WO2011030910A1 - ポリアミド樹脂組成物 - Google Patents

ポリアミド樹脂組成物 Download PDF

Info

Publication number
WO2011030910A1
WO2011030910A1 PCT/JP2010/065878 JP2010065878W WO2011030910A1 WO 2011030910 A1 WO2011030910 A1 WO 2011030910A1 JP 2010065878 W JP2010065878 W JP 2010065878W WO 2011030910 A1 WO2011030910 A1 WO 2011030910A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin composition
polyamide resin
acid
composition according
Prior art date
Application number
PCT/JP2010/065878
Other languages
English (en)
French (fr)
Inventor
小川 俊
桑原 久征
慎市 阿由葉
隆彦 住野
健太郎 石井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to RU2012114855/05A priority Critical patent/RU2543201C2/ru
Priority to CN201080040958.3A priority patent/CN102575099B/zh
Priority to BR112012005764A priority patent/BR112012005764A2/pt
Priority to SG2012017729A priority patent/SG179116A1/en
Priority to US13/395,535 priority patent/US10273359B2/en
Priority to EP10815500.3A priority patent/EP2479218B1/en
Priority to KR1020127006607A priority patent/KR101755054B1/ko
Priority to JP2011530915A priority patent/JP5857741B2/ja
Publication of WO2011030910A1 publication Critical patent/WO2011030910A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to a polyamide resin composition, and more specifically, a polyamide resin containing a paraxylylenediamine unit and a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms as main components and a specific amount of filler.
  • the present invention relates to a polyamide resin composition.
  • Aliphatic polyamides typified by nylon 6 and nylon 66 have excellent properties such as heat resistance, chemical resistance, rigidity, wear resistance, and moldability, so they are used in many applications as engineering plastics. Yes.
  • problems such as heat resistance and low dimensional stability due to water absorption have been pointed out in applications that are exposed to high temperatures such as automobile parts.
  • heat resistance and low dimensional stability due to water absorption have been pointed out in applications that are exposed to high temperatures such as automobile parts.
  • there is a tendency for the demand for heat resistance to increase in electrical and electronic component applications using surface mounting technology and automotive component applications such as electrical components in an engine room and it is difficult to use conventional aliphatic polyamides.
  • Development of polyamides having excellent heat resistance, dimensional stability, and mechanical properties is desired.
  • Aliphatic polyamides not only have excellent wear resistance, but also are less likely to seize even in a non-lubricated state. They also have low noise, light weight, and excellent corrosion resistance, so bearings, gears, bushes, spacers It is used in many sliding parts such as rollers and cams.
  • bearings, gears, bushes, spacers It is used in many sliding parts such as rollers and cams.
  • the conventional aliphatic polyamide is used under severe conditions that constantly generate high friction, melting occurs at the same time as the temperature rises due to frictional heat, and at the same time, significant wear occurs, and steady frictional motion continues. It becomes difficult. Further, conventional aliphatic polyamides have the problem that the dimensional change due to water absorption and mechanical properties are lowered, and improvement is desired.
  • semi-aromatic polyamides called 6T-based polyamides, whose main components are polyamides composed of 1,6-hexanediamine and terephthalic acid, which have a higher melting point than conventional polyamides, are also used as engineering plastics.
  • 6T-based polyamides whose main components are polyamides composed of 1,6-hexanediamine and terephthalic acid, which have a higher melting point than conventional polyamides, are also used as engineering plastics.
  • the polyamide composed of 1,6-hexanediamine and terephthalic acid has a melting point of around 370 ° C., and it is necessary to carry out the melt molding at a temperature higher than the decomposition temperature of the polymer.
  • the composition has a melting point lowered to about 280 to 320 ° C., which is a temperature range that can be practically used as polyamide, by copolymerizing about 30 to 40 mol% of adipic acid, isophthalic acid, ⁇ -caprolactam and the like. It has been put into practical use.
  • Such copolymerization of the third to fourth components is effective for lowering the melting point, but on the other hand, it leads to a decrease in crystallization speed and ultimate crystallinity. Not only the physical properties such as chemical properties and dimensional stability are deteriorated, but also there is a concern that the productivity is lowered due to the extension of the molding cycle.
  • 9T polyamides composed of a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine and terephthalic acid
  • 9T polyamides have been put to practical use with higher crystallization speed, ultimate crystallinity, and lower water absorption than 6T polyamides, which are semi-aromatic polyamides.
  • the problem that the melt fluidity is lowered due to the deterioration of various physical properties and the influence of aromatic dicarboxylic acid as a main component has not been solved.
  • JP-A-60-158220 Japanese Patent Publication No. 64-11073 Japanese Patent Publication No. 3-56576 JP-A-7-228776
  • a polyamide comprising a diamine component mainly composed of paraxylylenediamine and a dicarboxylic acid component mainly composed of a linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms. It has been found that a resin composition containing a specific amount of an agent is excellent in various physical properties such as heat resistance, low water absorption, chemical resistance, mechanical properties and dimensional stability.
  • a polyamide comprising a diamine component mainly composed of paraxylylenediamine and a dicarboxylic acid component mainly composed of a linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms
  • a polyamide resin composition containing a specific fibrous filler and a specific solid lubricant can maintain good slidability even under high load and high speed conditions.
  • a polyamide (A) comprising a diamine unit containing 70 mol% or more of paraxylylenediamine units and a dicarboxylic acid unit containing 70 mol% or more of a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms;
  • a polyamide resin composition containing a filler (B) is a polyamide having a phosphorus atom concentration of 50 to 1000 ppm and a YI value of 10 or less in the color difference test of JIS-K-7105.
  • the filler (B) is added to 100 parts by mass of the polyamide (A).
  • a polyamide resin composition comprising 1 to 200 parts by mass.
  • a polyamide (A) comprising a diamine unit containing 70 mol% or more of paraxylylenediamine units and a dicarboxylic acid unit containing 70 mol% or more of a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms
  • a polyamide resin composition comprising a fibrous filler (B1) and a solid lubricant (C)
  • the polyamide (A) is a polyamide having a phosphorus atom concentration of 50 to 1000 ppm and a YI value of 10 or less in the color difference test of JIS-K-7105, and the fibrous filler (B1
  • a polyamide resin composition comprising 5 to 200 parts by mass and 5 to 50 parts by mass of the solid lubricant (C).
  • a molded article comprising the polyamide resin composition according to [1] or [2].
  • the polyamide resin composition for molding material of the present invention is excellent in various physical properties such as heat resistance, mechanical properties (mechanical strength, toughness, impact resistance), low water absorption, moldability, etc., and molded into a film, sheet or tube form. It can be processed and can be suitably used for various industrial, industrial and household products. Specifically, various electronic parts and surface mount parts that require high heat resistance and dimensional accuracy, high crystallization speed, small and thin molded products that require high ultimate crystallinity and low water absorption, heat resistance It can be suitably used for various parts used under high heat conditions such as automobile headlight reflectors and engine room parts that require high performance and rigidity. Moreover, since the polyamide resin composition of the present invention is excellent in sliding properties, it can be suitably used for various sliding materials such as bearings, gears, bushes, spacers, rollers, cams and the like.
  • the polyamide resin composition of the present invention contains a polyamide (A) containing a diamine unit and a dicarboxylic acid unit, which will be described later, and a filler (B).
  • the diamine unit refers to a structural unit derived from the raw material diamine component
  • the dicarboxylic acid unit refers to a structural unit derived from the raw material dicarboxylic acid component.
  • the polyamide (A) contains a diamine unit containing 70 mol% or more of paraxylylenediamine units and a dicarboxylic acid unit containing 70 mol% or more of a linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms.
  • the paraxylylenediamine unit in the diamine unit is preferably 80 mol% or more, more preferably 90 mol% or more, and most preferably 100 mol%.
  • the linear aliphatic dicarboxylic acid unit having 6 to 18 carbon atoms in the dicarboxylic acid unit is preferably 80 mol% or more, more preferably 90 mol% or more, and most preferably 100 mol%.
  • the polyamide (A) can be obtained by polycondensing a diamine component containing 70 mol% or more of paraxylylenediamine and a dicarboxylic acid component containing 70 mol% or more of a linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms.
  • the diamine component of the polyamide (A) raw material contains 70 mol% or more of paraxylylenediamine, preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 100 mol%.
  • the resulting polyamide exhibits a high melting point and high crystallinity, is excellent in heat resistance, chemical resistance, etc., and various polyamides having low water absorption. It can use suitably for a use.
  • the paraxylylenediamine concentration in the diamine component of the raw material is less than 70 mol%, the heat resistance and chemical resistance are lowered and the water absorption is increased.
  • raw material diamine components other than paraxylylenediamine 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 2-methyl -1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5 -Aliphatic diamines such as methyl-1,9-nonanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, etc.
  • Examples include diamines, aromatic diamines such as metaxylylenediamine, or mixtures thereof. Kill, but is not limited to these.
  • the raw material dicarboxylic acid component of the polyamide (A) contains 70 mol% or more of a straight chain aliphatic dicarboxylic acid having 6 to 18 carbon atoms, preferably 80 mol% or more, more preferably 90 mol% or more, and more preferably 100 mol%. Particularly preferred.
  • the linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms 70 mol% or more the resulting polyamide exhibits fluidity during melt processing, high crystallinity, low water absorption, heat resistance, chemical resistance, It can be suitably used for various applications as a polyamide excellent in molding processability and dimensional stability.
  • concentration of the straight-chain aliphatic dicarboxylic acid having 6 to 18 carbon atoms in the raw material dicarboxylic acid component is less than 70 mol%, the heat resistance, chemical resistance and molding processability are lowered.
  • linear aliphatic dicarboxylic acid having 6 to 18 carbon atoms examples include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, Examples include hexadecanedioic acid. Among them, at least one selected from the group consisting of azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid is preferable, and sebacic acid and / or azelaic acid is particularly preferable.
  • raw material dicarboxylic acids other than straight chain aliphatic dicarboxylic acids having 6 to 18 carbon atoms include malonic acid, succinic acid, 2-methyladipic acid, trimethyladipic acid, 2,2-dimethylglutaric acid, and 2,4-dimethylglutaric acid.
  • Acid 3,3-dimethylglutaric acid, 3,3-diethylsuccinic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, isophthalic acid, terephthalic acid, 2 , 6-Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or a mixture thereof can be exemplified, but is not limited thereto.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid
  • polyamide (A ) Can be used as a copolymerization component.
  • a small amount of a monofunctional compound having reactivity with the terminal amino group or carboxyl group of the polyamide may be added as a molecular weight adjusting agent during the polycondensation of the polyamide (A).
  • Usable compounds include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, benzoic acid, toluyl Acids, aromatic monocarboxylic acids such as naphthalenecarboxylic acid, aliphatic monoamines such as butylamine, amylamine, isoamylamine, hexylamine, heptylamine, octylamine, araliphatic monoamines such as benzylamine and methylbenzylamine, or these Although a mixture can be illustrated, it is not limited
  • the preferred amount varies depending on the reactivity, boiling point, reaction conditions, etc. of the molecular weight modifier used. It is about 0.1 to 10% by mass with respect to the total with the acid component.
  • a phosphorus atom-containing compound as a catalyst for the polycondensation reaction and an antioxidant for preventing coloring of the polyamide due to oxygen present in the polycondensation total.
  • Examples of phosphorus atom-containing compounds include alkaline earth metal salts of hypophosphorous acid, alkali metal salts of phosphorous acid, alkaline earth metal salts of phosphorous acid, alkali metal salts of phosphoric acid, alkaline earth metals of phosphoric acid Salts, alkali metal salts of pyrophosphoric acid, alkaline earth metal salts of pyrophosphoric acid, alkali metal salts of metaphosphoric acid and alkaline earth metal salts of metaphosphoric acid.
  • calcium hypophosphite, magnesium hypophosphite, calcium phosphite, calcium hydrogen phosphite, and calcium dihydrogen phosphate are preferable, and calcium hypophosphite is more preferable.
  • These phosphorus atom-containing compounds may be hydrates.
  • the amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide (A) is an amount that is 50 to 1000 ppm in terms of the phosphorus atom concentration in the polyamide (A), and is preferably 50 to 400 ppm. More preferably, it is 60 to 350 ppm, and particularly preferably 70 to 300 ppm.
  • the phosphorus atom concentration in the polyamide (A) is less than 50 ppm, the effect as an antioxidant cannot be sufficiently obtained, and the polyamide resin composition tends to be colored.
  • the phosphorus atom concentration in the polyamide (A) exceeds 1000 ppm, the gelation reaction of the polyamide resin composition is promoted, and foreign matter that may be caused by the phosphorus atom-containing compound may be mixed in the molded product. The appearance of the molded product tends to deteriorate.
  • the phosphorus atom concentration in the polyamide (A) is the alkaline earth metal salt of hypophosphorous acid, the alkali metal salt of phosphorous acid, the alkaline earth metal salt of phosphorous acid, the alkali metal salt of phosphoric acid, Contains at least one phosphorus atom selected from the group consisting of alkaline earth metal salts, alkali metal salts of pyrophosphoric acid, alkaline earth metal salts of pyrophosphoric acid, alkali metal salts of metaphosphoric acid and alkaline earth metal salts of metaphosphoric acid It is preferably derived from a compound, and more preferably derived from at least one selected from the group consisting of calcium hypophosphite, magnesium hypophosphite, calcium phosphite, and calcium dihydrogen phosphate.
  • a polymerization rate adjusting agent in combination with the phosphorus atom-containing compound in the polycondensation system of polyamide (A).
  • a polymerization rate adjusting agent in order to prevent coloring of the polyamide during polycondensation, it is necessary to have a sufficient amount of phosphorus atom-containing compound, but since there is a risk of causing gelation of the polyamide, polymerization is also performed to adjust the amidation reaction rate. It is preferable to coexist with a speed regulator.
  • the polymerization rate adjusting agent include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal acetates and alkaline earth metal acetates, and alkali metal hydroxides and alkali metal acetates are preferable.
  • Polymerization rate regulators include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lithium acetate, sodium acetate, acetic acid
  • Examples include potassium, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, strontium acetate, barium acetate, or a mixture thereof.
  • sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, sodium acetate, and potassium acetate are preferable, and sodium hydroxide, sodium acetate, and potassium acetate are more preferable.
  • the amount of the substance] / [the amount of the phosphorus atom of the phosphorus atom-containing compound]) is preferably 0.3 to 1.0, more preferably 0.4 to 0.95, Particularly preferred is 0.5 to 0.9.
  • Polyamide (A) is polymerized by (a) polycondensation in the molten state, (b) so-called solid phase polymerization in which a low molecular weight polyamide is obtained by polycondensation in the molten state and then heat-treated in the solid phase, ( c) After obtaining a low molecular weight polyamide by polycondensation in a molten state, any method such as extrusion polymerization in which a high molecular weight is obtained in a molten state using a kneading extruder can be used.
  • the polycondensation method in the molten state is not particularly limited, a method in which an aqueous solution of a nylon salt of a diamine component and a dicarboxylic acid component is heated under pressure and polycondensed in a molten state while removing water and condensed water,
  • An example is a method in which a diamine component is directly added to a dicarboxylic acid in a molten state and polycondensed in an atmosphere of atmospheric pressure or steam.
  • diamine component is continuously added to the molten dicarboxylic acid phase so as not to lower the melting point of the resulting oligoamide and polyamide.
  • the polycondensation proceeds while controlling the reaction temperature.
  • triethylene glycol, ethylene glycol, metaxylylenediamine, or the like can be used when the inside of the apparatus is washed by changing the type of the product.
  • the polyamide obtained by melt polycondensation is once taken out, pelletized, and dried before use.
  • solid phase polymerization may be performed.
  • a heating device used in drying or solid-phase polymerization a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum type heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer
  • a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these.
  • the rotary drum type heating device in the above-mentioned device can seal the inside of the system, and it is easy to proceed with polycondensation in a state where oxygen that causes coloring is removed.
  • the rotary drum type heating device in the above-mentioned device can seal the inside of the system, and it is easy to proceed with polycondensation in a state where oxygen that causes coloring is removed.
  • oxygen that causes coloring is removed.
  • Polyamide (A) is less colored and less gelled.
  • the polyamide (A) has a YI value in a color difference test of JIS-K-7105 of 10 or less, preferably 6 or less, more preferably 5 or less, and still more preferably 1 or less.
  • a molded product obtained from a resin composition containing a polyamide (A) having a YI value exceeding 10 is not preferable because it is yellowish and has a low commercial value.
  • the relative viscosity of the polyamide (A) is preferably 1.5 to 5.0, more preferably 1.8 to 4.2, from the viewpoint of the appearance of the molded product and molding processability. It is more preferably 9 to 3.5, and further preferably 2.0 to 3.0.
  • the polyamide (A) preferably has a number average molecular weight (Mn) in the range of 10,000 to 50,000, preferably in the range of 12,000 to 40,000, as measured by gel permeation chromatography (GPC). More preferably, the range is from 14,000 to 30,000.
  • Mn number average molecular weight
  • the dispersity is preferably in the range of 1.5 to 5.0, more preferably in the range of 1.5 to 3.5.
  • the degree of dispersion By setting the degree of dispersion in the above range, the fluidity at the time of melting and the stability of the melt viscosity are increased, and the workability of melt kneading and melt molding is improved. Also, the toughness is good, and various physical properties such as water absorption resistance, chemical resistance and heat aging resistance are also good.
  • the filler (B) used in the polyamide resin composition of the present invention is preferably at least one selected from the group consisting of a fibrous filler (B1) and an inorganic filler (B2).
  • Examples of the fibrous filler (B1) include organic and inorganic fibrous fillers.
  • Examples of organic fibrous fillers include wholly aromatic polyamide fibers such as aramid fibers, cellulose fibers, and the like.
  • Examples of the inorganic fibrous filler include glass fiber, PAN-based or pitch-based carbon fiber, and boron fiber.
  • Examples include metal fibers such as steel, SUS, brass, copper, and inorganic compound whiskers or needle crystals such as potassium titanate, aluminum borate, gypsum, calcium carbonate, magnesium sulfate, sepiolite, zonotlite, wollastonite, etc.
  • You can also Examples of the glass fiber include alkali-free borosilicate glass fiber and alkali-containing C-glass fiber.
  • the size is not particularly limited, and fibers having a diameter of 3 to 30 ⁇ m can be used. Further, a long fiber having a length of 5 to 50 mm can be used, and a short fiber having a length of 0.05 to 5 mm can also be used.
  • the fibrous filler (B1) is preferably at least one selected from the group consisting of glass fibers, carbon fibers, wholly aromatic polyamide fibers, cellulose fibers, metal fibers, and whiskers or needle crystals of inorganic compounds. More preferred is at least one selected from the group consisting of fibers, carbon fibers and inorganic compound whiskers or needle crystals.
  • the filler (B) is at least one fiber selected from the group consisting of glass fibers, carbon fibers, and inorganic compound whiskers or needle crystals.
  • the filler (B1) is preferably used, and glass fibers and / or carbon fibers are particularly preferably used. In that case, in addition to the fibrous filler (B1), an inorganic powder filler or the like can be used in combination for molding accuracy and surface smoothness.
  • the inorganic filler (B2) fillers having various forms such as powder can be used, and the average particle diameter and shape are not particularly limited. Specifically, talc, mica, glass flake, wollastonite, montmorillonite, potassium titanate, magnesium sulfate, calcium sulfate, barium sulfate, sepiolite, zonolite, boron nitride, aluminum borate, glass beads, calcium carbonate, magnesium carbonate And barium carbonate, silica, kaolin, clay, titanium oxide, zinc oxide, magnesium hydroxide, aluminum hydroxide, or a mixture thereof.
  • calcium carbonate is suitably used as the inorganic filler (B2).
  • the inorganic filler (B2) can be used in combination with the fibrous filler (B1) from the viewpoint of improving weather resistance and dimensional stability.
  • the filler (B) may be used as it is, but for the purpose of improving the interfacial adhesion with the polyamide (A) and the dispersibility, various silane coupling agents and titanium coupling agents. Those having a surface treated with higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts or other surfactants can be used.
  • the silane coupling agent an aminosilane coupling agent is particularly preferable.
  • the filler (B) is a fibrous filler (B1), it may be secondarily processed into a cloth shape or the like, and may be subjected to convergence or sizing agent treatment for improving handling properties. .
  • the blending amount of the filler (B) is 1 to 200 parts by weight, preferably 5 to 200 parts by weight, more preferably 10 to 150 parts by weight, and further preferably 20 to 20 parts by weight with respect to 100 parts by weight of the polyamide (A). 100 parts by mass. If the blending amount of the inorganic filler is less than 1 part by weight with respect to 100 parts by weight of the polyamide resin, the effect of improving mechanical strength, thermal properties, etc. is small, and if the blending amount of the inorganic filler exceeds 200 parts by weight, molding is performed. The fluidity at the time is inferior and the moldability is reduced.
  • the blending amount of the fibrous filler (B1) is preferably 5 to 200 parts by mass with respect to 100 parts by mass of the polyamide (A).
  • the amount is preferably 10 to 150 parts by mass, more preferably 20 to 100 parts by mass.
  • additives generally used in polymer materials may be blended within a range not impairing the effects of the present invention.
  • An agent, an antistatic agent, an anti-coloring agent, an anti-gelling agent, and the like can be exemplified, but various materials can be blended without being limited thereto.
  • Solid lubricant When the polyamide resin composition of the present invention is a resin composition for sliding parts, it preferably contains a solid lubricant (C).
  • the solid lubricant include fluorine resins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene-ethylene copolymer, polyolefin resins such as polyethylene, graphite, carbon black, molybdenum disulfide, and molybdenum trioxide.
  • Examples thereof include, but are not limited to, wholly aromatic polyamide resins such as aramid resin, powders such as silicone, copper lead alloy, tungsten disulfide, calcium sulfate, magnesium sulfate, boron nitride, and mixtures thereof.
  • aramid resin powders such as silicone, copper lead alloy, tungsten disulfide, calcium sulfate, magnesium sulfate, boron nitride, and mixtures thereof.
  • fluorine resin, graphite, molybdenum disulfide, granular carbon black for conductive or pigment, aramid resin and boron nitride are preferable, fluorine resin, granular carbon black for conductive or pigment and graphite are more preferable, fluorine A resin or graphite is particularly preferable.
  • fluororesin polytetrafluoroethylene is particularly preferable.
  • the blending amount of the solid lubricant in the polyamide resin composition of the present invention varies depending on the type of solid lubricant to be used, but when the polyamide resin composition of the present invention is a resin composition for sliding parts, From the viewpoint of mechanical properties of the molded product, the amount is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyamide (A).
  • release agent examples include long-chain alcohol fatty acid esters, branched alcohol fatty acid esters, glycerides, polyhydric alcohol fatty acid esters, polymer composite esters, higher alcohols, ketone waxes, montan waxes, silicone oils, silicone gums, Alternatively, a mixture thereof can be exemplified, but not limited thereto.
  • the polyamide resin composition of the present invention is a resin composition for sliding parts, it is preferable to contain a release agent in order to improve the release property at the time of molding.
  • the polyamide resin composition of the present invention is a resin composition for sliding parts, it is preferable to add a relatively large amount so as to have an effect of improving sliding properties.
  • the compounding amount of the release agent in the polyamide resin composition of the present invention can be used without particular limitation as long as it does not impair the various performances of the resin composition, and is generally based on 100 parts by mass of the polyamide (A).
  • the amount is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass.
  • the polyamide resin composition of the present invention is a resin composition for sliding parts, it is preferably 0.05 to 7 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polyamide (A). is there.
  • antioxidant examples include a copper-based antioxidant, a hindered phenol-based antioxidant, a hindered amine-based antioxidant, a phosphorus-based antioxidant, and a thio-based antioxidant.
  • the polyamide resin composition of the present invention includes PPE (polyphenylene ether), polyphenylene sulfide, modified polyolefin, PES (polyethersulfone), PEI (polyetherimide), and molten liquid crystal as long as the effects of the present invention are not impaired.
  • Heat-resistant thermoplastic resins such as polymers and modified products of these resins can be blended.
  • the polyamide resin composition of the present invention is a resin composition for sliding parts, it is preferable to contain these thermoplastic resins having a high melting point from the viewpoint of sliding properties and mechanical properties of molded products.
  • the polyphenylene sulfide that can be blended in the polyamide resin composition of the present invention is a polymer having a structural unit represented by the following general formula (I) of 70 mol% or more, preferably 90 mol% or more of all structural units.
  • the polyphenylene sulfide that can be blended in the polyamide resin composition of the present invention is represented by the following general formulas (II) to (VI) in addition to the polymer having the structural unit represented by the general formula (I) alone.
  • a structural unit can be illustrated and 1 type or 2 types or more may be included among these.
  • the polyphenylene sulfide may further contain a trifunctional structural unit represented by the following general formula (VII) in an amount of 10 mol% or less of the total structural unit.
  • VII trifunctional structural unit represented by the following general formula (VII) in an amount of 10 mol% or less of the total structural unit.
  • the structural units represented by the general formulas (I) to (VII) may have a substituent such as an alkyl group, a nitro group, a phenyl group, or an alkoxyl group on the aromatic ring.
  • the polyphenylene sulfide that can be blended in the polyamide resin composition of the present invention has a viscosity measured with a flow tester at a load of 20 kg and a temperature of 300 ° C., preferably 100 to 10000 poise, more preferably 200 to 5000 poise, still more preferably. Is preferably in the range of 300 to 3000 poise.
  • the polyphenylene sulfide can be prepared by any method.
  • the mass ratio of the polyamide (A) and the polyphenylene sulfide is preferably 5:95 to 99.9: 0.1, more preferably 5: from the viewpoint of heat resistance.
  • Modified polyolefin As the modified polyolefin, polyolefin modified by copolymerization with ⁇ , ⁇ -unsaturated carboxylic acid or its ester or metal salt derivative, or modified by grafting carboxylic acid or acid anhydride into polyolefin. Can be used.
  • ethylene / propylene copolymer ethylene / 1-butene copolymer, ethylene / 4-methyl-1-pentene copolymer, ethylene / 1-hexene copolymer, ethylene / 1-octene copolymer , Ethylene / 1-decene copolymer, propylene / ethylene copolymer, propylene / 1-butene copolymer, propylene / 4-methyl-1-pentene copolymer, propylene / 1-hexene copolymer, propylene 1-octene copolymer, propylene / 1-decene copolymer, propylene / 1-dodecene copolymer, ethylene / propylene / 1,4-hexadiene copolymer, ethylene / propylene / dicyclopentadiene copolymer, ethylene 1-butene / 1,4-hexadiene copolymer, ethylene
  • the blending amount of the modified polyolefin is preferably 0.5 to 50 with respect to 100 parts by mass of the polyamide (A) from the viewpoint of mechanical strength, impact resistance, heat resistance and the like.
  • the amount is 1 part by mass, more preferably 1 to 45 parts by mass, and still more preferably 5 to 40 parts by mass.
  • the molten liquid crystal polymer has a property of forming a liquid crystal in the melt phase (that is, exhibits optical anisotropy), and has an intrinsic viscosity [ ⁇ ] measured at 60 ° C. in pentafluorophenol of 0.1 to It is preferably 5 dl / g.
  • a polyester substantially composed of an aromatic hydroxycarboxylic acid unit As typical examples of the molten liquid crystal polymer, a polyester substantially composed of an aromatic hydroxycarboxylic acid unit; a polyester substantially composed of an aromatic hydroxycarboxylic acid unit, an aromatic dicarboxylic acid unit, and an aromatic diol unit; A polyester comprising an aromatic hydroxycarboxylic acid unit, an aromatic dicarboxylic acid unit and an aliphatic diol unit; a polyesteramide comprising substantially an aromatic hydroxycarboxylic acid unit and an aromatic aminocarboxylic acid unit; A polyesteramide comprising an acid unit, an aromatic dicarboxylic acid unit and an aromatic diamine unit; a polyesteramide comprising substantially an aromatic hydroxycarboxylic acid unit, an aromatic aminocarboxylic acid unit, an aromatic dicarboxylic acid unit and an aromatic diol unit; Substantially aromatic Hydroxycarboxylic acid unit, not to an aromatic aminocarboxylic acid units, although a polyester amide consisting of aromatic dicarbox
  • the aromatic hydroxycarboxylic acid unit constituting the molten liquid crystal polymer is derived from, for example, p-hydroxybenzoic acid, m-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 7-hydroxy-2-naphthoic acid, etc.
  • the unit to be illustrated can be illustrated.
  • aromatic dicarboxylic acid unit examples include terephthalic acid, isophthalic acid, chlorobenzoic acid, 4,4′-biphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′- Examples thereof include units derived from oxydibenzoic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid and the like.
  • aromatic diolic acid unit examples include hydroquinone, resorcinol, methylhydroquinone, chlorohydroquinone, phenylhydroquinone, 4,4′-dihydroxybiphenyl, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 4,4′- Examples thereof include units derived from dihydroxybiphenyl ether, 4,4′-dihydroxybiphenylmethane, 4,4′-dihydroxybiphenylsulfone and the like.
  • Examples of the aliphatic diol acid unit include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octanediol. And units derived from 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, and the like.
  • aromatic aminocarboxylic acid unit examples include units derived from p-aminobenzoic acid, m-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and the like.
  • aromatic diamine unit examples include units derived from p-phenylenediamine, m-phenylenediamine, 4,4′-diaminobiphenyl, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene and the like.
  • the molten liquid crystal polymer include, for example, a polyester composed of p-hydroxybenzoic acid units and 6-hydroxy-2-naphthoic acid units; p-hydroxybenzoic acid units, 4,4′-dihydroxybiphenyl units and terephthalic acid.
  • Polyester comprising units; Polyester comprising p-hydroxybenzoic acid units, ethylene glycol units and terephthalic acid units; Polyesteramide comprising p-hydroxybenzoic acid units, 6-hydroxy-2-naphthoic acid units and p-aminobenzoic acid units Can be illustrated.
  • the blending amount of the molten liquid crystal polymer is preferably based on 100 parts by mass of the polyamide (A) from the viewpoints of moldability, dimensional stability of the molded product, chemical resistance, and the like. Is 0.1 to 200 parts by mass, more preferably 0.5 to 150 parts by mass, and still more preferably 1 to 100 parts by mass.
  • the production method of the polyamide resin composition of the present invention is not particularly limited, and a predetermined amount of polyamide (A), filler (B), solid lubricant (C) and other additives and resin are blended as required. And can be manufactured by melt-kneading.
  • the melt kneading can be performed by a conventionally known method. For example, using a single-screw or twin-screw extruder, a Banbury mixer, or a similar device, all materials may be charged from the root of the extruder and melt kneaded. You may manufacture a pellet by the method of kneading
  • the polyamide resin composition of the present invention can produce a molded body having a desired shape by a known molding method such as injection molding, blow molding, extrusion molding, compression molding, stretching, or vacuum molding.
  • Engineering plastics can be molded not only in molded products but also in the form of films, sheets, hollow containers, tubes and the like, and can be suitably used for industrial materials, industrial materials, household products, and the like.
  • the molded article comprising the polyamide resin composition of the present invention can be suitably used for various applications such as transportation equipment parts, electric / electronic parts, and sliding parts.
  • transportation equipment parts include automotive parts such as engine mounts, engine covers, torque control levers, window regulators, headlight reflectors, door mirror stays, radiator tanks, and aircraft parts such as main wings.
  • electrical / electronic components include electrical connectors such as connectors, switches, IC / LED housings, sockets, relays, resistors, capacitors, capacitors, and coil bobbins.
  • Specific examples of the sliding component include a bearing, a gear, a bush, a spacer, a roller, and a cam.
  • the molded body obtained by molding the polyamide resin composition may be coated with a metal such as aluminum or zinc by a known method, for example, vacuum deposition, to form a metal layer on the surface. Can do. Prior to the metal coating, the part to be coated can also be primed in advance.
  • the polyamide resin composition exhibits good adhesion to the metal layer.
  • the metal for forming the metal film is not particularly limited as long as metal deposition is possible.
  • a Group 4 metal Ti, Zr, Hf, etc.
  • a Group 5 metal V, Nb, Ta, etc.
  • Group metals Cr, Mo, W, etc.
  • Group 7 metals Mn, Tc, Re, etc.
  • Group 8 metals Fe, Ru, Os, etc.
  • Group 9 metals Co, Rh, Ir, etc.
  • Group 10 metals Ni, Pd, Pt
  • Group 11 metals Cu, Ag, Au
  • Group 12 metals Zn, Cd, etc.
  • Group 13 metals Al, Ga, In, Tl, etc.
  • Examples include Group 14 metals (Ge, Sn, Pb, etc.), Group 15 metals (Sb, Bi, etc.) and the like.
  • the metal oxide film may be a metal oxide corresponding to the metal (for example, tin oxide, indium oxide, silicon oxide, titanium oxide, zinc oxide, etc.). These metals can form a metal film or a metal oxide film alone or as two or more kinds of alloys or composites (such as indium oxide / tin oxide composite (ITO)). Among these, metals (Ag, Cu, Al, etc.) having high conductivity are preferable, and Al is particularly preferable from the viewpoint of electromagnetic shielding properties and conductivity of the metal-coated or metal oxide-coated molded product.
  • a metal oxide corresponding to the metal for example, tin oxide, indium oxide, silicon oxide, titanium oxide, zinc oxide, etc.
  • These metals can form a metal film or a metal oxide film alone or as two or more kinds of alloys or composites (such as indium oxide / tin oxide composite (ITO)).
  • ITO indium oxide / tin oxide composite
  • the vapor deposition method examples include a PVD method (vacuum vapor deposition method, ion plating method, sputtering method, molecular beam epitaxy method, etc.), CVD method (thermal CVD method, plasma CVD method, metal organic chemical vapor deposition method (MOCVD method)). And gas phase methods such as ion beam mixing and ion implantation.
  • the metal coating or metal oxide coating by these vapor deposition methods may be a single coating or two or more composite coatings (laminated films). For example, an Al film or the like may be formed alone, or another metal film (Zn film, Sn film, etc.) may be formed on the Cu film.
  • electroplating may be performed after forming a thin metal film or a conductive metal oxide film by vapor deposition.
  • Electrolytic plating can be performed by a conventional plating method.
  • various plating baths can be used depending on the type of coating to be formed.
  • chromium plating use a Sargent bath, low-concentration chromium plating bath, fluoride addition bath (for example, chromic acid-sodium silicofluoride-sulfuric acid bath), SRHS bath, tetrachromate bath, micro crack chrome plating bath, etc.
  • matte nickel plating methods watt bath, nickel sulfamate bath, chloride bath, etc.
  • bright nickel plating methods organic gloss nickel plating, etc.
  • etc. Copper sulfate bath, copper borofluoride bath, etc.
  • alkaline baths copper cyanide bath, copper pyrophosphate bath, etc.
  • galvanization for example, zincate bath, amine bath, pyrophosphate bath, sulfuric acid bath A borofluoride bath or a chloride bath can be used.
  • Molded products with a metal layer on this surface are automotive parts such as lamp reflectors, side moldings, radiator grills, emblems, bumpers, wheels, side mirrors, heat dissipation panels, personal computers that make use of the wiring base and electromagnetic shielding properties. It can be used as an electrical component or an electronic component such as a casing of a mobile phone, a metal thin film resistor, a switch, or a connector.
  • YI value of polyamide YI value was measured by a reflection method according to JIS-K-7105. The higher the YI value, the more yellow the color is judged.
  • a YI value measuring apparatus a color difference measuring apparatus (model: Z- ⁇ 80 Color Measuring System) manufactured by Nippon Denshoku Industries Co., Ltd. was used.
  • the molecular weight was measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex GPC SYSTEM-11 (trade name) manufactured by Showa Denko Co., Ltd. was used.
  • Hexafluoroisopropanol (HFIP) was used as the solvent, and 10 mg of the sample polyamide was dissolved in 10 g of HFIP and used for the measurement.
  • the measurement conditions were as follows: two HFIP-806M (trade names) of GPC standard columns (column size 300 ⁇ 8.0 mm ID) manufactured by the same company and two reference columns HFIP-800 (trade names) were used as measurement columns.
  • the column temperature was 40 ° C. and the solvent flow rate was 1.0 mL / min.
  • PMMA polymethyl methacrylate
  • SIC-480II trade name
  • Metal vapor deposition property Aluminum was vapor-deposited on the surface of the test piece by a vacuum vapor deposition method to form an aluminum vapor deposition film having a thickness of 10 ⁇ m. Next, the adhesive tape was firmly attached to the aluminum deposited film and then peeled off, and the peeled state of the deposited film was visually observed. Evaluation was performed according to the following criteria. The vapor deposition was performed using JEE-400 (trade name, manufactured by JEOL Ltd.) at a vacuum degree of 1 Torr. A: No peeling, B: Partial peeling, C: Peeling
  • Synthesis example 1 In a reaction vessel having an internal volume of 50 liters equipped with a stirrer, a condenser, a cooler, a thermometer, a nitrogen introducing tube, and a strand die, 8950 g (44.25 mol) of sebacic acid precisely measured, calcium hypophosphite 12 .54 g (0.073 mol) and 6.45 g (0.073 mol) of sodium acetate were weighed and charged (the molar ratio of the phosphorus atom of calcium hypophosphite to sodium acetate was 0.5). After sufficiently purging the inside of the reaction vessel with nitrogen, the pressure was increased to 0.3 MPa with nitrogen, and the temperature was raised to 160 ° C. while stirring to uniformly melt sebacic acid.
  • Polyamide (PA1) had a phosphorus atom concentration of 315 ppm, a YI value of ⁇ 6.5, a relative viscosity of 2.47, a number average molecular weight Mn of 21,000, and Mw / Mn of 2.6.
  • Synthesis example 2 Except for changing the type and blending amount of the dicarboxylic acid to 8329 g (44.25 mol) of azelaic acid, melt polycondensation was performed in the same manner as in Synthesis Example 1 to obtain polyamide (PA2).
  • Table 2 shows the physical properties of the obtained polyamide (PA2).
  • Polyamide (PA2) had a phosphorus atom concentration of 302 ppm, a YI value of ⁇ 1.0, a relative viscosity of 2.22, a number average molecular weight Mn of 17500, and an Mw / Mn of 2.5.
  • Synthesis example 3 Other than changing the diamine component to paraxylylenediamine 5423 g (39.82 mol) and metaxylylenediamine 603 g (4.43 mol) (90 mol% of the diamine component is paraxylylenediamine, 10 mol% is metaxylylenediamine) Was subjected to melt polycondensation in the same manner as in Synthesis Example 1 to obtain polyamide (PA3).
  • Table 2 shows the physical properties of the obtained polyamide (PA3).
  • Polyamide (PA3) had a phosphorus atom concentration of 300 ppm, a YI value of -2.0, a relative viscosity of 2.11, a number average molecular weight Mn of 17,200, and Mw / Mn of 2.7.
  • Synthesis example 4 1.19 g (0.007 mol) of calcium hypophosphite and 0.57 g (0.007 mol) of sodium acetate (molar ratio of phosphorous atom of sodium hypophosphite to sodium acetate is 0.5) Except for the above, melt polycondensation was carried out in the same manner as in Synthesis Example 1 to obtain polyamide (PA4).
  • Table 2 shows the physical properties of the obtained polyamide (PA4).
  • Polyamide (PA4) had a phosphorus atom concentration of 28 ppm, a YI value of 25.0, a relative viscosity of 2.23, a number average molecular weight Mn of 18000, and Mw / Mn of 2.6.
  • Synthesis example 5 The blending amount of calcium hypophosphite is 49.25 g (0.292 mol) and the blending amount of sodium acetate is 23.95 g (0.292 mol) (molar ratio of phosphorus atom of sodium hypophosphite to sodium acetate is 0.5). Except for the above, melt polycondensation was carried out in the same manner as in Synthesis Example 1, but the increase in molecular weight during melt polymerization was large and it was difficult to control the molecular weight. Table 2 shows the physical properties of the obtained polyamide (PA5).
  • Polyamide (PA5) had a phosphorus atom concentration of 1210 ppm, a YI value of 0.5, a relative viscosity of 2.42, a number average molecular weight Mn of 40000, and Mw / Mn of 2.7.
  • Example 101 Polyamide (PA1) dried for 7 hours at 150 ° C. under reduced pressure is supplied to the base hopper of a twin-screw extruder (trade name: TEM37BS, manufactured by Toshiba Machine Co., Ltd.) at a speed of 8 kg / h. Cylinder temperature: 280 to 300 Extruded at a temperature of 150 ° C. and a screw speed of 150 rpm, 100 parts by mass of glass fiber (manufactured by Nippon Electric Glass Co., Ltd., trade name: 03T-296GH) is side-fed at a rate of 2 kg / h to 100 parts by mass of polyamide (PA1). Pellets were made. The obtained resin pellets were injection molded at a cylinder temperature of 300 ° C.
  • Example 102 A test piece for evaluation was obtained in the same manner as in Example 101 except that the polyamide (PA1) was changed to the polyamide (PA2). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 103 A test piece for evaluation was obtained in the same manner as in Example 101 except that the polyamide (PA1) was changed to the polyamide (PA3). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 104 A test piece for evaluation was obtained in the same manner as in Example 101 except that the blending amount of the glass fiber was changed from 100 parts by mass to 50 parts by mass. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 105 A test piece for evaluation was obtained in the same manner as in Example 101 except that 100 parts by mass of glass fiber was changed to 60 parts by mass of glass fiber and 40 parts by mass of calcium carbonate. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 106 A test piece for evaluation was obtained in the same manner as in Example 104 except that the glass fiber was changed to carbon fiber. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 107 A test piece for evaluation was obtained in the same manner as in Example 101 except that the blending amount of the glass fiber was changed from 100 parts by mass to 5 parts by mass. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 108 A test piece for evaluation was obtained in the same manner as in Example 101 except that the blending amount of the glass fiber was changed from 100 parts by mass to 180 parts by mass. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Comparative Example 103 Polyamide 9T (manufactured by Kuraray Co., Ltd., trade name: Kuraray Genesta G2330, containing 56% by mass of glass fiber) is used with an injection molding machine (manufactured by FANUC, trade name: FANUC i100). Test specimens for evaluation were obtained by injection molding at 0 ° C. A test specimen for evaluation was obtained. The physical property of the molded product was measured for the obtained test piece. Table 3 shows the evaluation result.
  • Comparative Example 104 A test specimen for evaluation was obtained in the same manner as in Example 101 except that the polyamide (PA1) was changed to the polyamide (PA4). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Comparative Example 105 A test specimen for evaluation was obtained in the same manner as in Example 101 except that the polyamide (PA1) was changed to the polyamide (PA5). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Comparative Example 106 A test piece for evaluation was obtained in the same manner as in Example 101 except that the blending amount of the glass fiber was changed from 100 parts by mass to 0.5 part by mass. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Comparative Example 107 An attempt was made to produce a resin composition pellet in the same manner as in Example 101 except that the blending amount of the glass fiber was changed from 100 parts by mass to 250 parts by mass. However, since the fluff was generated in the strand, the resin composition pellet was produced. I could't.
  • Comparative Example 108 A test piece for evaluation was prepared for polyamide (PA1) not containing glass fiber. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 3.
  • Example 107 and Comparative Examples 103, 106, and 108 the measurement about a high temperature bending elastic modulus is not performed.
  • the molded articles of Comparative Examples 101 to 103 using polyamide 6T, polyamide 46 or polyamide 9T had low mechanical strength and elastic modulus and high equilibrium water absorption.
  • Nylon 46 resin which has been studied as a resin for electronic parts, is a resin obtained from tetramethylenediamine and adipic acid, and has excellent heat resistance and mechanical properties.
  • the nylon 46 resin has excellent heat resistance and mechanical properties in the dry state, but the water absorption is higher than that of ordinary polyamide resin in actual use, so the heat resistance and mechanical properties are lower than those. growing.
  • the higher the water absorption the larger the dimensional change, the dimensional accuracy is not always satisfactory, and it is difficult to use for parts that require high accuracy.
  • damage called a bulge appears on the surface of the component, and the performance and reliability of the component are significantly lowered.
  • the molded products of Comparative Examples 101 to 103 using polyamide 6T, polyamide 46, or polyamide 9T had low adhesion to the metal layer.
  • the polyamide (PA4) having a phosphorus atom concentration of 50 ppm or less has a large YI value, the molded product obtained from the polyamide is yellowish, and its commercial value is reduced ( Comparative Example 104).
  • the polyamide (PA5) having a phosphorus atom concentration of 1000 ppm or more has a large molecular weight increase during melt polymerization, and the molecular weight cannot be controlled (Comparative Example 105).
  • the resin composition of Comparative Example 107 to which the filler (B) was excessively added could not be used for pellets because fluffing occurred in the strands when the pellets were formed.
  • the molded articles of Examples 101 to 108 have a low water absorption rate and are excellent in mechanical properties and heat resistance.
  • the polyamides (PA1) to polyamides (PA3) used in Examples 101 to 108 can be controlled in molecular weight during melt polymerization, and the obtained resin is hardly colored and molded. It was excellent in appearance when molded.
  • the molded articles of Examples 101 to 108 using the polyamide resin have a low water absorption and are excellent in flame retardancy, mechanical properties, and heat resistance.
  • the molded articles of Examples 101 to 108 were excellent in adhesive strength with the metal layer.
  • Example 201 Polyamide (PA1) and polytetrafluoroethylene resin (PTFE, manufactured by Kitamura Co., Ltd., trade name: KTL610) dried at 150 ° C. for 7 hours under reduced pressure were blended in the composition shown in Table 3 and blended with a tumbler.
  • Glass fiber (Nippon Electric Glass Co., Ltd.) was supplied to the base hopper of a shaft extruder (trade name: TEM37BS, manufactured by Toshiba Machine Co., Ltd.) at a speed of 8 kg / h, extruded at a cylinder temperature of 280 to 300 ° C., and a screw speed of 150 rpm.
  • a resin pellet was prepared by side-feeding a product manufactured by company, trade name: 03T-296GH) at a rate of 2 kg / h.
  • the obtained resin pellets were injection molded at a cylinder temperature of 300 ° C. and a mold temperature of 120 ° C. with an injection molding machine (FANUC, product name: FANUC i100) to obtain a test piece for evaluation.
  • FANUC injection molding machine
  • the physical property of the molded product was measured for the obtained test piece.
  • the evaluation results are shown in Table 4.
  • Example 202 A test piece for evaluation was obtained in the same manner as in Example 201 except that the polyamide (PA1) was changed to the polyamide (PA2). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 4.
  • Example 203 A test specimen for evaluation was obtained in the same manner as in Example 201 except that the polyamide (PA1) was changed to the polyamide (PA3). The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 4.
  • Example 204 A test piece for evaluation was obtained in the same manner as in Example 201 except that the glass fiber was changed to a carbon fiber PAN-based carbon fiber chopped fiber. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 4.
  • Example 206 A test piece for evaluation was obtained in the same manner as in Example 205 except that the amount of glass fiber was changed from 33 parts by mass to 5 parts by mass and the amount of carbon fiber was changed from 33 parts by mass to 5 parts by mass. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 4.
  • Example 207 A test piece for evaluation was obtained in the same manner as in Example 206 except that the amount of glass fiber was changed from 5 parts by weight to 180 parts by weight, and the amount of carbon fiber was changed from 5 parts by weight to 20 parts by weight. The physical property of the molded product was measured for the obtained test piece. The evaluation results are shown in Table 4.
  • Comparative Example 201 Polyamide 6T (manufactured by Solvay, trade name: Amodel) and polytetrafluoroethylene resin (manufactured by Kitamura Co., Ltd., trade name: KTL610) are blended in the composition shown in Table 4 and blended with a tumbler, and a twin screw extruder. (Toshiba Machine Co., Ltd., trade name: TEM37BS) is supplied to the base hopper at a speed of 8 kg / h, extruded at a cylinder temperature of 300 to 340 ° C.
  • Comparative Example 202 Polyamide 46 (manufactured by DSM, trade name: Stanyl) and polytetrafluoroethylene resin (manufactured by Kitamura Co., Ltd., trade name: KTL610) were blended in the composition shown in Table 4 and blended with a tumbler, and a twin screw extruder. (Toshiba Machine Co., Ltd., trade name: TEM37BS) is supplied to the base hopper at a speed of 8 kg / h, extruded at a cylinder temperature of 290-310 ° C.
  • TEM37BS Toshiba Machine Co., Ltd., trade name: TEM37BS
  • the polyamide resin composition of the present invention is excellent in heat resistance, has low water absorption that affects dimensional stability, has excellent physical properties such as mechanical properties, and has good color tone and less gel. Therefore, the polyamide resin composition of the present invention can be suitably used for various applications such as transportation equipment parts such as automobile parts, electrical and electronic equipment parts, and machine parts. Moreover, it is excellent in slidability and can be suitably used as a sliding component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)

Abstract

 パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含有してなるポリアミド(A)及び充填剤(B)を含むポリアミド樹脂組成物であって、 ポリアミド(A)が、リン原子濃度が50~1000ppmかつJIS-K-7105の色差試験におけるYI値が10以下であるポリアミドであり、ポリアミド(A)100質量部に対して充填剤(B)を1~200質量部含む、ポリアミド樹脂組成物。

Description

ポリアミド樹脂組成物
 本発明は、ポリアミド樹脂組成物に関し、詳しくは、パラキシリレンジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位とを主成分として含有してなるポリアミド樹脂及び特定量の充填剤を含むポリアミド樹脂組成物に関する。
 ナイロン6、ナイロン66に代表される脂肪族ポリアミドは、耐熱性、耐薬品性、剛性、耐磨耗性、成形性等の優れた性質を持つために、エンジニアリングプラスチックとして多くの用途に使用されている。その一方で、自動車部品等の高温に晒されるような用途における耐熱性、吸水による寸法安定性が低い等の問題点が指摘されている。特に近年、表面実装技術を利用する電気電子部品用途、エンジンルーム内の電装部品等の自動車部品用途では耐熱性への要求が高くなる傾向にあり、従来の脂肪族ポリアミドを使用することは困難となってきており、耐熱性、寸法安定性、機械物性に優れたポリアミドの開発が望まれている。
 また、脂肪族ポリアミドは、耐磨耗性に優れるだけでなく、無潤滑状態でも焼き付きが起こりにくく、また騒音が小さく、軽量性、耐蝕性にも優れているため、軸受け、歯車、ブッシュ、スペーサー、ローラー、カム等の摺動部品に数多く使用されている。その一方で、従来の脂肪族ポリアミドを定常的に高い摩擦の生じるような過酷な条件下で使用した場合、摩擦熱による温度上昇で溶融が起こると同時に著しい磨耗を起こし、定常の摩擦運動継続が困難となる。また、従来の脂肪族ポリアミドは吸水による寸法変化、機械物性が低下するという問題点があり、改善が望まれている。
 このような要求に対し、従来のポリアミドよりも更に高融点の、1,6-ヘキサンジアミンとテレフタル酸とからなるポリアミドを主成分とした6T系ポリアミドと呼ばれる半芳香族ポリアミドも、エンジニアリングプラスチックとして使用されている(例えば特許文献1を参照)。しかしながら、1,6-ヘキサンジアミンとテレフタル酸とからなるポリアミドは、融点が370℃付近であり、溶融成形をポリマーの分解温度以上で実施する必要があり実用に耐え得るものではなかった。そのため実際には、アジピン酸やイソフタル酸、ε-カプロラクタム等を30~40モル%程度共重合することにより、ポリアミドとして実使用可能な温度領域である280~320℃程度まで低融点化した組成で実用化されている。
 このような第3成分乃至第4成分の共重合は低融点化には有効であるが、その一方で結晶化速度、到達結晶化度の低下を招き、その結果、高温下での剛性、耐薬品性、寸法安定性等の諸物性が低下するだけでなく、成形サイクルの延長に伴う生産性の低下も懸念される。また、溶融滞留時に粘度低下し易いので成形性にも難点がある。これらの問題点を解決するため、ポリマーに対してガラス繊維、炭素繊維、ガラス粉末、グラファイト粉末等の充填剤を配合することにより改善することが提案されている(例えば特許文献2及び3を参照)。これにより上記問題点はある程度解消されるが、剛性、耐薬品性、寸法安定性等の諸物性を必ずしも満足させるものではなかった。
 6T系ポリアミド以外の高融点ポリアミドとして、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンの混合物とテレフタル酸とからなる9T系ポリアミドと呼ばれる半芳香族ポリアミドが提案されている(例えば特許文献4を参照)。9T系ポリアミドは、上記半芳香族ポリアミドである6T系ポリアミドに比べて高い結晶化速度と到達結晶化度及び低吸水性を有して実用化されているが、上記問題と同様に共重合による諸物性の低下、芳香族ジカルボン酸を主成分とする影響として溶融流動性が低下するという問題は解決できていなかった。
特開昭60-158220号公報 特公昭64-11073号公報 特公平3-56576号公報 特開平7-228776号公報
 本発明の課題は、耐熱性、機械物性、低吸水性、寸法安定性等の諸物性に優れたポリアミド樹脂組成物を提供することにある。
 また、本発明の課題は、摺動特性に優れると共に、耐熱性、機械物性、成形性等の諸物性に優れたポリアミド樹脂組成物を提供することにある。
 本発明者らは鋭意研究を重ねた結果、パラキシリレンジアミンを主成分とするジアミン成分と炭素数6~18の直鎖脂肪族ジカルボン酸を主成分とするジカルボン酸成分とからなるポリアミドに充填剤を特定量配合した樹脂組成物が耐熱性、低吸水性、耐薬品性、機械物性、寸法安定性等の諸物性に優れることを見出した。また、本発明者らは鋭意研究を重ねた結果、パラキシリレンジアミンを主成分とするジアミン成分と炭素数6~18の直鎖脂肪族ジカルボン酸を主成分とするジカルボン酸成分からなるポリアミド、特定の繊維状充填剤及び特定の固体潤滑剤を含むポリアミド樹脂組成物が高荷重、高速度条件においても良好な摺動性を維持可能であることをも見出した。
 本発明は、下記[1]~[3]に関する。
[1]パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含有してなるポリアミド(A)及び充填剤(B)を含むポリアミド樹脂組成物であって、
 ポリアミド(A)が、リン原子濃度が50~1000ppmかつJIS-K-7105の色差試験におけるYI値が10以下であるポリアミドであり、ポリアミド(A)100質量部に対して充填剤(B)を1~200質量部含む、ポリアミド樹脂組成物。
[2]パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含有してなるポリアミド(A)、繊維状充填剤(B1)及び固体潤滑剤(C)を含むポリアミド樹脂組成物であって、
 ポリアミド(A)が、リン原子濃度が50~1000ppmかつJIS-K-7105の色差試験におけるYI値が10以下であるポリアミドであり、ポリアミド(A)100質量部に対して繊維状充填剤(B1)5~200質量部、固体潤滑剤(C)5~50質量部を含む、ポリアミド樹脂組成物。
[3]前記[1]又は[2]に記載のポリアミド樹脂組成物を含んでなる成形品。
 本発明の成形材料用ポリアミド樹脂組成物は、耐熱性、機械物性(力学強度、靭性、耐衝撃性)、低吸水性、成形性等の諸物性に優れ、フィルム、シート、チューブの形態に成形加工可能であり、種々の産業、工業及び家庭用品に好適に用いることができる。具体的には、高い耐熱性や寸法精度が要求される種々の電子部品や表面実装部品、高い結晶化速度、高い到達結晶化度や低吸水性が要求される小型・薄肉の成形品、耐熱性能や剛性が要求される自動車の前照灯反射板、エンジンルーム部品等の高熱条件で使用される種々の部品に好適に使用することができる。また、本発明のポリアミド樹脂組成物は、摺動特性にも優れるため、軸受け、歯車、ブッシュ、スペーサー、ローラー、カム等の各種摺動材に好適に用いることができる。
 本発明のポリアミド樹脂組成物は、後述するジアミン単位とジカルボン酸単位とを含有してなるポリアミド(A)及び充填剤(B)を含有する。ここで、ジアミン単位とは原料ジアミン成分に由来する構成単位を指し、ジカルボン酸単位とは原料ジカルボン酸成分に由来する構成単位を指す。
<ポリアミド(A)>
 ポリアミド(A)は、パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含有してなる。
 ジアミン単位中のパラキシリレンジアミン単位は、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が最も好ましい。ジカルボン酸単位中の炭素数6~18の直鎖脂肪族ジカルボン酸単位は、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が最も好ましい。
 ポリアミド(A)は、パラキシリレンジアミンを70モル%以上含むジアミン成分と炭素数6~18の直鎖脂肪族ジカルボン酸を70モル%以上含むジカルボン酸成分とを重縮合させることにより得られる。
 ポリアミド(A)の原料のジアミン成分は、パラキシリレンジアミンを70モル%以上含み、80モル%以上であることが好ましく、90モル%以上がより好ましく、100モル%が特に好ましい。ジアミン成分中のパラキシリレンジアミンを70モル%以上とすることで、得られるポリアミドは高融点、高結晶性を示し、耐熱性、耐薬品性等に優れ、低い吸水性を有するポリアミドとして種々の用途に好適に用いることができる。原料のジアミン成分中のパラキシリレンジアミン濃度が70モル%未満の場合、耐熱性、耐薬品性が低下し、吸水性が増大する。
 パラキシリレンジアミン以外の原料ジアミン成分としては、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、2-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン、メタキシリレンジアミン等の芳香族ジアミン、あるいはこれらの混合物が例示できるが、これらに限定されるものではない。
 ポリアミド(A)の原料のジカルボン酸成分は、炭素数6~18の直鎖脂肪族ジカルボン酸を70モル%以上含み、80モル%以上が好ましく、90モル%以上がより好ましく、100モル%が特に好ましい。炭素数6~18の直鎖脂肪族ジカルボン酸を70モル%以上とすることで、得られるポリアミドは溶融加工時の流動性、高い結晶性、低吸水率を示し、耐熱性、耐薬品性、成型加工性、寸法安定性に優れるポリアミドとして種々の用途に好適に用いることが可能となる。原料ジカルボン酸成分中の炭素数6~18の直鎖脂肪族ジカルボン酸濃度が70モル%未満の場合、耐熱性、耐薬品性、成型加工性が低下する。
 炭素数6~18の直鎖脂肪族ジカルボン酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸等が例示できる。中でもアゼライン酸、セバシン酸、ウンデカン二酸及びドデカン二酸からなる群から選ばれる少なくとも1種が好ましく、特に好ましくはセバシン酸及び/又はアゼライン酸である。炭素数が5以下の脂肪族ジカルボン酸を使用した場合、ジカルボン酸の融点、沸点が低いために重縮合反応時に反応系外に留出してジアミンとジカルボン酸との反応モル比が崩れ、得られるポリアミドの機械物性や熱安定性が低くなる。また、炭素数が19以上の脂肪族ジカルボン酸を使用した場合、ポリアミドの融点が大きく低下し、耐熱性が得られなくなる。
 炭素数6~18の直鎖脂肪族ジカルボン酸以外の原料ジカルボン酸としては、マロン酸、コハク酸、2-メチルアジピン酸、トリメチルアジピン酸、2,2-ジメチルグルタル酸、2,4-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3,3-ジエチルコハク酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、あるいはこれらの混合物が例示できるが、これらに限定されるものではない。
 前記のジアミン成分及びジカルボン酸成分以外にも、本発明の効果を損なわない範囲で、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類もポリアミド(A)を構成する共重合成分として使用できる。
 ポリアミド(A)の重縮合時に分子量調整剤として、ポリアミドの末端アミノ基又はカルボキシル基と反応性を有する単官能化合物を少量添加してもよい。使用できる化合物としては酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸等の脂肪族モノカルボン酸、安息香酸、トルイル酸、ナフタレンカルボン酸等の芳香族モノカルボン酸、ブチルアミン、アミルアミン、イソアミルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン等の脂肪族モノアミン、ベンジルアミン、メチルベンジルアミン等の芳香脂肪族モノアミン、あるいはこれらの混合物が例示できるがこれらに限定されるものではない。
 ポリアミド(A)の重縮合時に分子量調整剤を使用する場合、好適な使用量については、用いる分子量調整剤の反応性や沸点、反応条件等により異なるものとなるが、通常、原料ジアミン成分とジカルボン酸成分との合計に対して0.1~10質量%程度である。
 ポリアミド(A)の重縮合系内には、重縮合反応の触媒、重縮合計内に存在する酸素によるポリアミドの着色を防止する酸化防止剤としてリン原子含有化合物を添加することが好ましい。
 リン原子含有化合物としては、次亜リン酸のアルカリ土類金属塩、亜リン酸のアルカリ金属塩、亜リン酸のアルカリ土類金属塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩、ピロリン酸のアルカリ金属塩、ピロリン酸のアルカリ土類金属塩、メタリン酸のアルカリ金属塩及びメタリン酸のアルカリ土類金属塩が挙げられる。
 具体的には、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸ナトリウム、亜リン酸水素ナトリウム、亜リン酸カリウム、亜リン酸水素カリウム、亜リン酸リチウム、亜リン酸水素リチウム、亜リン酸マグネシウム、亜リン酸水素マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸マグネシウム、リン酸水素二マグネシウム、リン酸二水素マグネシウム、リン酸カルシウム、リン酸水素二カルシウム、リン酸二水素カルシウム、リン酸リチウム、リン酸水素二リチウム、リン酸二水素リチウム、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸マグネシウム、ピロリン酸カルシウム、ピロリン酸リチウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸マグネシウム、メタリン酸カルシウム、メタリン酸リチウム、あるいはこれらの混合物が例示できる。これらの中でも、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸水素カルシウム、リン酸二水素カルシウムが好ましく、次亜リン酸カルシウムがより好ましい。なお、これらのリン原子含有化合物は水和物であってもよい。
 ポリアミド(A)の重縮合系内に添加するリン原子含有化合物の添加量は、ポリアミド(A)中のリン原子濃度換算で50~1000ppmとなる量であり、50~400ppmであることが好ましく、60~350ppmであることがより好ましく、70~300ppmであることが特に好ましい。ポリアミド(A)中のリン原子濃度が50ppm未満の場合は、酸化防止剤としての効果を十分に得ることができず、ポリアミド樹脂組成物が着色する傾向にある。また、ポリアミド(A)中のリン原子濃度が1000ppmを超える場合は、ポリアミド樹脂組成物のゲル化反応が促進され、リン原子含有化合物に起因すると考えられる異物が成形品中に混入する場合があり、成形品の外観が悪化する傾向がある。
 ポリアミド(A)中のリン原子濃度は、次亜リン酸のアルカリ土類金属塩、亜リン酸のアルカリ金属塩、亜リン酸のアルカリ土類金属塩、リン酸のアルカリ金属塩、リン酸のアルカリ土類金属塩、ピロリン酸のアルカリ金属塩、ピロリン酸のアルカリ土類金属塩、メタリン酸のアルカリ金属塩及びメタリン酸のアルカリ土類金属塩からなる群から選ばれる少なくとも1種のリン原子含有化合物に由来するものであることが好ましく、次亜リン酸カルシウム、次亜リン酸マグネシウム、亜リン酸カルシウム、リン酸二水素カルシウムからなる群から選ばれる少なくとも1種に由来するものであることがより好ましい。
 また、ポリアミド(A)の重縮合系内には、リン原子含有化合物と併用して重合速度調整剤を添加することが好ましい。重縮合中のポリアミドの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、ポリアミドのゲル化を招くおそれがあるため、アミド化反応速度を調整するためにも重合速度調整剤を共存させることが好ましい。
 重合速度調整剤としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属酢酸塩及びアルカリ土類金属酢酸塩が挙げられ、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。重合速度調整剤としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、あるいはこれらの混合物が挙げられる。これらの中でも、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、酢酸ナトリウム、酢酸カリウムが好ましく、水酸化ナトリウム、酢酸ナトリウム、酢酸カリウムがより好ましい。
 重縮合系内に重合速度調整剤を添加する場合、アミド化反応の促進と抑制のバランスの観点から、リン原子含有化合物のリン原子と重合速度調整剤とのモル比(=[重合速度調整剤の物質量]/[リン原子含有化合物のリン原子の物質量])が0.3~1.0となるようにすることが好ましく、さらには0.4~0.95であることが好ましく、0.5~0.9であることが特に好ましい。
 ポリアミド(A)の重合方法としては、(a)溶融状態における重縮合、(b)溶融状態で重縮合して低分子量のポリアミドを得た後に固相状態で加熱処理するいわゆる固相重合、(c)溶融状態で重縮合して低分子量のポリアミドを得た後混練押出機を使用して溶融状態で高分子量化する押出重合等の任意の方法を用いることができる。
 溶融状態における重縮合方法は特に限定されるものではないが、ジアミン成分とジカルボン酸成分とのナイロン塩の水溶液を加圧下で加熱し、水及び縮合水を除きながら溶融状態で重縮合させる方法、ジアミン成分を溶融状態のジカルボン酸に直接加えて、常圧又は水蒸気加圧雰囲気下で重縮合する方法を例示できる。ジアミンを溶融状態のジカルボン酸に直接加えて重合する場合、反応系を均一な液状状態で保つためにジアミン成分を溶融ジカルボン酸相に連続的に加え、生成するオリゴアミド及びポリアミドの融点を下回らないように反応温度を制御しつつ重縮合が進められる。上記の重縮合方法によって製品を得るにあたり、品種の切り替え等で装置内を洗浄する場合にはトリエチレングリコール、エチレングリコール、メタキシリレンジアミン等を使用することができる。
 溶融重縮合で得られたポリアミドは一旦取り出され、ペレット化された後、乾燥して使用される。また更に重合度を高めるために固相重合してもよい。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置及びナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミドの固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
 ポリアミド(A)は着色が少なく、ゲルの少ないものである。また、ポリアミド(A)は、JIS-K-7105の色差試験におけるYI値が10以下であり、6以下が好ましく、5以下がより好ましく、1以下が更に好ましい。YI値が10を超えるポリアミド(A)を含有する樹脂組成物から得られる成形品は、黄色味がかったものとなり、その商品価値が低くなるため好ましくない。
 ポリアミドの重合度の指標としてはいくつかあるが、相対粘度は一般的に使われるものである。ポリアミド(A)の相対粘度は、成形品の外観や成形加工性の観点から、1.5~5.0であることが好ましく、1.8~4.2であることがより好ましく、1.9~3.5であることがより好ましく、2.0~3.0であることが更に好ましい。なお、ここで言う相対粘度は、ポリアミド1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、下記式(1)で示される。
   相対粘度=t/t0 ・・・(1)
 ポリアミド(A)は、ゲル浸透クロマトグラフィー(GPC)測定における数平均分子量(Mn)が10,000~50,000の範囲であることが好ましく、12,000~40,000の範囲であることがより好ましく、14,000~30,000の範囲であることが更に好ましい。Mnを上記範囲にすることで、成形品とした場合の機械的強度が安定し、また成形性の上でも加工性良好となる適度な溶融粘度を持つものとなる。
 また、分散度(重量平均分子量/数平均分子量=Mw/Mn)は1.5~5.0の範囲が好ましく、1.5~3.5の範囲がより好ましい。分散度を上記範囲とすることにより溶融時の流動性や溶融粘度の安定性が増し、溶融混練や溶融成形の加工性が良好となる。また靭性が良好であり、耐吸水性、耐薬品性、耐熱老化性といった諸物性も良好となる。
<充填剤(B)>
 本発明のポリアミド樹脂組成物に用いられる充填剤(B)は、好ましくは繊維状充填剤(B1)及び無機充填剤(B2)及びからなる群から選ばれる少なくとも1種である。
 繊維状充填剤(B1)としては有機系及び無機系の繊維状充填剤が挙げられる。有機系の繊維状充填剤としては、アラミド繊維等の全芳香族ポリアミド繊維、セルロース繊維等を例示できる。無機系の繊維状充填剤としては、ガラス繊維、PAN系又はピッチ系炭素繊維、ホウ素繊維等を例示できる。また、鋼、SUS、黄銅、銅等の金属繊維や、チタン酸カリウム、ホウ酸アルミニウム、石膏、炭酸カルシウム、硫酸マグネシウム、セピオライト、ゾノトライト、ワラストナイト等の無機化合物ウィスカーもしくは針状結晶等を例示することもできる。
 ガラス繊維としては、無アルカリホウケイ酸ガラス繊維や、アルカリ含有C-ガラス繊維が挙げられる。その大きさは特に制限されず、直径3~30μmの繊維を使用することができる。また、長さ5~50mmの長い繊維を使用することもでき、長さ0.05~5mmの短い繊維を使用することもできる。
 繊維状充填剤(B1)としては、ガラス繊維、炭素繊維、全芳香族ポリアミド繊維、セルロース繊維、金属繊維、及び無機化合物のウィスカーもしくは針状結晶からなる群から選ばれる少なくとも1種が好ましく、ガラス繊維、炭素繊維及び無機化合物のウィスカーもしくは針状結晶からなる群から選ばれる少なくとも1種がより好ましい。
 特に、本発明のポリアミド樹脂組成物が摺動部品用である場合、充填剤(B)として、ガラス繊維、炭素繊維及び無機化合物のウィスカーもしくは針状結晶からなる群から選ばれる少なくとも1種の繊維状充填剤(B1)が好適に用いられ、さらにガラス繊維及び/又は炭素繊維が特に好適に用いられる。その場合、繊維状充填剤(B1)の他に、無機粉末状フィラー等を、成型精度や表面平滑性のために併用することも可能である。
 無機充填剤(B2)としては、粉末状等の各種形態を有する充填剤を用いることができ、平均粒子径、形状に特に制限はない。具体的には、タルク、マイカ、ガラスフレーク、ウォラストナイト、モンモリロナイト、チタン酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、セピオライト、ゾノライト、窒化ホウ素、ホウ酸アルミニウム、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、シリカ、カオリン、クレー、酸化チタン、酸化亜鉛、水酸化マグネシウム、水酸化アルミニウム、あるいはこれらの混合物が例示できる。中でも、無機充填剤(B2)として炭酸カルシウムが好適に用いられる。また、無機充填剤(B2)は、耐候性および寸法安定性の向上の観点から、繊維状充填剤(B1)と併用することも可能である。
 充填剤(B)は、無処理のまま使用してもよいが、ポリアミド(A)との界面接着性を向上させる目的や分散性を向上させる目的で、各種シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類あるいは他の界面活性剤等で表面を処理したものを使用することができる。シランカップリング剤としては、特にアミノシラン系のカップリング剤が好ましい。また、充填剤(B)が繊維状充填剤(B1)である場合、クロス状等に二次加工されていてもよく、ハンドリング性改良のための収束や収束剤処理が施されていてもよい。
 充填剤(B)の配合量は、ポリアミド(A)100質量部に対して1~200質量部であり、好ましくは5~200質量部、より好ましくは10~150質量部、更に好ましくは20~100質量部である。ポリアミド樹脂100質量部に対し、無機充填剤の配合量が1質量部未満では機械的強度、熱的性質等の改善効果が少なく、また、無機充填剤の配合量が200質量部を超えると成形時の流動性に劣り成形性が低下する。特に、充填剤(B)が繊維状充填剤(B1)である場合、繊維状充填剤(B1)の配合量は、ポリアミド(A)100質量部に対して5~200質量部が好ましく、より好ましくは10~150質量部、更に好ましくは20~100質量部である。
<添加剤>
 本発明のポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、高分子材料に一般に用いられている各種添加剤を配合してもよい。具体的には、酸化防止剤、着色剤、光安定化剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、結晶化核剤、可塑剤、難燃剤、固体潤滑剤、離型剤、帯電防止剤、着色防止剤、ゲル化防止剤等が例示できるが、これらに限定されることなく、種々の材料を配合することができる。
(固体潤滑剤)
 本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、固体潤滑剤(C)を含有することが好ましい。固体潤滑剤の具体例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体等のフッ素系樹脂、ポリエチレン等のポリオレフィン系樹脂、黒鉛、カーボンブラック、二硫化モリブデン、三酸化モリブデン、アラミド樹脂等の全芳香族ポリアミド樹脂、シリコーン、銅鉛合金、二硫化タングステン、硫酸カルシウム、硫酸マグネシウム、窒化ホウ素等の粉末あるいはこれらの混合物が例示できるがこれらに限定されるものではない。
 これらの中でもフッ素系樹脂、黒鉛、二硫化モリブデン、導電性もしくは顔料用粒状カーボンブラック、アラミド樹脂及びチッ化ホウ素が好ましく、フッ素系樹脂、導電性もしくは顔料用粒状カーボンブラック及び黒鉛が更に好ましく、フッ素系樹脂もしくは黒鉛が特に好ましい。フッ素系樹脂としては、ポリテトラフルオロエチレンが特に好ましい。
 本発明のポリアミド樹脂組成物における固体潤滑剤の配合量は、使用する固体潤滑剤の種類によって異なるが、本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、摺動性及び成形品の機械物性の観点から、ポリアミド(A)100質量部に対して、好ましくは5~50質量部、より好ましくは10~40質量部である。
(離型剤)
 離型剤としては、具体的には、長鎖アルコール脂肪酸エステル、分岐アルコール脂肪酸エステル、グリセライド、多価アルコール脂肪酸エステル、高分子複合エステル、高級アルコール、ケトンワックス、モンタンワックス、シリコンオイル、シリコンガム、あるいはこれらの混合物が例示できるがこれらに限定されるものではない。
 本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、成形時の離型性を向上させるため、離型剤を含有することが好ましい。本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、摺動性改良の効果も併せ持つように比較的多く添加することが好ましい。
 本発明のポリアミド樹脂組成物における離型剤の配合量は、樹脂組成物の各種性能を損なわない範囲であれば特に制限無く使用でき、一般的には、ポリアミド(A)100質量部に対して好ましくは0.01~5質量部、より好ましくは0.1~2質量部である。本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、ポリアミド(A)100質量部に対して好ましくは0.05~7質量部、より好ましくは0.5~5質量部である。
(酸化防止剤)
 酸化防止剤としては、銅系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等を例示することができる。
 また、本発明のポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、PPE(ポリフェニレンエーテル)、ポリフェニレンスルフィド、変性ポリオレフィン、PES(ポリエーテルスルホン)、PEI(ポリエーテルイミド)、溶融液晶高分子等の、耐熱性の熱可塑性樹脂及びこれらの樹脂の変性物等を配合することができる。本発明のポリアミド樹脂組成物が摺動部品用樹脂組成物である場合、摺動性及び成形品の機械物性の観点から、これら高融点の熱可塑性樹脂を含有することが好ましい。
(ポリフェニレンスルフィド)
 本発明のポリアミド樹脂組成物に配合しうるポリフェニレンスルフィドは、下記一般式(I)で示される構造単位を全構造単位の70モル%以上、好ましくは90モル%以上有する重合体である。
Figure JPOXMLDOC01-appb-C000001
 本発明のポリアミド樹脂組成物に配合しうるポリフェニレンスルフィドとしては、前記一般式(I)で示される構造単位を単独で有する重合体の他に、下記一般式(II)~(VI)で示され構造単位を例示でき、これらのうち1種又は2種以上を含んでもよい。
Figure JPOXMLDOC01-appb-C000002



 ポリフェニレンスルフィドは、さらに下記一般式(VII)で示されるような三官能の構造単位を、全構造単位の10モル%以下の量を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(I)~(VII)で示される構成単位は、芳香族環にアルキル基、ニトロ基、フェニル基又はアルコキシル基等の置換基を有していてもよい。
 本発明のポリアミド樹脂組成物に配合しうるポリフェニレンスルフィドとしては、フローテスターを使用して、荷重20kg、温度300℃で測定した粘度が、好ましくは100~10000poise、より好ましくは200~5000poise、更に好ましくは300~3000poiseの範囲内にあることが好ましい。前記ポリフェニレンスルフィドは、任意の方法により調製することができる。
 本発明のポリアミド樹脂組成物において、及び前記ポリアミド(A)と前記ポリフェニレンスルフィドとの質量比は、耐熱性の観点から、好ましくは5:95~99.9:0.1、より好ましくは5:95~95:5、更に好ましくは20:80~80:20である。
(変性ポリオレフィン)
 変性ポリオレフィンとしては、ポリオレフィンをα,β-不飽和カルボン酸あるいはそのエステル、金属塩誘導体で共重合により改質したものや、カルボン酸又は酸無水物等をポリオレフィンにグラフト導入して改質したものが使用できる。具体的にはエチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、エチレン・1-デゼン共重合体、プロピレン・エチレン共重合体、プロピレン・1-ブテン共重合体、プロピレン・4-メチル-1-ペンテン共重合体、プロピレン・1-ヘキセン共重合体、プロピレン・1-オクテン共重合体、プロピレン・1-デゼン共重合体、プロピレン・1-ドデゼン共重合体、エチレン・プロピレン・1,4-ヘキサジエン共重合体、エチレン・プロピレン・ジシクロペンタジエン共重合体、エチレン・1-ブテン・1,4-ヘキサジエン共重合体、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体等が例示できるがこれらに限定されるものではない。
 本発明のポリアミド樹脂組成物において及び、変性ポリオレフィンの配合量は、機械的強度、耐衝撃性、耐熱性等の観点から、ポリアミド(A)100質量部に対して、好ましくは0.5~50質量部、より好ましくは1~45質量部、更に好ましくは5~40質量部である。
(溶融液晶高分子)
 溶融液晶高分子としては、溶融相において液晶を形成する(すなわち光学的異方性を示す)性質を有しており、ペンタフルオロフェノール中60℃で測定した極限粘度[η]が0.1~5dl/gであることが好ましい。
 溶融液晶高分子の代表的な例として、実質的に芳香族ヒドロキシカルボン酸単位からなるポリエステル;実質的に芳香族ヒドロキシカルボン酸単位、芳香族ジカルボン酸単位及び芳香族ジオール単位からなるポリエステル;実質的に芳香族ヒドロキシカルボン酸単位、芳香族ジカルボン酸単位及び脂肪族ジオール単位からなるポリエステル;実質的に芳香族ヒドロキシカルボン酸単位、芳香族アミノカルボン酸単位からなるポリエステルアミド;実質的に芳香族ヒドロキシカルボン酸単位、芳香族ジカルボン酸単位及び芳香族ジアミン単位からなるポリエステルアミド;実質的に芳香族ヒドロキシカルボン酸単位、芳香族アミノカルボン酸単位、芳香族ジカルボン酸単位及び芳香族ジオール単位からなるポリエステルアミド;実質的に芳香族ヒドロキシカルボン酸単位、芳香族アミノカルボン酸単位、芳香族ジカルボン酸単位及び脂肪族ジオール単位からなるポリエステルアミド等が例示できるがこれらに限定されるものではない。
 溶融液晶高分子を構成する芳香族ヒドロキシカルボン酸単位としては、例えば、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸等から誘導される単位を例示できる。
 芳香族ジカルボン酸単位としては、例えば、テレフタル酸、イソフタル酸、クロロ安息香酸、4,4’-ビフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸等から誘導される単位を例示できる。
 芳香族ジオール酸単位としては、例えば、ヒドロキノン、レゾルシノール、メチルヒドロキノン、クロロヒドロキノン、フェニルヒドロキノン、4,4’-ジヒドロキシビフェニル、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニルエーテル、4,4’-ジヒドロキシビフェニルメタン、4,4’-ジヒドロキシビフェニルスルホン等から誘導される単位を例示できる。
 脂肪族ジオール酸単位としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等から誘導される単位を例示できる。
 芳香族アミノカルボン酸単位としては、例えば、p-アミノ安息香酸、m-アミノ安息香酸、6-アミノ-2-ナフトエ酸、7-アミノ-2-ナフトエ酸等から誘導される単位を例示できる。
 芳香族ジアミン単位としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン等から誘導される単位を例示できる。
 溶融液晶高分子の好ましい例としては、例えば、p-ヒドロキシ安息香酸単位及び6-ヒドロキシ-2-ナフトエ酸単位からなるポリエステル;p-ヒドロキシ安息香酸単位、4,4’-ジヒドロキシビフェニル単位及びテレフタル酸単位からなるポリエステル;p-ヒドロキシ安息香酸単位、エチレングリコール単位及びテレフタル酸単位からなるポリエステル;p-ヒドロキシ安息香酸単位、6-ヒドロキシ-2-ナフトエ酸単位及びp-アミノ安息香酸単位からなるポリエステルアミドを例示できる。
 本発明の熱可塑性樹脂組成物において、溶融液晶高分子の配合量は、成形加工性、成形品の寸法安定性や耐薬品性等の観点から、ポリアミド(A)100質量部に対して、好ましくは0.1~200質量部、より好ましくは0.5~150質量部、更に好ましくは1~100質量部である。
 本発明のポリアミド樹脂組成物の製造方法は特に限定されず、ポリアミド(A)、充填剤(B)、さらに必要に応じて固体潤滑剤(C)やその他の添加剤及び樹脂を所定量配合して溶融混練することにより製造できる。溶融混練には従来公知の方法で行うことができる。例えば単軸や2軸の押出機、バンバリーミキサー又はこれに類似した装置を用いて、一括で押出機根元から全ての材料を投入して溶融混練してもよいし、先ず樹脂成分を投入して溶融しながらサイドフィードした繊維状強化材と混練する方法により、ペレットを製造してもよい。また、異なる種類のコンパウンド物をペレット化した後にペレットブレンドしてもよいし、一部の粉末成分や液体成分を別途ブレンドする方法でもよい。
<成形品>
 本発明のポリアミド樹脂組成物は、射出成形、ブロー成形、押出成形、圧縮成形、延伸、真空成形等の公知の成形方法により、所望の形状の成形体を製造することができる。エンジニアリングプラスチックとして成形品のみならず、フィルム、シート、中空容器、チューブ等の形態にも成形可能であり、産業資材、工業材料、家庭用品等に好適に使用することができる。
 本発明のポリアミド樹脂組成物を含んでなる成形品としては、輸送機器部品、電気電子部品、摺動部品等の種々の用途に好適に用いることができる。
 輸送機器部品の具体例としては、エンジンマウント、エンジンカバー、トルクコントロールレバー、ウィンドレギュレーター、前照灯反射板、ドアミラーステイ、ラジエータータンク等の自動車用部品や、主翼等の航空機部品が挙げられる。
 電気電子部品の具体例としては、コネクタ、スイッチ、ICやLEDのハウジング、ソケット、リレー、抵抗器、コンデンサー、キャパシター、コイルボビン等のプリント基板に実装する電気電子部品が挙げられる。
 摺動部品の具体例としては、軸受け、歯車、ブッシュ、スペーサー、ローラー、カム等が挙げられる。
 また、前記ポリアミド樹脂組成物を成形して得られた成形体は、公知の方法、例えば真空蒸着等の方法で、表面をアルミニウム、亜鉛等の金属でコーティングし、表面に金属層を形成させることができる。金属コーティングを行う前に、コーティングを行う部分をあらかじめプライマー処理することもできる。前記ポリアミド樹脂組成物は金属層と良好な接着性を示す。
 金属被膜を形成する金属は、金属蒸着可能であれば、特に限定されず、例えば、第4族金属(Ti、Zr、Hf等)、第5族金属(V、Nb、Ta等)、第6族金属(Cr、Mo、W等)、第7族金属(Mn、Tc、Re等)、第8族金属(Fe、Ru、Os等)、第9族金属(Co、Rh、Ir等)、第10族金属(Ni、Pd、Pt)、第11族金属(Cu、Ag、Au)、第12族金属(Zn、Cd等)、第13族金属(Al、Ga、In、Tl等)、第14族金属(Ge、Sn、Pb等)、第15族金属(Sb、Bi等)等が例示される。金属酸化物被膜は、前記金属に対応する金属酸化物(例えば、酸化スズ、酸化インジウム、酸化ケイ素、酸化チタン、酸化亜鉛等)であってもよい。これらの金属は、単独で又は二種以上の合金又は複合体(酸化インジウム/酸化スズ複合体(ITO)等)として金属被膜又は金属酸化物被膜を形成できる。これらの中でも、金属被覆又は金属酸化物被覆成形品の電磁波シールド性や導電性等の点より、導電性の高い金属(Ag、Cu、Al等)が好ましく、Alが特に好ましい。
 蒸着法としては、例えば、PVD法(真空蒸着法、イオンプレーティング法、スパッタリング法、分子線エピタキシー法等)、CVD法(熱CVD法、プラズマCVD法、有機金属気相成長法(MOCVD法)、光CVD法等)、イオンビームミキシング法、イオン注入法等の気相法等が例示される。これらの蒸着法による金属被膜又は金属酸化物被膜は、単独の被膜又は二種以上の複合被膜(積層膜)であってもよい。例えば、Al被膜等を単独で形成してもよく、また、Cu被膜上にその他の金属被膜(Zn被膜、Sn被膜等)を形成してもよい。
 特に厚膜の金属被膜を形成する場合、蒸着法によって薄膜の金属被膜又は導電性の金属酸化物被膜を形成した後、電気メッキを施してもよい。電解メッキは、慣用のメッキ法により行うことができる。例えば、形成する被膜の種類に応じて、各種のメッキ浴を使用できる。例えば、クロムメッキの場合、サージェント浴、低濃度クロムメッキ浴、フッ化物添加浴(例えば、クロム酸-ケイフッ化ナトリウム-硫酸浴等)、SRHS浴、テトラクロメート浴、マイクロクラッククロムメッキ浴等を使用でき、ニッケルメッキの場合、無光沢ニッケルメッキ法(ワット浴、スルファミン酸ニッケル浴、塩化物浴等)、光沢ニッケルメッキ法(有機光沢ニッケルメッキ等)等を使用でき、銅メッキの場合、酸性浴(硫酸銅浴、ホウフッ化銅浴等)、アルカリ性浴(シアン化銅浴、ピロリン酸銅浴等)等を使用でき、亜鉛メッキの場合、例えば、ジンケート浴、アミン浴、ピロリン酸浴、硫酸浴、ホウフッ化浴、塩化物浴等を使用できる。
 このような表面に金属層を有する成形品は、ランプリフレクター、サイドモール、ラジエーターグリル、エンブレム、バンパー、ホイール、サイドミラー、放熱パネル等の自動車用部品や、配線基盤、電磁波シールド性を活かしたパソコン、携帯電話の筐体、金属薄膜抵抗体、スイッチ、コネクタ等の電気部品又は電子部品として使用することができる。
 以下実施例及び比較例により、本発明を更に詳細に説明するが本発明はこれら実施例に限定されるものではない。なお、本実施例において各種測定は以下の方法により行った。
(1)ポリアミドの相対粘度
 ポリアミド1gを精秤し、96%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から下記式(1)により相対粘度を算出した。
   相対粘度=t/t0 ・・・(1)
(2)ポリアミドのYI値
 JIS-K-7105に準じて、反射法によりYI値を測定した。YI値が高い値を示すほど、黄色く着色しているものと判断される。YI値の測定装置は、日本電色工業社製の色差測定装置(型式:Z-Σ80 Color Measuring System)を使用した。
(3)リン原子濃度
 蛍光X線分析によりリン原子濃度を測定した。測定装置は株式会社リガク製ZSXprimus(商品名)を使用した。分析条件は管球:Rh4kW、雰囲気:真空、分析窓:ポリエステルフィルム5μm、測定モード:EZスキャン、測定径:30mmφで行った。計算は株式会社リガク製ソフトによりSQX計算を行った。
(4)分子量
 ゲル浸透クロマトグラフィー(GPC)により分子量を測定した。測定装置は、昭和電工社製Shodex GPC SYSTEM-11(商品名)を使用した。溶媒にはヘキサフルオロイソプロパノール(HFIP)を用い、サンプルのポリアミド10mgを10gのHFIPに溶解させて測定に用いた。測定条件は、測定カラムとして、同社製GPC標準カラム(カラムサイズ300×8.0mmI.D.)のHFIP-806M(商品名)を2本、リファレンスカラムHFIP-800(商品名)を2本用い、カラム温度40℃、溶媒流量1.0mL/minとした。標準試料にはpMMA(ポリメタクリル酸メチル)を使用し、データ処理ソフトは同社製SIC-480II(商品名)を使用して数平均分子量(Mn)及び重量平均分子量(Mw)を求めた。
(5)成形品機械物性
 成形品の機械物性の測定は表1の条件にて行った。
Figure JPOXMLDOC01-appb-T000004
(6)平衡吸水率
 直径50mm×3mm厚円盤型の試験片について、絶乾状態の質量を秤量した後、常圧沸騰水に浸漬し、経時的な質量変化を測定し、質量変化がなくなった時点での吸水率を平衡吸水率とした。
(7)摺動性
 鈴木式摺動試験機を使用して樹脂リング対樹脂リングで摺動試験を行った。摺動面はエメリー#1200番にて研磨し、装置下側にセットした。接触面積:2cm2、面圧力:0.49MPa、速度:100m/s、摺動時間:8時間で比摩耗量の測定を行った。
(8)金属蒸着性
 試験片の表面に、真空蒸着法にてアルミニウムを蒸着させて、膜厚10μmのアルミニウム蒸着膜を形成させた。次に、アルミニウム蒸着膜に粘着テープをしっかりと貼り付けた後に剥がして、蒸着膜の剥離状態を目視にて観察した。評価は下記の基準で行った。なお、蒸着にはJEE-400(日本電子株式会社社製、商品名)を用い、真空度1Torrで蒸着を実施した。
 A:全く剥離しない、B:一部剥離する、C:剥離する
合成例1
 撹拌機、分縮器、冷却器、温度計、滴下装置及び窒素導入管、ストランドダイを備えた内容積50リットルの反応容器に、精秤したセバシン酸8950g(44.25mol)、次亜リン酸カルシウム12.54g(0.073mol)、酢酸ナトリウム6.45g(0.073mol)を秤量して仕込んだ(次亜リン酸カルシウムのリン原子と酢酸ナトリウムとのモル比は0.5)。反応容器内を十分に窒素置換した後、窒素で0.3MPaに加圧し、撹拌しながら160℃に昇温してセバシン酸を均一に溶融した。次いでパラキシリレンジアミン6026g(44.25mol)を撹拌下で170分を要して滴下した。この間、反応容器内温は281℃まで連続的に上昇させた。滴下工程では圧力を0.5MPaに制御し、生成水は分縮器及び冷却器を通して系外に除いた。分縮器の温度は145~147℃の範囲に制御した。パラキシリレンジアミン滴下終了後、0.4MPa/hの速度で降圧し、60分間で常圧まで降圧した。この間に内温は300℃まで昇温した。その後0.002MPa/minの速度で降圧し、20分間で0.08MPaまで降圧した。その後、撹拌装置のトルクが所定の値となるまで0.08MPaで反応を継続した。その後、系内を窒素で加圧し、ストランドダイからポリマーを取り出してこれをペレット化し、約13kgのポリアミド(PA1)を得た。
 得られたポリアミド(PA1)の物性値を表2に示す。ポリアミド(PA1)のリン原子濃度は315ppm、YI値は-6.5、相対粘度は2.47、数平均分子量Mnは21000、Mw/Mnは2.6であった。
合成例2
 ジカルボン酸の種類及び配合量をアゼライン酸8329g(44.25mol)に変更したこと以外は、合成例1と同様にして溶融重縮合を行い、ポリアミド(PA2)を得た。
 得られたポリアミド(PA2)の物性値を表2に示す。ポリアミド(PA2)のリン原子濃度は302ppm、YI値は-1.0、相対粘度は2.22、数平均分子量Mnは17500、Mw/Mnは2.5であった。
合成例3
 ジアミン成分を、パラキシリレンジアミン5423g(39.82mol)及びメタキシリレンジアミン603g(4.43mol)(ジアミン成分の90mol%がパラキシリレンジアミン、10mol%がメタキシリレンジアミン)に変更したこと以外は、合成例1と同様にして溶融重縮合を行い、ポリアミド(PA3)を得た。
 得られたポリアミド(PA3)の物性値を表2に示す。ポリアミド(PA3)のリン原子濃度は300ppm、YI値は-2.0、相対粘度は2.11、数平均分子量Mnは17200、Mw/Mnは2.7であった。
合成例4
 次亜リン酸カルシウムの配合量を1.19g(0.007mol)、酢酸ナトリウムの配合量を0.57g(0.007mol)(次亜リン酸カルシウムのリン原子と酢酸ナトリウムとのモル比は0.5)とした以外は合成例1と同様にして溶融重縮合を行い、ポリアミド(PA4)を得た。
 得られたポリアミド(PA4)の物性値を表2に示す。ポリアミド(PA4)のリン原子濃度は28ppm、YI値は25.0、相対粘度は2.23、数平均分子量Mnは18000、Mw/Mnは2.6であった。
合成例5
 次亜リン酸カルシウムの配合量を49.25g(0.292mol)及び酢酸ナトリウムの配合量を23.95g(0.292mol)(次亜リン酸カルシウムのリン原子と酢酸ナトリウムとのモル比は0.5)とした以外は合成例1と同様にして溶融重縮合を行ったが、溶融重合時の分子量上昇が大きく、分子量制御が困難であった。
 得られたポリアミド(PA5)の物性値を表2に示す。ポリアミド(PA5)のリン原子濃度は1210ppm、YI値は0.5、相対粘度は2.42、数平均分子量Mnは40000、Mw/Mnは2.7であった。
Figure JPOXMLDOC01-appb-T000005
実施例101
 減圧下150℃で7時間乾燥したポリアミド(PA1)を、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:280~300℃、スクリュー回転数150rpmで押出し、ポリアミド(PA1)100質量部に対しガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)100質量部を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度300℃、金型温度120℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例102
 ポリアミド(PA1)をポリアミド(PA2)に変更したこと以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例103
 ポリアミド(PA1)をポリアミド(PA3)に変更したこと以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例104
 ガラス繊維の配合量を100質量部から50質量部に変更した以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例105
 ガラス繊維100質量部を、ガラス繊維60質量部および炭酸カルシウム40質量部に変更した以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例106
 ガラス繊維を炭素繊維に変更した以外は実施例104と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例107
 ガラス繊維の配合量を100質量部から5質量部に変更した以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
実施例108
 ガラス繊維の配合量を100質量部から180質量部に変更した以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例101
 ポリアミド6T(ポリヘキサメチレンテレフタラミド、ソルヴェイ社製、商品名:Amodel)を、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:300~340℃、スクリュー回転数150rpmで押出し、樹脂100質量部に対してガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)100質量部を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度340℃、金型温度130℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例102
 ポリアミド46(ポリテトラメチレンアジパミド、DSM社製、商品名:Stanyl)を、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:290~310℃、スクリュー回転数150rpmで押出し、樹脂100質量部に対してガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)100質量部を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度310℃、金型温度120℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例103
 ポリアミド9T(クラレ株式会社製、商品名:クラレジェネスタG2330、ガラス繊維56質量%含有)について、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度320℃、金型温度140℃で射出成形し、評価用試験片を得た。評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結評価結果を表3に示す。
比較例104
 ポリアミド(PA1)をポリアミド(PA4)に変更したこと以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例105
 ポリアミド(PA1)をポリアミド(PA5)に変更したこと以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例106
 ガラス繊維の配合量を100質量部から0.5質量部に変更したこと以外は実施例101と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
比較例107
 ガラス繊維の配合量を100質量部から250質量部に変更した以外は、実施例101と同様にして樹脂組成物ペレットを作製しようと試みたが、ストランドに毛羽立ちが発生したため樹脂組成物ペレットを作製することができなかった。
比較例108
 ガラス繊維を配合しないポリアミド(PA1)について、評価用試験片を作製した。得られた試験片について成形品の物性を測定した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 なお、実施例107、並びに比較例103、106及び108については、高温曲げ弾性率についての測定を行っていない。
 表3から明らかなように、ポリアミド6T、ポリアミド46又はポリアミド9Tを用いた比較例101~103の成形品は、機械的強度及び弾性率が低く、平衡吸水率が高かった。電子部品用樹脂として従来検討されているナイロン46樹脂は、テトラメチレンジアミンとアジピン酸とから得られる樹脂であり、耐熱性に優れ機械物性にも優れるが、ナイロン6樹脂、ナイロン66樹脂等の通常のポリアミド樹脂よりもアミド基の比率が高いため吸水率が高くなるという欠点を有する。このことは、ナイロン46樹脂が乾燥状態では優れた耐熱性、機械的特性をもちながら、実使用時においては通常のポリアミド樹脂より吸水率が高いことにより耐熱性、機械特性の低下はそれらよりも大きくなる。また吸水率が高いということはそれだけ寸法変化も大きくなることから、その寸法精度は必ずしも満足のいくレベルではなく、高い精度を要求される部品には使用が困難となっている。さらに吸水状態によっては、表面実装方式で基板への実装を行なう際に部品表面にフクレと呼ばれる損傷が現れ、部品の性能及び信頼性が著しく低下してしまう。
 また、金属蒸着性についても、ポリアミド6T、ポリアミド46又はポリアミド9Tを用いた比較例101~103の成形品では、金属層との接着性は低いものであった。
 次に、リン原子濃度が50ppm以下であるポリアミド(PA4)は、YI値が大きいため、該ポリアミドから獲られる成形品は、黄色味がかったものとなり、その商品価値が低下したものとなった(比較例104)。また、リン原子濃度が1000ppm以上であるポリアミド(PA5)は、溶融重合時に分子量上昇が大きく、分子量制御ができなかった(比較例105)。
 また、充填剤(B)が過剰に添加された比較例107の樹脂組成物については、ペレットにする際にストランドに毛羽立ちが発生したため、ペレットに供することができなかった。
 これに対して、実施例101~108の成形品は、低吸水率であり、かつ機械物性、耐熱性にも優れている。
 これに対して、実施例101~108に供されたポリアミド(PA1)~ポリアミド(PA3)は、溶融重合する際に、分子量制御が可能であり、さらに得られた樹脂の着色はほとんどなく、成形品成形された際に外観に優れたものであった。さらに、該ポリアミド樹脂を用いた実施例101~108の成形品は、低吸水率であり、かつ難燃性、機械物性、耐熱性にも優れている。さらに、実施例101~108の成形品は、金属層との接着強度に優れたものであった。
実施例201
 減圧下150℃で7時間乾燥したポリアミド(PA1)及びポリテトラフルオロエチレン樹脂(PTFE、株式会社喜多村製、商品名:KTL610)を表3の組成となるよう配合してタンブラーにてブレンドし、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:280~300℃、スクリュー回転数150rpmで押出し、ガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度300℃、金型温度120℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例202
 ポリアミド(PA1)をポリアミド(PA2)に変更したこと以外は実施例201と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例203
 ポリアミド(PA1)をポリアミド(PA3)に変更したこと以外は実施例201と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例204
 ガラス繊維を炭素繊維PAN系炭素繊維チョップドファイバーに変更したこと以外は実施例201と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例205
 ポリテトラフルオロエチレン樹脂(株式会社喜多村製、商品名:KTL610)を黒鉛(天然鱗片状黒鉛)(日本黒鉛社製、商品名:特CP)に変更したこと以外は実施例201と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例206
 ガラス繊維の配合量を33質量部から5質量部に、炭素繊維の配合量を33質量部から5質量部に変更したこと以外は実施例205と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
実施例207
 ガラス繊維の配合量を5質量部から180質量部に、炭素繊維の配合量を5質量部から20質量部に変更したこと以外は実施例206と同様にして評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
比較例201
 ポリアミド6T(ソルヴェイ社製、商品名:Amodel)及びポリテトラフルオロエチレン樹脂(株式会社喜多村製、商品名:KTL610)を表4の組成となるよう配合してタンブラーにてブレンドし、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:300~340℃、スクリュー回転数150rpmで押出し、ガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度340℃、金型温度130℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
比較例202
 ポリアミド46(DSM社製、商品名:Stanyl)及びポリテトラフルオロエチレン樹脂(株式会社喜多村製、商品名:KTL610)を表4の組成となるよう配合してタンブラーにてブレンドし、2軸押出機(東芝機械株式会社製、商品名:TEM37BS)の基部ホッパーに8kg/hの速度で供給し、シリンダ温度:290~310℃、スクリュー回転数150rpmで押出し、ガラス繊維(日本電気硝子株式会社製、商品名:03T-296GH)を2kg/hの速度でサイドフィードして樹脂ペレットを作成した。得られた樹脂ペレットを、射出成形機(ファナック社製、商品名:ファナックi100)にてシリンダ温度310℃、金型温度120℃で射出成形し、評価用試験片を得た。得られた試験片について成形品の物性を測定した。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表4から明らかなように、ポリアミド6T又はポリアミド46を用いた比較例201及び202の成形品は、比磨耗量が大きく摺動性が低く、引張強度が低く、平衡吸水率が高かった。
 これに対して、実施例201~207の成形品は、摺動性に優れ、低吸水率であり、機械物性にも優れている。
 本発明のポリアミド樹脂組成物は、耐熱性に優れると共に寸法安定性に影響を及ぼす吸水性が低く、機械物性等の諸物性に優れており、さらに色調が良好でゲルが少ない。そのため、本発明のポリアミド樹脂組成物は、自動車部品等の輸送機器部品、電気電子機器部品、機械部品等の種々の用途に好適に用いることができる。また、摺動性に優れ、摺動部品として好適に使用することができる。

Claims (21)

  1.  パラキシリレンジアミン単位を70モル%以上含むジアミン単位と炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とを含有してなるポリアミド(A)及び充填剤(B)を含むポリアミド樹脂組成物であって、
     ポリアミド(A)が、リン原子濃度が50~1000ppmかつJIS-K-7105の色差試験におけるYI値が10以下であるポリアミドであり、ポリアミド(A)100質量部に対して充填剤(B)を1~200質量部含む、ポリアミド樹脂組成物。
  2.  前記直鎖脂肪族ジカルボン酸単位が、アゼライン酸単位、セバシン酸単位、ウンデカン二酸単位及びドデカン二酸単位からなる群から選ばれる少なくとも1種である、請求項1に記載のポリアミド樹脂組成物。
  3.  前記直鎖脂肪族ジカルボン酸単位が、セバシン酸単位及び/又はアゼライン酸単位である、請求項1又は2に記載のポリアミド樹脂組成物。
  4.  ポリアミド(A)が、パラキシリレンジアミン単位を90モル%以上含むジアミン単位と、セバシン酸単位及び/又はアゼライン酸単位を90モル%以上含むジカルボン酸単位とを含有してなるポリアミドである、請求項1~3のいずれかに記載のポリアミド樹脂組成物。
  5.  ポリアミド(A)の相対粘度が1.8~4.2の範囲である、請求項1~4のいずれかに記載のポリアミド樹脂組成物。
  6.  ポリアミド(A)のゲル浸透クロマトグラフィー測定における数平均分子量(Mn)が10,000~50,000の範囲であり、かつ分散度(重量平均分子量/数平均分子量=Mw/Mn)が1.5~5.0の範囲である、請求項1~5のいずれかに記載のポリアミド樹脂組成物。
  7.  充填剤(B)が、繊維状充填剤(B1)及び無機充填剤(B2)からなる群から選ばれる少なくとも1種であり、繊維状充填剤(B1)が、ガラス繊維、炭素繊維、全芳香族ポリアミド繊維、セルロース繊維、金属繊維、及び無機化合物のウィスカーもしくは針状結晶からなる群から選ばれる少なくとも1種である、請求項1~6のいずれかに記載のポリアミド樹脂組成物。
  8.  繊維状充填剤(B1)が、ガラス繊維、炭素繊維及び無機化合物のウィスカーもしくは針状結晶からなる群から選ばれる少なくとも1種である、請求項7に記載のポリアミド樹脂組成物。
  9.  繊維状充填剤(B1)が、ガラス繊維及び/又は炭素繊維である、請求項7又は8に記載のポリアミド樹脂組成物。
  10.  無機充填剤(B2)が、タルク、マイカ、ガラスフレーク、ウォラストナイト、モンモリロナイト、チタン酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、セピオライト、ゾノライト、窒化ホウ素、ホウ酸アルミニウム、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、シリカ、カオリン、クレー、酸化チタン、酸化亜鉛、水酸化マグネシウム及び水酸化アルミニウムからなる群から選ばれる少なくとも1種である、請求項7~9のいずれかに記載のポリアミド樹脂組成物。
  11.  無機充填剤(B2)が炭酸カルシウムである、請求項7~10のいずれかに記載のポリアミド樹脂組成物。
  12.  充填剤(B)が繊維状充填剤(B1)であり、固体潤滑剤(C)を更に含み、ポリアミド(A)100質量部に対して繊維状充填剤(B1)5~200質量部、固体潤滑剤(C)5~50質量部を含む、請求項1~11のいずれかに記載のポリアミド樹脂組成物。
  13.  固体潤滑剤(C)が、フッ素系樹脂、ポリオレフィン系樹脂、黒鉛、カーボンブラック、二硫化モリブデン、三酸化モリブデン、全芳香族ポリアミド樹脂、シリコーン、銅鉛合金、二硫化タングステン、硫酸カルシウム、硫酸マグネシウム及び窒化ホウ素からなる群から選ばれる少なくとも1種である、請求項12に記載のポリアミド樹脂組成物。
  14.  固体潤滑剤(C)が、フッ素系樹脂、カーボンブラック及び黒鉛からなる群から選ばれる少なくとも1種である、請求項12又は13に記載のポリアミド樹脂組成物。
  15.  固体潤滑剤(C)が、フッ素系樹脂及び/又は黒鉛である、請求項12~14のいずれかに記載のポリアミド樹脂組成物。
  16.  前記フッ素系樹脂がポリテトラフルオロエチレンである、請求項13~15のいずれかに記載のポリアミド樹脂組成物。
  17.  請求項1~16のいずれかに記載のポリアミド樹脂組成物を含んでなる成形品。
  18.  自動車用部品である、請求項17に記載の成形品。
  19.  電気部品又は電子部品である、請求項17に記載の成形品。
  20.  表面に金属層を有する、請求項17~19に記載の成形品。
  21.  摺動部品である、請求項17に記載の成形品。
PCT/JP2010/065878 2009-09-14 2010-09-14 ポリアミド樹脂組成物 WO2011030910A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2012114855/05A RU2543201C2 (ru) 2009-09-14 2010-09-14 Композиция полиамидной смолы
CN201080040958.3A CN102575099B (zh) 2009-09-14 2010-09-14 聚酰胺树脂组合物
BR112012005764A BR112012005764A2 (pt) 2009-09-14 2010-09-14 composição de resina poliamida
SG2012017729A SG179116A1 (en) 2009-09-14 2010-09-14 Polyamide resin composition
US13/395,535 US10273359B2 (en) 2009-09-14 2010-09-14 Polyamide resin composition
EP10815500.3A EP2479218B1 (en) 2009-09-14 2010-09-14 Polyamide resin composition
KR1020127006607A KR101755054B1 (ko) 2009-09-14 2010-09-14 폴리아미드 수지 조성물
JP2011530915A JP5857741B2 (ja) 2009-09-14 2010-09-14 ポリアミド樹脂組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-211830 2009-09-14
JP2009211830 2009-09-14
JP2009211838 2009-09-14
JP2009-211829 2009-09-14
JP2009-211838 2009-09-14
JP2009211829 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011030910A1 true WO2011030910A1 (ja) 2011-03-17

Family

ID=43732571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065878 WO2011030910A1 (ja) 2009-09-14 2010-09-14 ポリアミド樹脂組成物

Country Status (9)

Country Link
US (1) US10273359B2 (ja)
EP (1) EP2479218B1 (ja)
JP (1) JP5857741B2 (ja)
KR (1) KR101755054B1 (ja)
CN (1) CN102575099B (ja)
BR (1) BR112012005764A2 (ja)
RU (1) RU2543201C2 (ja)
SG (1) SG179116A1 (ja)
WO (1) WO2011030910A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079333A (ja) * 2011-10-04 2013-05-02 Unitika Ltd ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
CN103333547A (zh) * 2013-06-05 2013-10-02 苏州凹凸彩印厂 保护玻璃用凹版油墨及其制备方法
JP2013199570A (ja) * 2012-03-23 2013-10-03 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物および成形品
US20140221537A1 (en) * 2013-02-05 2014-08-07 Lotte Chemical Corporation Flame retardant polyamide resin compositions
JP2014240145A (ja) * 2013-06-11 2014-12-25 宇部興産株式会社 積層構造体
JP2015108037A (ja) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 液晶ポリエステルアミド樹脂組成物、およびその射出成成形体を構成部材として含むカメラモジュール部品
JP2015129243A (ja) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 ポリアミド組成物及び成形品
JP2015129244A (ja) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 摺動部品
EP2821425A4 (en) * 2012-02-28 2015-09-30 Mitsubishi Gas Chemical Co PROCESS FOR PRODUCING POLYAMIDE
WO2017159418A1 (ja) * 2016-03-16 2017-09-21 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物および成形品
JP2017171879A (ja) * 2016-03-16 2017-09-28 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物および成形品
US10851206B2 (en) 2017-12-18 2020-12-01 Taiwan Textile Research Institute Modified nylon 66 fiber
JP2021178976A (ja) * 2017-10-03 2021-11-18 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、メッキ付樹脂成形品の製造方法および携帯電子機器部品の製造方法
JP2022171674A (ja) * 2017-11-16 2022-11-11 ユニチカ株式会社 摺動部材

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2327737T3 (en) * 2008-09-18 2016-11-14 Mitsubishi Gas Chemical Co Polyamide resin.
CN102648232B (zh) * 2009-11-27 2015-06-24 三菱瓦斯化学株式会社 共聚聚酰胺树脂、其制造方法、树脂组合物和由它们形成的成型品
KR101812986B1 (ko) * 2010-04-06 2017-12-28 유니띠까 가부시키가이샤 폴리아미드 수지 조성물 및 폴리아미드 수지 조성물의 제조법
BR112013008851A2 (pt) * 2010-10-13 2016-06-21 Solvay Specialty Polymers Usa fibras, têxteis e carpetes resistentes a manchas
US9312047B2 (en) * 2012-06-22 2016-04-12 Honeywell International Inc. Method and compositions for producing polymer blends
KR20140006586A (ko) * 2012-07-06 2014-01-16 삼성전자주식회사 반도체 장치 및 그 제조 방법
CN102993727B (zh) * 2012-08-20 2014-07-02 安徽凯迪电气有限公司 一种原料含有改性海泡石粉的仪表托架
WO2014084504A1 (ko) * 2012-11-29 2014-06-05 제일모직 주식회사 폴리아미드 수지 및 그 제조방법
JP6153717B2 (ja) * 2012-11-29 2017-06-28 ロッテ アドバンスト マテリアルズ カンパニー リミテッド ポリアミド樹脂およびその製造方法
US10619031B2 (en) * 2013-06-21 2020-04-14 Mitsubishi Engineering-Plastics Corporation Crystallizable thermoplastic resin composition and molded article
KR20160078374A (ko) * 2013-10-30 2016-07-04 미츠비시 덴센 고교 가부시키가이샤 실링재 및 이를 이용한 실링 구조
CN103642224A (zh) * 2013-11-18 2014-03-19 安徽宜万丰电器有限公司 一种汽车塑料件用沸石粉改性尼龙66材料
CN103834006B (zh) * 2014-03-21 2016-03-16 山东广垠新材料有限公司 一种耐高温尼龙多元共聚物及其制备方法
SG11201608111PA (en) * 2014-03-31 2016-11-29 Mitsubishi Gas Chemical Co Entry sheet for drilling
KR101899624B1 (ko) 2014-09-25 2018-09-18 롯데첨단소재(주) 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
CA2975865C (en) * 2015-03-03 2022-09-06 Unitika Ltd. Polyamide resin composition
CN105038199A (zh) * 2015-08-19 2015-11-11 曹高煜 一种纤维增强耐磨聚酰胺复合材料及其制备方法与应用
DE102015115769A1 (de) * 2015-09-18 2017-03-23 Schock Gmbh Gießformkörper
WO2017065009A1 (ja) * 2015-10-16 2017-04-20 三菱レイヨン株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体
MY183674A (en) 2015-12-23 2021-03-08 Advansix Resins & Chemicals Llc Dual-terminated polyamide for high speed spinning application
KR102652697B1 (ko) * 2017-03-20 2024-03-28 바스프 에스이 금속 및 폴리아미드 조성물을 함유하는 라미네이트
CN107383365A (zh) * 2017-08-09 2017-11-24 无锡殷达尼龙有限公司 一种半芳香族聚酰胺树脂及其制备方法
EP3784714B1 (en) 2018-04-26 2023-03-15 Elantas Beck India Ltd. Cardanol based curing agent for epoxy resins compositions
CN112135855B (zh) 2018-04-26 2023-11-03 艾伦塔斯贝克印度有限公司 用于环氧树脂组合物的改性酚醛胺固化剂及其用途
JP6886219B1 (ja) * 2019-10-30 2021-06-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
KR102690844B1 (ko) * 2021-11-26 2024-08-05 (주)창맥 재생 폴리아미드 수지 조성물, 이를 포함하는 성형품 및 이의 제조방법
CN115716988B (zh) * 2022-10-28 2024-02-23 江苏金发科技新材料有限公司 一种长碳链聚酰胺组合物及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4715106B1 (ja) * 1964-08-29 1972-05-06
JPS4935358B1 (ja) * 1970-10-29 1974-09-21
JPS60158220A (ja) 1984-01-27 1985-08-19 Mitsui Petrochem Ind Ltd 摺動材用成形材料
JPS6411073B2 (ja) 1982-09-20 1989-02-23 Mitsui Petrochemical Ind
JPH05117524A (ja) * 1991-03-14 1993-05-14 Solvay & Cie ポリアミドを基剤とする組成物及びこれらの組成物から製造された製品
JPH05170897A (ja) * 1991-12-20 1993-07-09 Showa Denko Kk 高分子量結晶性ポリアミド樹脂
JPH06192416A (ja) * 1992-12-25 1994-07-12 Showa Denko Kk ポリアミド樹脂の製造方法
JPH07228776A (ja) 1994-02-18 1995-08-29 Kuraray Co Ltd 成形材料用ポリアミド組成物
JP3056576B2 (ja) 1992-01-31 2000-06-26 大成プラス株式会社 ショルダーベルトの製造方法
JP2000204240A (ja) * 1999-01-08 2000-07-25 Ube Ind Ltd ウエルド強度に優れたポリアミド樹脂組成物
JP2008007753A (ja) * 2006-05-30 2008-01-17 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物および成形品
WO2008053911A1 (fr) * 2006-11-01 2008-05-08 Mitsubishi Engineering-Plastics Corporation Mélange de granules d'une composition de résine de polyamide, article moulé et procédé de production du mélange de granules
JP2008214526A (ja) * 2007-03-06 2008-09-18 Mitsubishi Engineering Plastics Corp 摺動部品製造用熱可塑性樹脂組成物、および摺動部を有する筐体
JP2008280535A (ja) * 2007-04-11 2008-11-20 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2130947A (en) * 1935-01-02 1938-09-20 Du Pont Diamine-dicarboxylic acid salts and process of preparing same
GB1084521A (en) 1963-11-05 1967-09-27 Asahi Chemical Ind New polyamides and proces for preparing them
GB1129074A (en) 1966-04-04 1968-10-02 Ici Ltd Polyamides
JPS59191759A (ja) 1983-04-13 1984-10-30 Mitsubishi Gas Chem Co Inc 難燃性ポリアミド組成物
JPS61220687A (ja) * 1985-03-26 1986-09-30 松下電工株式会社 充電式電気かみそり
JPH0715106B2 (ja) * 1987-06-13 1995-02-22 コスモ石油株式会社 安定化された燃料油組成物
US5256718A (en) 1990-02-14 1993-10-26 Mitsui Petrochemical Industries, Ltd. Flame retardant polyamide thermoplastic resin composition
JPH0967517A (ja) * 1995-09-04 1997-03-11 Japan Synthetic Rubber Co Ltd ポリアミド樹脂組成物
JP4434337B2 (ja) * 1998-08-07 2010-03-17 Ntn株式会社 滑りキーおよび無段変速機
US6291633B1 (en) 1999-01-08 2001-09-18 Ube Industries, Inc. Polyamide resin compositions with excellent weld strength
US6476116B1 (en) * 1999-09-22 2002-11-05 Ntn Corporation Resin compositions and precision sliding parts made of the same
US6936682B2 (en) * 2000-12-11 2005-08-30 Asahi Kasei Kabushiki Kaisha Polyamide
JP4843876B2 (ja) * 2001-07-19 2011-12-21 三菱瓦斯化学株式会社 キシリレン基含有ポリアミド樹脂
JP2004131544A (ja) 2002-10-09 2004-04-30 Toray Ind Inc ポリアミド樹脂組成物
JP2005194328A (ja) 2003-12-26 2005-07-21 Toyobo Co Ltd ポリアミド樹脂組成物
WO2005063888A1 (ja) * 2003-12-26 2005-07-14 Toyo Boseki Kabushiki Kaisha ポリアミド樹脂組成物
CA2568559A1 (en) 2004-05-28 2005-11-06 Addison Closson Adhesive Textiles, Inc. Method of forming adhesive mixtures and ballistic composites utilizing the same
JP2006045413A (ja) * 2004-08-06 2006-02-16 Mitsubishi Engineering Plastics Corp 摺動性に優れたポリアミド樹脂組成物
JP4857634B2 (ja) * 2005-07-22 2012-01-18 三菱瓦斯化学株式会社 ポリアミド樹脂
JP2007092053A (ja) 2005-09-01 2007-04-12 Toyobo Co Ltd ポリアミド及びそれからなるポリアミド組成物
JP5436745B2 (ja) 2006-04-25 2014-03-05 旭化成ケミカルズ株式会社 難燃性ポリアミド樹脂組成物
KR20090014260A (ko) 2006-05-30 2009-02-09 미쓰비시 엔지니어링-플라스틱스 코포레이션 폴리아미드 수지 조성물 및 성형품
EP2025718B1 (en) 2006-05-31 2017-02-15 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP5200335B2 (ja) * 2006-05-31 2013-06-05 三菱瓦斯化学株式会社 ポリアミド樹脂組成物
US20110196080A1 (en) 2007-08-01 2011-08-11 Kuraray Co., Ltd. Polyamide composition
JP5069053B2 (ja) 2007-08-02 2012-11-07 三菱エンジニアリングプラスチックス株式会社 レーザーマーキングを施される射出成形品用難燃性ポリアミド樹脂組成物
JP2009161748A (ja) 2007-12-14 2009-07-23 Mitsubishi Engineering Plastics Corp 繊維強化難燃性熱可塑性樹脂組成物、成形品および繊維強化難燃性熱可塑性樹脂組成物の製造方法
BRPI0918857A2 (pt) 2008-09-18 2015-12-01 Mitsubishi Gas Chemical Co método de produção de poliamida
DK2327737T3 (en) 2008-09-18 2016-11-14 Mitsubishi Gas Chemical Co Polyamide resin.
RU2544013C2 (ru) 2009-05-28 2015-03-10 Мицубиси Гэс Кемикал Компани, Инк. Полиамидная смола
EP2436733B1 (en) 2009-05-28 2017-01-11 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition and molded article

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4715106B1 (ja) * 1964-08-29 1972-05-06
JPS4935358B1 (ja) * 1970-10-29 1974-09-21
JPS6411073B2 (ja) 1982-09-20 1989-02-23 Mitsui Petrochemical Ind
JPS60158220A (ja) 1984-01-27 1985-08-19 Mitsui Petrochem Ind Ltd 摺動材用成形材料
JPH05117524A (ja) * 1991-03-14 1993-05-14 Solvay & Cie ポリアミドを基剤とする組成物及びこれらの組成物から製造された製品
JPH05170897A (ja) * 1991-12-20 1993-07-09 Showa Denko Kk 高分子量結晶性ポリアミド樹脂
JP3056576B2 (ja) 1992-01-31 2000-06-26 大成プラス株式会社 ショルダーベルトの製造方法
JPH06192416A (ja) * 1992-12-25 1994-07-12 Showa Denko Kk ポリアミド樹脂の製造方法
JPH07228776A (ja) 1994-02-18 1995-08-29 Kuraray Co Ltd 成形材料用ポリアミド組成物
JP2000204240A (ja) * 1999-01-08 2000-07-25 Ube Ind Ltd ウエルド強度に優れたポリアミド樹脂組成物
JP2008007753A (ja) * 2006-05-30 2008-01-17 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物および成形品
WO2008053911A1 (fr) * 2006-11-01 2008-05-08 Mitsubishi Engineering-Plastics Corporation Mélange de granules d'une composition de résine de polyamide, article moulé et procédé de production du mélange de granules
JP2008214526A (ja) * 2007-03-06 2008-09-18 Mitsubishi Engineering Plastics Corp 摺動部品製造用熱可塑性樹脂組成物、および摺動部を有する筐体
JP2008280535A (ja) * 2007-04-11 2008-11-20 Mitsubishi Gas Chem Co Inc ポリアミドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479218A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079333A (ja) * 2011-10-04 2013-05-02 Unitika Ltd ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
EP2821425A4 (en) * 2012-02-28 2015-09-30 Mitsubishi Gas Chemical Co PROCESS FOR PRODUCING POLYAMIDE
US9359477B2 (en) 2012-02-28 2016-06-07 Mitsubishi Gas Chemical Company, Inc. Production method for polyamide
JP2013199570A (ja) * 2012-03-23 2013-10-03 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物および成形品
US20140221537A1 (en) * 2013-02-05 2014-08-07 Lotte Chemical Corporation Flame retardant polyamide resin compositions
CN103333547A (zh) * 2013-06-05 2013-10-02 苏州凹凸彩印厂 保护玻璃用凹版油墨及其制备方法
JP2014240145A (ja) * 2013-06-11 2014-12-25 宇部興産株式会社 積層構造体
JP2015108037A (ja) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 液晶ポリエステルアミド樹脂組成物、およびその射出成成形体を構成部材として含むカメラモジュール部品
WO2015083760A1 (ja) * 2013-12-03 2015-06-11 Jx日鉱日石エネルギー株式会社 液晶ポリエステルアミド樹脂組成物、およびその射出成形体を構成部材として含むカメラモジュール部品
JP2015129244A (ja) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 摺動部品
JP2015129243A (ja) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 ポリアミド組成物及び成形品
WO2017159418A1 (ja) * 2016-03-16 2017-09-21 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物および成形品
JP2017171879A (ja) * 2016-03-16 2017-09-28 三菱エンジニアリングプラスチックス株式会社 ポリアミド樹脂組成物および成形品
US10988615B2 (en) 2016-03-16 2021-04-27 Mitsubishi Engineering-Plastics Corporation Polyamide resin composition and molded article
JP2021178976A (ja) * 2017-10-03 2021-11-18 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、メッキ付樹脂成形品の製造方法および携帯電子機器部品の製造方法
JP7305094B2 (ja) 2017-10-03 2023-07-10 グローバルポリアセタール株式会社 熱可塑性樹脂組成物、樹脂成形品、メッキ付樹脂成形品の製造方法および携帯電子機器部品の製造方法
JP2022171674A (ja) * 2017-11-16 2022-11-11 ユニチカ株式会社 摺動部材
JP7425509B2 (ja) 2017-11-16 2024-01-31 ユニチカ株式会社 摺動部材
US10851206B2 (en) 2017-12-18 2020-12-01 Taiwan Textile Research Institute Modified nylon 66 fiber

Also Published As

Publication number Publication date
US20120177937A1 (en) 2012-07-12
CN102575099B (zh) 2014-05-07
KR101755054B1 (ko) 2017-07-06
KR20120060216A (ko) 2012-06-11
SG179116A1 (en) 2012-04-27
EP2479218B1 (en) 2018-12-26
EP2479218A4 (en) 2013-03-06
BR112012005764A2 (pt) 2016-03-08
JPWO2011030910A1 (ja) 2013-02-07
RU2012114855A (ru) 2013-10-27
RU2543201C2 (ru) 2015-02-27
EP2479218A1 (en) 2012-07-25
US10273359B2 (en) 2019-04-30
CN102575099A (zh) 2012-07-11
JP5857741B2 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5857741B2 (ja) ポリアミド樹脂組成物
JP5640975B2 (ja) ポリアミド樹脂
EP2479219B1 (en) Flame-retardant polyamide resin composition
JP5664243B2 (ja) ポリアミド樹脂
KR20020089187A (ko) 폴리아미드 조성물
JP6046958B2 (ja) ポリアミド樹脂組成物およびそれからなる成形体
TWI804479B (zh) 聚醯胺樹脂組成物、成形品及聚醯胺樹脂丸粒之製造方法
WO2015053181A1 (ja) 炭素繊維強化樹脂組成物、ペレット、成形品および電子機器筐体
JP6097203B2 (ja) ポリアミド樹脂組成物
JP2011057932A (ja) 輸送機器部品
JP2019026670A (ja) ポリアミド組成物および成形品
JP3529899B2 (ja) ポリアミドおよびその組成物
JP3549624B2 (ja) 熱可塑性樹脂組成物
JP2011057931A (ja) 熱可塑性樹脂組成物
JP2011057929A (ja) ポリアミド樹脂組成物
JP2013116967A (ja) ポリアミド樹脂組成物及び成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040958.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13395535

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127006607

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2306/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001076

Country of ref document: TH

Ref document number: 2010815500

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012114855

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005764

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005764

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120314