WO2011013756A1 - 電気化学素子用電極および電気化学素子 - Google Patents

電気化学素子用電極および電気化学素子 Download PDF

Info

Publication number
WO2011013756A1
WO2011013756A1 PCT/JP2010/062813 JP2010062813W WO2011013756A1 WO 2011013756 A1 WO2011013756 A1 WO 2011013756A1 JP 2010062813 W JP2010062813 W JP 2010062813W WO 2011013756 A1 WO2011013756 A1 WO 2011013756A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive adhesive
adhesive layer
binder
electrochemical element
Prior art date
Application number
PCT/JP2010/062813
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201080043837.4A priority Critical patent/CN102549693B/zh
Priority to JP2011524833A priority patent/JP5549672B2/ja
Publication of WO2011013756A1 publication Critical patent/WO2011013756A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode for an electrochemical element and an electrochemical element. More specifically, the present invention relates to an electrode for an electrochemical element that is excellent in electrode strength, increases electrode density, reduces internal resistance, and increases energy density and output density, and an electrochemical element having the electrode.
  • Lithium-ion secondary batteries have a relatively high energy density, so they are used in the fields of mobile phones and notebook personal computers.
  • Electric double layer capacitors can be charged and discharged rapidly, so they can be used for small memory backups such as personal computers. It is used as a power source.
  • the electric double layer capacitor is expected to be applied as a large power source for electric vehicles.
  • lithium ion capacitors that take advantage of lithium ion secondary batteries and electric double layer capacitors are attracting attention because of their high energy density and power density. With the expansion and development of applications, these electrochemical elements are required to be further improved, such as lowering resistance, increasing capacity, and improving mechanical properties.
  • the electric double layer capacitor has polarizable electrodes on the positive electrode and the negative electrode, and can increase the operating voltage and energy density by using an organic electrolyte.
  • an organic electrolyte there is a problem that the contact resistance between the current collector and the electrode composition layer is large, the electrode strength is small, and the internal resistance is large. Therefore, various studies have been made to solve these problems.
  • Patent Document 1 activated carbon, carbon black, and PTFE are provided on a roughened aluminum current collector via a conductive adhesive layer containing a binder such as graphite and polyimide resin or polyamideimide resin.
  • a conductive adhesive layer containing a binder such as graphite and polyimide resin or polyamideimide resin.
  • an electrode for an electric double layer capacitor in which an electrode composition layer containing is formed. According to Patent Document 1, the electrode strength of the electrode can be increased.
  • Patent Document 2 an electrode composition layer containing activated carbon, carbon black and PTFE is disposed on an aluminum current collector via a conductive adhesive layer containing flaky graphite, carbon black and SBR binder. A formed electrode for an electric double layer capacitor has been proposed. According to Patent Document 2, the internal resistance can be lowered by the electrode.
  • the electrode of Patent Document 1 can increase the electrode strength to some extent by using a roughened current collector, but the internal resistance is not sufficiently reduced. I understood it.
  • the internal resistance can be reduced to some extent by using two types of carbon materials as the carbon material constituting the conductive adhesive layer, but the improvement of the electrode strength is insufficient. I understood it.
  • the present invention provides an electrode for an electrochemical device that has a higher electrode strength and can increase the electrode density than before, and an electric device that can reduce internal resistance and increase energy density and output density.
  • An object is to provide a chemical element.
  • the present inventor has obtained the electrode strength and electrode of an electrode for an electrochemical element obtained by adding spherical graphite, carbon black and a binder to the conductive adhesive layer. It has been found that the density is increased, the capacity of the electrochemical device having the electrode is improved, the internal resistance is reduced, and the energy density and the output density are improved. Based on these findings, the present inventor has completed the present invention.
  • the present invention for solving the above-described problems includes the following matters as a gist. (1) collecting a conductive adhesive layer containing spherical graphite, carbon black and a binder for conductive adhesive layer, and an electrode composition layer containing a binder for electrode active material and electrode composition layer; An electrode for an electrochemical element, which is provided on the body in this order from the current collector side.
  • the weight ratio of the spherical graphite to the carbon black is 0.05 to 1.0 as a ratio of carbon black / spherical graphite.
  • the electrode for an electrochemical element according to any one of (1) to (14), wherein the electrode composition layer comprises composite particles containing an electrode active material and a binder for the electrode composition layer.
  • An electrochemical element comprising the electrochemical element electrode according to any one of (1) to (15), a separator, and an electrolytic solution.
  • the electrochemical element of the present invention includes a memory backup power source for a personal computer, a portable terminal, etc., a power source for instantaneous power failure countermeasures such as a personal computer, application to an electric vehicle or a hybrid vehicle, a solar power generation energy storage system used in combination with a solar cell, a battery, It can be suitably used for various applications such as a combined load leveling power source.
  • the electrode for an electrochemical device of the present invention comprises a conductive adhesive layer comprising spherical graphite, carbon black, and a binder for a conductive adhesive layer, and an electrode active material and a binder for an electrode composition layer.
  • the electrode composition layer is provided on the current collector in this order from the current collector side.
  • the conductive adhesive layer used in the present invention is installed as an adhesive layer between the current collector and the electrode composition layer, and includes spherical graphite, carbon black, and a binder for the conductive adhesive layer. .
  • the spherical graphite used in the present invention has high conductivity due to the presence of delocalized ⁇ electrons, and its aspect ratio is usually 1 or more and 20 or less, preferably 1 or more and 10 or less, particularly preferably 1 or more and 5 or less.
  • the graphite is spherical or nearly spherical in shape. Specific examples of spherical graphite include natural graphite and artificial graphite.
  • the aspect ratio of the spherical graphite is within the above range, the adhesion between the conductive adhesive layer and the electrode composition layer is increased, that is, the peel strength is increased. As a result, the electrode strength is increased and the electron is increased. Movement resistance can be reduced.
  • the aspect ratio is a value represented by (short axis number average diameter) / (major axis number average diameter).
  • the short axis number average diameter and the long axis number average diameter are the number average calculated by measuring the short axis diameter and the long axis diameter of 100 spherical graphite particles randomly selected in a transmission electron micrograph and calculating the arithmetic average value thereof.
  • the particle size is a value represented by (short axis number average diameter) / (major axis number average diameter).
  • the volume average particle diameter of the spherical graphite used in the present invention is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, and particularly preferably 1 to 10 ⁇ m.
  • the volume average particle diameter is a volume average particle diameter calculated by measuring with a laser diffraction particle size distribution measuring device (SALD-3100; manufactured by Shimadzu Corporation).
  • the content of spherical graphite in the conductive adhesive layer is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and particularly preferably 70 to 90% by mass.
  • the electron transfer resistance can be reduced and the internal resistance of the electrochemical element can be reduced.
  • the carbon black used in the present invention is an aggregate in which several layers of graphitic carbon microcrystals are gathered to form a turbulent layer structure.
  • acetylene black, ketjen black, furnace black, channel black, thermal lamp Black etc. are mentioned.
  • carbon blacks acetylene black, furnace black, and ketjen black are particularly preferable in that the conductive adhesive layer can be filled with high density, the electron transfer resistance can be reduced, and the internal resistance of the electrochemical element can be reduced.
  • the carbon black used in the present invention preferably contains a hetero element different from the main carbon element.
  • the hetero element include silicon, nitrogen, and boron. Boron is particularly preferable because it can reduce the electron transfer resistance and the internal resistance of the electrochemical device.
  • the hetero element content in the carbon black used in the present invention is preferably in the range of 0.01 to 20% by weight, more preferably in the range of 0.05 to 10% by weight, A range of 5% by weight is particularly preferred.
  • the content of the hetero element in the carbon black is within this range, the electron transfer resistance is reduced and the internal resistance of the electrochemical device is reduced.
  • the carbon black content in the conductive adhesive layer is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, and particularly preferably 10 to 30% by weight.
  • the content rate of carbon black in a conductive adhesive layer into the said range, an electron transfer resistance is reduced and the internal resistance of an electrochemical element is reduced more.
  • the weight ratio of the spherical graphite and carbon black in the conductive adhesive layer is preferably a carbon black / spherical graphite ratio of 0.05 to 1, more preferably 0.1 to 0.8, 0.2 Is particularly preferred.
  • the weight ratio of spherical graphite and carbon black in the conductive adhesive layer is in the above range, since the spherical graphite and carbon black in the conductive adhesive layer are filled with high density, the electron transfer resistance is reduced, The internal resistance of the electrochemical element is further reduced.
  • the volume average particle size of carbon black used in the present invention is preferably 0.01 ⁇ m or more and less than 1.0 ⁇ m, more preferably 0.05 ⁇ m or more and less than 0.8 ⁇ m, particularly preferably 0.1 ⁇ m or more and less than 0.5 ⁇ m. It is.
  • the spherical graphite and carbon black in the conductive adhesive layer are filled with high density.
  • the method for calculating the volume average particle diameter is the same as described above.
  • the binder for the conductive adhesive layer used in the present invention is not particularly limited as long as it is a compound capable of binding spherical graphite and carbon black to each other.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include polymer compounds such as a fluorine polymer, a diene polymer, an acrylate polymer, a polyimide, a polyamide, and a polyurethane polymer, and a fluorine polymer, a diene polymer, or an acrylate polymer is preferable.
  • a diene polymer or an acrylate polymer is more preferable in that the withstand voltage can be increased and the energy density of the electrochemical device can be increased.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the proportion of the conjugated diene in the monomer mixture is usually 30% by weight or more, preferably 40% by weight or more, more preferably 50% by weight or more.
  • the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Copolymers of styrene / butadiene / methacrylic acid copolymer and aromatic vinyl / conjugated diene / carboxylic acid group-containing monomers such as styrene / butadiene / itaconic acid copolymer; acrylonitrile / butadiene copolymer (NBR) And vinyl cyanide / conjugated diene copolymers such as hydrogenated SBR and hydrogenated NBR.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copo
  • the acrylate polymer is represented by the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group or a cycloalkyl group). It is a polymer containing a monomer unit derived from a compound.
  • Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylates such as isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate; ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n methacrylate -Butyl, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate,
  • acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the obtained electrode can be improved.
  • the ratio of the monomer unit derived from the compound represented by the general formula (1) in the acrylate polymer is usually 50% by weight or more, preferably 70% by weight or more.
  • the binder for the conductive adhesive layer used in the present invention preferably has a polar group. Since the binder for the conductive adhesive layer has a polar group, the binding property between the current collector and the electrode composition layer can be further enhanced.
  • the polar group means a functional group capable of dissociating in water or a functional group having polarization. Specifically, an acid group, a nitrile group, an amide group, an amino group, a hydroxyl group, an epoxy group, etc. Is mentioned. Among these, an acid group, a nitrile group, and an epoxy group are preferable, and an acid group or a nitrile group is more preferable in that the withstand voltage can be increased.
  • the binder for the conductive adhesive layer to be used may have one kind of the polar group, but preferably has two or more kinds.
  • the binder for the conductive adhesive layer has two or more types of polar groups, the binding property between the current collector and the electrode composition layer can be further enhanced.
  • Specific combinations in the case of having two types of polar groups include an acid group and a nitrile group, an acid group and an amide group, and an acid group and an amino group.
  • the combination in the case of having three or more types of polar groups may be a combination of three types from the exemplified polar groups.
  • the polar group in the binder is a monomer having a polar group or a polymerization initiator having a polar group. Can be introduced into the polymer.
  • the content of the polar group in the binder for the conductive adhesive layer is preferably the content of the monomer having a polar group, preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight. Particularly preferred is 1 to 20% by weight.
  • Examples of the monomer containing a nitrile group as a polar group include acrylonitrile and methacrylonitrile, and acrylonitrile is preferable in that the withstand voltage can be increased.
  • Monomers containing acid groups as polar groups include monobasic acid-containing monomers such as acrylic acid and methacrylic acid, and carboxylic acids such as dibasic acid-containing monomers such as maleic acid, fumaric acid, and itaconic acid.
  • Monomer having a group a monomer having a sulfonic acid group such as styrene sulfonic acid and methallyl sulfonic acid, and the like.
  • a monomer having a carboxylic acid group is preferable, and the withstand voltage can be increased.
  • Dibasic acid-containing monomers are particularly preferred.
  • the shape of the binder for the conductive adhesive layer used for the electrode for an electrochemical element of the present invention is not particularly limited, but the binding property to the current collector is good, and the capacity of the prepared electrode is reduced. Since the deterioration due to repeated charge and discharge can be suppressed, it is preferably particulate.
  • the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the glass transition temperature (Tg) of the binder for the conductive adhesive layer used in the present invention is preferably 50 ° C. or lower, more preferably ⁇ 40 to 0 ° C.
  • Tg glass transition temperature
  • the electrode strength is strong and flexible, and the electrode density can be easily increased by a pressing process during electrode formation.
  • the number average particle diameter is not particularly limited, but is usually 0.0001 to 100 ⁇ m, preferably 0.001 to The thickness is 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph.
  • the shape of the particles can be either spherical or irregular.
  • the content of the binder for the conductive adhesive layer in the conductive adhesive layer is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts per 100 parts by weight of spherical graphite. Part by weight, more preferably in the range of 1 to 10 parts by weight.
  • the amount of the binder for the conductive adhesive layer in the conductive adhesive layer is within this range, sufficient adhesion between the obtained electrode composition layer and the current collector can be secured, and the capacity of the electrochemical device can be increased. High and low internal resistance can be achieved.
  • the conductive adhesive layer used in the present invention contains spherical graphite, carbon black and a binder for the conductive adhesive layer as essential components, but preferably further contains a carboxymethyl cellulose salt and / or a surfactant.
  • the carboxymethyl cellulose salt suitably used in the present invention is a dispersant for forming a conductive adhesive layer, and specifically includes carboxymethyl cellulose acid, carboxymethyl cellulose ammonium salt, carboxymethyl cellulose alkali metal salt, carboxymethyl cellulose alkaline earth. Examples thereof include metal salts. Among these, carboxymethyl cellulose ammonium salt and carboxymethyl cellulose alkali metal salt are preferable, and carboxymethyl cellulose ammonium salt is particularly preferable. In particular, when carboxymethyl cellulose ammonium salt is used, spherical graphite, carbon black, and a binder can be uniformly dispersed, the filling degree of the conductive adhesive layer can be increased, and the electron transfer resistance can be reduced.
  • the content of the carboxymethyl cellulose salt in the conductive adhesive layer can be used within a range not impairing the effects of the present invention, and is not particularly limited, but is preferably 0.1 to 100 parts by weight of spherical graphite. It is 20 parts by weight, more preferably 0.5 to 15 parts by weight, particularly preferably 0.8 to 10 parts by weight. When the content of the carboxymethyl cellulose salt in the conductive adhesive layer is within this range, the durability of the obtained electrochemical element can be further improved.
  • the surfactant suitably used in the present invention is one that uniformly disperses spherical graphite, carbon black, and a binder and lowers the surface tension of the current collector.
  • the alkyl sulfate salt, alkylbenzene sulfone is used.
  • Anionic surfactants such as acid salts, fatty acid salts, and naphthalene sulfonic acid formalin condensates; Nonionic surfactants such as polyoxyethylene alkyl ethers and glycerin fatty acid esters; Cations such as alkylamine salts and quaternary ammonium salts
  • Amphoteric surfactants such as alkylamine oxides and alkylbetaines.
  • anionic surfactants and nonionic surfactants are preferable, and anionic surfactants are particularly preferable from the viewpoint of excellent durability of the electrochemical device.
  • the content of the surfactant in the conductive adhesive layer is preferably 0.5 to 20 parts by weight, more preferably 1.0 to 15 parts by weight, particularly preferably 2.0 with respect to 100 parts by weight of spherical graphite.
  • the range is from 10 parts by weight. When the content of the surfactant in the conductive adhesive layer is within this range, the durability of the electrochemical element is excellent.
  • the conductive adhesive layer used in the present invention is obtained by mixing, kneading, and the like in a solvent (dispersion medium) with spherical graphite, carbon black, a binder, and, if necessary, a carboxymethyl cellulose salt and a surfactant.
  • the resulting conductive adhesive composition can be applied on a current collector and dried.
  • limit especially as said solvent Water is preferable at the point of environmental property and drying equipment.
  • apparatuses used to obtain the conductive adhesive composition used in the present invention include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer. Can be used.
  • the method for forming the conductive adhesive layer used in the present invention is not particularly limited.
  • the conductive adhesive composition is formed on the current collector by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, brushing, or the like.
  • the solid content concentration of the conductive adhesive composition used in the present invention is usually 10 to 60% by weight, preferably 15 to 50% by weight, and particularly preferably 20 to 40% by weight, although it depends on the coating method. When the solid content concentration is in this range, the resulting conductive adhesive layer is highly filled, and the energy density and output density of the electrochemical device are increased.
  • the viscosity of the conductive adhesive composition used in the present invention is usually 50 to 10,000 mPa ⁇ s, preferably 100 to 5,000 mPa ⁇ s, particularly preferably 200 to 2,000 mPa ⁇ s, although it depends on the coating method. It is. When the viscosity of the conductive adhesive composition is within this range, a uniform conductive adhesive layer can be formed on the current collector.
  • Examples of the method for drying the conductive adhesive layer include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. Of these, a drying method using hot air and a drying method using irradiation with far infrared rays are preferable.
  • the drying temperature and drying time are preferably a temperature and a time at which the solvent in the slurry-like conductive adhesive composition applied to the current collector can be completely removed. Specifically, the drying temperature is usually 50 to 300 ° C., preferably 80-250 ° C. The drying time is usually 2 hours or less, preferably 5 seconds to 30 minutes.
  • the surface roughness Ra of the conductive adhesive layer used in the present invention is preferably 0.15 ⁇ m or more, more preferably 0.3 ⁇ m or more, and particularly preferably 0.5 ⁇ m or more.
  • the surface roughness Ra of the conductive adhesive layer is based on JIS B0601, for example, using a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation), and a roughness curve is drawn and expressed by the following equation: It can be calculated from the formula.
  • L is the measurement length
  • x is the deviation from the average line to the measurement curve.
  • the upper limit of the surface roughness of the conductive adhesive layer is the thickness of the conductive adhesive layer.
  • the thickness of the conductive adhesive layer used in the present invention is usually 0.01 to 20 ⁇ m, preferably 0.1 to 15 ⁇ m, particularly preferably 1 to 10 ⁇ m. When the thickness of the conductive adhesive layer is in the above range, good adhesiveness can be obtained and the electron transfer resistance can be reduced.
  • a metal, carbon, a conductive polymer, or the like can be used, and a metal is preferably used.
  • a metal is preferably used.
  • the current collector metal aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the shape of the current collector used in the present invention is a current collector such as a metal foil or a metal edge foil; a current collector having through-holes such as an expanded metal, a punching metal, or a net (hereinafter referred to as “perforated current collector”)
  • a current collector having a through-hole is preferable. Expanded metal and punching metal are particularly preferable in terms of superiority.
  • the ratio (opening ratio) of the through holes of the perforated current collector suitably used in the present invention is 10 to 80 area%, preferably 20 to 60 area%, more preferably 30 to 50 area%.
  • the ratio of the penetrating holes is within this range, the diffusion resistance of the electrolytic solution is reduced, and the internal resistance of the electrochemical element is reduced.
  • the thickness of the current collector used in the present invention is usually 5 to 100 ⁇ m, preferably 10 to 70 ⁇ m, particularly preferably 20 to 50 ⁇ m.
  • the electrode composition layer used in the present invention comprises an electrode active material and an electrode composition layer binder.
  • the electrode active material used in the present invention is a substance that transfers electrons in an electrode for an electrochemical element.
  • the electrode active material mainly includes an active material for a lithium ion secondary battery, an active material for an electric double layer capacitor, and an active material for a lithium ion capacitor.
  • Examples of the active material for a lithium ion secondary battery include a positive electrode and a negative electrode.
  • As the electrode active material used for the positive electrode of a lithium ion secondary battery electrode specifically, LiCoO 2, LiNiO 2, LiMnO 2, LiMn 2 O 4, LiFePO 4, lithium-containing composite metal oxides such as LiFeVO 4; Transition metal sulfides such as TiS 2 , TiS 3 , and amorphous MoS 3 ; Cu 2 V 2 O 3 , amorphous V 2 O ⁇ P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. These transition metal oxides are exemplified. Further examples include conductive polymers such as polyacetylene and poly-p-phenylene. Preferred is a lithium-containing composite metal oxide.
  • the electrode active material used for the negative electrode of the lithium ion secondary battery electrode include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; polyacene And the like, and the like. Crystalline carbonaceous materials such as graphite, natural graphite, and mesocarbon microbeads (MCMB) are preferable.
  • the shape of the electrode active material used for the electrode for a lithium ion secondary battery is preferably a granulated particle.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material used for the electrode for a lithium ion secondary battery is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m for both the positive electrode and the negative electrode.
  • the tap density of the electrode active material used for the electrode for the lithium ion secondary battery is not particularly limited, but preferably 2 g / cm 3 or more for the positive electrode and 0.6 g / cm 3 or more for the negative electrode.
  • carbon allotrope is usually used as the electrode active material used for the electric double layer capacitor electrode.
  • the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used.
  • a preferred electrode active material is activated carbon, and specific examples include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.
  • the volume average particle diameter of the electrode active material used for the electrode for the electric double layer capacitor is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the specific surface area of the electrode active material used for the electrode for the electric double layer capacitor is 30 m 2 / g or more, preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g. preferable. Since the density of the obtained electrode composition layer tends to decrease as the specific surface area of the electrode active material increases, an electrode composition layer having a desired density can be obtained by appropriately selecting the electrode active material.
  • Electrode active materials used for electrodes for lithium ion capacitors include positive and negative electrodes.
  • the electrode active material used for the positive electrode of the lithium ion capacitor electrode may be any material that can reversibly carry lithium ions and anions such as tetrafluoroborate.
  • an allotrope of carbon is usually used, and electrode active materials used in electric double layer capacitors can be widely used.
  • carbon allotropes are used in combination, two or more types of carbon allotropes having different average particle diameters or particle size distributions may be used in combination.
  • a polyacene organic semiconductor (PAS) having a polyacene skeleton structure which is a heat-treated product of an aromatic condensation polymer and has an atomic ratio of hydrogen atom / carbon atom of 0.50 to 0.05, can be suitably used.
  • PAS polyacene organic semiconductor
  • it is an electrode active material used for the electrode for electric double layer capacitors.
  • the electrode active material used for the negative electrode of the lithium ion capacitor electrode is a substance that can reversibly carry lithium ions.
  • electrode active materials used in the negative electrode of lithium ion secondary batteries can be widely used.
  • Preferred examples include crystalline carbon materials such as graphite and non-graphitizable carbon, and polyacene-based materials (PAS) described as the positive electrode active material. These carbon materials and PAS are obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized.
  • the shape of the electrode active material used for the electrode for the lithium ion capacitor is preferably a granulated particle.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material used for the electrode for a lithium ion capacitor is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m for both the positive electrode and the negative electrode.
  • These electrode active materials can be used alone or in combination of two or more.
  • the binder used for the electrode composition layer is not particularly limited as long as it is a compound capable of binding an electrode active material and a conductive agent described later.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include polymer compounds such as a fluoropolymer, a diene polymer, an acrylate polymer, a polyimide polymer, a polyamide polymer, and a polyurethane polymer.
  • An acrylate polymer is preferable, and a diene polymer or an acrylate polymer is more preferable in that the withstand voltage can be increased and the energy density of the electrochemical element can be increased.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • the proportion of the conjugated diene in the monomer mixture is usually 30% by weight or more, preferably 40% by weight or more, more preferably 50% by weight or more.
  • Examples of the conjugated diene include butadiene and isoprene.
  • the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Copolymers of styrene / butadiene / methacrylic acid copolymer and aromatic vinyl / conjugated diene / carboxylic acid group-containing monomers such as styrene / butadiene / itaconic acid copolymer; acrylonitrile / butadiene copolymer (NBR) And vinyl cyanide / conjugated diene copolymers such as hydrogenated SBR and hydrogenated NBR.
  • conjugated diene homopolymers such as polybutadiene and polyisoprene
  • aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copo
  • the acrylate polymer is represented by the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group or a cycloalkyl group). It is a polymer containing a monomer unit derived from a compound.
  • Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylates such as isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate; ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n methacrylate -Butyl, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate,
  • acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the obtained electrode can be improved.
  • the ratio of the monomer unit derived from the compound represented by the general formula (1) in the acrylate polymer is usually 50% by weight or more, preferably 70% by weight or more.
  • a copolymerizable carboxylic acid group-containing monomer can be used in addition to the compound represented by the general formula (1). Specific examples thereof include acrylic acid and methacrylic acid.
  • Basic acid-containing monomers dibasic acid-containing monomers such as maleic acid, fumaric acid, and itaconic acid.
  • a dibasic acid-containing monomer is preferable, and itaconic acid is particularly preferable in terms of enhancing the binding property with the current collector and improving the electrode strength.
  • These monobasic acid-containing monomers and dibasic acid-containing monomers can be used alone or in combination of two or more.
  • the amount of the carboxylic acid group-containing monomer in the copolymerization is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts per 100 parts by weight of the compound represented by the general formula (1). Part by weight, more preferably in the range of 1 to 10 parts by weight. When the amount of the carboxylic acid group-containing monomer is within this range, the binding property with the conductive adhesive layer is excellent, and the strength of the obtained electrode is improved.
  • a copolymerizable nitrile group-containing monomer can be used for the acrylate polymer.
  • the nitrile group-containing monomer include acrylonitrile, methacrylonitrile, and the like.
  • acrylonitrile is preferable in that the binding strength with the current collector is increased and the electrode strength can be improved.
  • the amount of acrylonitrile is usually 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the compound represented by the general formula (1). Range. When the amount of acrylonitrile is within this range, the binding property with the conductive adhesive layer is excellent, and the strength of the obtained electrode is improved.
  • the shape of the binder for the electrode composition layer used for the electrode for an electrochemical device of the present invention is not particularly limited, but has good binding properties with the conductive adhesive layer, and the capacity of the prepared electrode is reduced.
  • the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the glass transition temperature (Tg) of the binder for electrode composition layers used in the present invention is preferably 50 ° C. or lower, more preferably ⁇ 40 to 0 ° C.
  • Tg glass transition temperature
  • the polymer constituting the binder for the electrode composition layer may contain a structural unit derived from a monomer having a crosslinkable group.
  • a crosslinkable group By introducing a crosslinkable group into the binder, curability is imparted to the binder, and the crosslinking density of the binder can be increased. By increasing the crosslinking density, the swellability of the binder with respect to the electrolytic solution can be lowered, and the life characteristics of the resulting electrochemical device can be improved.
  • the structural unit of the monomer having a crosslinkable group include a structural unit of allyl acrylate or a structural unit of allyl methacrylate.
  • the amount of the binder for the electrode composition layer in the electrode composition layer is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 100 parts by weight of the electrode active material. It is in the range of 1 to 10 parts by weight. When the amount of the binder in the electrode composition layer is within this range, sufficient adhesion between the obtained electrode composition layer and the conductive adhesive layer can be secured, the capacity of the electrochemical device is increased, and the internal resistance is increased. Can be lowered.
  • the electrode composition layer used in the present invention contains an electrode active material and a binder for the electrode composition layer as essential components, but may contain other components. Examples of other components include a conductive agent and a dispersant.
  • conductive agent examples include those composed of an allotrope of particulate carbon which has conductivity and does not have pores capable of forming an electric double layer.
  • conductive carbon blacks such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are preferable.
  • the volume average particle diameter of the conductive agent used in the present invention is preferably smaller than the volume average particle diameter of the electrode active material, and the range is usually 0.001 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably 0. .01 to 1 ⁇ m. When the volume average particle diameter of the conductive agent is within this range, high conductivity can be obtained with a smaller amount of use.
  • These conductive agents can be used alone or in combination of two or more.
  • the amount of the conductive agent in the electrode composition layer is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. is there. When the amount of the conductive agent is within this range, the capacity of the electrochemical device using the obtained electrochemical device electrode can be increased and the internal resistance can be decreased.
  • dispersant examples include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof; poly (meth) acrylates such as sodium poly (meth) acrylate Polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, chitosan derivatives and the like. These dispersants can be used alone or in combination of two or more. Among these, a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
  • the amount of the dispersant in the electrode composition layer can be used as long as the effects of the present invention are not impaired, and is not particularly limited, but is usually 0.1 to 10 weights with respect to 100 parts by weight of the electrode active material. Parts, preferably 0.5 to 5 parts by weight, more preferably 0.8 to 2 parts by weight.
  • the electrode composition layer used in the present invention is prepared by using an electrode composition in which an electrode active material and a binder for an electrode composition layer as essential components are mixed with a conductive agent and a dispersant added as necessary.
  • the forming method is not limited. Specifically, 1) an electrode composition formed by kneading an electrode active material, a binder for an electrode composition layer, and a conductive agent and a dispersant added as necessary was obtained by sheet molding.
  • a method of laminating a sheet-like electrode composition on a current collector having a conductive adhesive layer on the surface (kneading sheet molding method), 2) an electrode active material, a binder for an electrode composition layer, and if necessary
  • a method of preparing a paste-like electrode composition comprising a conductive agent and a dispersing agent to be added, applying the paste on a current collector having a conductive adhesive layer on the surface, and drying (wet molding method); ) Prepare composite particles comprising an electrode active material, a binder for the electrode composition layer, and a conductive agent and a dispersant that are added as necessary, and prepare a composite particle having a conductive adhesive layer on the surface.
  • a method of forming a sheet on an electric body and rolling it as needed (dry molding method) Etc., and the like.
  • dry molding method Etc.
  • 2) a wet molding method, 3) a dry molding method are preferable, and 3) a capacity of an electrochemical element from which the dry molding method can be obtained is higher, and an internal resistance can be reduced.
  • the electrode composition is preferably composite particles containing an electrode active material and a binder.
  • the electrode strength of the obtained electrode for an electrochemical device can be increased, and the internal resistance can be reduced.
  • the composite particles referred to in the present invention refer to particles in which a plurality of materials are integrated, such as an electrode active material, a binder, and other materials that may be included as necessary, such as a conductive agent and a dispersant.
  • the composite particles suitably used in the present invention are produced by granulation using an electrode active material, a binder, and other components added as necessary, such as a conductive agent and a dispersant.
  • the granulation method of the composite particles is not particularly limited, and is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion drying method, or a melt granulation method.
  • the spray-drying granulation method is preferable because composite particles in which a binder and a conductive agent are unevenly distributed near the surface can be easily obtained.
  • the electrode of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
  • the electrode active material and the binder which are the essential components described above, and optional components such as a conductive agent and a dispersant are dispersed or dissolved in a solvent to obtain an electrode active material and a binder,
  • a slurry is obtained in which optional components such as a conductive agent, a dispersant, and other additives are dispersed or dissolved.
  • the solvent used for obtaining the slurry is not particularly limited, but when the above dispersant is used, a solvent capable of dissolving the dispersant is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used.
  • the organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like.
  • alcohols are preferable as the organic solvent.
  • water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying.
  • the dispersibility of the binder or the solubility of the dispersant varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity
  • the amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. .
  • the binder is preferably dispersed uniformly.
  • the method or procedure for dispersing or dissolving the electrode active material and binder, which are essential components, and optional components such as a conductive agent, a dispersant, and other additives in a solvent is not particularly limited.
  • a solvent for example, water dispersion of polymer particles
  • a method in which a dispersant dissolved in a solvent is added to the mixture and mixed may be used.
  • the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the viscosity of the slurry is usually in the range of 10 to 3,000 mPa ⁇ s, preferably 30 to 1,500 mPa ⁇ s, more preferably 50 to 1,000 mPa ⁇ s at room temperature.
  • the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Further, the higher the viscosity of the slurry, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 40,000 rpm, preferably 15,000 to 40,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary.
  • the particle surface is modified by mixing the composite particles with the above-mentioned electrode active material, conductive agent, binder for electrode composition layer, dispersing agent or other additives, and so on.
  • the flowability of the composite particles can be improved or decreased, the continuous pressure moldability can be improved, the electrical conductivity of the composite particles can be improved, and the average charge amount of the composite particles can be adjusted.
  • a charge control agent may be used.
  • Specific examples include silicon dioxide particles, styrene-methacrylate copolymer particles, nigrosine dyes, triphenylmethane dyes, quaternary ammonium salts, resins containing quaternary ammonium groups and / or amino groups. It is done.
  • the minor axis diameter L s and the major axis diameter L l are average values for 100 arbitrary composite particles measured from a transmission electron micrograph image. The larger this value, the closer the composite particle is to a true sphere.
  • the volume average particle diameter of the composite particles suitably used in the present invention is usually in the range of 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
  • the feeder used in the step of supplying composite particles is not particularly limited, but is preferably a quantitative feeder capable of supplying composite particles quantitatively.
  • the quantitative feeder preferably used in the present invention has a CV value of preferably 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the current collector and the supplied composite particles are pressed with a pair of rolls to form an electrode composition layer on the current collector having the conductive adhesive layer.
  • the composite particles heated as necessary are formed into a sheet-like electrode composition layer by a pair of rolls.
  • the temperature of the supplied composite particles is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When composite particles in this temperature range are used, there is no slip of the composite particles on the surface of the press roll, and the composite particles are continuously and uniformly supplied to the press roll. An electrode composition layer with small variations can be obtained.
  • the molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature.
  • the forming speed is usually larger than 0.1 m / min, preferably 35 to 70 m / min.
  • the press linear pressure between the press rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to 10 kN / cm.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • a current collector having a conductive adhesive layer is continuously supplied between a pair of rolls, and composite particles are supplied to at least one of the rolls, thereby forming the conductive adhesive layer.
  • the composite particles are supplied to the gap between the current collector and the roll, and the electrode composition layer can be formed by pressurization.
  • the current collector having the conductive adhesive layer is conveyed in the horizontal direction, and the composite particles are supplied onto the current collector having the conductive adhesive layer. After leveling with a blade or the like as necessary, the current collector can be supplied between a pair of rolls, and an electrode composition layer can be formed by pressurization.
  • the post-pressing method is generally a press process using a roll.
  • the roll press process two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction.
  • the roll may be temperature controlled, such as heated or cooled.
  • a paste-like electrode composition comprising an electrode active material, a binder for the electrode composition layer, and a conductive agent and a dispersant added as necessary It can be formed by preparing it, applying it on a current collector having a conductive adhesive layer, and further drying, heating, etc. as necessary.
  • the method of application is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the paste-like electrode composition may be applied to only one side of a current collector or the like, or may be applied to both sides.
  • the paste-like electrode composition can be prepared by the same method as the slurry prepared for obtaining composite particles by the spray drying granulation method.
  • the conditions for drying the electrode composition layer formed by the application are not particularly limited, and can be, for example, 120 ° C. or more and 1 hour or more.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • a preferable range of the porosity is 5% to 15%, more preferably 7% to 13%.
  • Charge efficiency and discharge efficiency can be increased by setting the porosity to be less than or equal to the upper limit. By setting the porosity to be at least the lower limit, a high volume capacity can be obtained, and electrode peeling can be reduced. Further, when a curable polymer is used as the binder for the electrode composition layer, it is preferable to perform curing in addition to the drying step.
  • the density of the electrode composition layer used in the present invention is not particularly limited, but is usually 0.30 to 10 g / cm 3 , preferably 0.35 to 5.0 g / cm 3 , more preferably 0.40 to 3. 0 g / cm 3 .
  • the thickness of the electrode composition layer is not particularly limited, but is usually 5 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m.
  • the electrochemical element of the present invention comprises the above-described electrode for an electrochemical element, a separator, and an electrolytic solution. Although it does not restrict
  • the electrode for electrochemical devices of the present invention is used for a lithium ion capacitor, it is preferably used for a negative electrode, and when used for a lithium ion secondary battery, it is preferably used for a positive electrode.
  • a separator will not be specifically limited if it can insulate between the electrodes for electrochemical elements, and can pass a cation and an anion.
  • polyolefin such as polyethylene and polypropylene, microporous membrane or non-woven fabric made of rayon or glass fiber, a porous membrane generally made of pulp called electrolytic capacitor paper, high on one or both sides of the microporous membrane.
  • a porous film in which a molecular coat layer is formed, a porous film in which a porous coat layer containing an inorganic filler or an organic filler is formed on one surface or both surfaces of the microporous film, and the like can be used.
  • a separator is arrange
  • the thickness of the separator is appropriately selected depending on the purpose of use, but is usually 1 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 20 to 60 ⁇ m.
  • the electrolytic solution is usually composed of an electrolyte and a solvent.
  • the electrolyte may be cationic, anionic, cationic and anionic.
  • As the cationic electrolyte (1) imidazolium, (2) quaternary ammonium, (3) quaternary phosphonium, (4) lithium and the like as shown below can be used.
  • Imidazolium 1,3-Dimethylimidazolium, 1-Ethyl-3-methylimidazolium, 1,3-Diethylimidazolium, 1,2,3-Trimethylimidazolium, 1,2,3,4-Tetra Methylimidazolium, 1,3,4-trimethyl-ethylimidazolium, 1,3-dimethyl-2,4-diethylimidazolium, 1,2-dimethyl-3,4-diethylimidazolium, 1-methyl-2, 3,4-triethylmethylimidazolium, 1,2,3,4-tetraethylimidazolium, 1,3-dimethyl-2-ethylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1,2,3 -Triethylimidazolium, etc.
  • anionic electrolyte examples include PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , N (RfSO 3 ) 2 ⁇ , C (RfSO 3 ) 3 ⁇ , RfSO 3 ⁇ (Rf is 1 ⁇ 12 fluoroalkyl groups), F ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , AlF 4 ⁇ and the like can be used. These electrolytes can be used alone or in combination of two or more.
  • the solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution.
  • Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile. These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • the electrochemical element of the present invention is obtained by impregnating the above element with an electrolytic solution.
  • the capacitor element can be manufactured by winding, stacking, or folding into a container as necessary, and pouring the electrolyte into the container and sealing it.
  • a device in which an element is previously impregnated with an electrolytic solution may be stored in a container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
  • the arithmetic average roughness (Ra) of the surface of the conductive adhesive layer is calculated by the following formula using a nano-scale hybrid microscope (VN-8010) manufactured by Keyence Corporation based on JIS B 0601. Obtained by law.
  • L is the measurement length
  • x is the deviation from the average line to the measurement curve.
  • the current collector on which the conductive adhesive layer is formed is cut into 5 cm ⁇ 5 cm, and the thickness of any 10 points is measured using a micro thickness gauge (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The value obtained by subtracting the thickness of the body was taken as the thickness of the conductive adhesive layer.
  • Electrode for electrochemical element electrode for electric double layer capacitor, negative electrode for lithium ion capacitor, or lithium ion secondary battery
  • the positive electrode is cut into a rectangle with a length of 100 mm and a width of 10 mm to obtain a test piece, and cellophane tape (as defined in JIS Z1522) is applied to the surface of the electrode composition layer with the electrode composition layer side down.
  • cellophane tape as defined in JIS Z1522
  • Example 1 As spherical graphite, 80 parts of spherical graphite (manufactured by Nippon Carbon Co., Ltd.) having an aspect ratio of 7 and a volume average particle diameter of 1.0 ⁇ m, and furnace black (Super-P) having a volume average particle diameter of 0.4 ⁇ m as carbon black. 20 parts by TIMCAL Co., Ltd.), 4.0 parts aqueous solution of carboxymethyl cellulose ammonium (DN-10L; produced by Daicel Chemical Industries) as a dispersant, 4 parts in terms of solid content, and a glass transition temperature of ⁇ Carboxylic acid group-containing diene polymer having a number average particle size of 0.25 ⁇ m at 40 ° C.
  • D-10L carboxymethyl cellulose ammonium
  • a conductive adhesive composition by mixing a 40% aqueous dispersion of a polymer) with a solid content equivalent of 8 parts and ion-exchanged water so that the total solid concentration is 30%.
  • the conductive adhesive composition is discharged from a die onto an aluminum current collector having a thickness of 30 ⁇ m, applied to one side of the current collector at a molding speed of 30 m / min, dried at 120 ° C. for 5 minutes, A 4 ⁇ m thick conductive adhesive layer was formed.
  • Table 1 shows the appearance of the coated surface of the conductive adhesive layer and the measurement results of the surface roughness Ra of the conductive adhesive layer.
  • an electrode active material for an electric double layer capacitor 100 parts of activated carbon powder (CEP-21; manufactured by Shin Nippon Oil Co., Ltd.) having a volume average particle diameter of 11 ⁇ m, which is an alkali activated carbon made from petroleum pitch as a raw material, as a dispersant 2 parts of a 1.5% aqueous solution of carboxymethyl cellulose ammonium (DN-800H; manufactured by Daicel Chemical Industries, Ltd.) corresponding to the solid content, and 5 parts of acetylene black (Denka Black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent were combined.
  • activated carbon powder CEP-21; manufactured by Shin Nippon Oil Co., Ltd.
  • DN-800H carboxymethyl cellulose ammonium
  • acetylene black acetylene black
  • a diene polymer (a monomer mixture containing 60% by weight of styrene, 35% by weight of butadiene and 5% by weight of itaconic acid was emulsion-polymerized as a coating agent with a glass transition temperature of ⁇ 40 ° C. and a number average particle size of 0.25 ⁇ m.
  • this slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.).
  • the rotating disk type atomizer (diameter 65 mm) had a rotational speed of 25,000 rpm, a hot air temperature of 150 ° C., and a particle recovery outlet temperature.
  • Spray drying granulation was performed under the condition of 90 ° C. to obtain spherical composite particles for electrode composition layer (electrode composition) having a volume average particle diameter of 56 ⁇ m and a sphericity of 93%.
  • the composite particles are placed on a roll (roll temperature 100 ° C., press linear pressure 3.9 kN / cm) of a roll press machine (pressed rough surface heat roll; manufactured by Hirano Giken Co., Ltd.), and the thickness of the conductive adhesive layer is 30 ⁇ m.
  • a sheet-like electrode composition layer is formed on a conductive adhesive layer at a forming speed of 20 m / min, punched out to a 5 cm square, and has an electrode composition layer with a thickness of 200 ⁇ m on one side.
  • An electrode for an electric double layer capacitor was obtained. Table 1 shows the measurement results of the peel strength of the electric double layer capacitor electrode.
  • the electrode and separator for the electric double layer capacitor As the electrode and separator for the electric double layer capacitor, cellulose (TF40; manufactured by Nippon Kogyo Paper Industries Co., Ltd.) was impregnated with an electrolytic solution at room temperature for 1 hour. Next, the electrode composition layers of the two electric double layer capacitor electrodes are opposed to each other with a separator interposed therebetween, and the electric double layer capacitor electrodes are arranged so as not to be in electrical contact with each other. A double layer capacitor was fabricated.
  • the electrolytic solution a solution in which tetraethylammonium fluoroborate was dissolved at a concentration of 1.0 mol / liter using propylene carbonate as a solvent was used. Table 1 shows the measurement results of the internal resistance of the electric double layer capacitor.
  • Example 2 Example 1 except that the spherical graphite constituting the conductive adhesive layer was replaced with spherical graphite (HPC-250; manufactured by Nippon Graphite Industries Co., Ltd.) having an aspect ratio of 2 and a volume average particle diameter of 3.7 ⁇ m. Similarly to the above, an electrode for an electric double layer capacitor and an electric double layer capacitor were produced. Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • HPC-250 manufactured by Nippon Graphite Industries Co., Ltd.
  • Example 3 Example 1 except that spherical graphite constituting the conductive adhesive layer was replaced with spherical graphite (LB-CG; manufactured by Nippon Graphite Industries Co., Ltd.) having an aspect ratio of 3 and a volume average particle diameter of 18 ⁇ m.
  • LB-CG spherical graphite
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Example 4 An electrode for an electric double layer capacitor and an electric double layer capacitor as in Example 2 except that the amount of spheroidal graphite constituting the conductive adhesive layer is 95 parts and the amount of carbon black is 5 parts Was made.
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Example 5 An electrode for an electric double layer capacitor and an electric double layer capacitor as in Example 2 except that the amount of spheroidal graphite constituting the conductive adhesive layer is 50 parts and the amount of carbon black is 50 parts was made.
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Example 6 Example 6 except that carbon black constituting the conductive adhesive layer was changed to acetylene black (BMAB; manufactured by Denki Kagaku Kogyo Co., Ltd.) containing 1% boron with a volume average particle size of 0.4 ⁇ m.
  • BMAB acetylene black
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Example 7 The carbon black constituting the conductive adhesive layer is changed to acetylene black (BMAB; manufactured by Denki Kagaku Kogyo Co., Ltd.) containing 1% boron with a volume average particle size of 0.4 ⁇ m, and an anion is added to the conductive adhesive composition.
  • a capacitor was produced. Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • the binder constituting the conductive adhesive layer is a carboxylic acid group-containing acrylate polymer having a glass transition temperature of ⁇ 45 ° C. and a number average particle diameter of 0.25 ⁇ m (96% by weight of 2-ethylhexyl acrylate, methacrylic acid).
  • the carbon black constituting the conductive adhesive layer is replaced with a 40% aqueous dispersion of a copolymer obtained by emulsion polymerization of a monomer mixture containing 4% by weight, and the volume average particle diameter is 0.4 ⁇ m.
  • a conductive adhesive composition was further converted to a naphthalenesulfonic acid formalin condensate (Demol NL; manufactured by Kao Corporation) as an anionic surfactant.
  • An electrode for an electric double layer capacitor and an electric double layer capacitor were produced in the same manner as in Example 2 except that 4 parts were added corresponding to the solid content.
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • the binder constituting the conductive adhesive is an acrylate polymer containing carboxylic acid groups and nitrile groups having a glass transition temperature of ⁇ 20 ° C. and a number average particle diameter of 0.25 ⁇ m (76% by weight of 2-ethylhexyl acrylate).
  • % A copolymer obtained by emulsion polymerization of a monomer mixture containing 20% by weight of acrylonitrile and 4% by weight of itaconic acid), and carbon black constituting the conductive adhesive layer.
  • a naphthalenesulfonic acid formalin condensate which is an anionic surfactant
  • BMAB acetylene black
  • a naphthalenesulfonic acid formalin condensate which is an anionic surfactant
  • Sita was made. Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Table 1 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the electric double layer capacitor electrode, and the internal resistance of the electric double layer capacitor.
  • Example 10 As spherical graphite, 80 parts of graphite (HPC-250; manufactured by Nippon Graphite Industries Co., Ltd.) having an aspect ratio of 2 and a volume average particle diameter of 3.7 ⁇ m, and carbon black, boron 1 having a volume average particle diameter of 0.4 ⁇ m % Of acetylene black (BMAB; manufactured by Denki Kagaku Kogyo Co., Ltd.) containing 20%, and 4 parts of a 4.0% aqueous solution of carboxymethyl cellulose ammonium (DN-10L; manufactured by Daicel Chemical Industries, Ltd.) as a dispersant.
  • BMAB acetylene black
  • D-10L carboxymethyl cellulose ammonium
  • Naphthalenesulfonic acid formalin condensate (Demol NL; manufactured by Kao Co., Ltd.), an anionic surfactant, is used as a surfactant, corresponding to a solid content of 4 parts, and a glass transition temperature of ⁇ 20 ° C. as a binder, a number average particle size.
  • Is an acrylate polymer having a carboxylic acid group and a nitrile group of 0.25 ⁇ m (76% by weight of 2-ethylhexyl acrylate, acryloni (Copolymer obtained by emulsion polymerization of a monomer mixture containing 20% by weight of ril and 4% by weight of itaconic acid) was mixed so as to be 30% to prepare a conductive adhesive composition.
  • the conductive adhesive composition is discharged from a pair of dies so as to sandwich an expanded aluminum current collector (opening ratio 40%) having a thickness of 30 ⁇ m, and is formed on both surfaces of the current collector at a molding speed of 30 m / min. This was applied and dried at 120 ° C. for 5 minutes to form a conductive adhesive layer having a thickness of 4 ⁇ m on one side.
  • an activated carbon powder (CEP-21; manufactured by Shin Nippon Oil Co., Ltd.) having a volume average particle diameter of 11 ⁇ m, which is an alkali-activated activated carbon made from petroleum pitch as a positive electrode active material, and carboxymethylcellulose ammonium as a dispersant.
  • aqueous solution (DN-800H; manufactured by Daicel Chemical Industries, Ltd.) in a solid content equivalent of 2.0 parts, and 5 parts of acetylene black (Denka Black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent are bound.
  • a diene polymer having a glass transition temperature of ⁇ 40 ° C.
  • a monomer mixture containing 60% by weight of styrene, 35% by weight of butadiene, and 5% by weight of itaconic acid was emulsion-polymerized.
  • the resulting copolymer in a planetary mixer so that a 40% aqueous dispersion is equivalent to 5 parts in solids and ion-exchanged water is 20% in total solids.
  • the mixture was further mixed to prepare a slurry for the electrode composition layer of the positive electrode.
  • Electrode composition layer (electrode composition) of a spherical positive electrode having a volume average particle diameter of 56 ⁇ m and a sphericity of 93%.
  • the composite particles are placed on a roll (roll temperature 100 ° C., press linear pressure 3.9 kN / cm) of a roll press machine (pressed rough surface heat roll; manufactured by Hirano Giken Co., Ltd.), and the thickness of the conductive adhesive layer is 30 ⁇ m.
  • the sheet-like electrode composition layer was formed on the conductive adhesive layer at a forming speed of 20 m / min, punched out in a square of 5 cm, and an electrode composition having a thickness of 200 ⁇ m on one side.
  • a positive electrode for a lithium ion capacitor having a layer was obtained.
  • the conductive adhesive composition is discharged from a pair of dies so as to sandwich an expanded copper current collector (opening ratio: 40%) having a thickness of 20 ⁇ m, and both surfaces of the current collector are formed at a molding speed of 30 m / min. And dried at 120 ° C. for 5 minutes to form a conductive adhesive layer having a thickness of 4 ⁇ m on one side.
  • Table 2 shows the appearance of the coated surface of the conductive adhesive layer and the measurement results of the surface roughness Ra of the conductive adhesive layer.
  • an electrode active material for the negative electrode 100 parts of graphite (KS-6; manufactured by Timcal) having a volume average particle diameter of 3.7 ⁇ m and a 1.5% aqueous solution of carboxymethyl cellulose ammonium (DN-800H; Daicel) as a dispersant are used.
  • KS-6 graphite
  • DN-800H carboxymethyl cellulose ammonium
  • dispersant 100 parts of graphite (KS-6; manufactured by Timcal) having a volume average particle diameter of 3.7 ⁇ m and a 1.5% aqueous solution of carboxymethyl cellulose ammonium (DN-800H; Daicel) as a dispersant are used.
  • acetylene black denka black powder form; manufactured by Denki Kagaku Kogyo Co., Ltd.
  • aqueous dispersion of a diene polymer (copolymer obtained by emulsion polymerization of a monomer mixture containing 60% by weight of styrene, 35% by weight of butadiene and 5% by weight of itaconic acid) having an average particle size of 0.25 ⁇ m was mixed with a planetary mixer so that the solid content was 5 parts and ion-exchanged water was 20% in total solid content to prepare an electrode composition layer slurry.
  • this slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.).
  • the rotating disk type atomizer (diameter 65 mm) had a rotational speed of 25,000 rpm, a hot air temperature of 150 ° C., and a particle recovery outlet temperature.
  • Spray drying granulation was performed under the condition of 90 ° C. to obtain composite particles (electrode composition) for the electrode composition layer of a spherical negative electrode having a volume average particle diameter of 28 ⁇ m and a sphericity of 93%.
  • Thickness in which the conductive adhesive layer is formed on a roll (roll temperature: 100 ° C., press linear pressure: 3.9 kN / cm) of the composite particles on a roll (rolling rough surface heat roll; manufactured by Hirano Giken). It is supplied together with an expanded copper current collector of 30 ⁇ m, a sheet-like electrode composition layer is formed on a conductive adhesive layer at a forming speed of 20 m / min, and this is punched out to a 5 cm square, and an electrode composition having a thickness of 80 ⁇ m on one side A negative electrode for a lithium ion capacitor having a physical layer was obtained. Table 2 shows the measurement results of the peel strength of the negative electrode for lithium ion capacitors.
  • the electrolyte solution was impregnated with a cellulose / rayon nonwoven fabric at room temperature for 1 hour as the positive electrode for lithium ion capacitor, the negative electrode for lithium ion capacitor, and the separator.
  • the positive electrode for lithium ion capacitor and the negative electrode for lithium ion capacitor are set to face each other with a separator interposed therebetween, and so that the respective electrodes for lithium ion capacitor are not in electrical contact with each other.
  • 10 pairs of negative electrodes were arranged to produce a laminated laminate cell-shaped lithium ion capacitor.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.
  • a lithium electrode of the laminated laminate cell As a lithium electrode of the laminated laminate cell, a lithium metal foil (82 ⁇ m thick, 5 cm long ⁇ 5 cm wide) bonded to an 80 ⁇ m thick stainless steel mesh is used, and the lithium electrode is completely opposed to the outermost negative electrode. One electrode was placed on each of the upper and lower portions of the stacked electrodes. In addition, the terminal welding part (two sheets) of the lithium electrode current collector was resistance welded to the negative electrode terminal welding part. Table 2 shows the measurement results of the internal resistance of this lithium ion capacitor.
  • Comparative Example 2 A lithium ion capacitor electrode and a lithium ion capacitor were produced in the same manner as in Example 10 except that the conductive adhesive composition obtained in Comparative Example 1 was used. Table 2 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the negative electrode for lithium ion capacitor, and the internal resistance of the lithium ion capacitor.
  • Example 11 As spherical graphite, 80 parts of graphite (manufactured by Nippon Graphite Industry Co., Ltd.) having an aspect ratio of 2.5 and volume average particle diameter of 2.0 ⁇ m, and carbon black, volume average particle diameter of 0.4 ⁇ m and boron of 1% 20 parts of acetylene black (BMAB; manufactured by Denki Kagaku Kogyo Co., Ltd.) and 4 parts of a 4.0% aqueous solution of carboxymethyl cellulose ammonium (DN-10L; manufactured by Daicel Chemical Industries, Ltd.) as a dispersing agent are bound.
  • BMAB acetylene black
  • DNS-10L carboxymethyl cellulose ammonium
  • a conductive adhesive composition obtained by mixing naphthalenesulfonic acid formalin condensate (Demol NL; manufactured by Kao Corporation), which is an activator, with a solid content equivalent to 4 parts and ion-exchanged water so that the total solid content concentration is 30%.
  • the conductive adhesive composition is applied to one side of the aluminum foil from a die at a molding speed of 30 m / min on a 30 ⁇ m thick aluminum foil, dried at 120 ° C. for 5 minutes, and a thickness of 4 ⁇ m.
  • the conductive adhesive layer was formed.
  • Table 3 shows the appearance of the coated surface of the conductive adhesive layer and the measurement results of the surface roughness Ra of the conductive adhesive layer.
  • a positive electrode active material 100 parts of LiFePO 4 having a volume average particle diameter of 0.5 ⁇ m and an olivine crystal structure is used, and a 1% aqueous solution of carboxymethyl cellulose (CMC, “BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is used as a dispersant. 1 part in equivalent of solid content, acrylate polymer having a glass transition temperature of ⁇ 40 ° C.
  • CMC carboxymethyl cellulose
  • a planetar such that a 40% aqueous dispersion of a copolymer obtained by emulsion polymerization of a monomer mixture containing 5% by weight is 5 parts in terms of solids and the total solids concentration is 40% with ion-exchanged water.
  • a slurry for a positive electrode composition layer was prepared by mixing with a Lee mixer.
  • the positive electrode composition layer slurry is applied with a comma coater and dried at 120 ° C. for 20 minutes to obtain a positive electrode active material having a thickness of 60 ⁇ m.
  • a layer was formed. This was rolled by a roll press to obtain a positive electrode raw material having a positive electrode active material layer thickness of 45 ⁇ m.
  • the obtained positive electrode raw material was cut out into a circle having a diameter of 13 mm to obtain a positive electrode for a lithium ion secondary battery.
  • Table 3 shows the measurement results of the peel strength of the positive electrode for a lithium ion secondary battery.
  • KS-6 graphite
  • DN-800H carboxymethyl cellulose ammonium
  • a dispersant 100 parts of graphite (KS-6; manufactured by Timcal) having a volume average particle diameter of 3.7 ⁇ m and a 1.5% aqueous solution of carboxymethyl cellulose ammonium (DN-800H; Daicel Chemical) as a dispersant are used.
  • Kogyo Co., Ltd. 2.0 parts in terms of solid content, 5 parts of acetylene black (Denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent, glass transition temperature of ⁇ 40 ° C.
  • aqueous dispersion of a diene polymer (copolymer obtained by emulsion polymerization of a monomer mixture containing 60% by weight of styrene, 35% by weight of butadiene and 5% by weight of itaconic acid) having a particle size of 0.25 ⁇ m 5 parts in terms of solid content and ion-exchanged water were mixed by a planetary mixer so that the total solid content concentration was 20% to prepare a slurry for the electrode composition layer of the negative electrode.
  • a diene polymer copolymer obtained by emulsion polymerization of a monomer mixture containing 60% by weight of styrene, 35% by weight of butadiene and 5% by weight of itaconic acid
  • the negative electrode composition layer slurry was applied on one side of a 20 ⁇ m thick copper foil with a comma coater and dried at 110 ° C. for 20 minutes to form a negative electrode active material layer having a thickness of 90 ⁇ m. This was rolled by a roll press to obtain a negative electrode raw material having a negative electrode active material layer thickness of 60 ⁇ m. The obtained negative electrode raw material was cut into a circle having a diameter of 14 mm to obtain a negative electrode for a lithium ion secondary battery.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by dry method, porosity 55%) was cut into a circle having a diameter of 18 mm.
  • the positive electrode for a lithium ion secondary battery obtained above was disposed on the bottom surface of the outer container so that the surface on the conductive adhesive layer side was in contact with the outer container.
  • a separator was disposed on the surface of the positive electrode on the positive electrode active material layer side.
  • the negative electrode for a lithium ion secondary battery obtained above was placed on the separator so that the surface on the negative electrode active material layer side faces the separator.
  • the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing for sealing the opening of the outer container, and the container is sealed to have a diameter of 20 mm and a thickness of about 3 mm.
  • a 2 mm lithium ion secondary battery was produced. Table 3 shows the measurement results of the internal resistance of this lithium ion secondary battery.
  • Example 12 Example except that the spherical graphite constituting the conductive adhesive layer was replaced with graphite having an aspect ratio of 1.7 and a volume average particle diameter of 4.0 ⁇ m (JB-5, manufactured by Nippon Graphite Industries Co., Ltd.) In the same manner as in Example 11, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced. Table 3 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the positive electrode for the lithium ion secondary battery, and the internal resistance of the lithium ion secondary battery. .
  • Example 13 Except that the spherical graphite constituting the conductive adhesive layer was replaced with graphite having an aspect ratio of 1.9 and a volume average particle diameter of 8.0 ⁇ m (manufactured by Nippon Graphite Industry Co., Ltd.), the same as in Example 11. Then, a negative electrode for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced. Table 3 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the positive electrode for the lithium ion secondary battery, and the internal resistance of the lithium ion secondary battery. .
  • Example 14 As in Example 12, except that the surfactant constituting the conductive adhesive layer was changed to polyoxyethylene alkylamine (Amete 105, manufactured by Kao Corporation) which is a nonionic surfactant, A negative electrode for a secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced.
  • Table 3 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the positive electrode for the lithium ion secondary battery, and the internal resistance of the lithium ion secondary battery. .
  • a copolymer obtained by emulsion polymerization of a monomer mixture containing 35% by weight of butadiene) was used in the same manner as in Example 11 except that a surfactant was not used.
  • a negative electrode for an ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced.
  • Table 3 shows the measurement results of the appearance of the coated surface of the conductive adhesive layer, the surface roughness Ra of the conductive adhesive layer, the peel strength of the positive electrode for the lithium ion secondary battery, and the internal resistance of the lithium ion secondary battery. .
  • carbon black containing a hetero element is used as a carbon black constituting the conductive adhesive layer
  • an acrylate polymer containing a carboxylic acid group and a nitrile group is used as a binder
  • carboxymethyl cellulose ammonium and anionic property are used.
  • graphite using flaky graphite as the graphite constituting the conductive adhesive layer is inferior in productivity, electrode strength, electrode density, and internal resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電極強度に優れ、かつ電極密度を高めることのできる電気化学素子用電極、および内部抵抗を低減し、かつエネルギー密度および出力密度を高めることを可能とする電気化学素子を提供する。 【解決手段】球状黒鉛、カーボンブラック及び導電性接着剤層用結着剤を含んでなる導電性接着剤層、並びに、電極活物質及び電極組成物層用結着剤を含んでなる電極組成物層を、集電体上に該集電体側からこの順に有してなる電気化学素子用電極。前記球状黒鉛の体積平均粒子径が、0.1~50μmであることが好ましい。

Description

電気化学素子用電極および電気化学素子
 本発明は、電気化学素子用電極および電気化学素子に関する。より詳しくは、電極強度に優れ、電極密度を高め、内部抵抗を低減し、エネルギー密度および出力密度を高めることのできる電気化学素子用電極および該電極を有する電気化学素子に関する。
 小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタおよびリチウムイオンキャパシタなどの電気化学素子の需要が急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどの分野で利用され、電気二重層キャパシタは急激な充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている。さらに電気二重層キャパシタは、電気自動車用の大型電源としての応用が期待されている。また、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたリチウムイオンキャパシタは、エネルギー密度、出力密度ともに高いことから注目を集めている。これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性の向上など、よりいっそうの改善が求められている。
 電気二重層キャパシタは、正極と負極に分極性電極を備え、有機系電解液を用いることで作動電圧を高め、エネルギー密度を高めることができる。しかし一方で、集電体と電極組成物層との接触抵抗が大きく、電極強度が小さく、内部抵抗が大きいという問題点があった。そこで、これらの問題を解決するために、種々の検討がなされている。
 例えば、特許文献1では、粗面化処理されたアルミ集電体上に、黒鉛およびポリイミド樹脂やポリアミドイミド樹脂などの結着剤を含む導電性接着剤層を介して、活性炭、カーボンブラックおよびPTFEを含む電極組成物層が形成されてなる電気二重層キャパシタ用電極が提案されている。そして、特許文献1によれば、前記電極の電極強度を高くすることができるとしている。
 また、特許文献2では、アルミ集電体上に、薄片状の黒鉛、カーボンブラックおよびSBR結着剤を含む導電性接着剤層を介して、活性炭、カーボンブラックおよびPTFEを含む電極組成物層が形成されてなる電気二重層キャパシタ用電極が提案されている。そして、特許文献2によれば、前記電極により内部抵抗を低くすることができるとしている。
特開平9-270370号公報 特開2005-136401号公報(対応米国特許7486497号明細書)
 しかしながら、本発明者の検討によれば、特許文献1の電極は、粗面化集電体を用いることにより電極強度をある程度高くすることは可能であるが、内部抵抗の低減が不十分であることがわかった。一方、特許文献2の電極は、導電性接着剤層を構成する炭素材料として2種類の炭素材料を用いることにより、内部抵抗の低減はある程度可能であるが、電極強度の向上が不十分であることがわかった。
 従って、本発明は、従来よりも、さらに電極強度に優れ、かつ電極密度を高めることのできる電気化学素子用電極、および内部抵抗を低減し、かつエネルギー密度および出力密度を高めることが可能な電気化学素子を提供することを目的とする。
 本発明者は上記目的を達成するために鋭意検討した結果、導電性接着剤層に、球状黒鉛、カーボンブラック及び結着剤を含有させることにより、得られる電気化学素子用電極の電極強度および電極密度が高くなり、該電極を有する電気化学素子の容量が向上し、内部抵抗が低減し、エネルギー密度と出力密度が向上することを見出した。
 本発明者は、これらの知見に基づいて、本発明を完成するに至った。
 かくして、上記課題を解決する本発明は、下記事項を要旨として含む。
(1)球状黒鉛、カーボンブラック及び導電性接着剤層用結着剤を含む導電性接着剤層、並びに、電極活物質及び電極組成物層用結着剤を含む電極組成物層を、集電体上に該集電体側からこの順に有してなる電気化学素子用電極。
(2)前記球状黒鉛の体積平均粒子径が、0.1~50μmである(1)に記載の電気化学素子用電極。
(3)前記導電性接着剤層における、前記球状黒鉛と前記カーボンブラックとの重量比が、カーボンブラック/球状黒鉛の比で、0.05~1.0である(1)または(2)に記載の電気化学素子用電極。
(4)前記カーボンブラックが、ヘテロ元素を含有するものである(1)~(3)のいずれかに記載の電気化学素子用電極。
(5)前記カーボンブラック中のへテロ元素の含有量が、0.01~20重量%である(4)に記載の電気化学素子用電極。
(6)前記導電性接着剤層用結着剤が、アクリレート系重合体またはジエン系重合体である(1)~(5)のいずれかに記載の電気化学素子用電極。
(7)前記導電性接着剤層用結着剤が、極性基を有するものである(1)~(6)のいずれかに記載の電気化学素子用電極。
(8)前記極性基が、ニトリル基である(7)に記載の電気化学素子用電極。
(9)前記極性基が、酸基である(7)に記載の電気化学素子用電極。
(10)前記酸基が、カルボン酸基である(9)に記載の電気化学素子用電極。
(11)前記導電性接着剤層が、さらにカルボキシメチルセルロース塩を含む(1)~(10)のいずれかに記載の電気化学素子用電極。
(12)前記導電性接着剤層が、さらに界面活性剤を含む(1)~(11)のいずれかに記載の電気化学素子用電極。
(13)前記界面活性剤が、アニオン性界面活性剤である(12)に記載の電気化学素子用電極。
(14)前記集電体が、貫通する孔を有するものである(1)~(13)のいずれかに記載の電気化学素子用電極。
(15)前記電極組成物層が、電極活物質および電極組成物層用結着剤を含んでなる複合粒子からなる(1)~(14)のいずれかに記載の電気化学素子用電極。
(16)前記(1)~(15)のいずれかに記載の前記電気化学素子用電極、セパレータおよび電解液を備えてなる電気化学素子。
 本発明によれば、電極強度および電極密度が高まり、かつ内部抵抗が小さく、エネルギー密度および出力密度を高める電気化学素子を容易に製造できる。本発明の電気化学素子は、パソコンや携帯端末等のメモリのバックアップ電源、パソコン等の瞬時停電対策用電源、電気自動車又はハイブリッド自動車への応用、太陽電池と併用したソーラー発電エネルギー貯蔵システム、電池と組み合わせたロードレベリング電源等の様々な用途に好適に用いることができる。
 本発明の電気化学素子用電極は、球状黒鉛、カーボンブラック及び導電性接着剤層用結着剤を含んでなる導電性接着剤層、並びに、電極活物質及び電極組成物層用結着剤を含んでなる電極組成物層を、集電体上に該集電体側からこの順に有してなる。
(導電性接着剤層)
 本発明に用いる導電性接着剤層は、前記集電体と前記電極組成物層との間に接着層として設置され、球状黒鉛、カーボンブラック及び導電性接着剤層用結着剤を含んでなる。
(球状黒鉛)
 本発明に用いる球状黒鉛は、非局在化したπ電子の存在によって高い導電性を有し、そのアスペクト比が、通常1以上20以下、好ましくは1以上10以下、特に好ましくは1以上5以下である、形状が球状またはほぼ球状の黒鉛である。球状黒鉛の具体例としては、天然黒鉛や人造黒鉛が挙げられる。本発明において、球状黒鉛のアスペクト比が前記範囲であると、導電性接着剤層と電極組成物層との密着性が高くなる、すなわちピール強度が高くなる結果、電極強度が高くなり、かつ電子移動抵抗が低減できる。前記アスペクト比は(短軸数平均径)/(長軸数平均径)で表される値である。短軸数平均径および長軸数平均径は、透過電子顕微鏡写真で無作為に選んだ球状黒鉛粒子100個の短軸径および長軸径を測定し、その算術平均値として算出される個数平均粒子径である。
 本発明に用いる球状黒鉛の体積平均粒子径は、好ましくは0.1~50μm、より好ましくは0.5~20μm、特に好ましくは1~10μmである。本発明において、体積平均粒子径が前記範囲にある球状黒鉛を用いると、導電性接着剤層中の球状黒鉛及びカーボンブラックが高密度に充填するため、電子移動抵抗が低減され、電気化学素子の内部抵抗がより低減し、導電性接着剤層と電極組成物層との接触面積が増え、電極強度をより高くすることができる。ここで体積平均粒子径は、レーザー回折式粒度分布測定装置(SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。
 本発明において、導電性接着剤層における、球状黒鉛の含有割合は、好ましくは50~99質量%、より好ましくは60~95質量%、特に好ましくは70~90質量%である。本発明において、導電性接着剤層における球状黒鉛の含有割合を前記範囲とすることにより、電子移動抵抗が低減され、電気化学素子の内部抵抗を低減することができる。
(カーボンブラック)
 本発明に用いるカーボンブラックは、黒鉛質の炭素微結晶が数層集まって乱層構造を形成した集合体であって、具体的にはアセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラックなどが挙げられる。カーボンブラックの中でも、導電性接着剤層が高密度に充填し、電子移動抵抗を低減でき、さらに電気化学素子の内部抵抗を低減できる点で、アセチレンブラック、ファーネスブラック、ケッチェンブラックが特に好ましい。
 本発明に用いるカーボンブラックは、主成分である炭素元素と異なるヘテロ元素を含有することが好ましい。前記ヘテロ元素としては、具体的にはケイ素、窒素、ホウ素が挙げられ、電子移動抵抗を低減し、電気化学素子の内部抵抗を低減できる点で、ホウ素が特に好ましい。
 本発明に用いるカーボンブラック中のヘテロ元素の含有量は、0.01~20重量%の範囲にあることが好ましく、0.05~10重量%の範囲にあることがより好ましく、0.1~5重量%の範囲にあることが特に好ましい。カーボンブラック中のヘテロ元素の含有量がこの範囲にあると、電子移動抵抗が低減され、電気化学素子の内部抵抗が低減する。
 本発明において、導電性接着剤層における、カーボンブラックの含有割合は、好ましくは1~50重量%、より好ましくは5~40重量%、特に好ましくは10~30重量%である。本発明において、導電性接着剤層におけるカーボンブラックの含有割合を前記範囲とすることにより、電子移動抵抗が低減され、電気化学素子の内部抵抗がより低減される。
 導電性接着剤層における、前記球状黒鉛とカーボンブラックとの重量比は、カーボンブラック/球状黒鉛の比で、0.05~1が好ましく、0.1~0.8がより好ましく、0.2~0.5が特に好ましい。導電性接着剤層における、球状黒鉛とカーボンブラックとの重量比が前記範囲であると、導電性接着剤層中の球状黒鉛及びカーボンブラックが高密度に充填するため、電子移動抵抗が低減され、電気化学素子の内部抵抗がより低減される。
 本発明に用いるカーボンブラックの体積平均粒子径は、好ましくは0.01μm以上、1.0μm未満、より好ましくは0.05μm以上、0.8μm未満、特に好ましくは0.1μm以上、0.5μm未満である。本発明において、体積平均粒子径が前記範囲にあるカーボンブラックを用いると、導電性接着剤層中の球状黒鉛及びカーボンブラックが高密度に充填する。なお、体積平均粒子径の算出法は前記と同様である。
(導電性接着剤層用結着剤)
 本発明に用いる導電性接着剤層用結着剤は、球状黒鉛およびカーボンブラックを相互に結着させることができる化合物であれば特に制限はない。好適な結着剤は、溶媒に分散する性質のある分散型結着剤である。分散型結着剤として、例えば、フッ素重合体、ジエン重合体、アクリレート重合体、ポリイミド、ポリアミド、ポリウレタン重合体等の高分子化合物が挙げられ、フッ素重合体、ジエン重合体又はアクリレート重合体が好ましく、ジエン重合体又はアクリレート重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
 ジエン重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常30重量%以上、好ましくは40重量%以上、より好ましくは50重量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;スチレン・ブタジエン・メタクリル酸共重合体や、スチレン・ブタジエン・イタコン酸共重合体などの芳香族ビニル・共役ジエン・カルボン酸基含有単量体の共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
 アクリレート重合体は、一般式(1):CH=CR-COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体単位を含む重合体である。一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリルなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート重合体中の一般式(1)で表される化合物由来の単量体単位の割合は、通常50重量%以上、好ましくは70重量%以上である。前記一般式(1)で表される化合物由来の単量体単位の割合が前記範囲であるアクリレート系重合体を用いると、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗を小さくできる。
 本発明に用いる導電性接着剤層用結着剤は、極性基を有するものが好ましい。導電性接着剤層用結着剤が、極性基を有することにより、集電体及び電極組成物層との結着性をさらに高めることができる。本発明において、極性基とは、水中で解離しうる官能基や分極を有する官能基のことをいい、具体的には、酸基、ニトリル基、アミド基、アミノ基、ヒドロキシル基、エポキシ基などが挙げられる。これらの中でも、酸基、ニトリル基、エポキシ基が好ましく、耐電圧を高くできる点で、酸基又はニトリル基がより好ましい。本発明において、用いる導電性接着剤層用結着剤は、前記極性基を1種類有すればよいが、2種類以上有することが好ましい。導電性接着剤層用結着剤が、極性基を2種類以上有することにより、集電体および電極組成物層との結着性をさらに高めることができる。極性基を2種類有する場合の具体的な組み合わせとしては、酸基とニトリル基、酸基とアミド基、酸基とアミノ基が挙げられる。極性基を3種類以上有する場合の組み合わせは、例示した極性基の中から3種組み合わせればよい。結着剤中の極性基は、例えば、導電性接着剤層用結着剤を構成する重合体を重合する際、極性基を有する単量体を用いたり、極性基を有する重合開始剤を用いたりすることにより、重合体中に導入することができる。
 導電性接着剤層用結着剤中の極性基の含有割合は、極性基を有する単量体の含有割合で、好ましくは0.1~40重量%、より好ましくは0.5~30重量%、特に好ましくは1~20重量%である。導電性接着剤層用結着剤中の極性基の含有割合を前記範囲とすることにより、集電体との結着性に優れ、電極の電極強度を高くすることができる。
 ニトリル基を極性基として含む単量体としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、耐電圧を高くできる点で、アクリロニトリルが好ましい。
 酸基を極性基として含む単量体としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体や、マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体などのカルボン酸基を有する単量体;スチレンスルホン酸、メタリルスルホン酸などのスルホン酸基を有する単量体などが挙げられ、中でもカルボン酸基を有する単量体が好ましく、耐電圧を高くできる点で、二塩基酸含有単量体が特に好ましい。
 本発明の電気化学素子用電極に用いる導電性接着剤層用結着剤の形状は、特に制限はないが、集電体との結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
 本発明に用いる導電性接着剤層用結着剤のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは-40~0℃である。導電性接着剤層用結着剤のガラス転移温度(Tg)がこの範囲にあると、少量の使用量で結着性に優れ、集電体と電極組成物層との結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
 本発明に用いる導電性接着剤層用結着剤が、粒子状である場合における、その数平均粒子径は、格別な限定はないが、通常は0.0001~100μm、好ましくは0.001~10μm、より好ましくは0.01~1μmである。導電性接着剤層用結着剤が粒子状である場合における、その数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を、導電性接着剤層および電極組成物層に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ結着剤粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの結着剤は単独でまたは二種類以上を組み合わせて用いることができる。
 本発明において、導電性接着剤層における導電性接着剤層用結着剤の含有量は、球状黒鉛100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。導電性接着剤層における導電性接着剤層用結着剤の量がこの範囲にあると、得られる電極組成物層と集電体との密着性が充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。
(その他の成分)
 本発明に用いる導電性接着剤層は、必須成分として球状黒鉛、カーボンブラックおよび導電性接着剤層用結着剤を含むものであるが、さらにカルボキシメチルセルロース塩及び/又は界面活性剤を含むことが好ましい。
 本発明に好適に用いるカルボキシメチルセルロース塩は、導電性接着剤層を形成するための分散剤で、具体的には、カルボキシメチルセルロース酸、カルボキシメチルセルロースアンモニウム塩、カルボキシメチルセルロースアルカリ金属塩、カルボキシメチルセルロースアルカリ土類金属塩などが挙げられる。中でも、カルボキシメチルセルロースアンモニウム塩、カルボキシメチルセルロースアルカリ金属塩が好ましく、カルボキシメチルセルロースアンモニウム塩が特に好ましい。特に、カルボキシメチルセルロースアンモニウム塩を用いると、球状黒鉛、カーボンブラックおよび結着剤を均一に分散させることができ、導電性接着剤層の充填度を高め、電子移動抵抗を低減することができる。
 導電性接着剤層におけるカルボキシメチルセルロース塩の含有量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、球状黒鉛100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~15重量部、特に好ましくは0.8~10重量部の範囲である。導電性接着剤層におけるカルボキシメチルセルロース塩の含有量がこの範囲であると、得られる電気化学素子の耐久性をより向上させることができる。
(界面活性剤)
 本発明に好適に用いる界面活性剤は、球状黒鉛、カーボンブラックおよび結着剤を均一に分散し、集電体の表面張力を低下させるもので、具体的には、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪酸塩、ナフタレンスルホン酸ホルマリン縮合物などのアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、グリセリン脂肪酸エステルなどの非イオン性界面活性剤;アルキルアミン塩、第四級アンモニウム塩などのカチオン性界面活性剤;アルキルアミンオキサイド、アルキルベタインなどの両性界面活性剤が挙げられる。これらの中でも、アニオン性界面活性剤、非イオン性界面活性剤が好ましく、電気化学素子の耐久性に優れる点でアニオン性界面活性剤が特に好ましい。
 導電性接着剤層における界面活性剤の含有量は、球状黒鉛100重量部に対して、好ましくは0.5~20重量部、より好ましくは1.0~15重量部、特に好ましくは2.0~10重量部の範囲である。導電性接着剤層における界面活性剤の含有量がこの範囲であると、電気化学素子の耐久性に優れる。
 本発明に用いる導電性接着剤層は、球状黒鉛、カーボンブラックおよび結着剤、並びに必要に応じカルボキシメチルセルロース塩や界面活性剤などを、溶媒(分散媒)中で混合、混練等することにより得られる導電性接着剤組成物を、集電体上に塗布し、乾燥して形成することができる。前記溶媒としては、特に制限されないが、環境性と乾燥設備の点で、水が好ましい。
 本発明に用いる導電性接着剤組成物を得るために用いる装置としては、具体的にはボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。
 本発明に用いる導電性接着剤層の形成方法は、特に制限されない。例えば、上記導電性接着剤組成物を、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって、集電体上に形成される。
 本発明に用いる導電性接着剤組成物の固形分濃度は、塗布法にもよるが、通常10~60重量%、好ましくは15~50重量%、特に好ましくは20~40%重量である。固形分濃度がこの範囲にあると、得られる導電性接着剤層が高充填化され、電気化学素子のエネルギー密度と出力密度が高まる。
 本発明に用いる導電性接着剤組成物の粘度は、塗布法にもよるが、通常50~10,000mPa・s、好ましくは100~5,000mPa・s、特に好ましくは200~2,000mPa・sである。導電性接着剤組成物の粘度がこの範囲にあると、集電体上へ均一な導電性接着剤層を形成することができる。
 導電性接着剤層の乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、熱風による乾燥法、遠赤外線の照射による乾燥法が好ましい。乾燥温度と乾燥時間は、集電体に塗布したスラリー状の導電性接着剤組成物中の溶媒を完全に除去できる温度と時間が好ましく、具体的に乾燥温度は通常50~300℃、好ましくは80~250℃である。乾燥時間は、通常2時間以下、好ましくは5秒~30分である。
 本発明に用いる導電性接着剤層の表面粗さRaは、好ましくは0.15μm以上、より好ましくは0.3μm以上、特に好ましくは0.5μm以上である。導電性接着剤層の表面粗さがこの範囲にあると、導電性接着剤層と電極組成物層との接着性が向上し、電極強度が高まり、内部抵抗が低減できる。ここで、導電性接着剤層の表面粗さRaは、JIS B0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN-8010、キーエンス社製)を用いて、粗さ曲線を描き、下式に示す式より算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。なお、導電性接着剤層の表面粗さの上限は、導電性接着剤層の厚さである。
Figure JPOXMLDOC01-appb-M000001
 本発明に用いる導電性接着剤層の厚さは、通常0.01~20μm、好ましくは0.1~15μm、特に好ましくは1~10μmである。導電性接着剤層の厚さが前記範囲であることにより、良好な接着性が得られ、かつ電子移動抵抗を低減することができる。
(集電体)
 本発明に用いる集電体の材料は、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
 本発明に用いる集電体の形状は、金属箔、金属エッヂド箔などの集電体;エキスパンドメタル、パンチングメタル、網状などの貫通する孔を有する集電体(以下、「孔開き集電体」と記載することがある。)が挙げられ、電解質イオンの拡散抵抗を低減しかつ電気化学素子の出力密度を向上できる点で、貫通する孔を有する集電体が好ましく、その中でもさらに電極強度に優れる点で、エキスパンドメタルやパンチングメタルが特に好ましい。
 本発明に好適に用いる孔開き集電体の貫通する孔の割合(開口率)は、10~80面積%、好ましくは20~60面積%、より好ましくは30~50面積%である。貫通する孔の割合がこの範囲にあると、電解液の拡散抵抗が低減し、電気化学素子の内部抵抗が低減する。
 本発明に用いる集電体の厚さは、通常5~100μmで、好ましくは10~70μm、特に好ましくは20~50μmである。
 本発明に用いる電極組成物層は、電極活物質及び電極組成物層用結着剤を含んでなる。
(電極活物質)
 本発明に用いる電極活物質は、電気化学素子用電極内で電子の受け渡しをする物質である。電極活物質には主としてリチウムイオン二次電池用活物質、電気二重層キャパシタ用活物質やリチウムイオンキャパシタ用活物質がある。
 リチウムイオン二次電池用活物質には、正極用、負極用がある。リチウムイオン二次電池用電極の正極に用いる電極活物質としては、具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO・P、MoO、V、V13などの遷移金属酸化物が例示される。さらに、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子が挙げられる。好ましくは、リチウム含有複合金属酸化物である。
 リチウムイオン二次電池用電極の負極に用いる電極活物質としては、具体的には、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、及びピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。好ましくは、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)などの結晶性炭素質材料である。
 リチウムイオン二次電池用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
 リチウムイオン二次電池用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは1~50μm、より好ましくは5~20μmである。
 リチウムイオン二次電池用電極に用いる電極活物質のタップ密度は、特に制限されないが、正極では2g/cm以上、負極では0.6g/cm以上のものが好適に用いられる。
 電気二重層キャパシタ用電極に用いる電極活物質としては、通常、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。
 電気二重層キャパシタ用電極に用いる電極活物質の体積平均粒子径は、通常0.1~100μm、好ましくは1~50μm、更に好ましくは5~20μmである。
 電気二重層キャパシタ用電極に用いる電極活物質の比表面積は、30m/g以上、好ましくは500~5,000m/g、より好ましくは1,000~3,000m/gであることが好ましい。電極活物質の比表面積が大きいほど得られる電極組成物層の密度は小さくなる傾向があるので、電極活物質を適宜選択することで、所望の密度を有する電極組成物層を得ることができる。
 リチウムイオンキャパシタ用電極に用いる電極活物質には、正極用と負極用がある。リチウムイオンキャパシタ用電極の正極に用いる電極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであれば良い。具体的には、通常、炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体を組み合わせて使用する場合は、平均粒径又は粒径分布の異なる二種類以上の炭素の同素体を組み合わせて使用してもよい。また、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。好ましくは、電気二重層キャパシタ用電極に用いる電極活物質である。
 リチウムイオンキャパシタ用電極の負極に用いる電極活物質は、リチウムイオンを可逆的に担持できる物質である。具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。好ましくは、黒鉛、難黒鉛化炭素等の結晶性炭素材料、上記正極活物質としても記載したポリアセン系物質(PAS)等を挙げることができる。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
 リチウムイオンキャパシタ用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
 リチウムイオンキャパシタ用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは1~50μm、より好ましくは5~20μmである。これらの電極活物質は、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
(電極組成物層用結着剤)
 電極組成物層に用いる結着剤(電極組成物層用結着剤)は、電極活物質や後述する導電剤を相互に結着させることができる化合物であれば特に制限はない。好適な結着剤は、溶媒に分散する性質のある分散型結着剤である。分散型結着剤として、例えば、フッ素重合体、ジエン重合体、アクリレート重合体、ポリイミド重合体、ポリアミド系重合体、ポリウレタン重合体等の高分子化合物が挙げられ、フッ素重合体、ジエン重合体又はアクリレート重合体が好ましく、ジエン重合体又はアクリレート重合体が、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でより好ましい。
 ジエン重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはこれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常30重量%以上、好ましくは40重量%以上、より好ましくは50重量%以上である。共役ジエンとしては、ブタジエン、イソプレンが挙げられる。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;スチレン・ブタジエン・メタクリル酸共重合体や、スチレン・ブタジエン・イタコン酸共重合体などの芳香族ビニル・共役ジエン・カルボン酸基含有単量体の共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。
 アクリレート重合体は、一般式(1):CH=CR-COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体単位を含む重合体である。一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリルなどのメタアクリレート等が挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート系重合体中の一般式(1)で表される化合物由来の単量体単位の割合は、通常50重量%以上、好ましくは70重量%以上である。前記一般式(1)で表される化合物由来の単量体単位の割合が前記範囲であるアクリレート系重合体を用いると、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗をより小さくできる。
 前記アクリレート重合体は、一般式(1)で表される化合物の他に、共重合可能なカルボン酸基含有単量体を用いることができ、具体例としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体;マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体が挙げられる。なかでも、二塩基酸含有単量体が好ましく、集電体との結着性を高め、電極強度を向上できる点で、イタコン酸が特に好ましい。これらの一塩基酸含有単量体、二塩基酸含有単量体は、それぞれ単独でまたは2種以上を組み合わせて使用できる。共重合の際のカルボン酸基含有単量体の量は、一般式(1)で表される化合物100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。カルボン酸基含有単量体の量がこの範囲であると、導電性接着剤層との結着性に優れ、得られる電極の強度が向上する。
 前記アクリレート重合体は、一般式(1)で表される化合物の他に、共重合可能なニトリル基含有単量体を用いることができる。ニトリル基含有単量体の具体例としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、中でもアクリロニトリルが、集電体との結着性が高まり、電極強度が向上できる点で好ましい。アクリロニトリルの量は、一般式(1)で表される化合物100重量部に対して、通常は0.1~40重量部、好ましくは0.5~30重量部、より好ましくは1~20重量部の範囲である。アクリロニトリルの量がこの範囲であると、導電性接着剤層との結着性に優れ、得られる電極の強度が向上する。
 本発明の電気化学素子用電極に用いる電極組成物層用結着剤の形状は、特に制限はないが、導電性接着剤層との結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
 本発明に用いる電極組成物層用結着剤のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは-40~0℃である。電極組成物層用結着剤のガラス転移温度(Tg)がこの範囲にあると、少量の使用量で結着性に優れ、導電性接着剤層との結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
 電極組成物層用結着剤を構成する重合体には、架橋性基を有するモノマーから導かれる構造単位が含まれていても良い。結着剤中に架橋性基を導入することで、結着剤には硬化性が付与され、結着剤の架橋密度を高くすることができる。架橋密度を高くすることにより、電解液に対する結着剤の膨潤性を低くすることができ、得られる電気化学素子の寿命特性を向上することができる。架橋性基を有するモノマーの構造単位としてアリルアクリレートの構造単位又はアリルメタクリレートの構造単位をあげることができる。
 電極組成物層における電極組成物層用結着剤の量は、電極活物質100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。電極組成物層における結着剤の量がこの範囲にあると、得られる電極組成物層と導電性接着剤層との密着性が充分に確保でき、電気化学素子の容量を高く且つ内部抵抗を低くすることができる。
(その他の成分)
 本発明に用いる電極組成物層は、必須成分として電極活物質および電極組成物層用結着剤を含むものであるが、その他の成分を含んでいてもよい。その他の成分としては、導電剤や分散剤が挙げられる。
(導電剤)
 本発明に用いる導電剤は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなるものが挙げられる。具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
 本発明に用いる導電剤の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001~10μm、好ましくは0.05~5μm、より好ましくは0.01~1μmである。導電剤の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電剤は、単独でまたは二種類以上を組み合わせて用いることができる。電極組成物層における導電剤の量は、電極活物質100重量部に対して通常0.1~50重量部、好ましくは0.5~15重量部、より好ましくは1~10重量部の範囲である。導電剤の量がこの範囲にあると、得られる電気化学素子用電極を使用した電気化学素子の容量を高く且つ内部抵抗を低くすることができる。
(分散剤)
 分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。
 電極組成物層における分散剤の量は、本発明の効果を損なわない範囲で用いることができ、格別な限定はないが、電極活物質100重量部に対して、通常は0.1~10重量部、好ましくは0.5~5重量部、より好ましくは0.8~2重量部の範囲である。
(電極組成物層)
 本発明に用いる電極組成物層は、必須成分として電極活物質および電極組成物層用結着剤と、必要に応じ添加される導電剤や分散剤とを混合した電極組成物を用いて、集電体上に設けられた導電性接着剤層上に形成されるが、その形成方法は制限されない。具体的には、1)電極活物質および電極組成物層用結着剤、並びに必要に応じ添加される導電剤や分散剤とを混練してなる電極組成物を、シート成形し、得られたシート状電極組成物を、表面に導電性接着剤層を有する集電体上に積層する方法(混練シート成形法)、2)電極活物質および電極組成物層用結着剤、並びに必要に応じ添加される導電剤や分散剤とを含んでなるペースト状の電極組成物を調製し、表面に導電性接着剤層を有する集電体上に塗布し、乾燥する方法(湿式成形法)、3)電極活物質および電極組成物層用結着剤、並びに必要に応じ添加される導電剤や分散剤とを含んでなる複合粒子を調製し、これを、表面に導電性接着剤層を有する集電体上にシート成形し、必要に応じてロールプレスして得る方法(乾式成形法)などが挙げられる。中でも、2)湿式成形法、3)乾式成形法が好ましく、3)乾式成形法が得られる電気化学素子の容量を高く、且つ内部抵抗を低減できる点でより好ましい。
(複合粒子)
 電極組成物層を前記乾式成形法により形成する場合において、電極組成物は、電極活物質および結着剤を含んでなる複合粒子であることが好ましい。電極組成物が複合粒子であることにより、得られる電気化学素子用電極の電極強度を高くしたり、内部抵抗を低減したりすることができる。本発明でいう複合粒子とは、電極活物質、結着剤、及び導電剤や分散剤などのその他必要に応じて含まれてもよい材料等、複数の材料が一体化した粒子をさす。
 本発明に好適に用いる複合粒子は、電極活物質、結着剤、および導電剤や分散剤などの必要に応じ添加される他の成分を用いて造粒することにより製造される。
 複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明の電極を高い生産性で得ることができる。また、該電極の内部抵抗をより低減することができる。
 前記噴霧乾燥造粒法では、まず上記した必須成分である電極活物質及び結着剤、並びに導電剤や分散剤などの任意成分を溶媒に分散または溶解して、電極活物質及び結着剤、並びに導電剤や分散剤、その他の添加剤などの任意成分が分散または溶解されてなるスラリーを得る。
 スラリーを得るために用いる溶媒は、特に限定されないが、上記の分散剤を用いる場合には、分散剤を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、結着剤の分散性または分散剤の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。
 スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1~50質量%、好ましくは5~50質量%、より好ましくは10~30質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤が均一に分散するため好適である。
 必須成分である電極活物質及び結着剤と、導電剤や分散剤、その他の添加剤などの任意成分とを溶媒に分散または溶解する方法または手順は特に限定されず、例えば、溶媒に電極活物質、導電剤、結着剤および分散剤等を添加し混合する方法;溶媒に分散剤を溶解した後、溶媒に分散させた電極組成物層用結着剤(例えば、重合体粒子の水分散体)を添加して混合し、最後に電極活物質および導電剤を添加して混合する方法;溶媒に分散させた電極組成物層用結着剤に電極活物質および導電剤を添加して混合し、この混合物に溶媒に溶解させた分散剤を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分~数時間行う。
 スラリーの粘度は、室温において、通常10~3,000mPa・s、好ましくは30~1,500mPa・s、より好ましくは50~1,000mPa・sの範囲である。スラリーの粘度がこの範囲にあると、複合粒子の生産性を上げることができる。また、スラリーの粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。
 次に、上記で得たスラリーを噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~40,000rpm、好ましくは15,000~40,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 上記の製造方法で得られた複合粒子は、必要に応じて粒子製造後の後処理を実施することもできる。具体例としては、複合粒子に上記の電極活物質、導電剤、電極組成物層用結着剤、分散剤あるいはその他の添加剤等と混合することによって、粒子表面を改質して、複合粒子の流動性を向上または低下させる、連続加圧成形性を向上させる、複合粒子の電気伝導性を向上させる、複合粒子の平均帯電量を調整することなどができる。
 複合粒子の平均帯電量を調整するために、帯電制御剤を使用していてもよい。具体的には、二酸化ケイ素粒子やスチレン-メタクリル酸エステル共重合体粒子、ニグロシン系染料、トリフェニルメタン系染料、4級アンモニウム塩、4級アンモニウム基及び/又はアミノ基を含有する樹脂などが挙げられる。
 本発明に好適に用いる複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をL、長軸径をL、L=(L+L)/2とし、(1-(L-L)/L)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、より好ましくは90%以上である。ここで、短軸径Lおよび長軸径Lは、透過型電子顕微鏡写真像より測定される100個の任意の複合粒子についての平均値である。この数値が大きいほど複合粒子が真球に近いことを示す。
 本発明に好適に用いる複合粒子の体積平均粒子径は、通常10~100μm、好ましくは20~80μm、より好ましくは30~60μmの範囲である。体積平均粒子径は、レーザ回折式粒度分布測定装置を用いて測定することができる。
 本発明において、複合粒子を供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
 次いで、集電体と供給された複合粒子とを一対のロールで加圧して、前記導電性接着剤層を有する集電体上に電極組成物層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の電極組成物層に成形される。供給される複合粒子の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、電極組成物層を得ることができる。
 成形時の温度は、通常0~200℃であり、結着剤の融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35~70m/分である。またプレス用ロール間のプレス線圧は、通常0.2~30kN/cm、好ましくは0.5~10kN/cmである。
 上記製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、導電性接着剤層を有する集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、導電性接着剤層を有する集電体とロールとの間隙に複合粒子が供給され、加圧により電極組成物層を形成できる。略垂直に配置する場合は、前記導電性接着剤層を有する集電体を水平方向に搬送させ、前記導電性接着剤層を有する集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により電極組成物層を形成できる。
 成形した電極組成物層の厚みのばらつきを無くし、密度を上げて高容量化をはかるために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによるプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱又は冷却等、温度調節してもよい。
 電極組成物層を湿式成形法により形成する場合、電極活物質および電極組成物層用結着剤、並びに必要に応じ添加される導電剤や分散剤とを含んでなるペースト状の電極組成物を調製し、それを導電性接着剤層を有する集電体上に塗布し、さらに必要に応じて乾燥、加熱等することにより形成することができる。塗布の方法は特に制限されない。例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。ペースト状の電極組成物は、集電体等の片面だけに塗布してもよく、両面に塗布してもよい。
 ペースト状の電極組成物は、前記噴霧乾燥造粒法で複合粒子を得るために調製されるスラリーと同様の方法により調製することができる。
 前記塗布により形成された電極組成物の層の乾燥の条件は、特に制限されず、例えば120℃以上で1時間以上とすることができる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
 導電性接着剤層を有する集電体上に電極組成物を塗布、乾燥した後、金型プレスやロールプレスなどを用い、加圧処理により電極の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5%~15%、より好ましくは7%~13%である。空隙率をかかる上限以下とすることにより充電効率や放電効率を高めることができる。空隙率をかかる下限以上とすることにより、高い体積容量を得ることができ、且つ、電極の剥がれを低減することができる。さらに、電極組成物層用結着剤として硬化性の重合体を用いる場合は、乾燥の工程に加えて硬化を行うことが好ましい。
 本発明に用いる電極組成物層の密度は、特に制限されないが、通常は0.30~10g/cm、好ましくは0.35~5.0g/cm、より好ましくは0.40~3.0g/cmである。また、電極組成物層の厚みは、特に制限されないが、通常は5~1000μm、好ましくは20~500μm、より好ましくは30~300μmである。
(電気化学素子)
 本発明の電気化学素子は、上記電気化学素子用電極、セパレータおよび電解液を備えてなる。電気化学素子としては、特に制限されないが、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン二次電池が好適である。
 本発明の電気化学素子用電極を、リチウムイオンキャパシタに用いる場合は負極に用いることが好ましく、リチウムイオン二次電池に用いる場合は正極に用いることが好ましい。
(セパレータ)
 セパレータは、電気化学素子用電極の間を絶縁でき、陽イオンおよび陰イオンを通過させることができるものであれば特に限定されない。具体的には、ポリエチレンやポリプロピレンなどのポリオレフィン、レーヨンもしくはガラス繊維製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜、前記微孔膜の片面又は両面に高分子コート層が形成された多孔質膜、前記微孔膜の片面又は両面に無機フィラーや有機フィラーを含む多孔質のコート層が形成された多孔質膜などを用いることができる。セパレータは、上記一対の電極組成物層が対向するように、電気化学素子用電極の間に配置され、素子が得られる。セパレータの厚みは、使用目的に応じて適宜選択されるが、通常は1~100μm、好ましくは10~80μm、より好ましくは20~60μmである。
(電解液)
 電解液は、通常電解質と溶媒で構成される。電解質は、カチオン性であってもよく、アニオン性であってもよく、カチオン性およびアニオン性であってもよい。
 カチオン性電解質としては、以下に示すような(1)イミダゾリウム、(2)第四級アンモニウム、(3)第四級ホスホニウム、(4)リチウム等を用いることができる。
(1)イミダゾリウム
 1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1,3,4-トリメチル-エチルイミダゾリウム、1,3-ジメチル-2,4-ジエチルイミダゾリウム、1,2-ジメチル-3,4-ジエチルイミダゾリウム、1-メチル-2,3,4-トリエチルメチルイミダゾリウム、1,2,3,4-テトラエチルイミダゾリウム、1,3-ジメチル-2-エチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1,2,3-トリエチルイミダゾリウム等
(2)第四級アンモニウム
 テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム等のテトラアルキルアンモニウム等
(3)第四級ホスホニウム
 テトラメチルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、メチルトリエチルホスホニウム、メチルトリブチルホスホニウム、ジメチルジエチルホスホニウム等
(4)リチウム
 また、アニオン性電解質としては、PF 、BF 、AsF 、SbF 、N(RfSO2-、C(RfSO3-、RfSO (Rfはそれぞれ炭素数1~12のフルオロアルキル基)、F、ClO 、AlCl 、AlF 等を用いることができる。これらの電解質は単独または二種類以上として使用することができる。
 電解液の溶媒は、一般に電解液の溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。
 上記の素子に電解液を含浸させて、本発明の電気化学素子が得られる。具体的には、キャパシタ素子を必要に応じ捲回、積層または折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。また、素子に予め電解液を含浸させたものを容器に収納してもよい。容器としては、コイン型、円筒型、角型などの公知のものをいずれも用いることができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。実施例および比較例における各特性は、下記の方法に従い測定した。
(導電性接着剤層の表面粗さRa)
 導電性接着剤層表面の算術平均粗さ(Ra)は、JIS B 0601をもとに、キーエンス社製ナノスケールハイブリッド顕微鏡(VN-8010)を用いて、粗さ曲線を描き、下式の算出法により求めた。Lは測定長さ、xは平均線から測定曲線までの偏差である。
Figure JPOXMLDOC01-appb-M000002
(導電性接着剤層の厚さ)
 導電性接着剤層を形成した集電体を、5cm×5cmに切り出し、任意の10点の厚さを、マイクロ厚みゲージ(東洋精機製作所社製)を用いて測定し、その平均値から集電体の厚さを引いた値を導電性接着剤層の厚さとした。
(導電性接着剤層の塗工面外観)
 導電性接着剤層を形成した集電体を、5cm×5cmに切り出し、導電性接着剤層表面を観察し、はじき箇所(導電性接着剤がはじかれ集電体が露出した部分)を数え、以下の基準で評価した。
 A:はじきがみられない(ハジキ箇所0)。
 B:実用上問題はないが、はじき箇所がみられる(ハジキ箇所1以上~10以下)
 C:はじき箇所が多数みられる(ハジキ箇所11以上)。
(電気二重層キャパシタの内部抵抗)
 実施例および比較例で製造する電気二重層キャパシタ用電極を用いて、積層型ラミネートセルの電気二重層キャパシタを作製し、24時間静置させた後に充放電の操作を行い、内部抵抗を測定した。ここで、充電は2Aの定電流で開始し、電圧が2.7Vに達したらその電圧を1時間保って定電圧充電とした。また、放電は充電終了直後に定電流2Aで0Vに達するまで行った。内部抵抗は放電直後の電圧降下から算出した。
(リチウムイオンキャパシタの内部抵抗)
 実施例および比較例で製造するリチウムイオンキャパシタ用電極を用いて積層型ラミネートセルのリチウムイオンキャパシタを作製し、24時間静置させた後に充放電の操作を行い、内部抵抗を測定した。ここで、充電は2Aの定電流で開始し、電圧が3.6Vに達したらその電圧を1時間保って定電圧充電とする。また、放電は充電終了直後に定電流2Aで1.9Vに達するまで行った。内部抵抗は放電直後の電圧降下から算出した。
(リチウムイオン二次電池の内部抵抗)
 実施例および比較例で製造するリチウムイオン二次電池用電極を用いて、コイン型セルのリチウムイオン二次電池を作製し、24時間聖地させた後に充放電の操作を行い、内部抵抗を測定した。ここで、充電は10mAの定電流で開始し、電圧が4.2Vに達成したらその電圧を1時間保って定電圧充電とする。また、放電は充電終了直後に定電流10mAで3.0Vに達するまで行った。内部抵抗は放電10秒間後の電圧降下から算出した。
(電極のピール強度)
 電極組成物層の形成方向(電極形成時の集電体の走行方向)が長辺となるように電気化学素子用電極(電気二重層キャパシタ用電極、リチウムイオンキャパシタ用負極またはリチウムイオン二次電池用正極)を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極組成物層面を下にして電極組成物層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている。)。測定を3回行い、その平均値を求めてこれをピール強度とした。ピール強度が大きいほど電極組成物層の集電体への結着力が大きい、すなわち電極強度が大きいことを示す。
(実施例1)
 球状黒鉛として、アスペクト比が7で、体積平均粒子径が1.0μmの球状黒鉛(日本カーボン社製)を80部、カーボンブラックとして、体積平均粒子径が0.4μmのファーネスブラック(Super-P;ティムカル社製)を20部、分散剤としてカルボキシメチルセルロースアンモニウムの4.0%水溶液(DN-10L;ダイセル化学工業社製)を固形分相当で4部、結着剤として、ガラス転移温度が-40℃で、数平均粒子径が0.25μmのカルボン酸基含有ジエン重合体(スチレン60重量%、ブタジエン35重量%、イタコン酸5重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で8部及びイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤組成物を調製した。
 厚さ30μmのアルミニウム集電体にダイより前記導電性接着剤組成物を吐出し、30m/分の成形速度で、前記集電体の片面に塗布し、120℃で5分間乾燥して、厚さ4μmの導電性接着剤層を形成した。導電性接着剤層の塗工面の外観と、導電性接着剤層の表面粗さRaの測定結果を表1に示す。
 一方、電気二重層キャパシタ用電極活物質として、石油ピッチを原料とするアルカリ賦活活性炭である体積平均粒子径が11μmの活性炭粉末(CEP-21;新日本石油社製)を100部、分散剤としてカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2部、導電剤としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、結着剤としてガラス転移温度が-40℃で、数平均粒子径が0.25μmのジエン重合体(スチレン60重量%、ブタジエン35重量%、イタコン酸5重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、およびイオン交換水を全固形分濃度が20%となるようにプラネタリーミキサーにより混合し、電極組成物層用スラリーを調製した。
 次いで、このスラリーをスプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、噴霧乾燥造粒を行い、体積平均粒子径56μm、球形度93%の球状の電極組成物層用複合粒子(電極組成物)を得た。
 上記複合粒子を、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、上記導電性接着剤層を有する厚さ30μmのアルミニウム集電体とともに供給し、成形速度20m/分でシート状の電極組成物層を導電性接着剤層上に成形し、これを5cm正方に打ち抜いて、片面厚さ200μmの電極組成物層を有する電気二重層キャパシタ用電極を得た。この電気二重層キャパシタ用電極のピール強度の測定結果を表1に示す。
 この電気二重層キャパシタ用電極及びセパレータとしてセルロース(TF40;ニッポン高度紙工業社製)を、室温で1時間電解液に含浸させた。次いで2枚の電気二重層キャパシタ用電極の電極組成物層をセパレータを介して対向させ、かつそれぞれの電気二重層キャパシタ用電極が電気的に接触しないように配置して、ラミネート型セル形状の電気二重層キャパシタを作製した。電解液としてはプロピレンカーボネートを溶媒としてテトラエチルアンモニウムフルオロボレートを1.0mol/リットルの濃度で溶解させたものを用いた。この電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例2)
 導電性接着剤層を構成する球状黒鉛を、アスペクト比が2で、体積平均粒子径が3.7μmの球状黒鉛(HPC-250;日本黒鉛工業社製)にかえたこと以外は、実施例1と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例3)
 導電性接着剤層を構成する球状黒鉛を、アスペクト比が3で、体積平均粒子径が18μmの球状黒鉛(LB-CG;日本黒鉛工業社製)にかえたこと以外は、実施例1と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例4)
 導電性接着剤層を構成する球状黒鉛の配合量を95部とし、カーボンブラックの配合量を5部としたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例5)
 導電性接着剤層を構成する球状黒鉛の配合量を50部とし、カーボンブラックの配合量を50部としたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例6)
 導電性接着剤層を構成するカーボンブラックを、体積平均粒子径が0.4μmでホウ素を1%含有するアセチレンブラック(BMAB;電気化学工業社製)にかえたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例7)
 導電性接着剤層を構成するカーボンブラックを、体積平均粒子径が0.4μmでホウ素を1%含有するアセチレンブラック(BMAB;電気化学工業社製)にかえ、さらに導電性接着剤組成物にアニオン性界面活性剤であるナフタレンスルホン酸ホルマリン縮合物(デモールNL;花王社製)を固形分相当で4部加えたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例8)
 導電性接着剤層を構成する結着剤を、ガラス転移温度が-45℃で、数平均粒子径が0.25μmのカルボン酸基含有アクリレート重合体(アクリル酸2-エチルヘキシル96重量%、メタクリル酸4重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体にかえ、導電性接着剤層を構成するカーボンブラックを、体積平均粒子径が0.4μmでホウ素を1%含有するアセチレンブラック(BMAB;電気化学工業社製)にかえ、さらに導電性接着剤組成物にアニオン性界面活性剤であるナフタレンスルホン酸ホルマリン縮合物(デモールNL;花王社製)を固形分相当で4部加えたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(実施例9)
 導電性接着剤を構成する結着剤を、ガラス転移温度が-20℃で、数平均粒子径が0.25μmのカルボン酸基およびニトリル基を含有するアクリレート重合体(アクリル酸2-エチルヘキシル76重量%、アクリロニトリル20重量%、イタコン酸4重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体にかえ、導電性接着剤層を構成するカーボンブラックを、体積平均粒子径が0.4μmでホウ素を1%含有するアセチレンブラック(BMAB;電気化学工業社製)にかえ、さらに導電性接着剤組成物にアニオン性界面活性剤であるナフタレンスルホン酸ホルマリン縮合物(デモールNL;花王社製)を固形分相当で4部加えたこと以外は、実施例2と同様に、電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
(比較例1)
 導電性接着剤層を構成する、薄片状黒鉛として、アスペクト比が38で、体積平均粒子径が4.0μmの黒鉛(KS-6;ティムカル社製)を用い、カーボンブラックとして体積平均粒子径が0.4μmのカーボンブラック(アセチレンブラック;電気化学工業社製)を用い、さらに、結着剤としてガラス転移温度が-48℃で、数平均粒子径が0.25μmのジエン重合体(スチレン65重量%、ブタジエン35重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を用いたこと以外は、実施例1と同様に電気二重層キャパシタ用電極及び電気二重層キャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、電気二重層キャパシタ用電極のピール強度、及び電気二重層キャパシタの内部抵抗の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例10)
 球状黒鉛として、アスペクト比が2で、体積平均粒子径が3.7μmの黒鉛(HPC-250;日本黒鉛工業社製)を80部、カーボンブラックとして、体積平均粒子径が0.4μmのホウ素1%を含有するアセチレンブラック(BMAB;電気化学工業社製)を20部、分散剤としてカルボキシメチルセルロースアンモニウムの4.0%水溶液(DN-10L;ダイセル化学工業社製)を固形分相当で4部、界面活性剤としてアニオン性界面活性剤であるナフタレンスルホン酸ホルマリン縮合物(デモールNL;花王社製)を固形分相当で4部、結着剤としてガラス転移温度が-20℃で、数平均粒子径が0.25μmのカルボン酸基およびニトリル基を含有するアクリレート重合体(アクリル酸2-エチルヘキシル76重量%、アクリロニトリル20重量%、イタコン酸4重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で8部、並びにイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤組成物を調製した。
 厚さ30μmのエキスパンドアルミニウム集電体(開口率40%)を挟むように、一対のダイより前記導電性接着剤組成物を吐出し、30m/分の成形速度で、前記集電体の両面に塗布し、120℃で5分間乾燥して、片面厚さ4μmの導電性接着剤層を形成した。
 一方、正極の電極活物質として、石油ピッチを原料とするアルカリ賦活活性炭である体積平均粒子径が11μmの活性炭粉末(CEP-21;新日本石油社製)を100部、分散剤としてカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部、導電剤としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、結着剤としてガラス転移温度が-40℃で、数平均粒子径が0.25μmのジエン重合体(スチレン60重量%、ブタジエン35重量%、イタコン酸5重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、およびイオン交換水を全固形分濃度が20%となるようにプラネタリーミキサーにより混合し、正極の電極組成物層用スラリーを調製した。
 次いで、このスラリーをスプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、噴霧乾燥造粒を行い、体積平均粒子径56μm、球形度93%の球状の正極の電極組成物層用複合粒子(電極組成物)を得た。
 上記複合粒子を、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、上記導電性接着剤層を有する厚さ30μmのエキスパンドアルミニウム集電体とともに供給し、成形速度20m/分でシート状の電極組成物層を導電性接着剤層上に成形し、これを5cm正方に打ち抜いて、片面厚さ200μmの電極組成物層を有する正極のリチウムイオンキャパシタ用電極を得た。
 一方、厚さ20μmのエキスパンド銅集電体(開口率40%)を挟むように、一対のダイより前記導電性接着剤組成物を吐出し、30m/分の成形速度で前記集電体の両面に塗布し、120℃で5分間乾燥して、片面厚さ4μmの導電性接着剤層を形成した。導電性接着剤層の塗工面の外観と、導電性接着剤層の表面粗さRaの測定結果を表2に示す。
 一方負極の電極活物質として、体積平均粒子径が3.7μmである黒鉛(KS-6;ティムカル社製)を100部、分散剤としてカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部、導電剤としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、結着剤として、ガラス転移温度が-40℃、数平均粒子径が0.25μmのジエン重合体(スチレン60重量%、ブタジエン35重量%、イタコン酸5重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、並びにイオン交換水を全固形分濃度が20%となるようにプラネタリーミキサーにより混合し、電極組成物層用スラリーを調製した。
 次いで、このスラリーをスプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、噴霧乾燥造粒を行い、体積平均粒子径28μm、球形度93%の球状の負極の電極組成物層用複合粒子(電極組成物)を得た。
 上記複合粒子を、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、上記導電性接着剤層を形成した厚さ30μmのエキスパンド銅集電体とともに供給し、成形速度20m/分でシート状の電極組成物層を導電性接着剤層上に成形し、これを5cm正方に打ち抜いて、片面厚さ80μmの電極組成物層を有する負極のリチウムイオンキャパシタ用電極を得た。この負極のリチウムイオンキャパシタ用電極のピール強度の測定結果を表2に示す。
 上記正極のリチウムイオンキャパシタ用電極、負極のリチウムイオンキャパシタ用電極及びセパレータとしてセルロース/レーヨン不織布を、室温で1時間電解液に含浸させた。次いで前記正極のリチウムイオンキャパシタ用電極と負極のリチウムイオンキャパシタ用電極とを、セパレータを介して対向するように、かつ、それぞれのリチウムイオンキャパシタ用電極が電気的に接触しないように、正極10組、負極10組を配置して、積層型ラミネートセル形状のリチウムイオンキャパシタを作製した。電解液としてはエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、LiPFを1.0mol/リットルの濃度で溶解させたものを用いた。
 積層型ラミネートセルのリチウム極として、リチウム金属箔(厚さ82μm、縦5cm×横5cm)を厚さ80μmのステンレス網に圧着したものを用い、該リチウム極を最外部の負極と完全に対向するように積層した電極の上部および下部に各1枚配置した。なお、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接した。このリチウムイオンキャパシタの内部抵抗の測定結果を表2に示す。
(比較例2)
 比較例1で得られた導電性接着剤組成物を用いたこと以外は、実施例10と同様にリチウムイオンキャパシタ用電極及びリチウムイオンキャパシタを作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、負極のリチウムイオンキャパシタ用電極のピール強度、及びリチウムイオンキャパシタの内部抵抗の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例11)
 球状黒鉛として、アスペクト比が2.5で、体積平均粒子径が2.0μmの黒鉛(日本黒鉛工業社製)を80部、カーボンブラックとして、体積平均粒子径が0.4μmでホウ素を1%含有するアセチレンブラック(BMAB;電気化学工業社製)を20部、分散剤としてカルボキシメチルセルロースアンモニウムの4.0%水溶液(DN-10L;ダイセル化学工業社製)を固形分相当で4部、結着剤として、ガラス転移温度が-20℃で、数平均粒子径が0.25μmのカルボン酸基およびニトリル基を含有するアクリレート重合体(アクリル酸2-エチルヘキシル76重量%、アクリロニトリル20重量%、イタコン酸4重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で8部、アニオン性界面活性剤であるナフタレンスルホン酸ホルマリン縮合物(デモールNL;花王社製)を固形分相当で4部及びイオン交換水を全固形分濃度が30%となるように混合し、導電性接着剤組成物を調製した。
 厚さ30μmのアルミ箔の上に、ダイより前記導電性接着剤組成物を、30m/分の成形速度で、前記アルミ箔の片面に塗布し、120℃で5分間乾燥して、厚さ4μmの導電性接着剤層を形成した。導電性接着剤層の塗工面の外観と、導電性接着剤層の表面粗さRaの測定結果を表3に示す。
 正極活物質として、体積平均粒子径0.5μmでオリビン結晶構造を有するLiFePOを100部、分散剤としてカルボキシメチルセルロースの1%水溶液(CMC、第一工業製薬株式会社製「BSH-12」)を固形分相当で1部、結着剤としてガラス転移温度が-40℃で、数平均粒子径が0.20μmのアクリレート重合体(アクリル酸2-エチルヘキシル78重量%、アクリロニトリル20重量%、メタクリル酸2重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、及びイオン交換水で全固形分濃度が40%となるようにプラネタリーミキサーにより混合し、正極の電極組成物層用スラリーを調製した。
 上記アルミ箔上に形成した導電性接着剤層の片面上に、上記正極の電極組成物層用スラリーを、コンマコーターで塗布し、120℃で20分間乾燥して、厚さ60μmの正極活物質層を形成した。これをロールプレスで圧延して、正極活物質層の厚さが45μmの正極用原反を得た。得られた正極用原反を直径13mmの円形に切り抜き、リチウムイオン二次電池用正極とした。このリチウムイオン二次電池用正極のピール強度の測定結果を表3に示す。
 負極の電極活物質として、体積平均粒子径が3.7μmである黒鉛(KS-6;ティムカル社製)を100部、分散剤としてカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部、導電剤としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)を5部、結着剤として、ガラス転移温度が-40℃、数平均粒子径が0.25μmのジエン重合体(スチレン60重量%、ブタジエン35重量%、イタコン酸5重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を固形分相当で5部、並びにイオン交換水を全固形分濃度が20%となるようにプラネタリーミキサーにより混合し、負極の電極組成物層用スラリーを調製した。
 厚さ20μmの銅箔の片面上に、前記負極の電極組成物層用スラリーを、コンマコーターで塗布し、110℃で20分間乾燥して、厚さ90μmの負極活物質層を形成した。これをロールプレスで圧延して、負極活物質層の厚さが60μmの負極用原反を得た。得られた負極用原反を直径14mmの円形に切り抜き、リチウムイオン二次電池用負極とした。
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を直径18mmの円形に切り抜いた。
 上記得られたリチウムイオン二次電池用正極を、導電性接着剤層側の面が外装容器に接するよう、外装容器底面に配置した。正極の正極活物質層側の面上に、セパレータを配置した。さらに、セパレータ上に上記得られたリチウムイオン二次電池用負極を、負極活物質層側の面がセパレータに対向するよう配置した。さらに、外装容器の開口を密封するためのポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、容器を封止して、直径20mm、厚さ約3.2mmのリチウムイオン二次電池を製造した。このリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
(実施例12)
 導電性接着剤層を構成する球状黒鉛を、アスペクト比が1.7で、体積平均粒子径が4.0μmの黒鉛(JB-5、日本黒鉛工業社製)にかえたこと以外は、実施例11と同様に、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池を作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、リチウムイオン二次電池用正極のピール強度、及びリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
(実施例13)
 導電性接着剤層を構成する球状黒鉛を、アスペクト比が1.9で、体積平均粒子径が8.0μmの黒鉛(日本黒鉛工業社製)にかえたこと以外は、実施例11と同様に、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池を作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、リチウムイオン二次電池用正極のピール強度、及びリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
(実施例14)
 導電性接着剤層を構成する界面活性剤を、ノニオン性界面活性剤であるポリオキシエチレンアルキルアミン(アミート105、花王社製)にかえたこと以外は、実施例12と同様に、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池を作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、リチウムイオン二次電池用正極のピール強度、及びリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
(比較例3)
 導電性接着剤層を構成する黒鉛として、アスペクト比が38で、体積平均粒子径が4.0μmの薄片状黒鉛(KS-6;ティムカル社製)を用い、カーボンブラックとして体積平均粒子径が0.4μmのカーボンブラック(アセチレンブラック;電気化学工業社製)を用い、さらに、結着剤としてガラス転移温度が-48℃で、数平均粒子径が0.25μmのジエン重合体(スチレン65重量%、ブタジエン35重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を用い、界面活性剤を用いなかったこと以外は、実施例11と同様に、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池を作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、リチウムイオン二次電池用正極のピール強度、及びリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
(比較例4)
 導電性接着剤層を構成する黒鉛として、アスペクト比が38で、体積平均粒子径が4.0μmの薄片状黒鉛(KS-6;ティムカル社製)を用い、カーボンブラックとして体積平均粒子径が0.4μmのカーボンブラック(アセチレンブラック;電気化学工業社製)を用い、さらに、結着剤としてガラス転移温度が-50℃で、数平均粒子径が0.25μmのアクリル重合体(アクリル酸2-エチルヘキシル90重量%、メタクリル酸メチル5重量%、アクリロニトリル3重量%、メタクリル酸2重量%を含む単量体混合物を乳化重合して得られる共重合体)の40%水分散体を用い、界面活性剤を用いなかったこと以外は、実施例11と同様に、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池を作製した。導電性接着剤層の塗工面の外観、導電性接着剤層の表面粗さRa、リチウムイオン二次電池用正極のピール強度、及びリチウムイオン二次電池の内部抵抗の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 以上の実施例および比較例より明らかなように、本発明の電気化学素子用電極を用いると、電極強度(=ピール強度が大きい)に優れ、電極密度が向上(=エネルギー密度が高まる)し、内部抵抗を低減する(=出力密度を高める)ことが可能となる。
 実施例の中でも、導電性接着剤層を構成するカーボンブラックとしてヘテロ元素を含むものを用い、結着剤として、カルボン酸基及びニトリル基を含むアクリレート重合体を用い、さらにカルボキシメチルセルロースアンモニウム及びアニオン性界面活性剤を用いた実施例9~13は、生産性(=導電性接着剤層の塗工面外観)、電極強度及び内部抵抗が特に優れる。
 一方、導電性接着剤層を構成する黒鉛として、薄片状の黒鉛を用いたものは(比較例1~4)、生産性、電極強度、電極密度及び内部抵抗すべてに劣る。

Claims (16)

  1.  球状黒鉛、カーボンブラック及び導電性接着剤層用結着剤を含んでなる導電性接着剤層、並びに、
     電極活物質及び電極組成物層用結着剤を含んでなる電極組成物層を、
     集電体上に該集電体側からこの順に有してなる電気化学素子用電極。
  2. 前記球状黒鉛の体積平均粒子径が、0.1~50μmである請求項1に記載の電気化学素子用電極。
  3. 前記導電性接着剤層における、前記球状黒鉛と前記カーボンブラックとの重量比が、カーボンブラック/球状黒鉛の比で、0.05~1.0である請求項1または2に記載の電気化学素子用電極。
  4. 前記カーボンブラックが、ヘテロ元素を含有するものである請求項1~3のいずれかに記載の電気化学素子用電極。
  5. 前記カーボンブラック中のへテロ元素の含有量が、0.01~20重量%である請求項4に記載の電気化学素子用電極。
  6. 前記導電性接着剤層用結着剤が、アクリレート重合体またはジエン重合体である請求項1~5のいずれかに記載の電気化学素子用電極。
  7. 前記導電性接着剤層用結着剤が、極性基を有するものである請求項1~6のいずれかに記載の電気化学素子用電極。
  8. 前記極性基が、ニトリル基である請求項7に記載の電気化学素子用電極。
  9. 前記極性基が、酸基である請求項7に記載の電気化学素子用電極。
  10. 前記酸基が、カルボン酸基である請求項9に記載の電気化学素子用電極。
  11. 前記導電性接着剤層が、さらにカルボキシメチルセルロース塩を含む請求項1~10のいずれかに記載の電気化学素子用電極。
  12. 前記導電性接着剤層が、さらに界面活性剤を含む請求項1~11のいずれかに記載の電気化学素子用電極。
  13. 前記界面活性剤が、アニオン性界面活性剤である請求項12に記載の電気化学素子用電極。
  14. 前記集電体が、貫通する孔を有するものである請求項1~13のいずれかに記載の電気化学素子用電極。
  15. 前記電極組成物層が、電極活物質および電極組成物層用結着剤を含んでなる複合粒子からなる請求項1~14のいずれかに記載の電気化学素子用電極。
  16. 請求項1~15のいずれかに記載の電気化学素子用電極、セパレータおよび電解液を備えてなる電気化学素子。
PCT/JP2010/062813 2009-07-30 2010-07-29 電気化学素子用電極および電気化学素子 WO2011013756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080043837.4A CN102549693B (zh) 2009-07-30 2010-07-29 电化学元件用电极及电化学元件
JP2011524833A JP5549672B2 (ja) 2009-07-30 2010-07-29 電気化学素子用電極および電気化学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-177870 2009-07-30
JP2009177870 2009-07-30

Publications (1)

Publication Number Publication Date
WO2011013756A1 true WO2011013756A1 (ja) 2011-02-03

Family

ID=43529408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062813 WO2011013756A1 (ja) 2009-07-30 2010-07-29 電気化学素子用電極および電気化学素子

Country Status (4)

Country Link
JP (1) JP5549672B2 (ja)
KR (1) KR101569243B1 (ja)
CN (1) CN102549693B (ja)
WO (1) WO2011013756A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
JP2012048892A (ja) * 2010-08-25 2012-03-08 Nippon Shokubai Co Ltd リチウムイオン二次電池用導電層
JP2012156109A (ja) * 2011-01-28 2012-08-16 Hitachi Chem Co Ltd リチウムイオン電池用の導電下地塗料
KR20120118403A (ko) * 2011-04-18 2012-10-26 히다찌 가세이 고오교 가부시끼가이샤 캐패시터용 도전 하지 도료, 캐패시터용 전극, 그리고 전기 이중층 캐패시터 및 리튬 이온 캐패시터
JP2012216468A (ja) * 2011-04-01 2012-11-08 Powrex Corp 正極活物質の製造方法
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013062088A1 (ja) * 2011-10-27 2013-05-02 日本ゼオン株式会社 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP2013232295A (ja) * 2012-04-27 2013-11-14 Furukawa Sky Kk 非水電解質二次電池用正極、当該非水電解質二次電池用正極の製造方法、ならびに、当該非水電解質二次電池用正極を用いた非水電解質二次電池
KR20140051893A (ko) * 2011-08-03 2014-05-02 제온 코포레이션 전기 화학 소자 전극용 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극
JP2014107073A (ja) * 2012-11-27 2014-06-09 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP2014137916A (ja) * 2013-01-17 2014-07-28 Nippon Zeon Co Ltd 電気化学素子電極用導電性接着剤組成物
JP2014203625A (ja) * 2013-04-03 2014-10-27 株式会社豊田自動織機 リチウムイオン二次電池正極用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2014208684A1 (ja) * 2013-06-27 2014-12-31 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
JP2015043316A (ja) * 2013-07-24 2015-03-05 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP2015088333A (ja) * 2013-10-30 2015-05-07 日本黒鉛工業株式会社 カーボンコート層、塗料、集電体、電池およびカーボンコート層の形成方法
JP2015109264A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 蓄電装置用電極及びその製造方法、蓄電装置、並びに電子機器
WO2015115053A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP2015216007A (ja) * 2014-05-09 2015-12-03 凸版印刷株式会社 リチウムイオン二次電池用正極、リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池
WO2016059907A1 (ja) * 2014-10-15 2016-04-21 学校法人東京理科大学 カリウムイオン二次電池用負極又はカリウムイオンキャパシタ用負極、カリウムイオン二次電池又はカリウムイオンキャパシタ及びカリウムイオン二次電池負極用又はカリウムイオンキャパシタ負極用の結着剤
JP2016066522A (ja) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 非水電解質二次電池
JP2017085037A (ja) * 2015-10-30 2017-05-18 旭化成株式会社 非水系リチウム型蓄電素子用負極電極体、及びそれを用いた非水系リチウム型蓄電素子
JPWO2017057603A1 (ja) * 2015-09-30 2018-07-26 株式会社大阪ソーダ ゲル電解質用組成物
JPWO2020240746A1 (ja) * 2019-05-29 2020-12-03
WO2024111211A1 (ja) * 2022-11-24 2024-05-30 パナソニックホールディングス株式会社 集電体、電極板および電池
WO2024111213A1 (ja) * 2022-11-24 2024-05-30 パナソニックホールディングス株式会社 電極板および電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115177A1 (ja) * 2014-01-29 2015-08-06 日本ゼオン株式会社 集電体コート用接着剤塗工液
CN104091921A (zh) * 2014-07-22 2014-10-08 厦门首能科技有限公司 一种多孔硅碳混合阳极极片及含该极片的锂离子二次电池
CN104319403B (zh) * 2014-09-15 2017-02-15 北京康美特科技有限公司 一种锂离子电池用水性导电粘接剂、制备方法及其应用
CN105810895A (zh) * 2014-12-30 2016-07-27 苏州宝时得电动工具有限公司 正极以及含有正极的电池
US10256471B2 (en) * 2014-12-22 2019-04-09 Samsung Sdi Co., Ltd. Electrode winding element for non-aqueous electrolyte rechareable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
CN106935901A (zh) * 2015-12-31 2017-07-07 东莞新能源科技有限公司 锂离子电池及其阴极极片
KR102619895B1 (ko) 2016-08-01 2024-01-02 삼성에스디아이 주식회사 이차 전지
KR102258090B1 (ko) 2016-09-06 2021-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2018174619A1 (ko) * 2017-03-22 2018-09-27 주식회사 엘지화학 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018180809A1 (ja) * 2017-03-31 2018-10-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US11721803B2 (en) * 2018-03-19 2023-08-08 Honda Motor Co., Ltd. Solid-state battery
CN108365227A (zh) * 2018-04-20 2018-08-03 福建猛狮新能源科技有限公司 一种多维度导电复合集流体及其制造方法
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099675A (ja) * 2002-09-06 2004-04-02 Kyushu Refract Co Ltd 導電性組成物、それを含有する導電性塗料、導電性接着剤および電磁波シールド剤
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤
JP2006140142A (ja) * 2004-10-15 2006-06-01 Showa Denko Kk 導電性ペースト、その製造方法及び用途
JP2006338963A (ja) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd リチウムイオンキャパシタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111791A (ja) * 2004-10-18 2006-04-27 Denki Kagaku Kogyo Kk カーボンブラックの製造方法
JP5141002B2 (ja) * 2006-11-30 2013-02-13 日本ゼオン株式会社 電気化学素子電極用複合粒子の製造方法
JP5201313B2 (ja) * 2007-03-30 2013-06-05 日本ゼオン株式会社 電気化学素子用電極およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099675A (ja) * 2002-09-06 2004-04-02 Kyushu Refract Co Ltd 導電性組成物、それを含有する導電性塗料、導電性接着剤および電磁波シールド剤
JP2005136401A (ja) * 2003-10-10 2005-05-26 Japan Gore Tex Inc 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤
JP2006140142A (ja) * 2004-10-15 2006-06-01 Showa Denko Kk 導電性ペースト、その製造方法及び用途
JP2006338963A (ja) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd リチウムイオンキャパシタ

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
JP2012048892A (ja) * 2010-08-25 2012-03-08 Nippon Shokubai Co Ltd リチウムイオン二次電池用導電層
JP2012156109A (ja) * 2011-01-28 2012-08-16 Hitachi Chem Co Ltd リチウムイオン電池用の導電下地塗料
JP2012216468A (ja) * 2011-04-01 2012-11-08 Powrex Corp 正極活物質の製造方法
KR20120118403A (ko) * 2011-04-18 2012-10-26 히다찌 가세이 고오교 가부시끼가이샤 캐패시터용 도전 하지 도료, 캐패시터용 전극, 그리고 전기 이중층 캐패시터 및 리튬 이온 캐패시터
JP2012227274A (ja) * 2011-04-18 2012-11-15 Hitachi Chem Co Ltd キャパシタ用導電下地塗料、キャパシタ用電極、並びに電気二重層キャパシタ及びリチウムイオンキャパシタ
KR102015134B1 (ko) * 2011-04-18 2019-09-16 히타치가세이가부시끼가이샤 캐패시터용 도전 하지 도료, 캐패시터용 전극, 그리고 전기 이중층 캐패시터 및 리튬 이온 캐패시터
JP2012256541A (ja) * 2011-06-09 2012-12-27 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
KR101959962B1 (ko) * 2011-08-03 2019-03-19 제온 코포레이션 전기 화학 소자 전극용 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극
KR20140051893A (ko) * 2011-08-03 2014-05-02 제온 코포레이션 전기 화학 소자 전극용 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극
CN103890124A (zh) * 2011-10-27 2014-06-25 日本瑞翁株式会社 导电性粘接剂组合物、带粘接剂层的集电体及电化学元件电极
KR20140095475A (ko) 2011-10-27 2014-08-01 제온 코포레이션 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극
JPWO2013062088A1 (ja) * 2011-10-27 2015-04-02 日本ゼオン株式会社 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
KR101988452B1 (ko) * 2011-10-27 2019-06-12 제온 코포레이션 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극
WO2013062088A1 (ja) * 2011-10-27 2013-05-02 日本ゼオン株式会社 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP2013232295A (ja) * 2012-04-27 2013-11-14 Furukawa Sky Kk 非水電解質二次電池用正極、当該非水電解質二次電池用正極の製造方法、ならびに、当該非水電解質二次電池用正極を用いた非水電解質二次電池
JP2014107073A (ja) * 2012-11-27 2014-06-09 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP2014137916A (ja) * 2013-01-17 2014-07-28 Nippon Zeon Co Ltd 電気化学素子電極用導電性接着剤組成物
JP2014203625A (ja) * 2013-04-03 2014-10-27 株式会社豊田自動織機 リチウムイオン二次電池正極用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JPWO2014208684A1 (ja) * 2013-06-27 2017-02-23 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
WO2014208684A1 (ja) * 2013-06-27 2014-12-31 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
US10283808B2 (en) 2013-06-27 2019-05-07 Toyota Jidosha Kabushiki Kaisha Method for producing electrode for lithium ion batteries
JP2015043316A (ja) * 2013-07-24 2015-03-05 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP7145286B2 (ja) 2013-10-22 2022-09-30 株式会社半導体エネルギー研究所 蓄電装置用電極
JP2022180470A (ja) * 2013-10-22 2022-12-06 株式会社半導体エネルギー研究所 蓄電装置用電極及びその製造方法、蓄電装置、並びに電子機器
JP7463462B2 (ja) 2013-10-22 2024-04-08 株式会社半導体エネルギー研究所 蓄電装置用電極、蓄電装置及び電子機器
JP2021153064A (ja) * 2013-10-22 2021-09-30 株式会社半導体エネルギー研究所 蓄電装置用電極
JP2019186216A (ja) * 2013-10-22 2019-10-24 株式会社半導体エネルギー研究所 蓄電装置用電極の製造方法
JP2015109264A (ja) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 蓄電装置用電極及びその製造方法、蓄電装置、並びに電子機器
JP2015088333A (ja) * 2013-10-30 2015-05-07 日本黒鉛工業株式会社 カーボンコート層、塗料、集電体、電池およびカーボンコート層の形成方法
WO2015115053A1 (ja) * 2014-01-31 2015-08-06 三洋電機株式会社 非水電解質二次電池用負極
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP2015216007A (ja) * 2014-05-09 2015-12-03 凸版印刷株式会社 リチウムイオン二次電池用正極、リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池
US9692048B2 (en) 2014-09-25 2017-06-27 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte rechargeable battery
JP2016066522A (ja) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 非水電解質二次電池
US10593992B2 (en) 2014-10-15 2020-03-17 Tokyo University Of Science Foundation Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
JPWO2016059907A1 (ja) * 2014-10-15 2017-07-27 学校法人東京理科大学 カリウムイオン二次電池用負極又はカリウムイオンキャパシタ用負極、カリウムイオン二次電池又はカリウムイオンキャパシタ及びカリウムイオン二次電池負極用又はカリウムイオンキャパシタ負極用の結着剤
WO2016059907A1 (ja) * 2014-10-15 2016-04-21 学校法人東京理科大学 カリウムイオン二次電池用負極又はカリウムイオンキャパシタ用負極、カリウムイオン二次電池又はカリウムイオンキャパシタ及びカリウムイオン二次電池負極用又はカリウムイオンキャパシタ負極用の結着剤
JPWO2017057603A1 (ja) * 2015-09-30 2018-07-26 株式会社大阪ソーダ ゲル電解質用組成物
JP7189663B2 (ja) 2015-09-30 2022-12-14 株式会社大阪ソーダ ゲル電解質用組成物
JP2017085037A (ja) * 2015-10-30 2017-05-18 旭化成株式会社 非水系リチウム型蓄電素子用負極電極体、及びそれを用いた非水系リチウム型蓄電素子
JPWO2020240746A1 (ja) * 2019-05-29 2020-12-03
EP3979357A4 (en) * 2019-05-29 2023-03-01 Daicel Corporation MUD
JP7271660B2 (ja) 2019-05-29 2023-05-11 株式会社ダイセル スラリー
WO2024111211A1 (ja) * 2022-11-24 2024-05-30 パナソニックホールディングス株式会社 集電体、電極板および電池
WO2024111213A1 (ja) * 2022-11-24 2024-05-30 パナソニックホールディングス株式会社 電極板および電池

Also Published As

Publication number Publication date
KR101569243B1 (ko) 2015-11-13
CN102549693A (zh) 2012-07-04
KR20120040223A (ko) 2012-04-26
CN102549693B (zh) 2014-03-12
JP5549672B2 (ja) 2014-07-16
JPWO2011013756A1 (ja) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5549672B2 (ja) 電気化学素子用電極および電気化学素子
JP5098954B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
JP5423991B2 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP4605467B2 (ja) 電気化学素子の製造方法
JP6217741B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP5354205B2 (ja) 電気化学素子用電極および電気化学素子
JP6344384B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP6380526B2 (ja) 電気化学素子電極用複合粒子
JP2010109354A (ja) 電気化学素子用電極の製造方法
JP2010097830A (ja) 電気化学素子用電極の製造方法
JP5169720B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
JP5471307B2 (ja) 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子
JP6485359B2 (ja) 電気化学素子電極用複合粒子
JP2013077558A (ja) 電気化学素子用電極
WO2010016567A1 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP5601485B2 (ja) 電気化学素子用電極の製造方法、電気化学素子用電極及び電気化学素子
JP2010157564A (ja) 電気化学素子電極用複合粒子の製造方法
WO2009119553A1 (ja) ハイブリッドキャパシタ用電極の製造方法
JPWO2009107716A1 (ja) 電気化学素子電極の製造方法
JP5651470B2 (ja) リチウムイオンキャパシタ用バインダー、リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP5206443B2 (ja) 電気化学素子用電極、および電気化学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043837.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524833

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127002263

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804502

Country of ref document: EP

Kind code of ref document: A1