WO2011040243A1 - 鋼材製品のショットピーニング処理法 - Google Patents
鋼材製品のショットピーニング処理法 Download PDFInfo
- Publication number
- WO2011040243A1 WO2011040243A1 PCT/JP2010/065952 JP2010065952W WO2011040243A1 WO 2011040243 A1 WO2011040243 A1 WO 2011040243A1 JP 2010065952 W JP2010065952 W JP 2010065952W WO 2011040243 A1 WO2011040243 A1 WO 2011040243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- treatment
- shot peening
- product
- steel
- compound layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/10—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/08—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
- B24C1/086—Descaling; Removing coating films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
Definitions
- the present invention relates to a shot peening treatment method for a steel product that performs shot peening (hereinafter abbreviated as “SP”) for imparting compressive residual stress to a workpiece that is a steel product after thermosetting.
- SP shot peening
- thermosetting treatment a mold (steel product) after nitriding (nitriding) will be described as an example of thermosetting treatment.
- molds in particular, molds for die casting of light alloys (Al and Mg), small cracks (heat check) occur due to repeated heating and cooling at each molding. Therefore, heat-checking resistance (heat stress fatigue crack resistance) and high accuracy are required for the molding surface of the mold.
- the present invention can also be applied to other forging dies (cold / hot) and, of course, steel products such as gears and springs that require high durability.
- Vickers hardness (HV) is based on “JIS Z 2244”.
- shot peening does not aim for the original “peening”, but, similarly to “shot peening”, a projection material (including grit and cut wire) represented by a shot is processed. Also included is an injection processing method (cold processing method) for the purpose of “grinding / polishing” by projecting onto an object.
- Patent Document 1 a plurality of peening processes are performed on a die (steel product) after heat treatment by appropriately changing the hardness and particle diameter of a spherical projection material (shot) having a predetermined hardness and particle diameter. (Claim 3 etc.).
- Patent Document 2 describes that an amorphous projection material (shot) having a high hardness and a low Young's modulus is used in the peening process of Patent Document 1 (Claim 3).
- Patent Documents 1 and 2 are forging or pressing molds (paragraph 0001 of Patent Document 1 and Paragraph 0002 of Patent Document 2), and die casting molds that are the optimum target products of the present invention are planned. It is not a thing. Further, Patent Documents 1 and 2 disclose or suggest that an SP treatment that imparts compressive residual stress is performed after positively removing a compound layer (high carbide layer) generated by heat treatment (thermosetting treatment). It has not been.
- the surface abnormal layer (white layer, compound layer) is removed from the coil spring or gear that is a steel product after nitriding. Techniques are described in Patent Documents 3 to 5 and the like. The removal of the abnormal surface layer is to increase the SP treatment effect that imparts compressive residual stress.
- Patent Document 3 describes a manufacturing method of a coil spring in which a white layer of a coiling molded product after nitriding is removed by electrolytic treatment and then subjected to SP treatment (see claim 1 etc.). Unlike the present invention, the removal technique of the compound layer (white layer) described in this patent document is not removal by shots.
- Patent Document 4 describes a technique in which shot peening is performed after projecting (shot) and removing a high-hardness granular material having a horn shape on the tooth bottom and tooth root of a gear after a thermosetting treatment including nitriding treatment. (Claim 1 etc.). This patent document does not describe information related to durability improvement due to the removal mode of the nitriding layer.
- Patent Literature 5 the compound tooth is removed by using hard shot particles having a Vickers hardness of 100 or more on the tooth surface of the gear of the steel gear (steel product) after nitriding treatment, and the tooth surface of the gear. Describes a technique for exposing a nitrogen diffusion layer (claims, etc.). What is described in this patent document is different from that in which two-stage processing is performed in which the shot peening for removing the compound layer and the shot peening for applying compressive residual stress are clearly distinguished as in the present invention.
- FIG. 4 is a display model diagram showing a 3 ⁇ determination circle and a 2.5 ⁇ determination circle for determining whether or not a compound layer is removed by an eddy current inspection apparatus.
- the present invention provides a method for performing shot peening (hereinafter abbreviated as “SP”) on a surface to be processed of a workpiece that is a steel product after thermosetting treatment. It is an object (problem) to provide an SP treatment method capable of significantly improving durability (particularly heat cycle resistance).
- SP shot peening
- nitride layer compound layer
- acute angle projection material It was attempted to remove by shot peening using a grit.
- the present inventors have sufficiently removed the compound layer in the first shot treatment ( The fact that the trace of the compound layer is not substantially observed) is important, and the present inventors have conceived the shot peening treatment method for steel products having the following constitution according to the present invention.
- SP shot peening
- a method of performing shot peening (hereinafter abbreviated as “SP”) on a workpiece which is a steel product after thermosetting A first SP treatment for removing the compound layer produced by the thermosetting treatment; A second SP treatment that imparts compressive residual stress to the first SP treated surface after the first SP treatment, Whether or not the compound layer is removed from the first SP-treated surface is subjected to pass / fail determination by nondestructive inspection, and only the acceptable product is subjected to the second SP treatment.
- SP shot peening
- the pass / fail judgment is made as to whether or not the compound layer has been sufficiently removed by the first SP treatment.
- Generation of cracks thermal cracks
- heat check thermal stress fatigue
- the rejected products after the pass / fail judgment may be collected and collectively subjected to the first SP processing, but the rejected products may be continuously returned to the first SP processing.
- non-destructive inspection using an eddy current sensor has the advantage of reducing man-hours and simplifying the device.
- a structure observation can be considered as a nondestructive inspection, but there is a problem that the structure observation takes a lot of time for a large product such as a mold.
- the apparatus becomes very large in the X-ray inspection.
- the steel product is not limited to a nitridized product, but can be applied to a steel product that has been subjected to thermosetting treatment such as carburizing and quenching.
- a light alloy die casting mold (for example, manufactured by SKD) after nitriding will be described as an example of a workpiece that is a steel product after thermosetting.
- nitriding means heating an alloy steel containing at least one of Al, Cr, Mo, Ti, and V in NH 3 gas at a low temperature of about 500 ° C. This refers to heat treatment that provides a very hard nitride layer on the surface.
- nitriding methods include gas method, salt bath method, and plasma (ion) method.
- Each nitriding treatment method is greatly different depending on the heating method of the processed material and the supply method of active nitrogen necessary for nitriding.
- Nitriding is different from carburizing quenching and induction quenching, and is characterized by heating to about 500 ° C in NH 3 gas and infiltrating nitrogen into the steel surface to form a hardened layer of iron nitride. No operation is required.
- the nitriding treatment temperature is a low temperature of 500 to 600 ° C., and since it is in the ⁇ -Fe region, there is little direct dimensional deformation due to nitriding even if nitriding is applied.
- the outermost surface layer of the nitride layer has a stable compressive stress, it has wear resistance and fatigue resistance, and does not soften even when the temperature rises to about 600 ° C, Is relatively stable and has a relatively good corrosion resistance, so that it is widely applied industrially.
- the gas nitriding method is to obtain a high hardness diffusion layer on the steel surface by the diffusion of active nitrogen.
- the nitride layer is obtained by diffusing N in the generated gas generated by the decomposition of the NH 3 gas in the reaction of the above into the steel material.
- the nitriding method does not harden due to the change of the structure, but is a phenomenon that remarkably hardens by forming a high-hardness nitride. Therefore, it is not necessary to quench rapidly after nitriding, unlike quenching.
- the “compound layer (white layer)” refers to a layer mainly composed of nitride, carbide, carbonitride, etc. that is formed closer to the surface than the nitrogen diffusion layer, and is very hard and brittle. There is.
- the SP treatment of the present invention basically includes a first SP treatment for removing the compound layer (white layer) and a compressive residual stress on the first SP treated surface after the first SP treatment.
- 2nd SP processing which gives, and passes the 2nd SP processing only for the pass product through the pass / fail judgment by the nondestructive inspection of the presence or absence of the compound layer removal by the 1st SP processing.
- the “first SP treatment” is a hard, pointed shape such as alundum or carborundum for the purpose of cutting and removing the compound layer (white layer) on the surface generated when nitriding is performed.
- This is a treatment performed using a projection material (grid, cut wire) or a high-hardness spherical projection material (shot).
- the hardness of the projection material is appropriately selected from the range of Vickers hardness (JISZ2244) HV1200 to 3000 (desirably HV1700 to 3000) and particle size number (JISR6001) 20 to 220 (desirably 30 to 100).
- the projection speed is appropriately selected from the range of 0.05 to 1 MPa (preferably 0.1 to 0.5 MPa) as the projection air pressure when, for example, the projection material is projected using a pneumatic accelerator.
- the second SP treatment is a shot peening treatment for the purpose of imparting compressive residual stress.
- the shot used for the second SP is a general-purpose peening shot, for example, hardness HV500 to 1200 (preferably HV900 to 1200), and the particle size is suitably within the range of 0.02 to 1 mm (preferably 0.05 to 0.2 mm). Select. Further, for example, when the shot is projected using a pneumatic accelerator, the projection speed is appropriately selected from the range of 0.05 to 1 MPa (preferably 0.1 to 0.5 MPa) as the projection air pressure.
- the SP device used for the first SP process and the second SP process is not particularly limited.
- a projection material is supplied to the pneumatic accelerator (suction type (gravity type) / direct pressure type (pressurization type)) shown in FIGS. 2 (A) and 2 (B) or an impeller that rotates at a high speed (not shown).
- a centrifugal accelerator or the like can be used.
- Eddy current refers to an eddy current generated by irradiating a material with an alternating magnetic flux from a coil (FIG. 3A). This eddy current releases a magnetic flux that cancels the magnetic flux from the coil (FIG. 3B). If there is an abnormal state of a discontinuous part (such as a scratch, crack, or strain) in the material, Is different and flows around there (FIG. 3C). Therefore, when the chemical composition, crystal structure, and the like are different from those of the normal product, the output has a different waveform (FIG. 4). Therefore, by reading this change in output, it is possible to determine whether or not the determination target is performing a desired process. (Quoted from Kosei Engineer's website "MDK sensor measurement principle") Table 1 is a list of influence factors of the structure on the conductivity and permeability.
- ⁇ indicates that the degree of influence is large. ⁇ indicates that there is an impact. X indicates no influence.
- the chemical component has a great influence on the conductivity. It can also be seen that the crystal structure, internal stress, and retained austenite have a great influence on the magnetic permeability. That is, in the eddy current inspection apparatus, changes in conductivity, crystal structure, internal stress, and retained austenite can be read indirectly.
- tissue state before the first SP processing is measured at a plurality of points (for example, 20 locations) by the eddy current sensor and the tissue state after the first SP processing is similarly measured at a plurality of points (for example, 20 locations).
- Random variable (vector) X corresponds to ⁇ -n ⁇ ⁇ X ⁇ + n ⁇ (where ⁇ is mean value, ⁇ is standard deviation, n is 2.5 to 3.5) on the display connected to the current sensor through a calculation circuit.
- the range of the phase difference and the amplitude difference to be displayed as a determination circle, and a case where all of a plurality of corresponding points of the processed part are plotted outside the determination circle is determined as an acceptable product. The presence or absence of removal can be easily determined (see FIG. 5).
- ⁇ Shot peening system> 6 to 7 show an example of an SP processing system for steel products.
- the workpiece (work) W is transported into the first SP processing chamber 51 of the first SP device 50 by the first transport device 10, and the projection material is ejected from the projection nozzle 52 to the workpiece W.
- One SP process is performed.
- the workpiece W that has been subjected to the first SP treatment is transported from the first SP device 50 to the pass / fail judgment device 70 by the first transport device 10, and whether or not the compound layer on the surface of the workpiece W has been properly removed. Determine whether.
- the acceptance / rejection determination device 70 includes a probe (measuring element) 71 and an analysis device 72.
- the surface state of the workpiece W is measured via the probe 71, and the workpiece W determined that the compound layer on the surface is properly removed is transferred to the second SP of the second SP device 60 by the second transport device 20. It conveys into the apparatus 61 and injects a projection material from the projection nozzle 62 with respect to the workpiece W, and performs 2nd SP process. After the completion of the second SP process, the second conveying device 20 conveys and accumulates from the second SP device 60 to a predetermined position. In this way, a series of shot peening processing is completed.
- the workpiece W determined by the pass / fail determination device 70 as a “failed product” from which the compound layer on the surface of the workpiece W has not been properly removed is determined by the signal from the pass / fail allocation control device 73. 30 is assigned to the rejected product transport device 40, and is again transported to the first SP device 50 by the rejected product transport device 40 to perform the first SP processing. Again, the workpiece W that has been subjected to the first SP processing is determined by the pass / fail determination device 70 as described above, and if it is an acceptable product, the second SP processing is performed, and a series of shot peening processing is completed.
- the projection nozzles 52 and 62 are connected with compressed air supply devices 53 and 63 serving as a projection power source, and the projection material hoppers 54 and 64 can supply the projection material from the hoppers 54 and 64. So connected. Further, in order to reuse the used projection material, the projection material is circulated to the projection material hoppers 54 and 64 via the classifiers 55 and 65 so that partial circulation use is possible.
- 56 and 66 are dust collectors.
- the shot peening system is not limited to FIGS. 6 to 7 and can be changed as appropriate.
- the workpiece W determined to be a rejected product by the acceptance / rejection determination device 70 is not directly conveyed to the first SP device 50, but is temporarily accumulated in another place, and a certain amount is collected.
- the first SP process can also be performed.
- the first SP device and the second SP device can be combined.
- test piece an SKD61 material (diameter: 15 mm ⁇ height: 20 mm) after gas nitriding treatment (compound layer thickness: 5 ⁇ m) was used.
- the eddy current inspection device used was “Magnatest D HF probe” (Nippon Felster Co., Ltd.).
- the example performed a 30 s treatment at a projection amount of 0.56 kg / min, and the comparative example performed a 15 s treatment at the same projection amount.
- the eddy current device is used to read the change in the structure at 20 locations (measurement pitch 5 to 10 mm) by eddy current. Is displayed on the two-dimensional coordinates indicating the phase difference (time) and voltage, and the standard deviation ( ⁇ ) is obtained, and the random variable X illustrated in FIG. 5 corresponds to the range of ⁇ 3 ⁇ ⁇ X ⁇ + 3 ⁇ . The judgment circle was displayed.
- the heat check test simulates the thermal fatigue of a die-casting die that is repeatedly heated and cooled by molten aluminum and a mold release material, and uses a high-frequency coil to heat in a short time and water-cool a predetermined number of cycles. This is a test for evaluating cracks generated in a test piece when it is repeated.
- FIG. 8 shows a conceptual diagram of the heat check resistance test
- FIG. 9 shows the heat pattern.
- the judgment circle corresponding to the range of ⁇ 2.5 ⁇ ⁇ X ⁇ + 2.5 ⁇ was used was verified.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
上述した如く、少なくとも金型において、積極的にショット処理による化合物層の除去に関連する、先行技術文献は見当たらない。
熱硬化処理により生じた化合物層を除去する第一SP処理と、
該第一SP処理後の第一SP処理面に圧縮残留応力を付与する第二SP処理と、を含み、
第一SP処理面の化合物層除去の有無について非破壊検査による合否判定を経て、合格品のみ前記第二SP処理を行う、ことを特徴とする。
表1は伝導率と透磁率に与える組織の影響因子の一覧である。
P(μ-3σ<X<μ+3σ)=0.9973、
P(μ-3.5σ<X<μ+3.5σ)=0.9996
従って、誤判定を避けるためには、3σの判定円が妥当であるが、n=2.5~3.5から適宜選択した確率変数(X)の範囲で表示される判定円を使用することもできる。
図6~7に、鋼材製品のSP処理システムの一例を示す。第一搬送装置10により被加工物(ワーク)Wを第一SP装置50の第一SP処理室51内に搬送して、被加工物Wに対して投射ノズル52から投射材を噴射して第一SP処理を施す。
また、本発明は本明細書の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
Claims (8)
- 熱硬化処理後の鋼材製品である被加工品にショットピーニング(以下「SP」と略す。)処理を行う方法であって、
前記熱硬化処理により生じた化合物層を除去する第一SP処理と、
該第一SP処理後の第一SP処理面に圧縮残留応力を付与する第二SP処理と、を含み、
前記第一SP処理面の化合物層除去の有無について非破壊検査による合否判定を経て、合格品のみ前記第二SP処理を行う、
ことを特徴とする鋼材製品のショットピーニング処理法。 - さらに、前記合否判定後の不合格品を第一SP処理に戻すことを特徴とする請求項1記載の鋼材製品のショットピーニング処理法。
- 前記合否判定に使用する非破壊検査を、渦電流センサを用いて行なうことを特徴とする請求項1記載の鋼材製品のショットピーニング処理法。
- 前記合否判定を、被加工品における未処理品又は処理済み品の非処理部位の、複数点における交流電流の位相差(時間)および振幅差(電圧)の双方を測定して、渦電流センサからの測定信号を、計算回路を介して接続された表示回路に入力し、確率変数Xがμ-nσ<X<μ+nσ(但し、μ:平均値、σ:標準偏差、n:2.5~~3.5)の前記位相差および振幅差の範囲を、二次元座標に判定円として表示し、
該判定円の外側に、処理済み部位の対応する複数点における前記位相差・振幅差の測定点座標の全てがプロッティングされる場合を合格品として判定することを特徴とする請求項3記載の鋼材製品のショットピーニング処理法。 - 確率変数Xがμ-3σ<X<μ+3σの前記位相差および振幅差の範囲を前記判定円としたことを特徴とする請求項4記載の鋼材製品のショットピーニング処理法。
- 前記熱硬化処理後の鋼材製品が、Al,Cr,Mo,Ti及びVのいずれか1種以上を含有する鋼材製品の窒化処理品であることを特徴とする請求項1~5のいずれか一項に記載の鋼材製品のショットピーニング処理法。
- 前記鋼材製品が、軽合金ダイカスト用の金型であることを特徴とする請求項6記載の鋼材製品のショットピーニング処理法。
- 熱硬化処理後の鋼材製品である被加工品にショットピーニング(以下「SP」と略す。)処理を行う方法に使用するショットピーニングシステムであって、
前記熱硬化処理により生じた化合物層を除去する第一SP処理に使用する第一SP装置と、
前記第一SP処理後の第一SP処理面に圧縮残留応力を付与する第二SP処理に使用する第二SP装置と、
前記第一SP処理面の化合物層除去の有無について合否判定をする判定装置と、を含み、
前記判定装置における判定が合格の場合、被加工品を第二SP装置に搬送する搬送装置と、判定が不合格の場合、被加工品を第一SP装置に搬送する不合格品搬送装置と、が付設されている、
ことを特徴とする鋼材製品のショットピーニング処理システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/498,453 US9056386B2 (en) | 2009-09-30 | 2010-09-15 | Method of shot-peening treatment of steel product |
CN2010800433690A CN102574273B (zh) | 2009-09-30 | 2010-09-15 | 钢材制品的喷丸处理法 |
EP10820362.1A EP2484493B1 (en) | 2009-09-30 | 2010-09-15 | Shot peening treatment method for steel product |
JP2011511180A JP4775525B2 (ja) | 2009-09-30 | 2010-09-15 | 鋼材製品のショットピーニング処理法 |
KR1020127007622A KR101237915B1 (ko) | 2009-09-30 | 2010-09-15 | 강재 제품의 쇼트 피닝 처리법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009227935 | 2009-09-30 | ||
JP2009-227935 | 2009-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040243A1 true WO2011040243A1 (ja) | 2011-04-07 |
Family
ID=43826069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065952 WO2011040243A1 (ja) | 2009-09-30 | 2010-09-15 | 鋼材製品のショットピーニング処理法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9056386B2 (ja) |
EP (1) | EP2484493B1 (ja) |
JP (1) | JP4775525B2 (ja) |
KR (1) | KR101237915B1 (ja) |
CN (1) | CN102574273B (ja) |
WO (1) | WO2011040243A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689269A (zh) * | 2012-03-31 | 2012-09-26 | 贵州西南工具(集团)有限公司 | 一种不锈钢零件氮化后的表面精整方法及装置 |
JP2015525336A (ja) * | 2013-05-30 | 2015-09-03 | 新東工業株式会社 | 表面特性検査装置、表面特性検査システム及び表面特性検査方法 |
JP2017144543A (ja) * | 2016-02-21 | 2017-08-24 | ヤマダインフラテクノス株式会社 | 鋼構造物の予防保全工法、及びこれに用いられる循環式ブラスト装置 |
WO2018211879A1 (ja) * | 2017-05-16 | 2018-11-22 | 新東工業株式会社 | 表面処理加工方法及び表面処理加工装置 |
WO2019064865A1 (ja) * | 2017-09-27 | 2019-04-04 | 新東工業株式会社 | 表面処理装置及び表面処理方法 |
CN109789531A (zh) * | 2016-09-28 | 2019-05-21 | 新东工业株式会社 | 金属制立体结构物的表面处理方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104169047B (zh) * | 2012-05-24 | 2016-12-07 | 新东工业株式会社 | 喷丸处理方法 |
JP6567048B2 (ja) | 2014-06-27 | 2019-08-28 | プランゼー コンポジット マテリアルズ ゲーエムベーハー | スパッタリングターゲット |
WO2016027207A1 (en) | 2014-08-18 | 2016-02-25 | Bharat Forge Limited | A method of hardening die surfaces |
CN104820002A (zh) * | 2015-04-16 | 2015-08-05 | 山东大学 | 基于电化学检测装置的淬硬钢加工白层检测方法 |
JP6286470B2 (ja) * | 2016-04-06 | 2018-02-28 | 株式会社不二機販 | 金型の表面処理方法 |
DE102017127299A1 (de) | 2017-11-20 | 2019-05-23 | Nemak, S.A.B. De C.V. | Verfahren zum Behandeln der Oberflächen von aus einem Stahlwerkstoff bestehenden Formteilen für Gießformen |
RU2677908C1 (ru) * | 2018-05-08 | 2019-01-22 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ химико-термической обработки детали из легированной стали |
KR20200000723U (ko) * | 2018-09-30 | 2020-04-08 | 주식회사 유니락 | 고정밀 레귤레이터용 부품을 위한 고내식성 코팅막 및 그 제조방법 |
JP6881420B2 (ja) * | 2018-11-07 | 2021-06-02 | 新東工業株式会社 | 劣化評価方法 |
CN109652757A (zh) * | 2018-12-28 | 2019-04-19 | 宁波合力模具科技股份有限公司 | 一种高真空挤压压铸模的表面复合处理方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0464009A (ja) * | 1990-07-02 | 1992-02-28 | Honda Motor Co Ltd | 化合物層の検査方法 |
JPH05156351A (ja) | 1991-07-11 | 1993-06-22 | Tougou Seisakusho:Kk | オイルテンパー線によるコイルばねの製造方法 |
JPH10217122A (ja) | 1997-01-31 | 1998-08-18 | Sintokogio Ltd | 金型表面の処理方法 |
JP2002166366A (ja) | 2000-11-30 | 2002-06-11 | Sintokogio Ltd | 熱処理済み歯車の歯底及び歯元表面処理方法 |
JP2003191166A (ja) | 2001-12-26 | 2003-07-08 | Sintokogio Ltd | 金型寿命の改善方法および金型 |
JP2005203729A (ja) * | 2003-12-19 | 2005-07-28 | Ebara Corp | 基板研磨装置 |
JP2005294282A (ja) * | 2003-10-21 | 2005-10-20 | Texas Instruments Inc | ポストcmp保管及び洗浄用の界面活性剤 |
JP2006131922A (ja) | 2004-11-02 | 2006-05-25 | Mazda Motor Corp | 鋼製歯車の製造方法 |
JP2007056333A (ja) * | 2005-08-25 | 2007-03-08 | Toyota Motor Corp | 窒化処理部材のショットピーニング方法及びその方法で処理された窒化処理部材 |
JP2008195994A (ja) * | 2007-02-09 | 2008-08-28 | Kyoto Institute Of Technology | チタン製品の表面改質方法及び表面改質チタン製品 |
JP2009076922A (ja) * | 2007-09-24 | 2009-04-09 | Applied Materials Inc | 連続的半径測定によるウェハ縁の特徴付け |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2994508B2 (ja) * | 1991-11-26 | 1999-12-27 | 株式会社東郷製作所 | コイルばねの製造方法 |
JP3173756B2 (ja) * | 1994-07-28 | 2001-06-04 | 株式会社東郷製作所 | コイルばねの製造方法 |
US6377039B1 (en) * | 1997-11-14 | 2002-04-23 | Jentek Sensors, Incorporated | Method for characterizing coating and substrates |
JP2000275222A (ja) * | 1999-03-26 | 2000-10-06 | Daido Steel Co Ltd | 渦流探傷方法および渦流探傷装置 |
JP3857213B2 (ja) * | 2002-10-30 | 2006-12-13 | 本田技研工業株式会社 | 鋳造用金型およびその表面処理方法 |
SE525325C2 (sv) * | 2003-05-16 | 2005-02-01 | Sandvik Ab | Skärande verktyg för metallbearbetning samt metod vid tillverkning av skärande verktyg |
EP1944124A4 (en) * | 2005-08-25 | 2011-06-22 | Sintokogio Ltd | BALL BEAM METHODS |
JP4699264B2 (ja) * | 2006-04-03 | 2011-06-08 | 三菱重工業株式会社 | 金属部材の製造方法及び構造部材 |
JP5004519B2 (ja) * | 2006-06-22 | 2012-08-22 | 株式会社不二製作所 | ショットピーニング処理面の非破壊検査方法及び装置 |
DE102006043554A1 (de) * | 2006-09-12 | 2008-03-27 | Mannesmann Dmv Stainless Gmbh | Verfahren zur zerstörungsfreien Qualitätskontrolle mechanisch verfestigter Oberflächen austenitischer Stahlrohre |
US8337278B2 (en) * | 2007-09-24 | 2012-12-25 | Applied Materials, Inc. | Wafer edge characterization by successive radius measurements |
-
2010
- 2010-09-15 EP EP10820362.1A patent/EP2484493B1/en active Active
- 2010-09-15 KR KR1020127007622A patent/KR101237915B1/ko active IP Right Grant
- 2010-09-15 JP JP2011511180A patent/JP4775525B2/ja active Active
- 2010-09-15 US US13/498,453 patent/US9056386B2/en active Active
- 2010-09-15 CN CN2010800433690A patent/CN102574273B/zh active Active
- 2010-09-15 WO PCT/JP2010/065952 patent/WO2011040243A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0464009A (ja) * | 1990-07-02 | 1992-02-28 | Honda Motor Co Ltd | 化合物層の検査方法 |
JPH05156351A (ja) | 1991-07-11 | 1993-06-22 | Tougou Seisakusho:Kk | オイルテンパー線によるコイルばねの製造方法 |
JPH10217122A (ja) | 1997-01-31 | 1998-08-18 | Sintokogio Ltd | 金型表面の処理方法 |
JP2002166366A (ja) | 2000-11-30 | 2002-06-11 | Sintokogio Ltd | 熱処理済み歯車の歯底及び歯元表面処理方法 |
JP2003191166A (ja) | 2001-12-26 | 2003-07-08 | Sintokogio Ltd | 金型寿命の改善方法および金型 |
JP2005294282A (ja) * | 2003-10-21 | 2005-10-20 | Texas Instruments Inc | ポストcmp保管及び洗浄用の界面活性剤 |
JP2005203729A (ja) * | 2003-12-19 | 2005-07-28 | Ebara Corp | 基板研磨装置 |
JP2006131922A (ja) | 2004-11-02 | 2006-05-25 | Mazda Motor Corp | 鋼製歯車の製造方法 |
JP2007056333A (ja) * | 2005-08-25 | 2007-03-08 | Toyota Motor Corp | 窒化処理部材のショットピーニング方法及びその方法で処理された窒化処理部材 |
JP2008195994A (ja) * | 2007-02-09 | 2008-08-28 | Kyoto Institute Of Technology | チタン製品の表面改質方法及び表面改質チタン製品 |
JP2009076922A (ja) * | 2007-09-24 | 2009-04-09 | Applied Materials Inc | 連続的半径測定によるウェハ縁の特徴付け |
Non-Patent Citations (2)
Title |
---|
MASAHIKO HIBARA: "Prolongation of Life of Casting die", 2003, NIKKAN KOGYO SHIMBUN, pages: 103 - 104 |
See also references of EP2484493A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689269B (zh) * | 2012-03-31 | 2015-02-25 | 贵州西南工具(集团)有限公司 | 一种不锈钢零件氮化后的表面精整方法及装置 |
CN102689269A (zh) * | 2012-03-31 | 2012-09-26 | 贵州西南工具(集团)有限公司 | 一种不锈钢零件氮化后的表面精整方法及装置 |
JP2015525336A (ja) * | 2013-05-30 | 2015-09-03 | 新東工業株式会社 | 表面特性検査装置、表面特性検査システム及び表面特性検査方法 |
US9638668B2 (en) | 2013-05-30 | 2017-05-02 | Sintokogio, Ltd. | Surface property inspection apparatus, surface property inspection system, and surface property inspection method |
JP2017144543A (ja) * | 2016-02-21 | 2017-08-24 | ヤマダインフラテクノス株式会社 | 鋼構造物の予防保全工法、及びこれに用いられる循環式ブラスト装置 |
WO2017141823A1 (ja) * | 2016-02-21 | 2017-08-24 | ヤマダインフラテクノス株式会社 | 鋼構造物の予防保全工法、及びこれに用いられる循環式ブラスト装置 |
CN109789531A (zh) * | 2016-09-28 | 2019-05-21 | 新东工业株式会社 | 金属制立体结构物的表面处理方法 |
CN109789531B (zh) * | 2016-09-28 | 2021-09-10 | 新东工业株式会社 | 金属制立体结构物的表面处理方法 |
WO2018211879A1 (ja) * | 2017-05-16 | 2018-11-22 | 新東工業株式会社 | 表面処理加工方法及び表面処理加工装置 |
JPWO2018211879A1 (ja) * | 2017-05-16 | 2020-03-19 | 新東工業株式会社 | 表面処理加工方法及び表面処理加工装置 |
US11389930B2 (en) | 2017-05-16 | 2022-07-19 | Sintokogio, Ltd. | Surface treatment processing method and surface treatment processing device |
WO2019064865A1 (ja) * | 2017-09-27 | 2019-04-04 | 新東工業株式会社 | 表面処理装置及び表面処理方法 |
US11331771B2 (en) | 2017-09-27 | 2022-05-17 | Sintokogio, Ltd. | Apparatus and method for treating surface |
Also Published As
Publication number | Publication date |
---|---|
EP2484493A1 (en) | 2012-08-08 |
US20120180539A1 (en) | 2012-07-19 |
EP2484493A4 (en) | 2016-03-30 |
US9056386B2 (en) | 2015-06-16 |
JPWO2011040243A1 (ja) | 2013-02-28 |
KR20120080582A (ko) | 2012-07-17 |
KR101237915B1 (ko) | 2013-02-27 |
JP4775525B2 (ja) | 2011-09-21 |
CN102574273B (zh) | 2013-09-18 |
CN102574273A (zh) | 2012-07-11 |
EP2484493B1 (en) | 2021-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4775525B2 (ja) | 鋼材製品のショットピーニング処理法 | |
CN101821059B (zh) | 喷丸硬化方法 | |
Harada et al. | Influence of microshot peening on surface layer characteristics of structural steel | |
TWI532547B (zh) | Surface treatment of die - cast metal molds | |
JP5299140B2 (ja) | ショットピーニング用投射材の材料、及びショットピーニング用投射材の製造方法 | |
KR101482619B1 (ko) | 쇼트 피닝용 투사재의 제조방법 | |
Zhan et al. | Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process | |
Schmitt et al. | Laser-based powder bed fusion of 16MnCr5 and resulting material properties | |
JPH1029160A (ja) | 高硬度金属製品のショットピ−ニング方法及び高硬度金属製品 | |
JPWO2007023936A1 (ja) | ショットピーニング方法 | |
JP2002060845A (ja) | ダイカスト金型の高寿命化方法 | |
CN117062922A (zh) | 曲轴及其制造方法 | |
JP6416735B2 (ja) | 窒化部品の製造方法及び窒化部品 | |
ZHANG et al. | Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels | |
JPH10217122A (ja) | 金型表面の処理方法 | |
JP6274743B2 (ja) | 高い圧縮残留応力を得るショットピーニング方法 | |
CN112760469A (zh) | 一种金属材料的表面改性方法 | |
JPH10100069A (ja) | ショットピ−ニング方法及び処理物品 | |
Easton et al. | Residual stress in case hardened steel gears | |
JPH04269166A (ja) | 浸炭処理部品の強化方法 | |
Karthick et al. | Influence of Shot Peening on Surface Characteristics of Case Hardened SAE9310 Gear Material | |
Yun et al. | Evaluation of Fatigue Limit Improvement and Harmless Crack Size of Maraging Steel Using Shot Peening | |
Rautio et al. | Fatigue Life and Impact Toughness of PBF-LB Manufactured Ti6Al4V and the Effect of Heat Treatment | |
Alkan et al. | Investigation of Shot Peening Effect on Mechanical and Physical Properties of Aluminum Alloys | |
JP2001138030A (ja) | 砂型鋳造による鋳物製品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080043369.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011511180 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820362 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127007622 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498453 Country of ref document: US Ref document number: 2010820362 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201001404 Country of ref document: TH |