WO2011004664A1 - 銅箔複合体 - Google Patents

銅箔複合体 Download PDF

Info

Publication number
WO2011004664A1
WO2011004664A1 PCT/JP2010/059416 JP2010059416W WO2011004664A1 WO 2011004664 A1 WO2011004664 A1 WO 2011004664A1 JP 2010059416 W JP2010059416 W JP 2010059416W WO 2011004664 A1 WO2011004664 A1 WO 2011004664A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
resin layer
composite
foil composite
thickness
Prior art date
Application number
PCT/JP2010/059416
Other languages
English (en)
French (fr)
Inventor
和樹 冠
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to EP20100796975 priority Critical patent/EP2439063B1/en
Priority to KR1020117029034A priority patent/KR101270324B1/ko
Priority to US13/382,360 priority patent/US20120141809A1/en
Priority to CN201080031222.XA priority patent/CN102481759B/zh
Priority to JP2011513809A priority patent/JP4859262B2/ja
Publication of WO2011004664A1 publication Critical patent/WO2011004664A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to an electromagnetic shielding material, a copper laminate for FPC, and a copper foil composite suitable as a substrate that requires heat dissipation.
  • a copper foil composite formed by laminating a copper foil and a resin film is used as an electromagnetic shielding material (for example, Patent Document 1).
  • the copper foil has electromagnetic shielding properties, and the resin film is laminated for reinforcing the copper foil.
  • As a method of laminating the resin film on the copper foil there are a method of laminating the resin film on the copper foil with an adhesive, a method of depositing copper on the surface of the resin film, and the like.
  • the thickness of the copper foil needs to be several ⁇ m or more, and therefore a method of laminating a resin film on the copper foil is inexpensive.
  • the copper foil is excellent in electromagnetic wave shielding properties, and the entire surface of the shielded body can be shielded by covering the shielded body.
  • the shielded body is covered with a copper braid or the like, the shielded body is exposed at the mesh portion, and the electromagnetic shielding property is poor.
  • a composite of a copper foil and a resin film (PET, PI (polyimide), LCP (liquid crystal polymer), etc.) is used for an FPC (flexible printed circuit board).
  • P PET polyimide
  • LCP liquid crystal polymer
  • FPC flexible printed circuit board
  • PI is mainly used in FPC.
  • FPCs are also subject to bending and bending deformation, and FPCs having excellent flexibility have been developed and adopted in mobile phones and the like (Patent Document 2).
  • the bending and bending that the FPC receives at the bending part is a unidirectional bending deformation, which is simpler than the deformation when the electromagnetic shielding material wound around the electric wire or the like is bent, and the FPC composite is workable. There was not much demand.
  • the copper foil composite may be wound around the outside of the shielded body such as a cable and used as a shielding material, but the copper foil is easily broken or cracked. It was difficult to use.
  • the copper foil composite for FPC may require workability depending on the installation location. Further, when the thickness of the copper foil is thick, the elongation is improved, but when it is thin, the ductility is extremely lowered. On the other hand, when the copper foil is thickened, the rigidity is increased. For example, there is a problem that it is difficult to shield the copper foil composite around a shielded body such as an electric wire. That is, it is difficult to achieve both flexibility and workability of the copper foil composite. Accordingly, an object of the present invention is to provide a copper foil composite having improved workability.
  • the present inventors have found that the bendability can be improved without impairing workability by defining the thickness and strain of the copper foil and the resin layer constituting the copper foil composite, and the present invention has been achieved.
  • the copper foil composite of the present invention is formed by laminating a copper foil and a resin layer, the copper foil has a breaking strain of 5% or more, and the copper foil has a thickness t and a tensile strain of 4%.
  • the stress f of the foil, the thickness T of the resin layer, and the stress F of the resin layer at a tensile strain of 4% (F ⁇ T) / (f ⁇ t) ⁇ 1 is satisfied.
  • the breaking strain of the copper foil composite is preferably 30% or more. It is preferable to satisfy (F ⁇ T) ⁇ 3.1 (N / mm).
  • the copper foil preferably contains a total of 200 to 2000 mass ppm of at least one selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, and Ag.
  • the copper foil composite of the present invention is formed by laminating a copper foil and a resin layer.
  • the breaking strain of the copper foil is 5% or more. When the breaking strain is less than 5%, the elongation of the copper foil composite is lowered even if the following (F ⁇ T) / (f ⁇ t) ⁇ 1 of the copper foil composite described later is satisfied. As long as (F ⁇ T) / (f ⁇ t) ⁇ 1 is satisfied, it is preferable that the breaking strain of the copper foil is larger. Since the copper foil has a high conductivity of 60% IACS or higher and the shielding performance is improved, the copper foil preferably has a high purity, and the purity is preferably 99.5% or more, more preferably 99.99.
  • a rolled copper foil having excellent flexibility is preferable, but an electrolytic copper foil may be used.
  • Other elements may be contained in the copper foil, and the total content of these elements and unavoidable impurities may be less than 0.5% by mass.
  • at least one selected from the group consisting of Sn, Mn, Cr, Zn, Zr, Mg, Ni, Si, and Ag is contained in the copper foil in a total amount of 200 to 2000 ppm, the elongation is improved compared to pure copper foil of the same thickness. This is preferable.
  • the thickness t of the copper foil is preferably 4 to 12 ⁇ m.
  • the thickness t is less than 4 ⁇ m, shielding properties and fracture strain are reduced, and it may be difficult to manufacture the copper foil and handle it when laminated with the resin layer.
  • the thickness t is thicker, the breaking strain increases, but when the thickness t exceeds 12 ⁇ m, the rigidity becomes high and the workability may be lowered.
  • the thickness t exceeds 12 ⁇ m, (F ⁇ T) / (f ⁇ t) ⁇ 1 of the copper foil composite described later is not satisfied, and the breaking strain of the copper foil composite tends to decrease.
  • the thickness t of the copper foil is preferably 4 to 40 ⁇ m.
  • the copper foil composite is not required to be flexible as compared with the electromagnetic wave shielding material, so that the maximum value of the thickness t can be 40 ⁇ m.
  • substrate which requires heat dissipation uses a copper foil closely_contact
  • ⁇ Resin layer> It does not restrict
  • the resin film include a PET (polyethylene terephthalate) film, a PI (polyimide) film, an LCP (liquid crystal polymer) film, and a PP (polypropylene) film.
  • a PET film can be suitably used.
  • the strength can be increased by using a biaxially stretched film as the PET film.
  • the thickness T of the resin layer is not particularly limited, but is usually about 7 to 25 ⁇ m for use as an electromagnetic shielding material.
  • the thickness T is thinner than 7 ⁇ m, the value of (F ⁇ T) described later is lowered, and (F ⁇ T) / (f ⁇ t) ⁇ 1 is not satisfied, and the (elongation) breaking strain of the copper foil composite is reduced. There is a tendency.
  • the thickness T exceeds 25 ⁇ m, the (elongation) breaking strain of the copper foil composite tends to decrease, and in particular, (F ⁇ T) may exceed 3.1.
  • an adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive.
  • an adhesive from the viewpoint of not applying excessive heat to the resin film.
  • the thickness of the adhesive layer is preferably 6 ⁇ m or less. When the thickness of the adhesive layer exceeds 6 ⁇ m, only the copper foil is easily broken after being laminated on the copper foil composite. On the other hand, when used for an FPC or a substrate that requires heat dissipation, the thickness T of the resin layer is usually about 7 to 70 ⁇ m.
  • F and T of the “resin layer” of the present invention are values of the resin layer excluding the adhesive layer.
  • the resin layer and the adhesive layer cannot be distinguished from each other, only the copper foil may be dissolved from the copper foil composite and the measurement including the adhesive layer as the “resin layer” may be performed. This is because the resin layer is usually thicker than the adhesive layer, and even if the adhesive layer is included in the resin layer, the values of F and T may not be significantly different from those of the resin layer alone.
  • a cover lay film may be attached to form both sides of the copper foil as a resin layer.
  • F and T of the resin layer are the sum of the strength and thickness of the cover lay.
  • the copper foil may be subjected to a surface treatment such as a roughening treatment.
  • a surface treatment for example, those described in JP-A-2002-217507, JP-A-2005-15861, JP-A-2005-4826, JP-B-7-32307, etc. should be adopted. Can do.
  • the present inventors have found that the bendability can be improved without impairing the workability by defining the thickness and strain of the copper foil and the resin layer constituting the copper foil composite. That is, assuming that the thickness t of the copper foil, the stress f of the copper foil at a tensile strain of 4%, the thickness T of the resin layer, and the stress F of the resin layer at a tensile strain of 4%, (F ⁇ T) / (f ⁇ t) It has been found that copper foil composites satisfying ⁇ 1 have high ductility and improved bendability.
  • (F ⁇ T) and (f ⁇ t) both represent stress per unit width (for example, (N / mm)), and the copper foil and the resin layer are laminated to be the same Therefore, (F ⁇ T) / (f ⁇ t) represents the ratio of the force applied to the copper foil and the resin layer constituting the copper foil composite. Therefore, when this ratio is 1 or more, more force is applied to the resin layer side, and the resin layer side is stronger than the copper foil. As a result, the copper foil is easily affected by the resin layer, and the copper foil extends uniformly, so the ductility of the entire copper foil composite is also considered to be high.
  • F and f may be stresses with the same amount of strain after plastic deformation has occurred, but taking into account the fracture strain of the copper foil and the strain at which plastic deformation of the resin layer (for example, PET film) begins. Therefore, the tensile strain is 4%.
  • the F can be measured by a tensile test of the copper foil remaining after removing the resin layer from the copper foil composite with a solvent or the like.
  • the measurement of f can be performed by a tensile test of the resin layer remaining after removing the copper foil from the copper foil composite with an acid or the like.
  • the resin layer can be used separately for the tensile test. T and t can be measured by observing the cross section of the copper foil composite with various microscopes (such as an optical microscope).
  • various microscopes such as an optical microscope.
  • the values of F and f of the copper foil and the resin layer before manufacturing the copper foil composite are known, the characteristics of the copper foil and the resin layer greatly change when the copper foil composite is manufactured.
  • the known F and f values before manufacturing the copper foil composite may be employed.
  • the ductility of the copper foil composite is increased and the breaking strain is also improved.
  • the breaking strain of the copper foil composite is 30% or more
  • the copper foil composite is wound around the outer side of the shielded body such as a cable to form a shield material, and then the copper foil composite is accompanied with the cable routing and the like. It is difficult for cracks to occur when the body is bent.
  • the value of the strain at break of the copper foil composite is adopted when the copper foil and the resin layer break at the same time by a tensile test, and when the crack occurs only in the copper foil, the copper foil is cracked. Adopt the distortion when entering.
  • Electromagnetic shielding material ⁇ Manufacture of copper foil composite> After hot rolling a tough pitch copper ingot and removing oxides by surface cutting, cold rolling, annealing and pickling are repeated until the thickness is reduced to a predetermined thickness, and finally annealing is performed to ensure workability. Obtained. The tension during cold rolling and the rolling conditions in the width direction of the rolled material were made uniform so that the copper foil had a uniform structure in the width direction. In the next annealing, temperature control was performed using a plurality of heaters so as to obtain a uniform temperature distribution in the width direction, and the copper temperature was measured and controlled. A predetermined amount of Sn or Ag was added to some of the copper ingots to obtain a copper foil. A commercially available biaxially stretched PET film having a predetermined thickness was attached to the copper foil with a urethane adhesive having a thickness of 3 ⁇ m to produce a copper foil composite.
  • ⁇ Tensile test> A plurality of strip-shaped tensile test pieces having a width of 12.7 mm were prepared from the copper foil composite. In addition, some of these tensile test pieces are immersed in a solvent such as ethyl acetate to dissolve the adhesive layer, and the PET film and the copper foil are peeled off. Got. The tensile test was performed under the conditions of a gauge length of 100 mm and a tensile speed of 10 mm / min, and the average value of N10 was adopted as the strength (stress) and elongation values.
  • ⁇ Bendability of copper foil composite A copper foil composite was wound around the outside of a cable having a diameter of 5 mm and a diameter of 2.5 mm, respectively, to produce a vertical shield wire. This shielded wire was bent once at ⁇ 180 ° and a bending radius of 2.5 mm, and the crack of the copper foil composite was visually determined. The copper foil composite with no cracks was marked as ⁇ . Note that the vertical shield wire refers to a wire wound in the longitudinal direction of the copper foil composite along the axial direction of the cable. ⁇ Processability of copper foil composite> When the above-described longitudinally attached shield wire was produced, the copper foil composite that can be easily wound was marked with a circle.
  • Copper foil composite for FPC Manufacture of copper foil composite> After hot rolling a tough pitch copper ingot and removing oxides by surface cutting, cold rolling, annealing and pickling are repeated until the thickness is reduced to a predetermined thickness, and finally annealing is performed to ensure workability. Obtained. The tension during cold rolling and the rolling conditions in the width direction of the rolled material were made uniform so that the copper foil had a uniform structure in the width direction. In the next annealing, temperature control was performed using a plurality of heaters so as to obtain a uniform temperature distribution in the width direction, and the copper temperature was measured and controlled. A predetermined amount of Sn or Ag was added to some of the copper ingots to obtain a copper foil.
  • ⁇ Tensile test> A plurality of strip-shaped tensile test pieces having a width of 12.7 mm were prepared from the copper foil composite. Further, some of the tensile test pieces were immersed in a solvent (TPE3000 manufactured by Toray Engineering Co., Ltd.) to dissolve the adhesive layer and the PI film, thereby obtaining a test piece having only a copper foil. Some test pieces were obtained by dissolving copper foil with ferric chloride or the like to obtain PI-only test pieces. The tensile test was performed under the conditions of a gauge length of 100 mm and a tensile speed of 10 mm / min, and the average value of N10 was adopted as the strength (stress) and elongation values.
  • Example 4 in which the breaking strain of the copper foil composite was less than 30%, the bendability when wound on a cable having a diameter of 2.5 mm was deteriorated, but the bendability for a cable having a diameter of 5 mm was good, Sufficient practicality can be obtained depending on the application.
  • the breaking strain of the copper foil composite is 30% or more, and the ductility of the copper foil composite is excellent.
  • the bending test was performed by repeatedly bending the shielded wire with the copper foil composite of each example vertically attached at ⁇ 90 ° and a bending radius of 30 mm, the bending property was superior to the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 加工性を向上させた銅箔複合体を提供する。銅箔と樹脂層とを積層してなる銅箔複合体であって、銅箔の破断歪が5%以上であり、銅箔の厚みt、引張歪4%における銅箔の応力f、樹脂層の厚みT、引張歪4%における樹脂層の応力F としたとき、(F×T)/(f×t)≧1を満たす。

Description

銅箔複合体
 本発明は、電磁波シールド材、FPC用銅積層体、放熱を要する基板として好適な銅箔複合体に関する。
 銅箔と樹脂フィルムとを積層してなる銅箔複合体が電磁波シールド材として用いられている(例えば、特許文献1)。銅箔は電磁波シールド性を有し、樹脂フィルムは銅箔の補強のために積層される。樹脂フィルムを銅箔に積層する方法としては、樹脂フィルムを接着剤で銅箔にラミネートする方法、樹脂フィルム表面に銅を蒸着させる方法などがある。電磁波シールド性を確保するためには銅箔の厚みを数μm以上とする必要があることから、銅箔に樹脂フィルムをラミネートする方法が安価である。
 又、銅箔は電磁波シールド性に優れ、被シールド体を覆うことで被シールド体の全面をシールドすることができる。これに対し、銅の編組等で被シールド体を覆った場合、網目部分で被シールド体が露出し、電磁波シールド性に劣る。
 又、電磁波シールド材のほかにも、FPC(フレキシブルプリント基板)用として銅箔と樹脂フィルム(PET、PI(ポリイミド)、LCP(液晶ポリマー)等)との複合体が使用されている。特に、FPCではPIが主に用いられる。
 FPCにおいても屈曲や折り曲げの変形を受けることがあり、屈曲性に優れたFPCが開発され、携帯電話等に採用されている(特許文献2)。通常、FPCが屈曲部位で受ける屈曲や折り曲げは一方向の曲げ変形であり、電線等に巻かれた電磁波シールド材が曲げられるときの変形と比較すると単純であり、FPC用の複合体は加工性があまり要求されていなかった。
特開平7-290449号公報 特許第3009383号公報
 ところで、銅箔複合体はケーブル等の被シールド体の外側に巻き付けられてシールド材として用いられることがあるが、銅箔は破れたり亀裂を生じ易いため、折り曲げや屈曲性を必要とする用途で使用することが困難であった。又、FPC用の銅箔複合体においても、設置場所によっては加工性が要求されることがある。
 又、銅箔厚みは、厚いと伸びが向上するが薄くなると延性が極端に低下するという性質がある。一方で、銅箔を厚くすると剛性が高くなるため、例えば電線等の被シールド体に銅箔複合体を巻き付けるシールド加工が困難になるという問題がある。つまり、銅箔複合体の屈曲性と加工性とを両立することは難しい。
 従って、本発明の目的は、加工性を向上させた銅箔複合体を提供することにある。
 本発明者らは、銅箔複合体を構成する銅箔と樹脂層の厚みや歪を規定することで、加工性を損なわずに折り曲げ性を向上することができることを見出し、本発明に至った。
 すなわち、本発明の銅箔複合体は、銅箔と樹脂層とを積層してなり、前記銅箔の破断歪が5%以上であり、前記銅箔の厚みt、引張歪4%における前記銅箔の応力f、前記樹脂層の厚みT、引張歪4%における前記樹脂層の応力Fとしたとき、(F×T)/(f×t)≧1を満たす。
 前記銅箔複合体の破断歪が30%以上であることが好ましい。
 (F×T)≦3.1(N/mm)を満たすことが好ましい。
 前記銅箔がSn、Mn、Cr、Zn、Zr、Mg、Ni、Si、及びAgの群から選ばれる少なくとも1種を合計で200~2000質量ppm含有することが好ましい。
 本発明によれば、加工性を向上させた銅箔複合体を得ることができる。
 本発明の銅箔複合体は、銅箔と樹脂層とを積層してなる。
<銅箔>
 銅箔の破断歪を5%以上とする。破断歪が5%未満であると、後述する銅箔複合体の(F×T)/(f×t)≧1を満たしていても銅箔複合体の延びが低下する。(F×T)/(f×t)≧1を満たしていれば銅箔の破断歪は大きいほど好ましい。
 銅箔の導電性が60%IACS以上の高いものでシールド性能が向上することから、銅箔の組成としては純度が高いものが好ましく、純度は好ましくは99.5%以上、より好ましくは99.8%以上とする。好ましくは屈曲性に優れる圧延銅箔がよいが、電解銅箔であってもよい。
 銅箔中に他の元素を含有してもよく、これらの元素と不回避的不純物との合計含有量が0.5質量%未満であればよい。特に、銅箔中に、Sn、Mn、Cr、Zn、Zr、Mg、Ni、Si、Agの群から選ばれる少なくとも1種を合計で200~2000ppm含有すると、同じ厚みの純銅箔より伸びが向上するので好ましい。
 又、電磁波シールド材用途の場合、銅箔の厚みtを4~12μmとすると好ましい。厚みtが4μm未満であると、シールド性や破断歪が低下すると共に、銅箔の製造や樹脂層と積層する際の取扱いが困難となる場合がある。一方、厚みtが厚い方が破断歪は上昇するが、厚みtが12μmを超えると剛性が高くなり、加工性が低下する場合がある。また、厚みtが12μmを超えると、後述する銅箔複合体の(F×T)/(f×t)≧1を満たさず、銅箔複合体の破断歪がかえって低下する傾向にある。特に、厚みtが12μmを超えると、(F×T)/(f×t)≧1を満たすためにTを厚くする必要があり、(F×T)が3.1を超える場合がある。
 一方、FPC用、又は放熱を要する基板に用いる場合、銅箔の厚みtを4~40μmとすると好ましい。FPC、又は放熱を要する基板の場合、電磁波シールド材に比べて銅箔複合体に柔軟性を要求されないので、厚みtの最大値を40μmとすることができる。又、樹脂層としてPIを用いる場合には、PIの強度が高いことから、銅箔の厚みtが厚くても(F×T)/(f×t)≧1を満たすことができる。なお、放熱を要する基板は、FPCの銅箔に回路を設けず、被放熱体に銅箔を密着させて使用されるものである。
<樹脂層>
 樹脂層としては特に制限されず、樹脂材料を銅箔に塗布して樹脂層を形成してもよいが、銅箔に貼付可能な樹脂フィルムが好ましい。樹脂フィルムとしては、PET(ポリエチレンテレフタレート)フィルム、PI(ポリイミド)フィルム、LCP(液晶ポリマー)フィルム、PP(ポリプロピレン)フィルムが挙げられ、特にPETフィルムを好適に用いることができる。特に、PETフィルムとして2軸延伸フィルムを用いることにより、強度を高めることができる。
 樹脂層の厚みTは特に制限されないが、電磁波シールド材用途の場合、通常、7~25μm程度である。厚みTが7μmより薄いと後述する(F×T)の値が低くなり、(F×T)/(f×t)≧1を満たさず、銅箔複合体の(伸び)破断歪が低下する傾向にある。一方、厚みTが25μmを超えても銅箔複合体の(伸び)破断歪が低下する傾向にあり、特に、(F×T)が3.1を超える場合がある。
 樹脂フィルムと銅箔との積層方法としては、樹脂フィルムと銅箔との間に接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。接着剤層の厚みは6μm以下であることが好ましい。接着剤層の厚みが6μmを超えると、銅箔複合体に積層した後に銅箔のみが破断しやすくなる。
 一方、FPC用、又は放熱を要する基板に用いる場合、樹脂層の厚みTは、通常、7~70μm程度である。厚みTが7μmより薄いと後述する(F×T)の値が低くなり、(F×T)/(f×t)≧1を満たさず、銅箔複合体の(伸び)破断歪が低下する傾向にある。一方、樹脂層としてPIを用いる場合、PIはPETと比較すると密着性を高くすることができるので、(F×T)=3.1を超えても特に延性が下がることはない。
 なお、樹脂層と接着剤層とを区別でき、これらを分離可能な場合は、本発明の「樹脂層」のF及びTは接着剤層を除いた樹脂層の値をいう。但し、樹脂層と接着剤層との区別ができない場合には、銅箔複合体から銅箔のみを溶かし、接着剤層も含めて「樹脂層」として測定してもよい。これは、通常、樹脂層は接着剤層より厚く、接着剤層を樹脂層に含めても、樹脂層のみの場合と比べてFやTの値が大きく違わないこともあるからである。
 FPCの場合、カバーレイフィルムを付けて銅箔の両面が樹脂層となる場合があるが、この場合、樹脂層のF、Tはカバーレイ分の強度、厚みを加えたものとする。
 なお、銅箔のうち樹脂層の形成面と反対面に、耐食性(耐塩害性)を向上させるため1μm厚程度のSnめっき層を形成してもよい。
 また、樹脂層と銅箔との密着性を向上させるため、銅箔に粗化処理等の表面処理を行っても良い。この表面処理としては、例えば、特開2002-217507号公報、特開2005-15861号公報、特開2005-4826号公報、特公平7-32307号公報などに記載されているものを採用することができる。
 本発明者らは、銅箔複合体を構成する銅箔と樹脂層の厚みや歪を規定することで、加工性を損なわずに折り曲げ性を向上することができることを見出した。
 つまり、銅箔の厚みt、引張歪4%における銅箔の応力f、樹脂層の厚みT、引張歪4%における樹脂層の応力Fとしたとき、(F×T)/(f×t)≧1を満たす銅箔複合体は、延性が高くなって折り曲げ性が向上することが判明している。
 この理由は明確ではないが、(F×T)及び(f×t)はいずれも単位幅当たりの応力(例えば、(N/mm))を表し、しかも銅箔と樹脂層は積層されて同一の幅を有するから、(F×T)/(f×t)は銅箔複合体を構成する銅箔と樹脂層に加わる力の比を表している。従って、この比が1以上であることは、樹脂層側により多くの力が加わることであり、樹脂層側の方が銅箔より強いことになる。このことにより銅箔は樹脂層の影響を受けやすくなり、銅箔が均一に伸びるようになるため、銅箔複合体全体の延性も高くなると考えられる。
 ここで、F及びfは、塑性変形が起きた後の同じ歪量での応力であればよいが、銅箔の破断歪と、樹脂層(例えばPETフィルム)の塑性変形が始まる歪とを考慮して引張歪4%の応力としている。又、Fの測定は、銅箔複合体から樹脂層を溶剤等で除去して残った銅箔の引張試験により行うことができる。同様に、fの測定は、銅箔複合体から銅箔を酸等で除去して残った樹脂層の引張試験により行うことができる。銅箔と樹脂層とが接着剤を介して積層されている場合は、F及びfの測定の際、接着剤層を溶剤等で除去すると、銅箔と樹脂層とが剥離し、銅箔と樹脂層とを別個に引張試験に用いることができる。T及びtは、銅箔複合体の断面を各種顕微鏡(光学顕微鏡等)で観察して測定することができる。
 又、銅箔複合体を製造する前の銅箔と樹脂層のF及びfの値が既知の場合であって、銅箔複合体を製造する際に銅箔及び樹脂層の特性が大きく変化するような熱処理を行わない場合は、銅箔複合体を製造する前の上記既知のF及びf値を採用してもよい。
 以上のように、銅箔複合体の(F×T)/(f×t)≧1を満たすことにより、銅箔複合体の延性が高くなって破断歪も向上する。好ましくは、銅箔複合体の破断歪が30%以上であると、ケーブル等の被シールド体の外側に銅箔複合体を巻き付けてシールド材とした後、ケーブルの引き回し等に伴って銅箔複合体が折り曲げられたときに割れが生じ難い。
 ここで、銅箔複合体の破断歪の値は、引張試験によって銅箔と樹脂層が同時に破断する場合はその歪を採用し、銅箔のみに先に亀裂が生じた場合は銅箔に亀裂が入ったときの歪を採用する。
 (F×T)≦3.1(N/mm)を満たすと、樹脂層の剛性が低くなり、銅箔複合体の加工性が向上する。また、銅箔とPETが剥がれ難くなり、複合体の延性が向上するため、ケーブル等に銅箔複合体を巻いて曲げたときに割れが生じにくくなる。一方、(F×T)が3.1(N/mm)を超えると、樹脂層の剛性が高くなるだけでなく、樹脂層の強度が高くなるために銅箔複合体に引張や曲げ等の変形を加えたときに樹脂層が銅箔から剥がれ易くなり、複合体の破断歪が低下する場合がある。
1.電磁波シールド材
<銅箔複合体の製造>
 タフピッチ銅インゴットを熱間圧延し、表面切削で酸化物を取り除いた後、冷間圧延、焼鈍と酸洗を繰り返して所定厚みまで薄くし、最後に焼鈍を行って加工性を確保した銅箔を得た。銅箔が幅方向で均一な組織となるよう、冷間圧延時のテンション及び圧延材の幅方向の圧下条件を均一にした。次の焼鈍では幅方向で均一な温度分布となるよう複数のヒータを使用して温度管理を行い、銅の温度を測定して制御した。銅インゴットのいくつかにはSn又はAgを所定量添加して銅箔を得た。
 市販の所定厚みの2軸延伸PETフィルムを、厚み3μmのウレタン系接着剤で上記銅箔に貼付し、銅箔複合体を製造した。
<引張試験>
 銅箔複合体から幅12.7mmの短冊状の引張試験片を複数作製した。又、この引張試験片のいくつかを酢酸エチルなどの溶剤に浸漬して接着剤層を溶解させ、PETフィルムと銅箔とを剥離し、それぞれPETフィルムのみの試験片、銅箔のみの試験片を得た。
 引張試験は、ゲージ長さ100mm、引張速度10mm/minの条件で行い、N10の平均値を強度(応力)及び伸びの値として採用した。
<銅箔複合体の折り曲げ性>
 銅箔複合体をそれぞれ直径5mm、直径2.5mmのケーブルの外側に巻き付け、縦添えシールド線を作製した。このシールド線を、±180°、曲げ半径2.5mmで1回折り曲げ、銅箔複合体の割れを目視で判定した。銅箔複合体に割れが無いものを○とした。
 なお、縦添えシールド線とは、銅箔複合体長手方向をケーブルの軸方向に沿わせて巻き付けたものをいう。
 <銅箔複合体の加工性>
 上記した縦添えシールド線を作製した際、銅箔複合体の巻き付け作業が容易なものを○とした。
2.FPC用銅箔複合体
<銅箔複合体の製造>
 タフピッチ銅インゴットを熱間圧延し、表面切削で酸化物を取り除いた後、冷間圧延、焼鈍と酸洗を繰り返して所定厚みまで薄くし、最後に焼鈍を行って加工性を確保した銅箔を得た。銅箔が幅方向で均一な組織となるよう、冷間圧延時のテンション及び圧延材の幅方向の圧下条件を均一にした。次の焼鈍では幅方向で均一な温度分布となるよう複数のヒータを使用して温度管理を行い、銅の温度を測定して制御した。銅インゴットのいくつかにはSn又はAgを所定量添加して銅箔を得た。
 銅箔表面にCCLで用いられる一般的な表面処理を施した。処理方法は特公平7-3237号公報に記載されているものを採用した。表面処理後、ラミネート法により、樹脂層であるPI層を銅箔に積層してCCLを作製した。なお、PI層を銅箔に積層させる際、熱可塑性のPI系接着層を介在させたが、この接着層とPIフィルムを含めて樹脂層とした。
<引張試験>
 銅箔複合体から幅12.7mmの短冊状の引張試験片を複数作製した。又、この引張試験片のいくつかを溶剤(東レエンジニアリング製のTPE3000)に浸漬して接着剤層とPIフィルムを溶解し、銅箔のみの試験片を得た。いくつかの試験片は塩化第二鉄等で銅箔を溶かし、PIのみの試験片を得た。
 引張試験は、ゲージ長さ100mm、引張速度10mm/minの条件で行い、N10の平均値を強度(応力)及び伸びの値として採用した。
 <銅箔複合体の加工性>
 曲げ半径R=0mmのW曲げ試験(日本伸銅協会技術標準JCBA T307に準ずる)により銅箔に割れが入らないものを○とし、割れたものを×とした。
 電磁波シールド材について得られた結果を表1に示し、FPC用銅箔複合体について得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1~12の場合、(F×T)/(f×t)≧1を満たし、銅箔複合体の折り曲げ性と加工性が共に良好であった。但し、(F×T)が3.1(N/mm)を超えた実施例1~3の場合、直径2.5mmのケーブルに巻き付けた際の折り曲げ性が劣化したが、直径5mmのケーブルについての折り曲げ性は良好であり、用途によっては十分な実用性が得られる。又、銅箔複合体の破断歪が30%未満の実施例4の場合、直径2.5mmのケーブルに巻き付けた際の折り曲げ性が劣化したが、直径5mmのケーブルについての折り曲げ性は良好であり、用途によっては十分な実用性が得られる。
 なお、実施例4以外の各実施例の場合、銅箔複合体の破断歪がいずれも30%以上であり、銅箔複合体の延性が優れている。
 また、各実施例の銅箔複合体を縦添えしたシールド線を、±90°で曲げ半径30mmで繰り返し曲げ変形を加えて屈曲試験を行ったところ、屈曲性においても比較例より優れていた。
 一方、破断歪が5%未満の銅箔を用いた比較例1の場合、銅箔の強度が低下したために応力fを測定できず、曲げ性も劣化した。
 又、(F×T)/(f×t)が1未満である比較例2~5の場合、破断歪が5%以上の銅箔を使用したにもかかわらず、銅箔複合体の破断歪は20%以下となり、曲げ性が劣化した。
 又、比較例1~5の場合、銅箔複合体の破断歪がいずれも30%未満であり、銅箔複合体の延性が劣っている。
 表2から明らかなように、実施例13~24の場合も、(F×T)/(f×t)≧1を満たし、銅箔複合体の加工性が良好であった。
 なお、実施例13~24は、銅箔複合体の破断歪がいずれも30%以上であり、銅箔複合体の延性が優れている。
 一方、比較例6~9の場合、(F×T)/(f×t)が1未満であり、破断歪が5%以上の銅箔を使用したにもかかわらず、銅箔複合体の破断歪は20%以下となり、加工性が劣化した。
 又、比較例6~9の場合、銅箔複合体の破断歪がいずれも30%未満であった。

Claims (4)

  1.  銅箔と樹脂層とを積層してなる銅箔複合体であって、
     前記銅箔の破断歪が5%以上であり、
     前記銅箔の厚みt、引張歪4%における前記銅箔の応力f、前記樹脂層の厚みT、引張歪4%における前記樹脂層の応力Fとしたとき、(F×T)/(f×t)≧1を満たす銅箔複合体。
  2.  前記銅箔複合体の破断歪が30%以上である請求項1に記載の銅箔複合体。
  3.  (F×T)≦3.1(N/mm)を満たす請求項1又は2に記載の銅箔複合体。
  4.  前記銅箔がSn、Mn、Cr、Zn、Zr、Mg、Ni、Si、及びAgの群から選ばれる少なくとも1種を合計で200~2000質量ppm含有する請求項1~3のいずれか記載の銅箔複合体。
PCT/JP2010/059416 2009-07-07 2010-06-03 銅箔複合体 WO2011004664A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20100796975 EP2439063B1 (en) 2009-07-07 2010-06-03 Copper foil composite
KR1020117029034A KR101270324B1 (ko) 2009-07-07 2010-06-03 구리박 복합체
US13/382,360 US20120141809A1 (en) 2009-07-07 2010-06-03 Copper foil composite
CN201080031222.XA CN102481759B (zh) 2009-07-07 2010-06-03 铜箔复合体
JP2011513809A JP4859262B2 (ja) 2009-07-07 2010-06-03 銅箔複合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-161068 2009-07-07
JP2009161068 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004664A1 true WO2011004664A1 (ja) 2011-01-13

Family

ID=43429090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059416 WO2011004664A1 (ja) 2009-07-07 2010-06-03 銅箔複合体

Country Status (7)

Country Link
US (1) US20120141809A1 (ja)
EP (1) EP2439063B1 (ja)
JP (1) JP4859262B2 (ja)
KR (1) KR101270324B1 (ja)
CN (1) CN102481759B (ja)
TW (1) TWI400161B (ja)
WO (1) WO2011004664A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008260A1 (ja) * 2010-07-15 2012-01-19 Jx日鉱日石金属株式会社 銅箔複合体
WO2012132814A1 (ja) 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 金属箔複合体及びそれを用いたフレキシブルプリント基板、並びに成形体及びその製造方法
WO2012157469A1 (ja) 2011-05-13 2012-11-22 Jx日鉱日石金属株式会社 銅箔複合体及びそれに使用される銅箔、並びに成形体及びその製造方法
WO2013105520A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
WO2013105521A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 金属箔複合体、銅箔、並びに成形体及びその製造方法
WO2013105265A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
WO2013105266A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
CN103766010A (zh) * 2011-09-01 2014-04-30 Jx日矿日石金属株式会社 柔性印刷布线板用的铜箔、覆铜层叠板、柔性印刷布线板以及电子设备
US9079378B2 (en) 2009-03-31 2015-07-14 Jx Nippon Mining & Metals Corporation Electromagnetic shielding material and method of producing electromagnetic shielding material
RU2574461C1 (ru) * 2012-01-13 2016-02-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Композит с медной фольгой, формованный продукт и способ их получения
JP2018152466A (ja) * 2017-03-13 2018-09-27 Jx金属株式会社 電磁波シールド材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497423B2 (en) * 2010-08-20 2013-07-30 Honeywell International, Inc High voltage DC tether
WO2017085849A1 (ja) * 2015-11-19 2017-05-26 三井金属鉱業株式会社 誘電体層を有するプリント配線板の製造方法
CN113792516A (zh) * 2021-08-13 2021-12-14 深圳市志凌伟业光电有限公司 电磁屏蔽构件电路的优化方法和电磁屏蔽构件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039383B2 (ja) 1987-12-08 1991-02-08 Rinnai Kk
JPH03112643A (ja) * 1989-09-27 1991-05-14 Hitachi Chem Co Ltd 銅張積層板及びその製造方法
JPH04144187A (ja) * 1990-10-04 1992-05-18 Hitachi Chem Co Ltd 銅張積層板用銅箔樹脂接着層
JPH073237B2 (ja) 1986-10-20 1995-01-18 株式会社ユニシアジェックス タ−ビン型燃料ポンプ
JPH0732307B2 (ja) 1991-12-17 1995-04-10 日鉱グールド・フォイル株式会社 印刷回路用銅箔の表面処理方法
JPH07290449A (ja) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd シート状の電磁波シールド成形材料及びその製造方法
JP2002144510A (ja) * 2000-11-08 2002-05-21 Toray Ind Inc 樹脂シートおよび金属積層シート
JP2002217507A (ja) 2001-01-22 2002-08-02 Sony Chem Corp フレキシブルプリント基板
JP2005004826A (ja) 2003-06-10 2005-01-06 Sony Corp 光ピックアップ装置とその製造方法
JP2005015861A (ja) 2003-06-26 2005-01-20 Nikko Materials Co Ltd 銅箔及びその製造方法
JP2005191443A (ja) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd 電磁波シールド用積層体
JP2006272743A (ja) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd 積層体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3301197A1 (de) * 1983-01-15 1984-07-19 Akzo Gmbh, 5600 Wuppertal Polyimid-laminate mit hoher schaelfestigkeit
JPH1058593A (ja) * 1996-08-27 1998-03-03 Hitachi Chem Co Ltd 銅張積層板
JP3346265B2 (ja) * 1998-02-27 2002-11-18 宇部興産株式会社 芳香族ポリイミドフィルムおよびその積層体
JP4147639B2 (ja) * 1998-09-29 2008-09-10 宇部興産株式会社 フレキシブル金属箔積層体
JP2002249835A (ja) * 2001-02-26 2002-09-06 Nippon Mining & Metals Co Ltd 積層板用銅合金箔
JP4629717B2 (ja) * 2006-11-11 2011-02-09 ジョインセット株式会社 軟性金属積層フィルム及びその製造方法
JP5055088B2 (ja) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 銅箔及びそれを用いたフレキシブルプリント基板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073237B2 (ja) 1986-10-20 1995-01-18 株式会社ユニシアジェックス タ−ビン型燃料ポンプ
JPH039383B2 (ja) 1987-12-08 1991-02-08 Rinnai Kk
JPH03112643A (ja) * 1989-09-27 1991-05-14 Hitachi Chem Co Ltd 銅張積層板及びその製造方法
JPH04144187A (ja) * 1990-10-04 1992-05-18 Hitachi Chem Co Ltd 銅張積層板用銅箔樹脂接着層
JPH0732307B2 (ja) 1991-12-17 1995-04-10 日鉱グールド・フォイル株式会社 印刷回路用銅箔の表面処理方法
JPH07290449A (ja) 1994-04-27 1995-11-07 Matsushita Electric Works Ltd シート状の電磁波シールド成形材料及びその製造方法
JP2002144510A (ja) * 2000-11-08 2002-05-21 Toray Ind Inc 樹脂シートおよび金属積層シート
JP2002217507A (ja) 2001-01-22 2002-08-02 Sony Chem Corp フレキシブルプリント基板
JP2005004826A (ja) 2003-06-10 2005-01-06 Sony Corp 光ピックアップ装置とその製造方法
JP2005015861A (ja) 2003-06-26 2005-01-20 Nikko Materials Co Ltd 銅箔及びその製造方法
JP2005191443A (ja) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd 電磁波シールド用積層体
JP2006272743A (ja) * 2005-03-29 2006-10-12 Nippon Steel Chem Co Ltd 積層体の製造方法

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079378B2 (en) 2009-03-31 2015-07-14 Jx Nippon Mining & Metals Corporation Electromagnetic shielding material and method of producing electromagnetic shielding material
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
WO2012008260A1 (ja) * 2010-07-15 2012-01-19 Jx日鉱日石金属株式会社 銅箔複合体
CN103429424A (zh) * 2011-03-31 2013-12-04 Jx日矿日石金属株式会社 金属箔复合体和使用其的挠性印刷基板、以及成形体及其制造方法
WO2012132814A1 (ja) 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 金属箔複合体及びそれを用いたフレキシブルプリント基板、並びに成形体及びその製造方法
JP5127086B1 (ja) * 2011-03-31 2013-01-23 Jx日鉱日石金属株式会社 金属箔複合体及びそれを用いたフレキシブルプリント基板、並びに成形体及びその製造方法
CN103429424B (zh) * 2011-03-31 2015-12-02 Jx日矿日石金属株式会社 金属箔复合体和使用其的挠性印刷基板、以及成形体及其制造方法
KR101528995B1 (ko) * 2011-03-31 2015-06-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 금속박 복합체 및 그것을 사용한 플렉시블 프린트 기판, 그리고 성형체 및 그 제조 방법
US20140113121A1 (en) * 2011-03-31 2014-04-24 Jx Nippon Mining & Metals Corporation Metal foil composite, flexible printed circuit, formed product and method of producing the same
CN103501997A (zh) * 2011-05-13 2014-01-08 Jx日矿日石金属株式会社 铜箔复合体和用于其的铜箔、以及成型体及其制造方法
JP5705311B2 (ja) * 2011-05-13 2015-04-22 Jx日鉱日石金属株式会社 銅箔複合体及びそれに使用される銅箔、並びに成形体及びその製造方法
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
WO2012157469A1 (ja) 2011-05-13 2012-11-22 Jx日鉱日石金属株式会社 銅箔複合体及びそれに使用される銅箔、並びに成形体及びその製造方法
US20140162084A1 (en) * 2011-05-13 2014-06-12 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
JPWO2012157469A1 (ja) * 2011-05-13 2014-07-31 Jx日鉱日石金属株式会社 銅箔複合体及びそれに使用される銅箔、並びに成形体及びその製造方法
CN103501997B (zh) * 2011-05-13 2015-11-25 Jx日矿日石金属株式会社 铜箔复合体和用于其的铜箔、以及成型体及其制造方法
KR101529417B1 (ko) * 2011-05-13 2015-06-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 구리박 복합체 및 그에 사용되는 구리박, 그리고 성형체 및 그 제조 방법
CN103766010A (zh) * 2011-09-01 2014-04-30 Jx日矿日石金属株式会社 柔性印刷布线板用的铜箔、覆铜层叠板、柔性印刷布线板以及电子设备
KR20140099518A (ko) * 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 동박 복합체, 그리고 성형체 및 그 제조 방법
KR20140099531A (ko) * 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 금속박 복합체, 동박, 그리고 성형체 및 그 제조 방법
CN104010810A (zh) * 2012-01-13 2014-08-27 Jx日矿日石金属株式会社 铜箔复合体、以及成形体及其制造方法
CN104039545A (zh) * 2012-01-13 2014-09-10 Jx日矿日石金属株式会社 金属箔复合体、铜箔、以及成形体及其制造方法
CN104080604A (zh) * 2012-01-13 2014-10-01 Jx日矿日石金属株式会社 铜箔复合体、以及成形体及其制造方法
JP2013144382A (ja) * 2012-01-13 2013-07-25 Jx Nippon Mining & Metals Corp 金属箔複合体、銅箔、並びに成形体及びその製造方法
TWI482702B (zh) * 2012-01-13 2015-05-01 Jx Nippon Mining & Metals Corp A copper foil composite, and a molded body and a method for producing the same
WO2013105265A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
KR20140099530A (ko) * 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 동박 복합체, 그리고 성형체 및 그 제조 방법
WO2013105521A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 金属箔複合体、銅箔、並びに成形体及びその製造方法
EP2803481A4 (en) * 2012-01-13 2015-09-16 Jx Nippon Mining & Metals Corp COPPER FILM CONNECTOR, FORM BODY AND MANUFACTURING METHOD THEREFOR
KR20140099532A (ko) * 2012-01-13 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 동박 복합체, 그리고 성형체 및 그 제조 방법
WO2013105520A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
RU2570030C1 (ru) * 2012-01-13 2015-12-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Композит с медной фольгой, формованный продукт и способ их получения
RU2574461C1 (ru) * 2012-01-13 2016-02-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Композит с медной фольгой, формованный продукт и способ их получения
KR101626691B1 (ko) 2012-01-13 2016-06-01 제이엑스금속주식회사 동박 복합체, 그리고 성형체 및 그 제조 방법
KR101628590B1 (ko) 2012-01-13 2016-06-08 제이엑스금속주식회사 동박 복합체, 그리고 성형체 및 그 제조 방법
KR101628591B1 (ko) 2012-01-13 2016-06-08 제이엑스금속주식회사 금속박 복합체, 동박, 그리고 성형체 및 그 제조 방법
KR101635692B1 (ko) 2012-01-13 2016-07-01 제이엑스금속주식회사 동박 복합체, 그리고 성형체 및 그 제조 방법
WO2013105266A1 (ja) * 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
JP5475196B2 (ja) * 2012-01-13 2014-04-16 Jx日鉱日石金属株式会社 銅箔複合体、並びに成形体及びその製造方法
JP2018152466A (ja) * 2017-03-13 2018-09-27 Jx金属株式会社 電磁波シールド材

Also Published As

Publication number Publication date
CN102481759B (zh) 2014-10-08
JP4859262B2 (ja) 2012-01-25
TWI400161B (zh) 2013-07-01
US20120141809A1 (en) 2012-06-07
KR20120023746A (ko) 2012-03-13
CN102481759A (zh) 2012-05-30
EP2439063A1 (en) 2012-04-11
EP2439063A4 (en) 2013-05-01
JPWO2011004664A1 (ja) 2012-12-20
EP2439063B1 (en) 2015-02-25
TW201109167A (en) 2011-03-16
KR101270324B1 (ko) 2013-05-31

Similar Documents

Publication Publication Date Title
JP4859262B2 (ja) 銅箔複合体
JP5705311B2 (ja) 銅箔複合体及びそれに使用される銅箔、並びに成形体及びその製造方法
JP5000792B2 (ja) 電磁波シールド用複合体
KR101528995B1 (ko) 금속박 복합체 및 그것을 사용한 플렉시블 프린트 기판, 그리고 성형체 및 그 제조 방법
JP5057932B2 (ja) 圧延銅箔及びフレキシブルプリント配線板
JP6294257B2 (ja) フレキシブルプリント基板用銅合金箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
KR102098479B1 (ko) 플렉시블 프린트 기판용 구리박, 그것을 사용한 구리 피복 적층체, 플렉시블 프린트 기판 및 전자 기기
JP5753115B2 (ja) プリント配線板用圧延銅箔
JP5546571B2 (ja) 銅箔、銅張積層体、フレキシブル配線板及び立体成型体
JP6220132B2 (ja) 銅箔、銅張積層体、フレキシブル配線板及び立体成型体
JP6712561B2 (ja) フレキシブルプリント基板用圧延銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
JP2018134739A (ja) 金属・樹脂複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031222.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011513809

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117029034

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 92/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010796975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13382360

Country of ref document: US