WO2011045946A1 - 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫 - Google Patents

真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫 Download PDF

Info

Publication number
WO2011045946A1
WO2011045946A1 PCT/JP2010/052244 JP2010052244W WO2011045946A1 WO 2011045946 A1 WO2011045946 A1 WO 2011045946A1 JP 2010052244 W JP2010052244 W JP 2010052244W WO 2011045946 A1 WO2011045946 A1 WO 2011045946A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber assembly
heat insulating
fiber
vacuum heat
roll
Prior art date
Application number
PCT/JP2010/052244
Other languages
English (en)
French (fr)
Inventor
洋輔 藤森
中野 秀明
京子 野村
浩史 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2010800464449A priority Critical patent/CN102575804A/zh
Priority to JP2011536051A priority patent/JP5241925B2/ja
Priority to US13/501,227 priority patent/US9068683B2/en
Priority to EP10823214.1A priority patent/EP2489919A4/en
Publication of WO2011045946A1 publication Critical patent/WO2011045946A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/56Winding of hanks or skeins
    • B65H54/58Swifts or reels adapted solely for the formation of hanks or skeins
    • B65H54/585Reels for rolling tape-like material, e.g. flat hose or strap, into flat spiral form; Means for retaining the roll after removal of the reel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/56Winding of hanks or skeins
    • B65H54/62Binding of skeins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum

Definitions

  • the present invention relates to a vacuum heat insulating material core manufacturing apparatus, a vacuum heat insulating material manufacturing method, a vacuum heat insulating material, and a refrigerator using the vacuum heat insulating material.
  • urethane foam has been used as a heat insulating material used in a heat insulating box such as a refrigerator.
  • a heat insulating box such as a refrigerator.
  • a vacuum heat insulating material having better heat insulating performance than urethane foam is embedded in urethane foam.
  • Such a vacuum heat insulating material is also used for a refrigerator or the like.
  • the vacuum heat insulating material is configured by inserting powder, foam, fiber, etc. as a core material in an outer packaging material made of a plastic laminate film using an aluminum foil as a gas barrier layer.
  • the inside of the vacuum heat insulating material is kept at a degree of vacuum of several Pa (Pascal) or less.
  • an adsorbent that adsorbs gas and moisture is disposed in the outer packaging material in order to suppress the deterioration of the degree of vacuum, which is a cause of lowering the heat insulating performance of the vacuum heat insulating material.
  • the core material of the vacuum heat insulating material powders such as silica, foams such as urethane, fiber bodies and the like are used. At present, glass fibers having excellent heat insulation performance are mainly used as core materials for vacuum heat insulating materials.
  • the fiber material examples include inorganic fibers such as glass fiber and ceramic fiber (for example, see Patent Document 1 and Patent Document 8).
  • organic fibers such as polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, and cellulose fiber (see, for example, Patent Document 2 and Patent Document 7).
  • the shape of the fibrous body is cotton-like, laminated sheets (for example, see Patent Document 3 and Patent Document 4), or laminated sheets so that fiber orientations alternate (for example, Patent Document 5). And Patent Document 6).
  • glass fibers are mainly used as the core material in the current vacuum heat insulating material.
  • glass fiber is hard and brittle, dust may be scattered during the manufacture of a vacuum heat insulating material, which may cause irritation when it adheres to the skin / mucous membrane of an operator, and its handling and workability are issues.
  • each product is pulverized in a recycling factory.
  • the glass fiber is mixed with urethane waste and is subjected to thermal recycling.
  • Glass fiber has the problem that recyclability is not good, such as reducing combustion efficiency and becoming a residue.
  • polyester fiber as the core material are excellent in handleability and recyclability.
  • those using polyester fibers as the core material have a thermal conductivity of about 0.0030 [W / mK], which is an index representing heat insulation performance (see, for example, Patent Document 7).
  • the thing using polyester fiber as a core material has the difficulty that it is inferior to heat insulation performance compared with the general vacuum heat insulating material (about thermal conductivity 0.0020 [W / mK] grade) which used glass fiber as a core material. .
  • a vacuum insulation material is manufactured by inserting a core material such as glass fiber into an outer packaging material such as an aluminum foil laminate film and sealing the inside under reduced pressure
  • the core material is enclosed in an outer packaging material such as an aluminum foil laminate film.
  • the glass fiber may pierce the outer packaging material and damage or break the outer packaging material. If the glass fiber core material is not inserted directly into the outer packaging material, It is inserted into the outer packaging material in a state where it is inserted into a separate bag such as a bag, and an extra plastic bag is required, which complicates the manufacturing process of the core material and vacuum insulation material, and increases the cost. It was.
  • the glass fiber is excellent in heat insulating performance.
  • glass fiber is hard and brittle, it is difficult to perform bending after vacuum.
  • the glass fiber is excellent in heat insulating performance.
  • glass fiber is hard and brittle, it cannot be deformed into a pipe shape even if it is attempted to insulate by placing a pipe such as a condensation pipe between a vacuum heat insulating material and a vacuum heat insulating material. There is a corresponding gap. For this reason, heat leaks from the gaps between the vacuum heat insulating materials, and the heat insulating performance is greatly deteriorated.
  • the present invention has been made to solve the above-described problems, and is a vacuum heat insulating material core manufacturing apparatus, a vacuum heat insulating material manufacturing method, a vacuum heat insulating material, and at least one of the following characteristics: It aims at providing the refrigerator using this vacuum heat insulating material. (1) Good heat insulation performance and excellent productivity (particularly core material productivity). (2) Good heat insulation performance and excellent handling and recycling. (3) When an organic fiber aggregate is used for the core material, the productivity is excellent. (4) The core material can be manufactured according to the bending size of the bending process, and the manufacturing is easy.
  • the vacuum heat insulating material core manufacturing apparatus is a reel that winds a fiber assembly having a predetermined width wound around a substantially cylindrical raw fabric roll cut to a predetermined width for a predetermined number of times.
  • the core material and the vacuum heat insulating material can be easily manufactured with a simple configuration, and the manufacturing time can be shortened. Moreover, since it winds continuously in the winding direction, it is not necessary to cut the end face in the length direction, the equipment can be simplified, and the time for cutting is shortened.
  • a vacuum heat insulating material excellent in handling property, heat insulating performance and productivity, and a device such as a refrigerator equipped with this vacuum heat insulating material. can be provided.
  • FIG. 5 shows the first embodiment and is a schematic view of the vacuum heat insulating material 7 and is a perspective view of the core material 5 of the vacuum heat insulating material 7 in which a plurality of nonwoven fabric sheets are laminated.
  • FIG. 5 shows the first embodiment and is a schematic view of the vacuum heat insulating material 7 and is a side view showing the orientation of fibers in one nonwoven fabric sheet.
  • FIG. 5 shows the first embodiment, and is a schematic diagram of the vacuum heat insulating material 7, and is a side view showing the fiber orientation when the core material 5 has a thickness.
  • FIG. 5 shows the first embodiment and is an exploded perspective view showing the configuration of the vacuum heat insulating material 7.
  • FIG. 5 is a diagram showing the first embodiment and is a perspective view schematically showing a stacked state of the core material 5 forming the vacuum heat insulating material 7.
  • FIG. 5 is a diagram showing the first embodiment, and is a perspective view schematically showing a raw fabric roller and a winding frame of a laminating device for a core material 5 that forms a vacuum heat insulating material 7. It is a figure which shows Embodiment 1, and is a figure showing the structure of the winding frame of a vacuum heat insulating material manufacturing apparatus, Fig.7 (a) represents the state of the winding frame when winding an organic fiber assembly, FIG. FIG.
  • FIG. 7B is a diagram illustrating a state of the reel when the reel is removed (removed) from the continuous sheet-like fiber assembly 1J after the continuous sheet-like fiber assembly 1J is wound up.
  • FIG. 5 shows the first embodiment and shows a method for manufacturing a vacuum heat insulating material.
  • FIG. 5 shows the first embodiment and is a schematic diagram of another reel.
  • FIG. 5 shows the first embodiment, and is a schematic diagram of a winding device when two combined original fabric rolls are used and wound on a winding frame.
  • the figure which shows Embodiment 1 and is the schematic diagram showing the structure of the organic fiber assembly wound up by the winding apparatus which uses two combination original fabric rolls (upper original fabric roll, lower original fabric roll).
  • FIG. 5 shows the first embodiment, and is a cross-sectional view of a core material wound up by a winding device that uses two combined original fabric rolls.
  • FIG. 5 shows the first embodiment and is a perspective view showing a state where the vacuum heat insulating material 750 is bent.
  • FIG. 5 shows the first embodiment and is a view of the vacuum heat insulating material 750 as viewed from the width direction.
  • FIG. 3 shows the first embodiment and is a cross-sectional view of the refrigerator 100.
  • FIG. 1 In the figure showing Embodiment 1, at least one original fabric roll 1307 having a first predetermined width and an original fabric roll having a width smaller than the first predetermined width are made substantially equal to the first predetermined width.
  • FIG. 5 shows the first embodiment, and is a perspective view of a core material manufactured by winding it on a winding frame using at least one original roll 1307 having a predetermined width and at least one combined original roll.
  • FIG. 5 is a diagram showing the first embodiment, and is a cross-sectional view of a core material manufactured by winding it on a winding frame using at least one original fabric roll having a predetermined width and at least one combined original fabric roll.
  • FIG. 5 shows the first embodiment, and is a cross-sectional view of a core material manufactured by winding it on a winding frame using at least one original fabric roll having a predetermined width and at least one combined original fabric roll.
  • FIG. 5 is a diagram showing the first embodiment, and is a perspective view of a vacuum heat insulating material using a core material manufactured by winding it on a winding frame using at least one original fabric roll having a predetermined width and at least one combined original fabric roll.
  • FIG. 5 shows the first embodiment and is a schematic diagram showing the shape of a vacuum heat insulating material.
  • FIG. 1 to 4 are diagrams showing Embodiment 1
  • FIG. 1 is a schematic view of a vacuum heat insulating material 7, and is a perspective view of a core material 5 of a vacuum heat insulating material 7 in which a plurality of nonwoven fabric sheets are laminated
  • FIG. It is the schematic diagram of the vacuum heat insulating material 7, Comprising: The side view showing the orientation of the fiber in one nonwoven fabric sheet
  • FIG. 3 is the schematic diagram of the vacuum heat insulating material 7, Comprising: The fiber in case the core material 5 has thickness
  • FIG. 4 is an exploded perspective view showing the configuration of the vacuum heat insulating material 7.
  • the core material 5 has a laminated structure in which, for example, a sheet-like organic fiber aggregate (hereinafter, referred to as “organic fiber aggregate 1”) in which at least one end face 1a is cut is laminated. That is, the core material 5 shown in FIG. 1 forms a sheet shape in which a plurality of substantially rectangular organic fiber assemblies 1 are stacked and then four substantially rectangular sides are cut. Alternatively, after the four sides of the substantially rectangular organic fiber assembly 1 are cut, a plurality of layers are laminated to form a substantially rectangular sheet shape.
  • organic fiber aggregate 1 sheet-like organic fiber aggregate
  • the organic fiber assembly 1 includes a plurality of organic fibers 2x arranged at predetermined intervals, and a plurality of organic fibers 2x arranged at predetermined intervals in a direction substantially orthogonal to the organic fibers 2x. And organic fiber 2y.
  • the organic fiber 2x and the organic fiber 2y are almost in point contact. Between the organic fibers 2y, an air layer 3 which is a heat insulating space is formed.
  • the organic fiber 2x is a generic term for the organic fiber 2x and the organic fiber 2y.
  • the fibers are easily oriented so as to face the thickness direction, which is the heat transfer direction.
  • the organic fiber 2 (sometimes simply referred to as a fiber) is a short fiber having a short fiber length (for example, a fiber length of about 5 to 150 mm)
  • the short fiber faces the thickness direction, which is a heat transfer direction. It becomes easy to be oriented like this. Heat is transmitted from the front side to the back side of the sheet via the short fibers (indicated by arrows in FIG. 3), and the heat insulating performance is deteriorated.
  • the fibers are in the heat transfer direction (the fiber lamination direction of the organic fiber assembly 1, the thickness of the sheet-like organic fiber assembly 1). It is possible to suppress the orientation in the (direction). Thereby, it can suppress that heat
  • a solid line arrow and a dotted line arrow indicate the direction of heat transfer. Since the organic fiber 2x and the organic fiber 2y are substantially orthogonal to each other, the contact portion between the organic fiber 2x and the organic fiber 2y becomes a point contact, so that the heat resistance is increased and the heat insulation performance is improved.
  • the present embodiment is not limited to this.
  • the organic fibers 2x and the organic fibers 2y may intersect at an angle that is not perpendicular to each other. It is sufficient that all of the organic fibers 2x and the organic fibers 2y are not arranged in parallel. If it is possible to suppress even a slight decrease in heat insulation performance due to heat transmitted through the fibers oriented in the heat transfer direction, the heat insulation performance can be improved.
  • the vacuum heat insulating material 7 includes a gas barrier container (hereinafter referred to as “external packaging material 4”) having air barrier properties, a core material 5 and an adsorbent 6 (for example, gas) enclosed in the external packaging material 4.
  • adsorbent 6 for example, gas
  • Adsorbent and moisture adsorbent (CaO) The inside of the outer packaging material 4 is depressurized to a predetermined degree of vacuum (several Pa (pascal) to several hundred Pa).
  • Organic fiber As a material used for the organic fiber 2 that forms the core material 5 of the vacuum heat insulating material 7, it is possible to use polyester, and also polypropylene, polylactic acid, aramid, LCP (liquid crystal polymer), PPS (polyphenylene sulfide), polystyrene, and the like. it can. Further, in order to improve the heat resistance of the core material 5, a heat resistant resin such as LCP (liquid crystal polymer) or PPS (polyphenylene sulfide) may be used for the organic fiber 2. Moreover, what is necessary is just to use a thing with a big fiber diameter, when improving compression creep characteristics.
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide
  • the vacuum heat insulating material 7 with the high heat resistance excellent in the compression creep characteristic and high heat insulation will be obtained.
  • Polystyrene has a low solid thermal conductivity and can be expected to improve the heat insulating performance of the heat insulating material, and can be manufactured at low cost.
  • Polypropylene has low hygroscopicity, so drying time and evacuation time can be shortened and productivity can be improved. Moreover, since the solid heat conduction is small, the heat insulation performance of the vacuum heat insulating material 7 can be expected.
  • polylactic acid is biodegradable
  • the core material disassembled and separated after use of the product can be subjected to landfill treatment.
  • aramid and LCP have high rigidity, they have good merits, such as good shape retention when vacuum-packed and subjected to atmospheric pressure, and can be expected to improve heat insulation performance by increasing porosity.
  • the core material 5 supports the atmospheric pressure to secure a space in the vacuum heat insulating material 7, and finely divides the space to heat the gas. It plays a role of reducing conduction. From the viewpoint of suppressing heat conduction of gas, it is desirable that the distance of this space be smaller than the free stroke distance of air molecules at the degree of vacuum.
  • the organic fiber 2 is used for the core material 5 of the vacuum heat insulating material 7, for example, compared to the case where a hard and brittle glass fiber is used as a core material as in the past,
  • the vacuum heat insulating material 7 is manufactured, dust does not scatter and adhere to the operator's skin, mucous membrane, etc., and irritation is eliminated, improving handling and workability.
  • An organic fiber assembly 1 (same as an organic fiber assembly and a sheet-like assembly) that forms the core material 5 is a polyester resin, a polystyrene resin, or the like that is heated and melted from a number of nozzles arranged in a row with respect to the width to be manufactured.
  • the resin is freely dropped on a conveyor, and the conveyor is moved at an arbitrary speed, is pressed with a pressure roller, and is wound around a cylindrical original roll to produce a substantially cylindrical original roll material.
  • the bulk density of the organic fiber assembly 1 can be adjusted by the amount of molten resin discharged and the speed of the conveyor to obtain fiber assemblies having different thicknesses.
  • the long fiber nonwoven fabric which is the organic fiber assembly 1 is obtained by collecting continuous fibers melted by an extruder and extruded from a spinning nozzle on a conveyor, and forming the conveyor into a sheet form at an arbitrary speed.
  • a continuous long-fiber non-woven fabric that can be wound on the raw fabric roller is obtained. Since a continuous sheet-like organic fiber assembly 1 formed of continuous organic fibers 2 can be obtained, it can be continuously wound on a cylindrical raw fabric roller, and a raw fabric roll of a long-fiber nonwoven fabric can be obtained. become.
  • the resin In spinning, after the resin is cooled with cold air directly under the nozzle, it is fiberized by drawing with compressed air or the like, or by blowing with high-temperature air equivalent to the melting temperature of the resin from the nozzle hole side. Can be used.
  • the organic fiber assembly 1 obtained by the above-described method may have poor handleability when the vacuum heat insulating material 7 is manufactured because the organic fibers 2 are separated from each other. Therefore, the organic fibers 2 may be heated and welded together during pressurization. At this time, excessive pressurization and heat welding increase the contact area between the organic fibers 2 and increase heat transfer, causing heat conduction from the welded portion and causing a decrease in heat insulation performance. Therefore, it is better to reduce the contact area between the organic fibers 2 as much as possible.
  • the contact area between the organic fibers 2 is desirably 20% or less, preferably 15% or less, and more preferably 8% or less of the total area (sheet area).
  • the thermal conductivity increases when the proportion of heating welding exceeds 20% of the total area (sheet area), and the heat insulation performance deteriorates, so the proportion of heating welding accounts for the total area (sheet area). Is preferably 20% or less.
  • the proportion occupied by heat welding with respect to the total area (sheet area) is reduced, the heat insulation performance is remarkably improved, so the proportion occupied by heat welding is 15% or less of the total area (sheet area), It is desirable to suppress it to 8% or less of the total area (sheet area).
  • Heat welding is performed with a heat roller or the like, for example, by embossing with a dot-like welded portion to obtain a long-fiber nonwoven fabric (organic fiber aggregate 1) that can be wound while ensuring handling strength and has good heat insulation performance. It is done.
  • the temperature of the heat roller may be about 195 ° C.
  • the organic fiber assembly 1 is used as the fiber assembly.
  • the fiber diameter of the organic fiber assembly 1 is adjusted to about 15 ⁇ m by adjusting the diameter of the nozzle for molding the organic fiber assembly 1. In terms of heat insulation performance, the thinner fiber diameter is better.
  • the fiber diameter is preferably smaller from the relationship between the degree of internal vacuum of the vacuum heat insulating material 7, the spatial distance subdivided by the fiber, and the free path distance of gas molecules.
  • the fiber diameter is desirably 15 ⁇ m or less, preferably 10 ⁇ m or less, and an average fiber diameter of about 9 ⁇ m may be used.
  • the average fiber diameter may be measured by measuring several to several tens (for example, ten) using a microscope and using the average value.
  • the weight per unit area (fiber weight per 1 m 2 (g)) may be obtained as a weight per unit area of one sheet by measuring the area and weight of one sheet.
  • the fiber orientation direction is aligned in a direction substantially perpendicular to the thickness direction, which is the heat insulation direction, and a multilayer structure in which a plurality of organic fiber assemblies 1 are stacked.
  • the fiber length is short, and thus the organic fiber 2x and the organic fiber 2y are easily oriented in the heat insulation direction (sheet thickness direction).
  • a long fiber nonwoven fabric using long fibers is used.
  • the fiber is cut in the middle of the sheet, and a part of the fiber (the middle) and the end are in the direction of heat insulation. Therefore, the heat insulation performance is not deteriorated.
  • the end surface 1a of the obtained sheet-like organic fiber assembly 1 is cut (cut) so as to have a predetermined size (width 210 mm ⁇ length 297 mm), for example. These were laminated in a plurality of layers (for example, 25 layers) to form the core material 5 having a predetermined size and thickness in which the end face 5a was cut.
  • the core material 5 may be formed in a predetermined size by cutting the end surface 5a after laminating a plurality of sheet-like organic fiber assemblies 1.
  • Outer packaging material A laminate film having a thickness of 5 ⁇ m or more and 100 ⁇ m or less is used for the outer packaging material 4 (FIG. 4) of the vacuum heat insulating material 7.
  • a plastic laminate film having a gas barrier property composed of nylon (6 ⁇ m), aluminum-deposited PET (polyethylene terephthalate) (10 ⁇ m), aluminum foil (6 ⁇ m), and high-density polyethylene (50 ⁇ m) is used. ing.
  • a laminated film that does not contain aluminum foil such as polypropylene, polyvinyl alcohol, or polypropylene is used for the outer packaging material 4 of the vacuum heat insulating material 7, it is possible to suppress a decrease in heat insulating performance due to heat bridge.
  • three sides of the four sides of the outer packaging material 4 are heat sealed by a seal wrapping machine. The remaining side is heat sealed after inserting the core material 5.
  • the vacuum heat insulating material 7 is manufactured by first inserting a core material 5 having a predetermined size and thickness into a bag-shaped outer packaging material 4 having an opening 4a, and fixing the opening 4a so as not to be closed. And dried at about 105 ° C. for half a day (about 12 hours).
  • an adsorbent 6 gas adsorbent, moisture adsorbent, etc.
  • an adsorbent 6 for adsorbing residual gas after vacuum packaging, outgas from the core material 5 released over time, and permeate gas entering through the sealing layer of the outer packaging material 4
  • a Kashiwagi-type vacuum packaging machine NPC; KT-650. Vacuuming was performed until the degree of vacuum in the chamber reached about 1 to 10 Pa, and the opening 4a of the outer packaging material 4 (film bag) was heat sealed in the chamber to obtain a plate-like vacuum heat insulating material 7.
  • the sheet-like organic fiber assembly 1 may be cut into a predetermined size and stacked to form a core material 5 to produce the vacuum heat insulating material 7, or the sheet-like organic fiber may be produced. After stacking a plurality of aggregates 1, the end face 5 a may be cut and formed into a predetermined size to form the core material 5 to manufacture the vacuum heat insulating material 7.
  • a manufacturing method will be described. A method of manufacturing the core material 5 by continuously winding a continuous sheet-like fiber assembly (for example, the organic fiber assembly 1) will be described.
  • FIG. 5 and 6 are diagrams showing the first embodiment.
  • FIG. 5 is a perspective view schematically showing a laminated state of the core material 5 forming the vacuum heat insulating material 7.
  • FIG. 6 is a core forming the vacuum heat insulating material 7.
  • FIG. 6 is a perspective view schematically showing a raw fabric roller and a winding frame of a stacking apparatus for materials 5.
  • a continuous sheet-like fiber aggregate 1J (eg, organic fiber aggregate 1 having a thickness of about 30 ⁇ m to about 500 ⁇ m, preferably formed of continuous fibers (eg, organic fibers 2), preferably 80 ⁇ m or more and 300 ⁇ m or less) after being wound on the winding frame 1311 with a predetermined tension such that the fiber is not cut and is not cut and is not sufficiently cut to have the necessary properties as a fiber.
  • the core material 5 is manufactured by being formed into a flat plate shape. That is, the core material 5 is configured by a laminated structure of continuous sheet-like fiber assemblies 1J in which sheet-like fiber assemblies 1J continuous in the length direction (winding direction) are continuously wound from the inside toward the outside.
  • the core material 5 is formed into a flat plate shape having a width H, a length L, and a thickness t (see FIG. 5). Moreover, let the edge part of the winding end of the core material 5 be the winding end part 1Je.
  • the core material 5 is formed by continuously winding a continuous sheet-like fiber assembly 1J (original fabric roll 1301) having a predetermined width wound around a substantially cylindrical original fabric roller 1302 on the winding frame 1311 a plurality of times.
  • a state a state in which the reel is continuously wound a predetermined number of times
  • the reel 1311 is pulled out in the axial direction of the reel 1311 (the axial center direction of the rotating shaft 1315 shifted by approximately 90 degrees with respect to the reeling direction).
  • the continuous sheet-like fiber assembly 1J wound in a cylindrical shape is molded so as to be flattened (sheet-like).
  • the flat core material 5 includes a flat plate portion 5g (smooth portion) in which a plurality of continuous sheet-like fiber assemblies 1J are laminated to form a flat plate shape (smooth shape), and both sides of the flat plate portion 5g with respect to the length direction. End portion (Since the continuous sheet-like fiber assembly 1J is wound in a continuous state in the winding direction, the continuous sheet-like fiber assembly 1J is bent and wound at both ends of the flat plate-like winding direction.
  • the continuous sheet-like fiber assembly 1J is formed into a flat plate shape (sheet shape, smooth shape) having a bent end portion 5f (bent portion) formed in a bent state.
  • the core material 5 is formed into a flat plate shape, and the number of times R is wound around the winding frame 1311 so as to have a predetermined thickness t in a state of being sealed in a substantially vacuum state in the outer packaging material 4 is determined.
  • the required thickness t of the core material 5 predetermined thickness of the core material 5
  • the required number of windings R that must be wound around the winding frame 1311 is 50 times corresponding to 50 sheets of the continuous sheet-like fiber assembly 1J.
  • the thickness t of the core material 5 is formed into a flat plate shape (sheet shape) by crushing the core material 5 in a state in which the winding frame 1311 is extracted (cylindrical shape), the number of times the core material 5 is wound around the raw roll 1301
  • the core material 5 has a thickness equivalent to 100 times the number of 50 times that is R, and the core material 5 is a state in which a plurality of continuous sheet-like fiber assemblies 1J are laminated (100 sheets being a predetermined number). It becomes.
  • the width (predetermined width) H required for the core material 5 is appropriately determined depending on the width of the continuous sheet-like fiber assembly 1J (raw fabric roll 1301) wound around the raw fabric roller 1302 and the width of the winding frame 1311. Adjusted. For example, if the required width H (predetermined width) of the core material 5 is 1500 mm, the width of the winding frame 1311 is about 1500 mm which is the predetermined width or slightly larger than the predetermined width of 1500 mm (for example, 1520 mm). It is also possible to cut the excess part (both width parts) by setting the degree.
  • FIG. 7 and 8 are diagrams showing the first embodiment.
  • FIG. 7 is a diagram showing the structure of the winding frame of the vacuum heat insulating material manufacturing apparatus.
  • FIG. 7 (a) is a drawing of a continuous sheet-like fiber assembly 1J.
  • FIG. 7B shows the state of the reel when removing the reel from the continuous sheet-like fiber assembly 1J after the winding of the continuous sheet-like fiber assembly 1J is completed.
  • FIG. 8 is a diagram illustrating a state
  • FIG. 8 is a diagram illustrating a clamp member that clamps the organic fiber assembly wound around the winding frame of the vacuum heat insulating material manufacturing apparatus.
  • the winding frame 1311 has a substantially cylindrical shape, for example, and is divided into a plurality of pieces by, for example, a plurality of circumferential members 1312 in the circumferential direction.
  • the winding frame 1311 is divided into four by circumferential members 1312a, 1312b, 1312c, and 1312d.
  • the circumferential member 1312 is not shown, but the circumferential members 1312a, 1312b, 1312c, and 1312d are collectively referred to as “circumferential member 1312”.
  • the circumferential member 1312 is a circumferential member connected to the rotary shaft 1315 of the winding frame 1311 on the inner peripheral side in the vicinity of the center in the circumferential direction of each of the divided circumferential members 1312a, 1312b, 1312c, and 1312d.
  • Holding shafts 1316 (circumferential member holding shafts 1316a, 1316b, 1316c, and 1316d) are respectively provided, and a plurality of circumferential members 1312 are connected to the rotating shaft 1315 of the winding frame 1311 via the circumferential member holding shaft 1316. -Retained.
  • a drive shaft that is driven by an electric motor or the like is inserted and connected to the rotating shaft 1315 of the winding frame 1311.
  • At least one of the circumferential members 1312 divided into a plurality of parts (in this embodiment, four circumferential members 1312a, 1312b, 1312c, and 1312d) (in this embodiment, they face each other in the radial direction).
  • the two circumferential members 1312a and 1312b) are provided with a circumferential member holding shaft 1316 (circular member holding shafts 1316a and 1316b in the present embodiment) that can be expanded and contracted in the radial direction.
  • the circumferential member holding shafts 1316 and 1316b are moved in the direction of contraction toward the center in the radial direction, thereby winding the fiber assembly 1J around the winding frame 1311 in a substantially cylindrical shape.
  • the tension of the continuous sheet-like fiber assembly 1J that is formed can be loosened, and is continuously wound from the winding frame 1311 into a substantially cylindrical shape. It can be withdrawn a sheet-shaped fiber assembly 1J in the axial direction of the rotary shaft 1315. That is, the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 is released from the reel 1311 by loosening the tension of the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 with a predetermined tension. Since it becomes easy to extract, it can extract easily, without damaging the continuous sheet-like fiber assembly 1J.
  • the winding frame 1311 is provided with a clamp member 1320 for holding or fixing the substantially cylindrical organic fiber assembly 1 after the winding frame 1311 is extracted at least at one place.
  • the clamp member 1320 is attached to the clamp member installation portions 1313c and 1313d provided on the circumferential members 1312c and 1312d, or the circumferential member holding shafts 1316c and 1316d, respectively. Removably provided.
  • the two clamp member installation portions 1313c and 1313d are different from (for example, different from) the circumferential member holding shaft 1316 (in this embodiment, the circumferential member holding shafts 1316a and 1316b) that can expand and contract in the radial direction.
  • the circumferential member holding shafts 1316c and 1316d) are provided.
  • the clamp member 1320 includes a sheet-like fiber assembly 1J continuous around the winding frame 1311 wound in a substantially cylindrical shape, and the inner peripheral side of the substantially cylindrical continuous sheet-like fiber assembly 1J and the winding frame 1311.
  • the continuous sheet-like fiber assembly 1 ⁇ / b> J is provided or can be held or fixed (for example, held or fixed by being sandwiched) between the outer peripheral side of the two.
  • the clamp member 1320 has, for example, a rod shape or a plate shape, and may be provided on the reel 1311 side so as to be detachable from the reel 1311 before the continuous sheet-like fiber assembly 1J is wound.
  • the clamp member installation portion 1313 (for example, the clamp member installation portions 1313c and 1313d provided on the circumferential members 1312c and 1312d and the circumferential member holding shafts 1316c and 1316d) are provided so as to be inserted from the axial direction of the rotary shaft 1315.
  • the continuous sheet-like fiber assembly 1J may be held, or the continuous sheet-like fiber assembly 1J is held at two clamp member installation portions 1313 (for example, Clamping member installation portion 1313 c, it may be held by sandwiching the two places in 1313 d).
  • the clamp member installation part 1313 is not illustrated in FIG. 8, the clamp member installation parts 1313c and 1313d are collectively referred to as “clamp member installation part 1313”.
  • the winding frame 1311 is disposed on the outer peripheral surface side of the circumferential member 1312 (for example, circumferential members 1312c and 1312d that are not movable in the radial direction) of the winding frame 1311 provided with the clamp member 1320.
  • a clamp member installation portion 1313 that can be accommodated or inserted in the axial direction of the rotary shaft 1315 (for example, a recess or a cut provided to have a predetermined width (or length) in the direction of the rotary shaft 1315, for example) Etc.) are provided.
  • the clamp member 1320 accommodated or inserted in the clamp member installation portion 1313 is, for example, a rod shape or a plate shape, and before the continuous sheet-like fiber assembly 1J is wound around the winding frame 1311,
  • the circumferential member 1312a, 1312b is provided in the clamp member installation portion 1313 (clamp member installation portions 1313c, 1313d) and wound around the winding frame 1311 after the continuous sheet-like fiber assembly 1J is wound around the radial direction. )
  • the continuous sheet-like fiber assembly 1J which is wound around the winding frame 1311 with a predetermined tension, is loosened, and then the continuous sheet-like fiber assembly 1J is clamped by the clamp member 1320.
  • at least two locations (clamp member installation portions 1313c and 1313d) It may be from up to) as withdrawn from the reel 1311.
  • the inner peripheral side of the continuous sheet-like fiber assembly 1J and the outer peripheral side of the winding frame 1311 The axis of the rotating shaft 1315 of the winding frame 1311 in a recess or notch of a clamp member installation portion 1313 (clamp member installation portions 1313c, 1313d) provided on the circumferential members 1312c, 1312d that are not movable of the winding frame 1311 positioned therebetween.
  • At least one clamp member 1320 is inserted from the direction to clamp the substantially cylindrical continuous sheet-like fiber assembly 1J (in this embodiment, clamp at at least two locations (clamp member installation portions 1313c and 1313d). ) To move the circumferential members 1312a and 1312b in the radial direction toward the center (the direction of contraction), and to the reel 1311 with a predetermined tension. It may be pulled out reel 1311 by loosening the substantially cylindrical tension of the continuous sheet-shaped fiber assembly 1J wound in.
  • At least one clamp member 1320 (in this embodiment, two clamp members 1320c and 1320d) is detachably attached to the reel 1311, and at least one circumference of the reel 1311 is not movable.
  • the members in this embodiment, two circumferential members 1312c and 1312d are provided.
  • the substantially cylindrical continuous sheet-like fiber assembly 1J wound around the winding frame 1311 with a predetermined tension is provided.
  • the tension can be easily released. Therefore, since the continuous sheet-like fiber assembly 1J can be easily detached from the winding frame 1311 without damaging or damaging the continuous sheet-like fiber assembly 1J or the organic fiber 2, the structure is simple and highly reliable.
  • a winding device can be obtained, and a continuous sheet-like fiber assembly 1J and a vacuum heat insulating material 7 can be obtained at low cost and with high reliability.
  • the continuous sheet-like fiber assembly 1J is clamped at a position where the circumferential length of the cross-sectional circle of the substantially cylindrical fiber assembly 1J is divided into approximately equal lengths.
  • the rotary shaft of the reel 1311 A straight line passing through the center of rotation 1315 has two crossing shapes (cross-sectional outer shape, circumference in the case of a circle) (two places crossing the circumference in the case of a circle)).
  • the clamping positions are two positions that divide the circumferential length of the outer shape of a substantially cylindrical cross section (circular in the case of a substantially cylindrical shape) into approximately two equal parts, the two clamp members 1320 (clamp members 1320c, 1320d) is removed from the winding frame 1311 while the continuous sheet-like fiber assembly 1J is clamped, and the two clamp members 1320c, 1320d are movable in a substantially linear direction opposite direction (approximately 180 degrees opposite direction) or Since the continuous sheet-like fiber assembly 1J that is wound a plurality of times by being moved and is stacked in plural is pulled in opposite directions by the two clamp members 1320c and 1320d, the portion clamped by the clamp members 1320c and 1320d The continuous sheet-like fiber assembly 1J is formed into a bent flat plate shape.
  • the continuous sheet-like fiber assembly 1J is continuously extracted by being extracted from the continuous sheet-like fiber assembly 1J formed in a flat plate shape in a state where a plurality of layers of the clamp members 1320 (clamp members 1320c and 1320d) are stacked.
  • a flat core material 5 having a predetermined width H and length L having a flat plate (sheet) -like flat plate portion 5g bent at the bent end portion 5f is formed.
  • FIG. 9 is a diagram illustrating the first embodiment and is a diagram illustrating a method for manufacturing a vacuum heat insulating material.
  • FIGS. 9A to 9H show the steps of manufacturing the vacuum heat insulating material 7.
  • FIG. 9A shows a winding start step in which a continuous sheet-like fiber assembly 1J (for example, an organic fiber assembly 1 made of continuous organic fibers 2 and a nonwoven fabric sheet) is wound around the winding frame 1311.
  • a continuous sheet-like fiber assembly 1J for example, an organic fiber assembly 1 made of continuous organic fibers 2 and a nonwoven fabric sheet
  • a continuous sheet-like fiber assembly 1J formed by winding a continuous sheet-like fiber assembly 1J a plurality of times and cut to a predetermined width, and a continuous sheet-like fiber assembly 1J wound around the original fabric roll 1301 are wound up. And a continuous sheet-like fiber assembly 1J wound around the original roll 1301 by rotating the original roll 1301 and the reel 1311.
  • this process is a winding start step.
  • FIG. 9B shows a winding end step in which the continuous sheet-like fiber assembly 1J is wound around the winding frame 1311 a predetermined number of times R and winding is completed.
  • the continuous sheet-like fiber assembly 1J is wound around the winding frame 1311 from the raw roll 1301. At this time, it is wound around the winding frame 1311 of the continuous sheet-like fiber assembly 1J. Since the thickness a (not shown) corresponds to a half thickness t / 2 of the required predetermined thickness t of the core material 5, winding is performed a predetermined number of times R corresponding to the predetermined thickness a. Then, the rotation of the web roll 1301 and the winding frame 1311 stops, and the winding of the continuous sheet-like fiber assembly 1J is completed. This process is a winding end step.
  • FIG. 9C shows a cutting step of cutting the continuous sheet-like fiber assembly 1J (for example, the organic fiber assembly 1).
  • the continuous sheet-like fiber assembly 1J is wound around the winding frame 1311.
  • the number of windings R corresponds to a thickness t / 2 that is half of the required predetermined thickness t of the core material 5.
  • the cutting step is a step of cutting the continuous sheet-like fiber assembly 1J at a predetermined location, and the continuous sheet-like fiber assembly In this step, 1J is cut at a predetermined cutting point between the original roll 1301 and the winding frame 1311 in a state where the front and rear of the predetermined cutting point are clamped, and the original roll 1301 is separated from the winding frame 1311.
  • the substantially cylindrical continuous sheet-like fiber assembly 1J wound around the winding frame 1311 is clamped and held by a clamp member 1320 (clamp members 1320c and 1320d) (see FIG. 9D).
  • the cut end end 1Je (cut end face) of the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 is not scattered, or the end end 1Je (cut end face) ) Is formed into the core member 5, the continuous sheet-like fiber assembly 1J is arranged at the bent end portion 5f as shown in FIG. 5 (that is, not to be positioned at the flat plate portion 5g). It is desirable to cut at a position after the position to be clamped at (for example, immediately after the position to be clamped).
  • FIG. 9D shows a core material fixing step in which a substantially cylindrical continuous sheet-like fiber assembly 1J (for example, organic fiber assembly 1) is clamped by a clamp member 1320.
  • a substantially cylindrical continuous sheet-like fiber assembly 1J for example, organic fiber assembly 1
  • the clamp member 1320 is placed on the clamp member installation portion 1313 (clamp member installation portions 1313c and 1313d) such as a recess and a notch provided in the winding frame 1311. Is inserted, and the vicinity of the winding end 1Je (cut end surface) is clamped so that the winding end 1Je (cut end surface) of the continuous sheet-like fiber assembly 1J is not scattered or peeled off.
  • FIG. 9E shows that at least one of the circumferential members (1312a to 1312d) provided in the circumferential direction of the winding frame 1311 is movable and deformed in the radial center direction.
  • This is a winding frame deformation step for loosening the winding tension of the continuous sheet-like fiber assembly 1J wound around the winding frame 1311.
  • the core material fixing step the vicinity of the winding end portion 1Je (cut end surface) is clamped.
  • the continuous sheet-like fiber assembly 1J has a predetermined thickness (t / t) on the winding frame 1311.
  • At least one circumferential member (in this embodiment, two circumferential members 1312a and 1312b that face each other in the radial direction) moves in a direction of contraction toward the radial center of the winding frame 1311.
  • the circumferential member holding shafts 1316a and 1316b move in the direction of contraction toward the radial center, so that the circumferential members 1312a and 1312b are also moved. It moves in the direction of shrinking toward the center in the radial direction.
  • the circumferential members 1312a and 1312b move in the direction of contraction toward the center in the radial direction, whereby the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 with a predetermined tension in a substantially cylindrical shape. Since the tension is loosened, the continuous sheet fiber assembly 1J wound in a substantially cylindrical shape can be easily extracted from the winding frame 1311 (a continuous sheet clamped from the axial direction of the rotating shaft 1315 of the winding frame 1311). The fibrous fiber assembly 1J can be easily extracted). That is, a continuous sheet-like shape wound around the winding frame 1311 by loosening the tension of the continuous sheet-like fiber assembly 1J (for example, the organic fiber assembly 1) wound around the winding frame 1311 with a predetermined tension. The fiber assembly 1J is easily extracted from the winding frame 1311.
  • FIG. 9F shows a winding in which the winding frame 1311 is extracted from the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 and the winding frame is separated from the substantially cylindrical continuous sheet-like fiber assembly 1J.
  • This is a frame separation step.
  • a continuous sheet-like fiber wound around the reel 1311 by moving or deforming at least one circumferential member 1312 (circumferential members 1312a, 1312b) of the reel 1311 in the reel deformation step. Since the tension generated by winding the aggregate 1J is loosened, in the winding frame separation step, the substantially cylindrical continuous sheet-like fiber aggregate 1J with loosened tension is moved from the reel 1311 to the axial direction of the rotary shaft 1315. Pull out. Alternatively, the winding frame 1311 may be extracted while being clamped from the substantially cylindrical continuous sheet-like fiber assembly 1J.
  • FIG. 9G shows a substantially cylindrical continuous sheet-like fiber assembly 1J separated from the winding frame 1311 in a substantially opposite direction (reverse direction) by a clamp member 1320 (clamp members 1320c and 1320d) which is a molded member.
  • This is a core material forming step for forming the flat core material 5 by pulling.
  • the continuous sheet-like fiber assembly 1J is separated from the winding frame 1311 while being clamped by the clamp member 1320, which is a molded member. Pulling the substantially cylindrical continuous sheet-like fiber assembly 1J that has been pulled out in a state of being clamped by the clamp members 1320c and 1320d, the two clamp members 1320c and 1320d to the opposite sides in the substantially linear direction, respectively.
  • the substantially cylindrical continuous sheet-like fiber assembly 1J is folded at the clamp position of the clamp member 1320, which is a molded member, the plate-like (sheet-like) core material 5 having the bent end portion 5f and the flat plate portion 1311g is formed. Molded.
  • the clamp member 1320 is removed and the core material 5 is formed.
  • a continuous plate-like (sheet-like) continuous sheet-like fiber assembly 1J (eg, organic fiber assembly 1) formed from continuous fibers (eg, organic fibers 2) is continuous from the inside toward the outside.
  • the flat core material 5 is formed and manufactured, and moves on the conveyor 1400.
  • FIG. 9H shows that the core material 5 molded on the conveyor 1400 is substantially sealed in a state where the inside is decompressed after being inserted into the gas barrier outer packaging material 4 having the opening 4a having one end opened.
  • It is a vacuum heat insulating material manufacturing step for manufacturing the vacuum heat insulating material 7.
  • a core material 5 formed by laminating a plurality of continuous sheet-like fiber assemblies 1J and continuously winding from the inside toward the outside to form a flat plate has a gas barrier property having an opening 4a having at least one end opened.
  • the vacuum heat insulating material 7 is completed by being inserted into the outer packaging material 4, transported in a vacuum furnace, and heat-sealing the sealing portion (for example, the opening 4 a) of the outer packaging material 4 in a substantially vacuum state.
  • the circumferential member 1312 of the winding frame 1311 has a substantially continuous cylindrical shape in the winding direction (circumferential direction, rotation direction)
  • the continuous sheet-like fiber assembly 1J is wound around the winding frame 1311.
  • the tension generated by winding is substantially uniform in the winding direction (circumferential direction), and the continuous sheet-like fiber assembly 1J is not damaged or cut at the time of winding, and the highly reliable core material 5, A vacuum heat insulating material 7 is obtained.
  • the circumferential member 1312 is used in which the winding direction (circumferential direction) is substantially continuous with the winding frame 1311 to form a substantially cylindrical shape.
  • the circumferential member 1312 does not have to be a substantially cylindrical shape. It may be a hexagonal shape, a flat plate shape, or the like.
  • FIG. 10 shows the first embodiment and is a schematic diagram of another reel.
  • 10A is a diagram illustrating an example of an octagonal reel
  • FIG. 10B is a diagram illustrating a state in which a continuous sheet-like fiber assembly 1J is wound around the octagonal reel.
  • the circumferential member 1312 may not be continuous in the winding direction (circumferential direction).
  • a reel 1311 is provided with eight rod-like (eg, prismatic or cylindrical) circumferential members 1312 that are provided approximately evenly in the circumferential direction, and is rotated from a raw roll 1301 by rotating around a rotating shaft 1315.
  • the continuous sheet-like fiber assembly 1J is wound up.
  • FIG. 10 shows the first embodiment and is a schematic diagram of another reel.
  • 10A is a diagram illustrating an example of an octagonal reel
  • FIG. 10B is a diagram illustrating a state in which a continuous sheet-like fiber assembly 1J is wound around the octagonal reel.
  • a plurality of (for example, eight) circumferential members 1312 are not continuous in the winding direction, a prismatic shape, a columnar shape, or the like arranged at substantially equal intervals in the winding direction.
  • a clamp member 1320 (see FIG. 8, not shown in FIG. 10) is inserted between the plurality of circumferential members 1312 (the space between the circumferential member 1312 and the circumferential member 1312) and wound around the winding frame 1311. Since the continuous sheet-like fiber assembly 1J can be clamped, the clamp member installation portion 1313 is not required, and the reel 1311 having a simple structure, light weight, and low cost can be obtained.
  • a continuous fiber roll 1301 of a long-fiber nonwoven fabric obtained by continuously winding a continuous sheet-like fiber assembly 1J formed of continuous organic fibers 2 around a substantially cylindrical raw fabric roller 1302. And a winding frame 1311 provided separately from the original fabric roll 1301 and having a predetermined width for winding the continuous sheet-like fiber assembly 1J of the continuous fiber nonwoven fabric of the original fabric roll 1301.
  • a continuous sheet-like fiber assembly 1J (for example, the organic fiber assembly 1) wound around the roll 1311 on the original fabric roller 1302 is a predetermined number of times R (half the required predetermined thickness t of the core material 5).
  • the predetermined size width or length
  • the cut nonwoven fabric sheets (fiber aggregates) do not need to be laminated one by one, and the core material 5 can be easily manufactured at low cost with an inexpensive manufacturing facility.
  • the core material 5 is a continuous sheet-like fiber assembly 1J (for example, the organic fiber assembly 1) formed from continuous fibers (for example, the organic fiber 2) is continuously wound from the inside to the outside.
  • the core material 5 is a continuous sheet-like fiber assembly 1J (for example, the organic fiber assembly 1) formed from continuous fibers (for example, the organic fiber 2) is continuously wound from the inside to the outside.
  • end portions in the length direction bending end portions 5 f
  • the two bent end portions 5f that have been bent (folded) are not cut end surfaces, so that the organic fibers 2 do not protrude from the bent end portions 5f, and the end surfaces do not protrude. Therefore, it is not necessary to cut the end face.
  • the core material 5 and the vacuum heat insulating material 7 which the number of parts (parts) to be cut are reduced and can be easily processed at low cost can be obtained.
  • two end surfaces in the width direction of the four end surfaces of the substantially rectangular and flat core member 5 are the width of the core member 5.
  • the two end surfaces in the width direction of the core material 5 are also cut into a predetermined width in advance when the raw roll 1301 is formed, and thus cut after being formed on the core material 5.
  • the production line for the core material 5 is simplified, and the core material 5 and the vacuum heat insulating material 7 are obtained at low cost.
  • the fiber does not protrude from the end face of the core material 5 or the end face is not protruded, it is not necessary to cut the end face. By cutting the end face, the fiber length of the remaining fiber is shortened and the remaining fiber is cut. There is no loss of the sealing performance of the sealing portion of the outer packaging material 4 that protrudes from the end face.
  • FIG. 24 is a diagram showing the first embodiment, and is a schematic diagram showing the shape of the vacuum heat insulating material.
  • FIG. 24 (a) is a cross section in the length direction of the vacuum heat insulating materials 7, 750, 750 (a cross section perpendicular to the width direction).
  • FIG. 24 (b) is a front view of the main part of the end portions in the length direction of the vacuum heat insulating materials 7, 750, 760 as viewed from the direction perpendicular to the length direction.
  • the outer packaging material 4 is more difficult to wrinkle and less likely to shake, and a highly reliable vacuum heat insulating material can be obtained. That is, a core material 5 having a predetermined width and a laminated structure in which a sheet-like fiber assembly continuous in the length direction is formed in a flat plate shape while being wound from the inside to the outside, and the core material 5 And the gas barrier outer packaging material 4 in which the opening 4a is sealed in a state where the inside is decompressed, and the core material 5 is decompressed in the outer packaging material 4.
  • the cross-sectional shape perpendicular to the width direction at the end in the length direction of the core 5 is a substantially triangular shape that gradually decreases in thickness toward the outside in the length direction.
  • a vacuum insulation is obtained.
  • one vacuum heat insulating material 7, 750, 760 by bending it into a cylindrical shape or the like, when connecting the end surfaces in the lengthwise direction to each other, or using two or more vacuum heat insulating materials 7, When the end faces of 750 and 760 are used in contact with each other, if they are connected so that the slope portions (slope portions Lfs in FIG.
  • FIG. 11 to FIG. 14 are diagrams showing Embodiment 1
  • FIG. 11 is a diagram showing the configuration of a combined original fabric roll having a large width by combining a plurality of original fabric rolls
  • FIG. 13 is a schematic view of a winding device in the case of winding on a reel, and FIG. 13 is wound up by a winding device using two combined original rolls (upper original roll and lower original roll).
  • FIG. 14 is a schematic view showing the configuration of the organic fiber assembly
  • FIG. 14 is a cross-sectional view of the core material wound up by a winding device using two combined original fabric rolls.
  • a plurality of original fabric rolls (for example, main body A1301a, main body B1301b, main body C1301c, and main body D1301d) wound by substantially the same number of windings (the same number of stacked sheets) are adjacent in the width direction (lateral direction) (although it is desirable to arrange them without gaps, the first raw roll 1305 (upper roll) having a predetermined width is formed by combining them so that a predetermined gap may be provided as will be described later.
  • a plurality of original fabric rolls wound by the same number of windings (the same number of stacked sheets) as in the case of the first original fabric roll 1305 for example, main body E1301e, main body F1301f, main body G1301g, main body H1301h,
  • a second raw roll 1306 (lower side) having a predetermined width is combined by adjoining (not shown) in the width direction (lateral direction) (desirably arranged without gaps, but a predetermined gap may be provided).
  • Side roll ).
  • the plurality of original fabric rolls may have the same width or different widths.
  • a plurality of original rolls may have the same width or different widths.
  • the number of the plurality of original fabric rolls used for the original fabric roll 1305 and the number of the plurality of original fabric rolls used for the second original fabric roll 1306 may be the same or different.
  • the first original roll 1305 and the second original roll 1306 are arranged in the width direction so that a plurality of original rolls (for example, a plurality of main parts) are adjacent to each other.
  • a plurality of original rolls for example, a plurality of main parts
  • main body A1301a, main body B1301b, etc. have gaps (minute gaps, predetermined gaps), and adjacent main body parts (for example, main body A1301a, main body B1301b, etc.) are not continuous and intermittent.
  • a slit portion (for example, a slit portion A between the main body portion A1301a and the main body portion B1301b, a slit portion B between the main body portion B1301b and the main body portion C1301c, a slit portion C between the main body portion C1301c and the main body portion D1301d, etc. )
  • a slit portion (for example, a slit portion A between the main body portion A1301a and the main body portion B1301b, a slit portion B between the main body portion B1301b and the main body portion C1301c, a slit portion C between the main body portion C1301c and the main body portion D1301d, etc. )
  • the first original fabric roll 1305 and the second original fabric roll 1306 is an original fabric roll (for example, disposed on the end side in the width direction of the plurality of original fabric rolls).
  • the number of the plurality of original fabric rolls used for the first original fabric roll 1305 (four main body parts A1301a, B1301b, main body part C1301c, and main body part D1301d) and the second original material roll 1305 are used.
  • the number of the plurality of original fabric rolls used for the anti-roll 306 (four main body portions E1301e, F1301f, G1301g, and H1301h) is the same.
  • a plurality of original rolls used for the first original roll 1305 (a main part A 1301 a, a main part B 1301 b, a main part C 1301 c, a main part D 1301 d) and a plurality of original rolls used for the second original roll 1306.
  • the anti-rolls (main body part E1301e, main body part F1301f, main body part G1301g, main body part H1301h) are each shifted by a predetermined amount Xb (see FIG. 14) in the width direction and wound around the first original roll 1305.
  • the first (organic) fiber assembly 1K may be an organic fiber assembly or other fiber assembly (for example, an inorganic fiber assembly).
  • the first original fabric roll 1305 and the second original fabric roll 1306 are moved in the moving direction (winding direction) of the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H. ) In the front-rear direction, the up-down direction, or the oblique direction.
  • the widths of the plurality of original fabric rolls of the second original fabric roll 1306 corresponding to the plurality of original fabric rolls of the first original fabric roll 1305 are substantially equal and shifted by a predetermined amount Xb.
  • the individual original rolls for example, the main body A1301a constituting the first original roll 1305 and the second original rolls disposed behind (or below) the first original roll 1305.
  • the widths of the individual fabric rolls (for example, the main body E1301e) constituting 1306 are substantially equal.
  • the respective original rolls main body B1301b and main body F1301f, main body C1301c and main body G1301g, main body D1301d and main body H1301h
  • positioning with the 1st original fabric roll 1305 (upper roll) and the 2nd original fabric roll 1306 (lower roll) of a core material manufacturing apparatus is 1st.
  • the original fabric roll 1305 (upper roll) is behind (or above) the second original fabric roll 1306 (lower roll) with respect to the winding frame 1311 direction (the feeding direction of the continuous sheet-like fiber assembly 1J). It is arranged diagonally above. That is, it is arranged in the order of the second original fabric roll 1306 (lower roll) and the first original fabric roll 1305 (upper roll) in the direction of the winding frame 1311.
  • the first (organic) fiber assembly 1K wound around the first raw fabric roll 1305 (upper roll) is wound around the second original fabric roll 1306 (lower roll).
  • the (organic) fiber assembly 1H is disposed on the upper side.
  • the first (organic) fiber assembly 1K wound around the first original fabric roll 1305 (upper roll) is wound around the second original fabric roll 1306 (lower roll) because it is wound up by the winding frame 1311.
  • the second (organic) fiber assembly 1H is always wound up so as to be positioned on the radially outer side of the winding frame 1311.
  • the first raw roll so that the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H are wound on the winding frame 1311 in a state where they overlap each other. What is necessary is just to arrange
  • the original fabric roll (first original fabric roll 1305 (upper roll), second original fabric roll 1306 (lower side) Roll) etc.) is also easy to manufacture without requiring a place.
  • a predetermined width required for the product is large (for example, 1100 mm or 2000 mm)
  • an original roll first original roll 1305 (upper roll)
  • Production of the second original fabric roll 1306 (lower roll) or the like becomes difficult.
  • vacuum heat insulating materials 7 having different widths may be required. However, if a single raw roll is to be used, the required number of raw rolls are required.
  • a plurality of original fabric rolls are combined so as to be adjacent in the width direction and used as a combination roll (for example, a first original fabric roll 1305 and a second original fabric roll 1306).
  • a plurality of original rolls having different widths are adjacent to each other in the width direction and have one large width.
  • the width of each original fabric roll can be reduced, so that the original fabric roll (for example, the main body A1301a or the main body B1301b). Can be manufactured easily regardless of the manufacturing location.
  • a large width original roll is required, a plurality of small width original rolls are combined to form a single large roll (for example, the first original roll 1305 and the second original roll 1306).
  • the core material 5 and the vacuum heat insulating material 7 can be manufactured at low cost with a high degree of design freedom, regardless of the production location of the raw material roll, and the number of types of raw material rolls can be reduced. Can do. For example, a plurality of original rolls having different widths (main body A1301a, main body B1301b, etc.) are combined, or a plurality of small original rolls having substantially the same width (for example, one original roll having the same width, such as main body B1301b). It is good also as one large width original fabric roll combining.
  • a first original fabric roll 1305 (a combined original fabric roll composed of a plurality of original fabric rolls (for example, a main body A1301a, a main body B1301b, a main body C1301c, a main body D1301d) ( The first (organic) fiber assembly 1K wound around the upper roll) and a plurality of original fabric rolls (for example, main body E1301e, main body F1301f, main body G1301g, main body H1301h)
  • a predetermined amount Xb (for example, 5 mm to 40 mm) in the width direction (lateral direction) of the second (organic) fiber assembly 1H wound around the second original roll 1306 (lower roll) which is the original roll.
  • the reason for this is as follows.
  • a plurality of original fabric rolls (main body portion A1301a, main body portion B1301b, main body portion C1301c, main body portion D1301d) constituting the first original fabric roll 1305 are adjacent to each other in the width direction (for example, The connection part of the main body part A1301a and the main body part B1301b, etc. actually has a slight gap, but even if it is in contact with no gap, there is a slit part (for example, between the main body part A and the main body part B).
  • the slit portions Since there is a slit portion A) between them, they are not continuous, so if a plurality of sheets are stacked without shifting by a predetermined amount Xb, the slit portions (connecting portions, adjacent portions) will be approximately at the same position, so they will be divided at the slit portion. Become so. That is, since the slit portion (connecting portion, adjacent portion) is not continuous, the required bending strength as the core material 5 is not obtained because the slit portion is broken or torn, and the slit portion (adjacent portion) is not continuous. Since it is not cut, it is separated from the outer packaging material 4 so that the core material 5 having a required width cannot be obtained, and the performance as the vacuum heat insulating material 7 cannot be obtained.
  • the second original roll 1306 (lower roll) is shifted with respect to the first original roll 1305 (upper roll) so as to wrap by a predetermined amount Xb, a plurality of layers are laminated. It is possible to obtain a core material 5 having a required predetermined size having necessary heat insulation performance without being separated or divided at the slit portion (adjacent portion) due to friction of a portion shifted by a predetermined amount Xb. it can.
  • the vacuum heat insulating material 7 across wall surfaces bent at a predetermined angle (for example, approximately 90 degrees) such as a back wall and an upper surface wall. 7 is necessary, and it is necessary to bend, so a large manufacturing facility for manufacturing the raw roll material is required, so that the manufacturing place is limited or difficult to manufacture, and special processing for bending is required. Therefore, it was difficult to cope with the cost increase.
  • the vacuum heat insulating material 7 of the present embodiment it is possible to use a plurality of original fabric rolls adjacent to each other in the width direction as a single large original fabric roll, and in addition, a slit portion (adjacent portion) is required to be bent.
  • the width of the roll can be freely selected by combining the rolls with a small width, no special processing for bending is required, and the roll with a small width Since the core material 5 having a large width can be manufactured by combining a plurality of the above, it is possible to dispose the vacuum heat insulating material 7 across the wall surfaces bent at a predetermined angle such as a refrigerator which has been difficult in the past.
  • Both end portions in the width direction of the raw roll material before cutting both ends in the width direction are referred to as ears, and the thickness required for the fibers of the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J. Since there is not enough thickness, the thickness varies, and the edges of the width direction end face are not aligned. Therefore, when using as a raw roll, the raw roll material should be cut in the required width in advance on both sides. Used as an anti-roll. Therefore, the ear raw rolls obtained by cutting the ears at both side portions in the width direction from the raw roll material have been discarded in the past because the strength is weak and the end faces (ridge lines) are not aligned.
  • the ear raw roll 1305 (which corresponds to the main body A1301a and the main body D1301d in the present embodiment, for example), which has been discarded in the past, is shown in FIG.
  • the second raw roll 1306 is used for a raw roll (for example, a main body A1301a or a main body D1301d) used on both sides in the width direction among the plurality of original rolls constituting the first raw roll 1306. Since the roll 1305 and the second material roll 1306 are shifted by a predetermined amount Xb and stacked in a plurality of layers, the ears and the parts that are not the ears are alternately stacked, and the positions of the ears are shifted. The ear part and the ear part are not laminated continuously. Therefore, the strength required for the core material 5 can be obtained even if the ear part roll is used.
  • the first raw roll 1305 is arranged so that the main body A1301a, the main body B1301b, the main body C1301c, and the main body D1301d are sequentially adjacent in the width direction.
  • the widths of the individual original rolls of the second original roll 1306 may be determined. That is, the width of the main body A1301a, the main body B1301b, the main body C1301c, and the main body D1301d (the width of the main body E1301e, the main body F1301f, the main body G1301g, and the main body H1301h) may be selected. At this time, the widths T1, T2, T3, and T4 may be the same or different.
  • the widths of a plurality of original fabric rolls (for example, main body A1301a, main body B1301b, main body C1301c, main body D1301d, main body E1301e, main body F1301f, main body G1301g, main body H1301h) can be appropriately selected individually. Therefore, the degree of freedom in design increases, and low-cost core material 5, vacuum heat insulating material 7, and equipment such as a refrigerator can be obtained. Further, since the core material 5 is manufactured by shifting the first original roll 1305 and the second original roll 1306 by a predetermined amount Xb and winding them around the winding frame 1311, it is easy to bend at the slit portion and can be bent.
  • the heat insulating material 7 can be easily manufactured without requiring special processing or the like, and can be easily installed on a heat insulating wall of a device such as a refrigerator having a heat insulating wall that is bent at a predetermined angle. It is possible to increase the coverage ratio of the material, and it is possible to obtain a vacuum insulator and equipment having high performance and low cost.
  • the first (organic) fiber assembly 1K (first) from the first raw fabric roll 1305 (upper roll) is obtained.
  • the fiber assemblies 1Ha to 1hd, the lower organic fiber assembly) are wound around the winding frame 1311 while being shifted by a predetermined amount Xb.
  • the first (organic) fiber assembly 1 ⁇ / b> K and the second (organic) fiber assembly 1 ⁇ / b> H in a cross section perpendicular to the winding direction in the state of being wound on the winding frame 1311 are as shown in FIG. 14.
  • the layers are alternately stacked while being shifted by a predetermined amount Xb, and are continuously wound from the inside toward the outside.
  • the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H are shifted by a predetermined amount Xb, the first (organic) fiber assembly 1K (upper organic fiber assembly) ) Of the first slit portion 57 (upper slit portion) and the second slit portion 58 (lower slit portion) of the second (organic) fiber assembly 1H (lower organic fiber assembly) are shifted.
  • the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H overlap each other by the amount of Xb.
  • the fiber assembly 1K and the second (organic) fiber assembly 1H are difficult to separate.
  • the core material 5 in which a plurality of organic fiber aggregates 1 (continuous sheet-like fiber aggregates 1J, first (organic) fiber aggregates 1K, and second (organic) fiber aggregates 1H) are laminated,
  • a thickness t in the evacuated state becomes thicker, it becomes more difficult to bend.
  • two slit portions (first slit portions) are separated by a predetermined amount Xb. 57, the second slit portion 58) exists, and it is easy even if the thickness is increased by bending the two slit portions (first slit portion 57, second slit portion 58) in two stages. It becomes possible to bend (to obtain a predetermined bending angle).
  • the lap allowance Xb is determined according to the thickness of the core material 5. That is, when the thickness of the core material 5 is small, the predetermined amount Xb may be small. However, if the thickness of the core material 5 is increased, it becomes difficult to bend, so the predetermined amount Xb is appropriately increased. Here, if the predetermined amount Xb is too small, the overlapping length (lapping margin) is shortened and frictional force cannot be obtained, and the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H are In this embodiment, the wrap margin Xb is set to 7 mm or more (preferably 10 mm or more).
  • the lapping margin When the lapping margin is 5 mm, the necessary frictional force cannot be obtained because the lapping margin is short, and the individual organic fiber assemblies of the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1H
  • the cores (first (organic) fiber aggregates 1Ka to 1Kd, second (organic) fiber aggregates 1Ha to 1Hd) were separated from the slits, and the core material 5 having a predetermined width was not obtained.
  • the lapping allowance Xb is 10 mm or more, a frictional force can be stably obtained even when an ear is used as the lapping portion, and a decrease in thermal conductivity can be suppressed to a small level.
  • the wrap allowance Xb is too large relative to the thickness of the vacuum heat insulating material 7.
  • the thickness is preferably about three times or less of the thickness (for example, when the thickness t of the vacuum heat insulating material is 10 mm, the lapping allowance Xb is preferably about 30 mm or less).
  • FIG. 15 is a diagram showing the first embodiment, and is a perspective view of the core material 550 when the core material 550 is manufactured by winding around a winding frame using a combination original fabric roll in which three original fabric rolls are combined.
  • the core material 550 is a first (organic) fiber assembly 1K (from the first raw fabric roll 1305 (upper roll)) in the same manner as the core material 5 shown in FIGS.
  • the first (organic) fiber assembly 1Ka, 1Kb, 1Kd) (upper organic fiber assembly) and the second (organic) fiber assembly 1H (first) from the second raw fabric roll 1306 (lower roll) 2 (organic) fiber aggregates 1Ha, 1Hb, 1Hd) (lower organic fiber aggregates) are wound around the reel 1311 while being shifted by a predetermined amount Xb and continuously wound from the inside toward the outside. Are stacked. Then, two places are clamped by the two clamp members 1320 and bent at the clamped portion, and the flat core material 550 is manufactured. However, in FIG. 15, the reference numerals other than those shown in FIG. The vacuum heat insulating material 702 (not shown) is manufactured using the core material 550.
  • the core member 550 is composed of two bent portions 551f (folded end portions) bent (folded) by the clamp member 1320 and a flat plate portion 551g (smooth portion) provided between the two bent portions 551f. Composed. Further, the adjacent portions of the first (organic) fiber assemblies 1Ka, 1Kb, and 1Kd of the first (organic) fiber assembly 1K (upper organic fiber assembly) are the first slits shown in FIG. Portion 57 (upper slit portion), and adjacent portions of the second (organic) fiber assemblies 1Ha, 1Hb, 1Hd of the second (organic) fiber assembly 1H (lower organic fiber assembly), It is the 2nd slit part 58 (lower side slit part). The distance (length) in the width direction between the first slit portion 57 and the second slit portion 58 corresponds to the shift amount Xb. Therefore, the first slit portion 57 and the second slit portion 58 can be easily bent.
  • the winding end portion 551Je is disposed on the flat plate portion 551g in FIG. 15, but is desirably disposed in the vicinity of the bent portion 551f. If the winding end portion 551Je is disposed on the flat plate portion 551g, a step is likely to occur in the flat plate portion 551g, which is not preferable. Further, when the core member 551 is formed in a flat plate shape by the clamp member 1320, the winding end end portion 551Je is separated from the position of the clamp member 1320. Therefore, the length between the position of the clamp member 1320 and the winding end end portion 551Je is long. Become.
  • the winding end portion 551Je is cut so as to be in the vicinity of the bent portion 551f that can be clamped by the clamp member 1320. It is preferable to cut the clamp member 1320 after clamping (preferably immediately after), and it is preferable to cut the flat plate portion 551g in the vicinity of the bent portion 551f. The risk of bending and bending is reduced, and the flat plate portion 551g is unlikely to have a step, the step does not get caught, and the appearance is good.
  • FIG. 16 is a diagram illustrating the first embodiment, and is a diagram for explaining a configuration of another combination original fabric roll.
  • the main body B1301b and the main body D1301d it is also possible to use an ear raw roll whose one side is an ear for the original roll (the main body A11301a and the main body D1301d1) on both sides in the width direction.
  • the ears of the ear part original fabric roll may be arranged so as to face the main body part B11301b side which is the main part raw material roll which is a raw material roll having no ear part arranged in the center.
  • a first original fabric roll 1305 (upper roll) that is a combined original fabric roll is composed of a main body A1301a, a main body B1301b, and a main body D1301d, and the main body A1301a, the main body B1301b, and the main body D1301d. They are arranged in the width direction so as to be adjacent in order. That is, a body part B1301b which is a body part original fabric roll which does not have an ear part, and a body part A1301a and body part D1301d which are ear part raw fabric rolls which have ear parts on both sides are arranged at the center in the width direction.
  • edge part original fabric roll is arrange
  • the second original roll 1306 (lower roll) that is a combined original roll has the same configuration as the first original roll 1305 (upper roll). That is, a body part F1301f which is a body part raw fabric roll having no ear part, a body part E1301e which is an ear part raw fabric roll having ear parts on both sides thereof, and a body part H1301h are arranged at the center in the width direction.
  • edge part original fabric roll is arrange
  • the core material 550 is also formed by the raw roll shown in FIG. 16, and the vacuum heat insulating material 702 is manufactured using the core material 550.
  • edge part original fabric roll is not arrange
  • the core material 550 is formed by being wound around the winding frame 1311, a cut surface is formed on both sides in the width direction instead of the ears, so both sides in the width direction of the core material 550 are cut. There is no need, and a low-cost vacuum heat insulating material 702 is obtained.
  • main body original fabric roll main body portion B1301b
  • ear main body A1301a, main body D1301d ear main body A1301a, main body D1301d
  • one of the ear parts of the ear part fabric roll (main body part A1301a, main body part D1301d) is arranged so as to be adjacent to the central part raw material roll (main body part B1301b) side. May be.
  • the ear roll may be arranged so that the ear is only on one side of the combined original roll. In this case, the ear roll is arranged on both sides of the combined original roll.
  • a low-cost vacuum heat insulating material 702 can be obtained.
  • the fiber of the ear part exists in the required thickness and the thickness variation is small, or the end face position ( The edge of the width direction end face is small even if it is used on the width direction end side of the original roll when combined with the ear roll, as long as the variation in the ridgeline is small and there is no problem in heat insulation performance and manufacturing of the core material 550 and the vacuum heat insulating material 702 There is no need to cut.
  • the first combination fiber assembly IJ is the first.
  • (Organic) fiber assembly 1K for example, first (organic) fiber assembly 1Ka to 1Kd
  • second (organic) fiber assembly 1H for example, second (organic) fiber assembly 1Ha to 1Hd
  • at least one of the plurality of fiber assemblies for example, the first (organic) fiber assemblies 1Ka to 1Kd and the second (organic) fiber assemblies 1Ha to 1Hd
  • Ear fiber assemblies having ears that are not aligned on the width direction end side (for example, fiber assemblies wound around the main body part A1301a or the main body part D1301da that are the rolls of the ear part) ) It can be used to ease. Therefore, without cutting the ear fiber assembly (fiber assembly wound around the ear raw fabric roll) having the ear portion that has been discarded conventionally, the ear raw fabric roll can be used as it is, There is no waste. Therefore, the low-cost core material 550 and the vacuum heat insulating material 702 are obtained.
  • FIG. 17 shows the first embodiment and is a perspective view showing a state in which the vacuum heat insulating material 750 is bent.
  • 17A is a perspective view of a state in which the vacuum heat insulating material 750 is bent
  • FIG. 17B is an enlarged view of a main part of a bent portion of the vacuum heat insulating material 750.
  • the vacuum heat insulating material 750 is sealed in a state where the core material 550 is inserted into the outer packaging material 4 having gas barrier properties and the inside is decompressed.
  • the vacuum heat insulating material 750 is bent in two stages at the first slit portion 57 and the second slit portion 58 of the core material 550 to form a bent portion 59.
  • the bent portion 59 is bent with the width of the lapping allowance Xb.
  • the width of the lapping allowance Xb corresponds to the distance (length) between the first slit portion 57 and the second slit portion 58, and is substantially the same length.
  • the vacuum heat insulating material 750 has the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J shifted in the width direction by a lap allowance Xb and stacked in plural, so that the wrap allowance Xb is shifted. Accordingly, when the first slit portion 57 and the second slit portion 58 are inserted into the outer packaging material 4 and decompressed, the outer packaging material 4 is dented by the first slit portion 57 and the second slit portion 58, respectively. Portions 751 and 752 are formed. In addition, a substantially trapezoidal protruding portion 753 is formed so that the two first slit portions 57 and the second slit portion 58 protrude between the two recessed portions 751 and 752 respectively.
  • the bent portion 59 is formed so that the two first slit portions 57 and the second slit portion 58 are recessed in the recessed portions 751 and 752 and between the two recessed portions 751 and 752.
  • the trapezoidal protrusion 753 can be easily bent by using the slope of the substantially trapezoidal protrusion 753 with the recesses 751 and 752 as a base point. Further, the concave portions 751 and 752 of the first slit portion 57 and the second slit portion 58 and the trapezoidal protrusion 753 formed between the concave portions 751 and 752 are in the thickness direction of the vacuum heat insulating material 750.
  • the first slit portion 57 and the second slit portion 58 formed on both sides of the sheet surface can be easily bent. Therefore, even if it is bent, the outer packaging material 4 is not torn or damaged, so that the heat insulation performance does not deteriorate. Therefore, the reliability is high, the deterioration of the heat insulation performance can be suppressed, and bending can be performed regardless of the thickness.
  • a vacuum heat insulating material with a high degree of freedom of installation is obtained.
  • the vacuum heat insulating material 750 provided with the bent portion 59 constituted by the substantially trapezoidal shaped protruding portion 753, the bending confirmation was performed at the thickness t of 5 mm, 7 mm, 10 mm, and 30 mm, but there was no problem.
  • the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J are overlapped (in FIG. 12, the first (organic) fiber assembly 1K and the second (organic) fiber assembly 1K).
  • 2 pieces of the body 1H since there are two slit portions with respect to one bent portion 59, the recessed portions 751 and 752 are also two and difficult to bend. It is better to have three or more slits with respect to the part 59 and three or more recesses due to the slits.
  • a plurality of organic fiber assemblies 1 and a plurality of continuous sheet-like fiber assemblies 1J are overlapped and shifted in the width direction by a predetermined length (wrap margin Xb) as in the present embodiment.
  • the number of slits per one bent portion is also equal to the number of the stacked organic fiber assemblies 1 and the continuous sheet-like fiber assemblies 1J (a plurality For example, when three sheets are shifted and overlapped, there can be three slits for one bent portion, so even if the vacuum heat insulating material 750 is thick, slit portions (for example, provided on both sides of the sheet surface)
  • the concave portions 751 and 752 formed by the first slit portion 57 and the second slit portion 58) can be easily folded to both sides of the sheet surface from the folding portion 59.
  • FIG. 18 shows the first embodiment, and is a view of the vacuum heat insulating material 750 as seen from the width direction.
  • the vacuum heat insulating material 750 has a predetermined thickness portion 750c having a predetermined thickness t, and a thickness that is about 1 ⁇ 2 of the predetermined thickness t, and is provided on both sides of the predetermined thickness portion 750c in the width direction. It has thin portions 750a and 750b.
  • the wrap margin Xb is preferably about 7 mm or more and about 30 mm or less when the vacuum heat insulating material 750 is bent and used.
  • the wrap allowance Xb is 7 mm or more, preferably 10 mm or more, and the wrap allowance Xb can be increased.
  • the lapping allowance Xb is preferably about 30 mm or less.
  • the wrap margin Xb is also affected by the thickness t of the vacuum heat insulating material 750, it is preferably about 1 to 5 times (preferably 3 times or less) the predetermined thickness t of the vacuum heat insulating material 750.
  • the predetermined amount Xb is set to 7 mm or more to prevent the core material 550 from being separated, and the predetermined amount Xb is less than about three times the thickness t of the core material 550 in a substantially vacuum state in the outer packaging material 4.
  • the bendability is good, and the width of both ends in the width direction of the core material 550 is reduced to suppress the deterioration of the heat insulating performance.
  • the range of the lapping allowance Xb is set by the thickness of the core material 550 at the time of decompression, reliability (the core material 550 is not separated or separated at the slit portion) can be obtained, and it is easy to bend and has a heat insulation performance.
  • Good core material 550 and vacuum heat insulating material 750 are obtained.
  • the example in which the two slit portions (the first slit portion 57 and the second slit portion 58) are bent in two stages has been shown. If a plurality of combined original fabric rolls are overlapped with a predetermined amount Xb and wound on a reel, a plurality of slit portions exist, so that a plurality of slit portions are present. Since the bending angle at one slit portion can be reduced, it is possible to easily bend the core material 550 and the outer packaging material 4 at a predetermined angle without applying an excessive force when the core material 550 or the outer packaging material 4 is bent.
  • the bent portion 59 can be bent at an acute angle and can be applied as a heat insulating material for any device. Accordingly, it is possible to insulate piping such as a condensation pipe of equipment such as a refrigerator and an air conditioner.
  • the vacuum heat insulating material of this embodiment is excellent in bending workability, it can be bent and deformed along the shape of the pipe even if heat insulation is performed by sandwiching a pipe such as a condensation pipe between the vacuum heat insulating material and the vacuum heat insulating material. The heat leakage from the gap between the vacuum heat insulating material and the pipe can be suppressed, and the heat insulation performance can be prevented from being lowered.
  • a plurality of continuous sheet-like organic fiber assemblies 1 in the length direction and a plurality of continuous sheet-like fiber assemblies 1J are arranged adjacent to each other in the width direction.
  • the first (organic) fiber assembly 1K and the sheet-like organic fiber assembly that is provided so as to overlap the first (organic) fiber assembly 1K in the vertical direction, the front-rear direction, or the left-right direction. 1.
  • a second (organic) fiber assembly 1H in which a plurality of continuous sheet-like fiber assemblies 1J are arranged adjacent to each other in the width direction, a first (organic) fiber assembly 1K, and a second (organic) fiber
  • 5,550 and core material 5,550 are housed inside.
  • the width of the core materials 5 and 550 can be freely set without being limited by the width of the fiber assembly 1J, the degree of freedom in designing the core materials 5 and 550 and the vacuum heat insulating materials 7, 702 and 750 is increased.
  • the degree of freedom in designing the core materials 5 and 550 and the vacuum heat insulating materials 7, 702 and 750 is increased.
  • the core materials 5 and 550 can be easily manufactured in a short time with a simple facility that simply winds the sheet-like fiber assembly 1J in which the core materials 5 and 550 are continuously manufactured.
  • the width of the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J can be appropriately selected so that the slit portion (adjacent portion) can be disposed at a site that needs to be bent,
  • the bent portion 59 is formed on both the front and back surfaces with respect to the sheet surface, it can be easily bent in both the front and back directions with respect to the sheet surface using the first slit portion 57 and the second slit portion 58. It becomes.
  • connection between adjacent fiber assemblies 1J (main body A1301a, main body B1301b, main body C1301c, main body D1301d) of the first (organic) fiber assembly 1K or the second (organic) fiber assembly 1H. Since it is possible to bend at the portion, there is no need to separately process a concave portion for bending, and the first slit portion 57 and the second slit portion 58 are formed in the process of manufacturing the core material 550. The portions 751 and 752 can be easily bent.
  • the recessed parts 751 and 752 formed by the 1st slit part 57 and the 2nd slit part 58 can be made into the both sides (front and back of a sheet
  • the first slit portion 57 and the second slit portion 58 are formed on both sides of the sheet surface, so that it can be easily bent as compared with the case where it is formed on one side. Therefore, the core material 550 and the outer packaging material 4 are not torn or damaged at the time of bending, and it is possible to suppress a decrease in heat insulation performance.
  • the wrap allowance Xb is 7 mm or more and 3 times or less the thickness t of the core material 5 in a substantially vacuum state in the outer packaging material 4, the wrap allowance Xb is 7 mm or more. It is possible to suppress the separation, and it is also possible to prevent the heat insulation performance from decreasing and the heat insulation performance from being lowered. Further, since the wrap margin Xb is set to be not more than three times the thickness t of the core material 5 in a substantially vacuum state in the outer packaging material 4, the bendability at the bent portion 59 can be improved. Therefore, it can be easily applied as a heat insulating material for a device having two wall surfaces that are continuous at a predetermined angle, such as a refrigerator, and a decrease in heat insulating performance can be suppressed.
  • a plurality of fiber assemblies 1J (for example, first (organic) fiber assemblies 1Ka to 1Kd, second, which constitute the first (organic) fiber assembly 1K or the second (organic) fiber assembly 1H.
  • first (organic) fiber assemblies 1Ka to 1Kd second, which constitute the first (organic) fiber assembly 1K or the second (organic) fiber assembly 1H.
  • an ear fiber assembly having an ear portion (not a cut surface) whose ridge line is not aligned on the width direction end side in at least one of the (organic) fiber assemblies 1Ha to 1Hd) Can use the ear fiber assembly (fiber assembly wound around the ear raw roll) having the discarded ear part, and the material is not wasted. Therefore, the low-cost core material 5,550 and the vacuum heat insulating materials 7,702,750 are obtained.
  • the refrigerator and the apparatus to which the vacuum heat insulating material of the present embodiment is applied include a vacuum heat insulating material between adjacent fiber assemblies of the first (organic) fiber assembly 1K or the second (organic) fiber assembly 1H. Since it is arranged to be bent at a predetermined angle (for example, approximately 90 degrees) at the connecting portion (slit portion) and disposed on at least two continuous wall surfaces of the heat insulating box having the top surface, both side surfaces, the back surface, and the bottom surface, a conventional vacuum Since it was difficult to bend the heat insulating material at a necessary predetermined angle, it was difficult to apply the heat insulating material to two continuous wall surfaces.
  • a predetermined angle for example, approximately 90 degrees
  • the vacuum heat insulating material 750 of the present embodiment can be easily bent at a necessary place. Therefore, it can be applied to two continuous wall surfaces having a predetermined angle. Therefore, since the vacuum heat insulating material can be continuously arranged at the corner between two continuous wall surfaces having a predetermined angle, the vacuum heat insulation with respect to the outer surface area of the box (outer box) excluding the door of a device such as a refrigerator. The coverage of the material can be greatly improved. For example, in the case of a refrigerator, a coverage of 80% or more with respect to the outer box surface area, which has been difficult in the past, is possible.
  • the sheet-like fiber assembly 1 is cut into a predetermined size and laminated to form a core material 5 to produce the vacuum heat insulating material 7, or a plurality of sheet-like fiber assemblies 1 are laminated.
  • the end face 5a is cut and formed into a predetermined size to form the core material 5 to manufacture the vacuum heat insulating material 7 (core material manufacturing method 1), or a continuous sheet-like fiber assembly 1J ( For example, a method of manufacturing the core material 5 by continuously winding the organic fiber aggregate) into a coil shape (core material manufacturing method 2), or combining a plurality of raw fabric rolls in the width direction has one large width.
  • a plurality of original fabric rolls are arranged in the width direction and a first original fabric roll (upper original fabric roll) 1305 which is a combined original fabric roll having one predetermined width, and a plurality of original fabric rolls
  • a plurality of original fabric rolls arranged in the width direction and used as a second original fabric roll (lower original fabric roll) 1306, which is a combined original fabric roll having one predetermined width, and at least one by one, the first original fabric roll 1305 of the fiber assembly 1K and the fiber assembly 1H of the second raw fabric roll 1306 are overlapped in a substantially right angle direction (radial direction of the winding frame 1311) with respect to the sheet surface and wound around the winding frame 1311 to wrap the core material 5.
  • a third original roll 1307 that is a single original roll having a first predetermined width is used instead of the second original roll 1306 that is a combined original roll. Use Case will be described.
  • a first sheet having a first predetermined width obtained by continuously winding a continuous sheet-like fiber assembly 1, 1 J (for example, an organic fiber assembly) having a predetermined width in at least one original fabric roll in a coil shape.
  • the fiber assemblies 1 and 1J of the 3 original fabric rolls 1307 and a continuous sheet-like fiber assembly having a width smaller than the first predetermined width are combined in the width direction to obtain a first predetermined width.
  • the first original fabric roll 1305 is wound around the third original fabric roll 1307 in a state where the fiber assembly 1K of the first original fabric roll 1305, which is a combined original fabric roll, is superimposed on the sheet surface in a substantially perpendicular direction.
  • a method for manufacturing the core member 560 by winding the frame 1311 so as to be on the outer side in the radial direction will be described with reference to FIGS.
  • FIG. 20 shows a combination of at least one original fabric roll 1307 having a first predetermined width and an original fabric roll having a width smaller than the first predetermined width in the width direction so as to be substantially equal to the first predetermined width.
  • FIG. 9 is a schematic diagram of a winding device when winding around a winding frame 1311 using at least one combination original fabric roll 1305, and is a diagram illustrating another core material manufacturing method of the present embodiment.
  • FIG. 21 is a perspective view of a core material manufactured by winding on a reel using at least one original fabric roll 1307 having a predetermined width and at least one combined original fabric roll.
  • FIG. 22 is a cross-sectional view of a core material manufactured by winding on a reel using at least one original roll having a predetermined width and at least one combined original roll, and FIG. 23 shows at least one predetermined width. It is a perspective view of the vacuum heat insulating material using the core material manufactured by winding and winding on the winding frame using the original fabric roll which has, and at least 1 combination original fabric roll.
  • Coil a sheet-like fiber assembly 1, 1J (for example, an organic fiber assembly) in which at least one of the plurality of original fabric rolls is continuous in the length direction having the first predetermined width.
  • a first raw roll 1307 having a first predetermined width wound in a shape and a fiber assembly continuous in a length direction having a second predetermined width smaller than the first predetermined width are the first predetermined At least one combined original fabric roll (for example, a combination of only two original fabric rolls having a second predetermined width that is smaller than the first predetermined width) or a second
  • a first raw roll 1305 that is a combination of a raw roll with a predetermined width and a third raw roll with a width smaller than the second predetermined width, or a combination with an ear original roll.
  • the first original fabric roll 1301 is equivalent to the first original fabric roll 1305 (or the second original fabric roll 1306) explained in FIG. Is omitted, but a plurality of substantially cylindrical (or coiled) raw rolls (for example, a main body A1301a, a main body B1301b, a main body C1301c, and a main body) wound by approximately the same number of windings (same number of layers).
  • D1301d) is a first combination that has a gap in the width direction (may be arranged adjacent to each other so as to be a minute gap, may be arranged without a gap, or may be arranged via a spacer so as to provide a predetermined gap). It is formed to have a width substantially equal to the predetermined width.
  • the third original fabric roll 1307 includes a substantially cylindrical original fabric roll 1301 having a predetermined width around which the fiber assemblies 1 and 1J having a predetermined width and having a predetermined width described in FIGS. 6 to 9 are wound.
  • the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the third original fabric roll 1307 has a first predetermined width and is formed such that the fiber assemblies 1 and 1J continuous in the length direction are continuously wound in a coil shape and have the first predetermined width.
  • the fiber aggregates 1 and 1J wound around the third raw fabric roll 1307 are continuous in the width direction and set to the same dimensions as the width H of the core material 560.
  • the third original fabric roll 1307 may be manufactured by winding the first fiber assembly 1 and 1J having a predetermined width, or a fiber assembly having a width larger than the first predetermined width. You may manufacture by cutting a width direction so that a width dimension may turn into a 1st predetermined width after winding in a substantially cylindrical shape.
  • the plurality of substantially cylindrical (or coil-shaped) original fabric rolls (for example, the main body portion A1301a, the main body portion B1301b, the main body portion C1301c, and the main body portion D1301d) of the first original fabric roll 1305 have the same width. Or different widths. Moreover, the ear
  • the first original fabric roll 1305 has the same structure as the first original fabric roll 1301, and is arranged in the width direction so that a plurality of original fabric rolls (for example, a plurality of main body portions) are adjacent to each other. Because of the combined original fabric roll, there is a minute gap or a predetermined gap between adjacent main body parts (for example, between the main body part A (1301a) and the main body part B (1301b)).
  • the slit portions (for example, the slit portion A between the main body portion A1301a and the main body portion B1301b, the slit portion B between the main body portion B1301b and the main body portion C1301c, the main body portion C1301c and the main body portion D1301d) are not continuous. There is a slit portion C between them.
  • the third original roll 1307 is a predetermined width of the original roll material applied to the original roll (for example, the main body A1301a or the main body D1301d) arranged on the end side in the width direction among the plurality of original rolls.
  • An ear part raw roll having an ear part that is not aligned with the ridge line generated when it is cut into two pieces may be used.
  • a single raw roll (for example, a third roll) having a first predetermined width and a width substantially equal to at least one first predetermined width around which a sheet-like fiber assembly continuous in the length direction is wound.
  • a plurality of sheet-like fiber assemblies having a width smaller than the first predetermined width and the original fabric roll 1307 are continuously arranged in the length direction so as to have a width substantially equal to the first predetermined width.
  • a plurality of combined original fabric rolls (for example, a first original fabric roll 1305) combined in the width direction as described above, and a fiber assembly 1 of a single original fabric roll 1307 having a first predetermined width, 1J and the fiber assembly 1K of the combination fabric roll 1305 are stacked so that the fiber assembly 1 and 1J of the single fabric roll 1307 are radially inward of the winding frame 1311 in a direction substantially perpendicular to the sheet surface.
  • the wound into the core material 560 is formed.
  • the core material 560 can be easily manufactured simply by stacking and winding the continuous fiber aggregates 1, 1 ⁇ / b> J, and 1 ⁇ / b> K in a substantially right angle direction on the sheet surface. Can be used effectively, and the core material 560 and the vacuum heat insulating material 760 that do not waste at low cost can be obtained.
  • the first fiber assembly and the third fiber assembly are overlapped in the direction substantially perpendicular to the sheet surface of the first fiber assembly 1K or the third fiber assembly 1, 1J from the inside to the outside.
  • each original fabric roll of the 1st original fabric roll 1305 which is a combination original fabric roll (For example, between main-body part A and main-body part B, between main-body part B and main-body part C, main-body part C, and A spacer having a predetermined width is provided between the main body portion D and the like, and between the individual fiber assemblies of the fiber assembly 1K of the first raw fabric roll 1305 (for example, between the fiber assemblies 1Ka and 1Kb, 1 Kb and Since a predetermined clearance corresponding to the width of the spacer is set between 1 Kc and between 1 Kc and 1 Kd), a recess having a substantially predetermined width is formed in the vacuum heat insulating material 560, and piping is provided in this recess. It is possible to embed or position the pipe, to reduce the heat insulation time of the pipe and the work time for installing the pipe, and to obtain a highly efficient and low cost vacuum heat insulating material and equipment.
  • the first (organic) fiber assembly 1K (first (organic) fiber assembly 1Ka, 1Kb, 1Kc, 1Kd) of the first roll roll 1305 which is a combination roll
  • the third fiber aggregates 1 and 1J of the third original fabric roll 1307 are stacked in a substantially perpendicular direction to the sheet surface and wound on the winding frame 1311
  • the first ( (Organic) fiber assembly 1K (first (organic) fiber assembly 1Ka, 1Kb, 1Kc, 1Kd) with respect to the rotating shaft 1315 of the reel 1311 rather than the fiber assembly 1, 1J of the third original fabric roll 1307 It is better to overlap so that it is radially outward.
  • a sheet-like third fiber assembly 1, 1J continuous to the winding frame 1311 and a sheet-like first (organic) fiber assembly 1K first (organic)
  • the fiber assemblies 1Ka, 1Kb, 1Kc, and 1Kd) are wound around the winding frame 1311 in a substantially cylindrical shape (coiled shape) with a predetermined tension, and the substantially cylindrical fiber assemblies 1, 1J are formed by the clamp member 1320.
  • the fourth fiber assembly having the first predetermined width without any breaks in the width direction is made adjacent to the plurality of fiber assemblies in the width direction.
  • the third fiber assembly is placed on the innermost peripheral side of the substantially cylindrical fiber assembly rather than the first fiber assembly in which there are cuts and gaps in the width direction.
  • Radial direction of the reel 1311 rather than the assembly
  • the winding is performed in a state where the third fiber assembly is overlapped with the first fiber assembly. Since the frame 1311 is wound from the inner side toward the outer side, when the substantially cylindrical fiber assembly wound around the winding frame 1311 is extracted from the winding frame 1311, it has a first predetermined width, and the width direction Since the third fiber assemblies 1, 1J that are continuous to each other are arranged at the innermost side of the substantially cylindrical fiber assembly, the fiber assemblies arranged at the innermost side are continuous in the width direction.
  • the fiber assembly is scattered and disturbed.
  • the reel 131 Preparation of extraction tends core 560 does not caught on can be shortened is easy and workability improves production time. Further, the quality of the core material 560 manufactured by forming the substantially cylindrical fiber assemblies 1, 1J, 1K extracted from the winding frame 1311 into a flat plate shape is stabilized.
  • the width of the plurality of original rolls used for the first original roll 1305 and the number to be used are the first. May be appropriately set so as to be substantially equal to the first predetermined width of the fiber assemblies 1 and 1J of the third raw fabric roll 1307 having the predetermined width, but the first when a plurality of them are arranged in the width direction.
  • the width of the original roll 1305 (the total width including the gaps between the plural original rolls and the original roll) is set to be slightly smaller than the first predetermined width of the third original roll 1305 Is the fiber assembly 1K wound around the first original fabric roll 1305 and the fiber assemblies 1 and 1J wound around the third original fabric roll 1307. It is sea than fiber aggregate 1, 1J of raw fabric roll Is better wound on the reel 1311 superimposed so as to be substantially perpendicular outer, easy winding less likely to break apart the individual fiber aggregate even when wound on the winding 1311 with respect to the surface.
  • first original roll 1305 and the third original roll 1307 are each made of a reel 1K of the first original roll 1305 than the fiber aggregates 1 and 1J of the third original roll 1307.
  • the sheet is wound up so as to be outside in the direction substantially perpendicular to the sheet surface, but the manufacturing method of the vacuum heat insulating material 560 is the same as FIG. 9.
  • at least two original rolls for example, the first roll shown in FIGS. 12 to 18 stacked in a direction substantially perpendicular to the sheet surface.
  • the single original fabric roll for example, the third original fabric roll 1307) and the first in the at least one width direction in which the fiber assembly having the first predetermined width and continuous in the length direction are wound.
  • the width is such that a plurality of raw rolls each having a width smaller than a predetermined width of 1 and wound with continuous fiber assemblies are arranged in the width direction to have a width substantially equal to the first predetermined width.
  • a plurality of combined original fabric rolls for example, a first original fabric roll 1305) combined in a plurality of directions, and an end material such as an ear portion original fabric roll is provided on the first original fabric roll which is a combined original fabric roll. Since it can be used, it is no longer necessary to dispose of scraps that have been disposed of in the past, and a core material and a vacuum heat insulating material can be produced efficiently at low cost.
  • a plurality of fiber assemblies 1K of a single original fabric roll 1307 and a combination original fabric roll 1305 are overlapped in a direction substantially perpendicular to the sheet surface, and a predetermined cylindrical winding frame 1311 is predetermined.
  • the core material 560 is manufactured by winding the fiber assembly from the inside to the outside with the tension of, and then clamping the substantially cylindrical fiber assembly with the clamp member 1320 and then removing the tension from the winding frame 1311.
  • the core material can be easily manufactured with simple equipment.
  • FIG. 21 shows a perspective view of the core material 560 manufactured as described above.
  • the first (organic) fiber assembly 1K for example, the first (organic) fiber assembly 1Ka, 1Kb, 1Kc, 1Kd, 1Ke
  • the first original fabric roll 1305 upper roll
  • the first The third fiber assembly 1 and 1J (lower fiber assembly) of the three original fabric rollers 1307 (lower roll) are wound in a state where five original fabric rolls are arranged in the width direction through a predetermined gap XK.
  • the film is wound around the frame 1311 and continuously wound from the inside toward the outside to be stacked.
  • a first fiber assembly that is a combined fiber assembly aggregate is overlapped on the outside of a single third fiber assembly in a direction substantially perpendicular to the sheet surface of the fiber assemblies 1 and 1J. Therefore, a plurality of first (organic) fiber assemblies 1Ka, 1Kb, 1Kc, 1Kd, 1Ke constituting the first fiber assembly which is a combined fiber assembly are formed on the outer surface of the core material 560. Are arranged side by side through a gap (a minute gap or a predetermined gap) in the width direction.
  • the width of the third fiber assembly may be substantially equal to the width of the first (organic) fiber assembly 1K.
  • the (organic) fiber assembly 1K is made wider than the width of the first (organic) fiber assembly 1K so that a predetermined clearance corresponding to the length XT (for example, XTa or XTe) is obtained on the outer side in the width direction of the first (organic) fiber assembly 1K.
  • the first (organic) fiber assembly 1K may be disposed. When arranged in this way, at least one end side in the width direction of the third fiber assembly does not have the first (organic) fiber assembly 1K in the portion of length XT, so in the portion of length XT There is only a third fiber assembly.
  • the first (organic) fiber assembly 1K and the third fiber assembly are overlapped and wound from the inside to the outside and formed into a flat plate shape, at least one portion of the length XT on the width direction end side
  • the core material 560 in which the first (organic) fiber assembly 1K does not exist is manufactured. Accordingly, the first (organic) fiber assembly 1K and the third fiber assembly are overlapped and wound from the inside to the outside, and the core material formed into a flat plate shape is inserted into the outer packaging material 4 and the outer packaging material is decompressed.
  • the vacuum heat insulating material 760 When the vacuum heat insulating material 760 is manufactured by sealing 4, the vacuum heat insulating material 760 has thin portions H ⁇ b> 1 and H ⁇ b> 2 on the width direction end side similarly to the vacuum heat insulating material 750 shown in FIG. 19.
  • the length of the thin portion H1 is substantially equivalent to XTa
  • the length of the thin portion H2 is substantially equivalent to XTe
  • the width H3 of the central portion is substantially equivalent to the width of the first fiber assembly 1K.
  • the thin portions may be provided on both ends in the width direction of the vacuum heat insulating material 760, but may be provided on at least one end in the width direction.
  • the length XT between the width direction end side first (organic) fiber assemblies 1Ka and 1Ke arranged at both ends in the width direction and the end portions in the width direction of the third fiber assemblies (for example, in FIG. 43)
  • the third fiber assembly of the first (organic) fiber assembly 1Ka which is one of the two width direction end portions of the third fiber assembly and the width direction end side fiber assembly.
  • the vacuum heat insulating materials 750 and 760 have a predetermined thickness t in a state where the core materials 550 and 560 are reduced in pressure in the outer packaging material 4 and sealed, and the width direction of the end portions in the width direction of the core materials 550 and 560 Is a thin stepped shape (thin wall portion H1 or H2) protruding outward in the width direction.
  • the vacuum heat insulating materials 750 and 760 have the thickness of the vacuum heat insulating materials 750 and 760 on one end side in the width direction or both end sides in the width direction of the core materials 550 and 560 without special processing. Since thin portions (H1 and H2 in FIG. 19) having a thickness smaller than (the thickness t of the core materials 5, 550, 560) are obtained, when one vacuum heat insulating material 750, 760 is bent into a cylindrical shape, etc.
  • the cross-sectional shape in a cross section substantially perpendicular to the width direction of the end surface in the length direction of the plurality of vacuum heat insulating materials 7, 700, 701, 750, and 760 is a substantially triangular shape whose thickness decreases toward the outside in the length direction. Therefore, if it is connected so that the substantially triangular slope portions (slope portions of length L2 in FIG. 11) are in contact with each other, they can be brought into contact with each other where the core members 550 and 560 exist, and Refrigerator equipped with high-performance vacuum heat insulating materials 7,700,701,750,760 and vacuum heat insulating materials 7,700,701,750,760, which can reduce the junction thickness and reduce heat leakage from the contact portion. Etc. can be obtained.
  • the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J may not be continuous in the length direction, and are substantially in a state where the fiber assemblies are laminated. Any triangular cross-sectional shape may be used. That is, the vacuum insulating materials 7,700,701 having a predetermined length L, a predetermined width H, and a predetermined thickness t are sealed in a state where the core materials 5,550,560 are decompressed inside the outer packaging material 4.
  • the core material 5, 550, 560 is composed of a laminated structure of the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J, and a cross section of at least a part of the end in the length direction or the width direction. However, it is sufficient that the thickness is substantially triangular as the thickness decreases toward the outside. Further, the core materials 5, 550, 560 have a predetermined width H and the sheet-like organic fiber assembly 1 that is continuous in the length direction, and the continuous sheet-like fiber assembly 1J are continuous from the inside to the outside. Similar effects can be obtained if the laminated structure is wound, and the end portions in the length direction of the core materials 5, 550, 560 are substantially triangular with the core materials 5, 550, 560 sealed in the outer packaging material 4. Is obtained.
  • the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J do not have to be continuous in the length direction, and the fiber assembly of length L
  • a plurality of bodies may be stacked. That is, the vacuum insulating materials 7,700,701 having a predetermined length L, a predetermined width H, and a predetermined thickness t are sealed in a state where the core materials 5,550,560 are decompressed inside the outer packaging material 4. , 750, and 760, the thin-walled portions 750a and 750b may be provided at the ends in either the length direction or the width direction, and the thin-walled portions 750a and 750b may protrude outward.
  • the core materials 5, 550, 560 have a laminated structure in which a plurality of sheet-like organic fiber assemblies 1 having a predetermined width H and continuous sheet-like fiber assemblies 1J are laminated in a stacked state, and are thin-walled.
  • the portion 750a has the same effect as long as it is formed by laminating a plurality of organic fiber assemblies 1 and at least one of the continuous sheet-like fiber assemblies 1J with a predetermined amount shifted in the width direction. can get.
  • the vacuum heat insulating materials 750 and 760 of the present embodiment have a flat plate shape having a predetermined thickness, and the cross-sectional shape of one end (for example, the length direction) of the flat plate shape has a thickness toward the outside. Since the cross-sectional shape of the end portion in the other direction (for example, the width direction) is a stepped shape having a thin portion with a small thickness, the core members 550 and 560 can be simply wound and stacked. It can be easily manufactured by the method, and the end material can be used effectively.
  • the shape of the end can be connected without special processing in the length and width directions, so if the end is in contact, the contact thickness can be reduced and the contact can be reduced. Heat leakage from the portion can be reduced, and devices such as compressors, refrigerators, and water heaters equipped with high-performance vacuum heat insulating materials 750, 760 and vacuum heat insulating materials 750, 760 can be obtained.
  • the core material 560 is in the opposite direction (separated) between the two clamp members 1320 in a state where the two clamp members 1320 are clamped at two locations in the same manner as the core material 5 and the core material 550 shown in FIG.
  • the fiber assembly is bent at the clamped portion and folded (bent) at the bent end portion 560f to produce a flat plate shape.
  • the core material 560 folded at the bent end portion 560f which is the end portion in the length direction of the core material 560, is the upstream side in the winding direction of the fiber aggregates 1, 1J, and 1K in the same manner as the core material 5 shown in FIG.
  • the vacuum heat insulating material 760 is completed by being inserted into the opening 4a of the outer packaging material 4 from the 560fa side and sealed in a state where the inside is decompressed.
  • FIG. 22 shows the cross-sectional shape in the width direction of the core material 560 folded into a flat plate shape.
  • the core material 560 is continuous in the length direction from the inside to the outside, and is also continuous in the width direction.
  • first (organic) fiber assembly 1K first (organic) fiber assembly 1Ka, 1Kb, 1Kc, 1Kd, 1Ke
  • first (organic) fiber assembly 1Ka, 1Kb, 1Kc, 1Kd, 1Ke is wound in a coil shape from the inside, the outer surface of the core 560 Wrapped to come.
  • a predetermined gap XK is set between the individual first (organic) fiber assemblies 1Ka, 1Kb, 1Kc, 1Kd, 1Ke of the first (organic) fiber assembly 1K, and the slit portion 560K ( A third slit portion) is formed.
  • the predetermined gaps XK are individual predetermined gaps XKab, XKbc, XKcd, XKde, and the individual predetermined gaps XKab, XKbc, XKcd, XKde may be the same or different.
  • FIG. 23 shows a vacuum heat insulating material 760 in which the core material 560 is inserted into the outer packaging material 4 and the opening 4a of the outer packaging material 4 is sealed and sealed in a state where the inside is decompressed.
  • the vacuum heat insulating material 760 includes a recessed portion 760x (a groove portion, for example, a first recessed portion 760x1 and a second recessed portion 760x2) having a width substantially equal to a predetermined clearance XK provided in the core material 560 in the width direction.
  • Third recess 760x3, and fourth recess 760x4 are provided in the width direction continuously in the length direction.
  • the width of the first dent portion 760x1, the second dent portion 760x2, the third dent portion 760x3, and the fourth dent portion 760x4 may be the same or different, and may be set as appropriate depending on the size of the pipe. It ’s fine.
  • the predetermined clearance XK is continuous in the winding direction (length direction) of the core material 560, if the vacuum heat insulating material 760 is manufactured using the core material 560, the predetermined clearance XK has a width substantially equal to the predetermined clearance XK.
  • Concave portions 560X (groove portions) that are continuous in the length direction and have a depth that is approximately 1 ⁇ 4 of the thickness of the vacuum heat insulating material 760 are both sides of the flat plate surface of the flat plate-like vacuum heat insulating material 760 (the concave depths of the concave portions on both sides).
  • the depth is about half (about 1/2) the thickness of the vacuum heat insulating material 760), so that piping (for example, a condensation pipe, a suction pipe, a discharge pipe, etc.), a lead wire, etc. in this recess
  • piping for example, a condensation pipe, a suction pipe, a discharge pipe, etc.
  • lead wire etc. in this recess
  • the vacuum heat insulating material manufacturing apparatus includes an organic fiber assembly 1 having a predetermined width wound around a substantially cylindrical raw fabric roll 1301 cut to a predetermined width, a continuous sheet.
  • a winding frame 1311 for winding the fiber-like fiber assembly 1J for a predetermined number of times R, an organic fiber assembly 1 wound around the winding frame 1311, a cutting means for cutting the continuous sheet-like fiber assembly 1J, and a winding frame 1311 The organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J, which have been wound and cut by a predetermined number of times R, are extracted from the winding frame 1311, and then the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J are obtained.
  • the core material 5,550,560 can be easily manufactured with a simple configuration. Time can also be shortened. In addition, since it is continuously wound in the winding direction, there is no need to cut the end face in the length direction, and since it is not necessary to cut since the raw roll is also cut in the width direction, the core materials 5,550, There is no need to cut 560. In addition, the manufacturing equipment for cutting the end faces of the core materials 5,550,560 is unnecessary, and the time for cutting is also unnecessary, so that the manufacturing equipment can be made inexpensive, and the low cost core materials 5,550,560, Vacuum heat insulating materials 7,702,750,760 are obtained.
  • the manufacturing equipment for cutting the end faces of the core materials 5,550,560 is unnecessary, and the time for cutting is also unnecessary, so that the manufacturing equipment can be made inexpensive, and the low cost core materials 5,550,560, Vacuum heat insulating materials 7,702,750,760 are obtained.
  • variety can be manufactured by combining multiple main-body parts (fiber assembly) of a raw fabric roll with a small width
  • variety of the core materials 550 and 560 can be freely set without being restricted by the width
  • 560 increases the degree of design freedom.
  • the core materials 550 and 560 having a large width can be manufactured from the raw fabric roll having a small width, the storage location of the raw fabric roll can be small, and a large storage location is not necessary.
  • the manufacturing apparatus of the vacuum heat insulating materials 7, 702, 750, and 760 of the present invention includes the circumferential member 1312 in which the winding frame 1311 is divided into a plurality of parts, and at least one of the circumferential members 1312 (for example, movable)
  • the possible circumferential members 1312a and 1312b) are movable in the direction of the rotation center (rotating shaft 1315), and are movable after the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J are wound around the winding frame 1311.
  • the peripheral members 1312a and 1312b are operated in the rotation center direction to loosen the tension of the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J, and the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J are wound into the winding frame 1311.
  • the tension of the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 with a predetermined tension, for example, in a substantially cylindrical shape is loosened. After, it is possible to extract the continuous sheet-shaped fiber assembly 1J wound in a substantially cylindrical shape to facilitate the bobbin 1311.
  • the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 is released from the reel 1311 by loosening the tension of the continuous sheet-like fiber assembly 1J wound around the winding frame 1311 with a predetermined tension. It becomes easy to extract.
  • the manufacturing apparatus of the vacuum heat insulating material 7,702,750,760 of this invention clamps with the clamp member 1320, when extracting the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J from the winding frame 1311. Since the extraction is performed, the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J can be easily extracted from the winding frame 1311 with a simple configuration. Further, the two clamp members 1320c and 1320d are moved in the direction substantially opposite to the linear direction while the continuous sheet-like fiber assembly 1J is clamped at two locations using the two clamp members 1320 (clamp members 1320c and 1320d).
  • the continuous sheet-like fiber assembly 1J that is wound a plurality of times and stacked in layers is pulled in the opposite direction by the two clamp members 1320c and 1320d. Since it is formed in a flat plate shape that is bent from the clamped portion, the continuous sheet-like fiber assembly 1J is continuously wound from the inner side toward the outer side to form a flat core material 5,550, 560 can be easily molded with simple equipment.
  • the continuous sheet form which has the predetermined
  • the core materials 5,550 since it is continuously wound in the winding direction, there is no need to cut the end face in the length direction, and since it is not necessary to cut since the raw roll is also cut in the width direction, the core materials 5,550, There is no need to cut 560. Therefore, manufacturing equipment for cutting the end surfaces of the core materials 5, 550 and 560 is not required, and the time for cutting is also unnecessary, so that the core materials 5, 550, 560 and the vacuum heat insulating materials 7, 702 are inexpensive. 750, 760 are obtained.
  • the separation step is a continuous sheet-like fiber assembly 1J that is wound around the winding frame 1311 a predetermined number of times R and cut.
  • a clamp step for clamping the wire with a clamp member a fiber assembly tension relaxation step for relaxing the tension on the winding frame 1311 of the continuous sheet-like fiber assembly 1J clamped at the clamp step, and a tension relaxation at the tension relaxation step.
  • the continuous sheet-shaped fiber assembly 1J is extracted from the winding frame 1311, and the continuous frame-shaped fiber assembly 1J is extracted from the winding frame 1311. Therefore, the continuous sheet-shaped fiber assembly 1J can be easily extracted from the winding frame 1311 by a simple method. Can do.
  • the sheet-like fiber assembly 1J in which the forming step is continuous using two clamp members 1320 (clamp members 1320c, 1320d).
  • the two clamp members (clamp members 1320c and 1320d) are moved in substantially opposite directions to form the core material into a flat plate shape, so that a simple method using only the clamp member 1320 is possible.
  • the sheet-like core material 550 can be easily manufactured.
  • the continuous sheet-like fiber assembly 1J is formed by forming continuous organic fibers into a sheet shape, the adverse effects on the human body due to dust can be suppressed and recycled compared to the case of using glass fibers that are inorganic fibers.
  • the core material 550 and the vacuum heat insulating materials 7,702,750, and 760 having good properties can be obtained.
  • the organic fiber 2 continuous to the fiber is used, and the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J are continuously wound around the winding frame from the inside to the outside. It may be a manufacturing apparatus or manufacturing method for manufacturing the core material 5,550,560 or the vacuum heat insulating material 7,702,750,760, etc.
  • the fibers used are It does not have to be continuous long fibers.
  • the fiber assembly may be in the form of a continuous sheet, and it is sufficient that the continuous sheet-like fiber assembly 1J is not damaged when wound around the winding frame 1311 with a predetermined tension. Therefore, the organic fiber assembly 1 may not be a continuous sheet-like fiber assembly 1J, and may be an inorganic fiber assembly.
  • continuous sheet-like fiber aggregates may be used as they are, if the continuous sheet-like fiber aggregates are in the form of a raw fabric roll wound around a raw fabric roller, they are easy to manufacture and handle. It is even better because it improves the performance.
  • the core material 550 when the core material 550 is manufactured by stacking and winding the organic fiber assembly 1 and the continuous sheet-like fiber assembly 1J, the core material may be manufactured by winding without wrapping a predetermined amount Xb. . If the number of stacked organic fiber assemblies 1 and continuous sheet-shaped fiber assemblies 1J is increased, the type of fiber assembly can be changed by the number of stacked layers. In other words, fiber aggregates with different fiber weights are used, or fiber aggregates with different fiber types (for example, fibers with different temperature characteristics, fibers with different fiber diameters, or tensile strength).
  • the core member 5 may be formed by stacking and winding the fiber assemblies having the same width without shifting. Further, the core material 5 may be formed by stacking and winding up fiber assemblies having different widths.
  • a fiber having a proof stress (heat resistance) fibers such as LCP and PPS which are organic fibers, or glass fibers which are inorganic fibers alone or in combination
  • a vacuum heat insulating material may be manufactured by stacking fiber assemblies using fibers having high temperature proof stress (heat resistance) so as to be arranged on the surface side when the core material is formed.
  • a fiber assembly using fibers having high temperature resistance is arranged on the surface side as a vacuum heat insulating material, so that a fiber assembly using fibers having high temperature resistance (heat resistance) is used. If the vacuum heat insulating material is installed so that the body is arranged on the high temperature part side of the device, the device having the high temperature part can be insulated.
  • An expected fiber for example, polystyrene which is an organic fiber, glass fiber which is an inorganic fiber, etc.
  • polystyrene which is an organic fiber, glass fiber which is an inorganic fiber, etc.
  • glass fibers that are inorganic fibers are used. Glass fiber is mixed with urethane waste and is used for thermal recycling. Glass fiber is not recyclable because it reduces combustion efficiency and becomes a residue.
  • An organic fiber such as LCP may be used.
  • glass fiber Even when environmental problems and adverse effects on the human body are considered, glass fiber is hard and brittle, so dust may scatter when it is manufactured or disassembled, and may be irritated by the skin and mucous membranes of workers. It is better to use organic fiber because its handleability and workability are issues.
  • FIG. 19 shows the first embodiment, and is a cross-sectional view of the refrigerator 100.
  • the food storage room of the refrigerator 100 is refrigerated from the freezer temperature zone ( ⁇ 18 ° C.) below the refrigerating room 150, which is provided with a refrigerating room door 160 that is an open / close door at the top.
  • a switching chamber 200 having a drawer door type switching chamber door 210 that can be switched to a temperature range such as vegetables, chilled, soft frozen ( ⁇ 7 ° C.), and a drawer door type ice making room door 510 in parallel with the switching chamber 200 are provided.
  • an operation panel 180 composed of an operation switch for adjusting the temperature and setting of each room and a liquid crystal for displaying the temperature of each room at that time. Yes.
  • the machine room 601 and the cooler 650 in which the compressor 600 constituting the refrigeration cycle is arranged at the lower part, and the cool air cooled by the cooler 650 are sent to the refrigerating room 150 and the switching room 200.
  • the cooler chamber 640 in which the fan 660 and the like are disposed is provided.
  • a cooling air passage 680 for introducing cold air cooled by the cooler 650 into the refrigerating chamber 150 and an air passage for introducing cold air cooled by the cooler 650 into the freezer chamber 300. 690 etc. are provided.
  • control board 900 (not shown) is stored in the control board storage chamber 910 (not shown) on the back of the heat insulation wall on the back of the refrigerator room 150 at the top of the refrigerator 100.
  • the control board 900 is connected to a compressor 600 and a damper that opens and closes the cooling air passage, and controls the opening and closing of the compressor 600 and the cooling air passage to control the temperature in the storage chamber such as the refrigerator compartment 150 and the freezer compartment 300. Control lead wires, power supply wires, and the like for control are provided.
  • a storage case 201 is installed in the switching chamber 200, a storage case 301 is installed in the freezer compartment 300, and a storage case 401 is installed in the vegetable compartment 400, and food can be stored in these cases. .
  • vacuum heat insulating materials 750 and 760 are provided on the heat insulating wall between the machine room 601 and the cooler room 640 below the refrigerator 100.
  • the vacuum heat insulating materials 750 and 760 may be used alone or may be embedded in or disposed in the foam heat insulating material 11.
  • the refrigerator 100 includes a refrigerator compartment 150 having an openable / refrigerated refrigerator door 160, a pull-out switching chamber door 210, a freezer compartment door 310, a vegetable compartment door 410, and an ice making compartment door 510.
  • a plurality of storage rooms including a switching room 200, a freezing room 300, a vegetable room 400, an ice making room 500, and the like; a cooler 650 that is arranged on the back side of the storage room via a partition wall and generates cold air in the storage room; A cooler 650 and an in-compartment fan 660 that blows the cool air generated by the cooler 650 to each storage room, and a cooler that is disposed on the back side of the storage room via a partition wall and accommodates the cooler and the in-compartment fan A chamber 640, a machine room 601 that is provided in the lower or upper part of the refrigerator main body and accommodates the compressor 600 constituting the refrigeration cycle, and a first heat insulating wall provided between the machine room 601 and the cooler room 640.
  • the machine And the second heat insulating wall provided between the storage chamber and the organic fiber assembly 1 formed on the door of the storage chamber or the first heat insulating wall or the second heat insulating wall, and the organic fiber 2 is formed into a sheet shape.
  • the core material 5,550 having a cut portion with a cut end surface is inserted into the outer packaging material 4 and the sealing portion of the outer packaging material 4 around the sheet is sealed, so that the inside is in a substantially vacuum state.
  • Vacuum heat insulating material 7,702,750,760 formed by sealing.
  • the vacuum heat insulating material 750 provided on the heat insulating wall between the machine room 601 and the cooler room 640 is a bent part formed by the first slit part 57, the second slit part 58 and the like as shown in FIG. 59 has a W-shaped complicated structure bent at three points.
  • the vacuum heat insulating material 750 is inserted into the outer packaging material 4 in a sheet state of a predetermined size in which the core material 5,550 in which the organic fiber assembly 1 formed of long fibers is laminated is cut (cut). After drying and evacuation, the inserted portion of the outer packaging material 4 is sealed by heat welding or the like to complete.
  • the vacuum heat insulating material 750 is bent into an L shape by a bent portion 59 formed by the first slit portion 57, the second slit portion 58, etc. It is disposed across the back wall, and is further folded into a W shape as described above and disposed across the back wall and bottom wall of the refrigerator 100.
  • the vacuum heat insulating material 760 is provided with a recessed portion 760X which is a groove portion continuous in the length direction. Can be folded into a letter shape.
  • the wall surface has a complicated shape like the machine room 601 that houses the compressor 600 of the refrigerator. But it can be easily applied.
  • a plurality of (for example, two) organic fiber aggregates 1 and continuous sheet-like fiber aggregates 1J are overlapped and stacked a plurality of times by shifting by a predetermined length (wrap margin Xb) in the width direction.
  • the number of slits per one bent portion is also equal to the number of the organic fiber aggregates 1 and the continuous sheet-like fiber aggregates 1J stacked (a plurality of 3
  • there can be three slits for one bent portion so that the bent portion 59 (the first slit portion 57 and the second slit) even if the vacuum heat insulating material 750 becomes thicker.
  • the part 58) can be easily folded to both sides of the sheet surface. Further, since the first slit portion 57 and the second slit portion 58 have a concave trapezoidal shape and can be formed on both sides in the thickness direction of the vacuum heat insulating material 750, for example, when the thickness is increased. However, since the first slit portion 57 and the second slit portion 58 formed on both sides of the sheet surface can be easily bent from the bent portion, the outer packaging material 4 is not torn or damaged.
  • the vacuum heat insulating material 750 of the present embodiment is predetermined at the connection portion (slit portion) between adjacent fiber assemblies of the first (organic) fiber assembly 1K or the second (organic) fiber assembly 1H. It becomes possible to bend at an angle (for example, approximately 90 degrees), and to arrange, for example, on at least two continuous wall surfaces of the heat insulating box having the top surface, both side surfaces, the back surface, and the bottom surface of the refrigerator 100.
  • the refrigerator 100 when it is bent into an L shape with a predetermined angle of approximately 90 degrees, (1) the side wall and the back wall, (2) the top surface wall and the back wall, (3) It can be applied to two continuous wall surfaces such as (4) bottom wall and side wall, (5) bottom wall and back wall.
  • the vacuum heat insulating material 760 may be used instead of the vacuum heat insulating material 750. If the vacuum heat insulating material 760 is used, it can be easily bent at the recessed portion 760X in the same manner as the bent portion 59 (the first slit portion 57 and the second slit portion 58) of the vacuum heat insulating material 750. As with the first slit portion 57 and the second slit portion 58 of the heat insulating material 750, piping (condensation pipes and suction pipes) and the like are arranged and stored in the recesses 760X, and the piping can be easily insulated.
  • Fixing and positioning of the pipe on the outer surface of the vacuum heat insulating material is easy to position and fix by simply storing the pipe in the recess 760X without providing a separate pipe storage location by laser processing or the like. Can be done. Further, positioning can be performed without providing a separate fixing member. It can be easily done without using any member. Further, if a wiring (such as a control lead wire) is stored in the recess 760X, the wiring can be stored without providing a separate wiring storage location, and positioning can be performed without providing a separate fixing member. At this time, the width of the recess 760X may be set in accordance with the size of the piping or wiring to be stored.
  • the width of the recess 760X is set to a predetermined clearance XK (for example, a predetermined clearance XKab, between the first (organic) fiber assemblies 1Ka, 1Kb, 1Kc, 1Kd, 1Ke of the first (organic) fiber assembly 1K.
  • a predetermined clearance XKab between the first (organic) fiber assemblies 1Ka, 1Kb, 1Kc, 1Kd, 1Ke of the first (organic) fiber assembly 1K.
  • XKbc, XKcd, XKde may be set as appropriate.
  • the vacuum heat insulating materials 750 and 760 of the present embodiment include heat insulation around a cylindrical container such as a compressor other than the refrigerator 100 and a hot water storage tank, an air conditioner outdoor unit, and a housing (container for a heat source of a water heater). It is needless to say that the heat insulation can be easily applied.
  • the present invention can be applied to devices such as a water heater and a refrigeration / air conditioning apparatus other than the refrigerator 100.
  • the vacuum heat insulating material 750 having a complicated structure of “L” shape bent at one place and “W-shape” bent at three places has been described.
  • “Z” bent at two places is described as “Z”. It is also possible to apply a “C” shape that is bent at two locations, a “C” shape or a “J” shape that is bent at a plurality of locations.
  • the vacuum heat insulating material of the present embodiment has been difficult to bend so far, and it has been difficult to mount the vacuum heat insulating material (“Z” shape, “ko” shape, “C” shape,
  • the present invention can also be applied to locations such as “J” and “W” shapes, or locations where there are protrusions or pipes, and can be mounted on any device.
  • Equipment such as a refrigerator equipped with the vacuum heat insulating material of the present embodiment is excellent in recyclability, has no adverse effects on the human body, and can be expected to improve heat insulating performance.
  • refrigerator 100 has a refrigerator compartment provided with an openable / retractable door (refrigerator compartment door 160, switching compartment door 210, freezer compartment door 310, vegetable compartment door 410, ice making compartment door 510).
  • a plurality of storage rooms (refrigeration room 150, switching room 200, freezing room 300, vegetable room 400, ice making room 500) including 150, freezing room 300, and the like are arranged on the back side of the storage room via a partition wall for storage
  • a cooler 650 that generates cool air in the chamber, an internal fan 660 that blows the cool air generated by the cooler 650 and the cooler 650 to each storage chamber, and a partition wall on the back side of the storage chamber,
  • a cooler chamber 640 that houses the cooler and the internal fan, a machine room 601 that is provided in the lower or upper part of the refrigerator main body and houses the compressor 600 constituting the refrigeration cycle, a machine room 601, and a cooler chamber 640
  • a heat insulating wall provided between the two and the door of the storage room or the heat
  • the heat insulating performance of the vacuum heat insulating materials 750 and 760 is good, the recyclability is excellent, the sealing failure is not generated, and the reliability is high. Therefore, the equipment such as the refrigerator 100 to which the vacuum heat insulating materials 750 and 760 are applied is also long-term. High performance and recyclability.
  • vacuum heat insulating materials 750 and 760 are provided on the heat insulating wall between the machine chamber 601 and the cooler chamber 640 , but the vacuum heat insulating material opening 71 may be applied to the cooling air passage.
  • vacuum heat insulating materials 750 and 760 may be used for the partition wall, partition wall, and heat insulating wall having the cooling air passage.
  • you may provide in the heat insulation wall which comprises the cooler room 640.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

 加工性、取り扱い性と断熱性能に優れ、信頼性の高い真空断熱材の芯材の製造装置を提供する。この発明に係る真空断熱材の製造装置は、所定幅にカットされた略円筒形状の原反ロールに巻きつけられた所定の幅を有する繊維集合体を所定回数分だけ巻き取る巻枠と、巻枠に巻き取られた繊維集合体を切断する切断手段と、巻枠に所定回数分だけ巻き取られて切断された繊維集合体を巻枠より抜き取った後に繊維集合体を平板状の芯材に成形する成形部材と、を備えたものである。

Description

真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫
 本発明は、真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び真空断熱材を用いた冷蔵庫に関する。
 従来、例えば冷蔵庫などの断熱箱に使用される断熱材としては、ウレタンフォームが用いられてきた。近年は、省エネや省スペース大容量化に対する市場要請から、ウレタンフォームよりも断熱性能がよい真空断熱材をウレタンフォーム中に埋設して併用する形態が用いられるようになってきている。かかる真空断熱材は、冷蔵庫などにも使用されるものである。
 真空断熱材は、ガスバリア層にアルミ箔を使用したプラスチックラミネートフィルムなどでできた外包材の中に、粉末、発泡体、繊維体などを芯材として挿入して構成される。真空断熱材の内部は、数Pa(パスカル)以下の真空度に保たれている。
 また、真空断熱材の断熱性能の低下要因となる真空度劣化を抑制するために、ガスや水分を吸着する吸着剤が外包材の中に配置されている。真空断熱材の芯材としては、シリカなどの粉末、ウレタンなどの発泡体、繊維体などが用いられる。現状は、断熱性能に優れるガラス繊維のものが真空断熱材の芯材の主流になっている。
 繊維の素材としては、ガラス繊維、セラミック繊維などの無機繊維がある(例えば、特許文献1及び特許文献8参照)。
 また、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維などの有機繊維がある(例えば、特許文献2及び特許文献7参照)。
 繊維体の形状には、綿状のもの、シートを積層したもの(例えば、特許文献3及び特許文献4参照)や、シートを繊維配向が交互になるように積層したもの(例えば、特許文献5及び特許文献6参照)がある。
 また、シートの積層方法においては、連続した帯状のシート状部材を交互に異なった方向に折り返すことによって重ね合わせるように積層するものがある(例えば、特許文献9参照)。
特開平8-028776号公報 特開2002-188791号公報 特開2005-344832号公報 特開2006-307921号公報 特開2006-017151号公報 特公平7-103955号公報 特開2006-283817号公報 特開2005-344870号公報 特開昭62-204093号公報
 このように、現在の真空断熱材には、主にガラス繊維が芯材として使用されている。しかし、ガラス繊維は硬くて脆いため、真空断熱材の製造時に粉塵が飛び散り作業者の皮膚・粘膜などに付着すると刺激を受ける可能性があり、その取り扱い性、作業性が課題となっている。
 また、リサイクルの観点からみた場合、例えば冷蔵庫では、リサイクル工場で製品ごとに粉砕される。このとき、ガラス繊維は、ウレタン屑などに混じってサーマルリサイクルに供される。ガラス繊維は、燃焼効率を落としたり、残渣となるなど、リサイクル性が良くないという課題がある。
 一方、ポリエステル繊維を芯材として用いたものは、取り扱い性、リサイクル性に優れる。しかし、ポリエステル繊維を芯材として用いたものは、断熱性能を表す指標である熱伝導率が0.0030[W/mK]程度である(例えば、特許文献7参照)。ポリエステル繊維を芯材として用いたものは、ガラス繊維を芯材として用いた一般的な真空断熱材(熱伝導率0.0020[W/mK]程度)に比べて断熱性能に劣るという難点がある。
 このため、有機繊維の層を薄くし繊維の配向を伝熱方向と垂直にし断熱性能を向上させることもできる。しかし、それでは積層枚数が数百枚以上になり、生産性が悪い。また、曲げ加工も積層枚数が多いため、曲げにくく、取り扱い性・生産性が悪い。
 また、ガラス繊維などの芯材をアルミ箔ラミネートフィルム等の外包材内に挿入して内部を減圧封止して真空断熱材を製造する場合、芯材をアルミ箔ラミネートフィルム等の外包材内に挿入場合に特にガラス繊維などの無機繊維を使用した場合にガラス繊維が外包材を突き刺し外包材を傷つけたり破ったりする恐れがあり、外包材内にガラス繊維の芯材を直接挿入せずにポリ袋などの別体の袋に挿入した状態で外包材に挿入しており、余分にポリ袋などが必要であり芯材や真空断熱材の製造工程が複雑になったり、またコストアップになっていた。
 また、特許文献9のように連続した帯状のシート状部材(古紙)を交互に異なった方向に折り返すことによって折り目をつけて重ね合わせるように積層して芯材を形成することも考えられるが、折り目をつけて折り返す装置が必要であり、この折り返す装置の構造が複雑で高価でありコストアップになっていた。
 また、ガラス繊維を芯材に使用した真空断熱材の場合、ガラス繊維は断熱性能に優れる。しかし、ガラス繊維は、硬くて脆いため、真空後に曲げ加工を行うのが困難であった。
 また、ガラス繊維を芯材に使用した真空断熱材の場合、ガラス繊維は断熱性能に優れる。しかし、ガラス繊維は、硬くて脆いため、凝縮パイプなどの配管を真空断熱材と真空断熱材の間に挟みこんで断熱しようとしても配管形状に変形できず、真空断熱材間にパイプの直径に相当する分だけのすきまが存在する。そのため、真空断熱材間のすきまから熱漏れが発生し、断熱性能が大幅に悪化していた。
 また、有機繊維を芯材に使用する場合で、一枚のシートを複数積層して芯材にするときも、真空断熱材の積層枚数が多いほど硬くなる。そのため、真空後に曲げ加工を行なう場合、曲げが必要な部分で曲げにくく、曲げたくない部分まで変形してしまうという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、少なくとも以下に示す特性のいずれかを有する真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及びこの真空断熱材を用いた冷蔵庫を提供することを目的とする。
(1)断熱性能が良く、生産性(特に芯材の生産性)に優れる。
(2)断熱性能が良く、しかも取り扱い性やリサイクル性に優れる。
(3)芯材に有機繊維集合体を使用した場合に、生産性に優れる。
(4)曲げ加工の曲げの大きさに合わせて芯材を製造でき、しかも製造が容易である。
 この発明に係る真空断熱材の芯材の製造装置は、所定幅にカットされた略円筒形状の原反ロールに巻きつけられた所定の幅を有する繊維集合体を所定回数分だけ巻き取る巻枠と、巻枠に巻き取られた繊維集合体を切断する切断手段と、巻枠に所定回数分だけ巻き取られて切断された繊維集合体を巻枠より抜き取った後に繊維集合体を平板状の芯材に成形する成形部材と、を備えたものである。
 この発明の真空断熱材の芯材の製造装置によれば、簡単な構成で容易に芯材、および真空断熱材を製造することができ、製造時間も短縮できる。また、巻き方向に連続して巻かれるため、長さ方向端面をカットする必要がなくなり、設備も簡略化でき、カットする時間が短縮される。
 また、本発明の真空断熱材の製造装置により製造された芯材を使用すれば、取り扱い性、断熱性能や生産性に優れた真空断熱材、およびこの真空断熱材を備えた冷蔵庫などの機器を提供できる。
実施の形態1を示す図で、真空断熱材7の模式図であって、不織布シートを複数積層した真空断熱材7の芯材5の斜視図。 実施の形態1を示す図で、真空断熱材7の模式図であって、不織布シート1枚における繊維の配向を表した側面図。 実施の形態1を示す図で、真空断熱材7の模式図であって、芯材5に厚みがある場合の繊維の配向具合を示す側面図。 実施の形態1を示す図で、真空断熱材7の構成を示す分解斜視図。 実施の形態1を示す図で、真空断熱材7を形成する芯材5の積層状態を模式的に示す斜視図。 実施の形態1を示す図で、真空断熱材7を形成する芯材5の積層装置の原反ローラと巻枠について模式的に示す斜視図。 実施の形態1を示す図で、真空断熱材製造装置の巻枠の構造を表す図であり、図7(a)は有機繊維集合体を巻き取るときの巻枠の状態を表し、図7(b)は連続したシート状繊維集合体1Jを巻き取り終了後に連続したシート状繊維集合体1Jから巻枠を取り除く(取り去る)場合の巻枠の状態を表した図。 実施の形態1を示す図で、真空断熱材製造装置の巻枠に巻き取られた有機繊維集合体をクランプするクランプ部材を表す図。 実施の形態1を示す図で、真空断熱材の製造方法を表す図。 実施の形態1を示す図で、別の巻枠の模式図。 実施の形態1を示す図で、原反ロールを複数組み合わせて1つの大きな幅を有する組み合わせ原反ロールの構成を表す図。 実施の形態1を示す図で、組み合わせ原反ロールを2つ使用して巻枠に巻き取る場合の巻き取り装置の模式図。 実施の形態1を示す図で、組み合わせ原反ロールを2つ(上側原反ロール、下側原反ロール)使用する巻き取り装置にて巻き取られる有機繊維集合体の構成を表す模式図。 実施の形態1を示す図で、組み合わせ原反ロールを2つ使用する巻き取り装置にて巻き取られた芯材の断面図。 実施の形態1を示す図で、原反ロールを3つ組み合わせた組み合わせ原反ロールを使用して巻枠に巻き取って芯材550を製造した場合の芯材550の斜視図。 実施の形態1を示す図で、別の組み合わせ原反ロールの構成について説明するための図。 実施の形態1を示す図で、真空断熱材750を折り曲げた様子を表した斜視図。 実施の形態1を示す図で、真空断熱材750を幅方向から見た図。 実施の形態1を示す図で、冷蔵庫100の断面図。 実施の形態1を示す図で、第1の所定幅を有する少なくとも1つの原反ロール1307と、第1の所定幅よりも小さな幅の原反ロールを第1の所定幅と略同等になるように幅方向に組み合わせた少なくとも1つの組み合わせ原反ロール1305とを使用して巻枠1311に巻き取る場合の巻き取り装置の模式図であり、本実施の形態の別の芯材の製造法を表す図。 実施の形態1を示す図で、少なくとも1つの所定幅を有する原反ロール1307と、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材の斜視図である。 実施の形態1を示す図で、少なくとも1つの所定幅を有する原反ロールと、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材の断面図。 実施の形態1を示す図で、少なくとも1つの所定幅を有する原反ロールと、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材を使用した真空断熱材の斜視図。 実施の形態1を示す図で、真空断熱材の形状を示す模式図。
 実施の形態1.
 図1乃至図4は実施の形態1を示す図で、図1は真空断熱材7の模式図であって、不織布シートを複数積層した真空断熱材7の芯材5の斜視図、図2は真空断熱材7の模式図であって、不織布シート1枚における繊維の配向を表した側面図、図3は真空断熱材7の模式図であって、芯材5に厚みがある場合の繊維の配向具合を示す側面図、図4は真空断熱材7の構成を示す分解斜視図である。
(積層構造)
 図1において、芯材5は、例えば、少なくとも1つの端面1aがカットされたシート状有機繊維集合体(以下、「有機繊維集合体1」と称す)を積層した積層構造を有している。すなわち、図1に示す芯材5は、略長方形状の有機繊維集合体1が複数積層されたのち略長方形の4辺がカットされたシート状を形成している。あるいは、略長方形状の有機繊維集合体1の4辺がカットされた後に複数積層されて略長方形のシート状を形成している。
 図2において、有機繊維集合体1は、所定の間隔を空けて配置された複数本の有機繊維2xと、有機繊維2xと略直交する方向で、所定の間隔をあけて配置された複数本の有機繊維2yと、から形成されている。
 このとき、有機繊維2xと有機繊維2yとは、ほぼ点接触している。有機繊維2y間には、断熱空間である空気層3が形成されている。
 有機繊維2xと有機繊維2yとの総称として、有機繊維2とする。
 ここで、図3に示されるように、一枚のシート(有機繊維集合体1)の厚さが厚くなると、繊維が伝熱方向である厚さ方向を向くように配向されやすくなる。特に有機繊維2(単に、繊維と呼ぶ場合もある)が、繊維長の短い短繊維(繊維長が例えば5~150mm程度)の場合には、短繊維が伝熱方向である厚さ方向を向くように配向されやすくなる。この短繊維を介してシートの表側から裏側へ熱が伝達されて(図3に矢印で示す)断熱性能が悪化する。
 したがって、有機繊維集合体1を薄く積層して厚さの薄いシート状にすることで、繊維が伝熱方向(有機繊維集合体1の繊維の積層方向、シート状の有機繊維集合体1の厚さ方向)へ向いて配向されるのを抑えることができる。それにより、伝熱方向へ向いて配向された繊維を熱が伝わって断熱性能が低下するのを抑制できる。そのため、芯材5の熱伝導率を、小さくでき、断熱性能を向上させることができる。
 図2において、実線矢印と点線矢印が、熱の伝わる方向を示している。有機繊維2xと有機繊維2yとが略直交しているため、有機繊維2xと有機繊維2yとの接触部分が点接触になり熱抵抗が増加して断熱性能が向上する。
 なお、以上は、有機繊維2xと有機繊維2yとが互いに略直交する場合を示しているが、本実施の形態は、これに限定するものではない。有機繊維2xと有機繊維2yとが、互いに直角でない角度で交わってもよい。有機繊維2xと有機繊維2yのすべてが、平行配置になっていなければよい。伝熱方向へ向いて配向された繊維を熱が伝わって断熱性能が低下するのを若干でも抑制できれば、断熱性能を向上させることができる。
 図4において、真空断熱材7は、空気遮断性を有するガスバリア性容器(以下、「外包材4」と称す)と、外包材4の内部に封入された芯材5および吸着剤6(例えばガス吸着剤や水分吸着剤(CaO)など)と、を有している。そして、外包材4の内部は、所定の真空度(数Pa(パスカル)~数百Pa程度)に減圧されている。
(有機繊維)
 真空断熱材7の芯材5を形成する有機繊維2に用いる材料として、ポリエステルや、その他に、ポリプロピレン、ポリ乳酸、アラミド、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)、ポリスチレンなどを用いることができる。また、芯材5の耐熱性を向上させたい場合は、有機繊維2にLCP(液晶ポリマー)やPPS(ポリフェニレンサルファイド)など耐熱性のある樹脂を使用すれば良い。また、圧縮クリープ特性を向上させたい場合は、繊維径の大きなものを使用すれば良い。また、上記の樹脂を混合させて使用すれば、圧縮クリープ特性の優れた耐熱性が高く断熱性の高い真空断熱材7が得られる。ポリスチレンは、固体熱伝導率が小さく断熱材の断熱性能の向上が期待でき、しかも安価に製造できる。
 ポリプロピレンは、吸湿性が低いため、乾燥時間や真空引き時間を短縮でき生産性の向上が可能である。また、ポリプロピレンは、固体熱伝導が小さいので真空断熱材7の断熱性能の向上が期待できる。
 また、ポリ乳酸には生分解性があるので、製品の使用後に解体、分別された芯材は埋め立て処理を行うこともできる。
 また、アラミドやLCPは剛性が高いので、真空包装されて大気圧を受けたときの形状保持性が良く、空隙率を高めることができ断熱性能の向上が期待できるなどのメリットがある。
 芯材5は、例えば、プラスチックラミネートフィルムを外包材4に用いる真空断熱材7においては、大気圧を支えて真空断熱材7内の空間を確保する役割と、空間を細かく分割してガスの熱伝導などを低減する役割を担っている。なお、ガスの熱伝導抑制の観点から、この空間の距離をその真空度における空気分子の自由行程距離より小さくなるようにすることが望ましい。
 本実施の形態では、真空断熱材7の芯材5には、例えば有機繊維2を使用しているので、従来のように硬くて脆いガラス繊維が芯材として使用されている場合に比べて、真空断熱材7の製造時に粉塵が飛び散り作業者の皮膚・粘膜などに付着して刺激を与えるということも無くなり取り扱い性、作業性が向上する。
(繊維集合体素材(原反ロール素材)の製造方法)
 芯材5を形成する有機繊維集合体1(有機繊維集合体、シート状集合体に同じ)は、製造したい幅に対して横一列に並んだいくつものノズルから加熱溶融したポリエステル樹脂やポリスチレン樹脂などの樹脂を、コンベア上に自由落下させ、コンベアを任意の速度で動かしながら加圧ローラで加圧して円筒状の原反用ローラに巻き取って略円筒状の原反ロール素材を製造する。有機繊維集合体1の嵩密度は、溶融樹脂の吐出量とコンベアの速度により調整し、厚さの異なる繊維集合体を得ることができる。
 また、有機繊維集合体1である長繊維不織布は、押出機で溶融させて紡糸ノズルから押出した連続繊維を、コンベア上に捕集し、コンベアを任意の速度で送りシート状に形成することで、原反用ローラに巻き取り可能な連続した長繊維不織布が得られる。連続した有機繊維2で形成され連続したシート状の有機繊維集合体1が得られるので、円筒状の原反用ローラに連続して巻き付け可能となり、長繊維不織布の原反ロールを得ることが可能になる。
 また、紡糸には、ノズル直下で樹脂を冷風などで冷却した後、圧縮空気などで延伸を行って繊維化する方法や、ノズル穴脇から樹脂の溶融温度と同等の高温エアで吹いて繊維化する方法を用いることができる。
 なお、上記の方法で得た有機繊維集合体1は、有機繊維2同士がばらばらなため真空断熱材7の製造時の取り扱い性が悪い場合がある。そこで、加圧時に、有機繊維2同士を加熱溶着しても良い。この際、過度の加圧、加熱溶着は、有機繊維2間の接触面積を増大し、伝熱の増加を招き、溶着部からの熱伝導が発生して断熱性能の低下を引き起こす。そのため、有機繊維2間の接触面積をできるだけ少なくした方が良い。有機繊維2間の接触面積は、全面積(シート面積)の20%以下、好ましくは15%以下、さらに好ましくは8%以下に抑えることが望ましい。
 加熱溶着の占める割合が全面積(シート面積)の20%を超えると熱伝導率が大きくなり、断熱性能が悪くなっていくことが確認できたため、加熱溶着の占める割合は全面積(シート面積)の20%以下にした方が好ましい。ここで、全面積(シート面積)に対して加熱溶着の占める割合を小さくすれば、断熱性能が格段に向上するので、加熱溶着の占める割合を全面積(シート面積)の15%以下、さらには全面積(シート面積)の8%以下に抑えることが望ましい。
 加熱溶着は、熱ローラなどで、例えばドット状の溶着部をつけるエンボス加工を行うことで、取り扱い強度を確保しながら巻き取り可能で断熱性能の良い長繊維不織布(有機繊維集合体1)が得られる。なお、本実施の形態では、熱ローラの温度は約195℃とすればよい。
 ここで、加熱溶着の代わりにフックのついた多数の針を垂直に突き刺したり引き上げたりすることを繰り返し、繊維同士を互いに絡ませることにより繊維同士がばらばらにならないようにシート状にするニードルパンチ法でも良いが、加熱溶着(例えばエンボス加工)によりシート状に形成した方が簡単な設備で対応可能であり、コンベア上での作業も容易なため良い。
(繊維径)
 本実施の形態1では繊維集合体として、例えば、有機繊維集合体1を使用するが、この有機繊維集合体1の繊維径は、これを成形するノズル径により調整し、約15μmとした。断熱性能上は、繊維径はより細い方が良い。理論的に繊維径は、真空断熱材7の内部真空度と繊維で細分化される空間距離、気体分子の自由行程距離の関係から小さいほうが好ましい。繊維径は、15μm以下が望ましく、好ましくは10μm以下が良く、平均繊維径が9μm程度のものを使用すれば良い。
 平均繊維径の測定は、マイクロスコープを用いて数箇所~数十箇所(例えば十箇所)測定し、平均値を使用するようにすれば良い。また、重量目付け(1mあたりの繊維の重量(g))は、シート1枚の面積と重量を測定して、シート1枚の単位面積あたりの重量として求めればよい。
 本実施の形態では、断熱方向である厚さ方向に対して略垂直となる方向に繊維の配向方向を整えて、有機繊維集合体1を複数重ねた多層構造としている。
 また、有機繊維集合体1に短繊維不織布を使用すると繊維の長さが短いため有機繊維2xや有機繊維2yが断熱方向(シートの厚さ方向)へ向いて配向されやすくなる。断熱方向へ向いて配向された繊維を熱が伝わって断熱性能が低下するのを抑制するために、長繊維を使用した長繊維不織布としている。
 本実施の形態では、繊維の長さはシートの長さと略同等以上のものを使用するようにしているので、シートの途中で繊維が切れて繊維の一部(途中)や端部が断熱方向に配向されにくくなるようにして断熱性能が低下しないようにしている。
(繊維集合体の積層方法、芯材の製造方法1)
 次に、得られたシート状の有機繊維集合体1を、例えば所定の大きさである(幅210mm×長さ297mm)になるように端面1aをカット(裁断)する。これらを、複数層(例えば25層)に積層して端面5aがカットされた所定の大きさと厚さの芯材5を形成した。芯材5は、シート状の有機繊維集合体1を複数積層した後に、端面5aをカットして所定の大きさに形成しても良い。なお、積層する枚数は、得られた有機繊維集合体1の厚さと製造したい真空断熱材7の厚さを基に任意に設定して良い。
(外包材)
 真空断熱材7の外包材4(図4)には、厚さ5μm以上100μm以下のラミネートフィルムを使用している。本実施の形態では、例えば、ナイロン(6μm)、アルミ蒸着PET(ポリエチレンテレフタレート)(10μm)、アルミ箔(6μm)、高密度ポリエチレン(50μm)で構成されるガスバリア性のあるプラスチックラミネートフィルムを使用している。
 真空断熱材7の外包材4に、その他に、ポリプロピレン、ポリビニルアルコール、ポリプロピレンの構成などのアルミ箔を含まないラミネートフィルムを用いると、ヒートブリッジによる断熱性能の低下を抑制できる。なお、外包材4の四辺のうち三辺がシール包装機によってヒートシールされている。残りの一辺は芯材5を挿入後にヒートシールされる。
(真空断熱材の製造方法1)
 真空断熱材7の製造は、先ず開口部4aを有する袋状である外包材4に所定の大きさと厚さの芯材5を挿入し、開口部4aが閉まらないように固定して、恒温槽にて約105℃の温度下で半日(約12時間)乾燥を行った。その後、真空包装後の残存ガスや経時的に放出される芯材5からのアウトガス、外包材4のシール層を通して進入する透過ガスを吸着するための吸着剤6(ガス吸着剤や水分吸着剤など)を外包材4(フィルム袋)内に挿入し、柏木式真空包装機(NPC社製;KT-650)にて真空引き(減圧処理)を行った。真空引きは、チャンバ内真空度が1~10Pa程度になるまで行い、そのままチャンバ内で外包材4(フィルム袋)の開口部4aをヒートシールして板状の真空断熱材7を得た。
(繊維集合体の積層方法、芯材の製造方法2)
 上述のようにシート状の有機繊維集合体1を所定の大きさにカットして複数枚積層して芯材5を形成して真空断熱材7を製造しても良いし、シート状の有機繊維集合体1を複数積層した後に端面5aをカットして所定の大きさに形成して芯材5を形成して真空断熱材7を製造しても良いが、ここでは、芯材5の別の製造方法について説明する。連続したシート状の繊維集合体(例えば、有機繊維集合体1)を連続して巻き取って芯材5を製造する方法について説明する。
 図5、図6は実施の形態1を示す図で、図5は真空断熱材7を形成する芯材5の積層状態を模式的に示す斜視図、図6は真空断熱材7を形成する芯材5の積層装置の原反ローラと巻枠について模式的に示す斜視図である。
 図5、図6において、連続した繊維(例えば、有機繊維2)で形成された、連続したシート状繊維集合体1J(例えば、有機繊維集合体1、厚さは30μm程度以上500μm程度以下、好ましくは80μm以上300μm以下)が巻き取り途中で切断されたり、切断されないまでも伸びきって繊維として必要な特性が不足しないような所定の張力で巻枠1311に巻き取られた後(巻枠1311に連続して巻回された後)に平板状に成形されて芯材5が製造される。すなわち、芯材5は、長さ方向(巻き方向)に連続したシート状繊維集合体1Jが内側から外側に向かって連続して巻きつけられた連続したシート状繊維集合体1Jの積層構造で構成されている。ここで、平板状に成形されて芯材5の幅をH、長さをL、厚をtとする(図5参照)。また、芯材5の巻き終わりの端部を、巻き終わり端部1Jeとする。
 芯材5は、例えば略円筒状の原反ローラ1302に巻かれた所定の幅を有する連続したシート状繊維集合体1J(原反ロール1301)を、巻枠1311に連続して複数回巻いた状態(連続して所定回数だけ巻き取った状態)で、巻枠1311を巻枠1311の軸心方向(巻き取り方向に対して略90度ずれた回転軸1315の軸心方向)に抜き取って略円筒状に巻かれた連続したシート状繊維集合体1Jを平板状(シート状)につぶすようにして成形される。この平板状の芯材5は、連続したシート状繊維集合体1Jが複数積層されて平板状(平滑状)を形成する平板部5g(平滑部)と、この平板部5gの長さ方向に対する両側端部(連続したシート状繊維集合体1Jが巻き取り方向に連続した状態で巻かれているため、平板状の巻き取り方向両端側で連続したシート状繊維集合体1Jが折れ曲がって巻かれた状態になっている)で連続したシート状繊維集合体1Jが折れ曲がった状態に形成された折れ曲がり端部5f(折れ曲げ部)とを有する平板状(シート状、平滑状)に成形されている。
 このとき、芯材5は、平板状に成形されて外包材4内で略真空状態でシールされた状態で所定の厚さtになるように巻枠1311に巻きつける回数Rが決められている。例えば、芯材5の必要な厚さt(芯材5の所定の厚さ)が8mmで、連続したシート状繊維集合体1Jの1枚の厚さが80μmだとすれば、必要な積層枚数が100枚(8mm/80μm)となるので、巻枠1311に巻きつけなければならない必要な所定巻き付け回数Rは連続したシート状繊維集合体1Jの50枚分に相当する50回となる。芯材5の厚さtは、巻枠1311が抜き取られた状態(円筒状)の芯材5を押しつぶすようにして平板状(シート状)に成形するので、原反ロール1301に巻かれた回数Rである50回の2倍に相当する枚数100枚分の厚さになり、芯材5は、連続したシート状繊維集合体1Jが複数枚積層(所定枚数である100枚積層)された状態となる。
 また、芯材5に必要な幅(所定の幅)Hは、原反ローラ1302に巻きつけられた連続したシート状繊維集合体1J(原反ロール1301)の幅や巻枠1311の幅により適宜調整される。例えば、芯材5の必要な幅H(所定の幅)が1500mmだとすれば、巻枠1311の幅を所定の幅である1500mm程度、あるいは所定の幅である1500mmより若干大きい幅(例えば1520mm程度)に設定して余分な部分(両幅部分)を切断するようにしても良い。
 図7、図8は実施の形態1を示す図で、図7は真空断熱材製造装置の巻枠の構造を表す図であり、図7(a)は連続したシート状繊維集合体1Jを巻き取るときの巻枠の状態を表し、図7(b)は連続したシート状繊維集合体1Jを巻き取り終了後に連続したシート状繊維集合体1Jから巻枠を取り除く(取り去る)場合の巻枠の状態を表した図、図8は真空断熱材製造装置の巻枠に巻き取られた有機繊維集合体をクランプするクランプ部材を表す図である。
 本実施の形態では、巻枠1311は、例えば略円筒状をしており、円周方向に例えば複数の円周部材1312にて複数分割されている。例えば、巻枠1311は、円周部材1312a,1312b,1312c,1312dにて4分割されている。図7では、円周部材1312を図示していないが、円周部材1312a,1312b,1312c,1312dを総称して、「円周部材1312」とする。ここで、円周部材1312は、複数に分割された円周部材1312a,1312b,1312c,1312dの個々の周方向略中央近傍内周側に巻枠1311の回転軸1315に接続された円周部材保持軸1316(円周部材保持軸1316a,1316b,1316c,1316d)がそれぞれに設けられており、複数の円周部材1312が円周部材保持軸1316を介して巻枠1311の回転軸1315に接続・保持されている。巻枠1311の回転軸1315には、電動機などで駆動される駆動軸が挿入・接続されている。
 複数に分割された円周部材1312(本実施の形態では、4つの円周部材1312a,1312b,1312c,1312d)のうちの少なくとも1つの円周部材(本実施の形態では、半径方向に対向する2つの円周部材1312a,1312b)は、半径方向に伸縮・可動できる円周部材保持軸1316(本実施の形態では円周部材保持軸1316a,1316b)が設けられているので、連続したシート状繊維集合体1Jを巻枠1311に巻き付けた後に円周部材保持軸1316,1316bを半径方向中心側に向かって縮む方向に可動させることで、所定の張力をもって巻枠1311に略円筒状に巻きつけられている連続したシート状繊維集合体1Jの張力をゆるめることができ、巻枠1311から略円筒状に巻き付けられた連続したシート状繊維集合体1Jを回転軸1315の軸芯方向に抜き取ることができる。すなわち、巻枠1311に所定の張力を持って巻き付けられた連続したシート状繊維集合体1Jの張力をゆるめることにより巻枠1311に巻きつけられた連続したシート状繊維集合体1Jが巻枠1311から抜き取りやすくなるので、連続したシート状繊維集合体1Jを傷つけることなく容易に抜き取ることができる。
 ここで、巻枠1311には少なくとも1箇所に巻枠1311を抜き取った後に略円筒状の有機繊維集合体1を保持あるいは固定するクランプ部材1320が設けられている。本実施の形態では、クランプ部材1320は、少なくとも2箇所(対向する2箇所)の円周部材1312c,1312d、あるいは円周部材保持軸1316c,1316dにそれぞれ設けられたクランプ部材設置部1313c,1313dに着脱自在にそれぞれ設けられる。また、2つのクランプ部材設置部1313c,1313dは、半径方向に伸縮・可動できる円周部材保持軸1316(本実施の形態では、円周部材保持軸1316a,1316b)とは異なる部位(例えば、異なる円周部材保持軸1316c,1316d)に設けられている。
 このクランプ部材1320は、巻枠1311に連続したシート状繊維集合体1Jが略円筒状に巻きつけられた状態で、略円筒状の連続したシート状繊維集合体1Jの内周側と巻枠1311の外周側との間に、連続したシート状繊維集合体1Jを保持あるいは固定(たとえば挟みこんで保持あるいは固定)できるように設けられている。このクランプ部材1320は、例えば棒状や板状であって、連続したシート状繊維集合体1Jが巻きつけられる前から巻枠1311とは着脱自在に巻枠1311側に設けておいても良いし、巻枠1311に連続したシート状繊維集合体1Jが巻きつけられた状態で後から連続したシート状繊維集合体1J(内周側)と巻枠1311(外周側)との間に、例えば2箇所のクランプ部材設置部1313(例えば円周部材1312c,1312dや円周部材保持軸1316c,1316dにそれぞれ設けられたクランプ部材設置部1313c,1313d)に回転軸1315の軸方向から挿入するように設けて連続したシート状繊維集合体1Jを保持しても良いし、連続したシート状繊維集合体1Jを2箇所のクランプ部材設置部1313(例えば、クランプ部材設置部1313c,1313d)で2箇所を挟み込んで保持するようにしても良い。尚、図8ではクランプ部材設置部1313は図示していないが、クランプ部材設置部1313c,1313dを総称して、「クランプ部材設置部1313」とする。
 ここで、本実施の形態では、巻枠1311のうち、クランプ部材1320が設けられる円周部材1312(例えば、半径方向に可動しない円周部材1312c,1312d)の外周面側には、巻枠1311の回転軸1315の軸方向にクランプ部材が収納可能あるいは挿入可能なクランプ部材設置部1313(例えば回転軸1315方向に向かって、例えば所定の幅(あるいは長さ)を有するように設けられる凹部や切欠きなど)が設けられている。
 クランプ部材設置部1313(例えば1313c、1313d)に収納あるいは挿入されるクランプ部材1320は、例えば棒状や板状であって、連続したシート状繊維集合体1Jが巻枠1311に巻きつけられる前に、クランプ部材設置部1313(クランプ部材設置部1313c,1313d)に設けておいて連続したシート状繊維集合体1Jを巻枠1311に巻き取り後に円周部材1312a,1312bを半径方向の中心方向(縮む方向)へ可動させて巻枠1311に所定の張力で巻き付けられた略円筒状の連続したシート状繊維集合体1Jの張力をゆるめてから連続したシート状繊維集合体1Jをクランプ部材1320でクランプして(本実施の形態では少なくとも2箇所(クランプ部材設置部1313c,1313d)でクランプして)から巻枠1311から抜き取るようにすれば良い。
 または、巻枠1311に所定の張力で連続したシート状繊維集合体1Jが略円筒形状に巻きつけられた後、連続したシート状繊維集合体1Jの内周側と巻枠1311の外周側との間に位置する巻枠1311の可動しない円周部材1312c,1312dに設けられたクランプ部材設置部1313(クランプ部材設置部1313c,1313d)の凹部や切欠きなどに巻枠1311の回転軸1315の軸方向から少なくとも1つのクランプ部材1320を挿入して略円筒状の連続したシート状繊維集合体1Jをクランプして(本実施の形態では少なくとも2箇所(クランプ部材設置部1313c,1313d)でクランプして)から、円周部材1312a,1312bを半径方向の中心方向(縮む方向)へ可動させて巻枠1311に所定の張力で巻き付けられた略円筒状の連続したシート状繊維集合体1Jの張力をゆるめて巻枠1311を抜き取るようにしても良い。
 ここで、少なくとも1つのクランプ部材1320(本実施の形態では、2つのクランプ部材1320c,1320d)は、巻枠1311とは着脱自在に設けられており、巻枠1311の可動しない少なくとも1つの円周部材(本実施の形態では、2つの円周部材1312c,1312d)に設けられている。
 このように少なくとも1つの可動可能な円周部材1312a,1312bを張力がゆるむ方向に可動させることで、巻枠1311に所定の張力で巻き付けられた略円筒状の連続したシート状繊維集合体1Jの張力を容易に緩めることが可能である。したがって、連続したシート状繊維集合体1Jや有機繊維2を傷つけたり痛めたりすることなく簡単に連続したシート状繊維集合体1Jを巻枠1311から取り外すことができるので、構造簡単で信頼性の高い巻き取り装置を得ることができ、しかも低コストで信頼性の高い連続したシート状繊維集合体1Jや真空断熱材7を得ることができる。
 ここで、連続したシート状繊維集合体1Jをクランプする位置は、略円筒状の繊維集合体1Jの断面円の円周方向の周長を略同等長さに略2等分する位置の2箇所(巻枠1311の回転軸1315の軸方向に対して略直角方向の断面を考えた時の断面形状(略円筒形の場合は、断面形状は略円形になる)において、巻枠1311の回転軸1315の回転中心を通る直線が断面形状(断面の外形形状、円の場合は円周)と交わる2箇所(円の場合は円周と交わる2箇所))にしている。
 したがって、クランプする位置が略円筒状の断面の外形形状(略円筒形状の場合は、円形)の周長さを略2等分する2箇所の位置であるため、2つのクランプ部材1320(クランプ部材1320c,1320d)で連続したシート状繊維集合体1Jをクランプした状態のままで巻枠1311から取り外して2つのクランプ部材1320c,1320dを略直線方向反対側方向(略180度反対方向)に可動あるいは移動させることで複数回巻き付けられて複数積層された連続したシート状繊維集合体1Jは2つのクランプ部材1320c,1320dにより相反する方向に引っ張られるので、クランプ部材1320c,1320dにてクランプされる部分より連続したシート状繊維集合体1Jが折れ曲がった平板状に形成される。その後、クランプ部材1320(クランプ部材1320c,1320d)が複数層積層された状態で平板状に形成された連続したシート状繊維集合体1Jから抜き取られることで、連続したシート状繊維集合体1Jが連続したシート状のまま複数積層され、折れ曲がり端部5fで折れ曲がり平板(シート)状の平板部5gを有する所定の幅Hと長さLを有する平板状の芯材5が形成される。
(真空断熱材の製造方法2)
 次に図9に基づいて、本実施の形態での真空断熱材7の製造方法について説明する。図9は実施の形態1を示す図で、真空断熱材の製造方法を表す図である。図9において、図9(a)~(h)は、真空断熱材7の製造の工程を表している。図9(a)は、連続したシート状繊維集合体1J(例えば連続した有機繊維2で製造された有機繊維集合体1、不織布シート)を巻枠1311に巻き始める、巻き始めステップである。連続したシート状繊維集合体1Jが複数回巻きつけられて形成され、所定の幅に切断された原反ロール1301と、原反ロール1301に巻き付けられた連続したシート状繊維集合体1Jを巻き取る所定幅を有する巻枠1311と、を備え、原反ロール1301、巻枠1311を回転させることにより原反ロール1301に巻きつけられている連続したシート状繊維集合体1Jを巻枠1311に巻き付け始めるが、この工程が巻き始めステップである。
 図9(b)は、連続したシート状繊維集合体1Jが巻枠1311に所定回数Rだけ巻き付けられて巻き取りが終了する、巻き終わりステップである。巻き始めステップにて、原反ロール1301より巻枠1311に連続したシート状繊維集合体1Jが巻きつけられていくが、このとき、連続したシート状繊維集合体1Jの巻枠1311に巻き付けられた厚さa(図示せず)が、芯材5の必要な所定厚さtの半分の厚さt/2に相当するようになるので、所定の厚さaに相当する所定回数R回分だけ巻き付けられると、原反ロール1301、巻枠1311の回転が停止し、連続したシート状繊維集合体1Jの巻き取りが終了するが、この工程が巻き終わりステップである。
 図9(c)は、連続したシート状繊維集合体1J(例えば、有機繊維集合体1)を切断する切断ステップである。巻き終わりステップにて、連続したシート状繊維集合体1Jが巻枠1311に巻き付けられるが、巻きつけられる回数Rが、芯材5の必要な所定厚さtの半分の厚さt/2に相当する回数に達すると、原反ロール1301、巻枠1311の回転が停止するので、切断ステップでは、連続したシート状繊維集合体1Jを所定箇所で切断するステップであり、連続したシート状繊維集合体1Jを原反ロール1301と巻枠1311との間の所定の切断箇所において、所定の切断箇所の前後をクランプした状態で切断して、原反ロール1301を巻枠1311から切り離すステップである。
 ここで、巻枠1311に巻き取られた略円筒状の連続したシート状繊維集合体1Jは、クランプ部材1320(クランプ部材1320c,1320d)によりクランプされて保持される(図9(d)参照)。このとき、巻枠1311に巻き取られた連続したシート状繊維集合体1Jの切断された巻き終わり端部1Je(切断端面)が、ばらけたりしないように、あるいは巻き終わり端部1Je(切断端面)が芯材5に成形された時に、図5に示すように折れ曲がり端部5fに配置されるように(すなわち平板部5gに位置しないように)連続したシート状繊維集合体1Jはクランプ部材1320でクランプされる位置の後位置(例えばクランプされる位置の直後)で切断されることが望ましい。
 図9(d)は略円筒状の連続したシート状繊維集合体1J(例えば、有機繊維集合体1)をクランプ部材1320にてクランプする芯材固定ステップである。切断ステップにて、連続したシート状繊維集合体1Jが切断された後、巻枠1311に設けられた凹部や切欠きなどのクランプ部材設置部1313(クランプ部材設置部1313c,1313d)にクランプ部材1320が挿入されて連続したシート状繊維集合体1Jの巻き終わり端部1Je(切断端面)が、ばらけたりはがれたりしないように巻き終わり端部1Je(切断端面)近傍がクランプされる。
 図9(e)は巻枠1311の周方向に設けられた複数の円周部材(1312a~1312d)のうち、少なくとも1つの円周部材(1312a、1312b)を半径方向中心方向に可動・変形させて巻枠1311に巻き付けられた連続したシート状繊維集合体1Jの巻きつけ張力をゆるめる巻枠変形ステップである。芯材固定ステップにて、巻き終わり端部1Je(切断端面)近傍がクランプされるが、巻枠変形ステップでは、連続したシート状繊維集合体1Jは、巻枠1311に所定の厚さ(t/2)相当分の回数Rだけ巻き取られてクランプ部材1320(クランプ部材1320c,1320d)によりクランプされた状態で、巻枠1311の複数の円周部材1312(円周部材1312a~1312d)のうち、少なくと1つの円周部材(本実施の形態では、半径方向に対向する2つの円周部材1312a,1312b)が、巻枠1311の半径方向中心側に向かって縮む方向に可動する。すなわち、連続したシート状繊維集合体1Jが巻枠1311に巻き付けられた後に円周部材保持軸1316a,1316bが半径方向中心側に向かって縮む方向に可動することで、円周部材1312a,1312bも半径方向中心側に向かって縮む方向に可動する。
 したがって、円周部材1312a,1312bが半径方向中心側に向かって縮む方向に可動することで、所定の張力をもって巻枠1311に略円筒状に巻きつけられていた連続したシート状繊維集合体1Jの張力がゆるむので、巻枠1311から略円筒状に巻き付けられた連続したシート状繊維集合体1Jを容易に抜き取ることができる(巻枠1311の回転軸1315の軸芯方向からクランプされた連続したシート状繊維集合体1Jを容易に抜き取ることができる)。すなわち、巻枠1311に所定の張力を持って巻き付けられた連続したシート状繊維集合体1J(例えば、有機繊維集合体1)の張力をゆるめることにより巻枠1311に巻きつけられた連続したシート状繊維集合体1Jが巻枠1311から抜き取りやすくなる。
 図9(f)は、巻枠1311に巻き取られた連続したシート状繊維集合体1Jから巻枠1311を抜き取って、略円筒状の連続したシート状繊維集合体1Jから巻枠を分離する巻枠分離ステップである。巻枠変形ステップにて、巻枠1311の少なくとも1つの円周部材1312(円周部材1312a,1312b)が半径方向中心側に可動・変形して巻枠1311に巻き取られた連続したシート状繊維集合体1Jの巻きつけにより発生した張力がゆるめられるので、巻枠分離ステップでは、張力がゆるめられた略円筒状の連続したシート状繊維集合体1Jを巻枠1311から回転軸1315の軸心方向に抜き取る。あるいは、巻枠1311を略円筒状の連続したシート状繊維集合体1Jからクランプした状態のまま抜き取っても良い。
 図9(g)は巻枠1311と分離された略円筒状の連続したシート状繊維集合体1Jを成形部材であるクランプ部材1320(クランプ部材1320c,1320d)にて略反対方向(逆方向)に引っ張って平板状の芯材5を成形する芯材成形ステップである。巻枠分離ステップにて巻枠1311から成形部材であるクランプ部材1320にてクランプされた状態で連続したシート状繊維集合体1Jが分離されるが、芯材成形ステップでは、巻枠1311から2つのクランプ部材1320c,1320dにてクランプされた状態で抜き取られた略円筒状の連続したシート状繊維集合体1Jを、2つのクランプ部材1320c,1320dを略直線方向反対側にそれぞれ逆方向側に引っ張ることで略円筒状の連続したシート状繊維集合体1Jが成形部材であるクランプ部材1320のクランプ位置で折りたたまれるので、折れ曲がり端部5fと平板部1311gを有する平板状(シート状)の芯材5に成形される。成形部材であるクランプ部材1320によって平板状に成形された連続したシート状繊維集合体1Jから構成される芯材5は、2つのクランプ部材1320で折れ曲がり端部5fをクランプされた状態でコンベア1400上に移されて、クランプ部材1320が取り除かれることで芯材5として成形される。すなわち、連続した繊維(例えば、有機繊維2)から形成された連続した平板状(シート状)の連続したシート状繊維集合体1J(例えば、有機繊維集合体1)が内側から外側に向かって連続して巻かれて平板状の芯材5が形成、製造され、コンベア1400上を移動する。
 図9(h)は、コンベア1400上で成形された芯材5が、一端が開口した開口部4aを有するガスバリア性の外包材4に挿入された後に内部が減圧された状態で略密封されて真空断熱材7を製造する真空断熱材製造ステップである。連続したシート状繊維集合体1Jが複数層積層され、内側から外側に向かって連続して巻かれて平板状に形成された芯材5は、少なくとも一端が開口した開口部4aを有するガスバリア性の外包材4内に挿入され、真空炉内に運搬されて略真空状態で外包材4のシール部(例えば開口部4a)がヒートシールされることで真空断熱材7が完成する。
 ここで、巻枠1311の円周部材1312が巻き付け方向(円周方向、回転方向)にほぼ連続した円筒形状を成しているので、連続したシート状繊維集合体1Jを巻枠1311に巻き付けた時に巻きつけにより発生する張力が巻き付け方向(円周方向)に略均一になり、巻き付け時に連続したシート状繊維集合体1Jに傷付や切断などが発生せず、信頼性の高い芯材5、真空断熱材7が得られる。
 本実施形態では、巻枠1311に巻き付け方向(円周方向)がほぼ連続して略円筒状を成す円周部材1312を使用したが、略円筒形状でなくてもよく多角形(8角形状、6角形状、平板状など)でも良い。
 図10は実施の形態1を示す図で、別の巻枠の模式図である。図10において、(a)は8角形の巻枠の一例を表す図であり、(b)は8角形の巻枠に連続したシート状繊維集合体1Jを巻きつけた状態を表す図である。図に示すように、円周部材1312は、巻き付け方向(円周方向)に連続していなくても良い。図10において、巻枠1311は棒状(例えば角柱や円柱)の円周部材1312が円周方向に8箇所略均等に設けられており、回転軸1315を中心に回転することで原反ロール1301から連続したシート状繊維集合体1Jを巻き取るようにしている。図10に示すように、例えば、複数(例えば、8箇所)の円周部材1312が巻きつけ方向に連続していない場合は、巻き付け方向に略等間隔で配置された角柱状や円柱状などの複数の円周部材1312間(円周部材1312と円周部材1312の間の空間)にクランプ部材1320(図8参照、図10では図示せず)を挿入して巻枠1311に巻きつけられた連続したシート状繊維集合体1Jをクランプすることが可能となるので、クランプ部材設置部1313が不要となり、構造が簡単で軽量でしかも低コストの巻枠1311が得られる。
 本実施の形態では、連続した有機繊維2で形成された連続したシート状繊維集合体1Jが略円筒状の原反用ローラ1302に連続して巻き付けられて得られる長繊維不織布の原反ロール1301と、原反ロール1301とは別に設けられ、原反ロール1301の長繊維不織布の連続したシート状繊維集合体1Jを巻き取る所定の幅を有する巻枠1311と、を備えている。巻枠1311に原反用ローラ1302に巻きつけられている連続したシート状繊維集合体1J(例えば、有機繊維集合体1)を所定回数R(芯材5の必要な所定厚さtの半分の厚さt/2に相当)分だけ巻きつけることで芯材5の必要な所定厚さtだけ連続したシート状繊維集合体1Jが積層されるので、所定の大きさ(幅や長さ)にカットされた不織布シート(繊維集合体)を1枚づつ積層する必要がなく、安価な製造設備で簡単に低コストで芯材5を製造できる。
 すなわち、芯材5が、連続した繊維(例えば、有機繊維2)から形成された連続したシート状繊維集合体1J(例えば、有機繊維集合体1)が内側から外側に向かって連続して巻かれて平板状に形成されており、略長方形状で平板状の芯材5の4つある端面のうち長さ方向の端部(折れ曲がり端部5f)は連続したシートを折り曲げ(折りたたみ)成形しているので、折り曲げ加工(折りたたみ加工)された2つの折れ曲がり端部5fは、端面がカットされたものではないので折れ曲がり端部5fから有機繊維2がはみだしたりしないし、また端面がみだれたりしていないため端面をカットする必要がない。また、カットする箇所(部位)が少なくなり、低コストで加工が容易な芯材5や真空断熱材7が得られる。また、原反ロール1301を必要な所定幅にカットして使用する場合は、略長方形状で平板状の芯材5の4つある端面のうち、幅方向の2つの端面が芯材5の幅方向端面に相当することになり、芯材5の幅方向の2つの端面も原反ロール1301の時に予め所定幅にカットされていることになるため、芯材5に形成された後でカットする必要がなくなり、芯材5の製造ラインが簡略になり、低コストな芯材5、真空断熱材7が得られる。
 また、芯材5の端面から繊維がはみだしたり、端面がみだれたりしていないため端面をカットする必要がなくなるので、端面をカットすることにより残存繊維の繊維長が短くなり、残存繊維がカットした端面からはみ出して外包材4のシール部のシール性を損なうことも無くなる。
 また、図24に示されるように真空断熱材7,750,760に内側から外側に向かって連続して巻かれて平板状に積層された芯材5,550,560を使用した場合には、芯材5の長さ方向端部(折れ曲がり端部5f)の長さ方向の断面(幅方向に直角な断面)形状が略三角形状になる。図24は実施の形態1を示す図で、真空断熱材の形状を示す模式図で、図24(a)は真空断熱材7,750,750の長さ方向の断面(幅方向に直角な断面)図であり、図24(b)は真空断熱材7,750,760の長さ方向端部を長さ方向に直角な方向から見た要部正面図である。
 図24において、真空断熱材7,750,760に内側から外側に向かって連続して巻かれて平板状に積層された芯材5を使用した場合には、平板状の平滑部Lg(長さL1の部分)と断面が略三角形状の長さ方向両端部Lf(長さL2の部分)とから構成される。このとき、芯材5の長さ方向の両端部(折れ曲がり端部5f)が外包材4に挿入されて減圧された状態でシールされると、長さ方向両端部Lfの断面形状(幅方向に直角(垂直)な断面形状)が長さ方向に対し外側方向に向かって徐々に厚さが小さくなるような長さ方向の断面形状(幅方向に直角(垂直)な断面形状)が略三角形となるので、外包材4にしわがよりにくく、またやぶれにくくなり、信頼性の高い真空断熱材が得られる。すなわち、所定の幅を有し、長さ方向に連続したシート状の繊維集合体が内側から外側に向かって巻かれた状態で平板状に形成された積層構造の芯材5と、芯材5を開口部4aから内部に収納し、内部が減圧された状態で開口部4aがシールされるガスバリア性の外包材4と、を備え、芯材5が外包材4内で減圧された状態で前記芯材5の長さ方向端部(長さ方向の両端部である折れ曲がり端部5f)における幅方向に直角な断面形状が、長さ方向外側に向かって徐々に厚さが小さくなる略三角形である真空断熱材が得られる。また、1つの真空断熱材7,750,760を円筒形状に折り曲げるなどして加工する場合に長さ方向の端面同士を突き合わせて接続使用する場合や、2つ以上の複数の真空断熱材7,750,760の端面同士を突き合わせて使用する場合に、複数の真空断熱材7,750,760の略三角形状の端面の斜面部分(図24の斜面部Lfs)同士が接触するように接続すれば、接触部分の接合厚さを小さくでき、しかも接触部分からの熱漏れを低減でき、高性能な真空断熱材7,750,760、真空断熱材7,750,760を搭載した冷蔵庫などの機器を得ることができる。
(繊維集合体の積層方法、芯材の製造方法3)
 次に原反ロール1301を複数組み合わせて芯材5を製造する方法について説明する。図11乃至図14は実施の形態1を示す図で、図11は原反ロールを複数組み合わせて1つの大きな幅を有する組み合わせ原反ロールの構成を表す図、図12は組み合わせ原反ロールを2つ使用して巻枠に巻き取る場合の巻き取り装置の模式図、図13は組み合わせ原反ロールを2つ(上側原反ロール、下側原反ロール)使用する巻き取り装置にて巻き取られる有機繊維集合体の構成を表す模式図、図14は組み合わせ原反ロールを2つ使用する巻き取り装置にて巻き取られた芯材の断面図である。
 例えば、ほぼ同じ巻き回数(同じ積層枚数)だけ巻きつけられた複数の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)を幅方向(横方向)に隣接(隙間無く並べることが望ましいが後述するようにすきまが必要な場合は所定すきまを設けても良い)するように組み合わせ、所定幅を有する第1の原反ロール1305(上側ロール)を形成する。また、第1の原反ロール1305と同じように同じ巻き回数(同じ積層枚数)だけ巻きつけられた複数の原反ロール(例えば、本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301h、いずれも図示せず)を幅方向(横方向)に隣接(隙間無く並べることが望ましいが、所定すきまを設けても良い)するように組み合わせ、所定幅を有する第2の原反ロール1306(下側ロール)を形成する。
 ここで、複数の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)は同じ幅であっても異なる幅であっても良い。同様に複数の原反ロール(例えば、本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301h、いずれも図示せず)も同じ幅であっても異なる幅であっても良く、第1の原反ロール1305に使用される複数の原反ロールの数と第2の原反ロール1306に使用される複数の原反ロールの数は同じでも異なっても良い。
 第1の原反ロール1305、及び第2の原反ロール1306は、ともに複数の原反ロール(例えば複数の本体部)が隣接するように幅方向に並べられているので、隣り合う本体部間(例えば、本体部A1301a、本体部B1301bなど)には隙間(微小隙間、所定すきま)が存在し、隣り合う本体部(例えば、本体部A1301a、本体部B1301bなど)は連続しておらず断続するため、スリット部(例えば、本体部A1301aと本体部B1301bとの間のスリット部A、本体部B1301bと本体部C1301cの間のスリット部B、本体部C1301cと本体部D1301dの間のスリット部Cなど)が存在する。また、本実施の形態では、第1の原反ロール1305、第2の原反ロール1306の少なくとも1つは複数の原反ロールのうちの幅方向の端側に配置される原反ロール(例えば、本体部A1301aや本体部D1301d、本体部E1301eや本体部H1301hなど)に原反ロール素材を所定の幅にカットしたときに発生する稜線の揃っていない耳部を有する耳部原反ロールを使用している(図11参照)。
 本実施の形態では、第1の原反ロール1305に使用される複数の原反ロールの数(本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301dの4つ)と、第2の原反ロール306に使用される複数の原反ロールの数(本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301hの4つ)は同じにしている。また、第1の原反ロール1305に使用される複数の原反ロール(本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)と第2の原反ロール1306に使用される複数の原反ロール(本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301h)はそれぞれ幅方向に所定量Xb(図14参照)だけずらして配置されており、第1の原反ロール1305に巻かれている第1の(有機)繊維集合体1Kと第2の原反ロール1306に巻かれている第2の(有機)繊維集合体1Hが上下(シート面に対して略直角方向)に重なるようにしてシート面の幅方向に所定量Xbだけずれた状態で一緒に巻枠1311に巻き取られる。例えば、第1の(有機)繊維集合体1Kは、有機繊維集合体でもよいし、その他の繊維集合体(例えば、無機繊維集合体)でもよいことを示している。第2の(有機)繊維集合体1Hについても、同様である。このとき、第1の原反ロール1305と第2の原反ロール1306は、第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hの移動方向(巻き取られる方向))に対して前後方向、あるいは上下方向や斜め方向に配置される。第1の原反ロール1305の複数の原反ロールに対応する第2の原反ロール1306の複数の原反ロールの幅は略同等にして所定量Xbだけずらしている。
 すなわち、第1の原反ロール1305を構成する個々の原反ロール(例えば、本体部A1301a)とこの第1の原反ロール1305の後方(あるいは下方など)に配置される第2の原反ロール1306を構成する個々の原反ロール(例えば、本体部E1301e)の幅は略同等にしている。同様に個々の原反ロール(本体部B1301bと本体部F1301f、本体部C1301cと本体部G1301g、本体部D1301dと本体部H1301h)は、それぞれ略同等幅に設定されている。ただし、第1の原反ロール1305(上ロール)の所定幅と第2の原反ロール1306(下側ロール)の所定幅は略同等が望ましい。
 また、本実施の形態では、図12に示すように芯材製造装置の第1の原反ロール1305(上側ロール)と第2の原反ロール1306(下側ロール)との配置は、第1の原反ロール1305(上ロール)を第2の原反ロール1306(下側ロール)よりも巻枠1311方向(連続したシート状繊維集合体1Jの送り方向)に対して後ろ側(あるいは上側や斜め上側など)に配置している。すなわち巻枠1311方向に向かって、第2の原反ロール1306(下側ロール)、第1の原反ロール1305(上側ロール)の順に配置されている。このとき、第1の原反ロール1305(上側ロール)に巻かれている第1の(有機)繊維集合体1Kが第2の原反ロール1306(下側ロール)に巻かれている第2の(有機)繊維集合体1Hよりも上側に配置されている。巻枠1311で巻き取られるため、第1の原反ロール1305(上側ロール)に巻かれている第1の(有機)繊維集合体1Kが第2の原反ロール1306(下側ロール)に巻かれている第2の(有機)繊維集合体1Hに対して常に巻枠1311の半径方向外側に位置するように巻き取られるようにしている。ここで、第1の(有機)繊維集合体1Kと第2の(有機)繊維集合体1Hとが上下に重なった状態で巻枠1311に巻き取られる構成となるように第1の原反ロール1305(上側ロール)と第2の原反ロール1306(下側ロール)を配置すれば良い。
 ここで、製品で必要な所定幅が小さい場合(例えば、100mmとか200mm程度)であれば、原反ロール(第1の原反ロール1305(上側ロール)、第2の原反ロール1306(下側ロール)等)の製造も場所を必要とせず容易だが、製品で必要な所定幅が大きい場合(例えば、1100mmとか2000mmなど)には、原反ロール(第1の原反ロール1305(上側ロール)、第2の原反ロール1306(下側ロール)等)の製造が困難となる。また、製品によっては、幅の異なる真空断熱材7が必要な場合があるが、1つの原反ロールで対応しようとすると必要な所定幅の数だけ原反ロールが必要となり、原反ロールの製造が困難であるばかりか原反ロールの種類が多くなりコストアップとなる。したがって、本実施の形態では、複数の原反ロールを幅方向に隣接するように組み合わせて組み合わせロール(例えば第1の原反ロール1305、第2の原反ロール1306)として使用している。
 本実施の形態のように複数の幅の(幅の異なる)原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)を幅方向に隣接させて1つの大きな幅の原反ロール(例えば、第1の原反ロール1305)として使用するようにすれば、個々の原反ロールの幅が小さくて良くなるので原反ロール(例えば、本体部A1301aや本体部B1301bなど)の製造場所を選ばず容易に製造できる。しかも大きな幅の原反ロールが必要なときには、小さな幅の原反ロールを複数組み合わせて大きな幅の1つの原反ロール(例えば、第1の原反ロール1305や第2の原反ロール1306など)を製造することができるようになり、原反ロールの製造場所を選ばず、また原反ロールの種類を低減でき、低コストで設計の自由度の大きな芯材5、真空断熱材7を得ることができる。例えば、幅の異なる原反ロール(本体部A1301aや本体部B1301bなど)を複数組み合わせたり、幅が略同等の小さな原反ロール(例えば、本体部B1301bなど幅の同じ1つの原反ロール)を複数組み合わせて1つの大きな幅の原反ロールとしても良い。
 また、本実施の形態では、複数の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)から構成される組み合わせ原反ロールである第1の原反ロール1305(上ロール)に巻きつけられている第1の(有機)繊維集合体1Kと、複数の原反ロール(例えば、本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301h)から構成される組み合わせ原反ロールである第2の原反ロール1306(下ロール)に巻きつけられている第2の(有機)繊維集合体1Hとを、幅方向(横方向)に所定量Xb(例えば5mm~40mm程度、好ましくは10mm~20mm)だけずらして配置しているが、その理由は、以下による。
 (1)例えば、第1の原反ロール1305を構成する複数の原反ロール(本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)のうち幅方向に隣接する原反ロール(例えば、本体部A1301aと本体部B1301bなど)の接続部位は、実際には若干の隙間が存在するがもしも隙間無く接しているとしても隣接部位にはスリット部(例えば、本体部Aと本体部Bとの間にはスリット部A)が存在するため連続していないため、所定量Xbだけずらさずに複数枚積層するとスリット部(接続部、隣接部)が略同等位置にくるため、スリット部で分断されるようになる。すなわち、スリット部(接続部、隣接部)が連続していないためスリット部から折れたりちぎれたりするため芯材5としての必要曲げ強度が得られないし、スリット部(隣接部)が連続しておらず切れ目になっているのでそこからばらばらになってしまい外包材4がやぶれるなどして必要な幅の芯材5が得られなくなり、また、真空断熱材7としての性能も得られなくなる。本実施の形態では、第1の原反ロール1305(上ロール)に対して第2の原反ロール1306(下ロール)を所定量Xbだけラップするようにずらして複数層積層しているので、所定量Xbだけずれた部分の摩擦などによりスリット部(隣接部位)でばらばらになったり、分断されることがなくなり、必要な断熱性能を有する必要な所定の大きさの芯材5を得ることができる。
 (2)隣接部位で第1の原反ロール1305(上ロール)と第2の原反ロール1306(下ロール)とを所定量Xbだけラップするようにずらしているが、スリット部(隣接部位)が存在するため、第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hはそれぞれ同一平面上では連続していない。したがって、スリット部分で折れ曲がりやすくなる。従来の真空断熱材では、折り曲げるために凹溝加工を施すなど特別な工夫を行っており、製造コストがアップしているが、本実施の形態では、製造過程で隣接する部位(スリット部)が折れ曲がりやすく製造されるので、この折れ曲がりやすくなった部位を製品の折り曲げ必要な部位に配置して有効に利用している。例えば、冷蔵庫の場合では、背面壁と上面壁など所定の角度(例えば略90度)に折れ曲がった壁面間に跨って真空断熱材7を配置することが考えられるが、そのためには大きな真空断熱材7が必要で、しかも折り曲げることが必要なため、原反ロール素材を製造するための大きな製造設備が必要なため製造場所が限定されたり製造困難であり、折り曲げるための特別な加工が必要になるためコストアップにもなり対応困難であった。本実施の形態の真空断熱材7では、複数の原反ロールを幅方向に隣接させて大きな1つの原反ロールとして使用することが可能であり、しかも折り曲げが必要な部位にスリット部(隣接部)を配置すれば良いので、原反ロールの幅を小さな幅の原反ロールの組み合わせで自由に選定でき、また、折り曲げのための特別な加工が不要であり、また、小さな幅の原反ロールを複数組み合わせることで大きな幅の芯材5を製造できるので、従来は困難であった冷蔵庫などの所定の角度で折れ曲がった壁面間に跨って真空断熱材7を配置することが可能となる。
 (3)幅方向両端をカットする前の原反ロール素材の幅方向の両側端部は、耳部と言われ、有機繊維集合体1、連続したシート状繊維集合体1Jの繊維が必要な厚さ分だけ存在せず厚さにバラツキが生じたり、幅方向端面の稜線が揃っていないため、原反ロールとして使用するに際しては、原反ロール素材をあらかじめ必要な所定幅で両側をカッとして原反ロールとして使用している。したがって、この原反ロール素材から幅方向の両側部分の耳部がカットされた耳部原反ロールは、強度が弱く端面(稜線)が揃っていないため従来は廃棄されていた。本実施の形態では、従来は廃棄されていた耳部原反ロール(本実施の形態では、例えば本体部A1301aや本体部D1301dが相当する)を図11に示すように第1の原反ロール1305や第2の原反ロール1306を構成する複数の原反ロールのうち幅方向両側に使用される原反ロール(例えば本体部A1301aや本体部D1301dなど)に使用しており、第1の原反ロール1305や第2の原反ロール1306を所定量Xbだけずらして複数層積層するので、交互に耳部と耳部でない部分が積層されるようになり、耳部位置がずれて配置されるので、耳部と耳部が連続して積層されることがない。よって耳部原反ロールを使用しても芯材5に必要な強度が得られる。
 ここで、図11に示すように第1の原反ロール1305は、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301dが幅方向に順に隣接するように配置されているが、ここで、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301dの幅はそれぞれT1、T2、T3、T4であり、第1の原反ロール1305の幅はTA(TA=T1+T2+T3+T4)である。したがって、製品に必要な所定幅に合わせて第1の原反ロール1305の個々の原反ロールの幅(T1、T2、T3、T4)を決定すれば良い。同様に第2の原反ロール1306の個々の原反ロールの幅も決定すればよい。すなわち、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301dの幅(本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301hの幅)を選定すればよい。このとき幅T1、T2、T3、T4は同じでも異なっても良い。
 したがって、複数の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d、本体部E1301e、本体部F1301f、本体部G1301g、本体部H1301h)の幅を個別に適宜選定できるので、設計の自由度が増加し、低コストな芯材5、真空断熱材7、および冷蔵庫などの機器が得られる。また、第1の原反ロール1305と第2の原反ロール1306を所定量Xbだけずらして巻枠1311に巻き取って芯材5を製造するので、スリット部で折り曲げ容易となり、折り曲げ可能な真空断熱材7を特別な加工などが不要で容易に製造でき、所定角度で折れ曲がったような断熱壁面を有する冷蔵庫などの機器の断熱壁にも容易に設置することができ、したがって、真空断熱材7の被覆率を大きくすることが可能であり、高性能で低コストな真空断熱材や機器を得ることができる。
 図13に示すように、連続したシート状繊維集合体1Jは巻枠1311に巻き取られるときには、第1の原反ロール1305(上側ロール)よりの第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka~1Kd、上側有機繊維集合体)と第2の原反ロール1306(下側ロール)よりの第2の(有機)繊維集合体1H(第2の(有機)繊維集合体1Ha~1hd、下側有機繊維集合体)は所定量Xbだけずれた状態で巻枠1311に巻き取られる。巻枠1311に巻き取られた状態での巻き取り方向に垂直な断面での第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hは、図14に示すように、所定量Xbだけずれた状態で交互に積層されており、内側から外側に向かって連続的に巻き付けられて積層されている。したがって、第1の(有機)繊維集合体1Kと第2の(有機)繊維集合体1Hとが所定量Xbだけずれているので、第1の(有機)繊維集合体1K(上側有機繊維集合体)の第1のスリット部57(上側スリット部)と第2の(有機)繊維集合体1H(下側有機繊維集合体)の第2のスリット部58(下側スリット部)との距離がずれ量Xbに相当し、このXbの量だけ第1の(有機)繊維集合体1Kと第2の(有機)繊維集合体1Hが重なって積層されることになり、摩擦などにより第1の(有機)繊維集合体1Kと第2の(有機)繊維集合体1Hとが分離しにくくなっている。
 ここで、有機繊維集合体1(連続したシート状繊維集合体1J、第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1H)が複数積層された芯材5は、真空引きされた状態(減圧された状態)での厚さtが厚くなればなるほど折り曲げにくくなるが、本実施の形態では、所定量Xbだけ離れた位置に2つのスリット部(第1のスリット部57、第2のスリット部58)が存在するため、これら2つのスリット部(第1のスリット部57、第2のスリット部58)で2段階に折り曲げることで厚さが厚くなっても容易に折り曲げる(所定の折り曲げ角度を得る)ことが可能になる。
 本実施の形態では、芯材5の厚さに応じてラップ代Xbを決定している。すなわち芯材5の厚さが小さいときは所定量Xbは小さくて良いが、芯材5の厚さが大きくなれば曲げにくくなるため所定量Xbを適宜大きくして対応している。ここで、所定量Xbは小さすぎると重なる長さ(ラップ代)が短くなり摩擦力が得られなくなって、第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hが、ラップ部(本体部間)で分離してしまい所定幅の芯材5が得られなくなるので、本実施の形態では、ラップ代Xbは7mm以上(好ましくは10mm以上)としている。ラップ代が5mmの場合には、ラップ代が短いために必要な摩擦力が得られず第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hの個々の有機繊維集合体(第1の(有機)繊維集合体1Ka~1Kd、第2の(有機)繊維集合体1Ha~1Hd)がスリット部より分離してしまい、所定の幅を有する芯材5が得られなかった。ここで、ラップ代Xbが10mm以上の場合は、ラップ部に耳部を使用しても安定して摩擦力を得ることができ、しかも熱伝導率の低下も小さく抑えられることが分かった。
 また、ラップ代Xbは、大きければ大きいほど必要な摩擦力が大きく得られるので芯材5としては信頼性が向上して良いが、真空断熱材7の厚さに対してラップ代Xbが大きすぎると折り曲げ時に2つのスリット部間の距離(Xb)が大きくなり折り曲げ部の幅が大きくなり、また、折り曲げにくくなるので、真空断熱材7を折り曲げる場合には、ラップ代Xbは真空断熱材7の厚さの3倍程度以下が良い(例えば、真空断熱材の厚さtが10mmのときはラップ代Xbは30mm程度以下が良い)。
 図15は実施の形態1を示す図で、原反ロールを3つ組み合わせた組み合わせ原反ロールを使用して巻枠に巻き取って芯材550を製造した場合の芯材550の斜視図である。図15において、芯材550は、図11~図14に示した芯材5と同様の要領により、第1の原反ロール1305(上側ロール)よりの第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka,1Kb,1Kd)(上側有機繊維集合体)と、第2の原反ロール1306(下側ロール)よりの第2の(有機)繊維集合体1H(第2の(有機)繊維集合体1Ha,1Hb,1Hd)(下側有機繊維集合体)は所定量Xbだけずれた状態で巻枠1311に巻き取られ、内側から外側に向かって連続的に巻き付けられて積層される。そして、2つのクランプ部材1320で2箇所をクランプされてクランプされた部分で折り曲げられて平板状の芯材550が製造される。但し、図15では、同図に示す符号以外は省略している。真空断熱材702(図示せず)は、芯材550を用いて製造されるものとする。
 芯材550は、クランプ部材1320によって折り曲げられた(折りたたまれた)2つの折り曲げ部551f(折り曲げ端部)と、2つの折り曲げ部551f間に設けられる平板状の平板部551g(平滑部)とから構成される。また、第1の(有機)繊維集合体1K(上側有機繊維集合体)の個々の第1の(有機)繊維集合体1Ka,1Kb,1Kdの隣接部が、図14に示した第1のスリット部57(上側スリット部)であり、第2の(有機)繊維集合体1H(下側有機繊維集合体)の個々の第2の(有機)繊維集合体1Ha,1Hb,1Hdの隣接部が、第2のスリット部58(下側スリット部)である。この第1のスリット部57と第2のスリット部58との幅方向の距離(長さ)がずれ量Xbに相当する。したがって、この第1のスリット部57及び第2のスリット部58にて容易に折り曲げ加工が行える。
 ここで、巻き終わり端部551Jeは、図15では平板部551g上に配置されているが、折り曲げ部551f近傍に配置されることが望ましい。巻き終わり端部551Jeが平板部551gに配置されると平板部551gに段差が生じやすくなるので好ましくない。また、クランプ部材1320によって芯材551を平板状に形成するときに巻き終わり端部551Jeがクランプ部材1320の位置から離れるため、このクランプ部材1320の位置と巻き終わり端部551Jeまでの長さが長くなる。このクランプ部材1320の位置と巻き終わり端部551Jeまでの第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hの部分はクランプされていないため芯材550から、ばらけて折れ曲がったりする恐れがあるので、巻き終わり端部551Jeはクランプ部材1320でクランプ可能な折り曲げ部551f近傍になるようにカットした方が好ましい。クランプ部材1320にてクランプした後(直後が好ましい)でカットするのが好ましく、折り曲げ部551f近傍で平板部551gに段差が生じない範囲でカットするのが好ましい。ばらばらになって折れ曲がったりする恐れが低減し、しかも平板部551gに段差が生じにくく、段差がひっかかったりせず、また見た目も良い。
 図16は実施の形態1を示す図で、別の組み合わせ原反ロールの構成について説明するための図である。ここで、図16に示すように、複数の原反ロールで構成される組み合わせ原反ロールである第1の原反ロール1305や第2の原反ロール1306に3つの原反ロール(本体部A1301a、本体部B1301b、本体部D1301d)を使用する場合に、幅方向両側の原反ロール(本体部A11301a、本体部D1301d1)に片側が耳部である耳部原反ロールを使用しても良い。この場合には、耳部原反ロールの耳部が中央に配置される耳部を有さない原反ロールである本体部原反ロールである本体部B11301b側を向くように並べても良い。
 図16において、組み合わせ原反ロールである第1の原反ロール1305(上側ロール)は、本体部A1301a、本体部B1301b、本体部D1301dから構成され、本体部A1301a、本体部B1301b、本体部D1301dの順に隣接するように幅方向に並べられている。すなわち、幅方向中央位置には耳部を有さない本体部原反ロールである本体部B1301b、その両側に耳部を有する耳部原反ロールである本体部A1301a、本体部D1301dが配置されており、耳部原反ロールの耳部側が、中央位置に配置される耳部を有さない本体部B1301b側に隣接するように配置されている。図示はしないが、組み合わせ原反ロールである第2の原反ロール1306(下側ロール)も、第1の原反ロール1305(上側ロール)と同様の構成である。すなわち、幅方向中央位置には耳部を有さない本体部原反ロールである本体部F1301f、その両側に耳部を有する耳部原反ロールである本体部E1301e、本体部H1301hが配置されており、耳部原反ロールの耳部側が、中央位置に配置される耳部を有さない本体部本体部F1301f側に隣接するように配置されている。図示はしないが、図16の原反ロールで成形されるものも芯材550とし、真空断熱材702が、芯材550を用いて製造されるものとする。
 このように耳部原反ロールに巻かれている耳部有機繊維集合体の耳部が組み合わせロールである第1の原反ロール1305や第2の原反ロール1306の幅方向両端側に配置されないようにしているので、巻枠1311に巻き取られて芯材550が成形されたときに、幅方向両側には、耳部でなくカット面がくるので芯材550の幅方向の両側をカットする必要がなくなり、低コストの真空断熱材702が得られる。このとき、幅方向中央位置に耳部を有さない本体部原反ロール(本体部B1301b)、その両側に耳部を有する耳部原反ロール(本体部A1301a、本体部D1301d)を配置する場合に、耳部原反ロール(本体部A1301a、本体部D1301d)の耳部のうち、どちらか1つの耳部が中央位置の本体部原反ロール(本体部B1301b)側に隣接するように配置しても良い。組み合わせ原反ロールの片側にのみ耳部がくるように耳部原反ロールを配置してもよく、この場合には、組み合わせ原反ロールの両側に耳部原反ロールを配置する場合に比べて一方の幅方向側のみをカットすればよいので、低コストな真空断熱材702が得られる。もちろん、耳部を有する耳部原反ロール(本体部A1301a、本体部D1301d)であっても、耳部の繊維が必要な厚さ分だけ存在して厚さのバラツキが小さかったり、端面位置(稜線)のバラツキが小さく芯材550や真空断熱材702の断熱性能や製造上問題ないレベルであれば、耳部原反ロールを組み合わせ原反ロールの幅方向端側に使用しても幅方向端面をカットする必要はない。
 したがって、本実施の形態では、芯材550の製造に関し、1枚ずつ積層する必要がなく、繊維集合体IJを巻き取るだけの簡単な設備で製造できるので、組み合わせ繊維集合体IJである第1の(有機)繊維集合体1K(例えば、第1の(有機)繊維集合体1Ka~1Kd)あるいは第2の(有機)繊維集合体1H(例えば、第2の(有機)繊維集合体1Ha~1Hd)を構成する複数の繊維集合体(例えば、第1の(有機)繊維集合体1Ka~1Kd、第2の(有機)繊維集合体1Ha~1Hd)の少なくとも1つに、従来は廃棄されていた幅方向端側に稜線の揃っていない(カット面ではない)耳部を有する耳部繊維集合体(例えば、耳部原反ロールである本体部A1301aや本体部D1301daに巻かれている繊維集合体)を容易に使用することができる。よって、従来は廃棄されていた耳部を有する耳部繊維集合体(耳部原反ロールに巻かれている繊維集合体)をカットしたりすることなく、耳部原反ロールをそのまま利用でき、無駄が生じない。したがって、低コストな芯材550や真空断熱材702が得られる。
 図17は実施の形態1を示す図で、真空断熱材750を折り曲げた様子を表した斜視図である。図17において、図17(a)は真空断熱材750を折り曲げた状態の斜視図、図17(b)は真空断熱材750の折り曲げ部の要部拡大図である。真空断熱材750は、芯材550がガスバリア性を有する外包材4内に挿入され、内部が減圧された状態でシールされている。真空断熱材750は芯材550の第1のスリット部57、第2のスリット部58の部分で2段階で折り曲げられて折り曲げ部59を形成している。このとき、折り曲げ部59の幅はラップ代Xbの幅で折り曲げられている。ラップ代Xbの幅は、第1のスリット部57と第2のスリット部58との距離(長さ)に相当し、略同等長さである。
 また、真空断熱材750は、有機繊維集合体1、連続したシート状繊維集合体1Jを幅方向にラップ代Xbだけずらして2枚重ねて複数積層しているので、ラップ代Xbだけずらしたことにより第1のスリット部57、第2のスリット部58が外包材4内に挿入されて減圧したときに外包材4が第1のスリット部57、第2のスリット部58で、それぞれ凹んで凹み部751,752が形成される。また、この2つの第1のスリット部57、第2のスリット部58の部分がそれぞれ凹んだ2つの凹み部751,752間に突出するように略台形形状の突出部753が形成される。折り曲げ部59は、2つの第1のスリット部57、第2のスリット部58の部分がそれぞれ凹んだ凹み部751,752と、2つの凹み部751,752間に突出するように形成される略台形形状の突出部753と、からなるので、この凹み部751,752を基点にして略台形形状の突出部753の斜面を利用することで容易に折り曲げることができる。また、第1のスリット部57、第2のスリット部58の部分の凹み部751,752とこれら凹み部751,752間に形成される台形形状の突出部753が真空断熱材750の厚さ方向の両側にできるため、例えば真空断熱材750の厚さが厚くなった場合であってもシート面の両側に形成される第1のスリット部57、第2のスリット部58の部分で容易に折り曲げ可能となるため折り曲げても外包材4が破れたり傷ついたりして断熱性能が低下することもなくなるので、信頼性が高く、断熱性能の低下を抑制でき、厚さによらず曲げ加工が可能な設置の自由度の高い真空断熱材が得られる。
 本実施形態のように複数の第1のスリット部57、第2のスリット部58により形成される凹み部751,752と、この第1のスリット部57、第2のスリット部58に形成される略台形形状の突出部753とによって構成される折り曲げ部59を備えた真空断熱材750において、厚さtが5mm、7mm、10mm、30mmで折り曲げ確認を行ったが、いずれも問題なかった。ただし、真空断熱材7の厚さtが厚くなると(例えばt=30mmの場合は)、図12や図13に示されるように有機繊維集合体1、連続したシート状繊維集合体1J(第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1H)の重ねる枚数が2枚(図12では、第1の(有機)繊維集合体1K、第2の(有機)繊維集合体1Hの2枚)だと1箇所の折り曲げ部59に対してスリット部が2箇所のため凹み部751,752も2箇所と少なく曲げづらいので、重ねる枚数は3枚以上にして1箇所の折り曲げ部59に対するスリット部を3箇所以上にしてスリットによる凹み部を3箇所以上にした方がよく、真空断熱材750の厚さtや有機繊維集合体1の材料や特性や外包材4の材質や引っ張り強度などによって適宜選定すればよい。
 以上より、本実施の形態のように、有機繊維集合体1、連続したシート状繊維集合体1Jを複数枚(例えば2枚)重ねて幅方向に所定長さ(ラップ代Xb)だけずらして複数回積層して芯材5,550を製造するようにすれば、1箇所の折り曲げ部に対するスリットの数も有機繊維集合体1、連続したシート状繊維集合体1Jを重ねた枚数の数(複数個、例えば3枚重ねてずらした場合は1箇所の折り曲げ部に対してスリットは3つ)できるので、真空断熱材750の厚さが厚くなってもシート面の両面側に設けられるスリット部(例えば、第1のスリット部57、第2のスリット部58)により形成される凹み部751,752によって折り曲げ部59より容易にシート面の両側に折り曲げることが可能となる。
 ここで、ラップ代Xbが大きくなると、図18に示すように真空断熱材750の幅方向の両端部にラップ代Xbと略同等長さ分だけ厚さの薄い部分が生じる。図18は実施の形態1を示す図で、真空断熱材750を幅方向から見た図である。真空断熱材750は、所定の厚さtを有する所定厚さ部750cと、所定の厚さtの約1/2の厚さを有し、所定厚さ部750cの幅方向両側に設けられた薄肉部750a,750bを有する。この薄肉部750a,750bは所定厚さ部750cよりも断熱厚さが薄いので、所定厚さ部750cに比べて断熱性能が若干低下する。したがって、ラップ代Xbが大きくなると、薄肉部750a,750bの幅H1,H2(ラップ代Xbの長さと略同等長さ)が大きくなるので、ラップ代はあまり大きすぎない方が良い。すなわち、ラップ代Xbは、真空断熱材750を折り曲げて使用する場合には、7mm以上30mm程度以下が好ましい。
 また、折り曲げて使用しない場合には、ラップ代Xbは大きければ大きいほど摩擦力が大きくなり信頼性が向上するので、ラップ代Xbは7mm以上、好ましくは10mm以上が良く、ラップ代Xbが大きくなればなるほど薄肉部750a,750bの長さが大きくなり、断熱性能が若干低下する部分が大きくなるので、ラップ代Xbは30mm程度以下が好ましい。また、ラップ代Xbは真空断熱材750の厚さtにも影響されるので、真空断熱材750の所定厚さtの1倍以上5倍以下(好ましくは3倍以下)程度が良い。本実施の形態では、所定量Xbを7mm以上として芯材550がばらばらになることを抑制し、所定量Xbを外包材4内で略真空状態の芯材550の厚さtの3倍程度以下として折り曲げ性が良好で、しかも芯材550の幅方向両端部の幅を小さくして断熱性能の低下を抑制するようにしている。また、減圧時の芯材550の厚さによってラップ代Xbの範囲を設定すれば、信頼性(芯材550がスリット部で分離やバラけたりしない)が得られ、また、折り曲げやすく断熱性能の良い芯材550や真空断熱材750が得られる。
 本実施の形態では、2つのスリット部(第1のスリット部57、第2のスリット部58)で2段階に折り曲げた例を示したが、原反ロールを複数組み合わせた組み合わせ原反ロールを2つ使用するのでなく複数個使用して複数の組み合わせ原反ロールを所定量Xbだけずらした状態で重ねて巻枠に巻き取るようにすればスリット部が複数存在するので、複数段階で折り曲げることが可能となり、1個のスリット部での折り曲げ角度を小さくできるので、芯材550や外包材4に折り曲げ時に無理な力がかからず容易に所定の角度に折り曲げることが可能となる。また、1箇所の折り曲げ部59に対して複数段階で折り曲げることが可能となるため、鋭角にも折り曲げることが可能となりあらゆる機器の断熱材として適用が可能となる。したがって、冷蔵庫や空調機などの機器の凝縮パイプなどの配管を断熱することも可能となる。また、本実施の形態の真空断熱材は曲げ加工性に優れるので、真空断熱材と真空断熱材の間に凝縮パイプなどの配管を挟みこんで断熱しても配管形状に沿って曲げ変形させることができ、真空断熱材間とパイプとのすきまからの熱漏れを抑制でき、断熱性能の低下も抑制できる。
 すなわち、本実施の形態の真空断熱材7,702,750は、長さ方向に連続したシート状の有機繊維集合体1、連続したシート状繊維集合体1Jが幅方向に複数隣接して並んだ第1の(有機)繊維集合体1Kと、第1の(有機)繊維集合体1Kに対して上下あるいは前後あるいは左右に重なるように設けられ、長さ方向に連続したシート状の有機繊維集合体1、連続したシート状繊維集合体1Jが幅方向に複数隣接して並んだ第2の(有機)繊維集合体1Hと、第1の(有機)繊維集合体1Kと第2の(有機)繊維集合体1Hが幅方向に所定量Xbだけずれた状態で内側から外側に向かって連続して巻かれて平板状に形成された連続したシート状繊維集合体1Jの積層構造で構成される芯材5,550と、芯材5,550を内部に収納し、内部が減圧された状態で周囲がシールされるシール部を有するガスバリア性の外包材4と、を備え、外包材4の内部を略真空状態にしてシール部をシールすることで外包材4を密封するので、小さな幅の連続したシート状繊維集合体1J(原反ロールの本体部に巻かれた繊維集合体)を複数組み合わせることで大きな幅の芯材5,550を形成できる。また、複数の有機繊維集合体1、連続したシート状繊維集合体1Jの数や複数の有機繊維集合体1、連続したシート状繊維集合体1Jの幅を適宜選定することによって、連続したシート状繊維集合体1Jの幅にとらわれずに芯材5,550の幅を自由に設定できるので、芯材5,550や真空断熱材7,702,750の設計の自由度が大きくなる。また、連続したシート状繊維集合体1Jを複数層積層するためにわざわざ1枚ごとに所定の大きさにカットして1枚ずつ積層する必要もないので、切断設備や積層設備などが不要であり、芯材5,550の製造が連続したシート状繊維集合体1Jを巻き取るだけの簡単な設備で短時間で容易に芯材5,550が製造できる。
 また、折り曲げが必要な部位にスリット部(隣接部)が配置できるように有機繊維集合体1、連続したシート状繊維集合体1Jの幅(原反ロールの本体部の幅)を適宜選定でき、また、第1の(有機)繊維集合体1Kと、第2の(有機)繊維集合体1Hのラップ代(所定量Xb)を適宜選定することが可能であり、折り曲げのための特別な加工が不要となる。また、折り曲げ部59がシート面に対して表裏両面に形成されるので、第1のスリット部57、第2のスリット部58を利用してシート面に対して表裏両方向に容易に折り曲げることが可能となる。
 また、第1の(有機)繊維集合体1Kあるいは第2の(有機)繊維集合体1Hの隣接する繊維集合体1J(本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)間の接続部で折り曲げ可能としたので、別途、折り曲げのための凹部などの加工を行う必要がなく、芯材550を製造する過程で形成される第1のスリット部57、第2のスリット部58による凹み部751,752で容易に折り曲げることが可能となる。また、第1のスリット部57、第2のスリット部58により形成される凹み部751,752が真空断熱材750の厚さ方向の両側(シート面の表裏)にできるため、例えば芯材550の厚さが厚くなった場合であってもシート面の両面側に第1のスリット部57、第2のスリット部58が形成されるので、片面側に形成される場合に比べて容易に折り曲げ可能となるため、折り曲げ時に芯材550や外包材4が破れたり傷ついたりすることもなくなり、断熱性能が低下することが抑制できる。
 また、所定量(ラップ代)Xbを7mm以上、外包材4内で略真空状態の芯材5の厚さtの3倍以下とすれば、ラップ代Xbが7mm以上のため、芯材5がばらばらになるのを抑制でき、しかもばらばらになって断熱性能が低下するのも抑制できる。また、ラップ代Xbを外包材4内で略真空状態の芯材5の厚さtの3倍以下としているので、折り曲げ部59での折り曲げ性も良好にできる。したがって、冷蔵庫などの所定の角度で連続した2つの壁面を有する機器の断熱材として容易に適用でき、しかも断熱性能の低下が抑制できる。
 また、第1の(有機)繊維集合体1Kあるいは第2の(有機)繊維集合体1Hを構成する複数の繊維集合体1J(例えば、第1の(有機)繊維集合体1Ka~1Kd、第2の(有機)繊維集合体1Ha~1Hd)の少なくとも1つに幅方向端側に稜線の揃っていない(カット面ではない)耳部を有する耳部繊維集合体を使用するようにした場合、従来は廃棄されていた耳部を有する耳部繊維集合体(耳部原反ロールに巻かれている繊維集合体)を使用することができ、素材の無駄が生じない。したがって、低コストな芯材5,550や真空断熱材7,702,750が得られる。
 また、本実施の形態の真空断熱材を適用した冷蔵庫や機器は、真空断熱材を第1の(有機)繊維集合体1Kあるいは第2の(有機)繊維集合体1Hの隣接する繊維集合体間の接続部(スリット部)で所定角度(例えば略90度)に折り曲げ、上面、両側面、背面、底面を有する断熱箱体の少なくとも2つの連続する壁面に配置するようにしたので、従来は真空断熱材を自由に必要な所定角度に折り曲げることが困難だったため連続する2つの壁面への適用も困難だったが、本実施の形態の真空断熱材750を使用すれば必要な箇所で折り曲げ容易となるため、所定の角度を有する2つの連続する壁面へも適用可能となる。したがって、所定の角度を有する2つの連続する壁面間の角部にも真空断熱材を連続して配置できるので、冷蔵庫などの機器の扉を除いた箱体(外箱)の外表面積に対する真空断熱材の被覆率を大幅に向上させることができる。例えば、冷蔵庫の場合であれば、従来は困難であった外箱表面積に対する被覆率80%以上が可能となる。
(芯材の製造方法4)
 以上は、シート状の繊維集合体1を所定の大きさにカットして複数枚積層して芯材5を形成して真空断熱材7を製造したり、シート状の繊維集合体1を複数積層した後に端面5aをカットして所定の大きさに形成して芯材5を形成して真空断熱材7を製造する場合(芯材の製造方法1)や、連続したシート状繊維集合体1J(例えば、有機繊維集合体)を連続してコイル状に巻き取って芯材5を製造する方法(芯材の製造方法2)や、原反ロールを幅方向に複数組み合わせて1つの大きな幅を有する組み合わせ原反ロール(たとえば組み合わせ原反ロール1305,1306)を複数組み合わせてシート面に対して略直角方向に重ねた状態で巻き取って芯材5,550を製造する方法(芯材の製造法3)について説明した。
 上述した芯材の製造方法3では、複数の原反ロールを幅方向に複数並べて1つの所定幅を有する組み合わせ原反ロールである第1の原反ロール(上側原反ロール)1305と、複数の原反ロールを幅方向に複数並べて1つの所定幅を有する組み合わせ原反ロールである第2の原反ロール(下側原反ロール)1306と、少なくとも1つづつ使用し、第1の原反ロール1305の繊維集合体1Kと第2の原反ロール1306の繊維集合体1Hをシート面に対して略直角方向(巻枠1311の半径方向)に重ねて巻枠1311に巻き取って芯材5を製造する方法について説明したが、ここでは、組み合わせ原反ロールである第2の原反ロール1306の代わりに第1の所定幅を有する単一の原反ロールである第3の原反ロール1307を使用する場合について説明する。
 すなわち、少なくとも1つの原反ロールが所定幅を有する連続したシート状の繊維集合体1、1J(例えば、有機繊維集合体)を連続してコイル状に巻き取った第1の所定幅を有する第3の原反ロール1307の繊維集合体1、1Jと、第1の所定幅よりも小さい幅を有し連続したシート状の繊維集合体を幅方向に複数組み合わせて略第1の所定幅とする組み合わせ原反ロールである第1の原反ロール1305の繊維集合体1Kとをシート面に略直角方向に重ねた状態で第1の原反ロール1305が第3の原反ロール1307に対して巻枠1311の半径方向外側になるように巻き取って芯材560を製造する方法について図20~図23を用いて説明する。
 図20は、第1の所定幅を有する少なくとも1つの原反ロール1307と、第1の所定幅よりも小さな幅の原反ロールを第1の所定幅と略同等になるように幅方向に組み合わせた少なくとも1つの組み合わせ原反ロール1305とを使用して巻枠1311に巻き取る場合の巻き取り装置の模式図であり、本実施の形態の別の芯材の製造法を表す図である。図21は少なくとも1つの所定幅を有する原反ロール1307と、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材の斜視図である。図22は少なくとも1つの所定幅を有する原反ロールと、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材の断面図であり、図23は少なくとも1つの所定幅を有する原反ロールと、少なくとも1つの組み合わせ原反ロールを使用して巻枠に巻き取って製造した芯材を使用した真空断熱材の斜視図である。
 複数の原反ロールのうち、少なくとも1つの原反ロールが第1の所定幅を有する長さ方向に連続したシート状の繊維集合体1、1J(例えば、有機繊維集合体)を連続してコイル状に巻き取った第1の所定幅を有する第3の原反ロール1307と、第1の所定幅よりも小さい第2の所定幅を有する長さ方向に連続した繊維集合体が第1の所定幅と略同等幅となるように複数組み合わされた少なくとも1つの組み合わせ原反ロール(たとえば第1の所定幅よりも小さい幅である第2の所定幅の原反ロールのみの組み合わせ、あるいは第2の所定幅の原反ロールと第2の所定幅よりも小さい幅の第3の所定幅の原反ロールとの組み合わせ,あるいは耳部原反ロールとの組み合わせなど)である第1の原反ロール1305とを繊維集合体1、1J、1Kのシート面に略直角方向で第3の原反ロール1307の繊維集合体1、1Jが巻枠1311の半径方向内側になるように重ねた状態で巻き取って芯材560を製造する場合について説明する。
 図において、第1の原反ロール1301は、図12で説明した第1の原反ロール1305(あるいは第2の原反ロール1306)と同等であり同等部分は同一の符号を付して詳細説明は省略するが、ほぼ同じ巻き回数(同じ積層枚数)だけ巻きつけられた略円筒状(あるいはコイル状)の複数の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)を幅方向にすきま(微小すきまとなるように隣接させて並べても良いし、隙間無く並べても良いし、所定すきまを設けるようにスペーサを介して並べても良い)するように組み合わせて第1の所定幅と略同等の幅を有するように形成されている。
 第3の原反ロール1307は、図6~図9で説明した所定幅を有する長さ方向に連続した繊維集合体1、1Jが巻かれた所定幅を有する略円筒状の原反ロール1301と同等であり同等部分は同一の符号を付して詳細説明は省略する。第3の原反ロール1307は、第1の所定幅を有し、長さ方向に連続した繊維集合体1、1Jがコイル状に連続して巻かれて第1の所定幅を有するように形成されている。ここで、第3の原反ロール1307に巻かれている繊維集合体1、1Jは幅方向に連続しており芯材560の幅Hと同等寸法に設定されている。ここで、第3の原反ロール1307は、第1の所定幅の繊維集合体1、1Jを巻いて製造しても良いし、あるいは、第1の所定幅よりも大きな幅の繊維集合体を略円筒状に巻いたあとで幅寸法が第1の所定幅となるように幅方向をカットすることにより製造してもよい。
 ここで、第1の原反ロール1305の複数の略円筒状(あるいはコイル状)の原反ロール(例えば、本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301d)は同じ幅であっても良いし異なる幅であっても良い。また、図12に示すような耳部原反ロールであっても良い。
 第1の原反ロール1305は、図12に示すように第1の原反ロール1301と同等構造であり、複数の原反ロール(例えば、複数の本体部)が隣接するように幅方向に並べられている組み合わせ原反ロールなので、隣り合う本体部間(例えば、本体部A(1301a)と本体部B(1301b)との間)には微小すきまあるいは所定すきまが存在し、隣り合う本体部は連続しておらず断続するためスリット部(例えば、本体部A1301aと本体部B1301bとの間のスリット部A、本体部B1301bと本体部C1301cの間のスリット部B、本体部C1301cと本体部D1301dの間のスリット部Cなど)が存在する。また、第3の原反ロール1307は複数の原反ロールのうちの幅方向の端側に配置される原反ロール(例えば本体部A1301aや本体部D1301dなど)に原反ロール素材を所定の幅にカットしたときに発生する稜線の揃っていない耳部を有する耳部原反ロールを使用しても良い。
 したがって、第1の所定幅を有し長さ方向に連続したシート状の繊維集合体が巻かれた少なくとも1つの第1の所定幅と略同等幅の単一の原反ロール(例えば第3の原反ロール1307)と第1の所定幅よりも小さな幅を有し長さ方向に連続したシート状の繊維集合体が幅方向に複数並べられて第1の所定幅と略同等の幅となるように幅方向に複数組み合わされた少なくとも1つの組み合わせ原反ロール(例えば第1の原反ロール1305)とを備え、第1の所定幅を有する単一の原反ロール1307の繊維集合体1、1Jと組み合わせ原反ロール1305の繊維集合体1Kをシート面に対して略直角方向に単一の原反ロール1307の繊維集合体1、1Jが巻枠1311の半径方向内側になるように重ねた状態で内から外へ連続してコイル状に巻き取られて芯材560が形成される。
したがって、連続した繊維集合体1、1J、1Kをシート面に略直角方向に重ねて巻き取るだけで芯材560を容易に製造することができるまた、従来は廃却される耳部原反ロールを有効に利用でき、低コストで無駄を生じない芯材560、真空断熱材760が得られる。
 第1の所定幅を有し、長さ方向に連続したシート状の第3の繊維集合体(第3の原反ロール1307に巻かれた繊維集合体1,1J)と、第1の所定幅よりも小さな幅を有し長さ方向に連続したシート状の繊維集合体が第1の所定幅と略同等幅となるように幅方向に所定すきまを介して複数並んだ第1の繊維集合体(組み合わせ原反ロールである第1の原反ロール1305の繊維集合体1K)と、
 第1の繊維集合体と第3の繊維集合体が、第1の繊維集合体1Kあるいは第3の繊維集合体1、1Jのシート面に対して略直角方向に重ねられた状態で内側から外側に向かって連続してコイル状に巻かれて平板状に成形された繊維集合体の積層構造から構成された芯材と、
 芯材を内部に収納し、内部が減圧された状態で周囲がシールされるシール部を有するガスバリア性の外包材と、
 外包材の内部が略真空状態でシール部をシールすることで外包材を密封して製造された真空断熱材を備えたので、原反ロールを所定幅にカットした残りの耳部原反ロールなどの端材を効率良く使用できるので、従来は廃却していた耳部などの端材の有効活用が行える。
 また、組み合わせ原反ロールである第1の原反ロール1305の個々の原反ロール間(たとえば本体部Aと本体部Bとの間、本体部Bと本体部Cとの間、本体部Cと本体部Dとの間など)に所定幅のスペーサなどを設けて第1の原反ロール1305の繊維集合体1Kの個々の繊維集合体間(たとえば繊維集合体1Kaと1Kbとの間、1Kbと1Kcとの間、1Kcと1Kdとの間など)にスペーサの幅だけの所定すきまが設定されることになるので、真空断熱材560にも略所定幅の凹部が形成され、この凹部に配管を埋設したり位置決めすることができ、配管の断熱や配管設置の作業時間が低減でき、高効率で低コストの真空断熱材や機器が得られる。
 ここで、図20に示すように組み合わせロールである第1の原反ロール1305の第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd)と第3の原反ロール1307の第3の繊維集合体1,1Jをシート面に対して略直角方向に重ねて巻枠1311に巻き取る場合は、第1の原反ロール1305の第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd)を第3の原反ロール1307の繊維集合体1,1Jよりも巻枠1311の回転軸1315に対して半径方向外側になるように重ねた方が良い。
 図9(e)に示すように巻枠1311に連続したシート状の第3の繊維集合体1,1Jと連続したシート状の第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd)が重なった状態で所定の張力で巻枠1311に略円筒形状(コイル状)に巻きつけられ、クランプ部材1320で略円筒状の繊維集合体1,1J,1Kをクランプした後に張力をゆるめて巻枠1311を抜き取る場合に、幅方向に切れ目などの無い第1の所定幅を有する第4の繊維集合体を複数の繊維集合体を隣接させて幅方向に組み合わせたことによって幅方向に切れ目やすきまなどが存在する第1の繊維集合体よりも略円筒状の繊維集合体の最内周側にくるように第3の繊維集合体を第1の繊維集合体よりも巻枠1311の半径方向内側になるようにシート面に対して略直角方向に重ねて巻き取った方が、略円筒状の繊維集合体を巻枠1311から抜き取る場合に最内周側に繊維集合体がばらけて乱れたり、巻枠にひっかかったりしないので良い。
 すなわち、第1の繊維集合体と第3の繊維集合体を重ねた状態で巻く場合に、第3の繊維集合体が第1の繊維集合体に対して内側になるように重ねた状態で巻枠1311に内側から外側に向かって巻くようにしているので、巻枠1311に巻かれた略円筒状の繊維集合体を巻枠1311から抜き取るときに、第1の所定幅を有し、幅方向に連続した第3の繊維集合体1,1Jが略円筒状の繊維集合体の最も内側に配置されるようになるため、最も内側に配置される繊維集合体が幅方向に連続していることから幅方向に複数並べられた第1の所定幅よりも小さい幅の繊維集合体を組み合わせた第1の繊維集合体が最内側に配置される場合と比べて繊維集合体がばらけて乱れたり、乱れた繊維集合体が巻枠1311から抜き取る時に巻枠1311にひっかかったりしないので抜き取りやすく芯材560の製造が容易であり作業性が向上し製造時間が短縮できる。また、巻枠1311から抜き取った略円筒状の繊維集合体1,1J,1Kが平板状に成形されて製造される芯材560の品質が安定する。
 ここで、第1の原反ロール1305に使用される複数の原反ロールの幅や使用する数(本体部A1301a、本体部B1301b、本体部C1301c、本体部D1301dの4つ)については、第1の所定幅を有する第3の原反ロール1307の繊維集合体1,1Jの第1の所定幅と略同等となるように適宜設定すれば良いが、幅方向に複数並べたときの第1の原反ロール1305の幅(複数の原反ロールと原反ロール間のすきまを加えた合計の幅)は、第3の原反ロール1305の第1の所定幅よりも若干小さい幅に設定した方が第1の原反ロール1305に巻かれた繊維集合体1Kと第3の原反ロール1307に巻かれた繊維集合体1,1Jを第1の原反ロールの繊維集合体1Kが第3の原反ロールの繊維集合体1,1Jよりもシート面に対して略直角方向外側になるように重ねて巻枠1311に巻き取った方が、巻枠1311に巻き取る場合にも個々の繊維集合体がばらばらになりにくく巻き取りやすい。
 また、第1の原反ロール1305と第3の原反ロール1307は、第1の原反ロール1305の繊維集合体1Kが第3の原反ロール1307の繊維集合体1,1Jよりも巻枠1311に巻き取る場合にシート面に対して略直角方向外側になるように重ねて巻き取られるが、真空断熱材560の製造方法は図9と同等である。図9において巻枠1311に巻き取られる1つの原反ロール1301の代わりに、シート面に対して略直角方向に重ねられた少なくとも2つの原反ロール(例えば図12~図18にて示した第1の原反ロール1305と第2の原反ロール1306を重ねた場合や、図20~図23に示した第1の原反ロール1305と第3の原反ロール1307を重ねた場合など)の組み合わせであっても巻き取り方法や芯材の製造方法や真空断熱材の製造方法などは図9に示す工程と同等である。
 以上のように、第1の所定幅を有し長さ方向に連続した繊維集合体が巻かれた少なくとも1つの幅方向に単一の原反ロール(例えば第3の原反ロール1307)と第1の所定幅よりも小さな幅を有し長さ方向に連続した繊維集合体が巻かれた原反ロールが幅方向に複数並べられて第1の所定幅と略同等の幅となるように幅方向に複数組み合わされた少なくとも1つの組み合わせ原反ロール(例えば第1の原反ロール1305)とを備え、組み合わせ原反ロールである第1の原反ロールに耳部原反ロールなどの端材が使用できるので、従来廃棄していた端材などを廃棄する必要がなくなり、低コストで効率よく芯材や真空断熱材が製造できる。
 また、単一の原反ロール1307の繊維集合体1,1Jと組み合わせ原反ロール1305の繊維集合体1Kをシート面に対して略直角方向に複数枚重ねて略円筒状の巻枠1311に所定の張力で内から外へ向かって巻きとり、その後に略円筒状の繊維集合体をクランプ部材1320でクランプしてから張力を緩めて巻枠1311から抜き取って芯材560を製造するようにしたので、簡単な設備で容易に芯材が製造できる。
 以上のようにして製造された芯材560の斜視図を、図21に示す。図21において、第1の原反ロール1305(上側ロール)の第1の(有機)繊維集合体1K(たとえば、第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Ke)と第3の原反ローラ1307(下側ロール)の第3の繊維集合体1,1J(下側繊維集合体)は所定すきまXKを介して幅方向に5つの原反ロールが並べられた状態で巻枠1311に巻き取られ、内側から外側に向かって連続的に巻き付けられて積層される。芯材560は、繊維集合体1、1Jのシート面に対して略直角方向に組み合わせ繊維集合体集合体である第1の繊維集合体が単一の第3の繊維集合体の外側に重ねられて巻かれているので、芯材560の外表面には組み合わせ繊維集合体である第1の繊維集合体を構成する複数の第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Keが幅方向にすきま(微小隙間であっても良いし所定すきまであっても良い)を介して並んで配置されている。
 ここで、第3の繊維集合体の幅と第1の(有機)繊維集合体1Kの幅を略同等にしても良いが、図21に示すように第3の繊維集合体の幅を第1の(有機)繊維集合体1Kの幅よりも大きくして、第1の(有機)繊維集合体1Kの幅方向外側に長さXT(たとえばXTaやXTe)分だけの所定すきまが得られるように第1の(有機)繊維集合体1Kを配置しても良い。このように配置すると、第3の繊維集合体の幅方向の少なくとも一方の端側には、長さXTの部分において第1の(有機)繊維集合体1Kが無いので、長さXTの部分においては第3の繊維集合体のみが存在する。
 したがって、第1の(有機)繊維集合体1Kと第3の繊維集合体とを重ねて内から外へ巻いて平板状に成形したときに、少なくとも一方の幅方向端側の長さXTの部分には第1の(有機)繊維集合体1Kが存在しない芯材560が製造される。よって第1の(有機)繊維集合体1Kと第3の繊維集合体とを重ねて内から外へ巻いて平板状に成形された芯材を外包材4内に挿入し減圧した状態で外包材4をシールして真空断熱材760を製造した場合、図19に示す真空断熱材750と同様に真空断熱材760には幅方向端側に薄肉部H1,H2を有する。この場合、薄肉部H1の長さがXTaと略同等であり、薄肉部H2の長さがXTeと略同等であり、中央部分の幅H3が第1の繊維集合体1Kの幅と略同等となる。薄肉部は真空断熱材760の幅方向両端側に設けてもよいが、少なくとも一方の幅方向端側に設けても良い。
 すなわち、第1の(有機)繊維集合体1Kにおいて幅方向に所定すきまXKを介して隣接して並んだ複数の第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Keのうちの幅方向両端側に配置される幅方向端側第1の(有機)繊維集合体1Ka,1Keと第3の繊維集合体の幅方向の端部との間の長さXT(たとえば図43においては、第3の繊維集合体の2つの幅方向端部のうち、一方の幅方向端部と幅方向端側繊維集合体である第1の(有機)繊維集合体1Kaの第3の繊維集合体の一方の幅方向端部側の端部との長さXTa、あるいは第3の繊維集合体の他方の幅方向端部と幅方向端側繊維集合体である第1の(有機)繊維集合体1Keの第3の繊維集合体の他方の幅方向端部側の端部との長さXTe)分だけ少なくとも第3の繊維集合体の幅が第1の(有機)繊維集合体1Kの幅よりも大きくなるので、真空断熱材760に真空断熱材750と同様に少なくとも幅方向の一方の端側に薄肉部H1(あるいはH2)が得られる。
 すなわち、真空断熱材750,760は、芯材550,560が外包材4内で減圧されてシールされた状態で所定厚さtを有し、芯材550,560の幅方向端部の幅方向の断面形状が幅方向外側に向かって突出する薄肉の段部形状(薄肉部H1あるいはH2)となる。
 以上のように真空断熱材750,760には、特別な加工などを行わなくても芯材550、560の幅方向の一方の端側あるいは幅方向両端側に真空断熱材750,760の厚さ(芯材5,550,560の厚さt)よりも薄い厚さの薄肉部(図19におけるH1やH2)が得られるので、1つの真空断熱材750,760を円筒形状に折り曲げる場合などに幅方向の端面(薄肉部(H1やH2))同士を厚さ方向に重ね合わせて真空断熱材750,760を接続して使用する場合や、2つ以上の複数の真空断熱材750,760の幅方向端面(薄肉部)同士を厚さ方向に重ね合わせて連続して使用する場合に、複数の真空断熱材750,760の幅方向の端面の薄肉部の厚さ方向の表面同士が接触するように重ねるようにすれば、芯材550,560の存在する部分で接触させることができ、しかも厚さの薄い薄肉部(2枚重ねで1枚がずれている場合は厚さが約半分)を重ねることになるので接触部分の接合厚さを小さくでき、しかも接触部分からの熱漏れを低減でき、高性能な真空断熱材750,760や真空断熱材750,760を搭載した圧縮機や冷蔵庫や給湯機などの機器を得ることができる。
 また、複数の真空断熱材7,700,701,750,760の長さ方向における端面の幅方向に略直角断面での断面形状が長さ方向外側に向かって厚さが小さくなる略三角形状であるので、略三角形状の斜面部分(図11の長さL2の斜面部分)同士が接触するように接続すれば、芯材550,560の存在する部分で接触させることができ、しかも接触部分の接合厚さを小さくでき、しかも接触部分からの熱漏れを低減でき、高性能な真空断熱材7,700,701,750,760、真空断熱材7,700,701,750,760を搭載した冷蔵庫などの機器を得ることができる。
 ここで、長さ方向端部の形状に関しては、有機繊維集合体1、連続したシート状繊維集合体1Jは長さ方向に連続していなくてもよく、繊維集合体が積層された状態で略三角形状の断面形状であれば良い。すなわち、外包材4の内部で芯材5,550,560が減圧された状態で密封され、所定の長さLと所定の幅Hと所定の厚さtを有する真空断熱材7,700,701,750,760において、芯材5,550,560が有機繊維集合体1、連続したシート状繊維集合体1Jの積層構造で構成され、長さ方向あるいは幅方向の少なくとも一部の端部の断面が外側に向かって厚さが小さくなる略三角形状であれば良い。また、芯材5,550,560が、所定の幅Hを有し長さ方向に連続したシート状有機繊維集合体1、連続したシート状繊維集合体1Jが内から外に向かって連続して巻かれた積層構造であり、芯材5,550,560が外包材4内に密封された状態で芯材5,550,560の長さ方向端部が略三角形状であれば、同様の効果が得られる。
 また、幅方向の薄肉部形状(薄肉の突出形状)においても、有機繊維集合体1、連続したシート状繊維集合体1Jは長さ方向に連続していなくてもよく、長さLの繊維集合体を複数積層しても良い。すなわち、外包材4の内部で芯材5,550,560が減圧された状態で密封され、所定の長さLと所定の幅Hと所定の厚さtを有する真空断熱材7,700,701,750,760において、長さ方向あるいは幅方向のいずれかの端部に厚さの薄い薄肉部750a,750bを有し、薄肉部750a,750bが外側に向かって突出していれば良い。また、芯材5,550,560は所定の幅Hを有する複数のシート状の有機繊維集合体1、連続したシート状繊維集合体1Jが重った状態で積層された積層構造であり、薄肉部750aは複数の有機繊維集合体1、連続したシート状繊維集合体1Jのうちの少なくとも1つが幅方向に所定量だけずれた状態で複数積層されることで形成されていれば同等の効果が得られる。
 以上より本実施の形態の真空断熱材750,760は、所定厚さを有する平板状であり、平板状の一方向(たとえば長さ方向)端部の断面形状が外方に向かって厚さが小さくなる略三角形状とし、あるいは他方向(たとえば幅方向)端部の断面形状が厚さの薄い薄肉部を有する段部形状としているので、芯材550,560を重ねて巻き取るだけの簡単な方法で容易に製造でき、端材を有効に利用できる。
 また、長さ方向や幅方向に特別な加工など施さなくても端部形状を接続可能な形状にできるので、端部を接触させて接続すれば接触部分の接合厚さを小さくでき、しかも接触部分からの熱漏れを低減でき、高性能な真空断熱材750,760や真空断熱材750,760を搭載した圧縮機や冷蔵庫や給湯機などの機器を得ることができる。
 ここで、芯材560は、図9に示された芯材5や芯材550と同様に2つのクランプ部材1320で2箇所をクランプされた状態で2つのクランプ部材1320を相反する方向(離間する方向)へ移動させるため、クランプされた部分で繊維集合体が折れ曲がり端部560fで折りたたまれて(折り曲げられて)平板状に製造される。芯材560の長さ方向の端部である折れ曲がり端部560fで折りたたまれた芯材560は、図9に示された芯材5と同様に繊維集合体1,1J,1Kの巻き方向上流側560fa側から外包材4の開口部4a内に挿入され、内部が減圧された状態でシールされて真空断熱材760が完成する。
 図22は、平板状に折りたたまれた芯材560の幅方向の断面形状を示しており、芯材560は内側から外側に向かって長さ方向に連続し、幅方向にも連続した幅方向に単一の繊維集合体1,1Jと長さ方向に連続し、幅方向に複数に分割された幅方向に複数の第1の(有機)繊維集合体1Kとがシート面に略直角方向に重なった状態で連続して巻き取られ、平板状に折りたたまれている。そして、幅方向に連続し幅方向に単一の繊維集合体1、1Jが、幅方向に複数の繊維集合体が並んだ第1の(有機)繊維集合体1Kよりも内側になるように重ねて内側よりコイル状に巻き取られているので、第1の(有機)繊維集合体1K(第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Ke)が芯材560の外表面にくるように巻かれる。このとき、第1の(有機)繊維集合体1Kの個々の第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Keの間は所定隙間XKに設定されており、スリット部560K(第3のスリット部)が形成されている。所定すきまXKは、個々の所定すきまXKab,XKbc,XKcd,XKdeであって、この個々の所定すきまXKab,XKbc,XKcd,XKdeは、同じあっても異なっていても良い。
 図23は、芯材560が外包材4の内部に挿入され、内部が減圧された状態で外包材4の開口部4aがシールされて密封された真空断熱材760を表している。真空断熱材760には、幅方向に芯材560に設けられている所定すきまXKと略同等幅の凹み部760x(溝部であって、たとえば、第1の凹み部760x1,第2の凹み部760x2,第3の凹み部760x3,第4の凹み部760x4)が長さ方向に連続して幅方向に複数設けられている。ここで、第1の凹み部760x1,第2の凹み部760x2,第3の凹み部760x3,第4の凹み部760x4の幅は、同じでも異なっても良く、配管の大きさなどにより適宜設定すれば良い。
 ここで、所定すきまXKは、芯材560の巻き方向(長さ方向)に連続しているので、芯材560を使用して真空断熱材760を製造すれば、所定すきまXKと略同等幅で長さ方向に連続し、深さが真空断熱材760の厚さの約1/4の凹み部560X(溝部)が平板状の真空断熱材760の平板面の両側(両側の凹み部の凹み深さを合わせると真空断熱材760の厚さの約半分(約1/2)の深さとなる)にできるので、この凹み部内に配管(たとえば凝縮パイプや吸入配管や吐出配管など)やリード線などの少なくとも一部を配置することで配管の断熱や、リード線の収納が別部材を用いなくても容易にできる。また、配管やリード線などの位置決めが凹み部760x内に配置するだけで位置決めも同時に可能となるため、位置決めのための別部材が不要であり、作業性も大幅に向上する。また、別途、レーザー加工などで折り曲げのための凹部を設けることなく、凹み部760xより容易に折り曲げることもできる。
 以上説明したように、本発明の真空断熱材の製造装置は、所定幅にカットされた略円筒形状の原反ロール1301に巻きつけられた所定の幅を有する有機繊維集合体1、連続したシート状繊維集合体1Jを所定回数R分だけ巻き取る巻枠1311と、巻枠1311に巻き取られた有機繊維集合体1、連続したシート状繊維集合体1Jを切断する切断手段と、巻枠1311に所定回数R分だけ巻き取られて切断された有機繊維集合体1、連続したシート状繊維集合体1Jを巻枠1311より抜き取った後に有機繊維集合体1、連続したシート状繊維集合体1Jを平板状の芯材5,550,560に成形する成形部材(例えば、クランプ部材1320)と、を備えたので、簡単な構成で容易に芯材5,550,560を製造することができ、製造時間も短縮できる。また、巻き方向に連続して巻かれるため、長さ方向端面をカットする必要がなくなり、幅方向も予めカットされた原反ロールを使用するのでカットする必要がないので、芯材5,550,560をカットする必要がない。また、芯材5,550,560の端面をカットするための製造設備も不要であり、カットする時間も不要となるので、製造設備も安価にでき、低コストな芯材5,550,560、真空断熱材7,702,750,760が得られる。また、小さな幅の原反ロールの本体部(繊維集合体)を複数組み合わせることで大きな幅の芯材550,560を製造できる。また、複数の原反ロールの数や複数の原反ロールの幅を適宜選定することによって、原反ロールの幅にとらわれずに芯材550,560の幅を自由に設定できるので、芯材550,560の設計の自由度が大きくなる。また、幅の小さな原反反ロールから幅の大きな芯材550,560を製造できるので、原反ロールの保管場所が小さくて済み、大きな保管場所が必要ない。また、繊維集合体を複数積層するためにわざわざ1枚ごとに所定の大きさにカットする必要がなく、また、1枚ずつ積層する必要もない。また、連続した帯状のシート状部材を交互に異なった方向に折り返して折り目をつけて重ね合わせるように積層して芯材を形成する場合に比べて、高価な折り目をつけて折り返す装置などが不要である。したがって、積層設備などが不要であり、芯材5,550,560の製造が連続したシート状繊維集合体1Jを巻き取るだけの簡単な設備で短時間で容易に芯材5,550,560を製造できる。
 また、本発明の真空断熱材7,702,750,760の製造装置は、巻枠1311が複数分割された円周部材1312を備え、複数の円周部材1312のうちの少なくとも1つ(例えば可動可能な円周部材1312a,1312b)を回転中心(回転軸1315)方向に可動とし、巻枠1311に有機繊維集合体1、連続したシート状繊維集合体1Jが巻き取られた後に可動可能な円周部材1312a,1312bを回転中心方向に稼動させて有機繊維集合体1、連続したシート状繊維集合体1Jの張力をゆるめて有機繊維集合体1、連続したシート状繊維集合体1Jを巻枠1311から抜き取るようにしたので、所定の張力をもって巻枠1311に、例えば略円筒状に巻きつけられていた連続したシート状繊維集合体1Jの張力をゆるめてから、略円筒状に巻き付けられた連続したシート状繊維集合体1Jを巻枠1311から容易に抜き取ることができる。すなわち、巻枠1311に所定の張力を持って巻き付けられた連続したシート状繊維集合体1Jの張力をゆるめることにより巻枠1311に巻きつけられた連続したシート状繊維集合体1Jが巻枠1311から抜き取りやすくなる。
 また、本発明の真空断熱材7,702,750,760の製造装置は、有機繊維集合体1、連続したシート状繊維集合体1Jを巻枠1311から抜き取る場合にクランプ部材1320にてクランプして抜き取るようにしたので、簡単な構成で容易に巻枠1311から有機繊維集合体1、連続したシート状繊維集合体1Jを抜き取ることが可能となる。また、2つのクランプ部材1320(クランプ部材1320c,1320d)を使用して連続したシート状繊維集合体1Jを2箇所でクランプした状態のままで2つのクランプ部材1320c,1320dを略直線方向反対側方向(略180度反対方向)に可動あるいは移動させるようにすれば、複数回巻き付けられて複数積層された連続したシート状繊維集合体1Jが2つのクランプ部材1320c,1320dにより相反する方向に引っ張られてクランプされた部分より折れ曲がった平板状に形成されるので、連続したシート状繊維集合体1Jが内側から外側に向かって連続的に巻かれて複数層積層された平板状の芯材5,550,560が簡単な設備で容易に成形できる。
 また、本発明の真空断熱材7,702,750,760の製造方法によれば、所定幅にカットされた略円筒形の原反ロール1301に巻きつけられた所定の幅を有する連続したシート状繊維集合体1Jを所定回数R分だけ巻枠1311に巻き取る巻き取りステップと、巻枠1311に巻き取られた連続したシート状繊維集合体1Jを切断する切断ステップと、巻枠1311に所定回数R分だけ巻き取られて切断された連続したシート状繊維集合体1Jを巻枠1311より抜き取る分離ステップと、分離ステップにて巻枠1311より抜き取られた連続したシート状繊維集合体1Jを平板状の芯材5,550,560に成形する成形ステップと、ガスバリア性を有する外包材4の内部に芯材5,550,560を収納して内部を減圧した状態でシールする外包材シールステップと、を備えたので、簡単な方法で芯材5,550,560を短時間で製造できる。また、巻き方向に連続して巻かれるため、長さ方向端面をカットする必要がなくなり、幅方向も予めカットされた原反ロールを使用するのでカットする必要がないので、芯材5,550,560をカットする必要がない。したがって、芯材5,550,560の端面をカットするための製造設備も不要であり、カットする時間も不要となるので、低コストな芯材5,550,560、真空断熱材7,702,750,760が得られる。
 また、本発明の真空断熱材7,702,750,760の製造方法によれば、分離ステップが、巻枠1311に所定回数R分だけ巻き取られて切断された連続したシート状繊維集合体1Jをクランプ部材にてクランプするクランプステップと、クランプステップにてクランプされた連続したシート状繊維集合体1Jの巻枠1311に対する張力をゆるめる繊維集合体張力緩和ステップと、張力緩和ステップにて張力が緩められた連続したシート状繊維集合体1Jを巻枠1311より抜き取る巻枠除去ステップ、とから構成されてなるので、簡単な方法で容易に巻枠1311から連続したシート状繊維集合体1Jを抜き取ることができる。
 また、本発明の真空断熱材7,702,750,760の製造方法によれば、成形ステップが、クランプ部材1320を2つ(クランプ部材1320c,1320d)使用して連続したシート状繊維集合体1Jを2箇所でクランプして2つのクランプ部材(クランプ部材1320c,1320d)を略反対方向に可動させて芯材を平板状に成形するようにしたので、クランプ部材1320を使用するだけの簡単な方法で容易にシート状の芯材550を製造できる。
 また、連続したシート状繊維集合体1Jが連続した有機繊維をシート状に形成したものであるので、無機繊維であるガラス繊維を使用した場合に比べて粉塵による人体への悪影響が抑制でき、リサイクル性も良好な芯材550、真空断熱材7,702,750,760が得られる。
 本実施の形態では、繊維に連続した有機繊維2を使用し、有機繊維集合体1、連続したシート状繊維集合体1Jを使用して内側から外側に向かって連続的に巻枠に巻きつけて芯材5,550,560や真空断熱材7,702,750,760などを製造する製造装置や製造方法であっても良く、本実施の形態の製造装置や製造方法においては、使用する繊維は連続した長繊維でなくてもよい。ただし繊維集合体は連続したシート状であればよく、巻枠1311に所定の張力で巻きつけるときに連続したシート状繊維集合体1Jが破損などしなければ良い。したがって有機繊維集合体1、連続したシート状繊維集合体1Jでなくても良く、無機繊維集合体であっても良い。本実施の形態の製造装置や製造方法においては、連続したシート状の繊維集合体であれば、同様の効果を奏する。なお、連続したシート状の繊維集合体をそのまま使用しても良いが、連続したシート状の繊維集合体が原反ローラに巻かれた原反ロールの状態であれば、製造が容易でしかも取り扱い性が向上するのでさらに良い。
 ここで、有機繊維集合体1、連続したシート状繊維集合体1Jを重ねて巻き取って芯材550を製造する場合、所定量Xbだけラップさせずに巻き取って芯材を製造しても良い。有機繊維集合体1、連続したシート状繊維集合体1Jの重ねる枚数を多くすれば、重ねる枚数分だけ繊維集合体の種類を変更することができる。すなわち、繊維集合体の重量目付けの異なる繊維集合体を使用したり、繊維集合体に使用する繊維の種類が異なる繊維集合体(例えば温度特性の異なる繊維や、繊維径の異なる繊維や、引っ張り強度の良い繊維や、熱伝導率特性の異なる繊維など)を機器の使用環境に合わせて混在させることができるので、使用形態に合わせた芯材や真空断熱材が得られる。したがって、断熱性能の確保と高温耐力の両立や、断熱性能の確保と人体への悪影響の回避、リサイクル性の向上の両立が可能となる。この場合は複数枚繊維集合体を重ねるとしても所定量Xbだけずらす必要がないので、同じ幅の繊維集合体をずらさずに重ねて巻き取って芯材5を形成すれば良い。また、異なる幅の繊維集合体を重ねて巻き取って芯材5を形成しても良い。
 ここで、高温貯湯される給湯機の貯湯タンクや高温になる部分を有する圧縮機などの高温部(例えば70℃以上)を有する機器の断熱に使用される真空断熱材が必要な場合は、高温耐力(耐熱性)のある繊維(有機繊維であるLCPやPPS、あるいは無機繊維であるガラス繊維などを単独、あるいは組み合わせた繊維)を少なくとも1枚の繊維に使用するようにすれば良い。この場合、高温耐力(耐熱性)のある繊維を使用した繊維集合体を芯材が形成されたときの表面側に配置されるように重ねて真空断熱材を製造すれば良い。このようにすれば、真空断熱材としても表面側には高温耐力(耐熱性)のある繊維を使用した繊維集合体が配置されるので、高温耐力(耐熱性)のある繊維を使用した繊維集合体が機器の高温部側に配置されるように真空断熱材を設置すれば、高温部を有する機器の断熱が可能となる。
 また、高断熱性能が要求される冷蔵庫などの機器や断熱箱体などの断熱に使用される真空断熱材の場合は、断熱性能が要求されるので、固体熱伝導率が小さく断熱性能の向上が期待できる繊維(例えば有機繊維であるポリスチレンや無機繊維であるガラス繊維など)を少なくとも1枚の繊維に使用するようにすれば良い。
 また、リサイクル性が要求される冷蔵庫や空調機や給湯機などの機器の断熱に使用される真空断熱材の場合には、無機繊維であるガラス繊維を使用すると、例えば冷蔵庫では、リサイクル工場で製品ごと粉砕されるので、ガラス繊維は、ウレタン屑などに混じってサーマルリサイクルに供されるが、ガラス繊維は、燃焼効率を落としたり、残渣となるなど、リサイクル性が良くないので、ポリエステルやポリスチレンやLCPなどの有機繊維を使用するようにすれば良い。
 また、環境問題や人体への悪影響を考えた場合でも、ガラス繊維は硬くて脆いため、真空断熱材の製造時や解体時に粉塵が飛び散り作業者の皮膚・粘膜などに付着すると刺激を受ける可能性があり、その取り扱い性、作業性が課題となるので、有機繊維を使用した方が良い。
(冷蔵庫)
 図19は実施の形態1を示す図で、冷蔵庫100の断面図である。図19において、冷蔵庫100の食品貯蔵室は、最上部に開閉ドアである冷蔵室扉160を備えて配置される冷蔵室150、冷蔵室150の下方に冷凍温度帯(-18℃)から冷蔵、野菜、チルド、ソフト冷凍(-7℃)などの温度帯に切り替えることのできる引き出しドア式の切替室扉210を備える切替室200、切替室200と並列に引き出しドア式の製氷室扉510を備える製氷室500、最下部に配置される引き出しドア式の冷凍室扉310を備えた冷凍室300、冷凍室300と切替室200及び製氷室500との間に引き出しドア式の野菜室扉410を備えた400等から構成される。冷蔵庫100の冷蔵室扉160の前面側表面には、各室の温度や設定を調節する操作スイッチと、そのときの各室の温度を表示する液晶などから構成される操作パネル180が設けられている。
 冷蔵庫100の背面側には、下部に冷凍サイクルを構成する圧縮機600を配置する機械室601及び冷却器650、および冷却器650により冷却された冷気を冷蔵室150や切替室200に送風するためのファン660などが配置される冷却器室640が設けられる。
 この冷却器室640から、冷却器650により冷却された冷気を冷蔵室150内に導入するための冷却風路680や冷却器650により冷却された冷気を冷凍室300内に導入するための風路690などが設けられている。
 また、冷蔵庫100の上部で冷蔵室150の背面の断熱壁背面において、制御基板収納室910(図示せず)に制御基板900(図示せず)が収納される。この制御基板900には、圧縮機600や冷却風路の開閉を行なうダンパなどと接続されて圧縮機600や冷却風路の開閉制御を行って冷蔵室150や冷凍室300などの貯蔵室内の温度制御を行うための制御用のリード線や電源線などが設けられている。
 なお、切替室200には収納ケース201が、冷凍室300には収納ケース301が、野菜室400には収納ケース401が、それぞれ設置されており、それらのケース内に食品を収納することができる。
 ここで、冷蔵庫100下部の機械室601と冷却器室640との間の断熱壁には、真空断熱材750,760が設けられている。この真空断熱材750,760は単独でも、あるいは発泡断熱材11中に埋め込まれたり、配置される構成であっても良い。
 すなわち、本実施の形態の冷蔵庫100は、開閉式の冷蔵室扉160備えた冷蔵室150や、引き出し式の切替室扉210、冷凍室扉310、野菜室扉410、製氷室扉510を備えた切替室200、冷凍室300、野菜室400、製氷室500などを含む複数の貯蔵室と、貯蔵室の背面側に仕切り壁を介して配置され、貯蔵室に冷気を生成する冷却器650と、冷却器650及び冷却器650で生成された冷気を各貯蔵室へ送風する庫内ファン660と、貯蔵室の背面側に仕切り壁を介して配置され、冷却器と庫内ファンを収容する冷却器室640と、冷蔵庫本体の下部あるいは上部に設けられ、冷凍サイクルを構成する圧縮機600を収容する機械室601と、機械室601と冷却器室640との間に設けられた第1の断熱壁と、機械室と貯蔵室の間に設けられた第2の断熱壁と、貯蔵室の扉あるいは第1の断熱壁あるいは第2の断熱壁に設けられ、有機繊維2をシート状に形成した有機繊維集合体1の積層構造で構成され、端面がカットされたカット部を有する芯材5,550を外包材4内に挿入してシート周囲の外包材4のシール部をシールすることで内部が略真空状態で密封して形成された真空断熱材7,702,750,760と、を備えている。
 この機械室601と冷却器室640との間の断熱壁に設けられる真空断熱材750は、図17に示すように第1のスリット部57、第2のスリット部58などにより形成される折り曲げ部59により三箇所で折れ曲がったW字状の複雑な構造をしている。真空断熱材750は、外包材4内に長繊維で形成された有機繊維集合体1が積層された芯材5,550が端面がカット(切断)された所定の大きさのシート状態で挿入されており、乾燥、真空引き後に外包材4の挿入部分が熱溶着などによりシールされて完成する。
 また、真空断熱材750が、図17に示すように、第1のスリット部57、第2のスリット部58などにより形成される折り曲げ部59によりL字状に折り曲げられて冷蔵庫100の上面壁と背面壁に跨って配置されており、さらに上述のようにW字状に折り曲げられて冷蔵庫100の背面壁と底面壁に跨って配置されている。また、図23に示したように真空断熱材760には、長さ方向に連続した溝部である凹み部760Xが設けられているので、芯材750と同様に凹み部760XよりL字状やW字状に折り曲げることができる。このように本実施の形態で説明した真空断熱材750,760を折り曲げるなどして使用するようにすれば、冷蔵庫の圧縮機600を収納する機械室601のように複雑な形状をした壁面であっても容易に適用できる。
 ここで、本実施の形態では、有機繊維集合体1、連続したシート状繊維集合体1Jを複数枚(例えば2枚)重ねて幅方向に所定長さ(ラップ代Xb)だけずらして複数回積層して芯材5,550を製造するようにすれば、1箇所の折り曲げ部に対するスリットの数も有機繊維集合体1、連続したシート状繊維集合体1Jを重ねた枚数の数(複数個、3枚重ねてずらした場合は1箇所の折り曲げ部に対してスリットは3つ)できるので、真空断熱材750の厚さが厚くなっても折り曲げ部59(第1のスリット部57、第2のスリット部58)で容易にシート面の両側に折り曲げることが可能となる。また、第1のスリット部57、第2のスリット部58の部分が凹んだ台形形状になり、しかも真空断熱材750の厚さ方向の両側にできるため、例えば厚さが厚くなった場合であってもシート面の両側に形成される第1のスリット部57、第2のスリット部58の部分で折り曲げ部より容易に折り曲げ可能となるため外包材4が破れたり傷ついたりすることもなくなる。
 したがって、本実施の形態の真空断熱材750を第1の(有機)繊維集合体1Kあるいは第2の(有機)繊維集合体1Hの隣接する繊維集合体間の接続部(スリット部)で所定の角度(例えば略90度)で折り曲げ、例えば冷蔵庫100の上面、両側面、背面、底面を有する断熱箱体の少なくとも2つの連続する壁面に配置することが可能となる。具体的には、冷蔵庫100の場合には、所定の角度を略90度としてL字状に折り曲げた場合には、(1)側壁と背面壁、(2)上面壁と背面壁、(3)上面壁と側壁、(4)底面壁と側壁、(5)底面壁と背面壁などの連続した2壁面に適用できる。また、2箇所折り曲げてコ字状とした場合には、(1)背面壁と両側壁、(2)上面壁と両側壁、(3)底面壁と両側壁、(4)上面壁、背面壁、底面壁などの連続した3壁面に適用できる。
 以上説明したように、真空断熱材750の代わりに真空断熱材760を使用しても良い。真空断熱材760を使用すれば、真空断熱材750の折り曲げ部59(第1のスリット部57、第2のスリット部58)と同様に凹み部760Xで容易に折り曲げることができるし、また、真空断熱材750の第1のスリット部57、第2のスリット部58と同様に凹み部760Xに配管(凝縮パイプや吸入配管)などを配置して収納することで配管の断熱が容易に行え、しかも、従来は困難であった真空断熱材の外表面での配管の固定や位置決めが、別途配管の収納箇所をレーザー加工などで設けることなく凹み部760Xに配管を収納するだけで位置決めや固定が容易に行える。また、別途固定部材を設けなくても位置決めが可能となる。部材など不要で容易にできる。また、凹み部760Xに配線(制御用リード線など)を収納すれば、別途配線の収納箇所を設けなくても収納可能で、また、別途固定部材を設けなくても位置決めが可能となる。このとき、凹み部760Xの幅は収納する配管や配線の大きさに合わせて設定しておけば良い。すなわち、凹み部760Xの幅は第1の(有機)繊維集合体1Kの個々の第1の(有機)繊維集合体1Ka,1Kb,1Kc,1Kd,1Ke間の所定すきまXK(例えば所定すきまXKab,XKbc,XKcd,XKde)と略同等になるため、所定すきまXKを適宜設定すれば良い。
 また、本実施の形態の真空断熱材750、760は、冷蔵庫100以外の圧縮機や貯湯タンクなどの円筒形容器の周囲の断熱や空調機の室外機や給湯機の熱源機の筐体(容器)の断熱であっても容易に適用できるのは言うまでもない。
 本実施の形態では、冷蔵庫100についての適用事例について説明したが、冷蔵庫100以外の給湯機や冷凍・空調装置などの機器であっても適用できる。また、本実施の形態では、一箇所で折れ曲がった「L」状や三箇所で折れ曲がった「W字状」の複雑な構造をした真空断熱材750について説明したが、二箇所で折れ曲がった「Z」状でも良く、また、2箇所で折れ曲がった「コ」状や複数箇所で折れ曲がった「C」状や「J」状であっても容易に適用できる。したがって、本実施の真空断熱材は、今まで曲げ加工が困難であったため真空断熱材の搭載が困難であった複雑な形状の箇所(「Z」状、「コ」状、「C」状、「J」状や「W」状などの箇所やあるいは突起や配管などがあるような箇所)にも適用可能であり、あらゆる機器に搭載可能である。本実施の真空断熱材を搭載した冷蔵庫などの機器は、リサイクル性が良好で人体への悪影響もなく、断熱性能の向上が見込める。
 すなわち、本実施の形態の冷蔵庫100は、開閉式、あるいは引き出し式の扉(冷蔵室扉160、切替室扉210、冷凍室扉310、野菜室扉410、製氷室扉510)を備えた冷蔵室150や冷凍室300などを含む複数の貯蔵室(冷蔵室150、切替室200、冷凍室300、野菜室400、製氷室500)と、貯蔵室の背面側に仕切り壁を介して配置され、貯蔵室に冷気を生成する冷却器650と、冷却器650及び冷却器650で生成された冷気を各貯蔵室へ送風する庫内ファン660と、貯蔵室の背面側に仕切り壁を介して配置され、冷却器と庫内ファンを収容する冷却器室640と、冷蔵庫本体の下部あるいは上部に設けられ、冷凍サイクルを構成する圧縮機600を収容する機械室601と、機械室601と冷却器室640との間に設けられた断熱壁と、貯蔵室の扉あるいは断熱壁に設けられ、有機繊維2をシート状に形成した有機繊維集合体1の積層構造で構成され、端面がカットされたカット部を有する芯材5を外包材4内に挿入してシート周囲の外包材4のシール部をシールすることで内部が略真空状態で密封して形成された真空断熱材750、760と、を備え、有機繊維2に有機繊維集合体1の長さと同等かそれ以上の長繊維を使用するようにしている。したがって、真空断熱材750、760の断熱性能が良く、リサイクル性に優れ、シール不良などが発生せず信頼性が高いので、この真空断熱材750、760を適用した冷蔵庫100などの機器も長期間にわたり高性能でリサイクル性が良い。
 ここでは、真空断熱材750、760を機械室601と冷却器室640との間の断熱壁に設ける例を示したが、真空断熱材開口部71を冷却風路に適用しても良く、この場合は、冷却風路を有する区画壁や仕切り壁や断熱壁に真空断熱材750、760を使用すれば良い。また、冷却器室640を構成する断熱壁に設けても良い。
 1 有機繊維集合体、1a 端面、1J 連続したシート状繊維集合体、1Je 巻き終わり端部、1K 第1の(有機)繊維集合体、1Ka 第1の(有機)繊維集合体、1Kb 第1の(有機)繊維集合体、1Kc 第1の(有機)繊維集合体、1Kd 第1の(有機)繊維集合体、1H 第2の(有機)繊維集合体、1Ha 第2の(有機)繊維集合体、1Hb 第2の(有機)繊維集合体、1Hc 第2の(有機)繊維集合体、1Hd 第2の(有機)繊維集合体、2 有機繊維、2a 残存繊維、2b 切断繊維、2x 有機繊維、2y 有機繊維、3 空気層、4 外包材、4a 開口部、5 芯材、5a 端面、5f 折れ曲がり端部、5g 平板部、6 吸着剤、7 真空断熱材、8 スペーサ、9 外箱、10 内箱、11 発泡断熱材、12 断熱壁、41 外包材開口部、45 シール部分、51 芯材開口部、52 貫通穴、53 切り欠き、55 曲げ加工部、56 曲げ加工部、57 第1のスリット部、58 第2のスリット部、59 折り曲げ部、71 真空断熱材開口部、72 貫通穴、73 切り欠き、75 真空断熱材開口部シール代、100 冷蔵庫、110 エンボス加工、150 冷蔵室、160 冷蔵室扉、200 切替室、201 収納ケース、210 切替室扉、300 冷凍室、301 収納ケース、310 冷凍室扉、400 野菜室、401 収納ケース、410 野菜室扉、500 製氷室、510 製氷室扉、550 芯材、551f 折り曲げ部、551g 平板部、551Je 巻き終わり端部、600 圧縮機、601 機械室、640 冷却器室、650 冷却器、660 ファン、680 冷却風路、690 風路、702 真空断熱材、750 真空断熱材、750a 薄肉部、750b 薄肉部、750c 所定厚さ部、751 凹み部、752 凹み部、753 突出部、760 真空断熱材、760X 凹み部、900 制御基板、910 制御基板収納室、1301 原反ロール、1301a 本体部A、1301b 本体部B、1301c 本体部C、1301d 本体部D、1305 第1の原反ロール、1306 第2の原反ロール、1311 巻枠、1312 円周部材、1313 クランプ部材設置部、1315 回転軸、1316 円周部材保持軸、1316a 円周部材保持軸、1316b 円周部材保持軸、1316c 円周部材保持軸、1316d 円周部材保持軸、1320 クランプ部材。

Claims (9)

  1.  所定幅を有する略円筒形状の原反ロールに巻きつけられた所定の幅を有する繊維集合体を所定回数分だけ巻き取る巻枠と、前記巻枠に巻き取られた前記繊維集合体を切断する切断手段と、前記巻枠に所定回数分だけ巻き取られて切断された前記繊維集合体を前記巻枠より抜き取った後に前記繊維集合体を平板状の芯材に成形する成形部材と、を備えたことを特徴とする真空断熱材の芯材の製造装置。
  2.  前記巻枠が複数分割された円周部材を備え、前記複数の円周部材のうちの少なくとも1つを回転中心方向に可動とし、前記巻枠に前記繊維集合体が巻き取られた後に前記円周部
    材を回転中心方向に稼動させて前記繊維集合体の張力をゆるめて前記繊維集合体を前記巻枠から抜き取るようにしたことを特徴とする請求項1に記載の真空断熱材の芯材の製造装置。
  3.  前記繊維集合体を前記巻枠から抜き取る場合にクランプ部材にてクランプして抜き取るようにしたことを特徴とする請求項1または請求項2に記載の真空断熱材の芯材の製造装置。
  4.  所定幅を有する略円筒形の原反ロールに巻きつけられた所定の幅を有する繊維集合体を所定回数分だけ巻枠に巻き取る巻き取りステップと、前記巻枠に巻き取られた前記繊維集合体を切断する切断ステップと、前記巻枠に所定回数分だけ巻き取られて切断された前記繊維集合体を前記巻枠より抜き取る分離ステップと、前記分離ステップにて前記巻枠より抜き取られた前記繊維集合体を平板状の芯材に成形する成形ステップと、ガスバリア性を有する外包材の内部に前記芯材を収納して前記内部を減圧した状態でシールする外包材シールステップと、を備えた真空断熱材の製造方法。
  5.  前記分離ステップは、前記巻枠に所定回数分だけ巻き取られて切断された前記繊維集合体をクランプ部材にてクランプするクランプステップと、前記クランプステップにてクランプされた前記繊維集合体の前記巻枠に対する張力をゆるめる繊維集合体張力緩和ステップと、前記張力緩和ステップにて張力が緩められた繊維集合体を前記巻枠より抜き取る巻枠除去ステップ、とからなることを特徴とする請求項4に記載の真空断熱材の製造方法。
  6.  前記成形ステップは、前記クランプ部材を2つ使用して前記繊維集合体を2箇所でクランプして前記2つのクランプ部材を略反対方向に可動させて芯材を平板状に成形するようにしたことを特徴とする請求項4または請求項5に記載の真空断熱材の製造方法。
  7.  請求項4乃至請求項6のいずれかに記載の真空断熱材の製造方法によって製造されたことを特徴とする真空断熱材。
  8.  前記繊維集合体が連続した有機繊維をシート状に形成したものであることを特徴とする
    請求項7に記載の真空断熱材。
  9.  請求項7に記載の真空断熱材を搭載したことを特徴とする冷蔵庫。
PCT/JP2010/052244 2009-10-16 2010-02-16 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫 WO2011045946A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800464449A CN102575804A (zh) 2009-10-16 2010-02-16 真空隔热材的芯材的制造装置以及真空隔热材的制造方法以及真空隔热材以及冰箱
JP2011536051A JP5241925B2 (ja) 2009-10-16 2010-02-16 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫及び機器
US13/501,227 US9068683B2 (en) 2009-10-16 2010-02-16 Manufacturing apparatus of core material of vacuum heat insulating material, manufacturing method of vacuum heat insulating material, vacuum heat insulating material, and refrigerator
EP10823214.1A EP2489919A4 (en) 2009-10-16 2010-02-16 DEVICE FOR PRODUCING THE CORE OF A VACUUM HEATER SEALING ELEMENT AND METHOD FOR PRODUCING THE VACUUM HEATER SEALING ELEMENT, AND VACUUM HEATER SEALING ELEMENT AND REFRIGERATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-239592 2009-10-16
JP2009239592 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011045946A1 true WO2011045946A1 (ja) 2011-04-21

Family

ID=43876001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052244 WO2011045946A1 (ja) 2009-10-16 2010-02-16 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫

Country Status (5)

Country Link
US (1) US9068683B2 (ja)
EP (1) EP2489919A4 (ja)
JP (1) JP5241925B2 (ja)
CN (1) CN102575804A (ja)
WO (1) WO2011045946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2836758A4 (en) * 2012-04-10 2015-12-02 Lg Hausys Ltd INSULATING MATERIAL THAT USES LONG GLASS FIBERS AND METHOD FOR MANUFACTURING THE SAME
WO2016143780A1 (ja) * 2015-03-10 2016-09-15 株式会社 東芝 断熱材、コア材、冷蔵庫、断熱材の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883647B2 (en) * 2016-05-12 2021-01-05 Mitsubishi Electric Corporation Vacuum heat insulator and method of manufacturing the same
CN109713211B (zh) * 2017-10-26 2024-01-09 河北格力钛新能源有限公司 用于极片烘烤的固定夹具及其烘烤方法
CN108083016B (zh) * 2018-01-26 2024-04-05 山东建筑大学 一种自动塑胶管盘管机
BE1026168B1 (fr) * 2019-03-14 2020-05-11 Jason Vandermeulen Enrouleuse automatique de sangles << feuillards >> en polyester de transport de marchandises
IT201900016127A1 (it) * 2019-09-12 2021-03-12 Manteco S P A Sistema di controllo e gestione di tessuti
CN112960474A (zh) * 2021-02-01 2021-06-15 许淑杰 一种线缆成圈机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204093A (ja) 1986-02-28 1987-09-08 株式会社東芝 真空断熱パネル
JPH07103955B2 (ja) 1984-04-02 1995-11-08 株式会社日立製作所 真空断熱材
JPH0828776A (ja) 1994-07-19 1996-02-02 Nippon Muki Co Ltd 真空断熱材用芯材とその製造方法並びに真空断熱材
JP2002188791A (ja) 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
JP2005061611A (ja) * 2003-07-28 2005-03-10 Asahi Fiber Glass Co Ltd 真空断熱材用芯材の製造方法
JP2005344832A (ja) 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd 真空断熱材
JP2005344870A (ja) 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 真空断熱材、及び真空断熱材を具備する冷蔵庫
JP2006017151A (ja) 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd 真空断熱材
JP2006125631A (ja) * 2004-10-01 2006-05-18 Asahi Fiber Glass Co Ltd 真空断熱材およびその製造方法
JP2006283817A (ja) 2005-03-31 2006-10-19 Kurabo Ind Ltd 真空断熱材
JP2006307921A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd 真空断熱材

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641288A (en) 1926-03-25 1927-09-06 Samuel A Neidich Braid hank-winding mechanism
US3368934A (en) 1964-05-13 1968-02-13 Du Pont Nonwoven fabric of crimped continuous polyethylene terephthalate fibers
US3537226A (en) 1967-10-27 1970-11-03 Du Pont Process of packaging batts of fibers
US3755062A (en) 1971-07-21 1973-08-28 Grace W R & Co Fabric formed by heat sealing, shrinking and foaming backing
US3979245A (en) * 1973-12-03 1976-09-07 Metal Buildings Insulation, Inc. Insulation blanket and method and apparatus for making same
US4055268A (en) 1975-11-18 1977-10-25 Union Carbide Corporation Cryogenic storage container
US4339902A (en) * 1980-06-30 1982-07-20 Manville Service Corporation Multiple layer thermal insulation device
JPS6091427U (ja) 1983-11-29 1985-06-22 パラマウント硝子工業株式会社 断熱材
JPS6245136A (ja) 1985-08-23 1987-02-27 Hitachi Ltd 支持治具およびこの支持治具を組み込んだワイヤボンデイング装置
JPS6245136U (ja) 1985-09-10 1987-03-18
JPS62141189U (ja) 1986-02-28 1987-09-05
JPH0791594A (ja) 1993-09-22 1995-04-04 Matsushita Electric Ind Co Ltd 真空断熱体およびその製造方法
TW300260B (ja) 1994-09-26 1997-03-11 Eastman Chem Co
US5791551A (en) 1996-07-24 1998-08-11 Owens Corning Fiberglas Technology, Inc. Vacuum insulation vessels and methods of making same
JP3408101B2 (ja) 1997-03-17 2003-05-19 三洋電機株式会社 冷蔵庫
JP3137946B2 (ja) 1998-09-22 2001-02-26 明星工業株式会社 断熱パネル及びその製造方法
JP2000249290A (ja) 1999-02-26 2000-09-12 Matsushita Refrig Co Ltd 真空断熱体
GB9918376D0 (en) 1999-08-05 1999-10-06 Slack Philip T Filament production method
JP3544653B2 (ja) 2000-04-21 2004-07-21 松下冷機株式会社 冷蔵庫
TW470837B (en) 2000-04-21 2002-01-01 Matsushita Refrigeration Vacuum heat insulator
JP3478780B2 (ja) 2000-05-25 2003-12-15 松下冷機株式会社 真空断熱材、及び真空断熱材を用いた冷蔵庫
US6855425B2 (en) 2000-07-10 2005-02-15 Invista North America S.A.R.L. Polymer filaments having profiled cross-section
JP2003293256A (ja) 2002-03-29 2003-10-15 Sanyo Electric Co Ltd 真空断熱材用コア材の製造方法
TW593919B (en) 2002-05-31 2004-06-21 Matsushita Refrigeration Vacuum heat insulating material and method for producing the same, and refrigerator using the vacuum heat insulating material
JP2004060712A (ja) * 2002-07-26 2004-02-26 Kiyoshi Inaizumi 真空断熱体
JP3528846B1 (ja) 2003-02-12 2004-05-24 松下電器産業株式会社 真空断熱材、及び真空断熱材を用いた冷凍機器及び冷温機器
JP2004308691A (ja) 2003-04-02 2004-11-04 Nisshinbo Ind Inc 真空断熱材及びその製造方法
JP2004340197A (ja) 2003-05-14 2004-12-02 Inoac Corp 貫通孔を有する真空断熱材
JP4297756B2 (ja) 2003-08-29 2009-07-15 三洋電機株式会社 真空断熱材用コア材
JP4124146B2 (ja) 2004-03-15 2008-07-23 三菱電機株式会社 冷凍空調装置、冷凍空調装置の断熱材取り付け方法
JP2006029456A (ja) 2004-07-16 2006-02-02 Matsushita Electric Ind Co Ltd 真空断熱材、真空断熱材を具備する保温保冷機器、および冷蔵庫
JP2006029505A (ja) 2004-07-20 2006-02-02 Kurabo Ind Ltd 真空断熱材
JP2006183810A (ja) 2004-12-28 2006-07-13 Kurabo Ind Ltd 真空断熱材の製造方法
JP2006161939A (ja) 2004-12-07 2006-06-22 Kurabo Ind Ltd 真空断熱材
JP4012903B2 (ja) 2004-11-30 2007-11-28 倉敷紡績株式会社 真空断熱材
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
JP4609007B2 (ja) 2004-09-07 2011-01-12 パナソニック株式会社 真空断熱材と真空断熱材の製造方法および真空断熱材を使用した防寒具
JP4576197B2 (ja) 2004-10-12 2010-11-04 日立アプライアンス株式会社 真空断熱材及び冷蔵庫
JP4239948B2 (ja) 2004-10-22 2009-03-18 パナソニック株式会社 冷蔵庫
JP2006170303A (ja) 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd 真空断熱材
JP4580843B2 (ja) 2005-08-24 2010-11-17 日立アプライアンス株式会社 真空断熱材及びそれを用いた冷蔵庫
JP4580844B2 (ja) 2005-08-24 2010-11-17 日立アプライアンス株式会社 真空断熱材及びそれを用いた冷蔵庫
JP2007092776A (ja) 2005-09-27 2007-04-12 Toshiba Home Technology Corp 断熱材およびその製造方法
JP2007155065A (ja) 2005-12-07 2007-06-21 Nisshinbo Ind Inc 真空断熱材及びその製造方法
JP4372094B2 (ja) 2005-12-08 2009-11-25 シャープ株式会社 ヒートポンプ熱源機
JP2006162076A (ja) 2005-12-15 2006-06-22 Kurabo Ind Ltd 真空断熱材
JP4415392B2 (ja) 2006-05-22 2010-02-17 東芝ホームテクノ株式会社 断熱材の製造方法
JP2007321925A (ja) 2006-06-02 2007-12-13 Asahi Fiber Glass Co Ltd 真空断熱材及びその製造方法
CN101086315A (zh) 2006-06-06 2007-12-12 泰州乐金电子冷机有限公司 真空隔热材料以及采用该材料的冰箱壳体隔热结构
JP4218771B2 (ja) 2006-07-26 2009-02-04 日立アプライアンス株式会社 冷蔵庫
JP2008157516A (ja) 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd 給湯装置
JP4897473B2 (ja) 2006-12-26 2012-03-14 倉敷紡績株式会社 真空断熱材
JP4745269B2 (ja) 2007-02-28 2011-08-10 三菱電機株式会社 貯湯式給湯機の貯湯タンクユニット
JP2008223922A (ja) 2007-03-14 2008-09-25 Sharp Corp 真空断熱材
JP2008232372A (ja) 2007-03-23 2008-10-02 Mitsubishi Electric Corp 真空断熱材とこの真空断熱材を用いた断熱構造体
TWM330196U (en) * 2007-05-08 2008-04-11 Tsc Auto Id Technology Co Ltd Carbon ribbon for tab printer and paper winding reel
JP4789886B2 (ja) 2007-08-06 2011-10-12 三菱電機株式会社 真空断熱材および断熱箱
JP2009121671A (ja) 2007-10-23 2009-06-04 Panasonic Corp 真空断熱材
JP4695663B2 (ja) 2008-03-19 2011-06-08 日立アプライアンス株式会社 冷蔵庫
JP2008185220A (ja) 2008-04-24 2008-08-14 Hitachi Appliances Inc 真空断熱材
JP5236550B2 (ja) 2009-03-30 2013-07-17 三菱電機株式会社 真空断熱材とその製造方法、及びこの真空断熱材を備えた断熱箱

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103955B2 (ja) 1984-04-02 1995-11-08 株式会社日立製作所 真空断熱材
JPS62204093A (ja) 1986-02-28 1987-09-08 株式会社東芝 真空断熱パネル
JPH0828776A (ja) 1994-07-19 1996-02-02 Nippon Muki Co Ltd 真空断熱材用芯材とその製造方法並びに真空断熱材
JP2002188791A (ja) 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
JP2005061611A (ja) * 2003-07-28 2005-03-10 Asahi Fiber Glass Co Ltd 真空断熱材用芯材の製造方法
JP2005344832A (ja) 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd 真空断熱材
JP2005344870A (ja) 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd 真空断熱材、及び真空断熱材を具備する冷蔵庫
JP2006017151A (ja) 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd 真空断熱材
JP2006125631A (ja) * 2004-10-01 2006-05-18 Asahi Fiber Glass Co Ltd 真空断熱材およびその製造方法
JP2006283817A (ja) 2005-03-31 2006-10-19 Kurabo Ind Ltd 真空断熱材
JP2006307921A (ja) 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd 真空断熱材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2489919A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2836758A4 (en) * 2012-04-10 2015-12-02 Lg Hausys Ltd INSULATING MATERIAL THAT USES LONG GLASS FIBERS AND METHOD FOR MANUFACTURING THE SAME
US9829146B2 (en) 2012-04-10 2017-11-28 Lg Hausys, Ltd. Method of manufacturing vacuum insulation using glass fibers
WO2016143780A1 (ja) * 2015-03-10 2016-09-15 株式会社 東芝 断熱材、コア材、冷蔵庫、断熱材の製造方法

Also Published As

Publication number Publication date
US9068683B2 (en) 2015-06-30
CN102575804A (zh) 2012-07-11
EP2489919A1 (en) 2012-08-22
JPWO2011045946A1 (ja) 2013-03-04
US20120207962A1 (en) 2012-08-16
EP2489919A4 (en) 2014-01-29
JP5241925B2 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5856091B2 (ja) 断熱壁、冷蔵庫、機器
JP5241925B2 (ja) 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫及び機器
JP5362024B2 (ja) 真空断熱材及び断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器及び真空断熱材の製造方法
JP5312605B2 (ja) 真空断熱材及び冷蔵庫及び機器
JP4745462B2 (ja) 真空断熱材及び真空断熱材を用いた断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器
JP4789886B2 (ja) 真空断熱材および断熱箱
JP5624305B2 (ja) 断熱容器
WO2010087039A1 (ja) 真空断熱材及びこれを備えた断熱箱
JP5664297B2 (ja) 真空断熱材および断熱箱
JP2011074934A (ja) 真空断熱材、およびこの真空断熱材を備えた断熱箱
JP5360029B2 (ja) 真空断熱材、断熱壁、冷蔵庫、給湯機
JP2008185220A (ja) 真空断熱材
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
JP5627773B2 (ja) 真空断熱材及びこれを使用した断熱箱
JP2010127421A (ja) 真空断熱材および断熱箱
JP2011179635A (ja) 真空断熱材、及びこの真空断熱材を備えた断熱箱
JP2010121652A (ja) 真空断熱材及び断熱箱
JP5665562B2 (ja) 真空断熱材の製造方法、真空断熱材の製造装置、真空断熱材、真空断熱材を用いた断熱箱、及び真空断熱材を用いた機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046444.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536051

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010823214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010823214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501227

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001729

Country of ref document: TH