WO2010016567A1 - リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ Download PDF

Info

Publication number
WO2010016567A1
WO2010016567A1 PCT/JP2009/064010 JP2009064010W WO2010016567A1 WO 2010016567 A1 WO2010016567 A1 WO 2010016567A1 JP 2009064010 W JP2009064010 W JP 2009064010W WO 2010016567 A1 WO2010016567 A1 WO 2010016567A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium ion
ion capacitor
meth
parts
Prior art date
Application number
PCT/JP2009/064010
Other languages
English (en)
French (fr)
Inventor
智一 佐々木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2010016567A1 publication Critical patent/WO2010016567A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode for a lithium ion capacitor and a lithium ion capacitor. More specifically, the present invention relates to a lithium ion capacitor electrode and a lithium ion capacitor having excellent dispersibility and high durability.
  • lithium-ion capacitors which are small and light, have high energy density, and can be repeatedly charged and discharged, is rapidly expanding due to their characteristics.
  • the lithium ion capacitor since the lithium ion capacitor has a high energy density and output density, it is expected to be used in small applications such as mobile phones and notebook personal computers, and in large applications such as in-vehicle use. For this reason, lithium ion capacitors are required to be further improved in accordance with expansion and development of applications, such as lowering resistance, increasing capacity, increasing withstand voltage, and improving mechanical characteristics.
  • Lithium ion capacitors have a polarizable electrode on the positive electrode and a non-polarizable electrode on the negative electrode.
  • the operating voltage can be increased and the energy density can be increased, but the withstand voltage (durability) is low. There was a problem.
  • Patent Document 1 a binder containing an acrylate polymer having a nitrile group for the purpose of improving the withstand voltage
  • Patent Document 1 The electrode for a lithium ion capacitor in Patent Document 1 is formed by forming an electrode composition layer made of an acrylate polymer having an electrode active material, a conductive material, carboxymethyl cellulose, and a nitrile group on a current collector.
  • an electrode has a low dispersibility, so that the electrode density and energy density are low and insufficient.
  • the present invention provides an electrode for a lithium ion capacitor that is excellent in dispersibility of an electrode active material and can increase electrode density and energy density in addition to enhancing durability of the lithium ion capacitor, and lithium ion using the electrode
  • An object is to provide a capacitor.
  • an electrode for a lithium ion capacitor of the present invention an electrode composition layer comprising an electrode active material, a conductive material, a carboxymethyl cellulose salt, and a (meth) acrylate polymer It has been found that by using a material formed on a current collector, the electrode density is increased and the energy density and durability of a lithium ion capacitor using the electrode are increased.
  • the inventors have completed the present invention based on these findings.
  • an electrode for a lithium ion capacitor in which an electrode composition layer comprising an electrode active material, a conductive material, a carboxymethyl cellulose salt and a (meth) acrylate polymer is formed on a current collector. Is done.
  • a lithium ion capacitor having a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the positive electrode and the negative electrode are the electrodes for the lithium ion capacitor.
  • the lithium ion capacitor of the present invention includes a memory backup power source for a personal computer or a portable terminal, a power source for instantaneous power failure such as a personal computer, application to an electric vehicle or a hybrid vehicle, a solar power generation energy storage system used in combination with a solar cell, a battery, It can be suitably used for various applications such as a combined load leveling power source.
  • the electrode for a lithium ion capacitor of the present invention is formed by forming an electrode composition layer containing an electrode active material, a conductive material, a carboxymethyl cellulose salt and a (meth) acrylate polymer on a current collector.
  • the electrode active material used for the lithium ion capacitor electrode of the present invention is a substance that transfers electrons in the lithium ion capacitor electrode.
  • Electrode active materials used for electrodes for lithium ion capacitors include positive electrodes and negative electrodes.
  • the electrode active material used for the positive electrode of the lithium ion capacitor electrode is not particularly limited as long as it can reversibly carry lithium ions and anions such as tetrafluoroborate.
  • an allotrope of carbon is usually used, and electrode active materials used in electric double layer capacitors can be widely used.
  • Specific examples of the allotrope of carbon include activated carbon, polyacene (PAS), carbon whisker, and graphite, and these powders or fibers can be used.
  • activated carbon is preferable.
  • Specific examples of the activated carbon include activated carbon made from phenol resin, rayon, acrylonitrile resin, pitch, coconut shell, and the like.
  • carbon allotropes When carbon allotropes are used in combination, two or more types of carbon allotropes having different average particle diameters or particle size distributions may be used in combination.
  • an electrode active material used for the positive electrode in addition to the above materials, a heat-treated product of an aromatic condensation polymer having a hydrogen atom / carbon atom atomic ratio of 0.50 to 0.05, a polyacene skeleton structure
  • a polyacene-based organic semiconductor (PAS) having the following can also be suitably used.
  • the electrode active material used for the negative electrode of the lithium ion capacitor electrode may be any material that can reversibly carry lithium ions.
  • electrode active materials used in the negative electrode of lithium ion secondary batteries can be widely used.
  • crystalline carbon materials such as graphite and non-graphitizable carbon, carbon materials such as hard carbon and coke, and polyacene-based materials (PAS) described as the electrode active material of the positive electrode are preferable.
  • These carbon materials and PAS are obtained by carbonizing a phenol resin or the like, activated as necessary, and then pulverized.
  • the shape of the electrode active material used for the electrode for the lithium ion capacitor is preferably a granulated particle.
  • a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material used for the electrode for the lithium ion capacitor is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 1 to 20 ⁇ m for both the positive electrode and the negative electrode.
  • These electrode active materials can be used alone or in combination of two or more.
  • the conductive material used for the electrode for the lithium ion capacitor of the present invention is composed of an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer, specifically, furnace black, Examples thereof include conductive carbon blacks such as acetylene black and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are preferable.
  • the volume average particle diameter of the conductive material used for the electrode for the lithium ion capacitor of the present invention is preferably smaller than the volume average particle diameter of the electrode active material, and the range is usually 0.001 to 10 ⁇ m, preferably 0.05 to The thickness is 5 ⁇ m, more preferably 0.01 to 1 ⁇ m. When the volume average particle diameter of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use. These conductive materials can be used alone or in combination of two or more.
  • the amount of the conductive material in the electrode composition layer is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. is there. When the amount of the conductive material is within this range, the capacity of the lithium ion capacitor using the obtained lithium ion capacitor electrode can be increased and the internal resistance can be decreased.
  • the carboxymethyl cellulose salt used for the electrode for the lithium ion capacitor of the present invention is a dispersant in the slurry composition for forming the electrode composition layer, specifically, carboxymethyl cellulose ammonium, carboxymethyl cellulose alkali metal, carboxymethyl cellulose alkaline earth. And similar metals.
  • carboxymethyl cellulose ammonium and carboxymethyl cellulose alkali metal are preferable, and carboxymethyl cellulose ammonium is particularly preferable.
  • the use of carboxymethyl cellulose ammonium can uniformly disperse the electrode active material, conductive material and (meth) acrylate polymer binder, thereby increasing the electrode density, thereby increasing the energy density. it can.
  • the weight average molecular weight of the carboxymethylcellulose salt used for the electrode for the lithium ion capacitor of the present invention is usually 10,000 to 450,000, preferably 100,000 to 400,000, particularly preferably 250,000 to 350,000. .
  • the weight average molecular weight is a polystyrene equivalent value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • GPC gel permeation chromatography
  • the electrode active material, the conductive material and the (meth) acrylate polymer can be uniformly dispersed, the electrode density can be increased, and the energy density can be increased.
  • These carboxymethylcellulose salts can be used alone or in combination of two or more.
  • the amount of the carboxymethyl cellulose salt in the electrode composition layer is usually in the range of 0.01 to 15 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is. When the amount of the carboxymethyl cellulose salt is within this range, the capacity of the lithium ion capacitor using the obtained lithium ion capacitor electrode can be increased and the internal resistance can be decreased.
  • the (meth) acrylate polymer is obtained by copolymerizing a compound represented by the general formula (1) and a monomer copolymerizable therewith.
  • (meth) acrylate means acrylate or methacrylate.
  • Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylic acid alkyl esters such as isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate; cycloalkyl acrylate esters such as isobornyl acrylate, etc.
  • Acrylate ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-methacrylate
  • Methacrylic acid alkyl esters such as xylyl, 2-ethylhexyl methacrylate, octyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate; methacrylic acid cycloalkyl esters such as cyclohexyl methacrylate; and methacrylates It is done.
  • acrylate is preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the obtained electrode
  • the (meth) acrylate polymer may contain a monomer unit derived from a nitrile compound or a dibasic acid in addition to the monomer unit of the compound represented by the general formula (1).
  • the monomer unit derived from the nitrile compound or the monomer unit derived from the dibasic acid can be introduced by copolymerizing the compound represented by the general formula (1) with the nitrile compound or the dibasic acid. .
  • the nitrile compound examples include acrylonitrile and methacrylonitrile.
  • acrylonitrile is preferable in that the binding strength with the current collector is increased and the electrode strength can be improved.
  • the amount of acrylonitrile in the copolymerization is usually 0.1 to 40 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the compound represented by the general formula (1). It is in the range of 1 to 20 parts by weight. When the amount of acrylonitrile is within this range, the binding property with the current collector is excellent, and the obtained electrode strength is increased.
  • the dibasic acid is an acid having a structure capable of separating two protons in water.
  • Specific examples include itaconic acid, fumaric acid, maleic acid, etc. Among them, itaconic acid and fumaric acid are preferable. Itaconic acid is particularly preferable because it can enhance the binding property with the current collector and improve the electrode strength.
  • the amount of the dibasic acid during the copolymerization is usually 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight, particularly preferably 100 parts by weight of the compound represented by the general formula (1). Is in the range of 1 to 10 parts by weight. When the amount of the dibasic acid is within this range, the binding property with the current collector is excellent, and the obtained electrode strength is increased.
  • the (meth) acrylate polymer can be obtained by copolymerizing a compound represented by the general formula (1) with a polymerizable monomer containing the dibasic acid and acrylonitrile.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
  • the polymerization initiator used for the polymerization is not particularly limited, and for example, lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethyl
  • examples thereof include organic peroxides such as hexanoyl peroxide, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, and potassium persulfate.
  • the shape of the (meth) acrylate polymer used for the electrode for the lithium ion capacitor of the present invention is not particularly limited, but has good binding properties, and suppresses deterioration of the capacity of the prepared electrode due to repeated charge / discharge. Therefore, it is preferably particulate.
  • the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the glass transition temperature (Tg) of the (meth) acrylate polymer used for the lithium ion capacitor electrode of the present invention is preferably 50 ° C. or lower, more preferably ⁇ 40 to 0 ° C.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the (meth) acrylate polymer is in this range, it is excellent in binding property with a small amount of use, strong in electrode strength, rich in flexibility, and the electrode density is increased by a pressing process at the time of electrode formation. Can be easily increased.
  • the number average particle diameter of the (meth) acrylate polymer of the electrode for a lithium ion capacitor of the present invention is not particularly limited, but is usually 0.0001 to 100 ⁇ m, preferably 0.001 to 10 ⁇ m, more preferably 0.00. It has a number average particle diameter of 01 to 1 ⁇ m. When the number average particle diameter of the (meth) acrylate polymer is in this range, an excellent binding force can be imparted to the polarizable electrode even with a small amount of use.
  • the number average particle diameter is a number average particle diameter calculated by measuring the diameter of 100 randomly selected (meth) acrylate polymer particles in a transmission electron micrograph and calculating the arithmetic average value thereof.
  • the shape of the particles can be either spherical or irregular.
  • These (meth) acrylate polymers can be used alone or in combination of two or more.
  • the amount of the (meth) acrylate polymer in the electrode composition layer is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 1 part by weight with respect to 100 parts by weight of the electrode active material.
  • the range is 10 parts by weight.
  • the electrode composition layer of the lithium ion capacitor electrode of the present invention is provided on the current collector, but the formation method is not limited. Specifically, 1) an electrode-forming composition formed by kneading an electrode active material, a conductive material, a carboxymethyl cellulose salt and a (meth) acrylate polymer is formed into a sheet, and the resulting sheet-like electrode layer composition is obtained.
  • a method of laminating on a current collector (kneading sheet forming method), 2) preparing a paste-like electrode forming composition comprising an electrode active material, a conductive material, a carboxymethyl cellulose salt and a (meth) acrylate polymer A method of applying this to a current collector and drying it (wet molding method); 3) preparing composite particles comprising an electrode active material, a conductive material, a carboxymethylcellulose salt and a (meth) acrylate polymer; Examples thereof include a method (dry molding method) that can be supplied on an electric body, formed into a sheet, and roll-pressed as necessary. Among them, 2) a wet molding method, 3) a dry molding method are preferable, and 3) a lithium ion capacitor from which the dry molding method can be obtained is more preferable in that the capacity can be increased and the internal resistance can be reduced.
  • the paste-like electrode forming composition (hereinafter sometimes referred to as “electrode composition layer slurry”) may be used.
  • the electrode active material, the conductive material, the (meth) acrylate polymer, and the carboxymethyl cellulose salt can be produced by kneading in water or an organic solvent such as N-methyl-2-pyrrolidone or tetrahydrofuran.
  • the paste-like electrode forming composition is preferably an aqueous slurry using water as a dispersion medium from the viewpoint of easy drying of the electrode composition layer and excellent environmental load.
  • aqueous slurry water and each of the above components can be mixed and produced using a mixer.
  • a mixer a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, and the like can be used.
  • the electrode active material and the conductive material are first mixed using a mixer such as a crusher, a planetary mixer, a Henschel mixer, and an omni mixer, and then a (meth) acrylate polymer and a carboxymethyl cellulose salt are added.
  • a method of uniformly mixing is also preferable. By adopting this method, a uniform slurry can be easily obtained.
  • the viscosity of the slurry used in the present invention varies depending on the type of coating machine and the shape of the coating line, but is usually 100 to 100,000 mPa ⁇ s, preferably 1,000 to 50,000 mPa ⁇ s. Preferably, it is 5,000 to 20,000 mPa ⁇ s.
  • the method for applying the slurry onto the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the coating thickness of the slurry is appropriately set according to the thickness of the target electrode active material layer.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. Among these, a drying method by irradiation with far infrared rays is preferable.
  • the drying temperature and the drying time in the present invention are preferably a temperature and a time at which the solvent in the slurry applied to the current collector can be completely removed, and the drying temperature is 100 to 300 ° C., preferably 120 to 250 ° C.
  • the drying time is usually 10 minutes to 100 hours, preferably 20 minutes to 20 hours.
  • the composite particles used are particles in which an electrode active material, a conductive material, a carboxymethyl cellulose salt and a (meth) acrylate polymer are integrated.
  • the production method of the composite particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed granulation method. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, a pulse combustion type drying method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which a binder and a conductive material are unevenly distributed near the surface can be easily obtained. When composite particles obtained by spray drying granulation are used, the lithium ion capacitor electrode of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
  • the electrode active material, the conductive material, the (meth) acrylate polymer are dispersed or dissolved in the solvent, and the electrode active material, the conductive material, and the (meth) acrylate polymer. And a slurry in which the carboxymethylcellulose salt is dispersed or dissolved.
  • the solvent used for obtaining the slurry is not particularly limited, but a solvent capable of dissolving the carboxymethyl cellulose salt as a dispersant is preferably used.
  • a solvent capable of dissolving the carboxymethyl cellulose salt as a dispersant is preferably used.
  • water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used.
  • the organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like.
  • alcohols are preferable as the organic solvent.
  • water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying.
  • the dispersibility of the (meth) acrylate polymer or the solubility of the carboxymethyl cellulose salt varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity
  • the amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. .
  • the (meth) acrylate polymer as the binder is preferably dispersed, which is preferable.
  • the method or procedure for dispersing or dissolving the electrode active material, conductive material, (meth) acrylate polymer and carboxymethyl cellulose salt in a solvent is not particularly limited.
  • the electrode active material, conductive material, (meth) acrylate polymer in the solvent And a method of adding and mixing the carboxymethylcellulose salt; after dissolving the carboxymethylcellulose salt in the solvent, adding and mixing the (meth) acrylate polymer dispersed in the solvent, and finally adding the electrode active material and the conductive material
  • a method in which an electrode active material and a conductive material are added to and mixed with a (meth) acrylate polymer dispersed in a solvent, and a carboxymethyl cellulose salt dissolved in a solvent is added to the mixture and mixed.
  • mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the viscosity of the slurry is usually in the range of 10 to 3,000 mPa ⁇ s, preferably 30 to 1,500 mPa ⁇ s, more preferably 50 to 1,000 mPa ⁇ s at room temperature.
  • the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Further, the higher the viscosity of the slurry, the larger the spray droplets and the larger the weight average particle diameter of the resulting composite particles.
  • the rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. A smaller sphericity value or a larger sphericity value indicates that the composite particle is closer to a true sphere.
  • the particle observed as a square in the photographic image has a sphericity of 34.4%, so the composite particle showing a sphericity exceeding 34.4% is not at least spherical.
  • the sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less.
  • the sphericity of the composite particles is preferably 80% or more, more preferably 90% or more.
  • the composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary.
  • the particle surface is modified by mixing the above-mentioned electrode active material, conductive material, (meth) acrylate polymer, or carboxymethylcellulose salt with the composite particles, thereby improving the fluidity of the composite particles.
  • the continuous pressure moldability can be improved, the electrical conductivity of the composite particles can be improved, and the like.
  • the volume average particle size of the composite particles is usually in the range of 0.1 to 1,000 ⁇ m, preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m. When the volume average particle diameter of the composite particles is within this range, the composite particles are less likely to agglomerate and the electrostatic force against gravity is increased, which is preferable.
  • the volume average particle diameter can be measured using a laser diffraction particle size distribution measuring apparatus.
  • the feeder used in the step of supplying composite particles is not particularly limited, but is preferably a quantitative feeder capable of supplying composite particles quantitatively.
  • the quantitative feeder preferably used in the present invention has a CV value of preferably 2 or less.
  • Specific examples of the quantitative feeder include a gravity feeder such as a table feeder and a rotary feeder, and a mechanical force feeder such as a screw feeder and a belt feeder. Of these, the rotary feeder is preferred.
  • the current collector and the supplied composite particles are pressurized with a pair of rolls to form an electrode composition layer on the current collector.
  • the composite particles heated as necessary are formed into a sheet-like electrode composition layer by a pair of rolls.
  • the temperature of the supplied composite particles is preferably 40 to 160 ° C., more preferably 70 to 140 ° C. When composite particles in this temperature range are used, there is no slip of the composite particles on the surface of the press roll, and the composite particles are continuously and uniformly supplied to the press roll. An electrode composition layer with small variations can be obtained.
  • the molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the (meth) acrylate polymer as the binder, and more preferably 20 ° C. higher than the melting point or glass transition temperature. preferable.
  • the forming speed is usually larger than 0.1 m / min, preferably 35 to 70 m / min.
  • the press linear pressure between the press rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to 10 kN / cm.
  • the arrangement of the pair of rolls is not particularly limited, but is preferably arranged substantially horizontally or substantially vertically.
  • the current collector is continuously supplied between a pair of rolls, and composite particles are supplied to at least one of the rolls so that the composite particles are in the gap between the current collector and the rolls.
  • the electrode composition layer can be formed by being supplied and pressurized.
  • the current collector is disposed substantially vertically, the current collector is transported in a horizontal direction, and composite particles are supplied onto the current collector. After the supplied composite particles are leveled with a blade or the like as necessary, the current collector is collected.
  • the electrode composition layer can be formed by supplying the body between a pair of rolls and applying pressure.
  • the post-pressing method is generally a press process using a roll.
  • the roll press process two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction.
  • the roll may be temperature controlled, such as heated or cooled.
  • the density of the electrode composition layer of the lithium ion capacitor electrode of the present invention is not particularly limited, but is usually 0.30 to 10 g / cm 3 , preferably 0.35 to 5.0 g / cm 3 , more preferably 0. 40-3.0 g / cm 3 .
  • the thickness of the electrode composition layer is not particularly limited, but is usually 5 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m.
  • the current collector used for the electrode for the lithium ion capacitor of the present invention may be a metal, carbon, conductive polymer, or the like, and preferably a metal.
  • the current collector metal aluminum, platinum, nickel, tantalum, titanium, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the shape of the current collector is not particularly limited, but may be a film or a sheet, and the sheet current collector may have pores.
  • the sheet-like current collector may have a shape such as an expanded metal, a punching metal, or a net. When a sheet-like current collector having pores is used, the capacity per volume of the obtained electrode can be increased.
  • the ratio of the holes is preferably 10 to 79 area%, more preferably 20 to 60 area%.
  • the thickness of the current collector is appropriately selected according to the purpose of use, but is usually 1 to 200 ⁇ m, preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the current collector is suitable when a conductive adhesive layer is formed on the surface thereof, because the adhesion between the electrode composition layer and the current collector can be improved and the internal resistance of the resulting lithium ion capacitor can be reduced. It is.
  • the conductive adhesive layer preferably has a conductive material and a (meth) acrylate polymer.
  • the conductive material, the (meth) acrylate polymer, and a dispersant added as necessary are water or organic.
  • the conductive adhesive slurry obtained by kneading in a solvent can be formed by applying to a current collector and drying. By forming the conductive adhesive layer, the binding property between the electrode composition layer and the current collector is improved and the internal resistance is reduced.
  • any of those exemplified as the components used in the electrode composition layer can be used, and as a dispersant used as necessary. Can use the carboxymethylcellulose salt described above.
  • the amount of each component in the conductive adhesive layer is 5 to 20 parts by weight of the (meth) acrylate polymer based on the dry weight and 1 to 5 parts by weight of the dispersant based on the dry weight with respect to 100 parts by weight of the conductive material. It is preferable that If the amount of the (meth) acrylate polymer in the conductive adhesive layer is too small, the adhesion between the electrode composition layer and the current collector may be insufficient.
  • the amount of the (meth) acrylate polymer in the conductive adhesive layer is too large, dispersion of the conductive material may be insufficient and the internal resistance may increase. Moreover, even if there is too little quantity of the said dispersing agent in a conductive adhesive layer, dispersion
  • the method for forming the conductive adhesive layer on the current collector is not particularly limited. For example, it is formed by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating, or the like.
  • the thickness of the conductive adhesive layer is usually 0.5 to 10 ⁇ m, preferably 2 to 7 ⁇ m.
  • the lithium ion capacitor of this invention has a positive electrode, a negative electrode, electrolyte solution, and a separator, and the said positive electrode or negative electrode is the said electrode for lithium ion capacitors.
  • a positive electrode and a negative electrode are the said electrodes for lithium ion capacitors.
  • the durability of the lithium ion capacitors can be further improved.
  • the separator is not particularly limited as long as it can insulate between the electrodes for the lithium ion capacitor and can pass cations and anions.
  • polyolefins such as polyethylene and polypropylene, microporous membranes or non-woven fabrics made of rayon, aramid or glass fiber, and porous membranes mainly made of pulp called electrolytic capacitor paper can be used.
  • a separator is arrange
  • the thickness of the separator is appropriately selected depending on the purpose of use, but is usually 1 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 20 to 60 ⁇ m.
  • the electrolytic solution is usually composed of an electrolyte and a solvent.
  • the electrolyte can use lithium ions as cations.
  • As anions PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , N (RfSO 3 ) 2 ⁇ , C (RfSO 3 ) 3 ⁇ , RfSO 3 ⁇ (Rf is a fluoro having 1 to 12 carbon atoms, respectively) Represents an alkyl group), F ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , AlF 4 ⁇ and the like.
  • These electrolytes can be used alone or in combination of two or more.
  • the solvent of the electrolytic solution is not particularly limited as long as it is generally used as a solvent for the electrolytic solution.
  • Specific examples include carbonates such as propylene carboat, ethylene carbonate, and butylene carbonate; lactones such as ⁇ -butyrolactone; sulfolanes; nitriles such as acetonitrile. These solvents can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred.
  • a lithium ion capacitor is obtained by impregnating the above element with an electrolytic solution.
  • the device can be manufactured by winding, laminating, or folding the device in a container as necessary, and pouring the electrolyte into the container and sealing it.
  • a device in which an element is previously impregnated with an electrolytic solution may be stored in a container. Any known container such as a coin shape, a cylindrical shape, or a square shape can be used as the container.
  • a lithium-ion capacitor of a laminated laminate cell is produced using the electrodes for lithium-ion capacitors produced in Examples and Comparative Examples. And as a battery characteristic of this lithium ion capacitor, after leaving it to stand for 24 hours, it measures by charging / discharging about capacity
  • charging starts with a constant current of 2 A, and when the voltage reaches 3.6 V, the voltage is maintained for 1 hour to be constant voltage charging. Discharging is performed immediately after the end of charging until it reaches 1.9 V at a constant current of 0.9 A.
  • the capacity is calculated as the capacity per weight of the electrode active material from the energy amount at the time of discharge.
  • the internal resistance is calculated from the voltage drop immediately after discharge.
  • durability is evaluated by calculating a capacity maintenance ratio with respect to an initial capacity after continuously applying a lithium ion capacitor in a constant temperature bath at 70 ° C. for 3.6 V for 1000 hours. The greater the capacity retention rate, the better the durability.
  • the electrode for the lithium ion capacitor is cut into a rectangular shape having a length of 100 mm and a width of 10 mm so that the coating direction of the electrode composition layer becomes a long side to obtain a test piece, and the cell composition is formed on the surface of the electrode composition layer with the electrode composition layer side down.
  • Attach a tape (specified in JIS Z1522) and measure the stress when one end of the current collector is pulled vertically and pulled at a pulling speed of 50 mm / min. (The cellophane tape is fixed to the test stand. ing.). This measurement was performed 3 times, the average value was calculated
  • Electrode density A lithium ion capacitor electrode having an electrode composition layer formed on a current collector was cut into 5 cm ⁇ 5 cm, and its thickness d1 ( ⁇ m) and weight m1 (g) were measured. ( ⁇ m) and m0 (g) are measured, and the electrode density (g / cc) is calculated from the following equation.
  • Electrode density (g / cc) (m1 ⁇ m0) / [ ⁇ (5 ⁇ 5) ⁇ (d1 ⁇ d0) ⁇ ⁇ 10000] It shows that it is excellent in a dispersibility, so that an electrode density is large.
  • Example 1 As an electrode active material of the positive electrode, 100 parts of activated carbon powder (MSP-20; manufactured by Kansai Thermochemical Co., Ltd.) having a volume average particle diameter of 8 ⁇ m, which is an alkali activated carbon made from phenol resin, and a weight average molecular weight of 125,000 as a dispersant. 1.5 parts aqueous solution of sodium carboxymethylcellulose (1280; manufactured by Daicel Chemical Industries, Ltd.) corresponding to a solid content of 2.0 parts, acetylene black (denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, glass, (Meth) acrylate polymer having a transition temperature of ⁇ 30 ° C.
  • MSP-20 manufactured by Kansai Thermochemical Co., Ltd.
  • a slurry for the electrode composition layer of the positive electrode is prepared.
  • the positive electrode composition slurry was applied onto a 30 ⁇ m thick aluminum current collector by a doctor blade at an electrode forming speed of 10 m / min, and dried at 60 ° C. for 20 minutes and then at 120 ° C. for 20 minutes. After that, it is punched out into a square of 5 cm to obtain a positive electrode for a lithium ion capacitor having a thickness of 100 ⁇ m.
  • a negative electrode active material 100 parts of graphite (KS-6; manufactured by Timcal) having a volume average particle diameter of 4 ⁇ m, and a 1.5% aqueous solution of sodium carboxymethylcellulose having a weight average molecular weight of 125,000 (1280; Daicel Chemical Industries, Ltd.) 2.0 parts in terms of solid content, 5 parts of acetylene black (Denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, glass transition temperature of ⁇ 30 ° C., and number average particle diameter
  • a 0.25 ⁇ m (meth) acrylate polymer a copolymer obtained by emulsion polymerization of 80 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, and 5 parts of acrylic acid
  • the negative electrode composition layer slurry was applied onto a 20 ⁇ m thick copper current collector by a doctor blade at an electrode forming speed of 10 m / min, and dried at 60 ° C. for 20 minutes and then at 120 ° C. for 20 minutes. After that, it is punched out in a square of 5 cm to obtain a negative electrode for lithium ion capacitor having a thickness of 100 ⁇ m.
  • Cellulose / rayon nonwoven fabric is impregnated in the electrolyte solution at room temperature for 1 hour as the positive electrode, negative electrode for lithium ion capacitor and separator.
  • the positive electrode lithium ion capacitor electrode and the negative electrode lithium ion capacitor electrode are opposed to each other via a separator, and the respective lithium ion capacitor electrodes are not electrically contacted with each other.
  • 10 sets of negative electrodes are arranged to produce a laminated laminate cell-shaped lithium ion capacitor.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 is used.
  • a lithium electrode of the laminated laminate cell As a lithium electrode of the laminated laminate cell, a lithium metal foil (82 ⁇ m thick, 5 cm long ⁇ 5 cm wide) bonded to an 80 ⁇ m thick stainless steel mesh is used, and the lithium electrode is completely opposed to the outermost negative electrode. One electrode is disposed on each of the upper and lower electrodes of the stacked electrodes. The terminal welding part (two sheets) of the lithium electrode current collector is resistance-welded to the negative electrode terminal welding part. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 2 In Example 1, instead of a 1.5% aqueous solution of sodium carboxymethylcellulose having a weight average molecular weight of 125,000 as a dispersant, a 1.5% aqueous solution of sodium carboxymethylcellulose having a weight average molecular weight of 335,000 (2200; Daicel Chemical Industries, Ltd.) A lithium ion capacitor electrode (positive electrode, negative electrode) and lithium ion capacitor are prepared in the same manner as in Example 1 except that 2.0 parts by weight corresponding to the solid content is used. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 3 In Example 2, as a binder, a (meth) acrylate polymer having a glass transition temperature of ⁇ 30 ° C. and a number average particle size of 0.25 ⁇ m (80 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 5 parts of acrylic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 35 ° C.
  • aqueous solution instead of an aqueous solution, a 1.5% aqueous solution of carboxymethyl cellulose ammonium having a weight average molecular weight of 335,000 (DN-8) 00H; manufactured by Daicel Chemical Industries Ltd.) is used in the same manner as in Example 2 except that 2.0 parts corresponding to the solid content is used, and a lithium ion capacitor electrode (positive electrode, negative electrode) and lithium ion capacitor are prepared.
  • Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 4 In Example 3, as a binder, a (meth) acrylate polymer having a glass transition temperature of ⁇ 35 ° C. and a number average particle size of 0.25 ⁇ m (83 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 2 parts of itaconic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 20 ° C.
  • a binder a (meth) acrylate polymer having a glass transition temperature of ⁇ 35 ° C. and a number average particle size of 0.25 ⁇ m (83 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 2 parts of itaconic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 20 ° C.
  • a lithium ion capacitor electrode (positive electrode, negative electrode) in the same manner as in Example 3 except that a 40% aqueous dispersion of 80 parts, a copolymer obtained by emulsion polymerization of 15 parts of acrylonitrile and 5 parts of itaconic acid was used.
  • a lithium ion capacitor is manufactured. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 5 In Example 3, as a binder, a (meth) acrylate polymer having a glass transition temperature of ⁇ 35 ° C. and a number average particle size of 0.25 ⁇ m (83 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 2 parts of itaconic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 15 ° C.
  • Electrode for lithium ion capacitor (positive electrode, negative electrode) in the same manner as in Example 1 except that a 40% aqueous dispersion of 77 parts, a copolymer obtained by emulsion polymerization of 15 parts of acrylonitrile and 8 parts of itaconic acid was used. A lithium ion capacitor is manufactured. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 6 In Example 3, as a binder, a (meth) acrylate polymer having a glass transition temperature of ⁇ 35 ° C. and a number average particle size of 0.25 ⁇ m (83 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 2 parts of itaconic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 40 ° C.
  • a lithium ion capacitor electrode (positive electrode and negative electrode) in the same manner as in Example 1 except that a 40% aqueous dispersion of 93 parts, 5 parts of acrylonitrile and a copolymer obtained by emulsion polymerization of 2 parts of itaconic acid was used.
  • a lithium ion capacitor is manufactured. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 7 In Example 3, as a binder, a (meth) acrylate polymer having a glass transition temperature of ⁇ 35 ° C. and a number average particle size of 0.25 ⁇ m (83 parts of 2-ethylhexyl acrylate, 15 parts of acrylonitrile, 2 parts of itaconic acid) (Meth) acrylate polymer (2-ethylhexyl acrylate) having a glass transition temperature of ⁇ 23 ° C.
  • Electrode for lithium ion capacitor (positive electrode, negative electrode) in the same manner as in Example 1 except that a 40% aqueous dispersion of 78 parts, a copolymer obtained by emulsion polymerization of 78 parts of acrylonitrile and 2 parts of itaconic acid was used.
  • a lithium ion capacitor is manufactured.
  • Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 8 As an electrode active material of the positive electrode, 100 parts of activated carbon powder (MSP-20; manufactured by Kansai Thermochemical Co., Ltd.) having a volume average particle size of 8 ⁇ m, which is an alkali activated carbon made from phenol resin, and a weight average molecular weight of 335,000 as a dispersant. 1.5 parts aqueous solution of carboxymethylcellulose ammonium (DN-800H; manufactured by Daicel Chemical Industries, Ltd.) corresponding to a solid content of 2.0 parts, and 5 parts of acetylene black (Denka Black powder; manufactured by Denki Kagaku Corporation) as a conductive material (Meth) acrylate polymer having a glass transition temperature of ⁇ 23 ° C.
  • MSP-20 activated carbon powder
  • DN-800H carboxymethylcellulose ammonium
  • acetylene black Diska Black powder
  • Denki Kagaku Corporation a conductive material
  • this slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.).
  • the rotating disk type atomizer (diameter 65 mm) had a rotational speed of 25,000 rpm, a hot air temperature of 150 ° C., and a particle recovery outlet temperature.
  • Spray drying granulation is performed under the condition of 90 ° C. to obtain composite particles (electrode composition) for a spherical positive electrode composition layer having a volume average particle diameter of 56 ⁇ m and a sphericity of 93%.
  • the composite particle is supplied to a roll (roll temperature 100 ° C., press linear pressure 3.9 kN / cm) of a roll press machine (pressed rough surface heat roll; manufactured by Hirano Giken Co., Ltd.) together with a 30 ⁇ m thick aluminum current collector. Then, a sheet-like electrode composition layer was formed on a current collector at a forming speed of 20 m / min, and this was punched out in a square of 5 cm to form a positive electrode for a lithium ion capacitor having an electrode composition layer with a thickness of 200 ⁇ m on one side. obtain.
  • As an electrode active material of the negative electrode 100 parts of graphite (KS-6; manufactured by Timcal) having a volume average particle diameter of 4 ⁇ m, and a 1.5% aqueous solution of carboxymethyl cellulose ammonium having a weight average molecular weight of 335,000 (DN—) as a dispersant 800H; manufactured by Daicel Chemical Industries, Ltd.) in terms of solid content, 2.0 parts of acetylene black (denka black powder; manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, glass transition temperature of ⁇ 23 ° C., number average particle A 40% aqueous dispersion of a (meth) acrylate polymer having a diameter of 0.25 ⁇ m (a copolymer obtained by emulsion polymerization of 78 parts of 2-ethylhexyl acrylate, 20 parts of acrylonitrile and 2 parts of itaconic acid) corresponds to a solid content. 3.0 parts and ion-exchanged water
  • this slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Chemical Co., Ltd.).
  • the rotating disk type atomizer (diameter 65 mm) had a rotational speed of 25,000 rpm, a hot air temperature of 150 ° C., and a particle recovery outlet temperature.
  • Spray drying granulation is performed under the condition of 90 ° C. to obtain spherical negative electrode composition layer composite particles (electrode composition) having a volume average particle diameter of 56 ⁇ m and a sphericity of 93%.
  • the composite particle is supplied to a roll (roll temperature 100 ° C., press linear pressure 3.9 kN / cm) of a roll press machine (pressed rough surface heat roll; manufactured by Hirano Giken Co., Ltd.) together with a 20 ⁇ m thick copper current collector. Then, a sheet-like electrode composition layer was formed on a current collector at a forming speed of 25 m / min, and this was punched out to a 5 cm square to form a negative electrode for a lithium ion capacitor having an electrode composition layer with a thickness of 80 ⁇ m on one side. obtain.
  • Example 1 A lithium ion capacitor is produced in the same manner as in Example 1 except that the electrode obtained above is used as the positive electrode for the lithium ion capacitor and the negative electrode for the lithium ion capacitor.
  • Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Example 4 In Example 4, in place of the 1.5% aqueous solution of carboxymethyl cellulose ammonium as a dispersant, carboxymethyl cellulose having a weight average molecular weight of 60,000 was used in the same manner as in Example 4 except that 2.0 parts in terms of solid content was used. Thus, electrodes for lithium ion capacitors (positive electrode and negative electrode) and lithium ion capacitors are produced. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • Comparative Example 2 In Comparative Example 1, the same dispersant as in Example 4 except that 2.0 parts by weight of carboxymethyl cellulose having a weight average molecular weight of 590,000 was used instead of carboxymethyl cellulose having a weight average molecular weight of 60,000 as a dispersant. Thus, electrodes for lithium ion capacitors (positive electrode and negative electrode) and lithium ion capacitors are produced. Table 1 shows the measurement results of the characteristics of the lithium ion capacitor electrode and the lithium ion capacitor.
  • the electrode density is high, the electrode strength is excellent, and the energy density and durability can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】リチウムイオンキャパシタの耐久性を高めることに加え、分散性に優れ、電極密度及びエネルギー密度を高めることを可能とするリチウムイオンキャパシタ用電極および該電極を使用したリチウムイオンキャパシタを提供する。 【解決手段】電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる電極組成物層が、集電体上に形成されてなるリチウムイオンキャパシタ用電極、及び正極、負極、電解液及びセパレータを有し、前記正極又は負極が前記リチウムイオンキャパシタ用電極である、リチウムイオンキャパシタ。

Description

リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
 本発明は、リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタに関する。より詳しくは、分散性に優れ、耐久性の高いリチウムイオンキャパシタ用電極およびリチウムイオンキャパシタに関する。
 小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオンキャパシタは、その特性を活かして急速に需要を拡大している。また、リチウムイオンキャパシタは、エネルギー密度、出力密度が大きいことから、携帯電話やノート型パーソナルコンピュータの小型用途から、車載などの大型用途での利用が期待されている。そのため、リチウムイオンキャパシタには、用途の拡大や発展に伴い、低抵抗化、高容量化、高耐電圧、機械的特性の向上など、よりいっそうの改善が求められている。
 リチウムイオンキャパシタは、正極に分極性電極、負極に非分極性電極を備え、有機系電解液を用いることで作動電圧を高め、エネルギー密度を高めることができるが、耐電圧(耐久性)が低いという問題点があった。
 そこで、耐電圧を向上する目的で、ニトリル基を有するアクリレート重合体を含むバインダーを用いることが提案されている(特許文献1)。特許文献1におけるリチウムイオンキャパシタ用電極は、電極活物質、導電材、カルボキシメチルセルロースおよびニトリル基を有するアクリレート重合体からなる電極組成物層が集電体上に形成されてなる。しかし、かかる電極では、分散性が低いため、電極密度、エネルギー密度が低く、不十分であった。
特開2007-019108号公報
 本発明は、リチウムイオンキャパシタの耐久性を高めることに加え、電極活物質の分散性に優れ、電極密度及びエネルギー密度を高めることを可能とするリチウムイオンキャパシタ用電極および該電極を使用したリチウムイオンキャパシタを提供することを目的とする。
 本発明者は、上記課題を達成するために鋭意検討した結果、本発明のリチウムイオンキャパシタ用電極として、電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体からなる電極組成物層が集電体上に形成されてなるものを用いることにより、電極密度を高め、該電極を用いてなるリチウムイオンキャパシタのエネルギー密度や耐久性が高まることを見出した。
 本発明者は、これらの知見に基いて、本発明を完成するに至った。
 かくして、本発明によれば、電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる電極組成物層が集電体上に形成されてなるリチウムイオンキャパシタ用電極が提供される。
 本発明によれば、正極、負極、電解液及びセパレータを有し、前記正極および負極が前記リチウムイオンキャパシタ用電極である、リチウムイオンキャパシタが提供される。
 かくして本発明のリチウムイオンキャパシタ用電極によれば、電極密度を高め、かつエネルギー密度及び耐久性を高めるリチウムイオンキャパシタを容易に製造できる。本発明のリチウムイオンキャパシタは、パソコンや携帯端末等のメモリのバックアップ電源、パソコン等の瞬時停電対策用電源、電気自動車又はハイブリッド自動車への応用、太陽電池と併用したソーラー発電エネルギー貯蔵システム、電池と組み合わせたロードレベリング電源等の様々な用途に好適に用いることができる。
 本発明のリチウムイオンキャパシタ用電極は、電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる電極組成物層が集電体上に形成されてなる。
(電極活物質)
 本発明のリチウムイオンキャパシタ用電極に用いる電極活物質は、リチウムイオンキャパシタ用電極内で電子の受け渡しをする物質である。
 リチウムイオンキャパシタ用電極に用いる電極活物質には、正極用と負極用がある。
 リチウムイオンキャパシタ用電極の正極に用いる電極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであればよい。具体的には、通常、炭素の同素体が用いられ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。この中でも、活性炭が好ましい。活性炭は、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、ピッチ、およびヤシ殻等を原料とする活性炭を挙げることができる。また、炭素の同素体を組み合わせて使用する場合は、平均粒径又は粒径分布の異なる二種類以上の炭素の同素体を組み合わせて使用してもよい。また、正極に用いる電極活物質として、上記物質の他に、芳香族系縮合ポリマーの熱処理物であって、水素原子/炭素原子の原子比が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)も好適に使用できる。
 リチウムイオンキャパシタ用電極の負極に用いる電極活物質としては、リチウムイオンを可逆的に担持できる物質であればよい。具体的には、リチウムイオン二次電池の負極で用いられる電極活物質が広く使用できる。中でも、黒鉛、難黒鉛化炭素等の結晶性炭素材料、ハードカーボン、コークス等の炭素材料、上記正極の電極活物質としても記載したポリアセン系物質(PAS)が好ましい。これらの炭素材料及びPASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。
 リチウムイオンキャパシタ用電極に用いる電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電極が形成できる。
 リチウムイオンキャパシタ用電極に用いる電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは0.5~50μm、より好ましくは1~20μmである。これらの電極活物質は、それぞれ単独でまたは二種類以上を組み合わせて使用することができる。
(導電材)
 本発明のリチウムイオンキャパシタ用電極に用いる導電材は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
 本発明のリチウムイオンキャパシタ用電極に用いる導電材の体積平均粒子径は、電極活物質の体積平均粒子径よりも小さいものが好ましく、その範囲は通常0.001~10μm、好ましくは0.05~5μm、より好ましくは0.01~1μmである。導電材の体積平均粒子径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電材は、単独でまたは二種類以上を組み合わせて用いることができる。電極組成物層における導電材の量は、電極活物質100重量部に対して通常0.1~50重量部、好ましくは0.5~15重量部、より好ましくは1~10重量部の範囲である。導電材の量がこの範囲にあると、得られるリチウムイオンキャパシタ用電極を使用したリチウムイオンキャパシタの容量を高く且つ内部抵抗を低くすることができる。
(カルボキシメチルセルロース塩)
 本発明のリチウムイオンキャパシタ用電極に用いるカルボキシメチルセルロース塩は、電極組成物層を形成するためのスラリー組成物における分散剤で、具体的には、カルボキシメチルセルロースアンモニウム、カルボキシメチルセルロースアルカリ金属、カルボキシメチルセルロースアルカリ土類金属などが挙げられる。中でも、カルボキシメチルセルロースアンモニウム、カルボキシメチルセルロースアルカリ金属が好ましく、カルボキシメチルセルロースアンモニウムが特に好ましい。カルボキシメチルセルロール塩の中で、カルボキシメチルセルロースアンモニウムを用いると、電極活物質、導電材および(メタ)アクリレート重合体のバインダーを均一に分散し、電極密度を高め、それによりエネルギー密度を高めることができる。
 本発明のリチウムイオンキャパシタ用電極に用いるカルボキシメチルセルロース塩の重量平均分子量は、通常10,000~450,000、好ましくは100,000~400,000、特に好ましくは250,000~350,000である。重量平均分子量は、溶媒としてテトラヒドロフランを用いるゲル・パーミエーション・クロマトグラフィー(GPC)で測定したポリスチレン換算値である。重量平均分子量がこの範囲にあると、電極活物質、導電材および(メタ)アクリレート重合体を均一に分散し、電極密度を高め、エネルギー密度を高めることができる。これらのカルボキシメチルセルロース塩は、単独でまたは二種類以上を組み合わせて用いることができる。電極組成物層におけるカルボキシメチルセルロース塩の量は、電極活物質100重量部に対して通常0.01~15重量部、好ましくは0.1~10重量部、より好ましくは1~5重量部の範囲である。カルボキシメチルセルロース塩の量がこの範囲にあると、得られるリチウムイオンキャパシタ用電極を使用したリチウムイオンキャパシタの容量を高く且つ内部抵抗を低くすることができる。
((メタ)アクリレート重合体)
 本発明のリチウムイオンキャパシタ用電極に用いる(メタ)アクリレート重合体は、具体的には、一般式(1):CH=CR-COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体単位を合計で60重量%以上、好ましくは80重量%以上含む重合体である。なお、前記重合体中の前記単量体単位の合計の上限は90重量%である。(メタ)アクリレート重合体は、一般式(1)で表される化合物と、これと共重合可能な単量体とを共重合して得られる。本発明において、(メタ)アクリレートは、アクリレート、メタクリレートを意味する。
 一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリル酸アルキルエステル;アクリル酸イソボルニルなどのアクリル酸シクロアルキルエステル等のアクリレート;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリルなどのメタクリル酸アルキルエステル;メタクリル酸シクロヘキシルなどのメタクリル酸シクロアルキルエステル;等のメタクリレートが挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルやアクリル酸2-エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。
 前記(メタ)アクリレート重合体は、一般式(1)で表される化合物の単量体単位の他に、ニトリル化合物や二塩基酸由来の単量体単位を含んでいてもよい。
 前記ニトリル化合物由来の単量体単位や二塩基酸由来の単量体単位は、一般式(1)で表される化合物と、ニトリル化合物や二塩基酸を共重合させることにより導入することができる。
 前記ニトリル化合物の具体例は、アクリロニトリルやメタクリロニトリルが挙げられ、中でもアクリロニトリルが、集電体との結着性が高まり、電極強度が向上できる点で好ましい。共重合の際のアクリロニトリルの量は、一般式(1)で表される化合物100重量部に対して、通常は0.1~40重量部、好ましくは0.5~30重量部、より好ましくは1~20重量部の範囲である。アクリロニトリルの量がこの範囲であると、集電体との結着性に優れ、得られる電極強度が高まる。
 前記二塩基酸は、水中で2つのプロトンを分離できる構造をもつ酸のことであり、具体的には、イタコン酸、フマル酸、マレイン酸などが挙げられ、これら中でもイタコン酸、フマル酸が好ましく、イタコン酸が、集電体との結着性を高め、電極強度を向上できる点で、特に好ましい。
 共重合の際の二塩基酸の量は、一般式(1)で表される化合物100重量部に対して、通常0.1~20重量部、好ましくは0.5~15重量部、特に好ましくは1~10重量部の範囲である。二塩基酸の量がこの範囲であると、集電体との結着性に優れ、得られる電極強度が高まる。
 (メタ)アクリレート重合体は、一般式(1)で表される化合物と、前記二塩基酸およびアクリロニトリルを含んでなる重合性モノマーを共重合して得ることができる。重合の方法は、特に制限されず、溶液重合法、懸濁重合法、乳化重合法などのいずれの方法も用いることができる。重合に用いる重合開始剤としては、特に制限されず、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 本発明のリチウムイオンキャパシタ用電極に用いる(メタ)アクリレート重合体の形状は、特に制限はないが、結着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状のバインダーとしては、例えば、ラテックスのごときバインダーの粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
 本発明のリチウムイオンキャパシタ用電極に用いる(メタ)アクリレート重合体のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは-40~0℃である。(メタ)アクリレート重合体のガラス転移温度(Tg)がこの範囲にあると、少量の使用で結着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
 本発明のリチウムイオンキャパシタ用電極の(メタ)アクリレート重合体の数平均粒子径は、格別な限定はないが、通常は0.0001~100μm、好ましくは0.001~10μm、より好ましくは0.01~1μmの数平均粒子径を有するものである。(メタ)アクリレート重合体の数平均粒子径がこの範囲であるときは、少量の使用でも優れた結着力を分極性電極に与えることができる。ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ(メタ)アクリレート重合体粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの(メタ)アクリレート重合体は単独でまたは二種類以上を組み合わせて用いることができる。電極組成物層における(メタ)アクリレート重合体の量は、電極活物質100重量部に対して、通常は0.1~50重量部、好ましくは0.5~20重量部、より好ましくは1~10重量部の範囲である。(メタ)アクリレート重合体の量がこの範囲にあると、得られる電極組成物層と集電体との密着性が充分に確保でき、リチウムイオンキャパシタの容量を高く且つ内部抵抗を低くすることができる。
(電極組成物層)
 本発明のリチウムイオンキャパシタ用電極の電極組成物層は、集電体上に設けられるが、その形成方法は制限されない。具体的には、1)電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を混練してなる電極形成用組成物を、シート成形し、得られたシート状電極層組成物を、集電体上に積層する方法(混練シート成形法)、2)電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなるペースト状の電極形成用組成物を調製し、これを集電体上に塗布し、乾燥する方法(湿式成形法)、3)電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる複合粒子を調製し、集電体上に供給し、シート成形し、必要に応じてロールプレスし得る方法(乾式成形法)などが挙げられる。中でも、2)湿式成形法、3)乾式成形法が好ましく、3)乾式成形法が得られるリチウムイオンキャパシタの容量を高く、且つ内部抵抗を低減できる点でより好ましい。
 また、シート状電極層組成物を作成し、該シート上に導電性接着剤を形成し、さらに集電体を積層してリチウムイオンキャパシタ用電極を得ることもできる。
 本発明に用いる電極組成物層を、前記2)湿式成形法で形成する場合において、ペースト状の電極形成用組成物(以下、「電極組成物層用スラリー」と記載することがある。)は、電極活物質、導電材、(メタ)アクリレート重合体及びカルボキシメチルセルロース塩を、水またはN-メチル-2-ピロリドンやテトラヒドロフランなどの有機溶媒中で混練することにより製造することができる。ペースト状の電極形成用組成物は、電極組成物層の乾燥の容易さと環境への負荷に優れる点から水を分散媒とした水系スラリーが好ましい。
 水系スラリーの製造方法としては、水および前記の各成分を、混合機を用いて混合して製造できる。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、およびホバートミキサーなどを用いることができる。また、電極活物質と導電材とを擂潰機、プラネタリーミキサー、ヘンシェルミキサー、およびオムニミキサーなどの混合機を用いて先ず混合し、次いで(メタ)アクリレート重合体及びカルボキシメチルセルロース塩を添加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一なスラリーを得ることができる。
 本発明に使用されるスラリーの粘度は、塗工機の種類や塗工ラインの形状によっても異なるが、通常100~100,000mPa・s、好ましくは、1,000~50,000mPa・s、より好ましくは5,000~20,000mPa・sである。
 スラリーの集電体上への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。スラリーの塗布厚は、目的とする電極活物質層の厚みに応じて適宜に設定される。
 乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、遠赤外線の照射による乾燥法が好ましい。本発明における乾燥温度と乾燥時間は、集電体に塗布したスラリー中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度としては100~300℃、好ましくは120~250℃である。乾燥時間としては、通常10分~100時間、好ましくは20分~20時間である。
 本発明に用いる電極組成物層を前記3)乾式成形法で形成する場合において、用いられる複合粒子は、電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体が一体化した粒子をさす。
 複合粒子の製造方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、パルス燃焼式乾燥法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電材が偏在した複合粒子を容易に得られる点で、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いると、本発明のリチウムイオンキャパシタ用電極を生産性高く得ることができる。また、該電極の内部抵抗をより低減することができる。 
 前記噴霧乾燥造粒法では、まず上記した電極活物質、導電材、(メタ)アクリレート重合体及びカルボキシメチルセルロース塩を溶媒に分散または溶解して、電極活物質、導電材、(メタ)アクリレート重合体及びカルボキシメチルセルロース塩が分散または溶解されてなるスラリーを得る。
 スラリーを得るために用いる溶媒は、特に限定されないが、分散剤としてのカルボキシメチルセルロース塩を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、(メタ)アクリレート重合体の分散性またはカルボキシメチルセルロース塩の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。
 スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1~50質量%、好ましくは5~50質量%、より好ましくは10~30質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤である(メタ)アクリレート重合体が均一に分散するため好適である。
 電極活物質、導電材、(メタ)アクリレート重合体及びカルボキシメチルセルロース塩を溶媒に分散または溶解する方法または手順は特に限定されず、例えば、溶媒に電極活物質、導電材、(メタ)アクリレート重合体およびカルボキシメチルセルロース塩を添加し混合する方法;溶媒にカルボキシメチルセルロース塩を溶解した後、溶媒に分散させた(メタ)アクリレート重合体を添加して混合し、最後に電極活物質および導電材を添加して混合する方法;溶媒に分散させた(メタ)アクリレート重合体に電極活物質および導電材を添加して混合し、この混合物に溶媒に溶解させたカルボキシメチルセルロース塩を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分~数時間行う。
 スラリーの粘度は、室温において、通常10~3,000mPa・s、好ましくは30~1,500mPa・s、より好ましくは50~1,000mPa・sの範囲である。スラリーの粘度がこの範囲にあると、複合粒子の生産性を上げることができる。また、スラリーの粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の重量平均粒子径が大きくなる。
 次に、上記で得たスラリーを噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~30,000rpm、好ましくは15,000~30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の体積平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 また、前記複合粒子は、球状であることが好ましい。前記複合粒子が球状であるか否かの評価は、複合粒子の短軸径をLs、長軸径をLlとしたときに(Ll-Ls)/{(Ls+Ll)/2}で算出される値(以下、「球状度」という。)又はLa=(Ls+Ll)/2とし、(1-(Ll-Ls)/La)×100で算出される値(以下、「球形度」という。)により行う。ここで、短軸径Lsおよび長軸径Llは、反射型電子顕微鏡を用いて複合粒子を観察した写真像より測定される100ケの任意の複合粒子についての平均値である。球状度の数値が小さいほど、又は球形度の数値が大きいほど、複合粒子が真球に近いことを示す。
 たとえば、上記写真像で正方形として観察される粒子は、上記球状度は34.4%と計算されるので、34.4%を超える球状度を示す複合粒子は、少なくとも球状とはいえない。複合粒子の球状度は、好ましくは20%以下であり、さらに好ましくは15%以下である。一方、複合粒子の球形度は、80%以上であることが好ましく、より好ましくは90%以上である。
 上記の製造方法で得られた複合粒子は、必要に応じて粒子製造後の後処理を実施することもできる。具体例としては、複合粒子に上記の電極活物質、導電材、(メタ)アクリレート重合体、あるいはカルボキシメチルセルロース塩等と混合することによって、粒子表面を改質して、複合粒子の流動性を向上または低下させる、連続加圧成形性を向上させる、複合粒子の電気伝導性を向上させることなどができる。
 前記複合粒子の体積平均粒径は、通常は0.1~1,000μm、好ましくは5~500μm、より好ましくは10~100μmの範囲である。複合粒子の体積平均粒径がこの範囲にあるとき、複合粒子が凝集を起こしにくく、重力に対して静電気力が大きくなるので好ましい。体積平均粒径は、レーザ回折式粒度分布測定装置を用いて測定することができる。
 本発明において、複合粒子を供給する工程で用いられるフィーダーは、特に限定されないが、複合粒子を定量的に供給できる定量フィーダーであることが好ましい。ここで、定量的に供給できるとは、かかるフィーダーを用いて複合粒子を連続的に供給し、一定間隔で供給量を複数回測定し、その測定値の平均値mと標準偏差σmから求められるCV値(=σm/m×100)が4以下であることをいう。本発明に好適に用いられる定量フィーダーは、CV値が好ましくは2以下である。定量フィーダーの具体例としては、テーブルフィーダー、ロータリーフィーダーなどの重力供給機、スクリューフィーダー、ベルトフィーダーなどの機械力供給機などが挙げられる。これらのうちロータリーフィーダーが好適である。
 次いで、集電体と供給された複合粒子とを一対のロールで加圧して、前記集電体上に電極組成物層を形成する。この工程では、必要に応じ加温された前記複合粒子が、一対のロールでシート状の電極組成物層に成形される。供給される複合粒子の温度は、好ましくは40~160℃、より好ましくは70~140℃である。この温度範囲にある複合粒子を用いると、プレス用ロールの表面で複合粒子の滑りがなく、複合粒子が連続的かつ均一にプレス用ロールに供給されるので、膜厚が均一で、電極密度のばらつきが小さい、電極組成物層を得ることができる。
 成形時の温度は、通常0~200℃であり、結着剤である(メタ)アクリレート重合体の融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロールを用いる場合の成形速度は、通常0.1m/分より大きく、好ましくは35~70m/分である。またプレス用ロール間のプレス線圧は、通常0.2~30kN/cm、好ましくは0.5~10kN/cmである。
 上記製法では、前記一対のロールの配置は特に限定されないが、略水平または略垂直に配置されることが好ましい。略水平に配置する場合は、前記集電体を一対のロール間に連続的に供給し、該ロールの少なくとも一方に複合粒子を供給することで、集電体とロールとの間隙に複合粒子が供給され、加圧により電極組成物層を形成できる。略垂直に配置する場合は、前記集電体を水平方向に搬送させ、前記集電体上に複合粒子を供給し、供給された複合粒子を必要に応じブレード等で均した後、前記集電体を一対のロール間に供給し、加圧により電極組成物層を形成できる。
 成形した電極組成物層の厚みのばらつきを無くし、密度を上げて高容量化をはかるために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによるプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱又は冷却等、温度調節してもよい。
 本発明のリチウムイオンキャパシタ用電極の電極組成物層の密度は、特に制限されないが、通常は0.30~10g/cm、好ましくは0.35~5.0g/cm、より好ましくは0.40~3.0g/cmである。また、電極組成物層の厚みは、特に制限されないが、通常は5~1000μm、好ましくは20~500μm、より好ましくは30~300μmである。
(集電体)
 本発明のリチウムイオンキャパシタ用電極に用いる集電体は、具体的には、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
 集電体の形状は、特に制限されないが、フィルム状またはシート状であり、シート状集電体は、空孔を有していてもよい。シート状集電体は、エキスパンドメタル、パンチングメタル、網状などの形状を有していてもよい。空孔を有するシート状集電体を用いると、得られる電極の体積あたりの容量を高くすることができる。シート状集電体が空孔を有する場合の空孔の割合は、好ましくは10~79面積%、より好ましくは20~60面積%である。
 集電体の厚みは、使用目的に応じて適宜選択されるが、通常は1~200μm、好ましくは5~100μm、より好ましくは10~50μmである。
 前記集電体は、その表面上に導電性接着剤層が形成されていると、電極組成物層と集電体との密着性を高め、得られるリチウムイオンキャパシタの内部抵抗を低減できるので好適である。
 導電性接着剤層は、好ましくは導電材と(メタ)アクリレート重合体とを有するものであり、導電材と、(メタ)アクリレート重合体と、必要に応じ添加される分散剤とを水または有機溶媒中で混練して得られる導電性接着剤スラリーを、集電体に塗布、乾燥することにより形成できる。導電性接着剤層を形成することで、電極組成物層と集電体との間の結着性を向上させるとともに内部抵抗の低下に寄与する。
 導電性接着剤層に用いられる導電材、(メタ)アクリレート重合体としては、前記電極組成物層に用いられる成分として例示したものをいずれも用いることができ、また必要に応じ用いられる分散剤としては前記したカルボキシメチルセルロース塩を使用することができる。導電性接着剤層中の各成分の量は、導電材100質量部に対して(メタ)アクリレート重合体が乾燥重量基準で5~20重量部、分散剤が乾燥重量基準で1~5重量部であることが好ましい。導電性接着剤層中の上記(メタ)アクリレート重合体の量が少なすぎると電極組成物層と集電体との接着が不十分になる場合がある。逆に、導電性接着剤層中の(メタ)アクリレート重合体の量が多すぎると導電材の分散が不十分になり、内部抵抗が大きくなる場合がある。また、導電性接着剤層中の上記分散剤の量が少なすぎても導電材の分散が不十分になる場合がある。逆に、導電性接着剤層中の分散剤の量が多すぎると該導電材が分散剤によって被覆され、内部抵抗が大きくなる場合がある。
 導電性接着剤層の集電体への形成方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって形成される。
 導電性接着剤層の厚さは、通常0.5~10μm、好ましくは2~7μmである。
(リチウムイオンキャパシタ)
 本発明のリチウムイオンキャパシタは、正極、負極、電解液及びセパレータを有し、前記正極又は負極が前記リチウムイオンキャパシタ用電極である。本発明のリチウムイオンキャパシタにおいては、正極及び負極が、前記リチウムイオンキャパシタ用電極であることが好ましい。正極及び負極が、前記リチウムイオンキャパシタ用電極であることにより、リチウムイオンキャパシタの耐久性をより向上させることができる。
 セパレータは、リチウムイオンキャパシタ用電極の間を絶縁でき、陽イオンおよび陰イオンを通過させることができるものであれば特に限定されない。具体的には、ポリエチレンやポリプロピレンなどのポリオレフィン、レーヨン、アラミドもしくはガラス繊維製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜などを用いることができる。セパレータは、上記一対の電極組成物層が対向するように、リチウムイオンキャパシタ用電極の間に配置され、素子が得られる。セパレータの厚みは、使用目的に応じて適宜選択されるが、通常は1~100μm、好ましくは10~80μm、より好ましくは20~60μmである。
 電解液は、通常、電解質と溶媒で構成される。電解質は、カチオンとしては、リチウムイオンを用いることができる。アニオンとしては、PF 、BF 、AsF 、SbF 、N(RfSO2-、C(RfSO3-、RfSO (Rfはそれぞれ炭素数1~12のフルオロアルキル基を表す)、F、ClO 、AlCl 、AlF 等を用いることができる。これらの電解質は単独または二種類以上として使用することができる。
 電解液の溶媒は、一般に電解液の溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらの溶媒は単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。
 上記の素子に電解液を含浸させて、リチウムイオンキャパシタが得られる。具体的には、素子を必要に応じ捲回、積層または折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。また、素子に予め電解液を含浸させたものを容器に収納してもよい。容器としては、コイン型、円筒型、角型などの公知のものをいずれも用いることができる。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。実施例および比較例における各特性は、下記の方法に従い測定する。
(リチウムイオンキャパシタの電池特性および耐久性)
 実施例および比較例で製造するリチウムイオンキャパシタ用電極を用いて積層型ラミネートセルのリチウムイオンキャパシタを作製する。そしてこのリチウムイオンキャパシタの電池特性として、容量と内部抵抗について、24時間静置させた後に充放電の操作を行い測定する。ここで、充電は2Aの定電流で開始し、電圧が3.6Vに達したらその電圧を1時間保って定電圧充電とする。また、放電は充電終了直後に定電流0.9Aで1.9Vに達するまで行う。
 容量は放電時のエネルギー量から電極活物質の重量あたりの容量として算出する。内部抵抗は放電直後の電圧降下から算出する。
 また、耐久性は、リチウムイオンキャパシタを、70℃の恒温槽内で3.6V、1000時間連続印加後の初期容量に対する容量維持率を算出し、この値で評価を行う。容量維持率が大きいほど耐久性に優れる。
(電極のピール強度)
 電極組成物層の塗布方向が長辺となるようにリチウムイオンキャパシタ用電極を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極組成物層面を下にして電極組成物層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定する(なお、セロハンテープは試験台に固定されている。)。この測定を3回行い、その平均値を求めてこれをピール強度とした。ピール強度が大きいほど電極組成物層の集電体への結着力、すなわち電極強度が大きいことを示す。
(電極密度)
 電極組成物層を集電体上に形成したリチウムイオンキャパシタ用電極を5cm×5cmに切り出し、その厚みd1(μm)と重量m1(g)を測定し、同様の面積の集電体の厚みd0(μm)とm0(g)を測定し、以下の式より電極密度(g/cc)を算出する。
電極密度(g/cc)=(m1-m0)/〔{(5×5)×(d1-d0)}×10000〕
 電極密度が大きいほど、分散性に優れることを示す。
(実施例1)
 正極の電極活物質として、フェノール樹脂を原料とするアルカリ賦活活性炭である体積平均粒子径が8μmの活性炭粉末(MSP-20;関西熱化学社製)100部、分散剤として重量平均分子量125,000のカルボキシメチルセルロースナトリウムの1.5%水溶液(1280;ダイセル化学工業社製)を固形分相当で2.0部、導電材としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)5部、ガラス転移温度が-30℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル80部、アクリロニトリル15部、アクリル酸5部を乳化重合して得られる共重合体)の40%水分散体を固形分相当で3.0部、およびイオン交換水を全固形分濃度が35%となるように混合し、正極の電極組成物層用スラリーを調製する。
 厚さ30μmのアルミニウム集電体上に、前記正極の電極組成物層用スラリーをドクターブレードによって、10m/分の電極成形速度で塗布し、まず60℃で20分間、次いで120℃で20分間乾燥した後、5cm正方に打ち抜いて、厚さ100μmの正極のリチウムイオンキャパシタ用電極を得る。
 負極の電極活物質として、体積平均粒子径が4μmであるグラファイト(KS-6;ティムカル社製)100部、分散剤として重量平均分子量125,000のカルボキシメチルセルロースナトリウムの1.5%水溶液(1280;ダイセル化学工業社製)を固形分相当で2.0部、導電材としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)5部、ガラス転移温度が-30℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル80部、アクリロニトリル15部、アクリル酸5部を乳化重合して得られる共重合体)の40%水分散体を固形分相当で3.0部、およびイオン交換水を全固形分濃度が40%となるように混合し、負極の電極組成物層用スラリーを調製する。
 厚さ20μmの銅集電体上に、前記負極の電極組成物層用スラリーをドクターブレードによって、10m/分の電極成形速度で塗布し、まず60℃で20分間、次いで120℃で20分間乾燥した後、5cm正方に打ち抜いて、厚さ100μmの負極のリチウムイオンキャパシタ用電極を得る。
 前記正極、負極のリチウムイオンキャパシタ用電極及びセパレータとしてセルロース/レーヨン不織布を、室温で1時間電解液に含浸する。次いで前記正極のリチウムイオンキャパシタ用電極と負極のリチウムイオンキャパシタ用電極とが、セパレータを介して対向するように、かつ、それぞれのリチウムイオンキャパシタ用電極が電気的に接触しないように、正極10組、負極10組を配置して、積層型ラミネートセル形状のリチウムイオンキャパシタを作製する。電解液としてはエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、LiPFを1.0mol/リットルの濃度で溶解させたものを用いる。
 積層型ラミネートセルのリチウム極として、リチウム金属箔(厚さ82μm、縦5cm×横5cm)を厚さ80μmのステンレス網に圧着したものを用い、該リチウム極を最外部の負極と完全に対向するように積層した電極の上部および下部に各1枚配置する。なお、リチウム極集電体の端子溶接部(2枚)は負極端子溶接部に抵抗溶接する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタの各特性について測定結果を表1に示す。
(実施例2)
 実施例1において、分散剤として、重量平均分子量125,000のカルボキシメチルセルロースナトリウムの1.5%水溶液のかわりに、重量平均分子量335,000のカルボキシメチルセルロースナトリウムの1.5%水溶液(2200;ダイセル化学工業社製)を固形分相当で2.0部用いる他は、実施例1と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(実施例3)
 実施例2において、バインダーとして、ガラス転移温度が-30℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル80部、アクリロニトリル15部、アクリル酸5部を乳化重合して得られる共重合体)の40%水分散体のかわりに、ガラス転移温度が-35℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル83部、アクリロニトリル15部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体を用い、分散剤として、重量平均分子量335,000のカルボキシメチルセルロースナトリウムの1.5%水溶液のかわりに重量平均分子量335,000のカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部用いる他は、実施例2と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタの各特性について測定結果を表1に示す。
(実施例4)
 実施例3において、バインダーとして、ガラス転移温度が-35℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル83部、アクリロニトリル15部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体のかわりに、ガラス転移温度が-20℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル80部、アクリロニトリル15部、イタコン酸5部を乳化重合して得られる共重合体)の40%水分散体を用いる他は、実施例3と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(実施例5)
 実施例3において、バインダーとして、ガラス転移温度が-35℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル83部、アクリロニトリル15部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体のかわりに、ガラス転移温度が-15℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル77部、アクリロニトリル15部、イタコン酸8部を乳化重合して得られる共重合体)の40%水分散体を用いる他は、実施例1と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(実施例6)
 実施例3において、バインダーとして、ガラス転移温度が-35℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル83部、アクリロニトリル15部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体のかわりに、ガラス転移温度が-40℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル93部、アクリロニトリル5部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体を用いる他は、実施例1と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(実施例7)
 実施例3において、バインダーとして、ガラス転移温度が-35℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル83部、アクリロニトリル15部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体のかわりに、ガラス転移温度が-23℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル78部、アクリロニトリル20部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体を用いる他は、実施例1と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(実施例8)
 正極の電極活物質として、フェノール樹脂を原料とするアルカリ賦活活性炭である体積平均粒子径が8μmの活性炭粉末(MSP-20;関西熱化学社製)100部、分散剤として重量平均分子量335,000のカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部、導電材としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)5部、ガラス転移温度が-23℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル78部、アクリロニトリル20部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体を固形分相当で3.0部、およびイオン交換水を全固形分濃度が35%となるように混合し、正極の電極組成物層用スラリーを調製する。
 次いで、このスラリーをスプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、噴霧乾燥造粒を行い、体積平均粒子径56μm、球形度93%の球状の正極の電極組成物層用複合粒子(電極組成物)を得る。
 上記複合粒子を、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、厚さ30μmのアルミニウム集電体とともに供給し、成形速度20m/分でシート状の電極組成物層を集電体上に成形し、これを5cm正方に打ち抜いて、片面厚さ200μmの電極組成物層を有する正極のリチウムイオンキャパシタ用電極を得る。
 負極の電極活物質として、体積平均粒子径が4μmであるグラファイト(KS-6;ティムカル社製)100部、分散剤として重量平均分子量335,000のカルボキシメチルセルロースアンモニウムの1.5%水溶液(DN-800H;ダイセル化学工業社製)を固形分相当で2.0部、導電材としてアセチレンブラック(デンカブラック粉状;電気化学工業社製)5部、ガラス転移温度が-23℃で、数平均粒子径が0.25μmの(メタ)アクリレート重合体(アクリル酸2-エチルヘキシル78部、アクリロニトリル20部、イタコン酸2部を乳化重合して得られる共重合体)の40%水分散体を固形分相当で3.0部、およびイオン交換水を全固形分濃度が35%となるように混合し、負極の電極組成物層用スラリーを調製する。
 次いで、このスラリーをスプレー乾燥機(OC-16;大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃の条件で、噴霧乾燥造粒を行い、体積平均粒子径56μm、球形度93%の球状の負極の電極組成物層用複合粒子(電極組成物)を得る。
 上記複合粒子を、ロールプレス機(押し切り粗面熱ロール;ヒラノ技研社製)のロール(ロール温度100℃、プレス線圧3.9kN/cm)に、厚さ20μmの銅集電体とともに供給し、成形速度25m/分でシート状の電極組成物層を集電体上に成形し、これを5cm正方に打ち抜いて、片面厚さ80μmの電極組成物層を有する負極のリチウムイオンキャパシタ用電極を得る。
 実施例1において、正極のリチウムイオンキャパシタ用電極、負極のリチウムイオンキャパシタ用電極として、上記で得られた電極を用いた他は、実施例1と同様にして、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(比較例1)
 実施例4において、分散剤として、カルボキシメチルセルロースアンモニウムの1.5%水溶液のかわりに、重量平均分子量60,000のカルボキシメチルセルロースを固形分相当で2.0部を用いる他は、実施例4と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
(比較例2)
 比較例1において、分散剤として、重量平均分子量60,000のカルボキシメチルセルロースのかわりに、重量平均分子量590,000のカルボキシメチルセルロースを固形分相当で2.0部を用いる他は、実施例4と同様にしてリチウムイオンキャパシタ用電極(正極、負極)、リチウムイオンキャパシタを作製する。リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタについて、各特性の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の実施例および比較例より明らかなように、本発明のリチウムイオンキャパシタ用電極を用いると、電極密度が高く、電極強度に優れ、エネルギー密度、耐久性を高めることが可能となる。

Claims (8)

  1. 電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる電極組成物層が、集電体上に形成されてなるリチウムイオンキャパシタ用電極。
  2. 前記カルボキシメチルセルロース塩が、カルボキシメチルセルロースアンモニウムである請求項1に記載のリチウムイオンキャパシタ用電極。
  3. 前記(メタ)アクリレート重合体が、ニトリル化合物の単量体単位を含むものである請求項1又は2に記載のリチウムイオンキャパシタ用電極。
  4. 前記(メタ)アクリレート重合体が、二塩基酸の単量体単位を含むものである請求項1~3のいずれかに記載のリチウムイオンキャパシタ用電極。
  5. 前記カルボキシメチルセルロース塩の重量平均分子量が、100,000~400,000である請求項1~4のいずれかに記載のリチウムイオンキャパシタ用電極。
  6. 電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなるペースト状の電極形成用組成物を調製し、これを集電体上に塗布し、乾燥する工程を含む請求項1~5のいずれかに記載のリチウムイオンキャパシタ用電極の製造方法。
  7.  電極活物質、導電材、カルボキシメチルセルロース塩および(メタ)アクリレート重合体を含んでなる複合粒子を調製し、集電体上に供給し、シート成形する工程を含む請求項1~5のいずれかに記載のリチウムイオンキャパシタ用電極の製造方法。
  8. 正極、負極、電解液及びセパレータを有し、前記正極又は負極が請求項1~5のいずれかに記載の電極である、リチウムイオンキャパシタ。
PCT/JP2009/064010 2008-08-08 2009-08-07 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ WO2010016567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205411 2008-08-08
JP2008205411A JP2011204704A (ja) 2008-08-08 2008-08-08 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ

Publications (1)

Publication Number Publication Date
WO2010016567A1 true WO2010016567A1 (ja) 2010-02-11

Family

ID=41663779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064010 WO2010016567A1 (ja) 2008-08-08 2009-08-07 リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ

Country Status (2)

Country Link
JP (1) JP2011204704A (ja)
WO (1) WO2010016567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799458B2 (en) 2012-09-28 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrode for capacitor and capacitor using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300078B2 (ja) * 2014-02-25 2018-03-28 株式会社大阪ソーダ 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
WO2016064256A1 (ko) * 2014-10-24 2016-04-28 주식회사 엘지화학 유/무기 복합 다공층을 포함하는 이차 전지용 세퍼레이터 및 이의 제조 방법
KR20220075209A (ko) * 2019-09-30 2022-06-07 가부시키가이샤 오사카소다 아크릴 에멀젼

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269827A (ja) * 2005-03-24 2006-10-05 Nippon Zeon Co Ltd 電気化学素子電極用組成物
JP2007019108A (ja) * 2005-07-05 2007-01-25 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2008041793A (ja) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp 電気二重層キャパシタの電極の製造方法及び電気二重層キャパシタ
JP2008098590A (ja) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd 電気化学素子用電極およびこれを用いてなる電気化学素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269827A (ja) * 2005-03-24 2006-10-05 Nippon Zeon Co Ltd 電気化学素子電極用組成物
JP2007019108A (ja) * 2005-07-05 2007-01-25 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2008041793A (ja) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp 電気二重層キャパシタの電極の製造方法及び電気二重層キャパシタ
JP2008098590A (ja) * 2006-10-16 2008-04-24 Nippon Zeon Co Ltd 電気化学素子用電極およびこれを用いてなる電気化学素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799458B2 (en) 2012-09-28 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. Electrode for capacitor and capacitor using same

Also Published As

Publication number Publication date
JP2011204704A (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5423991B2 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP5549672B2 (ja) 電気化学素子用電極および電気化学素子
JP4840357B2 (ja) 電気化学素子電極用複合粒子
JP5069464B2 (ja) 電気二重層キャパシタ用電極材料およびその製造方法
JP4978467B2 (ja) 電気化学素子電極材料および複合粒子
JP4839669B2 (ja) 電気化学素子電極用複合粒子
JPWO2007072815A1 (ja) 電気二重層キャパシタ
JP5354205B2 (ja) 電気化学素子用電極および電気化学素子
JP5311706B2 (ja) 電気化学素子電極用複合粒子の製造方法
WO2006118235A1 (ja) 電気化学素子電極
JP5169720B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
JP4899354B2 (ja) 複合粒子の製造方法、電気化学素子用電極材料、電気化学素子用電極の製造方法及び電気化学素子用電極
WO2010016567A1 (ja) リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2013077558A (ja) 電気化学素子用電極
JP2010171212A (ja) 電気二重層キャパシタ用電極およびその製造方法
JP5651470B2 (ja) リチウムイオンキャパシタ用バインダー、リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
WO2009119553A1 (ja) ハイブリッドキャパシタ用電極の製造方法
JP2010157564A (ja) 電気化学素子電極用複合粒子の製造方法
JP5141508B2 (ja) 電気二重層キャパシタ用電極
JPWO2009107716A1 (ja) 電気化学素子電極の製造方法
JP2010171211A (ja) 電気二重層キャパシタ用電極
JP5195157B2 (ja) リチウムイオンキャパシタ用電極組成物、リチウムイオンキャパシタ用電極、リチウムイオンキャパシタ用電極の製造方法
JP2010050414A (ja) リチウムイオンキャパシタ用電極組成物、リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09805049

Country of ref document: EP

Kind code of ref document: A1