WO2010143609A1 - 電子装置の形成方法、電子装置、半導体装置及びトランジスタ - Google Patents

電子装置の形成方法、電子装置、半導体装置及びトランジスタ Download PDF

Info

Publication number
WO2010143609A1
WO2010143609A1 PCT/JP2010/059631 JP2010059631W WO2010143609A1 WO 2010143609 A1 WO2010143609 A1 WO 2010143609A1 JP 2010059631 W JP2010059631 W JP 2010059631W WO 2010143609 A1 WO2010143609 A1 WO 2010143609A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
conductive wiring
atoms
layer
wiring film
Prior art date
Application number
PCT/JP2010/059631
Other languages
English (en)
French (fr)
Inventor
悟 高澤
雅紀 白井
石橋 暁
忠 増田
保夫 中台
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN2010800257256A priority Critical patent/CN102804341A/zh
Priority to JP2011518532A priority patent/JPWO2010143609A1/ja
Publication of WO2010143609A1 publication Critical patent/WO2010143609A1/ja
Priority to US13/310,056 priority patent/US20120119269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electronic device, a semiconductor device, and a transistor, and more particularly to a reduction in resistance of a conductive wiring film of a liquid crystal display device.
  • Al-based wiring uses a Mo-based or Ti-based barrier metal layer, so an adhesion layer made of a Mo film or Ti film is formed on the lower layer in contact with a glass substrate or Si semiconductor to prevent peeling. If a Cu layer is formed on the adhesion layer to form a two-layered conductive wiring film, the adhesion layer becomes both an adhesion layer and a barrier layer. This has the effect of preventing Si diffusion into the Cu layer.
  • An object of the present invention is to provide a technique that does not increase the resistivity of a conductive wiring film.
  • the inventors of the present invention have discovered that when the Cu layer comes into contact with a gas having Si in the chemical structure at a high temperature, Si atoms diffuse into the Cu layer, resulting in an increase in the resistivity of the Cu layer. . And in order to prevent the spreading
  • the present invention created based on such a discovery is a method of forming an electronic device, comprising: a step of forming a conductive wiring film containing Cu and Ca on at least a surface; and a silicon on the surface of the conductive wiring film.
  • the conductive wiring film contains at least Cu atoms in an amount of more than 50 atomic%, and contains Ca atoms, the total number of Cu atoms and Ca atoms.
  • This is a method of forming an electronic device containing 0.3 atomic% or more based on the number.
  • this invention is a formation method of the electronic device which contains Ca atom in 5.0 atomic% or less with respect to the total number of atoms of Cu atom and Ca atom.
  • the present invention is the method of forming an electronic device, wherein the step of forming the insulating layer includes a step of introducing a silane-based gas and forming a silicon compound on the conductive wiring film by a CVD method. Further, the present invention has a conductive wiring film containing Cu and Ca at least on the surface, and an insulating layer containing silicon and formed on the surface of the conductive wiring film, wherein the conductive wiring film comprises:
  • the electronic device contains at least Cu in an amount of more than 50 atomic% and contains Ca atoms in an amount of 0.3 atomic% or more with respect to the total number of Cu atoms and Ca atoms.
  • the present invention has a conductive wiring film containing Cu and Ca at least on the surface, and an insulating layer containing silicon formed on the surface of the conductive wiring film, and the conductive wiring film comprises at least This is a semiconductor device containing more than 50 atomic% of Cu and containing 0.3 atomic% or more of Ca with respect to the total number of atoms of Cu and Ca.
  • the present invention has a conductive wiring film containing Cu and Ca at least on the surface, and an insulating layer containing silicon formed on the surface of the conductive wiring film, and the conductive wiring film comprises at least This is a transistor containing more than 50 atomic% of Cu and containing 0.3 atomic% or more of Ca with respect to the total number of atoms of Cu and the number of Ca atoms.
  • the present invention is a transistor in which a gate electrode film is formed of the conductive wiring film, and a gate insulating film in contact with the gate electrode film is formed of the insulating layer.
  • the gate insulating film is a transistor formed by bringing a source gas containing Si into contact with the gate electrode film.
  • the present invention may further include a source region, a drain region that is spaced apart from the source region, and a semiconductor region positioned between the source region and the drain region, wherein the gate insulating film includes the gate insulating film
  • the gate electrode film is disposed in contact with the semiconductor region, the gate electrode film is disposed in contact with the gate insulating film, and a voltage applied to the gate electrode film to form the semiconductor region with the source region and the source region.
  • This is a transistor in which the drain region becomes conductive.
  • a source electrode film and a drain electrode film are formed of the conductive wiring film, and an insulating film or an interlayer insulating film in contact with the source electrode film and the drain electrode film is formed of the insulating layer. It is a transistor.
  • the insulating film is a transistor formed by bringing a source gas containing Si into contact with the source electrode film and the drain electrode film.
  • the present invention provides a source region, a drain region spaced apart from the source region, a semiconductor region located between the source region and the drain region, and a contact with the semiconductor region.
  • a gate electrode film disposed in contact with the gate insulating film, and applying a voltage to the gate electrode film to form the semiconductor region with the source region and the source region A transistor in which a drain region is electrically connected.
  • the resistance value of the conductive wiring film does not increase. Since the resistance value of the conductive layer is small, the conductive wiring film can be formed by the conductive layer, and the conductive wiring film can be constituted by two layers of the adhesion layer and the conductive layer.
  • FIG. 2 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention (2).
  • FIG. 2 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention (2).
  • FIG. 2 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention (2).
  • FIG. 2 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention (2).
  • FIG. 3 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention.
  • FIG. 3 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention.
  • FIG. 3 is a diagram for explaining a process of manufacturing the liquid crystal display device of the present invention.
  • the figure for demonstrating the positional relationship of an adhesion layer and a conductive layer The figure for demonstrating the apparatus which manufactures the conductive wiring film of this invention Graph showing the relationship between the SiH 4 treatment temperature and the resistivity of the conductive wiring layer of the present invention Graph showing the relationship between SiH 4 treatment temperature and resistivity of pure Cu conductive wiring film Graph showing the relationship between the conductive Ca content of the wiring film and SiH 4 before and after the treatment of the resistivity of the present invention Graph showing an Auger analysis result showing a composition in the depth direction of a conductive wiring film having an adhesion layer made of a CuCaO film and a pure Cu layer: before SiH 4 treatment Graph showing the result of Auger analysis showing the composition in the depth direction of a conductive wiring film having an adhesion layer composed of a CuCaO film and a pure Cu layer: after SiH 4 treatment Graph showing the result of Auger analysis showing
  • Substrate 9a, 9b Conductive wiring film 51 .
  • Adhesion layer 52 Conductive layer
  • Reference numeral 11 in FIG. 1A denotes a substrate used in the transistor manufacturing method of the present invention
  • reference numeral 100 in FIG. 5 denotes a film forming apparatus that forms a conductive layer on the surface of the substrate 11.
  • the film forming apparatus 100 includes a vacuum chamber 103, and a vacuum exhaust system 114 is connected to the vacuum chamber 103.
  • a copper alloy target 111 is disposed in the vacuum chamber 103, and a substrate holder 108 is disposed at a position facing the copper alloy target 111.
  • the inside of the vacuum chamber 103 is evacuated, the substrate 11 is carried in with the vacuum atmosphere in the vacuum chamber 103 maintained, and is held by the substrate holder 108.
  • This substrate 11 is a transparent substrate made of glass.
  • a gas introduction system 105 is connected to the vacuum chamber 103, and sputtering gas (Ar gas here) and oxygen-containing gas (here O 2 gas) are supplied from the gas introduction system 105 while evacuating the inside of the vacuum chamber 103.
  • sputtering gas Ar gas here
  • oxygen-containing gas here O 2 gas
  • the sputtered particles made of the constituent material of the copper alloy target 111 reach the surface of the substrate 11, and an adhesion layer is formed on the surface of the substrate 11.
  • the copper alloy target 111 contains Ca (calcium) and copper, and the adhesion layer contains oxygen, Ca, and Cu (herein referred to as a CuCaO layer).
  • the introduction of the oxygen-containing gas and the sputtering gas is stopped, the inside of the vacuum chamber 103 is once evacuated to a high vacuum atmosphere, the sputtering gas is then introduced from the gas introduction system 105, and the sputtering gas atmosphere containing no oxygen-containing gas is obtained.
  • the copper alloy target 111 is sputtered, a conductive layer is formed on the adhesion layer.
  • Ca is contained in the copper alloy target 111 by 0.3 atomic% or more. That is, when the Ca content (atomic%) is (Ca atoms) / (Ca atoms + Cu atoms) ⁇ 100, the copper alloy target 111 has a Ca content of 0.3 atomic% or more. Has been. When the Cu content (atomic%) is (Cu atoms) / (Ca atoms + Cu atoms) ⁇ 100, the Cu content of the copper alloy target 111 exceeds 50 atomic%.
  • the Ca content (atomic%) is (Ca atoms) / (Ca atoms + Cu atoms) ⁇ 100
  • the Cu content (atomic%) is (Cu atoms).
  • / (Number of Ca atoms + number of Cu atoms) ⁇ 100 since the ratio of Cu and Ca in the thin film formed from the copper alloy target 111 is the same as that of the copper alloy target 111, the conductive layer on the adhesion layer
  • the Ca content is 0.3 atomic% or more, and the Cu content (atomic%) is a value exceeding 50 atomic%.
  • the conductive layer Since the conductive layer has a low Ca content and does not contain oxygen, it has the same electrical conductivity as pure copper.
  • the adhesion layer is formed on the substrate 11. Then, a conductive wiring film 9a composed of two layers of the conductive layer is formed (FIG. 1B).
  • Reference numeral 51 in FIG. 4 indicates an adhesion layer, and 52 indicates a conductive layer.
  • the substrate 11 is taken out from the vacuum chamber 103, the conductive wiring film 9a is patterned by a photolithography process and an etching process, and a gate made of a part of the conductive wiring film 9a is formed on the substrate 11.
  • An electrode film 12 is formed (FIG. 1C).
  • the substrate 11 is carried into the CVD chamber, Si source gas containing Si in the chemical structure, such as SiH 4 gas, and a reactive gas that reacts with the Si source gas are introduced, and an insulating property made of a silicon compound is introduced.
  • the gate insulating layer 14 is formed so as to cover the exposed portion of the substrate 11 and the gate electrode film 12 (FIG. 2A).
  • the gate electrode film 12 formed of a part of the conductive wiring film 9a is heated to a temperature higher than the temperature at which a protective film described later is formed (at a temperature of 250 ° C. or higher), while Si is contained in the chemical structure. It is exposed to Si source gas.
  • the gate electrode film 12 has a conductive layer 52 containing 0.3% by weight or more of Ca exposed on the surface (FIG. 4). Ca prevents Si from diffusing and does not increase its resistance value.
  • the gate insulating layer 14 is an insulating layer made of SiN, but may be an insulating layer made of SiO 2 or an insulating layer made of SiON.
  • first silicon layer 16 and a second silicon layer 18 are formed in this order on the gate insulating layer 14 from the substrate 11 side by CVD (FIG. 2B).
  • the second silicon layer 18 has a lower resistance value than the first silicon layer 16 due to the addition of impurities.
  • the first and second silicon layers 16 and 18 are composed of amorphous silicon layers, but may be single crystals or polycrystals.
  • the substrate 11 on which the second silicon layer 18 is exposed is moved to the film forming apparatus 100 or a film forming apparatus different from the film forming apparatus 100.
  • the conductive wiring film 9b also includes an adhesion layer 51 containing O and a conductive layer 52 not containing O shown in FIG.
  • the Cu content exceeds 50 atomic%
  • the Ca content is 0.3 atomic% or more.
  • the source electrode film 27 and the drain electrode film 28 separated from the conductive wiring film 9a are formed by the photolithography process and the etching process in FIG. 2C, and the second silicon layer 18 is formed.
  • the source region 31 is formed by the portion located below the bottom surface of the source electrode film 27, and the drain region 32 is formed by the portion located below the bottom surface of the drain electrode film 28.
  • an opening 26 is formed between the source region 31 and the source electrode film 27, and the drain region 32 and the drain electrode film 28.
  • the position below the source region 31, the bottom surface position of the opening 26, and the drain A semiconductor portion 16 c is formed from the first silicon layer 16 between the lower position of the region 32.
  • the substrate 11 is carried into the CVD apparatus and the substrate 11 is removed while being evacuated.
  • the Si source gas containing Si in the chemical structure, such as SiH 4 gas, and a reactive gas that reacts with the Si source gas are introduced into the CVD chamber by heating, and the source electrode film 27 and the drain electrode film 28 are covered.
  • an insulating protective film 34 such as a silicon nitride film (SiN x ) made of a silicon compound is formed so as to fill the opening 26 (FIG. 3B).
  • the source electrode film 27 and the drain electrode film 28, which are part of the conductive wiring film 9b, are at a temperature lower than the temperature at which the gate insulating layer 14 is formed (for example, a temperature of 200 ° C. or higher). It is exposed to a Si source gas having Si in the chemical structure while being heated to a temperature of less than 300 ° C.
  • the conductive layer 52 having a Ca content of 0.3 atomic% or more is located on the surface, and Ca prevents Si from diffusing and the resistance value does not increase.
  • a contact hole is formed in the protective film 34, and a transparent electrode film 36 connected to the source electrode film 27 or the drain electrode film 28 through the contact hole is formed (FIG. 3C).
  • the source region 31, the drain region 32, and the semiconductor portion 16c have the same conductivity type.
  • the semiconductor portion 16c has a lower dopant concentration and higher resistance than the source region 31 and the drain region 32, and the source region 31 and the drain region 32 are usually separated by the high resistance.
  • the charge layer has a resistance between the source region 31 and the drain region 32. The value decreases, and the source region 31 and the drain region 32 are connected.
  • the source region 31 and the drain region 32 have the same conductivity type, but the present invention also includes the case where the semiconductor portion 16c and the source region 31 and the drain region 32 have opposite conductivity types. And the drain region 32 are separated by a pn junction.
  • a voltage is applied to the gate electrode film 12 to form a charge layer (inversion layer) having a conductivity type opposite to that of the semiconductor portion 16c in the semiconductor portion 16c, The region 31 and the drain region 32 can be connected by the charge layer.
  • a voltage is applied to and stopped from the transparent electrode film 36 by turning on and off the transistor.
  • a common electrode is disposed on the transparent electrode film 36 so as to be spaced apart, and a liquid crystal is disposed between the transparent electrode film 36 and the common electrode.
  • the conductive wiring films 9 a and 9 b have a two-layer structure of the adhesion layer 51 and the conductive layer 52, and the conductive layer 52 was used as a low resistance layer, but between the conductive layer 52 and the adhesion layer 51.
  • a low resistance layer such as a pure copper layer may be provided to form a conductive wiring film having a three-layer structure.
  • a layer containing an element different from Ca or oxygen may be provided between them to form a conductive wiring film having a laminated structure of four or more layers.
  • the adhesion layer 51 and the conductive layer 52 can be formed from the same target, and the adhesion layer 51 may contain Ca. However, the adhesion layer may not contain Ca but may be a Cu layer containing oxygen. Further, the adhesion layer may be a Ti layer or a Mo layer.
  • SiH 4 gas is exemplified as the gas having Si in the chemical structure. However, the present invention is not limited to this, and widely includes other gases having Si such as Si 2 H 6 .
  • the resistivity was measured by performing the SiH 4 gas treatment exposing the SiH 4 gas while heating the wiring film.
  • SiH 4 gas treatment after heated in a vacuum atmosphere, the temperature was increased such that the glass substrate temperature is a temperature in the range of 250 ⁇ 300 ° C., a SiH 4 gas and N 2 gas into the vacuum atmosphere, SiH 4 In this process, the gas is introduced at 8.5 Pa and N 2 gas at 101.5 Pa (total pressure is 110 Pa in total), and the wiring film is exposed to the gas atmosphere for an exposure time of 60 seconds.
  • FIG. 6 shows a conductive wiring film (300 nm CuCa layer) having the same structure and composition as the conductive wiring film constituting the gate electrode film, the source electrode film, and the drain electrode film of the above embodiment on the glass substrate.
  • the resistivity is measured by changing the temperature, treating with SiH 4 gas, and no increase in resistivity is observed.
  • FIG. 7 also shows the relationship between the temperature of the wiring film formed on the glass substrate and the change in resistivity.
  • FIG. 7 shows the case of a wiring film (thickness 300 nm) made of pure copper. In FIG. 7, the resistivity increases as the temperature increases.
  • the adhesive layer and the conductive layer conductive wiring layer having a graph showing the relationship before and after the resistivity of Ca content and SiH 4 processing of the conductive layer, SiH 4 gas treatment, a glass substrate after heating in a vacuum atmosphere to be 270 ° C., a SiH 4 gas and N 2 gas into a vacuum atmosphere, so that the SiH 4 gas 8.5 Pa, N 2 gas 101.5Pa (total pressure 110 Pa) introduced Then, the wiring film was exposed to the gas atmosphere for an exposure time of 60 seconds.
  • the left side shows the resistivity before SiH 4 treatment and the right side shows the resistivity after SiH 4 treatment.
  • the Ca content in the conductive layer is desirably 0.3 atomic% or more. Since the ratio of Cu and Ca of the thin film formed from the copper target containing Ca is the same as the ratio of the target and the ratio of the thin film, it is desirable that the Ca content in the target is also 0.3 atomic% or more. . In addition, if the Ca content is at least 5 atomic%, the resistivity does not increase, which is desirable. Even when the Ca content is more than 5 atomic%, the same effect can be obtained, but the production of the target may be difficult.
  • an amorphous silicon layer is formed on a glass substrate, a wiring layer is formed on the surface, and the composition in the depth direction of the wiring film before and after the SiH 4 treatment is determined by Auger analysis while scraping the surface by sputtering. Was measured.
  • the conditions of SiH 4 treatment are the same as in the bar graph (SiH 4 gas treatment is performed by heating a glass substrate in a vacuum atmosphere to 270 ° C., and then adding SiH 4 gas and N 2 gas into the vacuum atmosphere. Then, SiH 4 gas was introduced at 8.5 Pa and N 2 gas was introduced at 101.5 Pa (total pressure 110 Pa), and the wiring film was exposed to the gas atmosphere for an exposure time of 60 seconds.
  • FIG. 9 shows an analysis result before SiH 4 treatment of a wiring film in which an adhesion layer made of a Cu film containing Ca and O is formed on an amorphous silicon layer, and a layer of pure copper is laminated.
  • FIG. an analysis result after SiH 4 treatment film. It can be seen that Si penetrates near the surface of the wiring film (near the surface of the pure copper layer) after the SiH 4 treatment.
  • FIG. 12 shows the analysis result after the SiH 4 treatment of the wiring film. No penetration of Si is seen, indicating the reason for no increase in resistivity. Ca is concentrated at a high concentration on the surface of the conductive layer, and it is presumed that this is the reason why the diffusion preventing ability is high even at a low content of 0.3 atomic%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

 導電性配線膜の抵抗率を上昇させない技術を提供する。化学構造中にSi原子を有するガスに高温で曝される導電性配線膜9a、9bの表面には、Caを0.3原子%以上の含有率で含有する導電層52を設ける。導電層52の表面にSiを含有するゲート絶縁層や保護膜を形成する際に、導電層52が化学構造中にSiを有する原料ガスに曝されても、導電層52の内部にはSi原子が拡散しないため、抵抗値は上昇しない。ガラス基板やシリコン半導体からのSi拡散を防止するために、密着層としてCuCaO層を形成することもできる。

Description

電子装置の形成方法、電子装置、半導体装置及びトランジスタ
 本発明は電子装置、半導体装置及びトランジスタに係り、特に、液晶表示装置の導電性配線膜の低抵抗化に関する。
 従来より、TFT(Thin film transistor)パネルにはAl系配線が広く用いられているが、最近では、大型テレビの普及とともにTFTパネルが増々大型化し、配線の低抵抗化とパネルの低コスト化が求められている。そのため、Al系配線に替わり、より低抵抗なCu系配線へ変更する要求が高まっている。
 Cu系配線をTFTパネルに用いた場合には、ガラス基板や下地膜との密着性が悪く、下地となるSi層との間で原子の拡散が発生する(バリア性の劣化)等の問題がある。
 一般的にAl系配線では、Mo系やTi系のバリアメタル層が用いられているため、Mo膜やTi膜から成る密着層を剥離防止のためにガラス基板やSi半導体と接触する下層に形成し、密着層上にCu層を形成して二層構造の導電性配線膜とすれば、密着層が接着層とバリア層の両方になり、ガラス基板からの剥離防止やSi半導体やガラス基板からのCu層へのSi拡散防止の効果がある。
 しかし、Cu系配線の場合、ガラス基板とCu層との間や、シリコン半導体とCu層との間に密着層を配置しても、ガラス基板やシリコン半導体からのSiの拡散は防止できるが、密着層上にCu層などの導電性配線膜を形成した後のプロセス中に、導電性配線膜の抵抗率が上昇してしまうという問題が発生した。
特開2009-070881 特表2008-506040
 本発明の課題は、導電性配線膜の抵抗率を上昇させない技術を提供することにある。
 本発明の発明者等は、Cu層が化学構造中にSiを有するガスと高温で接触すると、Si原子がCu層中に拡散し、その結果、Cu層の抵抗率が上昇することを発見した。
 そして、Siの拡散を防止するためには、拡散防止のために、Cu層中にCaを含有させればよいことを見い出し、本発明の創作に至った。
 そしてSi拡散を有効に防止できるCaのCu層への含有率も本発明の発明者等によって見出した。
 そのような発見に基づいて創作された本発明は、電子装置の形成方法であって、少なくとも表面にCuとCaを含む導電性配線膜を形成する工程と、前記導電性配線膜の表面にシリコンを含む絶縁層を形成する工程と、を有し、前記導電性配線膜は、少なくともCu原子を50原子%より多く含有し、Ca原子を、Cuの原子数とCaの原子数の合計の原子数に対し、0.3原子%以上含有する電子装置の形成方法である。
 また、本発明は、Ca原子を、Cuの原子数とCaの原子数の合計原子数に対し、5.0原子%以下の範囲で含有する電子装置の形成方法である。
 また、本発明は、前記絶縁層を形成する工程は、シラン系ガスを導入してCVD法により前記導電性配線膜上でシリコン化合物を形成する工程を有する電子装置の形成方法である。
 また、本発明は、少なくとも表面にCuとCaを含む導電性配線膜と、シリコンを含み、前記導電性配線膜の表面に形成された絶縁層と、を有し、前記導電性配線膜は、少なくともCuを50原子%より多く含有し、Ca原子をCuの原子数とCaの原子数の合計原子数に対し、0.3原子%以上含有する電子装置である。
 また、本発明は、少なくとも表面にCuとCaを含む導電性配線膜と、前記導電性配線膜の表面に形成されるシリコンを含む絶縁層と、を有し、前記導電性配線膜は、少なくともCuを50原子%より多く含有し、CaをCuの原子数とCaの原子数の合計原子数に対し、0.3原子%以上含有する半導体装置である。
 また、本発明は、少なくとも表面にCuとCaを含む導電性配線膜と、前記導電性配線膜の表面に形成されるシリコンを含む絶縁層と、を有し、前記導電性配線膜は、少なくともCuを50原子%より多く含有し、CaをCuの原子数とCaの原子数の合計の原子数に対し、0.3原子%以上含有するトランジスタである。
 また、本発明は、ゲート電極膜が前記導電性配線膜で形成され、前記ゲート電極膜に接触するゲート絶縁膜が前記絶縁層で形成されたトランジスタである。
 また、本発明は、前記ゲート絶縁膜は、Siを含む原料ガスが前記ゲート電極膜と接触して形成されたトランジスタである。
 また、本発明は、ソース領域と、前記ソース領域とは離間して配置されたドレイン領域と、前記ソース領域と前記ドレイン領域の間に位置する半導体領域とを有し、前記ゲート絶縁膜は前記半導体領域に接触して配置され、前記ゲート電極膜は前記ゲート絶縁膜と接触して配置され、前記ゲート電極膜に電圧を印加して前記半導体領域に形成する電荷層によって、前記ソース領域と前記ドレイン領域の間が導通状態になるトランジスタである。
 また、本発明は、ソース電極膜とドレイン電極膜とが前記導電性配線膜で形成され、前記ソース電極膜と前記ドレイン電極膜に接触する絶縁膜もしくは層間絶縁膜が前記絶縁層で形成されたトランジスタである。
 また、本発明は、前記絶縁膜は、Siを含む原料ガスが前記ソース電極膜と前記ドレイン電極膜とに接触して形成されたトランジスタである。
 また、本発明は、ソース領域と、前記ソース領域とは離間して配置されたドレイン領域と、前記ソース領域と前記ドレイン領域の間に位置する半導体領域と、前記半導体領域に接触して配置されたゲート絶縁膜と、前記ゲート絶縁膜と接触して配置されたゲート電極膜とを有し、前記ゲート電極膜に電圧を印加して前記半導体領域に形成する電荷層によって、前記ソース領域と前記ドレイン領域の間が導通されるトランジスタである。
 導電性配線膜上にSiを含有する薄膜を形成しても、導電性配線膜の抵抗値は上昇しない。
 導電層の抵抗値は小さいので、導電層によって導電性配線膜を形成することができ、また、密着層と導電層の二層で導電性配線膜を構成することもできる。
:本発明の液晶表示装置を製造する工程を説明するための図(1) :本発明の液晶表示装置を製造する工程を説明するための図(1) :本発明の液晶表示装置を製造する工程を説明するための図(1) :本発明の液晶表示装置を製造する工程を説明するための図(2) :本発明の液晶表示装置を製造する工程を説明するための図(2) :本発明の液晶表示装置を製造する工程を説明するための図(2) 本発明の液晶表示装置を製造する工程を説明するための図(3) 本発明の液晶表示装置を製造する工程を説明するための図(3) 本発明の液晶表示装置を製造する工程を説明するための図(3) 密着層と導電層の位置関係を説明するための図 本発明の導電性配線膜を製造する装置を説明するための図 本発明の導電性配線膜のSiH4処理温度と抵抗率の関係を示すグラフ 純Cuの導電性配線膜のSiH4処理温度と抵抗率の関係を示すグラフ 本発明の導電性配線膜のCa含有率とSiH4処理前後の抵抗率との関係を示すグラフ CuCaO膜から成る密着層と純Cu層とを有する導電性配線膜の深さ方向の組成を示すオージェ分析結果であるグラフ:SiH4処理の前 CuCaO膜から成る密着層と純Cu層とを有する導電性配線膜の深さ方向の組成を示すオージェ分析結果であるグラフ:SiH4処理の後 本発明の導電性配線膜の深さ方向の組成を示すオージェ分析結果であるグラフ:SiH4処理の前 本発明の導電性配線膜の深さ方向の組成を示すオージェ分析結果であるグラフ:SiH4処理の後
11……基板
9a、9b……導電性配線膜
51……密着層
52……導電層
 図1(a)の符号11は、本発明のトランジスタ製造方法に用いられる基板であり、図5の符号100は、その基板11の表面に導電層を形成する成膜装置を示している。
 成膜装置100は、真空槽103を有しており、真空槽103には、真空排気系114が接続されている。
 真空槽103内には、銅合金ターゲット111が配置されており、銅合金ターゲット111と対面する位置には基板ホルダ108が配置されている。真空槽103内部を真空排気しておき、基板11を、真空槽103内の真空雰囲気を維持した状態で搬入し、基板ホルダ108に保持させる。この基板11はガラス製の透明な基板である。
 真空槽103にはガス導入系105が接続されており、真空槽103の内部を真空排気しながらガス導入系105からスパッタリングガス(ここではArガス)と酸素含有ガス(ここではO2ガス)を導入し、所定圧力で銅合金ターゲット111をスパッタリングすると、銅合金ターゲット111の構成材料から成るスパッタリング粒子が基板11の表面に到達し、基板11表面に密着層が形成される。
 銅合金ターゲット111は、Ca(カルシウム)と銅とを含有しており、密着層は、酸素とCaとCuを含有する(ここではCuCaO層と表す)。
 次に、酸素含有ガスとスパッタリングガスの導入を停止し、真空槽103内を一旦高真空雰囲気に真空排気した後、ガス導入系105からスパッタリングガスを導入し、酸素含有ガスを含まないスパッタリングガス雰囲気で銅合金ターゲット111をスパッタリングすると、密着層上に導電層が形成される。
 Cuの重量と、Caの重量との合計を100とした場合に、銅合金ターゲット111中には、Caは0.3原子%以上含まれている。即ち、Caの含有率(原子%)を(Caの原子数)/(Caの原子数+Cuの原子数)×100としたとき、銅合金ターゲット111は、0.3原子%以上のCa含有率にされている。なお、Cuの含有率(原子%)を(Cuの原子)/(Caの原子+Cuの原子)×100とした場合、この銅合金ターゲット111のCuの含有率は50原子%を超えている。
 薄膜の場合でも、Caの含有率(原子%)を(Caの原子数)/(Caの原子数+Cuの原子数)×100とし、Cuの含有率(原子%)を(Cuの原子数)/(Caの原子数+Cuの原子数)×100とすると、銅合金ターゲット111から形成される薄膜中のCuとCaの比率は、銅合金ターゲット111と同じであるから、密着層上の導電層は、Caの含有率が0.3原子%以上であり、Cuの含有率(原子%)は50原子%を超える値である。
 導電層はCaの含有率が低く、酸素を含有しないので、純銅と同程度の電気伝導性を有しており、密着層上に導電層が形成されると、基板11上には、密着層と導電層の二層からなる導電性配線膜9aが形成される(図1(b))。図4の符号51は密着層、52は導電層を示している。
 導電性配線膜9aの形成後、基板11を真空槽103内から取り出し、フォトリソ工程とエッチング工程によって導電性配線膜9aをパターニングし、基板11上に、導電性配線膜9aの一部から成るゲート電極膜12を形成する(図1(c))。
 次いで、その基板11をCVD室内に搬入し、SiH4ガス等の、化学構造中にSiを含むSi原料ガスと、Si原料ガスと反応する反応性ガスとを導入し、シリコン化合物から成る絶縁性のゲート絶縁層14を、基板11の露出部分や、ゲート電極膜12を覆うように形成する(図2(a))。
 このとき、導電性配線膜9aの一部から成るゲート電極膜12は、後述する保護膜を形成するときの温度よりも高温(250℃以上の温度)に加熱されながら、化学構造中にSiを有するSi原料ガスに曝される。ゲート電極膜12は、表面にはCaを0.3重量%以上含有する導電層52が露出しており(図4)、CaがSiの拡散を防止し、抵抗値が上昇しない。ゲート絶縁層14は、SiNから成る絶縁層であるが、SiO2から成る絶縁層や、SiONから成る絶縁層であってもよい。
 次いで、ゲート絶縁層14上に、CVD法により、第一のシリコン層16と、第二のシリコン層18とを基板11側からこの順序で形成する(図2(b))。
 第二のシリコン層18は、不純物添加により、第一のシリコン層16よりも抵抗値が低くされている。ここでは第一、第二のシリコン層16,18は、アモルファスシリコン層で構成されているが、単結晶や多結晶であってもよい。
 第二のシリコン層18が表面に露出する基板11は、上記成膜装置100、又はそれとは異なる成膜装置に移動され、上記成膜装置100内の銅合金ターゲット111の組成と同様に、Caを0.3原子%以上の含有率で含有し、Cuを50原子%を超える含有率(原子%)で含有する銅合金ターゲット111をスパッタリングし、第二のシリコン層18上に導電性配線膜9bを形成する(図2(c))。
 この導電性配線膜9bも、その一部でゲート電極膜12を形成した導電性配線膜9aと同様に、図4に示されたOを含有する密着層51と、Oを含有しない導電層52とで構成されており、密着層51と導電層52は、Cuの含有率が50原子%を超え、Caの含有率が0.3原子%以上にされている。
 図2(c)をフォトリソ工程とエッチング工程によって図3(a)のように、導電性配線膜9aから互いに分離したソース電極膜27とドレイン電極膜28とを形成し、第二のシリコン層18のうち、ソース電極膜27の底面下に位置する部分によってソース領域31が形成し、ドレイン電極膜28の底面下に位置する部分によってドレイン領域32を形成する。このとき、ソース領域31及びソース電極膜27と、ドレイン領域32及びドレイン電極膜28との間には開口26が形成されており、ソース領域31の下方位置と、開口26の底面位置と、ドレイン領域32の下方位置との間に亘って、第一のシリコン層16から、半導体部16cを形成する。
 次いで、 ソース電極膜27表面と、ドレイン電極膜28表面と、開口26の底面部分の半導体部16c表面とが吐出した状態で、基板11をCVD装置内に搬入し、真空排気しながら基板11を加熱し、SiH4ガス等の、化学構造中にSiを含むSi原料ガスと、Si原料ガスと反応する反応性ガスとをCVD室内に導入し、ソース電極膜27と、ドレイン電極膜28を覆い、開口26を充填するように、シリコン化合物から成る窒化シリコン膜(SiNx)等の絶縁性の保護膜34を形成する(図3(b))。
 保護膜34の形成の際、導電性配線膜9bの一部から成るソース電極膜27とドレイン電極膜28は、ゲート絶縁層14を形成したときの温度よりも低い温度(例えば200℃以上の温度。高くても300℃未満の温度)に加熱されながら化学構造中にSiを有するSi原料ガスに曝される。
 ソース電極膜27とドレイン電極膜28は、表面にCa含有率が0.3原子%以上である導電層52が位置しており、CaがSiの拡散を防止し、抵抗値が上昇しない。
 次に、保護膜34にコンタクトホールを形成し、コンタクトホールを介してソース電極膜27又はドレイン電極膜28と接続する透明電極膜36を形成する(図3(c))。
 本発明のトランジスタはソース領域31とドレイン領域32と半導体部16cの導電型は同じである。この場合、半導体部16cはドーパントが低濃度でソース領域31とドレイン領域32よりも高抵抗であり、通常ではソース領域31とドレイン領域32との間は、その高抵抗で分離されている。ゲート電極膜12に電圧を印加して半導体部16cに半導体部16cと同じ導電型で低抵抗の電荷層(蓄積層)を形成すると、ソース領域31とドレイン領域32の間はその電荷層で抵抗値が小さくなり、ソース領域31とドレイン領域32とが接続される。
 他方、ソース領域31及びドレイン領域32とは同じ導電型であるが、半導体部16cとソース領域31及びドレイン領域32との導電型が反対の場合も本発明に含まれ、この場合、ソース領域31とドレイン領域32とはpn接合で分離されており、ゲート電極膜12に電圧を印加して半導体部16cに、半導体部16cとは逆導電型の電荷層(反転層)を形成させると、ソース領域31とドレイン領域32とを、その電荷層で接続させることができる。
 いずれにしろ、透明電極膜36にはトランジスタの導通と遮断によって電圧の印加と停止が行われる。透明電極膜36上には離間して共通電極が配置されており、透明電極膜36と共通電極の間には液晶が配置されている。透明電極膜36に電圧の印加と停止が切り替えられると液晶の偏光性が制御され、液晶と共通電極を透過する光の光量が変わって所望の表示が行われる。
 また上記導電性配線膜9a、9bは、密着層51と導電層52の二層構造であり、導電層52が低抵抗の層として用いられていたが、導電層52と密着層51の間に純銅層等の低抵抗層を設け、三層構造の導電性配線膜にしてもよい。また、Caや酸素とは異なる元素を含有する層等をそれらの間に設け、四層以上の積層構造の導電性配線膜にしてもよい。
 密着層51と導電層52は同じターゲットから形成でき、密着層51にCaを含有させてもよいが、密着層はCaを含まず、酸素を含むCu層であってもよい。また、密着層は、Ti層、Mo層であってもよい。
 上記実施例では、化学構造中にSiを有するガスとしてSiH4ガスを例示したが、本発明はそれに限定されるものではなく、例えばSi26等、Siを有する他のガスを広く含む。
 ガラス基板上に配線膜を形成した後、真空雰囲気中でガラス基板を昇温させ、配線膜を加熱しながらSiH4ガスに曝すSiH4ガス処理を行って抵抗率を測定した。
 SiH4ガス処理は、ガラス基板温度が250~300℃の範囲の温度になるように真空雰囲気中で加熱して昇温させた後、真空雰囲気中にSiH4ガスとN2ガスを、SiH4ガス8.5Pa、N2ガス101.5Pa(全圧は合計値の110Pa)になるように導入し、そのガス雰囲気に曝露時間60秒の間配線膜を曝す処理である。
 図6は、ガラス基板上に、上記実施例のゲート電極膜、ソース電極膜、ドレイン電極膜を構成させている導電性配線膜と同じ構造・組成の導電性配線膜(300nmのCuCa層)を形成し、温度を変えてSiH4ガス処理し、抵抗率を測定した場合であり、抵抗率の上昇は観察されない。
 図7も、ガラス基板上に形成された配線膜の温度と抵抗率変化の関係を示しており、図7は純銅から成る配線膜(厚さ300nm)の場合である。図7では温度が上昇するにともない抵抗率が上昇している。
 図8は、密着層と導電層を有する導電性配線膜の、導電層中のCa含有率とSiH4処理の前後の抵抗率の関係を示すグラフであり、SiH4ガス処理は、ガラス基板を270℃になるように真空雰囲気中で加熱した後、真空雰囲気中にSiH4ガスとN2ガスを、SiH4ガス8.5Pa、N2ガス101.5Pa(全圧110Pa)になるように導入し、そのガス雰囲気に曝露時間60秒の間配線膜を曝した。
 各Ca添加量に記載された二個の棒グラフのうち、左方がSiH4処理前、右方がSiH4処理後の抵抗率を示している。
 Ca含有率が0.1原子%のときは抵抗率の上昇が見られるが、0.3原子%以上では抵抗率は上昇しない。従って、導電層中のCa含有率は0.3原子%以上であることが望ましい。
 Caを含有する銅ターゲットから形成される薄膜のCuとCaの比率は、ターゲットの比率と薄膜の比率が同じであるから、ターゲット中のCa含有率も0.3原子%以上であることが望ましい。
 また、少なくともCaの含有率が5原子%以下であれば抵抗率が上昇しない為、望ましい。Caの含有率が5原子%よりも多い場合でも同様の効果があるが、ターゲットの製作が難しくなる場合がある。
 次に、ガラス基板上にアモルファスシリコン層を形成し、その表面に配線層を形成し、スパッタリングによって表面を削りながら、オージェ分析によって、SiH4処理の前と後の配線膜の深さ方向の組成を測定した。SiH4処理の条件は、棒グラフのときと同じである(SiH4ガス処理は、ガラス基板を270℃になるように真空雰囲気中で加熱した後、真空雰囲気中にSiH4ガスとN2ガスを、SiH4ガス8.5Pa、N2ガス101.5Pa(全圧110Pa)になるように導入し、そのガス雰囲気に曝露時間60秒の間配線膜を曝した。
 図9は、アモルファスシリコン層上にCaとOを含有するCu膜から成る密着層を形成し、純銅の層を積層した配線膜のSiH4処理前の分析結果であり、図10は、その配線膜のSiH4処理後の分析結果である。SiH4処理後は配線膜表面付近(純銅層の表面付近)にSiが侵入していることが分かる。
 図11は、アモルファスシリコン層上にCaとOを含有するCu膜から成る密着層を形成し、含有率が0.3原子%の導電層を形成した配線膜のSiH4処理前の分析結果であり、図12は、その配線膜のSiH4処理後の分析結果である。Siの侵入は見られず、抵抗率上昇がない理由が示されている。
 Caは導電層の表面に高濃度で集まっており、0.3原子%と低い含有率でも拡散防止能が高い理由であると推定される。 

Claims (12)

  1.  電子装置の形成方法であって、
     少なくとも表面にCuとCaを含む導電性配線膜を形成する工程と、
     前記導電性配線膜の表面にシリコンを含む絶縁層を形成する工程と、を有し、
     前記導電性配線膜は、少なくともCu原子を50原子%より多く含有し、Ca原子を、Cuの原子数とCaの原子数の合計の原子数に対し、0.3原子%以上含有する
     電子装置の形成方法。
  2.  Ca原子を、Cuの原子数とCaの原子数の合計原子数に対し、5.0原子%以下の範囲で含有する請求項1記載の電子装置の形成方法。
  3.  前記絶縁層を形成する工程は、シラン系ガスを導入してCVD法により前記導電性配線膜上でシリコン化合物を形成する工程を有する請求項1又は請求項2のいずれか1項記載の電子装置の形成方法。
  4.  少なくとも表面にCuとCaを含む導電性配線膜と、
     シリコンを含み、前記導電性配線膜の表面に形成された絶縁層と、を有し、
     前記導電性配線膜は、少なくともCuを50原子%より多く含有し、Ca原子をCuの原子数とCaの原子数の合計原子数に対し、0.3原子%以上含有する
     電子装置。
  5.  少なくとも表面にCuとCaを含む導電性配線膜と、
     前記導電性配線膜の表面に形成されるシリコンを含む絶縁層と、を有し、
     前記導電性配線膜は、少なくともCuを50原子%より多く含有し、CaをCuの原子数とCaの原子数の合計原子数に対し、0.3原子%以上含有する
     半導体装置。
  6.  少なくとも表面にCuとCaを含む導電性配線膜と、
     前記導電性配線膜の表面に形成されるシリコンを含む絶縁層と、を有し、
     前記導電性配線膜は、少なくともCuを50原子%より多く含有し、CaをCuの原子数とCaの原子数の合計の原子数に対し、0.3原子%以上含有する
     トランジスタ。
  7.  ゲート電極膜が前記導電性配線膜で形成され、
     前記ゲート電極膜に接触するゲート絶縁膜が前記絶縁層で形成された請求項6記載のトランジスタ。
  8.  前記ゲート絶縁膜は、Siを含む原料ガスが前記ゲート電極膜と接触して形成された請求項7記載のトランジスタ。
  9.  ソース領域と、前記ソース領域とは離間して配置されたドレイン領域と、前記ソース領域と前記ドレイン領域の間に位置する半導体領域とを有し、
     前記ゲート絶縁膜は前記半導体領域に接触して配置され、
     前記ゲート電極膜は前記ゲート絶縁膜と接触して配置され、
     前記ゲート電極膜に電圧を印加して前記半導体領域に形成する電荷層によって、前記ソース領域と前記ドレイン領域の間が導通状態になる請求項7又は請求項8のいずれか1項記載のトランジスタ。
  10.  ソース電極膜とドレイン電極膜とが前記導電性配線膜で形成され、
     前記ソース電極膜と前記ドレイン電極膜に接触する絶縁膜もしくは層間絶縁膜が前記絶縁層で形成された請求項9記載のトランジスタ。
  11.  前記絶縁膜は、Siを含む原料ガスが前記ソース電極膜と前記ドレイン電極膜とに接触して形成された請求項10記載のトランジスタ。
  12.  ソース領域と、前記ソース領域とは離間して配置されたドレイン領域と、前記ソース領域と前記ドレイン領域の間に位置する半導体領域と、前記半導体領域に接触して配置されたゲート絶縁膜と、前記ゲート絶縁膜と接触して配置されたゲート電極膜とを有し、前記ゲート電極膜に電圧を印加して前記半導体領域に形成する電荷層によって、前記ソース領域と前記ドレイン領域の間が導通される請求項7又は請求項8のいずれか1項記載のトランジスタ。
     
PCT/JP2010/059631 2009-06-12 2010-06-07 電子装置の形成方法、電子装置、半導体装置及びトランジスタ WO2010143609A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800257256A CN102804341A (zh) 2009-06-12 2010-06-07 电子装置的形成方法、电子装置、半导体装置以及晶体管
JP2011518532A JPWO2010143609A1 (ja) 2009-06-12 2010-06-07 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
US13/310,056 US20120119269A1 (en) 2009-06-12 2011-12-02 Method for producing electronic device, electronic device, semiconductor device, and transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-140933 2009-06-12
JP2009140933 2009-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/310,056 Continuation US20120119269A1 (en) 2009-06-12 2011-12-02 Method for producing electronic device, electronic device, semiconductor device, and transistor

Publications (1)

Publication Number Publication Date
WO2010143609A1 true WO2010143609A1 (ja) 2010-12-16

Family

ID=43308864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059631 WO2010143609A1 (ja) 2009-06-12 2010-06-07 電子装置の形成方法、電子装置、半導体装置及びトランジスタ

Country Status (6)

Country Link
US (1) US20120119269A1 (ja)
JP (1) JPWO2010143609A1 (ja)
KR (1) KR20120023082A (ja)
CN (1) CN102804341A (ja)
TW (1) TW201110235A (ja)
WO (1) WO2010143609A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987041B1 (ko) * 2013-06-26 2019-09-30 엘지디스플레이 주식회사 표시장치용 산화물 박막 트랜지스터 제조방법
CN104064454A (zh) 2014-06-11 2014-09-24 京东方科技集团股份有限公司 薄膜及阵列基板的制备方法、阵列基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274505A (ja) * 1998-03-23 1999-10-08 Nec Corp 薄膜トランジスタ構造およびその製造方法
JP2004076079A (ja) * 2002-08-14 2004-03-11 Tosoh Corp 配線用薄膜およびスパッタリングターゲット
JP2007138301A (ja) * 1998-10-07 2007-06-07 Lg Philips Lcd Co Ltd 薄膜成膜装置
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2008311283A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット
JP2009043797A (ja) * 2007-08-07 2009-02-26 Mitsubishi Materials Corp 薄膜トランジスター
JP2009203540A (ja) * 2008-02-29 2009-09-10 Mitsubishi Materials Corp 密着性に優れた銅合金複合膜

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196031A (ja) * 1992-12-22 1994-07-15 Natl Res Inst For Metals 酸化物超電導線材の製造方法
EP0751567B1 (en) * 1995-06-27 2007-11-28 International Business Machines Corporation Copper alloys for chip interconnections and method of making
US6268291B1 (en) * 1995-12-29 2001-07-31 International Business Machines Corporation Method for forming electromigration-resistant structures by doping
US5891513A (en) * 1996-01-16 1999-04-06 Cornell Research Foundation Electroless CU deposition on a barrier layer by CU contact displacement for ULSI applications
US6037257A (en) * 1997-05-08 2000-03-14 Applied Materials, Inc. Sputter deposition and annealing of copper alloy metallization
US5969422A (en) * 1997-05-15 1999-10-19 Advanced Micro Devices, Inc. Plated copper interconnect structure
US5893752A (en) * 1997-12-22 1999-04-13 Motorola, Inc. Process for forming a semiconductor device
US6100184A (en) * 1997-08-20 2000-08-08 Sematech, Inc. Method of making a dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer
US6174810B1 (en) * 1998-04-06 2001-01-16 Motorola, Inc. Copper interconnect structure and method of formation
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
US6043146A (en) * 1998-07-27 2000-03-28 Motorola, Inc. Process for forming a semiconductor device
JP4332263B2 (ja) * 1998-10-07 2009-09-16 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタの製造方法
US6100181A (en) * 1999-05-05 2000-08-08 Advanced Micro Devices, Inc. Low dielectric constant coating of conductive material in a damascene process for semiconductors
US6521532B1 (en) * 1999-07-22 2003-02-18 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance
US6551872B1 (en) * 1999-07-22 2003-04-22 James A. Cunningham Method for making integrated circuit including interconnects with enhanced electromigration resistance using doped seed layer and integrated circuits produced thereby
US6686661B1 (en) * 1999-10-15 2004-02-03 Lg. Philips Lcd Co., Ltd. Thin film transistor having a copper alloy wire
US6387806B1 (en) * 2000-09-06 2002-05-14 Advanced Micro Devices, Inc. Filling an interconnect opening with different types of alloys to enhance interconnect reliability
US6291348B1 (en) * 2000-11-30 2001-09-18 Advanced Micro Devices, Inc. Method of forming Cu-Ca-O thin films on Cu surfaces in a chemical solution and semiconductor device thereby formed
US6509262B1 (en) * 2000-11-30 2003-01-21 Advanced Micro Devices, Inc. Method of reducing electromigration in copper lines by calcium-doping copper surfaces in a chemical solution
US6358848B1 (en) * 2000-11-30 2002-03-19 Advanced Micro Devices, Inc. Method of reducing electromigration in copper lines by forming an interim layer of calcium-doped copper seed layer in a chemical solution and semiconductor device thereby formed
US6469387B1 (en) * 2000-11-30 2002-10-22 Advanced Micro Devices, Inc. Semiconductor device formed by calcium doping a copper surface using a chemical solution
US6444580B1 (en) * 2000-11-30 2002-09-03 Advanced Micro Devices, Inc. Method of reducing carbon, sulphur, and oxygen impurities in a calcium-doped copper surface and semiconductor device thereby formed
KR100750922B1 (ko) * 2001-04-13 2007-08-22 삼성전자주식회사 배선 및 그 제조 방법과 그 배선을 포함하는 박막트랜지스터 기판 및 그 제조 방법
US6432822B1 (en) * 2001-05-02 2002-08-13 Advanced Micro Devices, Inc. Method of improving electromigration resistance of capped Cu
JP3530149B2 (ja) * 2001-05-21 2004-05-24 新光電気工業株式会社 配線基板の製造方法及び半導体装置
JP2003017564A (ja) * 2001-07-04 2003-01-17 Fujitsu Ltd 半導体装置およびその製造方法
US6429128B1 (en) * 2001-07-12 2002-08-06 Advanced Micro Devices, Inc. Method of forming nitride capped Cu lines with reduced electromigration along the Cu/nitride interface
US6656836B1 (en) * 2002-03-18 2003-12-02 Advanced Micro Devices, Inc. Method of performing a two stage anneal in the formation of an alloy interconnect
US7115498B1 (en) * 2002-04-16 2006-10-03 Advanced Micro Devices, Inc. Method of ultra-low energy ion implantation to form alloy layers in copper
KR100968560B1 (ko) * 2003-01-07 2010-07-08 삼성전자주식회사 박막 트랜지스터 기판 및 박막 트랜지스터 기판의금속배선 형성방법
US7026244B2 (en) * 2003-08-08 2006-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Low resistance and reliable copper interconnects by variable doping
WO2005021828A2 (en) * 2003-08-21 2005-03-10 Honeywell International Inc. Copper-containing pvd targets and methods for their manufacture
TWI354350B (en) * 2005-05-25 2011-12-11 Au Optronics Corp Copper gate electrode and fabricating method there
KR101167661B1 (ko) * 2005-07-15 2012-07-23 삼성전자주식회사 배선 구조와 배선 형성 방법 및 박막 트랜지스터 기판과 그제조 방법
TW200805667A (en) * 2006-07-07 2008-01-16 Au Optronics Corp A display panel structure having a circuit element and a method of manufacture
JP5234306B2 (ja) * 2006-10-18 2013-07-10 三菱マテリアル株式会社 熱欠陥発生が少なくかつ表面状態の良好なtftトランジスターを用いたフラットパネルディスプレイ用配線および電極並びにそれらを形成するためのスパッタリングターゲット
JP4840172B2 (ja) * 2007-02-07 2011-12-21 三菱マテリアル株式会社 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用配線および電極

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274505A (ja) * 1998-03-23 1999-10-08 Nec Corp 薄膜トランジスタ構造およびその製造方法
JP2007138301A (ja) * 1998-10-07 2007-06-07 Lg Philips Lcd Co Ltd 薄膜成膜装置
JP2004076079A (ja) * 2002-08-14 2004-03-11 Tosoh Corp 配線用薄膜およびスパッタリングターゲット
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2008311283A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット
JP2009043797A (ja) * 2007-08-07 2009-02-26 Mitsubishi Materials Corp 薄膜トランジスター
JP2009203540A (ja) * 2008-02-29 2009-09-10 Mitsubishi Materials Corp 密着性に優れた銅合金複合膜

Also Published As

Publication number Publication date
US20120119269A1 (en) 2012-05-17
TW201110235A (en) 2011-03-16
CN102804341A (zh) 2012-11-28
KR20120023082A (ko) 2012-03-12
JPWO2010143609A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
TWI390059B (zh) 導電膜形成方法、薄膜電晶體、具薄膜電晶體之面板、及薄膜電晶體之製造方法
WO2011162177A1 (ja) 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
KR101067364B1 (ko) 도전막 형성 방법, 박막 트랜지스터, 박막 트랜지스터를 갖는 패널 및 박막 트랜지스터의 제조 방법
TWI445095B (zh) 薄膜電晶體的製造方法,薄膜電晶體
WO2011024770A1 (ja) 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
WO2013013599A1 (zh) 阵列基板及其制作方法、液晶面板、显示装置
JP4970621B2 (ja) 配線層、半導体装置、液晶表示装置
WO2017195826A1 (ja) 積層配線膜および薄膜トランジスタ素子
JP2008536295A5 (ja)
WO2010103587A1 (ja) バリア層を構成層とする薄膜トランジスターおよびバリア層のスパッタ成膜に用いられるCu合金スパッタリングターゲット
TW201112331A (en) Wiring layer structure and manufacturing method thereof
US8361897B2 (en) Method for depositing a thin film electrode and thin film stack
US8217397B2 (en) Thin film transistor substrate and display device
JP2008124450A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、薄膜トランジスタの製造方法、及び薄膜トランジスタ付パネルの製造方法
WO2010143609A1 (ja) 電子装置の形成方法、電子装置、半導体装置及びトランジスタ
Yu et al. The role of oxygen in the deposition of copper–calcium thin film as diffusion barrier for copper metallization
KR101101733B1 (ko) 박막 트랜지스터 제조 방법, 액정 표시 장치 제조 방법, 전극 형성 방법
Chae et al. Self-passivated copper as a gate electrode in a poly-Si thin film transistor liquid crystal display
TW200538800A (en) A wiring substrate and method using the same
Yu et al. The properties of Cu metallization based on CuMgAl alloy buffer layer
WO2020208904A1 (ja) Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
JP5218810B2 (ja) 薄膜トランジスター
TW201030819A (en) Al alloy film for display device, thin film transistor substrate, method for manufacturing same, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025725.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518532

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117029630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786140

Country of ref document: EP

Kind code of ref document: A1