラへ流入する後流分布を改善 するための伴流改善フィンを、プロペラ軸より上方の船尾船体に、前記後流の流速変 化量の大きい部位に向力つて若しくは前方プロペラと後方プロペラとが回転したとき にオーバーラップする領域に向力つて、設けたことを特徴とする船舶の船尾構造。
[8] ブラケットフィンを、船尾管の外径の範囲内で、該ブラケットフィンの基端部力も船尾 方向に向かって徐々に上向き、又は下向きの直線或いは曲線形状に形成した請求 項 2、 4, 6および 7いずれか 1項に記載の船舶の船尾構造。
[9] ブラケットフィンを、該ブラケットフィンの基端部から船尾方向に向かって直線的に 延設すると共に、該ブラケットフィンの先端部付近から船尾管の外径の範囲内で船尾 方向に向かって徐々に上向き、又は下向きの直線或いは曲線形状に形成した請求 項 2、 4, 6および 7いずれか 1項に記載の船舶の船尾構造。
[10] 船首側に位置する前方プロペラの回転方向をビルジ渦と反対方向つまり外回りに 設定すると共に、船尾側に位置する後方プロペラの回転方向を前方プロペラと同じ 方向つまり内回りに設定したことを特徴とする請求項 1〜9のいずれか 1項記載の船 舶の船尾構造。
PCT/JP2006/304479 2005-03-11 2006-03-08 船舶の船尾構造 WO2006095774A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06715399.9A EP1892183B8 (en) 2005-03-11 2006-03-08 Stern structure of ship
PL06715399T PL1892183T3 (pl) 2005-03-11 2006-03-08 Konstrukcja rufowa statku
JP2007507151A JP4781350B2 (ja) 2005-03-11 2006-03-08 船舶の船尾構造
CN2006800076911A CN101137538B (zh) 2005-03-11 2006-03-08 船舶的船尾结构
ES06715399.9T ES2552008T3 (es) 2005-03-11 2006-03-08 Estructura de popa de buque

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-069148 2005-03-11
JP2005069148 2005-03-11

Publications (1)

Publication Number Publication Date
WO2006095774A1 true WO2006095774A1 (ja) 2006-09-14

Family

ID=36953368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304479 WO2006095774A1 (ja) 2005-03-11 2006-03-08 船舶の船尾構造

Country Status (7)

Country Link
EP (2) EP1892183B8 (ja)
JP (2) JP4781350B2 (ja)
KR (1) KR101012310B1 (ja)
CN (1) CN101137538B (ja)
ES (1) ES2552008T3 (ja)
PL (1) PL1892183T3 (ja)
WO (1) WO2006095774A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055557A1 (ja) 2009-11-09 2011-05-12 三菱重工業株式会社 船舶の推進装置
WO2011055558A1 (ja) 2009-11-05 2011-05-12 三菱重工業株式会社 船舶の船尾構造
WO2012053378A1 (ja) 2010-10-19 2012-04-26 三菱重工業株式会社 推進装置とそれを使用する船舶
EP2952427A1 (en) 2005-03-11 2015-12-09 Kawasaki Jukogyo Kabushiki Kaisha Stern structure of ship
WO2016080002A1 (ja) 2014-11-18 2016-05-26 三菱重工業株式会社 シャフトブラケットを有する近接二軸船の推進装置、船舶
JP6246960B1 (ja) * 2017-01-25 2017-12-13 三菱重工業株式会社 船舶の推進装置及び船舶
CN113135278A (zh) * 2020-01-17 2021-07-20 三菱重工业株式会社 船舶

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576717B1 (ko) * 2009-06-06 2015-12-10 내셔널 매리타임 리서치 인스티튜트 2축 선미 쌍동형 선박
IT1395752B1 (it) * 2009-09-22 2012-10-19 Fb Design Srl Supporto passa-scafo per la timoneria e la propulsione di un'imbarcazione ed imbarcazione dotata di tale supporto.
DE102010044435A1 (de) * 2010-09-06 2012-03-08 Lais Gmbh Antrieb
SE541652C2 (en) * 2017-10-23 2019-11-19 Kongsberg Maritime Sweden Ab Navigation system with independent control of lateral and longitudinal thrust

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113292U (ja) * 1980-12-30 1982-07-13
JPS5826697A (ja) * 1981-08-07 1983-02-17 Sanoyasu:Kk 二軸推進装置
JPS60103095U (ja) * 1984-08-28 1985-07-13 株式会社サノヤス インタ−ロツクプロペラ装備を可能とする双胴船尾船の船尾形状
JPH0268296U (ja) * 1988-11-14 1990-05-23
JPH03132497A (ja) * 1989-10-16 1991-06-05 Yamanaka Zosen Kk 船舶の推進機構
JPH0412389U (ja) 1990-05-10 1992-01-31
JPH04123899U (ja) * 1991-04-24 1992-11-10 川崎重工業株式会社 船舶の推進器
JPH0526796A (ja) 1991-07-19 1993-02-02 Tokico Ltd 液種判別装置
JPH0526796U (ja) * 1991-03-11 1993-04-06 川崎重工業株式会社 船舶の推進装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416480A (en) * 1967-01-31 1968-12-17 Navy Usa Ship's stern and propeller arrangement
GB1331497A (en) * 1971-09-29 1973-09-26 Stone Manganese Marine Ltd Propulsion systems for ships
JPS5863196U (ja) * 1981-10-23 1983-04-27 三菱重工業株式会社 船尾整流板
JPS5958700U (ja) * 1982-10-13 1984-04-17 株式会社 サノヤス 2軸船の船体形状
DD259174A1 (de) * 1987-03-27 1988-08-17 Neptun Schiffswerft Veb Wellenhose fuer schiffe
CN1041732A (zh) * 1989-10-28 1990-05-02 上海交通大学 船用啮合式双桨及其变异导管
GB9308970D0 (en) * 1993-04-30 1993-06-16 Blakemore Robert A Propeller shaft foil
JPH08150983A (ja) * 1994-11-29 1996-06-11 Ishikawajima Harima Heavy Ind Co Ltd 船舶の抵抗低減装置
JP3477564B2 (ja) * 1995-11-15 2003-12-10 ユニバーサル造船株式会社 船舶用ビルジ渦エネルギー回収装置
JPH09193892A (ja) * 1996-01-19 1997-07-29 Nkk Corp 船尾フイン
JP3808726B2 (ja) 2001-06-05 2006-08-16 株式会社サノヤス・ヒシノ明昌 船舶フィン装置
NO317226B1 (no) * 2002-05-08 2004-09-20 Moss Maritime As Propell akselarrangement
JP4380975B2 (ja) * 2002-09-24 2009-12-09 三菱重工業株式会社 船舶
EP1892183B8 (en) 2005-03-11 2016-02-24 Kawasaki Jukogyo Kabushiki Kaisha Stern structure of ship

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113292U (ja) * 1980-12-30 1982-07-13
JPS5826697A (ja) * 1981-08-07 1983-02-17 Sanoyasu:Kk 二軸推進装置
JPS60103095U (ja) * 1984-08-28 1985-07-13 株式会社サノヤス インタ−ロツクプロペラ装備を可能とする双胴船尾船の船尾形状
JPH0268296U (ja) * 1988-11-14 1990-05-23
JPH03132497A (ja) * 1989-10-16 1991-06-05 Yamanaka Zosen Kk 船舶の推進機構
JPH0412389U (ja) 1990-05-10 1992-01-31
JPH0526796U (ja) * 1991-03-11 1993-04-06 川崎重工業株式会社 船舶の推進装置
JPH04123899U (ja) * 1991-04-24 1992-11-10 川崎重工業株式会社 船舶の推進器
JPH0526796A (ja) 1991-07-19 1993-02-02 Tokico Ltd 液種判別装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1892183A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952427A1 (en) 2005-03-11 2015-12-09 Kawasaki Jukogyo Kabushiki Kaisha Stern structure of ship
EP2821334A2 (en) 2009-11-05 2015-01-07 Mitsubishi Heavy Industries, Ltd. Stern structure of ship
WO2011055558A1 (ja) 2009-11-05 2011-05-12 三菱重工業株式会社 船舶の船尾構造
US8499705B2 (en) 2009-11-05 2013-08-06 Mitsubishi Heavy Industries, Ltd. Stern structure of ship
JP2011098678A (ja) * 2009-11-09 2011-05-19 Mitsubishi Heavy Ind Ltd 船舶の推進装置
WO2011055557A1 (ja) 2009-11-09 2011-05-12 三菱重工業株式会社 船舶の推進装置
WO2012053378A1 (ja) 2010-10-19 2012-04-26 三菱重工業株式会社 推進装置とそれを使用する船舶
US9021970B2 (en) 2010-10-19 2015-05-05 Mitsubishi Heavy Industries, Ltd. Propulsion device and ship using the same
JP2012086667A (ja) * 2010-10-19 2012-05-10 Mitsubishi Heavy Ind Ltd 船舶及び推進装置
WO2016080002A1 (ja) 2014-11-18 2016-05-26 三菱重工業株式会社 シャフトブラケットを有する近接二軸船の推進装置、船舶
KR20160072088A (ko) 2014-11-18 2016-06-22 미츠비시 쥬고교 가부시키가이샤 샤프트 브래킷을 갖는 근접 이축선의 추진 장치, 선박
JP6246960B1 (ja) * 2017-01-25 2017-12-13 三菱重工業株式会社 船舶の推進装置及び船舶
WO2018138941A1 (ja) * 2017-01-25 2018-08-02 三菱重工業株式会社 船舶の推進装置及び船舶
JP2018118634A (ja) * 2017-01-25 2018-08-02 三菱重工業株式会社 船舶の推進装置及び船舶
CN113135278A (zh) * 2020-01-17 2021-07-20 三菱重工业株式会社 船舶

Also Published As

Publication number Publication date
JP5113899B2 (ja) 2013-01-09
KR101012310B1 (ko) 2011-02-09
CN101137538B (zh) 2011-01-12
CN101137538A (zh) 2008-03-05
PL1892183T3 (pl) 2016-03-31
EP1892183A1 (en) 2008-02-27
JP4781350B2 (ja) 2011-09-28
JPWO2006095774A1 (ja) 2008-08-14
EP1892183B1 (en) 2015-09-30
KR20070110493A (ko) 2007-11-19
EP1892183B8 (en) 2016-02-24
EP1892183A4 (en) 2014-05-07
JP2011098725A (ja) 2011-05-19
ES2552008T3 (es) 2015-11-25
EP2952427A1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5113899B2 (ja) 船舶の船尾構造
EP2738084B1 (en) Propeller with small duct, and ship
JP3004238B2 (ja) 船舶の推進性能向上装置
JP2010195153A (ja) 船舶用リアクションフィン装置および船舶
WO2015098665A1 (ja) ダクト装置
KR20160031790A (ko) 선박용 추진 조향 시스템 및 그 선박용 추진 조향 시스템의 전가동러더
WO2021187418A1 (ja) 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー
JP2010095239A (ja) 船舶用の舵装置
JP2005246996A (ja) 船舶用舵及び船舶
JPH0659871B2 (ja) 舶用二重反転プロペラ
WO2016080002A1 (ja) シャフトブラケットを有する近接二軸船の推進装置、船舶
JP6345221B2 (ja) 一軸二舵システム
WO2019014873A1 (zh) 一种挖泥船用螺旋桨
JP6554743B2 (ja) 近接二軸船のフィン付舵、船舶
KR102288939B1 (ko) 러더벌브를 포함하는 선박용 방향타
JPH08282590A (ja) 舶用プロペラ
JP2004114743A (ja) 船舶
JP3725525B2 (ja) ポッド推進機のポッド支柱構造
WO2019102945A1 (ja) 船尾フィンおよびそれを備えた船舶
KR101422225B1 (ko) 보조 추력 장치를 갖는 선박
KR20230013651A (ko) 선박의 전가동 러더
JPS6116680B2 (ja)
JP2020185810A (ja) 舵及びこれを備えた船舶
SE542122C2 (en) A pod unit or azimuth thruster having a fin arrangement for reducing the azimuthal torque
JPH052558B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007691.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507151

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077018382

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006715399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006715399

Country of ref document: EP