JPWO2017057603A1 - ゲル電解質用組成物 - Google Patents

ゲル電解質用組成物 Download PDF

Info

Publication number
JPWO2017057603A1
JPWO2017057603A1 JP2017543577A JP2017543577A JPWO2017057603A1 JP WO2017057603 A1 JPWO2017057603 A1 JP WO2017057603A1 JP 2017543577 A JP2017543577 A JP 2017543577A JP 2017543577 A JP2017543577 A JP 2017543577A JP WO2017057603 A1 JPWO2017057603 A1 JP WO2017057603A1
Authority
JP
Japan
Prior art keywords
composition
gel electrolyte
electrolyte
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017543577A
Other languages
English (en)
Other versions
JP7189663B2 (ja
Inventor
松尾 孝
孝 松尾
雅人 田渕
雅人 田渕
植田 秀昭
秀昭 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Publication of JPWO2017057603A1 publication Critical patent/JPWO2017057603A1/ja
Application granted granted Critical
Publication of JP7189663B2 publication Critical patent/JP7189663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/62Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the nature of monomer used
    • C08G2650/64Monomer containing functional groups not involved in polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/62Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the nature of monomer used
    • C08G2650/66Oligomeric monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することができる、ゲル電解質用組成物を提供する。電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、水分含有量が50ppm以下であるゲル電解質用組成物。

Description

本発明は、ゲル電解質用組成物に関する。さらに詳しくは、本発明は、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することができる、ゲル電解質用組成物に関する。さらに、本発明は、当該ゲル電解質用組成物の製造方法、当該ゲル電解質用組成物を用いた電気化学キャパシタ、及び当該電気化学キャパシタの製造方法に関する。
二次電池や電気化学キャパシタは、電気自動車(EV)やハイブリット自動車(HEV)等の主電源や補助電源として、または太陽光発電や風力発電などの再生可能エネルギーの電力蓄積デバイスとして、開発が盛んに進められている。電気化学キャパシタとしては、電気二重層キャパシタ、ハイブリッドキャパシタ等が知られている。例えば電気二重層キャパシタ(シンメトリックキャパシタと呼ばれることがある)においては、正および負の両電極層に、活性炭のような比表面積の大きい材料が用いられる。該電極層と電解液との界面に電気二重層が形成され、酸化還元を伴わない非ファラデー反応による蓄電がなされる。電気二重層キャパシタは、一般に二次電池に比べて、出力密度が高く、急速充放電特性に優れている。
電気二重層キャパシタの静電エネルギーJは、式:J=(1/2)×CV2で定義される。ここで、Cは静電容量、Vは電圧である。電気二重層キャパシタの電圧は2.7〜3.3V程度と低い。そのために、電気二重層キャパシタの静電エネルギーは、二次電池の1/10以下である。
また、例えばハイブリッドキャパシタ(アシンメトリックキャパシタと呼ばれることがある。)は、相互に異なる材料からなる正極層と負極層とをリチウムイオンを含む電解液中にセパレータを介して対向させたものである。このような構成にすると、正極層では酸化還元を伴わない非ファラデー反応による蓄電が、負極層では酸化還元を伴うファラデー反応による蓄電がそれぞれ成され、大きな静電容量Cを生み出すことができる。このため、ハイブリッドキャパシタは、電気二重層キャパシタに比べて大きなエネルギー密度が得られるであろうと期待されている。
ところが、従来、電気化学キャパシタには、イオン導電性の点から、電解質として溶液状のものが用いられているため、液漏れによる機器の損傷の恐れがある。このため、種々の安全対策が必要であり、大型キャパシタ開発の障壁になっている。
これに対して、例えば特許文献1には、有機高分子系物質などの固体電解質が提案されている。特許文献1においては、電解質として、液体ではなく固体の電解質を用いるため、液漏れ等の問題がなく安全性の点で有利である。ところが、イオン電導度が低くなるという問題があり、またセパレータを用いるため、静電容量も小さいという問題がある。
また、例えば特許文献2には、イオン交換樹脂の塩を除去することで空隙を形成し、その空隙に電解液を充填した構成の電気化学キャパシタが提案されている。しかしながら、空隙を作製するために余計な工程が必要であり、製造も難しく、空隙に電解液を注入するためにもノウハウが必要となり、製造が非常に困難である。
また、例えば特許文献3には、特定の有機高分子電解質を含むゲル電解質を用いた電気化学キャパシタが提案されている。
特開2000−150308号公報 特開2006−73980号公報 特開2013−175701号広報
上記のようなゲル電解質には、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することが求められる。
このような事情に鑑み、本発明は、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することができる、ゲル電解質用組成物を提供することを主な目的とする。さらに、本発明は、当該ゲル電解質用組成物の製造方法、当該ゲル電解質用組成物を用いた電気化学キャパシタ、及び当該電気化学キャパシタの製造方法を提供することも目的とする。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、水分含有量が50ppm以下であるゲル電解質用組成物は、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与できることを見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、
水分含有量が50ppm以下であるゲル電解質用組成物。
項2. 前記電解質塩は、常温溶融塩を含む、項1に記載のゲル電解質用組成物。
項3. 前記ポリエーテル共重合体が、下記式(A)で示される繰り返し単位を0〜89.9モル%と、
Figure 2017057603
[式中、Rは炭素数1〜12のアルキル基または基−CH2O(CR123)である。R1、R2、及びR3は、それぞれ独立に、水素原子または基−CH2O(CH2CH2O)n4である。R4は、炭素数1〜12のアルキル基または置換基を有してもよいアリール基である。nは、0〜12の整数である。]
下記式(B)で示される繰り返し単位を99〜10モル%と、
Figure 2017057603
下記式(C)で示される繰り返し単位を0.1〜15モル%と、
Figure 2017057603
[式中、R5はエチレン性不飽和基を有する基である。]
を含む、項1または2に記載のゲル電解質用組成物。
項4. 前記電解質塩と、前記ポリエーテル共重合体とを混合する工程を備えており、
前記電解質塩として、水分含有量が30ppm以下であるものを用いる、項1〜3のいずれか1項に記載のゲル電解質用組成物の製造方法。
項5. 前記電解質塩と、前記ポリエーテル共重合体とを混合する工程を備えており、
前記ポリエーテル共重合体として、水分含有量が200ppm以下であるものを用いる、項1〜4のいずれか1項に記載のゲル電解質用組成物の製造方法。
項6. 正極と、負極との間に、項1〜3のいずれか1項に記載のゲル電解質用組成物の硬化物を含むゲル電解質層を備える、電気化学キャパシタ。
項7. 前記ゲル電解質層の厚みが、1〜50μmである、項6に記載の電気化学キャパシタ。
項8. 項1〜3のいずれか1項に記載のゲル電解質用組成物を、正極及び負極の少なくとも一方の表面に塗布する工程と、
前記ゲル電解質用組成物に活性エネルギー線を照射し、前記ゲル電解質用組成物を硬化させてゲル電解質層を形成する工程と、
前記ゲル電解質層を介して、前記正極と前記負極を積層する工程と、
を備える、電気化学キャパシタの製造方法。
本発明によれば、ゲル電解質用組成物が、電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、水分含有量が50ppm以下であることから、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することができる。すなわち、本発明のゲル電解質用組成物を用いた電気化学キャパシタは、優れた出力特性と高い容量維持率を備えている。
1.ゲル電解質用組成物
本発明のゲル電解質用組成物は、電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、水分含有量が50ppm以下であることを特徴とする。以下、本発明のゲル電解質用組成物について、詳述する。
本発明のゲル電解質用組成物は、水分含有量が極めて少ないため、これを電気化学キャパシタに用いることにより、電気化学キャパシタの充電時に上限電圧まで好適に上昇させることができ、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与することができる。例えば、後述の通り、ポリエーテル共重合体は極めて水分吸収能の高いポリマーであるが、ゲル電解質用組成物に使用される従来のポリエーテル共重合体においては、ゲル電解質用組成物の水分含有量が50ppm以下という極めて小さな値になるほどに水分含有量が管理されていなかった。本発明においては、例えば後述のように、水分含有量が管理された特定の原材料を用いたり、ゲル電解質用組成物を特定の方法で調製することによって、水分含有量が50ppm以下という、極めて水分含有量の少ないゲル電解質用組成物とすることができる。
本発明のゲル電解質用組成物中の水分含有量を50ppm以下に設定する方法としては、原料として用いる電解質溶液やエチレンオキシドユニットを有するポリエーテル共重合体等の洗浄工程、原料またはゲル電解質組成物溶液を吸着剤と接触させる工程、乾燥させる工程などにおいて、水分含有量を調整する方法が挙げられる。以下、これら各工程について順に説明する。
例えば、電解質溶液やポリエーテル共重合体等を洗浄する工程については、電解質溶液やポリエーテル共重合体を良溶媒の有機溶剤に溶解させ、貧溶媒と混合して分液または濾過を行い、不純物を洗浄する。使用する貧溶媒が水の場合はイオン交換水を使用し、その比抵抗が1×107Ω・cm以上であることが望ましい。比抵抗が小さいと逆にイオン交換水からの不純物の混入が生じるおそれがある。また、イオン交換水の温度は25〜50℃であることが望ましい。
洗浄する工程において、1回当りの貧溶媒の使用量が、原料1質量部に対して30〜50質量部であることが好ましい。30質量部より少ないと充分な洗浄が行なわれず、50質量部を越えて用いてもあまり効果がかわらず、多量の貧溶媒を用いることによって、処理しにくく、コストアップになるためである。
良溶媒としては、トルエン、テトラヒドロフラン(THF)、アセトニトリル、アセトン、メチルエチルケトン等が挙げられる。また、貧溶媒としては、ヘキサン、シクロヘキサン、四塩化炭素、メチルモノグライム、エチルモノグライム等が挙げられる。これらの内、沸点が低く比較的離れているものの組み合わせが用いられる。
吸着剤と接触させる工程においては、洗浄する工程を経た原材料、またはゲル電解質組成物を吸着剤(好ましくは多孔質吸着剤、例えば、ゼオライト、アルミナ、モレキュラシーブス及びシリカゲルから選ばれた少なくとも一種の材料)と接触させ、溶液中の水分を除去する。
吸着剤と接触させる工程における処理は、漏斗等に前記吸着剤を敷いておき、濾過操作と同時に吸着剤と接触させることができる。こうすることにより、有機溶剤中の水分を除去することと固形の不純物を除去する作業を同時に行うことができる。
乾燥させる工程では、ポリエーテル共重合体や、吸着剤と接触させる工程で処理したゲル電解質組成物を、中高温及び減圧下で乾燥させる。乾燥させる工程は、電解質溶液やポリエーテル共重合体の不要な有機溶剤を除去することを目的とするものである。
そのため、乾燥させる工程における所定温度は、電解質溶液が蒸発しない温度やゲル電解質組成物が反応(硬化、架橋)しない温度であることが好ましい。また、減圧で室温以上の温度で攪拌させながら乾燥させることで、電解質溶液とポリエーテル共重合体が、ゲル電解質組成物中において、均一に混合された状態にすることができる。このことは、電気化学キャパシタの充放電特性を向上させる点で重要である。特に良好な乾燥条件としては、減圧条件として0.1〜0.2torrで、40℃〜50℃で行うことが前述の点で好ましい。
乾燥させる工程の後に減圧下のゲル電解質組成物の周囲を、乾燥空気、不活性ガス(好適には窒素ガスやアルゴンガス)のうちの少なくとも一種のガスで満たすことが好ましい。これは、精製した組成物に再び水分等が吸着しないためである。
また、同様に、乾燥させる工程の後に、ゲル電解質組成物を別の容器に移す場合は、液晶の雰囲気を、乾燥空気、不活性ガス(好適には窒素ガスやアルゴンガス)のうちの少なくとも一種からなるガスに置換して別の容器に移し、保存することが好ましい。
ゲル電解質組成物への塵埃等の混入を抑制するために、ゲル電解質組成物溶液の精製のための各工程は、クリーン度(清浄度)の高いクリーンルーム内において行うことが好ましい。少なくとも前記吸着剤と接触させる工程及び乾燥させる工程は、例えば、クリーン度クラス1000以下のクリーンルーム内において行えばよい。即ち、前記各工程は、例えばクラス1000のクリーンルーム内、あるいは、クラス1000よりも清浄度が高いクリーンルーム内において行えばよい。なお、クラス1000のクリーンルーム内は、1立方フィート中に含まれている0.5μm以上の大きさの塵埃の数が1000個以内である。
紫外線によるゲル電解質組成物の劣化を抑制するために、ゲル電解質組成物の精製のための各工程は、紫外線放射照度が小さい環境下において行うことが好ましい。少なくとも前記吸着剤と接触させる工程及び乾燥させる工程は、例えば、紫外線放射照度が0.1mW/cm2以下の環境下において行えばよい。
また、原料やゲル電解質組成物を精製する各工程において、原料やゲル電解質組成物のうちの1又は2以上と接触する器具(接触器具)として、その接触面がフッ素系樹脂及び/又はシリコン系樹脂で被覆されている器具を用いると、その器具のメンテナンスが容易になる。
なお、接触器具としては、例えば、原料を採取するときに用いるシリンジや薬さじ、計量するときにゲル電解質組成物を収容する容器、洗浄する工程において原料を収容する容器、吸着剤と接触させる工程においてゲル電解質組成物を収容する容器、乾燥させる工程においてゲル電解質組成物を収容する容器、攪拌するときに用いる攪拌子などである。また、ある工程が終わった後、次の工程を行う前にゲル電解質組成物等を所定の容器から別の容器へパイプを通して移し替えるときには、そのパイプも接触器具である。例えば、ゲル電解質組成物を収容する容器から吸着剤と接触させる工程において、ゲル電解質組成物を収容する容器へパイプを通して混合物を移送する場合には、そのパイプも接触器具である。
勿論、全ての接触器具の接触面がフッ素系樹脂及び/又はシリコン系樹脂で被覆されている必要はないが、被覆されていれば前記の利点を享受できる。
エチレンオキシドユニットを有するポリエーテル共重合体としては、主鎖または側鎖に下記式(B)で示されるエチレンオキシドの繰り返し単位(エチレンオキシドユニット)を有する共重合体である。
Figure 2017057603
当該ポリエーテル共重合体は、下記式(C)で示される繰り返し単位を有することが好ましい。
Figure 2017057603
[式(C)中、R5はエチレン性不飽和基を有する基である。エチレン性不飽和基の炭素数は、通常、2〜13程度である。]
また、当該ポリエーテル共重合体は、下記式(A)で示される繰り返し単位を含んでいてもよい。
Figure 2017057603
[式(A)中、Rは炭素数1〜12のアルキル基または基−CH2O(CR123)である。R1、R2、及びR3は、それぞれ独立に、水素原子または基−CH2O(CH2CH2O)n4である。R4は、炭素数1〜12のアルキル基または置換基を有してもよいアリール基である。アリール基としては、例えば、フェニル基が挙げられる。nは、0〜12の整数である。]
ポリエーテル共重合体としては、上記繰り返し単位(A)、上記繰り返し単位(B)、及び上記繰り返し単位(C)のモル比が、(A)0〜89.9モル%、(B)99〜10モル%、及び(C)0.1〜15モル%であることが好ましく、(A)0〜69.9モル%、(B)98〜30モル%、及び(C)0.1〜13モル%であることがより好ましく、(A)0〜49.9モル%、(B)98〜50モル%、及び(C)0.1〜11モル%であることがさらに好ましい。
なお、ポリエーテル共重合体において、上記繰り返し単位(B)のモル比が、99モル%を越えると、ガラス転移温度の上昇とオキシエチレン鎖の結晶化を招き、硬化後のゲル電解質のイオン伝導性を著しく悪化させる虞がある。一般にポリエチレンオキシドの結晶性を低下させることにより、イオン伝導性が向上することは知られているが、本発明のポリエーテル共重合体はこの点において格段に優れている。
ポリエーテル共重合体は、ブロック共重合体、ランダム共重合体等、何れの共重合タイプでも良い。これらの中でも、ランダム共重合体が、よりポリエチレンオキシドの結晶性を低下させる効果が大きいため、好ましい。
前述の式(A)、式(B)、式(C)の繰り返し単位(エチレンオキシドユニット)を有するポリエーテル共重合体は、例えば、下記式(1)、(2)及び(3)で示される単量体(モノマー)を重合させることにより、好適に得られる。また、これらの単量体を重合させ、さらに架橋させてもよい。
Figure 2017057603
[式(1)中、Rは炭素数1〜12のアルキル基または基−CH2O(CR123)である。R1、R2、及びR3は、それぞれ独立に、水素原子または基−CH2O(CH2CH2O)n4である。R4は、炭素数1〜12のアルキル基または置換基を有してもよいアリール基である。アリール基としては、例えば、フェニル基が挙げられる。nは、0〜12の整数である。]
Figure 2017057603
Figure 2017057603
[式(3)中、R5はエチレン性不飽和基を有する基である。エチレン性不飽和基の炭素数は、通常、2〜13程度である。]
上記式(1)で表される化合物は、市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。市販品から入手可能な化合物としては、例えば、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、t−ブチルグリシジルエーテル、ベンジルグリシジルエーテル、1,2−エポキシドデカン、1,2−エポキシオクタン、1,2−エポキシヘプタン、2−エチルヘキシルグリシジルエーテル、1,2−エポキシデカン、1,2−エポキシへキサン、グリシジルフェニルエーテル、1,2−エポキシペンタン、グリシジルイソプロピルエーテルなどが使用できる。これら市販品のなかでは、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、グリシジルイソプロピルエーテルが好ましく、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテルが特に好ましい。
合成によって得られる式(1)で表される単量体では、Rは−CH2O(CR123)が好ましく、R1、R2、R3の少なくとも一つが−CH2O(CH2CH2O)n4であることが好ましい。R4は炭素数1〜6のアルキル基が好ましく、炭素数1〜4がより好ましい。nは2〜6が好ましく、2〜4がより好ましい。
また、式(2)の化合物は基礎化学品であり、市販品を容易に入手可能である。
式(3)の化合物において、R5はエチレン性不飽和基を含む置換基である。上記式(3)で表される化合物の具体例としては、アリルグリシジルエーテル、4−ビニルシクロヘキシルグリシジルエーテル、α−テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4−エポキシ−1−ブテン、4,5−エポキシ−1−ペンテン、4,5−エポキシ−2−ペンテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル−4−ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルである。
ここで、繰り返し単位(A)及び(C)は、それぞれ2種以上の異なるモノマーから誘導されるものであってもよい。
ポリエーテル共重合体の合成は、例えば、次のようにして行える。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫−リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにK+を含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各モノマーを溶媒の存在下又は不存在下、反応温度10〜120℃、撹拌下で反応させることによってポリエーテル共重合体が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫−リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。
ポリエーテル共重合体の重量平均分子量としては、良好な加工性、機械的強度、柔軟性を得るために、好ましくは1万〜250万程度、より好ましくは5万〜200万程度、更に好ましくは10万〜180万程度が挙げられる。
また、ゲル電解質用組成物の塗工性、ゲル化特性、及び保液性を高めつつ、ゲル化後の膜強度を高め、さらに、電気化学キャパシタに対して優れた出力特性と、高い容量維持率を付与する観点から、ポリエーテル共重合体の分子量分布は、3.0〜10.0であることが好ましく、4.0〜8.0であることがより好ましい。なお、当該分子量分布は、GPC測定を行い、標準ポリスチレン換算により重量平均分子量および数平均分子量を算出し、その比である重量平均分子量/数平均分子量の値とした。
なお、本発明において、重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)にて、測定を行い、標準ポリスチレン換算により重量平均分子量を算出する。
本発明のゲル電解質用組成物の水分含有量を50ppm以下に設定する観点からは、ポリエーテル共重合体の水分含有量は、200ppm以下であることが好ましく、150ppm以下であることがより好ましく、100ppm以下であることが特に好ましい。
本発明のゲル電解質用組成物において、ポリエーテル共重合体の固形分濃度は、ゲル電解質用組成物の全固形分の5〜20質量%程度であることが好ましい。
本発明のゲル電解質用組成物に含まれる電解質塩は、常温溶融塩(イオン液体)を含むことが好ましい。本発明において、電解質塩として、常温溶融塩を用いることにより、硬化後のゲル電解質に対して、一般的な有機溶媒としての効果を併せて発揮させることが可能となる。
常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は−40℃程度、場合によっては−20℃程度である。常温溶融塩は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
常温溶融塩はイオン液体とも呼ばれており、カチオンとして、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
イミダゾリウムカチオンとしては、ジアルキルイミダゾリウムイオン、トリアルキルイミダゾリウムイオンが例示される。ジアルキルイミダゾリウムイオンとしては、1,3−ジメチルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−エチルイミダゾリウムイオン、1−メチル−3−ブチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオンなどが挙げられ、トリアルキルイミダゾリウムイオンとしては、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。また、1−アリル−3−エチルイミダゾリウムイオン、1−アリル−3−ブチルイミダゾリウムイオン、1,3−ジアリルイミダゾリウムイオンなどの1−アリルイミダゾリウムイオンも使用することができる。
テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、ジメチルジエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、N,N−ジエチル−N−メチル−N−(2メトキシエチル)アンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
アルキルピリジウムイオンとしては、N−メチルピリジウムイオン、N−エチルピリジニウムイオン、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン、1−エチル−2メチルピリジニウムイオン、1−ブチル−4−メチルピリジニウムイオン、1−ブチル−2,4ジメチルピリジニウムイオン、N−メチル−N−プロピルピぺリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
ピロリジニウムイオンとしては、N−(2−メトキシエチル)−N−メチルピロリジニウムイオン、N−エチル−N−メチルピロリジニウムイオン、N−エチル−N−プロピルピロリジニウムイオン、N−メチル−N−プロピルピロリジニウムイオン、N−メチル−N−ブチルピロリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
対アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -などの無機酸イオン、トリフルオロメタンスルホン酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8−テトラシアノ−p−キノジメタンイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、トリス(トリフルオロメチルスルホニル)メチドイオン、ビス(ペンタフルオロエチルスルホニル)イミドイオン、4,4,5,5−テトラフルオロ−1,3,2−ジチアゾリジン−1,1,3,3−テトラオキシドイオン、トリフルオロ(ペンタフルオロエチル)ホウ素酸イオン、トリフルオロ−トリ(ペンタフルオロエチル)リン素酸イオンなどの有機酸イオンなどが例示される。
本発明のゲル電解質用組成物は、以下に挙げる電解質塩を含有してもよい。即ち、金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンから選ばれた陽イオンと、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8−テトラシアノ−p−キノジメタンイオン、X1SO3 -、[(X1SO2)(X2SO2)N]-、[(X1SO2)(X2SO2)(X3SO2)C]-、及び[(X1SO2)(X2SO2)YC]-から選ばれた陰イオンとからなる化合物が挙げられる。但し、X1、X2、X3、およびYは電子吸引基である。好ましくはX1、X2、及びX3は各々独立して炭素数が1〜6のパーフルオロアルキル基又は炭素数が6〜18のパーフルオロアリール基であり、Yはニトロ基、ニトロソ基、カルボニル基、カルボキシル基又はシアノ基である。X1、X2及びX3は各々同一であっても、異なっていてもよい。
金属陽イオンとしては遷移金属の陽イオンを用いることができる。好ましくはMn、Fe、Co、Ni、Cu、Zn及びAg金属から選ばれた金属の陽イオンが用いられる。又、Li、Na、K、Rb、Cs、Mg、Ca及びBa金属から選ばれた金属の陽イオンを用いても好ましい結果が得られる。電解質塩として前述の化合物を2種類以上併用することが可能である。特に、リチウムイオンキャパシタにおいて電解質塩としては、リチウム塩化合物が好適に用いられる。本発明において、電解質塩は、リチウム塩化合物を含むことが好ましい。
リチウム塩化合物としては、リチウムイオンキャパシタに一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN[CF3SC(C25SO23] 2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
本発明のゲル電解質組成物において、電解質塩は、前述のポリエーテル共重合体、該共重合体の架橋体、さらには、ポリエーテル共重合体及び/又は該共重合体の架橋体と電解質塩を含有する混合物中において、相溶することが好ましい。ここで、相溶とは、電解質塩が結晶化などによる析出を生じないことを意味する。
本発明において、例えばリチウムイオンキャパシタの場合は、電解質塩として、好ましくはリチウム塩化合物及び常温溶融塩が用いられる。また、電気二重層キャパシタの場合は、電解質塩として、好ましくは常温溶融塩のみが用いられる。
本発明において、リチウムイオンキャパシタの場合には、ポリエーテル共重合体に対する電解質塩の使用量(リチウム塩化合物と常温溶融塩の合計使用量)は、ポリエーテル共重合体10質量部に対して、電解質塩が1〜120質量部であることが好ましく、電解質塩が3〜90質量部であることがより好ましい。また、電気二重層キャパシタの場合は、常温溶融塩の使用量は、ポリエーテル共重合体10質量部に対して、常温溶融塩が1〜300質量部であることが好ましく、常温溶融塩が5〜200質量部であることがより好ましい。
本発明のゲル電解質用組成物の水分含有量を50ppm以下に設定する観点からは、電解質塩の水分含有量は、30ppm以下であることが好ましく、20ppm以下であることがより好ましく、15ppm以下であることが特に好ましい。
本発明のゲル電解質用組成物においては、硬化させることによって膜強度の高いゲル電解質とする観点から、光反応開始剤、さらに必要であれば架橋助剤を含有することが好ましい。
光反応開始剤としては、アルキルフェノン系光反応開始剤が好適に用いられる。アルキルフェノン系光反応開始剤は、反応速度が速くゲル電解質用組成物への汚染が少ない点で非常に好ましい。
アルキルフェノン系光反応開始剤の具体例としては、ヒドロキシアルキルフェノン系化合物である1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−[4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル]−2−メチル−プロパン−1−オンや2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、などが挙げられる。またアミノアルキルフェノン系化合物である2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルフォニル)フェニル]−1−ブタノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1等が挙げられる。その他として、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、フェニルグリオキシリックアシッドメチルエステル等が挙げられる。中でも2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルフォニル)フェニル]−1−ブタノンが好ましい。
また、ヒドロキシアルキルフェノン系化合物とアミノアルキルフェノン系化合物を混合することにより、広い波長範囲で表面と内部を効果的に重合させることが可能となりゲル化の強度を上げることが可能となる。
その他の光反応開始剤としては、ベンゾフェノン系、アシルフォスフィンオキシド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などが挙げられる。これらの光反応開始剤を単独で用いてもよいし、アルキルフェノン系の光反応開始剤の補助的な開始剤として添加することも可能である。
架橋反応に用いられる光反応開始剤の量としては、特に制限されないが、ポリエーテル共重合体100質量部に対して、好ましくは0.1〜10質量部程度、より好ましくは0.1〜4.0質量部程度が挙げられる。
本発明においては、架橋助剤を光反応開始剤と併用してもよい。架橋助剤は、通常、多官能性化合物(例えば、CH2=CH−、CH2=CH−CH2−、CF2=CF−を少なくとも2個含む化合物)である。架橋助剤の具体例は、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、N,N'−m−フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート、ヘキサフルオロトリアリルイソシアヌレート、N−メチルテトラフルオロジアリルイソシアヌレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ペンタエリスリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、ポリエチレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレートなどである。
本発明ではゲル電解質用組成物に非プロトン性有機溶媒を添加することもできる。本発明のゲル電解質用組成物は、非プロトン性有機溶媒等と組み合わせることで、キャパシタ作製時の粘度調整やキャパシタとしての性能を調整することが可能となる。
非プロトン性有機溶媒としては、非プロトン性のニトリル類、エーテル類及びエステル類が好ましい。具体的には、アセトニトリル、プロピレンカーボネート、γ−ブチロラクトン、ブチレンカーボネート、ビニルカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルモノグライム、メチルジグライム、メチルトリグライム、メチルテトラグライム、エチルモノグライム、エチルジグライム、エチルトリグライム、エチルメチルモノグライム、ブチルジグライム、3−メチル−2−オキサゾリドン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4,4−メチル−1,3−ジオキソラン、ギ酸メチル、酢酸メチル、プロピオン酸メチル等が挙げられ、中でも、プロピレンカーボネート、γ−ブチロラクトン、ブチレンカーボネート、ビニルカーボネート、エチレンカーボネート、メチルトリグライム、メチルテトラグライム、エチルトリグライム、エチルメチルモノグライムが好ましい。これらの2種以上の混合物を用いても良い。
本発明のゲル電解質用組成物には、硬化させたゲル電解質に強度を持たせるためや、イオン透過性をより高めるなどの目的で、無機微粒子、樹脂微粒子および樹脂製の極細繊維よりなる群から選択される少なくとも1種の材料を含有させてもよい。これらの材料は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
無機微粒子としては、電気化学的に安定で、かつ電気絶縁性のものであればよく、例えば、酸化鉄(Fexy;FeO、Fe23など)、SiO2、Al23、TiO2、BaTiO2、ZrO2などの無機酸化物の微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物の微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウム、炭化カルシウムなどの難溶性のイオン結晶の微粒子;シリコン、ダイヤモンドなどの共有結合性結晶の微粒子;モンモリロナイトなどの粘土の微粒子;などが挙げられる。ここで、前記無機酸化物の微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、金属、SnO2、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。
樹脂微粒子としては、耐熱性および電気絶縁性を有しており、常温溶融塩等に対して安定であり、更に、キャパシタの作動電圧範囲において酸化還元されにくい電気化学的に安定な材料により構成された微粒子が好ましく、このような材料としては、例えば、樹脂架橋体が挙げられる。より具体的には、スチレン樹脂〔ポリスチレン(PS)など〕、スチレンブタジエンゴム(SBR)、アクリル樹脂〔ポリメチルメタクリレート(PMMA)など〕、ポリアルキレンオキシド〔ポリエチレンオキシド(PEO)など〕、フッ素樹脂〔ポリフッ化ビニリデン(PVDF)など〕およびこれらの誘導体よりなる群から選ばれる少なくとも1種の樹脂の架橋体;尿素樹脂;ポリウレタン;などが例示できる。樹脂微粒子には、前記例示の樹脂を1種単独で用いてもよく、2種以上を併用してもよい。また、有機微粒子は、必要に応じて、樹脂に添加される公知の各種添加剤、例えば、酸化防止剤などを含有していても構わない。
樹脂製の極細繊維としては、例えば、ポリイミド、ポリアクリロニトリル、アラミド、ポリプロピレン(PP)、塩素化PP、PEO、ポリエチレン(PE)、セルロース、セルロース誘導体、ポリサルフォン、ポリエーテルサルフォン、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などの樹脂や、これらの樹脂の誘導体で構成された極細繊維が挙げられる。
前記例示の無機微粒子、樹脂微粒子、および樹脂製の極細繊維の中でも、Al23、SiO2、ベーマイト、PMMA(架橋PMMA)の各微粒子が特に好ましく用いられる。
無機微粒子および樹脂微粒子の形状は、球状、板状、板状以外の多面体形状などいずれの形状であってもよい。
本発明のゲル電解質組成物は、電解質塩と、ポリエーテル共重合体と、さらに必要に応じて配合される成分を混合することにより製造することができる。電解質塩とポリエーテル共重合体を混合する方法に特に制限はないが、電解質塩を含む溶液にポリエーテル共重合体を長時間浸漬して含浸させる方法、電解質塩をポリエーテル共重合体へ機械的に混合させる方法、ポリエーテル共重合体を常温溶融塩に溶かして混合させる方法、あるいはポリエーテル共重合体を一度他の溶剤に溶かした後、電解質塩を混合させる方法などがある。他の溶媒を使用して製造する場合の他の溶媒としては、各種の極性溶媒、例えばテトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、メチルエチルケトン、メチルイソブチルケトン等が単独、或いは混合して用いられる。他の溶媒は、ポリエーテル共重合体を架橋する場合には、架橋前、架橋する間または架橋した後に除去できる。
本発明のゲル電解質組成物の製造方法においては、ポリエーテルの共重合体、電解質塩等の組成物を構成する成分の水分含有量を低減させる、前述の方法のうち少なくとも1つを含んでもよい。
本発明のゲル電解質用組成物を硬化(すなわちゲル化)させることにより、ゲル電解質が得られる。例えば、光反応開始剤を含むゲル電解質用組成物に、紫外線などの活性エネルギー線を照射することによって、ポリエーテル共重合体を架橋させて、ゲル化させることができる。また、ゲル電解質は、架橋させたポリエーテル共重合体に対して、電解質塩を含浸させて調製してもよい。本発明においては、このようなゲル電解質を電気化学キャパシタの電解質として用いることにより、特別なセパレータを必要とせず、ゲル電解質が電解質とセパレータの役割を兼ねることが可能となる。尚、セパレータを要しない程度の不流動状態を維持するためには、ゲル電解質の粘度がその電池の使用環境において8Pa・s以上あればよい。
光による架橋に用いる活性エネルギー線は、紫外線、可視光線、電子線等を用いることができる。特に装置の価格、制御のしやすさから紫外線が好ましい。
架橋反応は、紫外線による場合では、キセノンランプ、水銀ランプ、高圧水銀ランプおよびメタルハライドランプを用いることができ、例えば、電解質を波長365nm、光量1〜50mW/cm2で0.1〜30分間照射することによって行うことができる。
電気化学キャパシタにおいて、ゲル電解質用組成物を硬化させたゲル電解質層の厚みは、薄いほど電気化学キャパシタの容量が大きくなるため有利である。このため、可能な範囲で、ゲル電解質層の厚みは薄い方が好ましいが、薄すぎると電極同士がショートしてしまう可能性があるため、適当な厚みが必要となる。ゲル電解質層の厚みとしては、好ましくは1〜50μm程度、より好ましくは3〜30μm程度、さらに好ましくは5〜20μm程度が挙げられる。
2.電気化学キャパシタ
本発明の電気化学キャパシタは、正極と、負極との間に、前述の「1.ゲル電解質用組成物」の欄で詳述した、本発明のゲル電解質用組成物の硬化物を含むゲル電解質層を備えることを特徴としている。本発明のゲル電解質用組成物の詳細については、前述の通りである。以下、本発明の電気化学キャパシタについて説明する。
本発明の電気化学キャパシタにおいて、電極(すなわち、正極及び負極)は、それぞれ、活物質、導電助剤、バインダーを含む電極組成物を電極基板となる集電体上に形成させることにより得られる。集電体は、電極基板となる。導電助剤は、正極または負極の活物質、さらに、ゲル電解質層と良好なイオンの授受を行うものである。バインダーは、正極または負極活物質を、集電体に固定するためのものである。
電極の製造方法としては、具体的には、シート状に成形した電極組成物を、集電体上に積層する方法(混練シート成形法);ペースト状の電気化学キャパシタ用電極組成物を集電体上に塗布し、乾燥する方法(湿式成形法);電気化学キャパシタ用電極組成物の複合粒子を調製し、集電体上にシート成形、ロールプレスし得る方法(乾式成形法)などが挙げられる。これらの中でも、電極の製造方法としては、湿式成形法または乾式成形法が好ましく、湿式成形法がより好ましい。
集電体の材料としては、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。リチウムイオンキャパシタ用電極に用いる集電体としては導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
また、集電体の形状は、金属箔、金属エッヂド箔などの集電体;エキスパンドメタル、パンチングメタル、網状などの貫通する孔を有する集電体が挙げられるが、電解質イオンの拡散抵抗を低減しかつ電気化学キャパシタの出力密度を向上できる点で、貫通する孔を有する集電体が好ましく、その中でもさらに電極強度に優れる点で、エキスパンドメタルやパンチングメタルが特に好ましい。
集電体の孔の割合としては、特に制限されないが、好ましくは10〜80面積%程度、より好ましくは20〜60面積%程度、さらに好ましくは30〜50面積%程度が挙げられる。なお、貫通する孔の割合がこの範囲にあると、電解液の拡散抵抗が低減し、リチウムイオンキャパシタの内部抵抗が低減する。
集電体の厚みとしては、特に制限されないが、好ましくは5〜100μm程度、より好ましくは10〜70μm程度、特に好ましくは20〜50μm程度が挙げられる。
本発明の電気化学キャパシタにおいて、正極に用いる電極活物質としては、具体的には、通常、炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。この中でも、活性炭が好ましい。活性炭としては、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。また、炭素の同素体を組み合わせて使用する場合は、平均粒径又は粒径分布の異なる二種類以上の炭素の同素体を組み合わせて使用してもよい。また、正極に用いる電極活物質として、上記物質の他に、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。
また、負極に用いる電極活物質としては、カチオンを可逆的に担持できる物質であればよい。具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。中でも、黒鉛、難黒鉛化炭素等の結晶性炭素材料、ハードカーボン、コークス、活性炭、グラファイト等の炭素材料、上記正極の電極活物質としても記載したポリアセン系物質(PAS)が好ましい。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは0.5〜50μm、より好ましくは1〜20μmである。これらの電極活物質は、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
導電助剤としては、黒鉛、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラック、カーボン繊維等の粒子または繊維状の導電助剤が挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
導電助剤は、電極活物質の体積平均粒子径よりも小さいものが好ましく、体積平均粒子径としては、通常0.001〜10μm程度、好ましくは0.005〜5μm程度、より好ましくは0.01〜1μm程度が挙げられる。導電助剤の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電助剤は、単独でまたは二種類以上を組み合わせて用いることができる。電極中の導電助剤の含有量としては、電極活物質100質量部に対して、好ましくは0.1〜50質量部程度、より好ましくは0.5〜15質量部程度、さらに好ましくは1〜10質量部程度が挙げられる。導電助剤の量がこのような範囲にあると、電気化学キャパシタの容量を高く且つ内部抵抗を低くすることができる。
バインダーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、又はスチレンブタジエンゴム(SBR)等の非水系バインダーまたはアクリル系ゴム等の水系バインダー等を用いることができるが、これらに限定されない。
バインダーのガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは−40〜0℃である。バインダーのガラス転移温度(Tg)がこの範囲にあると、少量の使用量で結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
バインダーの数平均粒子径としては、特に制限されないが、通常は0.0001〜100μm程度、好ましくは0.001〜10μm程度、より好ましくは0.01〜1μm程度が挙げられる。バインダーの数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を分極性電極に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだバインダー粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらのバインダーは単独でまたは二種類以上を組み合わせて用いることができる。
バインダーの含有量は、電極活物質100質量部に対して、通常は0.1〜50質量部程度、好ましくは0.5〜20質量部程度、より好ましくは1〜10質量部程度が挙げられる。バインダーの量がこの範囲にあると、得られる電極組成物層と集電体との密着性が充分に確保でき、電気化学キャパシタの容量を高く且つ内部抵抗を低くすることができる。
なお、本発明において、正極・負極の作製に対しては、集電体シートに、上記正極・負極活物質、導電助剤、バインダーを溶媒に添加してスラリーとしたものを塗布し、これを乾燥した後、圧力0〜5ton/cm2、特に0〜2ton/cm2で圧着し、200℃以上、好ましくは250〜500℃、更に好ましくは250〜450℃で、0.5〜20時間、特に1〜10時間焼成したものを用いることが好ましい。
本発明の電気化学キャパシタにおいて、予め正極および/または負極にリチウムイオンを吸蔵させる、所謂ドーピングをさせてもよい。正極および/または負極へのドーピングの手段は特に限定されない。例えば、リチウムイオン供給源と正極又は負極との物理的な接触によるものでもよく、電気化学的にドーピングさせてもよい。
本発明の電気化学キャパシタの製造方法の一例としては、本発明のゲル電解質組成物を正極及び負極の間に配置し、この状態でゲル電解質組成物を硬化させてゲル電解質を形成する工程を備える製造方法が挙げられる。
また、本発明の電気化学キャパシタの製造方法の一例としては、本発明のゲル電解質用組成物を、正極及び負極の少なくとも一方の表面に塗布する工程と、当該ゲル電解質用組成物に活性エネルギー線を照射し、前記ゲル電解質用組成物を硬化させてゲル電解質層を形成する工程と、ゲル電解質層を介して、前記正極と前記負極を積層する工程とを備える方法も挙げられる。
ゲル電解質用組成物の硬化(架橋)は、非プロトン性有機溶媒の存在下または不存在下に、活性エネルギー線を照射することによって行える。活性エネルギー線の具体例としては、前述の通りである。
前述の通り、本発明の電気化学キャパシタにおいては、ゲル電解質層が、電解質とセパレータと兼ねることができる。すなわち、ゲル電解質層をセパレータとすることができる。
さらに、本発明においては、本発明のゲル電解質用組成物を硬化させて電解質フィルムとし、これを電極に積層することによって、電気化学キャパシタを製造しても良い。電解質フィルムは、ゲル電解質用組成物を、例えば剥離シートに塗布し、剥離シート上で硬化させた後、剥離シートから剥離することによって得られる。
本発明の電気化学キャパシタは、優れた出力特性と、高い容量維持率を有するため、携帯電話やノート型パーソナルコンピュータの小型用途から定置型、車載用の大型キャパシタとしても使用できる。
以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。なお、水分含有量は、カールフィーシャー法により測定した。
[合成例(ポリエーテル共重合用触媒の製造)]
撹拌機、温度計及び蒸留装置を備えた3つ口フラスコにトリブチル錫クロライド10g及びトリブチルホスフェート35gを入れ、窒素気流下に撹拌しながら250℃で20分間加熱して留出物を留去させ、残留物として固体状の縮合物質を得た。これを、以下の重合例で重合触媒として用いた。
以下、ポリエーテル共重合体のモノマー換算組成は、1H NMRスペクトルにより求めた。ポリエーテル共重合体の分子量測定にはゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。GPC測定は(株)島津製作所製RID−6A、昭和電工(株)製ショウデックスKD−807、KD−806、KD−806MおよびKD−803カラム、および溶媒にDMFを用いて60℃で行った。
[重合例1]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a):
Figure 2017057603
158g、アリルグリシジルエーテル22g、及び溶媒としてn−ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド125gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した。その後、得られたポリマーをTHF300gに溶解させ、n−ヘキサン1000g中に投入した。この操作を繰り返し、濾別により常圧下40℃で24時間、更に減圧下50℃で15時間乾燥してポリマー280gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は120ppmであった。
[重合例2]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに触媒として触媒の製造例で示した縮合物質2gと水分10ppm以下に調整したメタクリル酸グリシジル40g及び溶媒としてn−ヘキサン1000g及び連鎖移動剤としてエチレングリコールモノメチルエーテル0.07gを仕込み、エチレンオキシド230gはメタクリル酸グリシジルの重合率をガスクロマトグラフィーで追跡しながら、逐次添加した。重合反応はメタノールで停止した。デカンテーションによりポリマーを取り出した。その後、その後、得られたポリマーをTHF300gに溶解させ、n−ヘキサン1500g中に投入した。この操作を2回繰り返し、濾別により常圧下40℃で24時間、更に減圧下50℃で15時間乾燥してポリマー238gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は98ppmであった。
[重合例3]
重合例2の仕込みにおいてメタクリル酸グリシジル50g、エチレンオキシド195g、及びエチレングリコールモノメチルエーテル0.06gを仕込んで重合した以外は同様の操作を行い、ポリマー223gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は97ppmであった。
[重合例4]
重合例2の仕込みにおいてアリルグリシジルエーテル30g、エチレンオキシド100g、及びn−ブタノール0.02gを仕込んで重合した以外は同様の操作を行い、ポリマー125gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は90ppmであった。
[重合例5]
重合例2の仕込みにおいてメタクリル酸グリシジル30g、エチレンオキシド260g、及びエチレングリコールモノメチルエーテル0.08g、を仕込んで重合した以外は同様の操作を行い、ポリマー252gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は95ppmであった。
[比較重合例1]
内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a)158g、アリルグリシジルエーテル22g、及び溶媒としてn−ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド125gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常温下40℃で24時間、さらに減圧下45℃で10時間乾燥してポリマー283gを得た。得られたポリエーテル共重合体の重量平均分子量およびモノマー換算組成分析結果を表1に示す。なお、得られたポリマーの水分含有量は240ppmであった。
Figure 2017057603
[イオン性液体の精製1]
1−エチル−3−メチルイミダゾリウムカチオンとビス(フルオロスルホニウム)イミドアニオンからなるイオン性液体の1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミド10mlをヘキサンと酢酸エチル5:1で洗浄した。洗浄したイオン性液体10mlをアセトン20mlに溶解させ、中性の活性アルミナを充填した円筒型滴下ロートに注ぎ、アセトンを洗浄液としてエアーポンプで加圧して通し、さらにアセトンで洗浄した。次に得られた溶液をエバポレーターで濃縮し、得られたイオン性液体を減圧下、液体窒素トラップをつけて80℃で1時間乾燥させた。得られたイオン性液体の水分含有量は12ppmであった。
なお、精製処理を行う前の1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドの水分含有量は53ppmであった。
[イオン性液体の精製2]
1−メチル−1−プロピルピロリジニウムカチオンとビス(フルオロスルホニウム)イミドアニオンからなるイオン性液体の1−メチル−1−プロピルピロリジニウムビス(フルオロスルホニル)イミド10mlをヘキサンと酢酸エチル5:1で洗浄した。洗浄したイオン性液体10mlをアセトン20mlに溶解させ、中性の活性アルミナを充填した円筒型滴下ロートに注ぎ、アセトンを洗浄液としてエアーポンプで加圧して通し、さらにアセトンで洗浄した。次に得られた溶液をエバポレーターで濃縮し、得られたイオン性液体を減圧下、液体窒素トラップをつけて80℃で1時間乾燥させた。得られたイオン性液体の水分含有量は9ppmであった。
なお、精製処理を行う前の1−メチル−1−プロピルピロリジニウムビス(フルオロスルホニル)イミドの水分含有量は61ppmであった。
[実施例1] 負極/電解質組成物1/正極で構成されたキャパシタの作製
なお、作業はドライルーム(室内露点−40℃DP以下、清浄度:クラス1000)内でおこなった。
<負極の作製1>
負極活物質として、体積平均粒子径が4μmである人造黒鉛粉末100質量部、ポリフッ化ビニリデンのN−メチルピロリドン溶液を固形分相当で6質量部、導電助剤としてアセチレンブラック11質量部をN−メチルピロリドンを用いて全固形分濃度が50%となるように混合、分散させて負極用の電極塗布液を調製した。
この負極用の電極塗布液を厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、圧延し、電極サイズが10mm×20mmとなるように切り取った。電極の厚みは、約50μmであった。セルの組み立て前に、真空中で120℃、5時間乾燥した。
<負極へのリチウムのドーピング>
上記のようにして得られた負極に、以下のようにしてリチウムをドーピングさせた。乾燥雰囲気中、負極とリチウム金属箔を挟み、電解液としてリチウムビス(フルオロスルホニル)イミド1mol/Lの1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミド溶液をその間に微量注入することで、所定量のリチウムイオンを約10時間かけて負極に吸蔵させた。リチウムのドープ量は、上記負極容量の約75%とした。
<正極の作製1>
正極活物質には、フェノール樹脂を原料とするアルカリ賦活活性炭である体積平均粒子径が8μmの活性炭粉末を用いた。この正極活物質100質量部に対して、ポリフッ化ビニリデンのN−メチルピロリドン溶液を固形分相当で6質量部、導電助剤としてアセチレンブラック11質量部をN−メチルピロリドンを用いて全固形分濃度が50%となるように分散機を用いて混合、分散させて正極用の電極塗布液を調製した。
この正極用の電極塗布液を厚さ15μmのアルミ箔集電体上にドクターブレード法で塗布し、仮乾燥した後、圧延し、電極サイズが10mm×20mmとなるように切り取った。電極の厚みは50μmであった。
<電解質組成物1の作製>
重合例1で得られた共重合体10質量部、トリメチロールプロパントリメタクリレート1質量部、光反応開始剤としての2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン0.2質量部を[イオン性液体の精製1]で精製した1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドに乾燥させたリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物1を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シートの上に、上記電解質組成物1をドクターブレードで塗布し、厚さ10μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内においてラミネートカバーを外して貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は37ppmであった。
[実施例2] 負極/電解質組成物2/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物2の作製>
重合例2で得られた共重合体10質量部、光反応開始剤としての2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン0.2質量部、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1 0.05質量部を[イオン性液体の精製1]で精製した1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドに乾燥させたリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物2を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シートの上に、上記電解質組成物2をドクターブレードで塗布し、厚さ10μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内においてラミネートカバーを外して貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は35ppmであった。
[実施例3] 負極/電解質組成物3/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物3の作製>
重合例3で得られた共重合体を10質量部、光反応開始剤としての1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン0.2質量部、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1 0.1質量部と樹脂微粒子(MZ−10HN:綜研化学(株)社製)3質量部を[イオン性液体の精製1]で精製した1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドに乾燥させたリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解、分散させて、電解質組成物3を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シートの上に、上記電解質組成物3をドクターブレードで塗布し、厚さ15μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内においてラミネートカバーを外して貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は42ppmであった。
[実施例4] 負極/電解質組成物4/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物4の作製>
重合例4で得られた共重合体を10質量部、光反応開始剤1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン0.3質量部と樹脂微粒子(エポスターMA1010:日本触媒(株)社製)2部を[イオン性液体の精製1]で精製した1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドに乾燥させたリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物4を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シートの上に、上記電解質組成物4をドクターブレードで塗布し、厚さ15μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内において貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は40ppmであった。
[実施例5] 負極/電解質組成物5/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物5の作製>
重合例5で得られた共重合体を10質量部、光反応開始剤1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン0.2質量部、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルフォニル)フェニル]−1−ブタノン0.15質量部を[イオン性液体の精製2]で精製した1−メチル−1−プロピルピロリジニウムビス(フルオロスルホニル)イミドに乾燥させたリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物5を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シートの上に、上記電解質組成物5をドクターブレードで塗布し、厚さ15μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内において貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は29ppmであった。
[比較例1] 負極/電解質組成物6/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物6の作製>
比較重合例1で得られた共重合体10質量部、トリメチロールプロパントリメタクリレート1質量部、光反応開始剤としての2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン0.2質量部を、精製前の1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)イミドにリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物6を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シート上に上記の電解質組成物6をドクターブレードで塗布し、厚さ10μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内において貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入している電解質組成物の水分含有量は94ppmであった。
[比較例2] 負極/電解質組成物7/正極で構成されたキャパシタの作製
負極、正極の作製は実施例1と同様に行なった。
<電解質組成物7の作製>
比較重合例1で得られた共重合体10質量部、トリメチロールプロパントリメタクリレート1質量部、光反応開始剤としての2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン0.2質量部を精製前の1−メチル−1−プロピルピロリジニウムビス(フルオロスルホニル)イミドにリチウムビス(フルオロスルホニル)イミドを1mol/Lの濃度に溶解させた溶液90質量部に溶解させて、電解質組成物7を作製した。
<電解質組成物層の形成>
正極の作製1で得られた正極シート上に上記の電解質組成物7をドクターブレードで塗布し、厚さ10μmの電解質組成物層を形成した。その後、乾燥させたのち、電解質表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、正極シート上に電解質組成物層が一体化された正極/電解質シートを作製した。
リチウムをドーピングした負極シートも正極と同様に処理を行い、負極シート上に厚さ10μmの電解質組成物層が一体化された負極/電解質シートを作製した。
<キャパシタセルの組み立て>
前記正極/電解質シートと負極/電解質シートをアルゴンガスで置換されたグローブボックス内において貼り合わせて、全体をラミネートフィルムでカバーしてラミネートセル形状のリチウムイオンキャパシタを作製した。完成したセルは、測定まで約1日そのまま放置した。なお、内部に封入しているゲル電解質組成物の水分含有量は102ppmであった。
<リチウムイオンキャパシタの電気化学的評価>
上記で得られた各リチウムイオンキャパシタについて、それぞれ、出力特性(1Cに対する100Cの時の放電容量維持率(%))と容量維持率を評価した。なお、測定はいずれも25℃で行った。結果を表2に示す。
(出力特性)
所定の電流で4.0Vまで定電流充電し、充電時と同じ電流で2.0Vまで定電流放電する充放電試験を行った。セル容量を1時間で放電できる電流を基準(1C)として、同じく1/10時間および1/100時間で放電できる電流を、それぞれ10Cおよび100Cとした。「1Cに対する100Cの時の放電容量維持率」を、以下の式により算出し、その値を表2に示した。
1Cに対する100Cの時の放電容量維持率(%)=(100Cの時の5サイクル目の放電容量)÷(1Cの時の5サイクル目の放電容量)×100。
(容量維持率)
また、10Cでサイクル試験を行った。充放電サイクル試験は、10Cで4.0Vまで定電流で充電し、10Cで2.0Vまで定電流で放電し、これを1サイクルとして、1000サイクルの充放電を行った。初期の放電容量に対する1000サイクル後の放電容量を、容量維持率(%)として、表2に示した。
Figure 2017057603
表4に示されるように、実施例1〜5のリチウムイオンキャパシタは、100Cの時の放電容量維持率が高くなっており(すなわち、出力特性に優れている)、また、1000サイクル後の容量維持率も高いことが分かる。

Claims (8)

  1. 電解質塩と、エチレンオキシドユニットを有するポリエーテル共重合体とを含み、
    水分含有量が50ppm以下であるゲル電解質用組成物。
  2. 前記電解質塩は、常温溶融塩を含む、請求項1に記載のゲル電解質用組成物。
  3. 前記ポリエーテル共重合体が、下記式(A)で示される繰り返し単位を0〜89.9モル%と、
    Figure 2017057603
    [式中、Rは炭素数1〜12のアルキル基または基−CH2O(CR123)である。R1、R2、及びR3は、それぞれ独立に、水素原子または基−CH2O(CH2CH2O)n4である。R4は、炭素数1〜12のアルキル基または置換基を有してもよいアリール基である。nは、0〜12の整数である。]
    下記式(B)で示される繰り返し単位を99〜10モル%と、
    Figure 2017057603
    下記式(C)で示される繰り返し単位を0.1〜15モル%と、
    Figure 2017057603
    [式中、R5はエチレン性不飽和基を有する基である。]
    を含む、請求項1または2に記載のゲル電解質用組成物。
  4. 前記電解質塩と、前記ポリエーテル共重合体とを混合する工程を備えており、
    前記電解質塩として、水分含有量が30ppm以下であるものを用いる、請求項1〜3のいずれか1項に記載のゲル電解質用組成物の製造方法。
  5. 前記電解質塩と、前記ポリエーテル共重合体とを混合する工程を備えており、
    前記ポリエーテル共重合体として、水分含有量が200ppm以下であるものを用いる、請求項1〜4のいずれか1項に記載のゲル電解質用組成物の製造方法。
  6. 正極と、負極との間に、請求項1〜3のいずれか1項に記載のゲル電解質用組成物の硬化物を含むゲル電解質層を備える、電気化学キャパシタ。
  7. 前記ゲル電解質層の厚みが、1〜50μmである、請求項6に記載の電気化学キャパシタ。
  8. 請求項1〜3のいずれか1項に記載のゲル電解質用組成物を、正極及び負極の少なくとも一方の表面に塗布する工程と、
    前記ゲル電解質用組成物に活性エネルギー線を照射し、前記ゲル電解質用組成物を硬化させてゲル電解質層を形成する工程と、
    前記ゲル電解質層を介して、前記正極と前記負極を積層する工程と、
    を備える、電気化学キャパシタの製造方法。
JP2017543577A 2015-09-30 2016-09-29 ゲル電解質用組成物 Active JP7189663B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015192468 2015-09-30
JP2015192468 2015-09-30
PCT/JP2016/078873 WO2017057603A1 (ja) 2015-09-30 2016-09-29 ゲル電解質用組成物

Publications (2)

Publication Number Publication Date
JPWO2017057603A1 true JPWO2017057603A1 (ja) 2018-07-26
JP7189663B2 JP7189663B2 (ja) 2022-12-14

Family

ID=58427654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543577A Active JP7189663B2 (ja) 2015-09-30 2016-09-29 ゲル電解質用組成物

Country Status (5)

Country Link
US (1) US20180254152A1 (ja)
JP (1) JP7189663B2 (ja)
CN (1) CN107924770B (ja)
TW (1) TWI711647B (ja)
WO (1) WO2017057603A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430946B (zh) * 2015-03-31 2020-05-08 株式会社大阪曹达 电化学电容器
US11342585B2 (en) * 2017-12-01 2022-05-24 Lg Energy Solution, Ltd. Gel polymer electrolyte composition and lithium secondary battery including the same
US11404721B2 (en) * 2017-12-01 2022-08-02 Lg Energy Solution, Ltd. Gel polymer electrolyte composition and lithium secondary battery including the same
US10868339B2 (en) * 2017-12-05 2020-12-15 Toyota Motor Engineering & Manufacturing North America, Inc. Aqueous electrolytes with bis(fluorosulfonyl)imide salt electrolyte and ionic liquid system and batteries using the electrolyte system
WO2019135624A1 (ko) * 2018-01-03 2019-07-11 주식회사 엘지화학 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
JP6930608B2 (ja) * 2018-01-16 2021-09-01 株式会社村田製作所 蓄電デバイスの製造方法
JP2021018925A (ja) * 2019-07-19 2021-02-15 昭和電工マテリアルズ株式会社 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート
JP2021134251A (ja) * 2020-02-25 2021-09-13 株式会社リコー 液体組成物、電極の製造方法及び電気化学素子の製造方法
CN111653822B (zh) * 2020-06-09 2022-02-11 北京化工大学 一种用于锂离子电池的凝胶型离子液体电解质及其制备方法和用途
CN113851704B (zh) * 2021-09-24 2023-12-15 中化学南方建设投资有限公司 一种聚合物电解质膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118163A (ja) * 1997-06-18 1999-01-12 Showa Denko Kk 電気二重層コンデンサ及びその製造方法
JPH11306859A (ja) * 1998-04-17 1999-11-05 Tdk Corp 高分子固体電解質の製造方法、高分子固体電解質およびこれを用いたリチウム二次電池と電気二重層キャパシタ、ならびにそれらの製造方法
JP2003321541A (ja) * 2002-04-26 2003-11-14 Nippon Zeon Co Ltd ポリエーテル重合体、その製造方法、および高分子固体電解質
WO2011013756A1 (ja) * 2009-07-30 2011-02-03 日本ゼオン株式会社 電気化学素子用電極および電気化学素子
JP2012226937A (ja) * 2011-04-19 2012-11-15 Daiso Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175837A (ja) * 2000-12-06 2002-06-21 Nisshinbo Ind Inc 高分子ゲル電解質及び二次電池並びに電気二重層キャパシタ
US20040241551A1 (en) * 2001-09-21 2004-12-02 Seiji Nakamura Element using polymer gel electrolyte
CA2491525A1 (en) * 2002-04-26 2003-11-06 Zeon Corporation Molding material for high-molecular solid electrolytes, moldings of high-molecular solid electrolytes and process for production threof, and polyether polymer and process for production thereof
JP4716009B2 (ja) * 2005-08-25 2011-07-06 信越化学工業株式会社 非水電解液並びにこれを用いた二次電池及びキャパシタ
CA2517248A1 (fr) * 2005-08-29 2007-02-28 Hydro-Quebec Procede de purification d'un electrolyte, electrolyte ainsi obtenu et ses utilisations
JP6061066B2 (ja) 2011-07-29 2017-01-18 株式会社大阪ソーダ 電気化学キャパシタ
CN103456991B (zh) * 2013-09-02 2015-07-15 宁德时代新能源科技有限公司 锂离子电池及其凝胶电解质以及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118163A (ja) * 1997-06-18 1999-01-12 Showa Denko Kk 電気二重層コンデンサ及びその製造方法
JPH11306859A (ja) * 1998-04-17 1999-11-05 Tdk Corp 高分子固体電解質の製造方法、高分子固体電解質およびこれを用いたリチウム二次電池と電気二重層キャパシタ、ならびにそれらの製造方法
JP2003321541A (ja) * 2002-04-26 2003-11-14 Nippon Zeon Co Ltd ポリエーテル重合体、その製造方法、および高分子固体電解質
WO2011013756A1 (ja) * 2009-07-30 2011-02-03 日本ゼオン株式会社 電気化学素子用電極および電気化学素子
JP2012226937A (ja) * 2011-04-19 2012-11-15 Daiso Co Ltd 非水電解質二次電池

Also Published As

Publication number Publication date
CN107924770B (zh) 2020-06-23
TW201726762A (zh) 2017-08-01
JP7189663B2 (ja) 2022-12-14
TWI711647B (zh) 2020-12-01
US20180254152A1 (en) 2018-09-06
WO2017057603A1 (ja) 2017-04-06
CN107924770A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP7189663B2 (ja) ゲル電解質用組成物
CN107924769B (zh) 凝胶电解质用组合物
Kim et al. Dense charge accumulation in MXene with a hydrate-melt electrolyte
JP6061066B2 (ja) 電気化学キャパシタ
JP5391940B2 (ja) 固体電解質、その製造方法および二次電池
JP2012099385A (ja) 耐熱性多孔質層付き電極とその製造方法及び二次電池
JP2013069517A (ja) 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池
Bhat et al. Gel polymer electrolyte composition incorporating adiponitrile as a solvent for high-performance electrical double-layer capacitor
CN107430947B (zh) 电化学电容器
JP6341360B2 (ja) 非水電解質二次電池
KR20180068117A (ko) 소듐전지용 전해액 및 이를 채용한 소듐전지
CN107430946B (zh) 电化学电容器
Tripathi et al. Application of Ionic Liquids as a Green Material in Electrochemical Devices
JP5915967B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
JP2021057205A (ja) 蓄電デバイス、およびその製造方法
JP7415298B2 (ja) 電極用スラリー組成物、電極、及び蓄電デバイス
JP2017117822A (ja) 電気化学キャパシタ
JP2002075797A (ja) 電気二重層キャパシタ
JP2016091668A (ja) 有機二次電池
JP2022062997A (ja) 蓄電デバイス用正極、蓄電デバイス用正極の製造方法および蓄電デバイス
Singh Application of Ionic Liquids as a Green Material in Electrochemical Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220105

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220216

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220318

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221025

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221122

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150