WO2011033956A1 - 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ - Google Patents

誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ Download PDF

Info

Publication number
WO2011033956A1
WO2011033956A1 PCT/JP2010/065200 JP2010065200W WO2011033956A1 WO 2011033956 A1 WO2011033956 A1 WO 2011033956A1 JP 2010065200 W JP2010065200 W JP 2010065200W WO 2011033956 A1 WO2011033956 A1 WO 2011033956A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
rubber
organometallic compound
solution
inorganic filler
Prior art date
Application number
PCT/JP2010/065200
Other languages
English (en)
French (fr)
Inventor
真治 飯尾
成亮 高松
峻祐 谷口
陽太 小久保
吉川 均
小林 淳
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to US13/201,508 priority Critical patent/US20110300393A1/en
Priority to KR1020117025092A priority patent/KR101344608B1/ko
Priority to EP10817069.7A priority patent/EP2390998A4/en
Priority to CN201080017239.XA priority patent/CN102405590B/zh
Publication of WO2011033956A1 publication Critical patent/WO2011033956A1/ja
Priority to US15/202,818 priority patent/US10035897B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing

Definitions

  • the present invention relates to a dielectric film suitable for a transducer such as an actuator or a sensor, a manufacturing method thereof, and a transducer using the dielectric film.
  • Transducers include actuators, sensors, power generation elements, etc. that convert mechanical energy and electrical energy, or speakers, microphones, etc. that convert acoustic energy and electrical energy.
  • Polymer materials such as dielectric elastomers are useful for constructing a highly flexible, small and lightweight transducer.
  • an actuator can be configured by arranging a pair of electrodes on both sides in the thickness direction of a dielectric film made of a dielectric elastomer.
  • increasing the voltage applied between the electrodes increases the electrostatic attractive force between the electrodes.
  • the dielectric film sandwiched between the electrodes is compressed in the thickness direction, and the thickness of the dielectric film is reduced.
  • the dielectric film extends in a direction parallel to the electrode surface.
  • the applied voltage between the electrodes is reduced, the electrostatic attractive force between the electrodes is reduced. For this reason, the compressive force from the thickness direction to the dielectric film is reduced, and the film thickness is increased by the elastic restoring force of the dielectric film.
  • the actuator drives the member to be driven by extending and contracting the dielectric film.
  • silicone rubber, acrylic rubber, nitrile rubber, urethane rubber or the like is used (for example, see Patent Documents 1 and 2).
  • silicone rubber has a large electrical resistance because it has a siloxane bond as a skeleton. For this reason, the dielectric film made of silicone rubber is difficult to break down even when a large voltage is applied.
  • polydimethylsiloxane-based silicone rubber has a small polarity. That is, the relative dielectric constant is small. For this reason, when the actuator is configured using a dielectric film made of polydimethylsiloxane-based silicone rubber, the electrostatic attractive force with respect to the applied voltage is small. Therefore, sufficient force and displacement cannot be obtained.
  • an actuator when configured using a dielectric film having a large relative dielectric constant, a large amount of charge can be stored at the interface between the dielectric film and the electrode. For this reason, the electrostatic attractive force with respect to an applied voltage becomes large.
  • the relative permittivity of known acrylic rubber and nitrile rubber is larger than that of silicone rubber. Therefore, these are suitable for dielectric films.
  • the electrical resistance of acrylic rubber or the like is smaller than that of silicone rubber. For this reason, when acrylic rubber or the like is used as the dielectric film, the current flows through the dielectric film when the applied voltage increases, and charges are not easily accumulated. Therefore, although the relative dielectric constant is large, the electrostatic attractive force is small, and a sufficient force and displacement cannot be obtained. Further, when a current flows through the dielectric film, the dielectric film may be destroyed by the generated Joule heat. In addition, since the electric resistance is small, there is a problem that the dielectric film easily breaks down.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a dielectric film having a large electric resistance and excellent durability, and a method for manufacturing the same. Another object of the present invention is to provide a transducer having a large displacement and excellent durability using such a dielectric film.
  • a dielectric film of the present invention is a dielectric film interposed between at least a pair of electrodes in a transducer, and has an organometallic compound and a functional group capable of reacting with the organometallic compound, and is polydimethylsiloxane It is characterized by comprising a three-dimensional crosslinked product synthesized from a rubber polymer other than the above and an inorganic filler having a functional group capable of reacting with the organometallic compound.
  • Patent Document 3 discloses a ceramic composite rubber in which a rubber polymer and an organometallic compound having an organic functional group that reacts with the rubber polymer are chemically bonded.
  • the ceramic composite rubber does not contain an inorganic filler that constitutes a three-dimensional crosslinked body. That is, according to the ceramic composite rubber, the metal oxide produced by hydrolysis of the unreacted organometallic compound is merely dispersed in the rubber.
  • the three-dimensional crosslinked body in the present invention has an inorganic filler.
  • Both the rubber polymer and the inorganic filler have a functional group capable of reacting with the organometallic compound. Therefore, the rubber polymer and the organometallic compound, and the inorganic filler and the organometallic compound react and are chemically bonded to each other during the synthesis of the three-dimensional crosslinked body. That is, the three-dimensional crosslinked body in the present invention has a structure in which a rubber polymer is crosslinked with an organometallic compound and an inorganic filler is incorporated in the generated crosslinked bond.
  • the flow of electrons is blocked by both the inorganic filler and the metal oxide derived from the organometallic compound.
  • the electrical resistance of a three-dimensional crosslinked body is large. That is, the electric resistance of the dielectric film of the present invention is large. Therefore, when the dielectric film of the present invention is disposed between a pair of electrodes and a voltage is applied, current hardly flows in the dielectric film. For this reason, a lot of charges can be stored in the dielectric film. As a result, the electrostatic attractive force is increased, and for example, a large force and displacement amount can be obtained in the actuator.
  • the dielectric film of the present invention since current does not flow easily through the dielectric film, generation of Joule heat is suppressed. Therefore, when the dielectric film of the present invention is used, there is little possibility that the dielectric film is destroyed by heat. In addition, since the dielectric film of the present invention has a high electric resistance, it is difficult to break down. Thus, the dielectric film of the present invention is excellent in durability. Moreover, a larger voltage can be applied to the dielectric film of the present invention. Therefore, when the dielectric film of the present invention is used, a greater force and displacement can be obtained, for example, in an actuator.
  • a rubber polymer other than polydimethylsiloxane is used for the dielectric film of the present invention. That is, a rubber polymer having a large polarity, in other words, a relative dielectric constant, is used as compared with a conventionally used polydimethylsiloxane-based silicone rubber. For this reason, according to the dielectric film of the present invention, a large electrostatic attractive force is generated even when the applied voltage is relatively small. Therefore, when the dielectric film of the present invention is used, for example, an actuator can easily obtain a desired force and displacement.
  • the rubber polymer in the method for producing a dielectric film of the present invention, which is suitable for the production of the dielectric film of the present invention, can be dissolved and the organic metal compound can be chelated in a solvent.
  • the organometallic compound is hydrolyzed by reacting with water and polycondensed by a dehydration reaction or a dealcoholization reaction (sol-gel reaction) to form a three-dimensional crosslinked product.
  • organometallic compounds are highly reactive with water and difficult to handle.
  • a rapid reaction with water can be suppressed by chelating the organometallic compound. That is, in the production method of the present invention, the solvent dissolves the rubber polymer, disperses the inorganic filler, and plays a role as a chelating agent.
  • the organometallic compound is mixed with the first solution in which the rubber polymer is dissolved and the inorganic filler is dispersed, the organometallic compound is chelated in the solvent. Thereby, hydrolysis of the organometallic compound is suppressed. Thereafter, the solvent is removed in the crosslinking step. That is, the chelating agent is removed. Then, the dealcoholization reaction of the organometallic compound is promoted, and the crosslinking reaction by polycondensation proceeds.
  • the reaction rate of the organometallic compound can be slowed down, so that a homogeneous dielectric film can be obtained.
  • the solvent serves both as a solvent for dissolving the rubber polymer and dispersing the inorganic filler and as a chelating agent. For this reason, it is not necessary to prepare a solvent and a chelating agent separately. Therefore, the manufacturing process is simplified and practical.
  • a first solution in which the rubber polymer is dissolved and the inorganic filler is dispersed is prepared in advance. Thereby, the dispersibility of the inorganic filler in the second solution is improved, and a homogeneous dielectric film can be obtained.
  • a plasticizer is mix
  • the transducer of the present invention is characterized by including the dielectric film of the present invention and a plurality of electrodes arranged via the dielectric film.
  • the transducer of the present invention includes the above dielectric film of the present invention.
  • the electric resistance of the dielectric film of the present invention is large. Therefore, a large amount of charges can be stored in the dielectric film. For this reason, for example, when the transducer of the present invention is used as an actuator, a large force and displacement can be obtained.
  • the dielectric film of the present invention has a low risk of breakdown due to heat and is difficult to break down. For this reason, the transducer of this invention is excellent in durability.
  • FIG. 5 is a cross-sectional view in the VV direction of FIG. 4.
  • Actuator (transducer) 10 Dielectric film 11a, 11b: Electrode 12: Power supply 2: Capacitance type sensor (transducer) 20: Dielectric film 21a, 21b: Electrode 22: Substrate 3: Power generation element (transducer) 30: Dielectric Film 31a, 31b: Electrode 5: Actuator 50: Dielectric film 51a, 51b: Electrode 52: Upper chuck 53: Lower chuck
  • dielectric film, the manufacturing method thereof, and the transducer of the present invention will be described.
  • the dielectric film, the manufacturing method thereof, and the transducer of the present invention are not limited to the following embodiments, and are subjected to changes, improvements, etc. that can be made by those skilled in the art without departing from the gist of the present invention. It can be implemented in various forms.
  • the dielectric film of the present invention includes an organometallic compound, a functional group capable of reacting with the organometallic compound, a rubber polymer other than polydimethylsiloxane, and an inorganic filler having a functional group capable of reacting with the organometallic compound, , A three-dimensional cross-linked product synthesized from.
  • Organometallic compound The kind of organometallic compound is not particularly limited.
  • the organometallic compound may be liquid or solid.
  • organometallic compounds include metal alkoxide compounds, metal acylate compounds, and metal chelate compounds. One kind selected from these may be used alone, or two or more kinds may be used in combination.
  • the organometallic compound contains one or more elements selected from titanium, zirconium, aluminum, silicon, boron, vanadium, manganese, iron, cobalt, germanium, yttrium, niobium, lanthanum, cerium, tantalum, tungsten, and magnesium. desirable.
  • a metal alkoxide compound is represented by the following general formula (a), for example.
  • M is an atom such as a metal.
  • R is at least one of an alkyl group having 1 to 10 carbon atoms, an aryl group, and an alkenyl group, which may be the same or different.
  • m is the valence of an atom M such as a metal.
  • a multimer having two or more repeating units [(MO) n ; n is an integer of 2 or more] in one molecule may be used. By changing the number of n, compatibility with the rubber polymer, reaction rate, and the like can be adjusted. For this reason, a suitable multimer is suitably selected according to the kind of rubber polymer.
  • Examples of the metal M or the like include titanium, zirconium, aluminum, silicon, iron, copper, tin, barium, strontium, hafnium, boron, and the like. Among them, those containing at least one selected from titanium, zirconium, and aluminum are desirable because of good reactivity. Specifically, tetra n-butoxy titanium, tetra n-butoxy zirconium, tetra n-butoxy silane, acetoalkoxy aluminum diisopropylate, tetra i-propoxy titanium, tetraethoxy silane, tetrakis (2-ethylhexyloxy) titanium, titanium Butoxide dimer and the like are preferable.
  • examples of the metal acylate compound include polyhydroxy titanium stearate, zirconium tributoxy monostearate and the like.
  • metal chelate compound examples include titanium-diisopropoxy-bis (acetylacetonate), titanium-tetraacetylacetonate, titanium-dioctyloxy-bis (octylene glycolate), titanium-diisopropoxy-bis (ethylacetoate).
  • titanium-diisopropoxy-bis triethanolamate
  • titanium chelate compounds such as titanium-dibutoxy-bis (triethanolamate)
  • zirconium tetraacetylacetonate zirconium tributoxymonoacetylacetonate
  • zirconium mono examples include zirconium chelate compounds such as butoxyacetylacetonate-bis (ethylacetoacetate) and zirconium dibutoxy-bis (ethylacetoacetate).
  • the rubber polymer has a functional group capable of reacting with an organometallic compound other than polydimethylsiloxane.
  • the rubber polymer may be liquid or solid.
  • Functional groups capable of reacting with an organometallic compound include a carboxyl group (—COOH), a hydroxy group (—OH), an amino group (—NH), an amide (—CONR 1 R 2 ), an epoxy group, and a thiol (—SH). , Ester (R 3 C ( ⁇ O) OR 4 ) and the like.
  • the rubber polymer desirably has one or more of these functional groups.
  • a rubber polymer having a large polarity that is, a large relative dielectric constant is desirable.
  • those having a relative dielectric constant of 2.8 or more (measurement frequency 100 Hz) are suitable.
  • rubber polymers having a high relative dielectric constant include acrylonitrile-butadiene copolymer (NBR), hydrogenated nitrile rubber (H-NBR), acrylic rubber, urethane rubber, fluoro rubber, fluorosilicone rubber, and chlorosulfonated polyethylene rubber. Chloroprene rubber, ethylene-vinyl acetate copolymer, chlorinated polyethylene and the like. It is desirable to use one of these alone or a mixture of two or more. Further, a rubber polymer having an unsaturated main chain is desirable from the viewpoint of being difficult to break down when a large voltage is applied and from the viewpoint of weather resistance.
  • An inorganic filler has a functional group which can react with an organometallic compound.
  • the functional group capable of reacting with the organometallic compound as in the case of the rubber polymer, a hydroxy group (—OH), a carboxyl group (—COOH), an amino group (—NH), an amide (—CONR 1 R 2 ), And an epoxy group, thiol (—SH), ester (R 3 C ( ⁇ O) OR 4 ) and the like.
  • the inorganic filler desirably has one or more of these functional groups.
  • the inorganic filler may be subjected to a surface treatment to increase the number of functional groups. By doing so, the reactivity between the inorganic filler and the metal alkoxide is improved.
  • examples of the inorganic filler include silica, titanium oxide, barium titanate, calcium carbonate, clay, and talc. Among these, it is desirable to use silica because it has a large number of functional groups and is relatively inexpensive.
  • the ionic impurities remaining in the inorganic filler may reduce the electric resistance of the dielectric film. Therefore, it is desirable to use an inorganic filler having as few ionic impurities as possible.
  • sodium derived from the raw material may remain depending on the production method.
  • the residual amount of sodium correlates with the pH value of silica. That is, when the residual amount of sodium is large, the pH value tends to increase. For this reason, when silica is used, it is desirable to select one having a pH value as small as possible.
  • the pH value is preferably 10.5 or less.
  • the pH value is preferably 8.5 or less, and more preferably 6.5 or less.
  • the value measured by the following measuring method is adopted as the pH value of silica.
  • silica is dispersed in water to prepare a dispersion having a silica concentration of 4% by mass.
  • the dispersion is sufficiently stirred, and the pH value of the dispersion is measured with a pH meter.
  • the plasticizer to be blended it is desirable that the plasticizer has a high insulating property and is difficult to volatilize from the viewpoint that it is difficult to lower the electric resistance of the dielectric film.
  • the plasticizer has a high insulating property and is difficult to volatilize from the viewpoint that it is difficult to lower the electric resistance of the dielectric film.
  • tricresyl phosphate tris 2-ethylhexyl trimellitate, chlorinated paraffin, tris n-octyl trimellitate, trisisononyl trimellitate, trisisodecyl trimellitate, dipentaerythritol ester, pyromellitic acid octyl ester, etc. Is preferred.
  • the manufacturing method of the dielectric film of the present invention is not particularly limited. For example, it can be produced by the following method (1) or (2).
  • a rubber polymer, an inorganic filler, and an organometallic compound are kneaded with a roll or a kneader (kneading step), and formed into a thin film under predetermined conditions (film formation) Process).
  • a second method first, a first solution containing a rubber polymer and an inorganic filler in a predetermined solvent is prepared (first solution preparation step).
  • the second solution is prepared by mixing the first solution with the organometallic compound as it is or dissolved in a predetermined solvent (second solution preparation step). Then, a 2nd solution is apply
  • the first solution can be prepared by adding the rubber polymer and the inorganic filler to the solvent in a state of being previously kneaded by a roll or a kneader. Dispersibility of the inorganic filler is improved by kneading the rubber polymer and the inorganic filler in advance.
  • a first solution may be prepared by mixing a solution in which a rubber polymer is dissolved in a solvent and a dispersion in which an inorganic filler is dispersed in a solvent.
  • the solvent and the solvent used for preparing the first solution may be the same or different.
  • a catalyst, a reinforcing agent, a plasticizer, an anti-aging agent, a colorant and the like may be added as necessary.
  • a catalyst, a reinforcing agent, a plasticizer, an anti-aging agent, a colorant and the like may be added as necessary in the first solution preparation step and the second solution preparation step.
  • the compounding ratio of the organometallic compound is desirably 0.5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the rubber polymer. If the amount is less than 0.5 parts by mass, the crosslinking is not sufficient, and a three-dimensional crosslinked product is hardly formed. 1.5 parts by mass or more is preferable. On the other hand, when the amount exceeds 40 parts by mass, the crosslinking proceeds too much, the dielectric film becomes hard, and the flexibility of the dielectric film may be impaired. 30 parts by mass or less is preferable.
  • the blending ratio of the inorganic filler is desirably 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the rubber polymer. If it is less than 1 part by mass, the flow of electrons cannot be sufficiently blocked, and the effect of increasing the electrical resistance is small. 5 parts by mass or more is preferable. On the contrary, if it exceeds 40 parts by mass, the dielectric film becomes hard and the flexibility of the dielectric film may be impaired. 30 parts by mass or less is preferable.
  • the blending ratio is desirably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass in total of the rubber polymer and the organometallic compound. If it is less than 1 part by mass, the effect of improving flexibility is small. 5 parts by mass or more is more preferable. On the contrary, if it exceeds 200 parts by mass, the compatibility with the rubber component is lowered, and bleeding may occur. 150 parts by mass or less is more preferable.
  • the organometallic compound reacts with moisture in the air or in the reaction system (rubber polymer, solution), and is hydrolyzed and polycondensed (sol-gel reaction). Therefore, in order to suppress a rapid reaction with water and form a homogeneous film, it is desirable to use an organometallic compound chelated with a chelating agent. Especially, the reactivity of a metal alkoxide compound is high. For this reason, it is desirable to chelate and use a metal alkoxide compound. On the other hand, the reactivity of the metal acylate compound is not so high as compared with the metal alkoxide compound. Therefore, the need for chelation is small.
  • the organometallic compound is chelated and used, for example, the following method may be employed. First, a first solution containing a rubber polymer and an inorganic filler is prepared in a predetermined solvent (first solution preparation step). Next, the chelated organometallic compound is mixed with the first solution to prepare a second solution (second solution preparation step). Then, while applying a 2nd solution on a base material and making it dry on predetermined conditions, a chelating agent is removed and a crosslinking reaction is advanced (crosslinking process). Thereby, a thin dielectric film is manufactured.
  • chelating agents examples include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, ⁇ -ketoacid esters such as ethyl acetoacetate and ethyl benzoylacetate, triethanolamine, lactic acid, 2-ethylhexane-1,3 Examples include diol and 1,3 hexanediol.
  • the amount of the chelating agent to be used is desirably 10 parts by mass or more and 100000 parts by mass or less with respect to 100 parts by mass of the organometallic compound. If it is less than 10 parts by mass, it cannot be chelated sufficiently. 50 parts by mass or more is preferable. On the contrary, when it exceeds 100,000 mass parts, it will become difficult to remove. For this reason, for example, excessive drying is required. 8000 parts by mass or less is suitable.
  • the chelating agent when the chelating agent can dissolve the rubber polymer, the chelating agent can be used as a solvent for dissolving the rubber polymer.
  • the following method may be adopted. First, a first solution containing a rubber polymer and an inorganic filler is prepared in a solvent in which the rubber polymer can be dissolved and the organometallic compound can be chelated (first solution preparation step). Next, the first solution is mixed with an organometallic compound to prepare a second solution (second solution preparation step). Thereafter, the solvent is removed from the second solution to advance the crosslinking reaction (crosslinking step).
  • the solvent may be a chelating agent, or a mixture of a chelating agent and other solvents.
  • the second solution may be applied on the substrate and dried. Thereby, a thin dielectric film is manufactured.
  • the temperature of the cross-linking step may be appropriately determined according to the type of solvent in consideration of the reaction rate and the like. For example, although it may be normal temperature, it is desirable to set it above the boiling point of the solvent.
  • a catalyst, a reinforcing agent, a plasticizer, an anti-aging agent, a coloring agent, etc. may be added as necessary in the first solution preparation step and the second solution preparation step. Can do.
  • the dielectric film manufacturing method can be composed of the following three steps. First, a first solution containing a rubber polymer, an inorganic filler, and a plasticizer is prepared in a solvent capable of dissolving the rubber polymer and chelating the organometallic compound (first solution). Preparation step). Next, the first solution is mixed with an organometallic compound to prepare a second solution (second solution preparation step). Thereafter, the solvent is removed from the second solution to advance the crosslinking reaction (crosslinking step).
  • the transducer according to the present invention includes the dielectric film according to the present invention and a plurality of electrodes disposed via the dielectric film.
  • the configuration of the dielectric film and the manufacturing method of the present invention are as described above. Therefore, the description is omitted here.
  • the thickness of the dielectric film may be appropriately determined according to the application.
  • the thickness of the dielectric film is small from the viewpoints of downsizing the actuator, driving at a low potential, and increasing the amount of displacement.
  • the thickness of the dielectric film be 1 ⁇ m or more and 1000 ⁇ m (1 mm) or less in consideration of dielectric breakdown properties and the like.
  • a more preferable range is 5 ⁇ m or more and 200 ⁇ m or less.
  • the material of the electrode is not particularly limited.
  • a conductive agent made of carbon material such as carbon black or carbon nanotube, or an electrode coated with a paste or paint mixed with oil or elastomer as a binder, or an electrode made by knitting carbon material or metal in a mesh shape, etc.
  • the electrode can expand and contract according to the expansion and contraction of the dielectric film.
  • the electrode expands and contracts together with the dielectric film, the deformation of the dielectric film is not easily disturbed by the electrode. For this reason, when the transducer of the present invention is used as an actuator or the like, a desired amount of displacement can be easily obtained.
  • the transducer of the present invention has a laminated structure in which a plurality of dielectric films and electrodes are alternately laminated, a larger force can be generated. Therefore, when the laminated structure is adopted, for example, the output of the actuator can be increased. Thereby, a drive object member can be driven with bigger force.
  • FIG. 1 is a schematic cross-sectional view of the actuator of this embodiment. (A) shows an OFF state, and (b) shows an ON state.
  • the actuator 1 includes a dielectric film 10 and electrodes 11a and 11b.
  • the dielectric film 10 is a three-dimensionally crosslinked product synthesized from tetrakis (2-ethylhexyloxy) titanium (metal alkoxide compound), hydrogenated nitrile rubber (rubber polymer) having a carboxyl group, and silica (inorganic filler) ( The dielectric film of the present invention.
  • the electrodes 11a and 11b are fixed to the upper and lower surfaces of the dielectric film 10, respectively.
  • the electrodes 11a and 11b are connected to the power source 12 through wiring. When switching from the off state to the on state, a voltage is applied between the pair of electrodes 11a and 11b.
  • the actuator 1 outputs the driving force in the vertical direction and the horizontal direction in the drawing.
  • the electric resistance of the dielectric film 10 is large. For this reason, even if a large voltage is applied between the electrodes 11 a and 11 b, current hardly flows through the dielectric film 10. Therefore, a large amount of charge can be stored in the dielectric film 10. As a result, a large electrostatic attractive force is generated, and a large force and displacement can be obtained. In addition, since current does not easily flow through the dielectric film 10, the generation of Joule heat is suppressed. Therefore, there is little possibility that the dielectric film 10 is destroyed by heat. In addition, the dielectric film 10 is difficult to break down. Thus, the actuator 1 is excellent in durability. If the dielectric film 10 is arranged in a state extending in the surface extending direction, the dielectric breakdown strength of the dielectric film 10 is improved. Therefore, since a larger voltage can be applied, the force and the amount of displacement are increased.
  • FIG. 2 is a schematic cross-sectional view of the capacitive sensor according to this embodiment.
  • the capacitive sensor 2 includes a dielectric film 20, electrodes 21 a and 21 b, and a substrate 22.
  • the dielectric film 20 is a three-dimensionally crosslinked product synthesized from tetrakis (2-ethylhexyloxy) titanium (metal alkoxide compound), hydrogenated nitrile rubber (rubber polymer) having a carboxyl group, and silica (inorganic filler) ( The dielectric film of the present invention.
  • the dielectric film 20 has a strip shape extending in the left-right direction.
  • the dielectric film 20 is disposed on the upper surface of the substrate 22 via the electrode 21b.
  • the electrodes 21a and 21b have a strip shape extending in the left-right direction.
  • the electrodes 21a and 21b are fixed to the upper and lower surfaces of the dielectric film 20, respectively.
  • Wiring (not shown) is connected to the electrodes 21a and 21b.
  • the substrate 22 is an insulating flexible film and has a strip shape extending in the left-right direction.
  • the substrate 22 is fixed to the lower surface of the electrode 21b.
  • the capacitance (capacitance) of the capacitance type sensor 2 can be obtained by the following equation (I).
  • C ⁇ 0 ⁇ r S / d (I) [C: capacitance, ⁇ 0 : dielectric constant in vacuum, ⁇ r : relative dielectric constant of dielectric film, S: electrode area, d: distance between electrodes]
  • ⁇ 0 dielectric constant in vacuum
  • ⁇ r relative dielectric constant of dielectric film
  • S electrode area
  • d distance between electrodes
  • the electric resistance of the dielectric film 20 is large. For this reason, even when the electrostatic force between the electrodes 21 a and 21 b is increased by being pressed with a large force, it is difficult for current to flow through the dielectric film 20. Therefore, the magnitude and position of the applied load can be accurately detected. In addition, since current does not easily flow through the dielectric film 20, generation of Joule heat is suppressed. Therefore, there is little possibility that the dielectric film 20 is destroyed by heat. Further, the dielectric film 20 is difficult to break down. Thus, the capacitive sensor 2 is excellent in durability.
  • the power generation element 3 includes a dielectric film 30 and electrodes 31a and 31b.
  • the dielectric film 30 is a three-dimensionally crosslinked product synthesized from tetrakis (2-ethylhexyloxy) titanium (metal alkoxide compound), hydrogenated nitrile rubber (rubber polymer) having a carboxyl group, and silica (inorganic filler) ( The dielectric film of the present invention.
  • the electrodes 31a and 31b are fixed to the upper and lower surfaces of the dielectric film 30, respectively. Wiring is connected to the electrodes 31a and 31b, and the electrode 31b is grounded.
  • the electric resistance of the dielectric film 30 is large. For this reason, even when the amount of compression is large, it is difficult for current to flow through the dielectric film 30, and a large amount of charge can be stored between the electrodes 31a and 31b. Therefore, a large amount of power generation can be obtained. In addition, since current does not easily flow through the dielectric film 30, generation of Joule heat is suppressed. Therefore, there is little possibility that the dielectric film 30 is destroyed by heat. Further, the dielectric film 30 is difficult to break down. Thus, the power generation element 3 is excellent in durability.
  • Dielectric films of Examples 1 to 10 were manufactured from the raw materials shown in Table 1 below. First, a carboxyl group-containing hydrogenated nitrile rubber (“Terban (registered trademark) XT8889” manufactured by LANXESS) and a predetermined silica were kneaded with a roll kneader to prepare a rubber composition. Next, the prepared rubber composition was dissolved in acetylacetone. Subsequently, the organometallic compound tetrakis (2-ethylhexyloxy) titanium was added to the solution and mixed.
  • Teban registered trademark
  • XT8889 manufactured by LANXESS
  • acetylacetone is a solvent for dissolving the carboxyl group-containing hydrogenated nitrile rubber (rubber polymer) and a chelating agent for tetrakis (2-ethylhexyloxy) titanium (metal alkoxide compound). Thereafter, the mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for about 60 minutes to obtain a dielectric film. The thickness of each dielectric film was about 40 ⁇ m.
  • Dielectric films of Reference Examples 1 and 2 were manufactured from the raw materials shown in Table 1 below. The difference between the dielectric films of Examples 1 to 10 and the dielectric film of the reference example is the presence or absence of silica. First, carboxyl group-containing hydrogenated nitrile rubber (same as above) was dissolved in acetylacetone. Subsequently, tetrakis (2-ethylhexyloxy) titanium was added to the solution and mixed. Next, the mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for about 60 minutes to obtain a dielectric film. The thickness of each dielectric film was about 40 ⁇ m.
  • Dielectric films of Examples 11 to 16 Dielectric films of Examples 11 to 16 were manufactured from the raw materials shown in Table 2 below in the same manner as the dielectric films of Examples 1 to 10 except that the type of inorganic filler was changed. The thickness of each dielectric film was about 40 ⁇ m.
  • Dielectric films of Examples 17 to 21 were produced from the raw materials shown in Table 3 below in the same manner as the dielectric films of Examples 1 to 10 except that a plasticizer was added.
  • a carboxyl group-containing hydrogenated nitrile rubber (same as above) and silica (b) described later were kneaded with a roll kneader to prepare a rubber composition.
  • the prepared rubber composition was dissolved in acetylacetone.
  • tetrakis (2-ethylhexyloxy) titanium and a predetermined plasticizer were added to the solution and mixed. Thereafter, the mixed solution was applied onto a substrate, dried, and then heated at 150 ° C. for about 60 minutes to obtain a dielectric film.
  • the thickness of each dielectric film was about 40 ⁇ m.
  • Dielectric films of Examples 22 to 25 were manufactured from the raw materials shown in Table 4 below in the same manner as the dielectric films of Examples 1 to 10 except that the type of the organometallic compound was changed. The thickness of each dielectric film was about 40 ⁇ m.
  • Dielectric film of Comparative Examples 1 and 2 Dielectric films of Comparative Examples 1 and 2 were manufactured from the raw materials shown in Table 5 below. First, a predetermined raw material was mixed and dispersed with a roll kneader to prepare a rubber composition. Next, the prepared rubber composition was formed into a thin sheet, filled in a mold, and press-crosslinked at 175 ° C. for about 30 minutes to obtain a dielectric film. The thickness of each dielectric film was about 50 ⁇ m.
  • Tables 1 to 5 show the types and blending amounts of the raw materials used. In Tables 1, 3, and 4, the following were used for silica.
  • Silicone rubber “DMS-V31” (manufactured by Gelest) Nitrile rubber: “NIPOL (registered trademark) 1042” (manufactured by Nippon Zeon Co., Ltd.) Methyl H siloxane: “TSF484” (manufactured by GE Toshiba Silicone Co., Ltd.)
  • Delay agent “Surfinol (registered trademark) 61” (manufactured by Nissin Chemical Industry Co., Ltd.)
  • Platinum catalyst “SIP6830.0” (manufactured by Gelest)
  • Vulcanizing auxiliaries Zinc oxide (2 types) Stearic acid: “Lunac (registered trademark) S30” (manufactured by Kao Corporation) Tetraethylthiuram disulfide: "Sunseller (registered trademark) TET-G” (manufactured by Sanshin Chemical Industry Co., Ltd.) N-cyclohexyl-2-benz
  • Examples 11 to 16 in Table 2 and Reference Example 2 in which the compounding amount of the metal alkoxide compound is the same are compared, Examples 11 to 16 have higher electrical resistance than Reference Example 2. . That is, regardless of the type of the inorganic filler, it was confirmed that the dielectric film of the example including the inorganic filler has higher electrical resistance than the dielectric film of the reference example not including the inorganic filler. Also, Examples 17 to 21 containing a plasticizer also had a large electric resistance. As shown in Table 5, it can be seen that the electrical resistance of the dielectric film using the conventional silicone rubber (Comparative Example 1) is large, and the electrical resistance of the dielectric film using the nitrile rubber (Comparative Example 2) is small.
  • Example 2 Example 2 ⁇ Example 3 ⁇ Example 4
  • Example 5 (30 parts by mass) with the largest compounding amount of silica, an increase in electrical resistance was not observed as in Example 4 (20 parts by mass) and Example 3 (10 parts by mass). This is presumably because the insulating effect due to the blending of silica was saturated.
  • FIG. 4 shows a front view of the actuator attached to the experimental apparatus.
  • FIG. 5 shows a cross-sectional view in the VV direction of FIG.
  • the upper end of the actuator 5 is held by an upper chuck 52 in the experimental apparatus.
  • the lower end of the actuator 5 is gripped by the lower chuck 53.
  • the actuator 5 is attached between the upper chuck 52 and the lower chuck 53 in a state in which the actuator 5 is previously stretched in the vertical direction (stretching ratio 25%).
  • a load cell (not shown) is disposed above the upper chuck 52.
  • the actuator 5 includes a dielectric film 50 and a pair of electrodes 51a and 51b.
  • the dielectric film 50 is in a natural state and has a rectangular thin film shape with a length of 50 mm, a width of 25 mm, and a thickness of about 40 ⁇ m.
  • the electrodes 51a and 51b are arranged to face each other in the front and back direction with the dielectric film 50 interposed therebetween.
  • the electrodes 51a and 51b are in a natural state and each have a rectangular thin film shape with a length of 40 mm, a width of 25 mm, and a thickness of about 10 ⁇ m.
  • the electrodes 51a and 51b are arranged in a state shifted by 10 mm in the vertical direction.
  • the electrodes 51a and 51b overlap with each other through the dielectric film 50 in a range of 30 mm length and 25 mm width.
  • a wiring (not shown) is connected to the lower end of the electrode 51a.
  • a wiring (not shown) is connected to the upper end of the electrode 51b.
  • the electrodes 51a and 51b are connected to a power source (not shown) through each wiring.
  • the maximum generated stress of the actuator of the example was larger than the maximum generated stress of the actuator of the comparative example. Further, it can be seen that the generated stress is small for the actuator of Comparative Example 1 using a dielectric film made of silicone rubber, although the maximum electric field strength is very large.
  • Example 1 when the compounding amounts of the metal alkoxide compounds are the same, Example 1 is the maximum occurrence relative to Reference Example 1, and Examples 2 to 5, 8, and 10 are the maximum relative to Reference Example 2. Stress increased.
  • Examples 11 to 16 in Table 2 and Reference Example 2 in which the compounding amount of the metal alkoxide compound is the same are compared, Examples 11 to 16 have a larger maximum generated stress than Reference Example 2. It was. Also, in Examples 17 to 21 in which a plasticizer was blended, the maximum generated stress was large.
  • the electric resistance of the dielectric film of the example is large.
  • the actuator of an Example can store many electric charges in a dielectric film.
  • the dielectric breakdown resistance of the dielectric film is high, and the breakdown due to Joule heat is also suppressed. For this reason, a larger voltage can be applied to the actuator of the embodiment. For this reason, it is considered that the actuator of the example could output a large force.
  • the dielectric film of the present invention can be widely used in actuators, sensors, power generation elements, etc. that convert between mechanical energy and electrical energy, or transducers such as speakers, microphones, noise cancellers, etc., that convert between acoustic energy and electrical energy. . Especially, it is suitable for flexible actuators used for artificial muscles for industrial, medical, and welfare robots, small pumps for cooling electronic components, medical devices, and medical instruments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 電気抵抗が大きく、耐久性に優れた誘電膜、およびその製造方法を提供する。また、変位量が大きく、耐久性に優れたトランスデューサを提供する。 誘電膜は、有機金属化合物と、該有機金属化合物と反応可能な官能基を有し、ポリジメチルシロキサン以外のゴムポリマーと、該有機金属化合物と反応可能な官能基を有する無機フィラーと、から合成された三次元架橋体からなる。この誘電膜を、少なくとも一対の電極間に介装して、トランスデューサを構成する。この誘電膜は、ゴムポリマーが溶解可能であり、かつ、有機金属化合物をキレート化できる溶剤中に、ゴムポリマーと無機フィラーとが含有されている第一溶液を調製し、該第一溶液に有機金属化合物を混合して第二溶液を調製し、該第二溶液から該溶剤を除去し、架橋反応を進行させて製造することができる。

Description

誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ
 本発明は、アクチュエータ、センサ等のトランスデューサに好適な誘電膜、およびその製造方法、並びにそれを用いたトランスデューサに関する。
 トランスデューサには、機械エネルギーと電気エネルギーとの変換を行うアクチュエータ、センサ、発電素子等、あるいは音響エネルギーと電気エネルギーとの変換を行うスピーカ、マイクロフォン等がある。柔軟性が高く、小型で軽量なトランスデューサを構成するためには、誘電体エラストマー等の高分子材料が有用である。
 例えば、誘電体エラストマーからなる誘電膜の厚さ方向両面に、一対の電極を配置して、アクチュエータを構成することができる。この種のアクチュエータでは、電極間への印加電圧を大きくすると、電極間の静電引力が大きくなる。このため、電極間に挟まれた誘電膜は厚さ方向から圧縮され、誘電膜の厚さは薄くなる。膜厚が薄くなると、その分、誘電膜は電極面に対して平行方向に伸長する。一方、電極間への印加電圧を小さくすると、電極間の静電引力が小さくなる。このため、誘電膜に対する厚さ方向からの圧縮力が小さくなり、誘電膜の弾性復元力により膜厚は厚くなる。膜厚が厚くなると、その分、誘電膜は電極面に対して平行方向に収縮する。このように、アクチュエータは、誘電膜を伸長、収縮させることによって、駆動対象部材を駆動させる。誘電膜の材料としては、シリコーンゴム、アクリルゴム、ニトリルゴム、ウレタンゴム等が用いられている(例えば、特許文献1、2参照)。
特表2003-505865号公報 特表2001-524278号公報 特許第3295023号公報
 例えば、シリコーンゴムは、シロキサン結合を骨格とするため、電気抵抗が大きい。このため、シリコーンゴムからなる誘電膜は、大きな電圧を印加しても絶縁破壊しにくい。しかしながら、ポリジメチルシロキサン系のシリコーンゴムは、極性が小さい。つまり、比誘電率が小さい。このため、ポリジメチルシロキサン系のシリコーンゴム製の誘電膜を用いてアクチュエータを構成した場合には、印加電圧に対する静電引力が小さい。よって、充分な力および変位量を得ることができない。
 一方、比誘電率の大きな誘電膜を用いてアクチュエータを構成した場合には、誘電膜と電極との界面に多くの電荷を蓄えることができる。このため、印加電圧に対する静電引力が大きくなる。例えば、公知のアクリルゴムやニトリルゴムの比誘電率は、シリコーンゴムと比較して大きい。よって、これらは、誘電膜に好適である。しかしながら、アクリルゴム等の電気抵抗は、シリコーンゴムと比較して小さい。このため、アクリルゴム等を誘電膜として用いた場合には、印加電圧が大きくなると電流が誘電膜中を流れてしまい、電荷が溜まりにくい。したがって、比誘電率が大きいにも関わらず、静電引力が小さくなり、充分な力および変位量を得ることができない。また、電流が誘電膜中を流れると、発生するジュール熱により、誘電膜が破壊されるおそれがある。また、電気抵抗が小さいため、誘電膜が絶縁破壊しやすいという問題もある。
 本発明は、このような実情に鑑みてなされたものであり、電気抵抗が大きく、耐久性に優れた誘電膜、およびその製造方法を提供することを課題とする。また、そのような誘電膜を用いて、変位量が大きく、耐久性に優れたトランスデューサを提供することを課題とする。
 (1)本発明の誘電膜は、トランスデューサにおいて少なくとも一対の電極間に介装される誘電膜であって、有機金属化合物と、該有機金属化合物と反応可能な官能基を有し、ポリジメチルシロキサン以外のゴムポリマーと、該有機金属化合物と反応可能な官能基を有する無機フィラーと、から合成された三次元架橋体からなることを特徴とする。
 上記特許文献3には、ゴムポリマーと、ゴムポリマーと反応する有機官能基を持つ有機金属化合物と、が化学的に結合したセラミックス複合ゴムが開示されている。当該セラミックス複合ゴムには、三次元架橋体を構成するような無機フィラーは含まれていない。すなわち、当該セラミックス複合ゴムによると、未反応の有機金属化合物の加水分解により生成した金属酸化物が、ゴム中に分散しているにすぎない。
 これに対して、本発明における三次元架橋体は、無機フィラーを有する。また、ゴムポリマーと無機フィラーとは、共に、有機金属化合物と反応可能な官能基を有する。よって、ゴムポリマーと有機金属化合物、無機フィラーと有機金属化合物は、各々、三次元架橋体の合成時に反応して、化学的に結合する。すなわち、本発明における三次元架橋体は、ゴムポリマーが有機金属化合物により架橋されていると共に、生成された架橋結合中に無機フィラーが組み込まれている構造を有する。
 本発明における三次元架橋体では、無機フィラーと、有機金属化合物由来の金属酸化物と、の両方により、電子の流れが遮断される。このため、三次元架橋体の電気抵抗は大きい。すなわち、本発明の誘電膜の電気抵抗は大きい。したがって、本発明の誘電膜を一対の電極間に配置して、電圧を印加した場合、電流が誘電膜中を流れにくい。このため、誘電膜中に、多くの電荷を蓄えることができる。その結果、静電引力が大きくなり、例えばアクチュエータにおいて、大きな力および変位量を得ることができる。
 また、電流が誘電膜中を流れにくいため、ジュール熱の発生が抑制される。したがって、本発明の誘電膜を用いた場合には、熱により誘電膜が破壊されるおそれは小さい。加えて、本発明の誘電膜は、電気抵抗が大きいため、絶縁破壊しにくい。このように、本発明の誘電膜は、耐久性に優れる。また、本発明の誘電膜には、より大きな電圧を印加することができる。よって、本発明の誘電膜を用いると、例えばアクチュエータにおいて、より大きな力および変位量を得ることができる。
 また、本発明の誘電膜には、ポリジメチルシロキサン以外のゴムポリマーを用いる。すなわち、従来から用いられているポリジメチルシロキサン系のシリコーンゴムと比較して、極性の大きな、換言すると比誘電率の大きなゴムポリマーを用いる。このため、本発明の誘電膜によると、印加電圧が比較的小さくても大きな静電引力が発生する。よって、本発明の誘電膜を用いると、例えばアクチュエータにおいて、所望の力および変位量を得やすい。
 (2)また、上記本発明の誘電膜の製造に好適な、本発明の誘電膜の製造方法は、前記ゴムポリマーが溶解可能であり、かつ、前記有機金属化合物をキレート化できる溶剤中に、該ゴムポリマーと、前記無機フィラーと、必要に応じて前記可塑剤と、が含有されている第一溶液を調製する第一溶液調製工程と、該第一溶液に、該有機金属化合物を混合して第二溶液を調製する第二溶液調製工程と、該第二溶液から該溶剤を除去して、架橋反応を進行させる架橋工程と、を有する。
 有機金属化合物は、水と反応して加水分解すると共に、脱水反応あるいは脱アルコール反応により重縮合して(ゾルゲル反応)、三次元架橋体を形成する。一般に、有機金属化合物は、水との反応性が高く、取扱いが難しい。この点、本発明の製造方法によると、有機金属化合物をキレート化することにより、水との急激な反応を抑制することができる。すなわち、本発明の製造方法において、溶剤は、ゴムポリマーを溶解させ、無機フィラーを分散させると共に、キレート剤としての役割を果たす。
 第二溶液調製工程において、ゴムポリマーが溶解し、無機フィラーが分散している第一溶液に、有機金属化合物が混合されると、溶剤中で有機金属化合物がキレート化される。これにより、有機金属化合物の加水分解が抑制される。その後、架橋工程において、溶剤を除去する。つまり、キレート剤を除去する。すると、有機金属化合物の脱アルコール反応が促進され、重縮合による架橋反応が進行する。
 このように、本発明の製造方法によると、有機金属化合物の反応速度を遅くすることができるため、均質な誘電膜を得ることができる。また、溶剤は、ゴムポリマーを溶解させ、無機フィラーを分散させる溶媒としての役割と、キレート剤としての役割と、の両方を果たす。このため、溶媒とキレート剤とを別々に準備する必要がない。よって、製造工程が簡略化され、実用的である。また、第一溶液調製工程において、ゴムポリマーが溶解し、無機フィラーが分散した第一溶液を、予め準備しておく。これにより、第二溶液中での無機フィラーの分散性が向上し、均質な誘電膜を得ることができる。なお、可塑剤は、必要に応じて配合される。すなわち、第一溶液において、可塑剤は、含有されていても、含有されていなくてもよい。
 (3)また、本発明のトランスデューサは、上記本発明の誘電膜と、該誘電膜を介して配置されている複数の電極と、を備えることを特徴とする。
 本発明のトランスデューサは、上記本発明の誘電膜を備える。上述したように、本発明の誘電膜の電気抵抗は大きい。よって、誘電膜中に、多くの電荷を蓄えることができる。このため、例えば、本発明のトランスデューサをアクチュエータとして用いると、大きな力および変位量を得ることができる。また、本発明の誘電膜は、熱による破壊のおそれが小さく、絶縁破壊しにくい。このため、本発明のトランスデューサは、耐久性に優れる。
本発明のトランスデューサの第一実施形態であるアクチュエータの断面模式図であって、(a)はオフ状態、(b)はオン状態を示す。 本発明のトランスデューサの第二実施形態である静電容量型センサの断面模式図である。 本発明のトランスデューサの第三実施形態である発電素子の断面模式図であって、(a)は伸長時、(b)は収縮時を示す。 実験装置に取り付けられたアクチュエータの正面図である。 図4のV-V方向断面図である。
1:アクチュエータ(トランスデューサ) 10:誘電膜 11a、11b:電極
12:電源
2:静電容量型センサ(トランスデューサ) 20:誘電膜 21a、21b:電極
22:基板
3:発電素子(トランスデューサ) 30:誘電膜 31a、31b:電極
5:アクチュエータ 50:誘電膜 51a、51b:電極 52:上側チャック
53:下側チャック
 以下、本発明の誘電膜、その製造方法、およびトランスデューサの実施形態について説明する。なお、本発明の誘電膜、その製造方法、およびトランスデューサは、以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 <誘電膜> 
 本発明の誘電膜は、有機金属化合物と、該有機金属化合物と反応可能な官能基を有し、ポリジメチルシロキサン以外のゴムポリマーと、該有機金属化合物と反応可能な官能基を有する無機フィラーと、から合成された三次元架橋体からなる。
 (1)有機金属化合物
 有機金属化合物の種類は、特に限定されるものではない。有機金属化合物は、液体でも固体でもよい。有機金属化合物としては、金属アルコキシド化合物、金属アシレート化合物、および金属キレート化合物が挙げられる。これらから選ばれる一種を単独で用いてもよく、二種以上を併用してもよい。有機金属化合物は、チタン、ジルコニウム、アルミニウム、ケイ素、ホウ素、バナジウム、マンガン、鉄、コバルト、ゲルマニウム、イットリウム、ニオブ、ランタン、セリウム、タンタル、タングステン、およびマグネシウムから選ばれる一種以上の元素を含むことが望ましい。
 金属アルコキシド化合物は、例えば、次の一般式(a)で表される。
M(OR) ・・・(a)
[式(a)中、Mは金属等の原子である。Rは炭素数1~10のアルキル基、アリール基、アルケニル基のいずれか一種以上であり、同一であっても、異なっていてもよい。mは金属等の原子Mの価数である。]
また、一分子中に、二つ以上の繰り返し単位[(MO);nは2以上の整数]を有する多量体であってもよい。nの数を変更することにより、ゴムポリマーとの相溶性や、反応速度等を調整することができる。このため、ゴムポリマーの種類に応じて、適宜好適な多量体を選択するとよい。
 金属等の原子Mとしては、例えば、チタン、ジルコニウム、アルミニウム、ケイ素、鉄、銅、錫、バリウム、ストロンチウム、ハフニウム、ホウ素等が挙げられる。なかでも反応性が良好であるという理由から、チタン、ジルコニウム、アルミニウムから選ばれる一種以上を含むものが望ましい。具体的には、テトラn-ブトキシチタン、テトラn-ブトキシジルコニウム、テトラn-ブトキシシラン、アセトアルコキシアルミニウムジイソプロピレート、テトラi-プロポキシチタン、テトラエトキシシラン、テトラキス(2-エチルヘキシルオキシ)チタン、チタンブトキシドダイマー等が好適である。
 また、金属アシレート化合物としては、ポリヒドロキシチタンステアレート、ジルコニウムトリブトキシモノステアレート等が挙げられる。
 また、金属キレート化合物としては、チタン-ジイソプロポキシ-ビス(アセチルアセトネート)、チタン-テトラアセチルアセトネート、チタン-ジオクチロキシ-ビス(オクチレングリコレート)、チタン-ジイソプロポキシ-ビス(エチルアセトアセテート)、チタン-ジイソプロポキシ-ビス(トリエタノールアミネート)、チタン-ジブトキシ-ビス(トリエタノールアミネート)等のチタンキレート化合物、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネート-ビス(エチルアセトアセテート)、ジルコニウムジブトキシ-ビス(エチルアセトアセテート)等のジルコニウムキレート化合物等が挙げられる。
 (2)ゴムポリマー
 ゴムポリマーは、ポリジメチルシロキサン以外であって、有機金属化合物と反応可能な官能基を有する。ゴムポリマーは、液体でも固体でもよい。有機金属化合物と反応可能な官能基としては、カルボキシル基(-COOH)、ヒドロキシ基(-OH)、アミノ基(-NH)、アミド(-CONR)、エポキシ基、チオール(-SH)、エステル(RC(=O)OR)等が挙げられる。ゴムポリマーは、これらの官能基の一種以上を有することが望ましい。
 より小さな印加電圧で大きな変位量を得るという観点では、極性が大きい、つまり比誘電率が大きいゴムポリマーが望ましい。例えば、比誘電率が2.8以上(測定周波数100Hz)のものが好適である。比誘電率が大きいゴムポリマーとしては、例えば、アクリロニトリル-ブタジエン共重合体(NBR)、水素化ニトリルゴム(H-NBR)、アクリルゴム、ウレタンゴム、フッ素ゴム、フルオロシリコーンゴム、クロロスルホン化ポリエチレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、塩素化ポリエチレン等が挙げられる。これらの一種を単独で、あるいは二種以上を混合して用いることが望ましい。また、大きな電圧を印加した場合に絶縁破壊しにくい点、および耐候性の点から、主鎖が不飽和のゴムポリマーが望ましい。
 (3)無機フィラー
 無機フィラーは、有機金属化合物と反応可能な官能基を有する。有機金属化合物と反応可能な官能基としては、ゴムポリマーの場合と同様に、ヒドロキシ基(-OH)、カルボキシル基(-COOH)、アミノ基(-NH)、アミド(-CONR)、エポキシ基、チオール(-SH)、エステル(RC(=O)OR)等が挙げられる。無機フィラーは、これらの官能基の一種以上を有することが望ましい。また、無機フィラーに表面処理を施して、官能基の数を増加させてもよい。こうすることにより、無機フィラーと金属アルコキシドとの反応性が向上する。
 無機フィラーとしては、例えば、シリカ、酸化チタン、チタン酸バリウム、炭酸カルシウム、クレー、タルク等が挙げられる。なかでも、官能基の数が多く、比較的安価であるという理由から、シリカを用いることが望ましい。
 無機フィラー中に残存するイオン性の不純物は、誘電膜の電気抵抗を低下させるおそれがある。したがって、無機フィラーとしては、できるだけイオン性の不純物が少ないものを用いることが望ましい。例えば、シリカの場合には、製造方法により、原料由来のナトリウムが残存することがある。ナトリウムの残存量が多いと、ナトリウムイオンにより電気抵抗が低下するおそれがある。ここで、ナトリウムの残存量は、シリカのpH値と相関がある。すなわち、ナトリウムの残存量が多いと、pH値が大きくなる傾向にある。このため、シリカを用いる場合には、できるだけpH値が小さいものを選択することが望ましい。例えば、pH値が10.5以下であるとよい。pH値が8.5以下、さらには、6.5以下であると好適である。本明細書では、シリカのpH値として、次の測定方法により測定された値を採用する。まず、シリカを水に分散させて、シリカ濃度が4質量%の分散液を調製する。次に、分散液を充分に攪拌して、分散液のpH値をpHメータにより測定する。
 (4)その他の添加剤
 本発明における三次元架橋体を合成する際には、上記有機金属化合物、ゴムポリマー、および無機フィラーに加えて、触媒、補強剤、可塑剤、老化防止剤、着色剤等を適宜配合してもよい。例えば、可塑剤を配合することにより、合成される三次元架橋体、すなわち、本発明の誘電膜の柔軟性を向上させることができる。これにより、本発明の誘電膜は、伸縮しやすくなる。したがって、可塑剤を配合した場合には、例えばアクチュエータにおいて、より大きな力および変位量を得ることができる。
 配合する可塑剤としては、誘電膜の電気抵抗を低下させにくいという観点から、絶縁性が高く、揮発しにくいものが望ましい。例えば、トリクレジルホスフェート、トリス2エチルヘキシルトリメリテート、塩化パラフィン、トリスn-オクチルトリメリテート、トリスイソノニルトリメリテート、トリスイソデシルトリメリテート、ジペンタエリスリトールエステル、ピロメリット酸オクチルエステル等が好適である。
 <誘電膜の製造方法>
 本発明の誘電膜の製造方法は、特に限定されるものではない。例えば、次の(1)または(2)の方法により製造することができる。
(1)第一の方法としては、ゴムポリマー、無機フィラー、および有機金属化合物を、ロールや混練機により混練りして(混練り工程)、所定の条件下で薄膜状に成形する(成膜工程)。
(2)第二の方法としては、まず、所定の溶剤中に、ゴムポリマーと無機フィラーとが含有されている第一溶液を調製する(第一溶液調製工程)。次いで、第一溶液に、有機金属化合物をそのまま、あるいは所定の溶剤に溶解した状態で混合して、第二溶液を調製する(第二溶液調製工程)。その後、第二溶液を基材上に塗布し、所定の条件下で乾燥させる(成膜工程)。
 上記第二の方法では、ゴムポリマーおよび無機フィラーを、予めロールや混練機により混練りした状態で溶剤に添加して、第一溶液を調製することができる。ゴムポリマーおよび無機フィラーを予め混練りしておくことにより、無機フィラーの分散性が向上する。一方、ゴムポリマーを溶剤に溶解させた溶液と、無機フィラーを溶剤に分散させた分散液と、を混合して、第一溶液を調製してもよい。
 また、有機金属化合物を所定の溶剤に溶解した状態で混合する場合には、当該溶剤と、第一溶液の調製に用いる溶剤と、は同一であっても異なっていてもよい。また、第一の方法では、混練り工程において、必要に応じて触媒、補強剤、可塑剤、老化防止剤、着色剤等を添加してもよい。また、第二の方法では、第一溶液調製工程や第二溶液調製工程において、必要に応じて触媒、補強剤、可塑剤、老化防止剤、着色剤等を添加してもよい。
 有機金属化合物の配合割合は、ゴムポリマー100質量部に対して、0.5質量部以上40質量部以下とすることが望ましい。0.5質量部未満であると、架橋が充分ではなく、三次元架橋体が生成しにくい。1.5質量部以上が好適である。反対に、40質量部を超えると、架橋が進行し過ぎて誘電膜が硬くなり、誘電膜の柔軟性が損なわれるおそれがある。30質量部以下が好適である。
 無機フィラーの配合割合は、ゴムポリマー100質量部に対して、1質量部以上40質量部以下とすることが望ましい。1質量部未満であると、電子の流れを充分に遮断することができず、電気抵抗を大きくする効果が小さい。5質量部以上が好適である。反対に、40質量部を超えると、誘電膜が硬くなり、誘電膜の柔軟性が損なわれるおそれがある。30質量部以下が好適である。
 また、可塑剤を配合する場合には、その配合割合は、ゴムポリマーと有機金属化合物との合計100質量部に対して、1質量部以上200質量部以下とすることが望ましい。1質量部未満であると、柔軟性の向上効果が小さい。5質量部以上がより好適である。反対に、200質量部を超えると、ゴム成分との相溶性が低下して、ブリードが生じるおそれがある。150質量部以下がより好適である。
 有機金属化合物は、空気中や、反応系(ゴムポリマー、溶液)中の水分と反応し、加水分解して重縮合する(ゾルゲル反応)。したがって、水との急激な反応を抑制し、均質な膜を形成するためには、有機金属化合物をキレート剤によりキレート化して用いることが望ましい。なかでも、金属アルコキシド化合物の反応性は高い。このため、金属アルコキシド化合物については、キレート化して用いることが望ましい。一方、金属アシレート化合物については、金属アルコキシド化合物と比較して、反応性はそれほど高くない。したがって、キレート化の必要性は小さい。
 有機金属化合物をキレート化して用いる場合には、例えば、次の方法を採用するとよい。まず、所定の溶剤中に、ゴムポリマーと無機フィラーとが含有されている第一溶液を調製する(第一溶液調製工程)。次いで、第一溶液に、キレート化された有機金属化合物を混合して、第二溶液を調製する(第二溶液調製工程)。その後、第二溶液を基材上に塗布し、所定の条件下で乾燥させると共に、キレート剤を除去して架橋反応を進行させる(架橋工程)。これにより、薄膜状の誘電膜が製造される。
 キレート剤としては、例えば、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタン等のβ-ジケトン、アセト酢酸エチル、ベンゾイル酢酸エチル等のβ-ケト酸エステル、トリエタノールアミン、乳酸、2-エチルヘキサンー1,3ジオール、1,3へキサンジオール等が挙げられる。使用するキレート剤の量は、有機金属化合物100質量部に対して、10質量部以上100000質量部以下とすることが望ましい。10質量部未満であると、充分にキレート化することができない。50質量部以上が好適である。反対に、100000質量部を超えると、除去しにくくなる。このため、例えば、乾燥が過剰に必要となる。8000質量部以下が好適である。
 例えば、キレート剤がゴムポリマーを溶解可能な場合には、キレート剤をゴムポリマーを溶解させる溶媒として使用することも可能である。この場合、例えば、次の方法を採用するとよい。まず、ゴムポリマーが溶解可能であり、かつ、有機金属化合物をキレート化できる溶剤中に、ゴムポリマーと無機フィラーとが含有されている第一溶液を調製する(第一溶液調製工程)。次いで、第一溶液に、有機金属化合物を混合して、第二溶液を調製する(第二溶液調製工程)。その後、第二溶液から溶剤を除去して、架橋反応を進行させる(架橋工程)。
 溶剤は、すべてがキレート剤であっても、キレート剤とそれ以外の溶剤との混合物であってもよい。架橋工程では、第二溶液を基材上に塗布し、乾燥させればよい。これにより、薄膜状の誘電膜が製造される。架橋工程の温度は、反応速度等を考慮して、溶剤の種類に応じて適宜決定すればよい。例えば、常温でもよいが、溶剤の沸点以上とすることが望ましい。また、有機金属化合物をキレート化して用いる場合でも、上記第一溶液調製工程や第二溶液調製工程において、必要に応じて触媒、補強剤、可塑剤、老化防止剤、着色剤等を添加することができる。一例として可塑剤を添加する場合には、誘電膜の製造方法を、次の三工程から構成することができる。まず、ゴムポリマーが溶解可能であり、かつ、有機金属化合物をキレート化できる溶剤中に、ゴムポリマーと、無機フィラーと、可塑剤と、が含有されている第一溶液を調製する(第一溶液調製工程)。次いで、第一溶液に、有機金属化合物を混合して、第二溶液を調製する(第二溶液調製工程)。その後、第二溶液から溶剤を除去して、架橋反応を進行させる(架橋工程)。
 <トランスデューサ>
 本発明のトランスデューサは、上記本発明の誘電膜と、該誘電膜を介して配置されている複数の電極と、を備える。本発明の誘電膜の構成、および製造方法については、上述した通りである。よって、ここでは説明を割愛する。なお、本発明のトランスデューサにおいても、本発明の誘電膜における好適な態様を採用することが望ましい。
 誘電膜の厚さは、用途等に応じて適宜決定すればよい。例えば、本発明のトランスデューサをアクチュエータとして用いる場合には、アクチュエータの小型化、低電位駆動化、および変位量を大きくする等の観点から、誘電膜の厚さは薄い方が望ましい。この場合、絶縁破壊性等をも考慮して、誘電膜の厚さを、1μm以上1000μm(1mm)以下とすることが望ましい。より好適な範囲は、5μm以上200μm以下である。
 本発明のトランスデューサにおいて、電極の材質は、特に限定されるものではない。例えば、カーボンブラック、カーボンナノチューブ等の炭素材料や金属からなる導電剤に、バインダーとしてオイルやエラストマーを混合したペーストまたは塗料を塗布した電極、あるいは炭素材料や金属等をメッシュ状に編んだ電極等を使用することができる。電極は、誘電膜の伸縮に応じて伸縮可能であることが望ましい。電極が、誘電膜と共に伸縮すると、誘電膜の変形が電極によって妨げられにくい。このため、本発明のトランスデューサを、アクチュエータ等として使用した場合に、所望の変位量を得やすくなる。
 また、本発明のトランスデューサを、複数の誘電膜と電極とを交互に積層させた積層構造とすると、より大きな力を発生させることができる。したがって、積層構造を採用した場合には、例えば、アクチュエータの出力を大きくすることができる。これにより、駆動対象部材をより大きな力で駆動させることができる。
 [第一実施形態]
 本発明のトランスデューサの第一例として、アクチュエータに具現化した実施形態を説明する。図1に、本実施形態のアクチュエータの断面模式図を示す。(a)はオフ状態、(b)はオン状態を各々示す。
 図1に示すように、アクチュエータ1は、誘電膜10と電極11a、11bとを備えている。誘電膜10は、テトラキス(2-エチルヘキシルオキシ)チタン(金属アルコキシド化合物)と、カルボキシル基を有する水素化ニトリルゴム(ゴムポリマー)と、シリカ(無機フィラー)と、から合成された三次元架橋体(本発明の誘電膜)である。電極11a、11bは、誘電膜10の上面および下面に、各々固定されている。電極11a、11bは、配線を介して電源12に接続されている。オフ状態からオン状態に切り替える際は、一対の電極11a、11b間に電圧を印加する。電圧の印加により、誘電膜10の厚さは薄くなり、その分だけ、図1(b)中白抜き矢印で示すように、電極11a、11b面に対して平行方向に伸長する。これにより、アクチュエータ1は、図中上下方向および左右方向の駆動力を出力する。
 ここで、誘電膜10の電気抵抗は大きい。このため、電極11a、11b間に大きな電圧を印加しても、電流が誘電膜10中を流れにくい。よって、誘電膜10中に、多くの電荷を蓄えることができる。その結果、大きな静電引力が生じて、大きな力および変位量を得ることができる。また、電流が誘電膜10中を流れにくいため、ジュール熱の発生が抑制される。よって、誘電膜10が熱により破壊されるおそれは小さい。また、誘電膜10は、絶縁破壊しにくい。このように、アクチュエータ1は、耐久性に優れる。なお、誘電膜10を面延在方向に延伸した状態で配置すると、誘電膜10の絶縁破壊強度が向上する。よって、より大きな電圧を印加することができるため、力および変位量が大きくなる。
 [第二実施形態]
 本発明のトランスデューサの第二例として、静電容量型センサに具現化した実施形態を説明する。図2に、本実施形態における静電容量型センサの断面模式図を示す。図2に示すように、静電容量型センサ2は、誘電膜20と電極21a、21bと基板22とを備えている。誘電膜20は、テトラキス(2-エチルヘキシルオキシ)チタン(金属アルコキシド化合物)と、カルボキシル基を有する水素化ニトリルゴム(ゴムポリマー)と、シリカ(無機フィラー)と、から合成された三次元架橋体(本発明の誘電膜)である。誘電膜20は、左右方向に延びる帯状を呈している。誘電膜20は、基板22の上面に、電極21bを介して配置されている。電極21a、21bは、左右方向に延びる帯状を呈している。電極21a、21bは、誘電膜20の上面および下面に、それぞれ固定されている。電極21a、21bには、配線(図略)が接続されている。基板22は絶縁性の柔軟なフィルムであって、左右方向に延びる帯状を呈している。基板22は、電極21bの下面に固定されている。
 静電容量型センサ2の静電容量(キャパシタンス)は、次式(I)により求めることができる。
C=εεS/d・・・(I)
[C:静電容量、ε:真空中の誘電率、ε:誘電膜の比誘電率、S:電極面積、d:電極間距離]
例えば、静電容量型センサ2が上方から押圧されると、誘電膜20は圧縮され、その分だけ電極21a、21b面に対して平行方向に伸長する。膜厚、すなわち電極間距離dが小さくなると、電極21a、21b間の静電容量は大きくなる。この静電容量変化により、加わった荷重の大きさや位置等が検出される。
 ここで、誘電膜20の電気抵抗は大きい。このため、大きな力で押圧されて、電極21a、21b間の静電容量が大きくなった場合でも、電流が誘電膜20中を流れにくい。このため、加わった荷重の大きさや位置等を、正確に検出することができる。また、電流が誘電膜20中を流れにくいため、ジュール熱の発生が抑制される。よって、誘電膜20が熱により破壊されるおそれは小さい。また、誘電膜20は、絶縁破壊しにくい。このように、静電容量型センサ2は、耐久性に優れる。
 [第三実施形態]
 本発明のトランスデューサの第三例として、発電素子の実施形態を説明する。図3に、本実施形態における発電素子の断面模式図を示す。(a)は伸長時、(b)は収縮時を各々示す。図3に示すように、発電素子3は、誘電膜30と電極31a、31bとを備えている。誘電膜30は、テトラキス(2-エチルヘキシルオキシ)チタン(金属アルコキシド化合物)と、カルボキシル基を有する水素化ニトリルゴム(ゴムポリマー)と、シリカ(無機フィラー)と、から合成された三次元架橋体(本発明の誘電膜)である。電極31a、31bは、誘電膜30の上面および下面に、それぞれ固定されている。電極31a、31bには、配線が接続されており、電極31bは、接地されている。
 図3(a)に示すように、発電素子3を圧縮し、誘電膜30を電極31a、31b面に対して平行方向に伸長すると、誘電膜30の厚さは薄くなり、電極31a、31b間に電荷が蓄えられる。その後、圧縮力を除去すると、図3(b)に示すように、誘電膜30の弾性復元力により誘電膜30は収縮し、膜厚が厚くなる。その際、電荷が放出され発電される。
 ここで、誘電膜30の電気抵抗は大きい。このため、圧縮量が大きい場合でも、電流が誘電膜30中を流れにくく、電極31a、31b間に多くの電荷を蓄えることができる。したがって、大きな発電量を得ることができる。また、電流が誘電膜30中を流れにくいため、ジュール熱の発生が抑制される。よって、誘電膜30が熱により破壊されるおそれは小さい。また、誘電膜30は、絶縁破壊しにくい。このように、発電素子3は、耐久性に優れる。
 次に、実施例を挙げて本発明をより具体的に説明する。
 <誘電膜の製造>
 [実施例1~10の誘電膜]
 下記の表1に示す原料から、実施例1~10の誘電膜を製造した。まず、カルボキシル基含有水素化ニトリルゴム(ランクセス社製「テルバン(登録商標)XT8889」)と、所定のシリカと、をロール練り機にて混練りし、ゴム組成物を調製した。次に、調製したゴム組成物を、アセチルアセトンに溶解した。続いて、この溶液に、有機金属化合物のテトラキス(2-エチルヘキシルオキシ)チタンを添加して、混合した。ここで、アセチルアセトンは、カルボキシル基含有水素化ニトリルゴム(ゴムポリマー)を溶解させる溶媒であると共に、テトラキス(2-エチルヘキシルオキシ)チタン(金属アルコキシド化合物)のキレート剤である。その後、混合溶液を基材上に塗布し、乾燥させた後、150℃で約60分間加熱して誘電膜を得た。誘電膜の膜厚は、いずれも約40μmとした。
 [参考例1、2の誘電膜]
 下記の表1に示す原料から、参考例1、2の誘電膜を製造した。実施例1~10の誘電膜と参考例の誘電膜との相違点は、シリカ配合の有無である。まず、カルボキシル基含有水素化ニトリルゴム(同上)を、アセチルアセトンに溶解した。続いて、この溶液に、テトラキス(2-エチルヘキシルオキシ)チタンを添加して、混合した。次に、混合溶液を、基材上に塗布し、乾燥させた後、150℃で約60分間加熱して誘電膜を得た。誘電膜の膜厚は、いずれも約40μmとした。
 [実施例11~16の誘電膜]
 無機フィラーの種類を変更した以外は、実施例1~10の誘電膜と同様にして、下記の表2に示す原料から、実施例11~16の誘電膜を製造した。誘電膜の膜厚は、いずれも約40μmとした。
 [実施例17~21の誘電膜]
 可塑剤を配合した以外は、実施例1~10の誘電膜と同様にして、下記の表3に示す原料から、実施例17~21の誘電膜を製造した。まず、カルボキシル基含有水素化ニトリルゴム(同上)と、後述するシリカ(b)と、をロール練り機にて混練りし、ゴム組成物を調製した。次に、調製したゴム組成物を、アセチルアセトンに溶解した。続いて、この溶液に、テトラキス(2-エチルヘキシルオキシ)チタンと、所定の可塑剤と、を添加して、混合した。その後、混合溶液を、基材上に塗布し、乾燥させた後、150℃で約60分間加熱して誘電膜を得た。誘電膜の膜厚は、いずれも約40μmとした。
 [実施例22~25の誘電膜]
 有機金属化合物の種類を変更した以外は、実施例1~10の誘電膜と同様にして、下記の表4に示す原料から、実施例22~25の誘電膜を製造した。誘電膜の膜厚は、いずれも約40μmとした。
 [比較例1、2の誘電膜]
 下記の表5に示す原料から、比較例1、2の誘電膜を製造した。まず、所定の原料をロール練り機にて混合、分散させて、ゴム組成物を調製した。次に、調製したゴム組成物を薄いシート状に成形し、それを金型に充填して、175℃で約30分間プレス架橋することにより、誘電膜を得た。誘電膜の膜厚は、いずれも約50μmとした。
 表1~表5に、使用した原料の種類および配合量を示す。表1、表3、表4中、シリカについては、以下のものを使用した。
シリカ(a):東ソー・シリカ(株)製湿式シリカ「Nipsil(登録商標)VN3」、pH5.5~6.5、比表面積240m/g
シリカ(b):日本アエロジル(株)製乾式シリカ「Aerosil(登録商標)380」、pH3.7~4.7、比表面積380m/g
シリカ(c):東ソー・シリカ(株)製湿式シリカ「Nipsil ER」、pH7~8.5、比表面積120m/g
 また、表5中、各原料については、以下のものを使用した。
シリコーンゴム:「DMS-V31」(Gelest社製)
ニトリルゴム:「ニポール(登録商標)1042」(日本ゼオン(株)製)
メチルHシロキサン:「TSF484」(GE東芝シリコーン(株)製)
遅延剤:「サーフィノール(登録商標)61」(日信化学工業(株)製)
白金触媒:「SIP6830.0」(Gelest社製)
加硫助剤:酸化亜鉛二種(三井金属(株)製)
ステアリン酸:「ルナック(登録商標)S30」(花王(株)製)
テトラエチルチウラムジスルフィド:「サンセラー(登録商標)TET-G」(三新化学工業(株)製)
N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド:「サンセラーCZ-G」(三新化学工業(株)製)
硫黄:「サルファックスT-10」(鶴見化学工業(株)製)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <誘電膜の電気抵抗測定>
 実施例、参考例、および比較例の各誘電膜の電気抵抗を、JIS K 6911(1995)に準じて測定した。測定結果を上記表1~表5にまとめて示す。表1~表4に示すように、実施例の誘電膜は、いずれも大きな電気抵抗を有している。つまり、高い絶縁性が維持されている。例えば、表1中、金属アルコキシド化合物の配合量が同じもの同士で比較すると、実施例1は参考例1に対して、実施例2~5、8、10は参考例2に対して、電気抵抗が大きくなった。すなわち、シリカ(無機フィラー)を含む実施例の誘電膜では、それを含まない参考例の誘電膜と比較して、電気抵抗が大きくなることが確認された。同様に、金属アルコキシド化合物の配合量が同じである、表2の実施例11~16と参考例2とを比較すると、実施例11~16は参考例2に対して、電気抵抗が大きくなった。すなわち、無機フィラーの種類に関わらず、無機フィラーを含む実施例の誘電膜では、それを含まない参考例の誘電膜と比較して、電気抵抗が大きくなることが確認された。また、可塑剤を配合した実施例17~21についても、電気抵抗は大きかった。なお、表5に示すように、従来のシリコーンゴムを使用した誘電膜(比較例1)の電気抵抗は大きく、ニトリルゴムを使用した誘電膜(比較例2)の電気抵抗は小さいことがわかる。
 次に、シリカのpH値と電気抵抗との関係を検討する。例えば、実施例3、8、10を比較すると、実施例10→実施例3→実施例8の順に、電気抵抗が大きくなっていることがわかる。この傾向は、シリカのpH値の低下と一致する。すなわち、各々の実施例におけるシリカのpH値は、実施例10→実施例3→実施例8の順に小さくなっている。つまり、シリカのpH値が小さいほど(シリカが酸性に傾くほど)、電気抵抗は大きくなった。
 次に、シリカの配合量と電気抵抗の関係を検討する。例えば、実施例2~4を比較すると、シリカの配合量が増加するに従って(実施例2→実施例3→実施例4)、電気抵抗は大きくなった。なお、シリカの配合量が最も多い実施例5(30質量部)においては、実施例4(20質量部)および実施例3(10質量部)ほど、電気抵抗の増加は見られなかった。これは、シリカの配合による絶縁効果が飽和したためと考えられる。
 <アクチュエータの評価>
 次に、実施例、参考例、および比較例の各誘電膜を用いてアクチュエータを作製し、アクチュエータの最大発生応力および最大電界強度を測定した。まず、実験装置および実験方法について説明する。
 実施例、参考例、および比較例の各誘電膜の表裏両面に、アクリルゴムにカーボンブラックが混合されてなる電極を各々貼着してアクチュエータを作製した。以下、作製したアクチュエータを、誘電膜の種類に対応させて、「実施例のアクチュエータ」等と称す。図4に、実験装置に取り付けられたアクチュエータの正面図を示す。図5に、図4のV-V方向断面図を示す。
 図4、図5に示すように、アクチュエータ5の上端は、実験装置における上側チャック52により把持されている。アクチュエータ5の下端は、下側チャック53により把持されている。アクチュエータ5は、予め上下方向に延伸された状態で、上側チャック52と下側チャック53との間に、取り付けられている(延伸率25%)。上側チャック52の上方には、ロードセル(図略)が配置されている。
 アクチュエータ5は、誘電膜50と一対の電極51a、51bとからなる。誘電膜50は、自然状態で、縦50mm、横25mm、厚さ約40μmの長方形の薄膜状を呈している。電極51a、51bは、誘電膜50を挟んで表裏方向に対向するよう配置されている。電極51a、51bは、自然状態で、各々、縦40mm、横25mm、厚さ約10μmの長方形の薄膜状を呈している。電極51a、51bは、上下方向に10mmずれた状態で配置されている。つまり、電極51a、51bは、誘電膜50を介して、縦30mm、横25mmの範囲で重なっている。電極51aの下端には、配線(図略)が接続されている。同様に、電極51bの上端には、配線(図略)が接続されている。電極51a、51bは、各々の配線を介して、電源(図略)に接続されている。
 電極51a、51b間に電圧を印加すると、電極51a、51b間に静電引力が生じて、誘電膜50を圧縮する。これにより、誘電膜50の厚さは薄くなり、延伸方向(上下方向)に伸長する。誘電膜50の伸長により、上下方向の延伸力は減少する。電圧印加前後において減少した延伸力を、ロードセルにより測定して、発生応力とした。発生応力の測定は、印加する電圧を段階的に増加させて、誘電膜50が破壊されるまで行った。そして、誘電膜50が破壊される寸前における発生応力を、最大発生応力とした。また、その時の電圧値を誘電膜50の膜厚で除した値を、最大電界強度とした。上記表1~表5に、実施例、参考例、および比較例の各アクチュエータにおける最大発生応力および最大電界強度の測定結果を、まとめて示す。
 表1~表4に示すように、実施例のアクチュエータの最大発生応力は、比較例のアクチュエータの最大発生応力と比較して、大きくなった。また、シリコーンゴム製の誘電膜を使用した比較例1のアクチュエータについては、最大電界強度が非常に大きいにも関わらず、発生応力は小さいことがわかる。また、表1中、金属アルコキシド化合物の配合量が同じもの同士で比較すると、実施例1は参考例1に対して、実施例2~5、8、10は参考例2に対して、最大発生応力が大きくなった。同様に、金属アルコキシド化合物の配合量が同じである、表2の実施例11~16と参考例2とを比較すると、実施例11~16は参考例2に対して、最大発生応力が大きくなった。また、可塑剤を配合した実施例17~21についても、最大発生応力は大きかった。
 上述したように、実施例の誘電膜の電気抵抗は大きい。このため、実施例のアクチュエータは、誘電膜中に、多くの電荷を蓄えることができる。また、誘電膜の耐絶縁破壊性は高く、ジュール熱による破壊も抑制される。このため、実施例のアクチュエータには、より大きな電圧を印加することができる。このような理由から、実施例のアクチュエータは、大きな力を出力できたと考えられる。
 また、上述したように、実施例3、8、10を比較すると、シリカのpH値が小さいほど、電気抵抗が大きくなる傾向が見られた。最大発生応力および最大電界強度についても、電気抵抗の傾向と同様に、実施例10→実施例3→実施例8の順に大きくなった。
 本発明の誘電膜は、機械エネルギーと電気エネルギーとの変換を行うアクチュエータ、センサ、発電素子等、あるいは音響エネルギーと電気エネルギーとの変換を行うスピーカ、マイクロフォン、ノイズキャンセラ等のトランスデューサに広く用いることができる。なかでも、産業、医療、福祉ロボット用の人工筋肉、電子部品冷却用や医療用等の小型ポンプ、および医療用器具等に用いられる柔軟なアクチュエータに好適である。

Claims (10)

  1.  トランスデューサにおいて少なくとも一対の電極間に介装される誘電膜であって、
     有機金属化合物と、
     該有機金属化合物と反応可能な官能基を有し、ポリジメチルシロキサン以外のゴムポリマーと、
     該有機金属化合物と反応可能な官能基を有する無機フィラーと、
    から合成された三次元架橋体からなることを特徴とする誘電膜。
  2.  前記有機金属化合物は、金属アルコキシド化合物、金属アシレート化合物、および金属キレート化合物から選ばれる一種以上である請求項1に記載の誘電膜。
  3.  前記無機フィラーは、シリカである請求項1に記載の誘電膜。
  4.  前記シリカのpHは、8.5以下である請求項3に記載の誘電膜。
  5.  前記ゴムポリマーの前記官能基は、カルボキシル基、ヒドロキシ基、アミノ基、アミド、エポキシ基、チオール、エステルから選ばれる一種以上である請求項1に記載の誘電膜。
  6.  前記ゴムポリマーは、アクリロニトリル-ブタジエン共重合体、水素化ニトリルゴム、アクリルゴム、ウレタンゴム、フッ素ゴム、フルオロシリコーンゴム、クロロスルホン化ポリエチレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、塩素化ポリエチレンから選ばれる一種以上である請求項1に記載の誘電膜。
  7.  前記有機金属化合物は、チタン、ジルコニウム、アルミニウム、ケイ素、ホウ素、バナジウム、マンガン、鉄、コバルト、ゲルマニウム、イットリウム、ニオブ、ランタン、セリウム、タンタル、タングステン、およびマグネシウムから選ばれる一種以上の元素を含む請求項1に記載の誘電膜。
  8.  前記三次元架橋体は、前記有機金属化合物、前記ゴムポリマー、および前記無機フィラーに加えて、さらに可塑剤を含む組成物から合成されている請求項1に記載の誘電膜。
  9.  請求項1ないし請求項8のいずれかに記載の誘電膜の製造方法であって、
     前記ゴムポリマーが溶解可能であり、かつ、前記有機金属化合物をキレート化できる溶剤中に、該ゴムポリマーと、前記無機フィラーと、必要に応じて前記可塑剤と、が含有されている第一溶液を調製する第一溶液調製工程と、
     該第一溶液に、該有機金属化合物を混合して第二溶液を調製する第二溶液調製工程と、
     該第二溶液から該溶剤を除去して、架橋反応を進行させる架橋工程と、
    を有する誘電膜の製造方法。
  10.  請求項1ないし請求項8のいずれかに記載の誘電膜と、
     該誘電膜を介して配置されている複数の電極と、
    を備えることを特徴とするトランスデューサ。
PCT/JP2010/065200 2009-09-18 2010-09-06 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ WO2011033956A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/201,508 US20110300393A1 (en) 2009-09-18 2010-09-06 Dielectric film, process for producing same, and transducer using same
KR1020117025092A KR101344608B1 (ko) 2009-09-18 2010-09-06 유전막, 및 그 제조 방법, 그리고 그것을 사용한 트랜스듀서
EP10817069.7A EP2390998A4 (en) 2009-09-18 2010-09-06 DIELECTRIC FILM, METHOD FOR ITS MANUFACTURE AND CONVERTER THEREFOR
CN201080017239.XA CN102405590B (zh) 2009-09-18 2010-09-06 介电膜及其制造方法、以及使用其的转换器
US15/202,818 US10035897B2 (en) 2009-09-18 2016-07-06 Dielectric film, process for producing same, and transducer using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009217208 2009-09-18
JP2009-217208 2009-09-18
JP2010-064002 2010-03-19
JP2010064002A JP5558876B2 (ja) 2009-09-18 2010-03-19 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/201,508 A-371-Of-International US20110300393A1 (en) 2009-09-18 2010-09-06 Dielectric film, process for producing same, and transducer using same
US15/202,818 Division US10035897B2 (en) 2009-09-18 2016-07-06 Dielectric film, process for producing same, and transducer using same

Publications (1)

Publication Number Publication Date
WO2011033956A1 true WO2011033956A1 (ja) 2011-03-24

Family

ID=43758564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065200 WO2011033956A1 (ja) 2009-09-18 2010-09-06 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ

Country Status (6)

Country Link
US (2) US20110300393A1 (ja)
EP (1) EP2390998A4 (ja)
JP (1) JP5558876B2 (ja)
KR (1) KR101344608B1 (ja)
CN (1) CN102405590B (ja)
WO (1) WO2011033956A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047311A1 (ja) * 2011-09-29 2013-04-04 東海ゴム工業株式会社 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
WO2013058237A1 (ja) * 2011-10-17 2013-04-25 東海ゴム工業株式会社 誘電膜およびそれを用いたトランスデューサ
EP2653504A4 (en) * 2011-10-11 2015-07-08 Sumitomo Riko Co Ltd ELASTOMER MASS WITH AN IMMOBILIZED IONIC COMPONENT AND MANUFACTURING METHOD THEREFOR
WO2015146409A1 (ja) * 2014-03-26 2015-10-01 住友理工株式会社 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
US10059084B2 (en) 2014-07-16 2018-08-28 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US10344379B2 (en) 2010-04-13 2019-07-09 Valinge Innovation Ab Powder overlay
US11913226B2 (en) 2015-01-14 2024-02-27 Välinge Innovation AB Method to produce a wear resistant layer with different gloss levels

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802230B2 (en) * 2009-12-18 2014-08-12 GM Global Technology Operations LLC Electrically-insulative coating, coating system and method
EP2537892A4 (en) * 2010-03-23 2015-02-11 Sumitomo Riko Co Ltd ELECTRICALLY CONDUCTIVE NETWORKED PRODUCT, METHOD FOR THE PRODUCTION THEREOF, AND CONVERTER, FLEXIBLE CONDUCTOR PLATE AND SHIELDING AGAINST ELECTROMAGNETIC WAVES THEREFROM
KR101346416B1 (ko) 2010-05-19 2014-01-02 도카이 고무 고교 가부시키가이샤 도전막, 및 그것을 사용한 트랜스듀서, 플렉시블 배선판
DE102011077583A1 (de) * 2011-06-16 2012-12-20 Robert Bosch Gmbh Relativverschiebung erleichternde Oberflächen bei EAP-Generatoren
JP5674222B2 (ja) * 2011-07-01 2015-02-25 株式会社ポリテック・デザイン 積層型静電アクチュエータ
EP2654196B1 (en) 2011-10-11 2017-06-14 Sumitomo Riko Company Limited Transducer
DE102012212222B4 (de) * 2012-03-12 2018-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dielektrisches Elastomer auf Fluorosilicon-Basis und Verfahren zu seiner Herstellung
WO2014119166A1 (ja) * 2013-01-30 2014-08-07 東海ゴム工業株式会社 柔軟なトランスデューサ
CN103087450A (zh) * 2013-02-28 2013-05-08 瑞科稀土冶金及功能材料国家工程研究中心有限公司 一种稀土配合物改性耐寒氟橡胶混炼胶及其制备方法
JP5941958B2 (ja) 2014-09-30 2016-06-29 住友理工株式会社 トランスデューサ用誘電材料、およびその製造方法、並びにそれを用いたトランスデューサ
KR102431597B1 (ko) * 2014-12-31 2022-08-11 엘지디스플레이 주식회사 전기활성 필름을 포함하는 접촉 감응 소자, 이를 포함하는 표시 장치 및 전기활성 필름의 제조 방법
US20180114643A1 (en) * 2015-03-26 2018-04-26 Kyocera Corporation Dielectric film, film capacitor and combination type capacitor employing the dielectric film, and inverter and electric vehicle
JP6510927B2 (ja) * 2015-07-31 2019-05-08 住友理工株式会社 触覚振動提示装置
JP6881753B2 (ja) * 2016-08-29 2021-06-02 国立大学法人信州大学 ゲルアクチュエータ
CN106421947B (zh) 2016-10-13 2018-10-09 苏州大学 一种心室内搏动血泵
JP6829994B2 (ja) * 2017-01-05 2021-02-17 株式会社Zozo 身体測定装置及び身体測定システム
CN106985988A (zh) * 2017-03-07 2017-07-28 浙江大学 一种基于介电弹性体的模块化驱动装置
CN107947625A (zh) * 2018-01-10 2018-04-20 库尔卡人工智能有限公司 一种自发电装置
CN110784806B (zh) * 2019-10-31 2021-11-16 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN113607767B (zh) * 2021-08-03 2023-11-03 广东五研检测技术有限公司 一种MOFs复合TiO2光活性材料电极的制备方法及应用
CN114701632A (zh) * 2022-04-19 2022-07-05 吉林大学 一种仿生乌贼水下推进器
CN114919247A (zh) * 2022-05-10 2022-08-19 浙江师范大学 一种层状复合薄膜及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524278A (ja) 1997-02-07 2001-11-27 エス アール アイ・インターナショナル 弾性誘電体ポリマフィルム音波アクチュエータ
JP2003505865A (ja) 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ
JP2006236837A (ja) * 2005-02-25 2006-09-07 Fuji Photo Film Co Ltd 固体電解質およびその製造方法、電極膜接合体、ならびに、燃料電池
JP2007264581A (ja) * 2006-03-01 2007-10-11 Konica Minolta Opto Inc 光学用無機材料の製造方法並びに光学用無機材料、光学用樹脂材料及び光学素子
JP2008120644A (ja) * 2006-11-14 2008-05-29 Seiko Epson Corp 強誘電体膜形成用組成物及びその製造方法並びに強誘電体膜の製造方法
JP2009500054A (ja) * 2005-07-01 2009-01-08 シンベンション アーゲー 網状複合材料を含む医療装置
JP2009120698A (ja) * 2007-11-14 2009-06-04 Tokai Rubber Ind Ltd 誘電膜およびそれを用いたアクチュエータ、センサ、トランスデューサ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508336A (en) * 1993-12-29 1996-04-16 Bridgestone Corporation Rubber composition
JP3295023B2 (ja) 1997-09-08 2002-06-24 ニチアス株式会社 セラミックス複合ゴム及びその製造方法
EP1148091B1 (en) * 2000-04-20 2007-05-09 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and article with component thereof, including tires
KR100797202B1 (ko) * 2000-06-23 2008-01-23 허니웰 인터내셔널 인코포레이티드 손상된 실리카 유전 필름에 소수성을 부여하는 방법 및 손상된 실리카 유전 필름 처리 방법
US6477029B1 (en) * 2000-09-27 2002-11-05 Eastman Kodak Company Deformable micro-actuator
JP2003224245A (ja) * 2002-01-31 2003-08-08 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2003298196A (ja) * 2002-04-03 2003-10-17 Japan Gore Tex Inc プリント配線板用誘電体フィルム、多層プリント基板および半導体装置
US6838495B2 (en) * 2003-01-17 2005-01-04 Louis Frank Gatti Rubber composition comprising composite pigment
US6876125B2 (en) 2003-08-26 2005-04-05 Delphi Technologies, Inc. Elastomeric polyphosphazene transducers, methods of making, and methods of use thereof
KR101001441B1 (ko) * 2004-08-17 2010-12-14 삼성전자주식회사 유무기 금속 하이브리드 물질 및 이를 포함하는 유기절연체 조성물
EP2009050B1 (en) * 2006-04-17 2011-08-31 Zeon Corporation Crosslinkable nitrile rubber composition and crosslinked rubber product
JP4457164B2 (ja) * 2006-06-30 2010-04-28 有限会社フォアロードリサーチ 架橋剤を含むラテックス組成物およびその架橋成形体
JP5464808B2 (ja) * 2008-01-21 2014-04-09 東海ゴム工業株式会社 誘電材料およびそれを用いたアクチュエータ
WO2009116373A1 (ja) * 2008-03-18 2009-09-24 東レ株式会社 ゲート絶縁材料、ゲート絶縁膜、および有機電界効果型トランジスタ
JP4982432B2 (ja) * 2008-06-02 2012-07-25 東海ゴム工業株式会社 誘電膜、およびその製造方法、並びにそれを用いたアクチュエータ、センサ、トランスデューサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524278A (ja) 1997-02-07 2001-11-27 エス アール アイ・インターナショナル 弾性誘電体ポリマフィルム音波アクチュエータ
JP2003505865A (ja) 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ
JP2006236837A (ja) * 2005-02-25 2006-09-07 Fuji Photo Film Co Ltd 固体電解質およびその製造方法、電極膜接合体、ならびに、燃料電池
JP2009500054A (ja) * 2005-07-01 2009-01-08 シンベンション アーゲー 網状複合材料を含む医療装置
JP2007264581A (ja) * 2006-03-01 2007-10-11 Konica Minolta Opto Inc 光学用無機材料の製造方法並びに光学用無機材料、光学用樹脂材料及び光学素子
JP2008120644A (ja) * 2006-11-14 2008-05-29 Seiko Epson Corp 強誘電体膜形成用組成物及びその製造方法並びに強誘電体膜の製造方法
JP2009120698A (ja) * 2007-11-14 2009-06-04 Tokai Rubber Ind Ltd 誘電膜およびそれを用いたアクチュエータ、センサ、トランスデューサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2390998A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344379B2 (en) 2010-04-13 2019-07-09 Valinge Innovation Ab Powder overlay
EP2654195A4 (en) * 2011-09-29 2014-03-05 Tokai Rubber Ind Ltd DIELECTRIC FILM, METHOD FOR ITS MANUFACTURE AND CONVERTER THEREFOR
WO2013047311A1 (ja) * 2011-09-29 2013-04-04 東海ゴム工業株式会社 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
JP2013072063A (ja) * 2011-09-29 2013-04-22 Tokai Rubber Ind Ltd 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
US10381547B2 (en) 2011-09-29 2019-08-13 Sumitomo Riko Company Limited Dielectric film, method for manufacturing the same, and transducer including the same
EP2653504A4 (en) * 2011-10-11 2015-07-08 Sumitomo Riko Co Ltd ELASTOMER MASS WITH AN IMMOBILIZED IONIC COMPONENT AND MANUFACTURING METHOD THEREFOR
WO2013058237A1 (ja) * 2011-10-17 2013-04-25 東海ゴム工業株式会社 誘電膜およびそれを用いたトランスデューサ
WO2015146409A1 (ja) * 2014-03-26 2015-10-01 住友理工株式会社 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
JP2015187931A (ja) * 2014-03-26 2015-10-29 住友理工株式会社 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
US9685254B2 (en) 2014-03-26 2017-06-20 Sumitomo Riko Company Limited Dielectric film, method for manufacturing the same, and transducer including the same
US10059084B2 (en) 2014-07-16 2018-08-28 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US10493731B2 (en) 2014-07-16 2019-12-03 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US11376824B2 (en) 2014-07-16 2022-07-05 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US11913226B2 (en) 2015-01-14 2024-02-27 Välinge Innovation AB Method to produce a wear resistant layer with different gloss levels

Also Published As

Publication number Publication date
US20160312002A1 (en) 2016-10-27
JP5558876B2 (ja) 2014-07-23
US20110300393A1 (en) 2011-12-08
US10035897B2 (en) 2018-07-31
CN102405590A (zh) 2012-04-04
KR20120042723A (ko) 2012-05-03
CN102405590B (zh) 2014-12-03
EP2390998A4 (en) 2014-05-21
EP2390998A1 (en) 2011-11-30
KR101344608B1 (ko) 2013-12-26
JP2011084712A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5558876B2 (ja) 誘電膜、およびその製造方法、並びにそれを用いたトランスデューサ
JP5603344B2 (ja) 導電性架橋体、およびその製造方法、並びにそれを用いたトランスデューサ、フレキシブル配線板、電磁波シールド
JP5941646B2 (ja) 誘電膜の製造方法
JP4982432B2 (ja) 誘電膜、およびその製造方法、並びにそれを用いたアクチュエータ、センサ、トランスデューサ
JP5486369B2 (ja) 誘電材料およびそれを用いたトランスデューサ
JP5847225B2 (ja) 誘電膜およびその製造方法、並びにそれを用いたトランスデューサ
JP5926399B2 (ja) 反応性イオン液体およびこれを用いたイオン固定化金属酸化物粒子、イオン固定化エラストマーならびにトランスデューサ
JP5916270B2 (ja) 誘電膜およびそれを用いたトランスデューサ
JP6022281B2 (ja) トランスデューサ
JP5662754B2 (ja) 誘電材料、その製造方法、それを用いたトランスデューサ
JP5243775B2 (ja) 誘電膜およびそれを用いたアクチュエータ、センサ、トランスデューサ
US10074457B2 (en) Dielectric material for transducer, method for manufacturing the same, and transducer including the same
JP2020155677A (ja) 誘電膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017239.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13201508

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010817069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010817069

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117025092

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE