WO2011033943A1 - 電磁鋼板及びその製造方法 - Google Patents

電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2011033943A1
WO2011033943A1 PCT/JP2010/065040 JP2010065040W WO2011033943A1 WO 2011033943 A1 WO2011033943 A1 WO 2011033943A1 JP 2010065040 W JP2010065040 W JP 2010065040W WO 2011033943 A1 WO2011033943 A1 WO 2011033943A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
component
steel sheet
resin
Prior art date
Application number
PCT/JP2010/065040
Other languages
English (en)
French (fr)
Inventor
竹田 和年
健司 小菅
新井 聡
石塚 清和
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020127006673A priority Critical patent/KR101431349B1/ko
Priority to PL10817056T priority patent/PL2479315T3/pl
Priority to US13/395,993 priority patent/US20120171467A1/en
Priority to EP21152940.9A priority patent/EP3836169B1/en
Priority to CN201080040805.9A priority patent/CN102575352B/zh
Priority to IN2839DEN2012 priority patent/IN2012DN02839A/en
Priority to JP2010547387A priority patent/JP4729136B2/ja
Priority to EP10817056.4A priority patent/EP2479315B1/en
Publication of WO2011033943A1 publication Critical patent/WO2011033943A1/ja
Priority to US15/179,171 priority patent/US10340065B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material

Definitions

  • the present invention relates to a magnetic steel sheet suitable for a material for an iron core of an electric device and a manufacturing method thereof.
  • a hoop-shaped electromagnetic steel sheet is punched into a predetermined shape, and a plurality of electromagnetic steel sheets are stacked and fixed to produce a laminated iron core. Thereafter, a copper wire is wound around a laminated iron core tooth, etc., a terminal for connecting the copper wire, a flange, a bearing and the like are attached, and these are fixed to the case. Further, after winding of the copper wire, impregnation into the varnish and spraying of the paint are performed, and further heating for baking and drying is performed.
  • Such a motor contains heat-sensitive parts.
  • a copper wire insulating film and a terminal terminal such as a copper wire take-out portion are vulnerable to heat. For this reason, if the heat generated from the motor stagnates inside, the performance of the motor will be reduced or a failure may occur.
  • heat dissipation is also required for the laminated iron core.
  • a structure that enables heat diffusion in a direction perpendicular to the laminating direction of the electromagnetic steel sheets has been adopted for heat dissipation of the laminated iron core. That is, heat is radiated from the end of the laminated iron core in the radial direction (direction parallel to the surface of the electromagnetic steel sheet) through the case, or a heat radiating plate is provided at the end so that heat is radiated through the heat radiating plate.
  • a motor is configured.
  • heat radiation in the radial direction of the laminated iron core may be difficult depending on the structure of the motor or the shape of the laminated iron core.
  • heat radiation in the radial direction of the laminated iron core it may be difficult to sufficiently dissipate heat.
  • it is important to dissipate heat in the lamination direction of the laminated iron core (direction perpendicular to the surface of the electromagnetic steel sheet).
  • An object of the present invention is to provide an electrical steel sheet that can improve heat dissipation in the stacking direction when used for a laminated iron core and a method for manufacturing the same.
  • the insulating coating is required to have properties such as insulation, corrosion resistance, weldability, adhesion, and heat resistance.
  • the insulating coating generally contains a compound such as chromate or phosphate as a main component. The thermal conductivity of these compounds is significantly lower than that of metals. This is one of the factors that make it difficult to obtain high thermal conductivity in the stacking direction.
  • the present inventors have intensively studied to solve the above problems while considering the properties of these conventional electrical steel sheets, and as a result, have arrived at the following aspects.
  • the insulating film is First component containing metal phosphate: 100 parts by mass;
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 45 parts by mass
  • a magnetic steel sheet comprising:
  • the insulating film is Metal phosphate: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m 1st component including: 1 part by mass to 50 parts by mass: 100 parts by mass
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass;
  • a magnetic steel sheet comprising:
  • the insulating film is Colloidal silica: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m: 40 100 parts by mass of a first component containing from 100 parts by mass to 400 parts by mass;
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass;
  • a magnetic steel sheet comprising:
  • a treatment liquid to the surface of the ground iron; A step of baking and drying the treatment liquid; Have As the treatment liquid, First component containing metal phosphate: 100 parts by mass; The second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 45 parts by mass of resin solids, The manufacturing method of the electrical steel sheet characterized by using what contains this.
  • Metal phosphate 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass of resin solids,
  • the manufacturing method of the electrical steel sheet characterized by using what contains this.
  • a treatment liquid to the surface of the ground iron; A step of baking and drying the treatment liquid;
  • Colloidal silica emulsion of 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m :
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass of resin solids,
  • the manufacturing method of the electrical steel sheet characterized by using what contains this.
  • the insulating coating contains the predetermined second component, which can be melted and solidified during the production of the laminated iron core to reduce the gap in the laminated iron core. For this reason, the heat dissipation of the lamination direction in a laminated iron core can be improved.
  • FIG. 1 is a flowchart showing a method for manufacturing an electrical steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the electrical steel sheet according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an insulating coating.
  • FIG. 1 is a flowchart showing a method for manufacturing an electrical steel sheet according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of the electrical steel sheet according to an embodiment of the present invention.
  • the ground iron 1 is produced (step S1).
  • a slab having a predetermined composition is heated at about 1150 ° C. to 1250 ° C., hot rolled to produce a hot rolled sheet, and the hot rolled sheet is wound into a coil shape.
  • cold rolling is performed while unrolling the hot rolled sheet to produce a cold rolled sheet having a thickness of about 0.15 mm to 0.5 mm, and the cold rolled sheet is wound into a coil shape.
  • annealing finish annealing
  • annealing may be performed within a range of 800 ° C. to 1050 ° C. as necessary.
  • the composition of the base iron 1 is a composition suitable for a non-oriented electrical steel sheet, for example. That is, the base iron 1 contains, for example, Si: 0.1% by mass or more, Al: 0.05% by mass or more, and the balance is made of Fe and inevitable impurities. In addition to Si and Al, Mn: 0.01% by mass or more and 1.0% by mass or less may be contained. In addition, the content of typical elements such as S, N, and C is preferably less than 100 ppm, and more preferably less than 20 ppm. The greater the Si content, the greater the electrical resistance and the magnetic properties. However, if the Si content exceeds 4.0% by mass, brittleness may become prominent. Therefore, the Si content is preferably 4.0% by mass or less. In addition, the magnetic properties improve as the Al content increases. However, when the content of Al exceeds 3.0% by mass, cold rolling at the time of producing the base iron 1 may be difficult. Therefore, the Al content is preferably 3.0% by mass or less.
  • composition of the ground iron 1 may be a composition suitable for the non-oriented electrical steel sheet.
  • the center line average roughness (Ra) of the rolling direction and the direction (plate width direction) orthogonal to a rolling direction of the base iron 1 is 1.0 micrometer or less, and it is 0.5 micrometer or less. More preferred.
  • the center line average roughness (Ra) exceeds 1.0 ⁇ m, the adhesion between the electromagnetic steel sheets is low, and it is difficult to obtain high thermal conductivity in the stacking direction.
  • the center line average roughness (Ra) is preferably 0.1 ⁇ m or more.
  • an insulating coating 2 is formed on the surface of the ground iron 1 (step S2).
  • a predetermined processing liquid is applied on the surface of the ground iron 1 (step S2a), and then the processing liquid is dried by heating (step S2b).
  • the components in the treatment liquid are baked onto the surface of the ground iron 1.
  • the method for applying the treatment liquid is not particularly limited.
  • the treatment liquid may be applied using a roll coater or a spray, and the base iron 1 may be immersed in the treatment liquid.
  • the method for drying the treatment liquid is not particularly limited.
  • the treatment liquid may be dried using a normal radiation furnace or a hot air oven, and the treatment liquid is dried by heating using electric energy such as induction heating. You may let them.
  • the temperature of this treatment (baking temperature) is preferably 150 ° C. to 300 ° C., and the duration of this treatment is 3 seconds to 15 seconds. preferable.
  • the baking temperature is preferably 230 ° C. to 300 ° C.
  • the surface of the ground iron 1 may be pretreated before the treatment liquid is applied.
  • the pretreatment include a degreasing treatment using an alkaline agent or the like, and a pickling treatment using hydrochloric acid, sulfuric acid, phosphoric acid, or the like.
  • the treatment liquid used for forming the insulating coating 2 will be described.
  • the following three types ((a) to (c)) can be roughly used.
  • (B) Metal phosphate 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m
  • Colloidal silica emulsion of 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m : A first component containing 40 to 400 parts by mass of resin solids: 100 parts by mass of solids; The second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass of resin solids, A processing solution containing.
  • the total amount of the first component and the second component is preferably 90% or more of the entire treatment liquid in terms of solid content. This is to ensure good insulation, thermal conductivity, heat resistance, etc. of the insulating coating.
  • the type of phosphoric acid constituting the metal phosphate is not particularly limited, and for example, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and the like can be used.
  • the type of metal ions constituting the metal phosphate is not particularly limited, but light metals such as Li, Al, Mg, Ca, Sr, and Ti are preferable, and Al and Ca are particularly preferable.
  • the metal phosphate solution is preferably prepared, for example, by mixing orthophosphoric acid with metal ion oxide, carbonate and / or hydroxide.
  • metal phosphate only one type may be used, or two or more types may be mixed and used.
  • An additive such as phosphonic acid and / or boric acid may be contained in the first component.
  • colloidal silica having an average particle diameter of 5 nm to 40 nm and an Na content of 0.5% by mass or less.
  • the Na content of colloidal silica is more preferably 0.01% by mass to 0.3% by mass.
  • the first component contains an emulsion of an acrylic resin, an epoxy resin and / or a polyester resin.
  • the first component does not contain a metal phosphate and contains colloidal silica, a homogeneous insulating film 2 is formed if an acrylic resin and / or an epoxy resin is contained. It becomes easy.
  • the emulsion of acrylic resin, epoxy resin and / or polyester resin a commercially available resin emulsion may be used.
  • the melting point of the acrylic resin, epoxy resin and / or polyester resin is not particularly limited, but is preferably 50 ° C. or lower. This is because if these melting points exceed 50 ° C., powdering tends to occur. In view of cost, these melting points are preferably 0 ° C. or higher.
  • Acrylic resins include ordinary monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, n-octyl acrylate, i-octyl acrylate, 2-ethylhexyl acrylate, n-nonyl acrylate, n-decyl. Acrylate, n-dodecyl acrylate and the like are preferable.
  • acrylic resin monomers having functional groups such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, and 2-hydroxylethyl which is a monomer having a hydroxyl group Those obtained by copolymerizing (meth) acrylate, 2-hydroxylpropyl (meth) acrylate, 3-hydroxylbutyl (meth) acrylate, 2-hydroxylethyl (meth) allyl ether, and the like are also preferable.
  • Examples of the epoxy resin include those obtained by reacting an amine-modified epoxy resin with carboxylic anhydride. Specific examples include bisphenol A-diglycidyl ether, caprolactone ring-opening adduct of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolac glycidyl ether, dimer acid glycidyl ether, and the like. It is done.
  • Examples of amines to be modified include isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butalamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, hexylamine, nonylamine, triethylenetetramine, tetraethylene
  • Examples include methylenepentamine and diaminodiphenyl sulfone.
  • the carboxylic anhydride those obtained by reacting succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, trimellitic anhydride and the like are preferable.
  • polyester resin for example, those obtained by reacting dicarboxylic acid and glycol are preferable.
  • dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, and citraconic acid. It is done.
  • glycol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyldiol 1,6-hexanediol, triethylene glycol, diethylene glycol, Examples include propylene glycol and polyethylene glycol. Moreover, you may use what is obtained by graft-polymerizing acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, or methacrylic anhydride etc. to these polyester resins.
  • acrylic resin, epoxy resin, and polyester resin only one type may be used, or two or more types may be mixed and used.
  • these organic resins those having an average particle diameter of 0.05 ⁇ m to 0.50 ⁇ m are used.
  • the average particle size is less than 0.05 ⁇ m, the particles tend to aggregate in the treatment liquid, and the uniformity of the insulating coating 2 tends to be lowered.
  • the average particle size exceeds 0.50 ⁇ m, the stability of the treatment liquid tends to be lowered.
  • an average particle diameter is 0.1 micrometer or more, and it is preferable that it is 0.3 micrometer or less.
  • grains whose particle diameter is 1 micrometer or less can be used, for example.
  • the total amount of the acrylic resin, epoxy resin, and polyester resin is 1 to 50 parts by mass with respect to 100 parts by mass of the metal phosphate. .
  • the total amount of the acrylic resin, the epoxy resin, and the polyester resin is less than 1 part by mass, aggregation of the acrylic resin, the epoxy resin, and the polyester resin is likely to occur, and the uniformity of the insulating coating 2 is likely to be lowered.
  • the total amount of the acrylic resin, the epoxy resin, and the polyester resin exceeds 50 parts by mass, the heat resistance decreases.
  • the total amount of acrylic resin, epoxy resin, and polyester resin is 40 to 400 parts by mass with respect to 100 parts by mass of colloidal silica. If the total amount of the acrylic resin, the epoxy resin, and the polyester resin is less than 40 parts by mass, it is difficult to appropriately form the insulating coating 2, and the insulating coating 2 may be powdered. On the other hand, if the total amount of the epoxy resin and the polyester resin exceeds 400 parts by mass, the heat resistance decreases.
  • polyolefin wax, epoxy resin, and / or acrylic resin particles having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m and a melting point of 60 ° C. to 140 ° C. are used. Some epoxy resins have a melting point that cannot be clearly distinguished. For such epoxy resins, a softening point is used instead of the melting point.
  • polyolefin wax particles it is particularly preferable to use low molecular weight polyethylene particles dispersed in an aqueous solution with a small amount of a surfactant in advance.
  • the epoxy resin particles either forcibly dispersed particles or self-emulsifying particles can be used.
  • the self-emulsifying type is particularly excellent in stability in the treatment liquid. For example, what graft-polymerized polyvinyl alcohol to the usual epoxy resin etc. are preferable.
  • acrylic resin particles a very large number of dispersion liquids are commercially available, and it is preferable to use them.
  • These particles may be used alone or in combination of two or more. Further, these particles may be used in a powder state.
  • the average particle size of the polyolefin wax, epoxy resin, and / or acrylic resin particles is 2.0 ⁇ m to 15.0 ⁇ m as described above. Although details will be described later when the average particle size is less than 2.0 ⁇ m, it is difficult to sufficiently improve the thermal conductivity between the electromagnetic steel sheets in the laminated iron core. On the other hand, when the average particle size exceeds 15.0 ⁇ m, the space factor in the laminated iron core may be lowered. In addition, it is preferable that an average particle diameter is 4.0 micrometers or more, and it is preferable that it is 10.0 micrometers or less. Moreover, as an average particle diameter, the number average particle diameter about a particle
  • the melting point of the polyolefin wax, epoxy resin, and / or acrylic resin particles is 60 ° C. to 140 ° C. as described above. If the melting point is less than 60 ° C., the particles may melt and evaporate during baking and drying of the treatment liquid (step S2b). On the other hand, when the melting point exceeds 140 ° C., the details will be described later, it becomes difficult to improve the thermal conductivity without melting the particles by heating when producing a laminated iron core from a magnetic steel sheet.
  • the molecular weight of the polyolefin wax is preferably 800 to 40,000, and the melting point of the polyolefin wax is preferably 100 ° C. or higher, and preferably 130 ° C. or lower.
  • the molecular weight of the epoxy resin and the acrylic resin is preferably 1000 to 50,000, and the melting point of the epoxy resin and the acrylic resin is preferably 80 ° C. or higher, and preferably 110 ° C. or lower.
  • the treatment liquid (a) when used, that is, when the acrylic resin, epoxy resin and polyester resin are not contained in the first component, the first component
  • the amount of the second component with respect to 100 parts by mass of the solid content is 5 parts by mass to 45 parts by mass. Although details will be described later when the amount of the second component is less than 5 parts by mass, it is difficult to sufficiently improve the thermal conductivity. On the other hand, when the amount of the second component exceeds 45 parts by mass, it is difficult to appropriately form the insulating coating 2, and there is a possibility that the insulating coating 2 is powdered when slitting the electromagnetic steel sheet. is there.
  • processing liquid (b) or (c) when using processing liquid (b) or (c), ie, when an acrylic resin, an epoxy resin, and / or a polyester resin are contained in the 1st component, 100 mass parts of solid content of the 1st component
  • the amount of the second component relative to is 5 to 40 parts by mass. Although details will be described later when the amount of the second component is less than 5 parts by mass, it is difficult to sufficiently improve the thermal conductivity. On the other hand, when the amount of the second component exceeds 40 parts by mass, the heat resistance of the insulating coating 2 is lowered or wrinkles are likely to occur in the insulating coating 2.
  • additives such as surfactant
  • surfactant nonionic surfactants are preferable, and in addition, brighteners, preservatives, antioxidants and the like may be added.
  • the insulating coating 2 of the electrical steel sheet 10 manufactured by such a method is formed from the second component on the base 2a (binding portion) formed by solidifying the first component.
  • the particles 2b are dispersed and fixed.
  • the thickness of the base 2a is preferably about 0.3 ⁇ m to 3.0 ⁇ m, more preferably 0.5 ⁇ m or more, and more preferably 1.5 ⁇ m or less.
  • the average particle size of the colloidal silica, acrylic resin, epoxy resin and polyester resin, and polyolefin wax, epoxy resin and acrylic resin is the number average particle size.
  • the number average particle diameter of colloidal silica for example, one measured by a nitrogen adsorption method (JIS Z8830) is used.
  • a number average particle diameter of an acrylic resin, an epoxy resin, and a polyester resin, and polyolefin wax, an epoxy resin, and an acrylic resin what was measured by the laser diffraction method is used, for example.
  • the average height of the tops of the particles 2b with respect to the surface of the base 2a is preferably about 2 ⁇ m to 3 ⁇ m. This is to effectively fill the gap as the particles 2b melt.
  • the insulating coating 2 is First component containing metal phosphate: 100 parts by mass;
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 45 parts by mass Will be included.
  • the insulating coating 2 is Metal phosphate: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass; Will be included.
  • the insulating coating 2 is Colloidal silica: 100 parts by mass and one or a mixture or copolymer selected from the group consisting of acrylic resin, epoxy resin and polyester resin having an average particle size of 0.05 ⁇ m to 0.50 ⁇ m: 40
  • the second component having an average particle diameter of 2.0 ⁇ m to 15.0 ⁇ m, a melting point of 60 ° C. to 140 ° C., and one or more kinds of particles selected from the group consisting of polyolefin wax, epoxy resin and acrylic resin : 5 to 40 parts by mass of resin solids, Will be included.
  • first component and the second component preferably occupy 90% or more of the insulating coating 2. This is to ensure good insulation, thermal conductivity, heat resistance, and the like.
  • a base iron having a composition for a non-oriented electrical steel sheet containing Si: 2.5% by mass, Al: 0.5% by mass, and Mn: 0.05% by mass was produced.
  • the thickness of the ground iron was 0.35 mm, and its center line average roughness (Ra) was 0.42 ⁇ m.
  • liquids for various first components were prepared.
  • the components of this liquid are shown in Table 1.
  • colloidal silica In the preparation of a liquid containing colloidal silica, a commercially available one containing 30% by mass of colloidal silica whose average particle diameter is 15 nm and whose surface is modified with aluminum, and one containing 40% by mass of colloidal silica having an average particle diameter of 25 nm. The former was made colloidal silica 1 and the latter was made colloidal silica 2.
  • Acrylic resin 1 An acrylic resin obtained by copolymerizing methyl methacrylate: 60% by mass, 2-hydroxyethyl methacrylate: 15% by mass, and lauryl methacrylate: 25% by mass.
  • Acrylic resin 2 It is an acrylic resin obtained by mixing fumaric acid: 20% by mass, methyl acrylate: 30% by mass, butyl acrylate: 35% by mass, and styrene monomer: 15% by mass.
  • Acrylic resin 3 It is an acrylic resin having no carboxyl group and no hydroxyl group, copolymerized with methyl acrylate: 60% by mass, styrene monomer: 20% by mass, and isobutyl acrylate: 20% by mass.
  • Epoxy resin 1 This is a carboxyl group-modified epoxy resin obtained by modifying bisphenol A with triethanolamine and then reacting with succinic anhydride.
  • Epoxy resin 2 It is an epoxy resin that is self-emulsifying by adding an ethylene propylene block polymer to a phenol novolac type epoxy resin and adding nonylphenyl ether ethylene oxide.
  • Polyyester resin It is a carboxyl group-containing polyester resin obtained by copolymerizing dimethyl terephthalate: 40% by mass and neopentyl glycol: 40% by mass and then graft-polymerizing fumaric acid: 10% by mass and trimellitic anhydride: 10% by mass. .
  • Waterborne polyurethane An aqueous polyurethane synthesized from hexamethylene diisocyanate and polyethylene glycol in a known manner.
  • Phenolic resin It is a resol type phenol resin aqueous emulsion.
  • Each of these organic resins was made into a 30% emulsion solution, and these were mixed with a liquid containing a metal phosphate or colloidal silica. Furthermore, liquids shown in Table 1 were prepared by adding appropriate amounts of a viscosity modifier and a surfactant as necessary.
  • the average particle diameters of acrylic resins 1, 2, and 3 were 0.15 ⁇ m, 0.25 ⁇ m, and 0.6 ⁇ m, respectively. Moreover, the average particle diameter of the epoxy resin 1 was 0.28 ⁇ m, and the average particle diameter of the epoxy resin 2 was 0.56 ⁇ m.
  • the average particle size of the polyester resin was 0.3 ⁇ m, the average particle size of the aqueous polyurethane was 0.22 ⁇ m, and the average particle size of the phenol resin emulsion was 0.65 ⁇ m.
  • the resin emulsion was diluted with distilled water, and then the number average particle diameter was measured with a commercially available particle size measurement apparatus by a laser diffraction method according to JIS method (JIS Z8826).
  • the resin mass part in Table 1 is the value converted into solid content.
  • Polyolefin wax 1 It is a low molecular weight type polyethylene type having an average particle size of 6 ⁇ m, a melting point of 132 ° C., and a molecular weight of 2000.
  • Polyolefin wax 2 The polyethylene type has an average particle size of 9.5 ⁇ m, a melting point of 110 ° C., and a molecular weight of 7200.
  • Polyolefin wax 3 The ionomer type has an average particle size of 0.5 ⁇ m, a melting point of 65 ° C., and a molecular weight of 4000.
  • Polyolefin wax 4" An ethylene vinyl acetate copolymer type, the average particle size is 12 ⁇ m, the melting point is 40 ° C., and the molecular weight is 20000.
  • Epoxy resin 1 This is an epoxy resin obtained by adding 3% by mass of polyoxyalkylene polycyclic phenyl ether to a bisphenol A type epoxy resin having an epoxy equivalent of 620. The average particle size is 2.4 ⁇ m, the melting point is 83 ° C., and the molecular weight is 1200.
  • Epoxy resin 2 This is an epoxy resin obtained by adding 2.5% by mass of polyoxyethylene phenyl ethers to a bisphenol F type epoxy resin.
  • the average particle size is 1.5 ⁇ m, the melting point is 128 ° C., and the molecular weight is 2500.
  • "Acrylic resin 1” An acrylic resin obtained by copolymerizing methyl methacrylate: 40% by mass, styrene: 40% by mass, 2-ethylhexyl acrylate: 13% by mass, and ethylene glycol dimethacrylate: 7% by mass. The average particle size is 3.8 ⁇ m, the melting point is 65 ° C., and the molecular weight is 13000.
  • “Acrylic resin 2” It is an acrylic resin obtained by further copolymerizing the acrylic resin 1 and vinyl acetate. The average particle size is 5.5 ⁇ m, the melting point is 80 ° C., and the molecular weight is 20000.
  • a dispersion liquid prepared with 40% by mass of these particles was prepared and used as a treatment liquid in the experiment.
  • the molecular weight of the particles shown in Table 2 was measured by GPC (gel permeation chromatography).
  • the dispersion liquid is dispersed in distilled water with an ultrasonic cleaner for about 1 minute, and then the particles are obtained by a commercially available laser diffraction method according to the JIS method (JIS Z8826).
  • the number average particle diameter was measured with a diameter measuring device.
  • the melting point of each particle was measured using a commercially available differential scanning calorimeter according to the JIS method (JIS K7121).
  • the treatment liquid (dispersion liquid) was applied to the ground iron and baked under the conditions shown in Table 2.
  • the treatment liquid was applied using a roll coater. At this time, the roll reduction amount and the like were adjusted so that the thickness of the base portion of the insulating coating was 1.0 ⁇ m.
  • Baking (drying) was performed using a radiation furnace, and the setting of the furnace temperature was adjusted so that the predetermined heating conditions described in Table 2 were obtained. The final plate temperature was adjusted to 150 to 410 ° C. and the baking time was adjusted to 2 to 40 seconds.
  • the thermal conductivity was evaluated by the following method. That is, first, an electromagnetic steel sheet on which an insulating coating was formed was cut into 30 mm squares, and 50 sheets were laminated to produce a laminated sample. Next, the laminated sample was heated in a hot air oven at 150 ° C. for 120 minutes while being pressurized at 10 kgf / cm 2 (about 98 N / cm 2 ), and then allowed to cool to room temperature. This is to simulate baking of the varnish or powder coating.
  • the laminated sample was press-contacted with a pressure of 20 kgf / cm 2 (about 196 N / cm 2 ) on a heating element heated to 200 ° C. with the periphery covered with a heat insulating material.
  • stacking sample on the opposite side (pressurization side) with respect to a heat generating body was measured, and when the value was stabilized, the temperature difference between a heat generating end and a measurement end was measured. It can be said that the smaller the temperature difference, the better the thermal conductivity. In any sample, the temperature at the measurement end was stable after about 60 minutes from the start of the pressure contact.
  • interlayer resistance was measured according to JIS method (JIS C2550). Then, ⁇ what interlayer resistance of 5 ⁇ ⁇ cm less than 2 / sheet, 5 ⁇ ⁇ cm 2 / sheet ⁇ 10 ⁇ ⁇ cm 2 / sheet of what the ⁇ , 10 ⁇ ⁇ cm 2 / sheet ⁇ 50 ⁇ ⁇ cm 2 / sheet of things ⁇ , and 50 ⁇ ⁇ cm 2 / sheet or more were marked with ⁇ .
  • Corrosion resistance was determined according to a JIS salt spray test (JIS Z2371) and evaluated by a 10-point evaluation using samples after 7 hours.
  • the evaluation criteria are as follows.
  • the glossy, smooth and uniform is 5; hereinafter, the glossy is slightly inferior in uniformity, 4 is slightly glossy, smooth but inferior in uniformity, 3
  • the one with less gloss, slightly inferior in smoothness and inferior in uniformity was designated as 2, and one inferior in gloss, uniformity and smoothness was designated as 1.
  • the heat resistance is that after the strain relief annealing (annealing temperature 750 ° C. ⁇ 2 hours in a nitrogen atmosphere), the surface of the steel sheet is rubbed with 2 mm ⁇ 30 mm gauze with a load of 100 gf (about 0.98 N), and the insulation film is peeled Based on the evaluation. What was not peeled was 5, 4 was peeled slightly, 3 was clearly peeled, 2 was severely peeled, and 1 was peeled without rubbing with gauze.
  • the centerline average roughness (Ra) was measured using a commercially available surface roughness measuring device according to the JIS method (JIS B0601).
  • the effect of the present invention was clarified by this experiment. That is, as shown in Table 3, in the sample corresponding to the example of the present invention, the temperature difference in evaluation of thermal conductivity is 20% or less, and it can be said that the sample has excellent thermal conductivity. Moreover, it became clear that the sample applicable to the Example of this invention is excellent in insulation, adhesiveness, corrosion resistance, external appearance, and heat resistance in addition to thermal conductivity. Moreover, in the sample corresponding to the comparative example, there are many samples having a large temperature difference of 20 ° C. or more, and there are samples having excellent insulation, adhesion, corrosion resistance, appearance and heat resistance. I did not.
  • the surface roughness of the obtained sample was 0.27 ⁇ m to 0.86 ⁇ m in the examples, and 0.21 ⁇ m to 1.27 ⁇ m in the comparative example.
  • the thermal conductivity between the electrical steel sheets is improved by heating at the time of varnish or powder coating, and the heat in the laminating direction is increased. It is possible to solve the problem of low conductivity.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 電磁鋼板(10)には、地鉄(1)と、地鉄(1)の表面上に形成された絶縁被膜(2)と、が設けられている。絶縁皮膜(2)は、リン酸金属塩を含む第1の成分:100質量部と、平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~45質量部と、を含む。

Description

電磁鋼板及びその製造方法
 本発明は、電気機器の鉄芯の材料等に好適な電磁鋼板及びその製造方法に関する。
 電磁鋼板を用いてモータを製造する際には、フープ状の電磁鋼板を所定形状に打抜き加工した後、複数の電磁鋼板を積層して固着して積層鉄芯を作製する。その後、積層鉄芯のティース等に銅線を巻き付け、銅線接続用のターミナル、フランジ及び軸受け等を取り付け、これらをケースに固定する。また、銅線の巻き付けの後には、ワニスへの含浸や塗料の吹き付けが行われ、更に、焼き付け及び乾燥のための加熱が行われる。
 このようなモータの内部には、熱に弱い部品が含まれている。例えば、銅線の絶縁被膜及び銅線の取り出し部等の端子ターミナル等が熱に弱い。このため、モータから生じた熱が内部に滞ると、モータの性能が低下したり、故障が生じたりする。
 このため、積層鉄芯にも良好な放熱性が要求される。積層鉄芯の放熱に関し、従来は、主に電磁鋼板の積層方向に垂直な方向への熱の拡散を可能にする構造等が採用されている。即ち、積層鉄芯の径方向(電磁鋼板の表面に平行な方向)の端部からケースを介して放熱するか、端部に放熱板を設けておいて放熱板を介して放熱するように、モータが構成されている。
 ところが、モータの構造又は積層鉄芯の形状によっては、積層鉄芯の径方向への放熱が困難な場合がある。また、積層鉄芯の径方向への放熱が可能であっても、十分に放熱することが困難な場合もある。このような場合、積層鉄芯の積層方向(電磁鋼板の表面に垂直な方向)への放熱が重要となる。
 しかしながら、従来の技術では、積層鉄芯の積層方向における高い放熱性を得ることは極めて困難である。これは、積層鉄芯がトランス等に用いられる場合でも同様である。
特公昭50-15013号公報 特開平03-36284号公報 特公昭49-19078号公報 特開平06-330338号公報 特開平09-323066号公報 特開2003-166071号公報 特開2007-104878号公報 特開平07-41913号公報 特開平03-240970号公報
 本発明は、積層鉄芯に用いた場合に積層方向の放熱性を向上することができる電磁鋼板及びその製造方法を提供することを目的とする。
 電磁鋼板の表面には絶縁被膜が形成されている。絶縁被膜には、絶縁性、耐蝕性、溶接性、密着性、耐熱性等の特性が要求されている。そして、絶縁被膜には、一般的に、クロム酸塩又はリン酸塩等の化合物が主成分として含まれている。これらの化合物の熱伝導率は、金属のそれよりも著しく低い。このことが、積層方向における高い熱伝導性を得ることを困難にする要因の一つとなっている。
 また、従来の電磁鋼板を用いて製造された積層鉄芯では、電磁鋼板間に隙間が存在し、この隙間の存在も積層方向における高い熱伝導性を得ることを困難にする要因の一つとなっている。これは、隙間の熱伝導率は、絶縁被膜と比べても著しく低いためである。
 本発明者らは、これらの従来の電磁鋼板の性質を考慮しつつ、上記の課題を解決すべく鋭意検討した結果、以下の諸態様に想到した。
 (1) 地鉄と、
 前記地鉄の表面上に形成された絶縁被膜と、
 を有し、
 前記絶縁皮膜は、
 リン酸金属塩を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~45質量部と、
 を含むことを特徴とする電磁鋼板。
 (2) 地鉄と、
 前記地鉄の表面上に形成された絶縁被膜と、
 を有し、
 前記絶縁皮膜は、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
 を含むことを特徴とする電磁鋼板。
 (3) 地鉄と、
 前記地鉄の表面上に形成された絶縁被膜と、
 を有し、
 前記絶縁皮膜は、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
 を含むことを特徴とする電磁鋼板。
 (4) 前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする(1)~(3)のいずれか1つに記載の電磁鋼板。
 (5) 地鉄の表面に処理液を塗布する工程と、
 前記処理液の焼き付け乾燥を行う工程と、
 を有し、
 前記処理液として、
 リン酸金属塩を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~45質量部と、
 を含むものを用いることを特徴とする電磁鋼板の製造方法。
 (6) 地鉄の表面に処理液を塗布する工程と、
 前記処理液の焼き付け乾燥を行う工程と、
 を有し、
 前記処理液として、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
 を含むものを用いることを特徴とする電磁鋼板の製造方法。
 (7) 地鉄の表面に処理液を塗布する工程と、
 前記処理液の焼き付け乾燥を行う工程と、
 を有し、
 前記処理液として、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
 を含むものを用いることを特徴とする電磁鋼板の製造方法。
 (8) 前記焼き付け乾燥の到達温度を150℃~300℃とし、時間を3秒間~15秒間とすることを特徴とする(5)~(7)のいずれか1つに記載の電磁鋼板の製造方法。
 (9) 前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする(5)~(8)のいずれか1つに記載の電磁鋼板の製造方法。
 本発明によれば、絶縁被膜に所定の第2の成分が含まれており、これが、積層鉄芯の作製時に溶融及び凝固して積層鉄芯中の隙間を低減することができる。このため、積層鉄芯における積層方向の放熱性を向上することができる。
図1は、本発明の実施形態に係る電磁鋼板の製造方法を示すフローチャートである。 図2は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。 図3は、絶縁被膜を示す模式図である。
 以下、本発明の実施形態について、添付の図面を参照しながら説明する。図1は、本発明の実施形態に係る電磁鋼板の製造方法を示すフローチャートであり、図2は、本発明の実施形態に係る電磁鋼板の構造を示す断面図である。
 本実施形態では、先ず、地鉄1を作製する(ステップS1)。地鉄1の作製では、例えば、先ず、所定の組成のスラブを1150℃~1250℃程度で加熱し、熱間圧延を行って熱延板を作製し、熱延板をコイル状に巻き取る。次いで、熱延板を巻き解きながら冷間圧延して厚さが0.15mm~0.5mm程度の冷延板を作製し、冷延板をコイル状に巻き取る。その後、750℃~1100℃で焼鈍(仕上げ焼鈍)する。このようにして地鉄1が得られる。なお、冷間圧延の前に、必要に応じて800℃~1050℃の範囲内で焼鈍してもよい。
 地鉄1の組成は、例えば無方向性電磁鋼板に適した組成である。即ち、地鉄1は、例えば、Si:0.1質量%以上、Al:0.05質量%以上を含有し、残部がFe及び不可避的不純物からなる。なお、Si及びAl以外に、Mn:0.01質量%以上1.0質量%以下が含有されていてもよい。また、S、N及びC等の典型元素の含有量は、100ppm未満であることが好ましく、20ppm未満であることがより好ましい。Siが多く含有されているほど、電気抵抗が大きくなり磁気特性が向上する。しかし、Siの含有量が4.0質量%を超えると、脆性が顕著になることがある。従って、Si含有量は4.0質量%以下であることが好ましい。また、Alが多く含有されているほど、磁気特性が向上する。しかし、Alの含有量が3.0質量%を超えていると、地鉄1を作製する際の冷間圧延が困難になることがある。従って、Al含有量は3.0質量%以下であることが好ましい。
 なお、地鉄1の組成が方向性電磁鋼板無方向性電磁鋼板に適した組成であってもよい。
 また、地鉄1の表面粗度が低いほど積層鉄芯における電磁鋼板同士の密着性が高くなる。このため、地鉄1の圧延方向及び圧延方向に直交する方向(板幅方向)の中心線平均粗さ(Ra)は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。中心線平均粗さ(Ra)が1.0μmを超えていると、電磁鋼板同士の密着性が低く、積層方向の高い熱伝導性を得にくくなる。なお、中心線平均粗さ(Ra)を0.1μm未満にするためには、冷間圧延の制御を厳密に行う必要があり、コスト高になりやすい。従って、中心線平均粗さ(Ra)は0.1μm以上であることが好ましい。
 次いで、図2に示すように、地鉄1の表面上に絶縁被膜2を形成する(ステップS2)。絶縁被膜2の形成では、所定の処理液を地鉄1の表面上に塗布し(ステップS2a)、その後、加熱により処理液を乾燥させる(ステップS2b)。この結果、処理液中の成分が地鉄1の表面上に焼き付けられる。処理液を塗布する方法は特に限定されず、例えば、ロールコーター又はスプレーを用いて処理液を塗布してもよく、処理液中に地鉄1を浸漬してもよい。また、処理液を乾燥させる方法も特に限定されず、例えば、通常の輻射炉又は熱風炉を用いて処理液を乾燥させてもよく、誘導加熱等の電気エネルギを用いた加熱により処理液を乾燥させてもよい。また、処理液の乾燥及び焼き付け(ステップS2b)の条件に関し、この処理の温度(焼き付け温度)は150℃~300℃とすることが好ましく、この処理の時間は3秒間~15秒間とすることが好ましい。特に、後述のようにリン酸金属塩が処理液に含まれている場合には、焼き付け温度は230℃~300℃とすることが好ましい。
 なお、処理液の塗布前に、地鉄1の表面に前処理を施してもよい。前処理としては、例えば、アルカリ性薬剤等を用いた脱脂処理、及び塩酸、硫酸又はリン酸等を用いた酸洗処理等が挙げられる。
 ここで、絶縁被膜2の形成に用いる処理液について説明する。この処理液としては、大別して次の3種類((a)~(c))のものを用いることができる。
 (a)
 リン酸金属塩を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~45質量部と、
 を含む処理液。
 (b)
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部とを含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
 を含む処理液。
 (c)
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
 を含む処理液。
 なお、第1の成分及び第2の成分の総量は、固形分換算で処理液全体の90%以上であることが好ましい。絶縁被膜の良好な絶縁性、熱伝導性、耐熱性等を確保するためである。
 第1の成分に関し、リン酸金属塩を構成するリン酸の種類は特に限定されず、例えば、オルトリン酸、メタリン酸、ポリリン酸等が用いることができる。また、リン酸金属塩を構成する金属イオンの種類も特に限定されないが、Li、Al、Mg、Ca、Sr、及びTi等の軽金属が好ましく、Al及びCaが特に好ましい。また、リン酸金属塩溶液は、例えば、オルトリン酸に金属イオンの酸化物、炭酸塩、及び/又は水酸化物を混合することにより調製することが好ましい。
 リン酸金属塩としては、1種類のみを用いてもよく、2種類以上を混合して用いてもよい。第1の成分中に、ホスホン酸及び/又はホウ酸等の添加剤が含まれていてもよい。
 同じく、第1の成分に関し、コロイダルシリカとしては、例えば、平均粒径が5nm~40nmであり、かつ、Na含有量が0.5質量%以下のものを用いることが好ましい。また、コロイダルシリカのNa含有量は0.01質量%~0.3質量%であることがより好ましい。
 本実施形態では、第1の成分に、アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂のエマルションが含まれていることが好ましい。特に、第1の成分にリン酸金属塩が含まれておらずコロイダルシリカが含まれている場合には、アクリル樹脂及び/又はエポキシ樹脂が含まれていると、均質な絶縁被膜2を形成しやすくなる。
 アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂のエマルションとしては、市販されている樹脂エマルションを用いてもよい。アクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂の融点は特に限定されないが、50℃以下であることが好ましい。これらの融点が50℃を超えていると、発粉しやすくなるからである。また、コストを考慮すると、これらの融点は0℃以上であることが好ましい。
 アクリル樹脂としては、通常のモノマーである、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、n-オクチルアクリレート、i-オクチルアクリレート、2-エチルヘキシルアクリレート、n-ノニルアクリレート、n-デシルアクリレート、及びn-ドデシルアクリレート等が好ましい。また、アクリル樹脂として、官能基を持つモノマーである、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、及びイタコン酸、並びに、水酸基を持つモノマーである、2-ヒドロキシルエチル(メタ)アクリレート、2-ヒドロキシルプロピル(メタ)アクリレート、3-ヒロドキシルブチル(メタ)アクリレート、及び2-ヒドロキシルエチル(メタ)アリルエーテル等を共重合させたものも好ましい。
 エポキシ樹脂としては、例えば、アミン変性エポキシ樹脂に無水カルボン酸を反応させたものが挙げられる。具体的には、ビスフェノールA-ジグリシジルエーテル、ビスフェノールA-ジグリシジルエーテルのカプロラクトン開環付加物、ビスフェノールF-ジグリシジルエーテル、ビスフェノールS-ジグリシジルエーテル、ノボラックグリシジルエーテル、ダイマー酸グリシジルエーテル等が挙げられる。変性するアミンとしては、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブタルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ヘキシルアミン、ノニルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ジアミノジフェニルスルホン等が挙げられる。無水カルボン酸としては、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水トリメリット酸等を反応させたものが好ましい。
 ポリエステル樹脂としては、例えば、ジカルボン酸とグリコールとを反応させて得られるものが好ましい。ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、コハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、及びシトラコン酸等が挙げられる。グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルジオール1,6-ヘキサンジオール、トリエチレングリコール、ジプロピレングリコール、及びポリエチレングリコール等が挙げられる。また、これらのポリエステル樹脂に、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、又はメタクリル酸無水物等をグラフト重合させて得られるものを用いてもよい。
 また、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂として、1種類のみを用いてもよく、2種類以上を混合して用いてもよい。なお、これら有機樹脂としては、平均粒径が0.05μm~0.50μmのものを用いる。平均粒径が0.05μm未満であると、処理液中で凝集しやすく、絶縁被膜2の均一性が低下しやすい。一方、平均粒径が0.50μmを超えていると、処理液の安定性が低下しやすい。また、平均粒径は、0.1μm以上であることが好ましく、0.3μm以下であることが好ましい。なお、平均粒径としては、例えば粒径が1μm以下の粒子についての数平均粒径を用いることができる。
 リン酸金属塩と、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂との混合比率に関し、リン酸金属塩100質量部に対するアクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量は1質量部~50質量部である。アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が1質量部未満であると、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の凝集が発生しやすく、絶縁被膜2の均一性が低下しやすい。一方、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が50質量部を超えていると、耐熱性が低下する。
 また、コロイダルシリカと、アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂との混合比率に関し、コロイダルシリカ100質量部に対するアクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量は40質量部~400質量部である。アクリル樹脂、エポキシ樹脂、及びポリエステル樹脂の総量が40質量部未満であると、絶縁被膜2を適切に形成することが困難となり、絶縁被膜2が発粉する可能性がある。一方、エポキシ樹脂、及びポリエステル樹脂の総量が400質量部を超えていると、耐熱性が低下する。
 第2の成分に関し、ポリオレフィンワックス、エポキシ樹脂、及び/又はアクリル樹脂の粒子としては、平均粒径が2.0μm~15.0μmであり、かつ融点が60℃~140℃のものを使用する。エポキシ樹脂には、融点が明瞭に判別できないものがあり、このようなエポキシ樹脂については、融点の代わりに軟化点を用いることとする。ポリオレフィンワックスの粒子を用いる場合には、低分子量タイプのポリエチレンの粒子を予め少量の界面活性剤で水溶液中に分散させたものを用いることが特に好ましい。エポキシ樹脂の粒子としては、強制分散させたもの、及び自己乳化型にしたもののどちらも使用可能である。自己乳化型のものは処理液中の安定性に特に優れている。例えば、ポリビニルアルコールを通常のエポキシ樹脂にグラフト重合させたもの等が好ましい。アクリル樹脂の粒子としては、ディスパージョン液としたものが非常に多く市販されており、それらを使用することが好ましい。
 なお、これらの粒子は、単独で用いてもよく、2種類以上を混合して用いてもよい。また、これらの粒子を粉末状態で用いてもよい。
 ポリオレフィンワックス、エポキシ樹脂、及び/又はアクリル樹脂の粒子の平均粒径は、上記のように、2.0μm~15.0μmである。平均粒径が2.0μm未満であると、詳細は後述するが、積層鉄芯での電磁鋼板間の熱伝導性を十分に向上させることが困難となる。一方、平均粒径が15.0μmを超えていると、積層鉄芯での占積率が低下する可能性がある。なお、平均粒径は4.0μm以上であることが好ましく、10.0μm以下であることが好ましい。また、平均粒径としては、例えば粒径が2μm以上の粒子についての数平均粒径を用いることができる。
 また、ポリオレフィンワックス、エポキシ樹脂、及び/又はアクリル樹脂の粒子の融点は、上記のように、60℃~140℃である。融点が60℃未満であると、処理液の焼き付け乾燥時(ステップS2b)に粒子が溶融して蒸発する可能性がある。一方、融点が140℃を超えていると、詳細は後述するが、電磁鋼板から積層鉄芯を作製する際の加熱で粒子が溶融せずに熱伝導性を向上させることが困難となる。なお、ポリオレフィンワックスの分子量は800~40000であることが好ましく、ポリオレフィンワックスの融点は100℃以上であることが好ましく、130℃以下であることが好ましい。また、エポキシ樹脂及びアクリル樹脂の分子量は1000~50000であることが好ましく、エポキシ樹脂及びアクリル樹脂の融点は80℃以上であることが好ましく、110℃以下であることが好ましい。
 第1の成分及び第2の成分の配合比率に関し、処理液(a)を用いる場合、即ち、第1の成分中にアクリル樹脂、エポキシ樹脂及びポリエステル樹脂が含まれていない場合、第1の成分の固形分100質量部に対する第2の成分の量は5質量部~45質量部とする。第2の成分の量が5質量部未満であると、詳細は後述するが、熱伝導性を十分に向上させることが困難となる。一方、第2の成分の量が45質量部を超えていると、絶縁被膜2を適切に形成することが困難となり、電磁鋼板のスリット加工時等に、絶縁被膜2が発粉する可能性がある。
 また、処理液(b)又は(c)を用いる場合、即ち、第1の成分中にアクリル樹脂、エポキシ樹脂及び/又はポリエステル樹脂が含まれている場合、第1の成分の固形分100質量部に対する第2の成分の量は5質量部~40質量部とする。第2の成分の量が5質量部未満であると、詳細は後述するが、熱伝導性を十分に向上させることが困難となる。一方、第2の成分の量が40質量部を超えていると、絶縁被膜2の耐熱性が低下したり、絶縁被膜2に疵が生じやすくなったりする。
 なお、上述の処理液に、界面活性剤等の添加剤を加えてもよい。界面活性剤としては、非イオン系界面活性剤が好ましく、その他に、光沢剤、防腐剤、酸化防止剤等を添加してもよい。
 このような方法により製造された電磁鋼板10の絶縁被膜2は、図3に示すように、第1の成分が固形化して形成された基部2a(バインディング部)に、第2の成分から形成された粒子2bが分散して固定された構造を備える。なお、基部2aの厚さは、0.3μm~3.0μm程度とすることが好ましく、0.5μm以上とすること、1.5μm以下とすることがより好ましい。
 そして、積層鉄芯の製造に際しては、上述のように、電磁鋼板が積層された上で、ワニスへの含浸や塗料の吹き付けが行われ、更に、焼き付け及び乾燥のための加熱が行われる。本実施形態の電磁鋼板では、この加熱の際に、粒子2bが溶融する。従って、電磁鋼板間の隙間内を塗れ広がり、その後に凝固する。この結果、積層鉄芯内の空隙が減少し、積層鉄芯の積層方向(電磁鋼板の表面に垂直な方向)の熱伝導性が著しく向上する。
 なお、上記のコロイダルシリカ、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂、並びに、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂の平均粒径は数平均粒径である。コロイダルシリカの数平均粒径としては、例えば、窒素吸着法(JIS Z8830)により測定したものを用いる。また、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂、並びに、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂の数平均粒径としては、例えば、レーザー回折法により測定したものを用いる。
 なお、処理液としては、環境への配慮からCrを含有しないものを用いることが好ましい。
 また、絶縁被膜2の構造に関し、基部2aの表面を基準とした、粒子2bの頭頂部の高さの平均は、2μm~3μm程度とすることが好ましい。粒子2bの溶融に伴って隙間を効果的に埋めるためである。
 また、処理液(a)が用いられた場合、絶縁被膜2は、
 リン酸金属塩を含む第1の成分:100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~45質量部と、
 を含むこととなる。
 また、処理液(b)が用いられた場合、絶縁被膜2は、
 リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
 を含むこととなる。
 また、処理液(c)が用いられた場合、絶縁被膜2は、
 コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
 平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
 を含むこととなる。
 なお、第1の成分及び第2の成分は、絶縁被膜2の90%以上を占めることが好ましい。良好な絶縁性、熱伝導性、耐熱性等を確保するためである。
 Si:2.5質量%、Al:0.5質量%、及びMn:0.05質量%を含有する無方向性電磁鋼板用の組成を有する地鉄を作製した。地鉄の厚さは0.35mmとし、その中心線平均粗さ(Ra)は0.42μmとした。
 また、種々の第1の成分用の液を作製した。この液の成分を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 リン酸金属塩を含む液の作製では、オルトリン酸とMg(OH)、Al(OH)等の各金属水酸化物、酸化物、炭酸塩とを混合撹拌して、40質量%の水溶液を調製した。
 コロイダルシリカを含む液の作製では、市販されている平均粒径が15nmで表面をアルミニウムで改質したコロイダルシリカを30質量%含むもの、及び平均粒径が25nmのコロイダルシリカを40質量%含むものを作製し、前者をコロイダルシリカ1とし、後者をコロイダルシリカ2とした。
 表1中の8種類の有機樹脂の詳細は下記のとおりである。
 「アクリル樹脂1」
 メチルメタクリレート:60質量%、2-ヒドロキシエチルメタクリレート:15質量%、及びラウリルメタクリレート:25質量%を共重合させて得たアクリル樹脂である。
 「アクリル樹脂2」
 フマル酸:20質量%、メチルアクリレート:30質量%、ブチルアクリレート:35質量%、及びスチレンモノマー:15質量%を混合して得たアクリル樹脂である。
 「アクリル樹脂3」
 メチルアクリレート:60質量%、スチレンモノマー:20質量%、イソブチルアクリレート:20質量%を共重合させた、カルボキシル基及び水酸基を保持しないアクリル樹脂である。
 「エポキシ樹脂1」
 ビスフェノールAをトリエタノールアミンで変性した後、無水コハク酸を反応させて得たカルボキシル基変性エポキシ樹脂である。
 「エポキシ樹脂2」
 フェノールノボラック型エポキシ樹脂にエチレンプロピレンブロックポリマーを配合してノニルフェニルエーテルエチレンオキサイドを付加し、自己乳化型としたエポキシ樹脂である。
 「ポリエステル樹脂」
 ジメチルテレフタレート:40質量%及びネオペンチルグリコール:40質量%を共重合させた後、フマル酸:10質量%及び無水トリメリット酸:10質量%をグラフト重合させて得たカルボキシル基含有ポリエステル樹脂である。
 「水性ポリウレタン」
 既知の方法でヘキサメチレンジイソシアネート及びポリエチレングリコールから合成された水性ポリウレタンである。
 「フェノール樹脂」
 レゾール型フェノール樹脂水系エマルションである。
 これらの有機樹脂をそれぞれ30%エマルション溶液とし、これらをリン酸金属塩又はコロイダルシリカを含有する液に混合した。更に、必要に応じて粘度調整剤、界面活性剤を適量加えて表1に示す液を調製した。
 なお、アクリル樹脂1、2、3の平均粒径は、それぞれ0.15μm、0.25μm、0.6μmであった。また、エポキシ樹脂1の平均粒径は0.28μmであり、エポキシ樹脂2の平均粒径は0.56μmであった。また、ポリエステル樹脂の平均粒径は0.3μmであり、水性ポリウレタンの平均粒径は0.22μmであり、フェノール樹脂エマルションの平均粒径は0.65μmであった。これらの平均粒径の測定では、樹脂エマルションを蒸留水で希釈した後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて数平均粒径を測定した。なお、表1中の樹脂質量部は、固形分に換算した値である。
 次いで、表1に示す液に、表2に示すポリオレフィンワックス、エポキシ樹脂、又はアクリル樹脂の粒子を、所定量添加した。
Figure JPOXMLDOC01-appb-T000002
 表2中の8種類の粒子の詳細は下記のとおりである。
 「ポリオレフィンワックス1」
 低分子量タイプのポリエチレンタイプであり、平均粒径は6μm、融点は132℃、分子量は2000である。
 「ポリオレフィンワックス2」
 ポリエチレンタイプであり、平均粒径は9.5μm、融点は110℃、分子量は7200である。
 「ポリオレフィンワックス3」
 アイオノマータイプであり、平均粒径は0.5μm、融点は65℃、分子量は4000である。
 「ポリオレフィンワックス4」
 エチレン酢酸ビニル共重合タイプであり、平均粒径は12μm、融点は40℃、分子量は20000である。
 「エポキシ樹脂1」
 エポキシ当量が620のビスフェノールA型エポキシ樹脂に、ポリオキシアルキレン多環フェニルエーテルを3質量%添加し得たエポキシ樹脂である。平均粒径は2.4μm、融点は83℃、分子量は1200である。
 「エポキシ樹脂2」
 ビスフェノールF型エポキシ樹脂に、ポリオキシエチレンフェニルエーテル類を2.5質量%添加して得たエポキシ樹脂である。平均粒径は1.5μm、融点は128℃、分子量は2500である。
 「アクリル樹脂1」
 メチルメタクリレート:40質量%、スチレン:40質量%、2-エチルヘキシルアクリレート:13質量%、及びエチレングリコールジメタクリレート:7質量%を共重合させて得たアクリル樹脂である。平均粒径は3.8μm、融点は65℃、分子量は13000である。
 「アクリル樹脂2」
 アクリル樹脂1と、酢酸ビニルを更に共重合させて得たアクリル樹脂である。平均粒径は5.5μm、融点は80℃、分子量は20000である。
 これらの粒子を40質量%に調製したディスパージョン液を作製し、これを処理液として実験に用いた。
 なお、表2に示す粒子の分子量はGPC(ゲルパーミレーションクロマト法)で測定した。また、上記の各粒子の平均粒径の測定では、ディスパージョン液を蒸留水中に約1分間超音波洗浄機で分散させた後、JIS法(JIS Z8826)に準じた市販のレーザー回折法による粒径測定装置にて数平均粒径を測定した。上記の各粒子の融点は、JIS法(JIS K7121)に準じた市販の示差走査熱量計を用いて測定した。
 そして、処理液(ディスパーション液)を地鉄に塗布し、表2に示す条件で焼き付けた。処理液はロールコーターを用いて塗布した。この際に、絶縁被膜の基部の厚さが1.0μmになるようロール圧下量等を調整した。焼き付け(乾燥)は、輻射炉を用いて行い、表2中に記した所定の加熱条件が得られるように炉温の設定を調整した。到達板温が150℃~410℃、焼き付け時間が2秒間~40秒間になるよう調整した。
 そして、焼き付け終了後に得られた電磁鋼板について種々の特性を評価した。即ち、熱伝導性、絶縁性、密着性、耐蝕性、外観、耐熱性、及び表面粗さの評価を行った。
 地鉄の表面上に形成された絶縁被膜の熱伝導率を正確に測定することは困難である。そこで、熱伝導性は、以下に示す方法で評価した。即ち、先ず、絶縁被膜が形成された電磁鋼板を30mm角に切り出し、50枚積層して積層サンプルを作製した。次いで、積層サンプルを10kgf/cm(約98N/cm)で加圧しながら150℃の熱風炉中で120分間加熱し、その後、常温まで放冷した。これは、ワニス又は粉体塗装の焼き付けをシミュレートするためである。続いて、積層サンプルを、その周囲を断熱材で覆った状態で、200℃に加熱した発熱体の上に加圧力20kgf/cm(約196N/cm)で加圧密着させた。そして、発熱体とは反対側(加圧側)の積層サンプルの温度を測定し、その値が安定したところで、発熱端と測定端との間の温度差を測定した。この温度差が小さいものほど、熱伝導性が良好であるといえる。なお、いずれの試料でも、測定端の温度は、加圧密着の開始から約60分間後には安定していた。
 絶縁性の評価では、JIS法(JIS C2550)に準じて層間抵抗を測定した。そして、層間抵抗が5Ω・cm/枚未満のものを×、5Ω・cm/枚~10Ω・cm/枚のものを△、10Ω・cm/枚~50Ω・cm/枚のものを○、50Ω・cm/枚以上のものを◎とした。
 密着性の評価では、歪取り焼鈍(焼鈍温度750℃×2時間、窒素雰囲気中)後の電磁鋼板のサンプルに粘着テープを貼り付けた後、これを10mm、20mm、30mmの直径の金属棒に巻き付けた。次いで、粘着テープを引き剥がし、剥れた痕跡から密着性を評価した。直径が10mmの金属棒に巻き付けても剥れなかったものを10mmφOKとし、直径が20mmの金属棒に巻き付けても剥れなかったものを20mmφOKとした。また、直径が30mmの金属棒に巻き付けても剥れなかったものを30mmφOKとし、直径が30mmの金属棒に巻き付けたときに剥がれたものを30mmφOUTとした。
 耐蝕性は、JIS法の塩水噴霧試験(JIS Z2371)に準じて行い、7時間経時後のサンプルを用いて10点評価で行った。評価基準は、以下の通りである。
  10:錆発生が無かった
   9:錆発生が極少量(面積率0.1%以下)
   8:錆の発生した面積率=0.1%超過0.25%以下
   7:錆の発生した面積率=0.25%超過0.50%以下
   6:錆の発生した面積率=0.50%超過1%以下
   5:錆の発生した面積率=1%超過2.5%以下
   4:錆の発生した面積率=2.5%超過5%以下
   3:錆の発生した面積率=5%超過10%以下
   2:錆の発生した面積率=10%超過25%以下
   1:錆の発生した面積率=25%超過50%以下
 外観の評価では、光沢があり、平滑で均一であるものを5とし、以下、光沢はあるが均一性に若干劣るものを4、やや光沢があり平滑ではあるが均一性に劣るものを3、光沢が少なく、平滑性にやや劣り均一性に劣るものを2、光沢、均一性、平滑性の劣るものを1とした。
 耐熱性は、歪取り焼鈍(焼鈍温度750℃×2時間、窒素雰囲気中)後、鋼板表面に100gf(約0.98N)の荷重で2mm×30mmのガーゼを擦り付けて、絶縁被膜の剥離状況に基づいて評価した。剥離しなかったものを5、少し剥離したものを4、はっきり剥離したものを3、剥離状況が酷いものを2、ガーゼで擦らなくても剥離したものを1とした。
 表面粗さの評価では、JIS法(JIS B0601)に準じた市販の表面粗度測定装置を用いて中心線平均粗さ(Ra)を測定した。
 これらの評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、この実験により本発明の効果が明らかとなった。即ち、表3に示すように、本発明の実施例に該当するサンプルでは熱伝導性の評価における温度差が20%以下となっており、優れた熱伝導性を有しているといえる。また、本発明の実施例に該当するサンプルは、熱伝導性に加えて、絶縁性、密着性、耐蝕性、外観及び耐熱性に優れることも明らかになった。また、比較例に該当するサンプルでは、温度差が20℃以上の大きな値となっているものが多く、また、絶縁性、密着性、耐蝕性、外観及び耐熱性の全てに優れたものは存在しなかった。
 なお、得られたサンプルの表面粗さは、実施例では0.27μm~0.86μmであり、比較例で0.21μm~1.27μmであった。
 以上説明したように、本発明の実施形態に係る電磁鋼板では、積層鉄芯の製造において、ワニスや粉体塗装時に加熱されることで電磁鋼板間の熱伝導性が向上し、積層方向の熱伝導性が低いという問題点を解決することが可能である。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (15)

  1.  地鉄と、
     前記地鉄の表面上に形成された絶縁被膜と、
     を有し、
     前記絶縁皮膜は、
     リン酸金属塩を含む第1の成分:100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~45質量部と、
     を含むことを特徴とする電磁鋼板。
  2.  地鉄と、
     前記地鉄の表面上に形成された絶縁被膜と、
     を有し、
     前記絶縁皮膜は、
     リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:1質量部~50質量部と、を含む第1の成分:100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
     を含むことを特徴とする電磁鋼板。
  3.  地鉄と、
     前記地鉄の表面上に形成された絶縁被膜と、
     を有し、
     前記絶縁皮膜は、
     コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物:40質量部~400質量部と、を含む第1の成分:100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:5質量部~40質量部と、
     を含むことを特徴とする電磁鋼板。
  4.  前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする請求項1に記載の電磁鋼板。
  5.  前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする請求項2に記載の電磁鋼板。
  6.  前記第1の成分及び前記第2の成分は、前記絶縁被膜の90%以上を占めることを特徴とする請求項3に記載の電磁鋼板。
  7.  地鉄の表面に処理液を塗布する工程と、
     前記処理液の焼き付け乾燥を行う工程と、
     を有し、
     前記処理液として、
     リン酸金属塩を含む第1の成分:100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~45質量部と、
     を含むものを用いることを特徴とする電磁鋼板の製造方法。
  8.  地鉄の表面に処理液を塗布する工程と、
     前記処理液の焼き付け乾燥を行う工程と、
     を有し、
     前記処理液として、
     リン酸金属塩:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で1質量部~50質量部と、を含む第1の成分:固形分で100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
     を含むものを用いることを特徴とする電磁鋼板の製造方法。
  9.  地鉄の表面に処理液を塗布する工程と、
     前記処理液の焼き付け乾燥を行う工程と、
     を有し、
     前記処理液として、
     コロイダルシリカ:100質量部と、平均粒径が0.05μm~0.50μmのアクリル樹脂、エポキシ樹脂及びポリエステル樹脂からなる群から選択された1種、又は2種以上の混合物若しくは共重合物のエマルション:樹脂固形分で40質量部~400質量部と、を含む第1の成分:固形分で100質量部と、
     平均粒径が2.0μm~15.0μmであり、融点が60℃~140℃であり、ポリオレフィンワックス、エポキシ樹脂及びアクリル樹脂からなる群から選択された1種以上の粒子からなる第2の成分:樹脂固形分で5質量部~40質量部と、
     を含むものを用いることを特徴とする電磁鋼板の製造方法。
  10.  前記焼き付け乾燥の到達温度を150℃~300℃とし、時間を3秒間~15秒間とすることを特徴とする請求項7に記載の電磁鋼板の製造方法。
  11.  前記焼き付け乾燥の到達温度を150℃~300℃とし、時間を3秒間~15秒間とすることを特徴とする請求項8に記載の電磁鋼板の製造方法。
  12.  前記焼き付け乾燥の到達温度を150℃~300℃とし、時間を3秒間~15秒間とすることを特徴とする請求項9に記載の電磁鋼板の製造方法。
  13.  前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする請求項7に記載の電磁鋼板の製造方法。
  14.  前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする請求項8に記載の電磁鋼板の製造方法。
  15.  前記第1の成分及び前記第2の成分は、固形分換算で前記処理液の90%以上を占めることを特徴とする請求項9に記載の電磁鋼板の製造方法。
PCT/JP2010/065040 2009-09-15 2010-09-02 電磁鋼板及びその製造方法 WO2011033943A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020127006673A KR101431349B1 (ko) 2009-09-15 2010-09-02 전자기 강판 및 그 제조 방법
PL10817056T PL2479315T3 (pl) 2009-09-15 2010-09-02 Blacha cienka ze stali elektrotechnicznej i sposób jej wytwarzania
US13/395,993 US20120171467A1 (en) 2009-09-15 2010-09-02 Electrical steel sheet and method for manufacturing the same
EP21152940.9A EP3836169B1 (en) 2009-09-15 2010-09-02 Electrical steel sheet and method for manufacturing the same
CN201080040805.9A CN102575352B (zh) 2009-09-15 2010-09-02 电磁钢板及其制造方法
IN2839DEN2012 IN2012DN02839A (ja) 2009-09-15 2010-09-02
JP2010547387A JP4729136B2 (ja) 2009-09-15 2010-09-02 電磁鋼板及びその製造方法
EP10817056.4A EP2479315B1 (en) 2009-09-15 2010-09-02 Electrical steel sheet and method for manufacturing same
US15/179,171 US10340065B2 (en) 2009-09-15 2016-06-10 Method for manufacturing electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213486 2009-09-15
JP2009-213486 2009-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,993 A-371-Of-International US20120171467A1 (en) 2009-09-15 2010-09-02 Electrical steel sheet and method for manufacturing the same
US15/179,171 Division US10340065B2 (en) 2009-09-15 2016-06-10 Method for manufacturing electrical steel sheet

Publications (1)

Publication Number Publication Date
WO2011033943A1 true WO2011033943A1 (ja) 2011-03-24

Family

ID=43758551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065040 WO2011033943A1 (ja) 2009-09-15 2010-09-02 電磁鋼板及びその製造方法

Country Status (10)

Country Link
US (2) US20120171467A1 (ja)
EP (2) EP3836169B1 (ja)
JP (1) JP4729136B2 (ja)
KR (1) KR101431349B1 (ja)
CN (1) CN102575352B (ja)
BR (1) BR112012005767B1 (ja)
IN (1) IN2012DN02839A (ja)
PL (2) PL3836169T3 (ja)
TW (1) TWI411692B (ja)
WO (1) WO2011033943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174739A (ja) * 2011-02-17 2012-09-10 Jfe Steel Corp 絶縁被膜付き電磁鋼板および積層鉄心
JPWO2016163116A1 (ja) * 2015-04-07 2017-04-27 Jfeスチール株式会社 絶縁被膜付き電磁鋼板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458726B1 (ko) * 2010-07-23 2014-11-05 신닛테츠스미킨 카부시키카이샤 수지 몰드되는 적층 철심에 사용되는 전자기 강판 및 그 제조 방법
JP5974671B2 (ja) 2011-11-09 2016-08-23 Jfeスチール株式会社 極薄電磁鋼板
KR101483002B1 (ko) * 2014-02-14 2015-01-22 한국식품연구원 천일염 내 불용성분 및 수분 측정을 통한 천일염의 품질측정방법
RU2685616C1 (ru) * 2015-07-28 2019-04-22 ДжФЕ СТИЛ КОРПОРЕЙШН Способ создания линейных канавок и устройство для образования линейных канавок
KR102223865B1 (ko) * 2018-09-27 2021-03-04 주식회사 포스코 전기강판 적층체
BR112021013729A2 (pt) * 2019-01-16 2021-09-21 Nippon Steel Corporation Chapa de aço elétrico com grão orientado, e, chapa de aço
CA3125898A1 (en) * 2019-02-14 2020-08-20 Jfe Steel Corporation Electrical steel sheet having insulating coating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH03240970A (ja) 1990-02-15 1991-10-28 Nippon Steel Corp 歪取焼鈍後の皮膜特性の優れた無方向性電磁鋼板の製造方法およびその表面処理剤
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH0741913A (ja) 1993-07-26 1995-02-10 Nippon Steel Corp 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
JPH07230908A (ja) * 1993-12-21 1995-08-29 Kobe Steel Ltd 絶縁皮膜を有する電磁鋼板及びその製造方法
JPH07308990A (ja) * 1994-05-17 1995-11-28 Kawasaki Steel Corp 加熱接着用表面被覆電磁鋼板およびその製造方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP2003166071A (ja) 2001-11-29 2003-06-13 Kansai Paint Co Ltd 潤滑鋼板用表面処理組成物及び潤滑鋼板
JP2007104878A (ja) 2005-10-07 2007-04-19 Nippon Soken Inc ステータコア及びそれを用いた回転電機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563012B2 (ja) 1973-04-14 1981-01-22
US3840983A (en) 1973-04-30 1974-10-15 Ford Motor Co Method of manufacture of a dynamoelectric machine laminated armature structure
CA1071039A (en) * 1976-04-12 1980-02-05 Toshio Irie Method for producing coated electrical steel sheets having excellent punchability, weldability, electrical insulation and heat resistance
US4496399A (en) * 1984-05-21 1985-01-29 Armco Inc. Method and aqueous coating compositions for forming anti-stick and insulative coatings on semi-processed and fully-processed electrical steels
JPS61183479A (ja) * 1985-02-09 1986-08-16 Nippon Steel Corp 電磁鋼板の表面処理方法
DE3539774A1 (de) * 1985-07-17 1987-05-14 Metallgesellschaft Ag Verfahren zum aufbringen einer isolierschicht
JPS62241980A (ja) * 1986-04-14 1987-10-22 Seiko Epson Corp 熱転写用インク
WO1991002828A1 (en) * 1989-08-14 1991-03-07 Nisshin Steel Co., Ltd. Insulation coating composition for electric sheet and method of insulation coating of electric sheet
KR0129687B1 (ko) * 1993-05-21 1998-04-16 다나까 미노루 피막특성이 극히 우수한 절연 피막 처리제 및 이 처리제를 이용한 무방향성 전기강판의 제조방법
JPH077071A (ja) * 1993-06-15 1995-01-10 Hitachi Ltd 静電チャック
US5846660A (en) * 1996-01-10 1998-12-08 Nkk Corporation Organic composite coated steel plate
JP3320983B2 (ja) * 1996-07-24 2002-09-03 川崎製鉄株式会社 低温焼き付けで製造でき、歪取り焼鈍が可能で耐食性、耐溶剤性が良好な絶縁被膜付き電磁鋼板
JPH1088364A (ja) * 1996-09-13 1998-04-07 Sumitomo Light Metal Ind Ltd 脱膜型潤滑処理アルミニウム板およびその製造方法
US5955201A (en) * 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
CN100465337C (zh) * 1998-12-17 2009-03-04 新日本制铁株式会社 非取向型电磁钢板的制备方法及所用的绝缘膜形成剂
KR20010100204A (ko) * 2000-03-16 2001-11-14 이구택 절연피막 형성용 피복조성물 및 이를 이용한 무방향성전기강판의 절연피막 형성방법
JP2004088970A (ja) * 2002-08-29 2004-03-18 Hitachi Ltd 積層鉄心とそれを用いた回転電機およびトランス
WO2005010235A1 (ja) * 2003-07-29 2005-02-03 Jfe Steel Corporation 表面処理鋼板およびその製造方法
JP4671609B2 (ja) * 2004-01-26 2011-04-20 日本パーカライジング株式会社 潤滑性水系ポリウレタン樹脂組成物、それを用いる亜鉛系メッキ鋼板の表面潤滑処理方法及びその表面処理鋼板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015013B1 (ja) 1970-08-28 1975-06-02
JPS4919078B1 (ja) 1970-12-07 1974-05-15
JPH0336284A (ja) 1989-06-30 1991-02-15 Sumitomo Metal Ind Ltd 歪取焼鈍後の耐置錆性に優れた電気絶縁皮膜の形成方法
JPH03240970A (ja) 1990-02-15 1991-10-28 Nippon Steel Corp 歪取焼鈍後の皮膜特性の優れた無方向性電磁鋼板の製造方法およびその表面処理剤
JPH06330338A (ja) 1993-05-21 1994-11-29 Nippon Steel Corp 被膜特性の極めて良好な無方向性電磁鋼板の製造方法
JPH0741913A (ja) 1993-07-26 1995-02-10 Nippon Steel Corp 皮膜特性の優れる無方向性電磁鋼板及びその鋼板用表面処理剤
JPH07230908A (ja) * 1993-12-21 1995-08-29 Kobe Steel Ltd 絶縁皮膜を有する電磁鋼板及びその製造方法
JPH07308990A (ja) * 1994-05-17 1995-11-28 Kawasaki Steel Corp 加熱接着用表面被覆電磁鋼板およびその製造方法
JPH09323066A (ja) 1996-06-07 1997-12-16 Kawasaki Steel Corp 歪取り焼鈍が可能で耐蝕性、耐溶剤性に優れる絶縁被膜付き電磁鋼板ならびにその絶縁被膜の形成方法
JP2003166071A (ja) 2001-11-29 2003-06-13 Kansai Paint Co Ltd 潤滑鋼板用表面処理組成物及び潤滑鋼板
JP2007104878A (ja) 2005-10-07 2007-04-19 Nippon Soken Inc ステータコア及びそれを用いた回転電機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174739A (ja) * 2011-02-17 2012-09-10 Jfe Steel Corp 絶縁被膜付き電磁鋼板および積層鉄心
JPWO2016163116A1 (ja) * 2015-04-07 2017-04-27 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
US10526672B2 (en) 2015-04-07 2020-01-07 Jfe Steel Corporation Electrical steel sheet with insulating coating

Also Published As

Publication number Publication date
US20160284455A1 (en) 2016-09-29
TW201114922A (en) 2011-05-01
US20120171467A1 (en) 2012-07-05
JPWO2011033943A1 (ja) 2013-02-14
PL3836169T3 (pl) 2024-02-26
JP4729136B2 (ja) 2011-07-20
US10340065B2 (en) 2019-07-02
EP2479315A4 (en) 2013-11-06
KR20120043768A (ko) 2012-05-04
EP2479315B1 (en) 2021-07-28
CN102575352B (zh) 2016-01-20
BR112012005767A2 (pt) 2020-12-15
IN2012DN02839A (ja) 2015-07-24
CN102575352A (zh) 2012-07-11
EP3836169A1 (en) 2021-06-16
KR101431349B1 (ko) 2014-08-19
EP3836169B1 (en) 2023-11-01
PL2479315T3 (pl) 2021-11-08
TWI411692B (zh) 2013-10-11
EP2479315A1 (en) 2012-07-25
BR112012005767B1 (pt) 2022-06-28

Similar Documents

Publication Publication Date Title
JP4729136B2 (ja) 電磁鋼板及びその製造方法
JP4644317B2 (ja) 絶縁被膜を有する電磁鋼板及びその製造方法
TWI629165B (zh) 電磁鋼板及電磁鋼板之製造方法
JP5093411B2 (ja) 樹脂モールドされる積層鉄芯に使用される電磁鋼板及びその製造方法
JP5005844B2 (ja) 電磁鋼板及びその製造方法
JPWO2010061722A1 (ja) 電磁鋼板及びその製造方法
JP6682892B2 (ja) 電磁鋼板及び電磁鋼板の製造方法
JP5471849B2 (ja) 電磁鋼板およびその製造方法
JP5423465B2 (ja) 電磁鋼板および電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040805.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010547387

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127006673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13395993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2839/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010817056

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005767

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005767

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120314