WO2011162177A1 - 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 - Google Patents

半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 Download PDF

Info

Publication number
WO2011162177A1
WO2011162177A1 PCT/JP2011/063912 JP2011063912W WO2011162177A1 WO 2011162177 A1 WO2011162177 A1 WO 2011162177A1 JP 2011063912 W JP2011063912 W JP 2011063912W WO 2011162177 A1 WO2011162177 A1 WO 2011162177A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electrode layer
oxygen
semiconductor device
layer
Prior art date
Application number
PCT/JP2011/063912
Other languages
English (en)
French (fr)
Inventor
悟 高澤
雅紀 白井
暁 石橋
忠 増田
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012521452A priority Critical patent/JP5579848B2/ja
Publication of WO2011162177A1 publication Critical patent/WO2011162177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • Amorphous silicon can be formed at low temperatures and does not adversely affect other materials, but has the disadvantage of low mobility. Recently, it can be formed on large area substrates at low temperatures and has high mobility. Physical semiconductors are attracting attention.
  • the semiconductor device is a transistor that is in contact with a drain region, and in which a gate electrode layer is disposed in a channel region between the source region and the drain region with a gate insulating film interposed therebetween.
  • the present invention includes the above semiconductor device, a pixel electrode, a liquid crystal disposed on the pixel electrode, and an upper electrode positioned on the liquid crystal, and the pixel electrode is electrically connected to the electrode layer.
  • a liquid crystal display device is a transistor that is in contact with a drain region, and in which a gate electrode layer is disposed in a channel region between the source region and the drain region with a gate insulating film interposed therebetween.
  • the present invention includes the above semiconductor device, a pixel electrode, a liquid crystal disposed on the pixel electrode, and an upper electrode positioned on the liquid crystal, and the pixel electrode is electrically connected to the electrode layer.
  • a liquid crystal display device is a liquid crystal display device.
  • the present invention is a method for manufacturing a semiconductor device, wherein the highly conductive thin film is formed by sputtering the target on which the oxygen diffusion prevention thin film is formed.
  • the present invention is a method for manufacturing a semiconductor device, wherein an oxide thin film is formed on a surface of the oxide semiconductor layer, and the oxide thin film is partially removed to form a stopper layer made of the oxide thin film. And exposing at least a part of the source region and at least a part of the drain region to the exposed portion of the source region and the exposed portion of the drain region in the portion from which the oxide thin film has been removed.
  • the pixel electrode 82 is electrically connected to the source electrode layer 51 and the drain electrode layer 52, and voltage application to the pixel electrode 82 is started and ended when the transistor 11 is turned ON / OFF.
  • the resist film 39 is disposed on the surface of the stacked electrode layer 40 on the drain region 72, and the oxide semiconductor layer 34 is immersed in an etching solution that does not erode, so that the highly conductive thin film 38 and the oxygen diffusion prevention thin film 37 are The portion not covered with the resist film 39 is removed by etching. (Fig. 6 (b)) At this time, the oxide semiconductor layer 34 and the etching solution are in contact with each other, but the oxide semiconductor layer 34 is not eroded.
  • an oxide semiconductor layer 34 is partially formed on a glass substrate 31, and a gate insulating film 33 is formed on the glass substrate 31 exposed between the oxide semiconductor layer 34 and the oxide semiconductor layer 34. Is formed.
  • the stacked electrode layer 40 is patterned, and the drain electrode separated from the source electrode layer 51 by the oxygen diffusion prevention thin film 37 contacting the surface of the source region 71 and the source electrode layer 51 contacting the surface of the drain region 72.
  • Layer 52 is formed, and transistor 13 is formed.
  • a protective film 41 is formed on the source electrode layer 51, the drain electrode layer 52, and the interlayer insulating layer 61 exposed therebetween.
  • Adhesion was judged by applying a predetermined number of adhesive tapes on the surface of the laminated electrode layer 40, then peeling off each adhesive tape, and determining whether the laminated electrode layer 40 was attached to the adhesive tape.
  • the presence or absence of reduction is determined by performing secondary ion analysis (SIMS) on the stacked electrode layer 40 and the oxide semiconductor layer 34, measuring the oxygen concentration from the surface of the stacked electrode layer 40 to the inside of the oxide semiconductor layer 34, The presence or absence of reducibility was judged from the change in the oxygen content in the vertical direction and the change in the copper oxide content.
  • SIMS secondary ion analysis

Abstract

 酸化物半導体や酸化物絶縁膜から剥離せず、また、酸化物半導体や酸化物半導体中への銅原子の拡散や、酸化物半導体からの酸素の引き抜きが無い電極層を提供する。 酸化物半導体層34に接触する酸素拡散防止薄膜37については、銅を主成分とし、酸化銅を含有させて酸化物半導体層34と酸素拡散防止薄膜37の界面の酸素濃度の相違を小さくし、酸素拡散防止薄膜37上に、銅を含有し、高導電率で低抵抗の高導電薄膜38を形成して積層型電極層40を構成させる。銅含有率が高い高導電性薄膜38は酸化物半導体層34と直接接触しないので、銅の拡散や酸素の引き抜きが生じない。

Description

半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
 本発明は、微小な半導体デバイスに使用される配線膜の技術分野に係り、特に、酸化物半導体に接触する電極層の技術分野に関する。
 FPD(フラットパネルディスプレイ)や薄膜太陽電池等、近年製造される電気製品は広い基板上にトランジスタを一様に配置する必要があり、そのため、大面積基板に均一な特性の半導体層を形成できる(水素化)アモルファスシリコン等が用いられている。
 アモルファスシリコンは低温で形成することができ、他の材料に悪影響を与えないが、移動度が低いという欠点があり、最近は、低温で大面積基板に形成することができ、移動度が高い酸化物半導体が注目されている。
 酸化物半導体でトランジスタを構成する際には、金属薄膜の電極が酸化物半導体と接触するので、酸化物半導体中の酸素が電極の金属と結合し、酸化物半導体中の酸素が電極に引き抜かれることになってしまう。従って酸化物半導体中の酸素が不足し、物性が変わって移動度が低下するという問題がある。
 特に、トランジスタ表面に保護膜を形成する際には、酸化物半導体と電極とが高温に加熱されるため、電極による酸素の引き抜きの程度が大きくなる。
 このような酸素の引き抜きは、酸化物半導体と銅の電極、酸化物半導体とアルミニウムの電極との組み合わせで発生している。酸素の引き抜きは、酸化物半導体と電極との接着強度を向上させるために、酸化物半導体と電極の間にチタン薄膜から成る密着層を設けた場合にも発生している。
特開2009- 99847号公報 特開2007-250982号公報
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、電極層が剥離せず、酸化物半導体中の酸素原子は電極中に引き抜かれない電極層を提供することにある。
 上記課題を解決するために、本発明は、半導体装置であって、酸化物半導体層と、前記酸化物半導体層と接触する電極層とを有する半導体装置であって、前記電極層は、銅薄膜と、前記銅薄膜と前記酸化物半導体層の間に配置され、前記銅薄膜より多く酸素を含有する酸素含有銅薄膜と、を有し、前記銅薄膜は、前記酸素含有銅薄膜より低抵抗である半導体装置である。
 本発明は、半導体装置であって、酸素含有銅薄膜は酸素原子を含む酸化性ガスとスパッタガスの雰囲気中で、銅を主成分としたターゲットをスパッタして形成された薄膜である半導体装置である。
 本発明は、半導体装置であって、酸化性ガスは、酸素ガスを用い、前記酸素ガスが前記スパッタガスの圧力に対して3%~20%の圧力でスパッタする半導体装置である。
 本発明は、半導体装置であって、前記ターゲットは、添加金属が銅原子に対して12原子%以下の範囲で含有された半導体装置である。
 本発明は、半導体装置であって、前記電極層は、互いに分離されたソース電極層とドレイン電極層を有し、前記ソース電極層と前記ドレイン電極層は、前記酸化物半導体層のソース領域とドレイン領域とにそれぞれ接触し、前記ソース領域と前記ドレイン領域との間のチャネル領域には、ゲート絶縁膜を間に挟んでゲート電極層が配置されたトランジスタである半導体装置である。
 本発明は、上記半導体装置と、画素電極と、前記画素電極上に配置された液晶と、前記液晶上に位置する上部電極とを有し、前記画素電極は前記電極層に電気的に接続された液晶表示装置である。
 本発明は、酸化物半導体層と、前記酸化物半導体層と接触する電極層とを有する半導体装置であって、前記電極層は、前記酸化物半導体層に接触する酸素拡散防止薄膜と、前記酸素拡散防止薄膜よりも低抵抗である高導電性薄膜とから成る半導体装置を製造する半導体装置の製造方法であって、前記酸素拡散防止薄膜は、添加金属が銅原子数に対して12原子%以下の範囲で含有されたターゲットを、スパッタガスに対して3%~20%の圧力で酸素ガスを含有するスパッタリング雰囲気中でスパッタリングして形成し、前記酸素拡散防止薄膜上に、前記酸素拡散防止薄膜よりも低抵抗であり、前記酸素拡散防止薄膜に接触した高導電性薄膜を形成する半導体装置の製造方法である。
 本発明は、半導体装置の製造方法であって、前記高導電性薄膜は、前記酸素拡散防止薄膜を形成した前記ターゲットをスパッタして形成する半導体装置の製造方法である。
 本発明は、半導体装置の製造方法であって、前記酸化物半導体層の表面に酸化物薄膜を形成し、前記酸化物薄膜を部分的に除去して前記酸化物薄膜から成るストッパー層を形成し、前記酸化物薄膜が除去された部分に、前記ソース領域の少なくとも一部と、前記ドレイン領域の少なくとも一部とを露出させて、前記ソース領域の露出部分と前記ドレイン領域の露出部分に接触する前記電極層を形成する半導体装置の製造方法である。
 本発明は、半導体装置の製造方法であって、前記酸化物半導体層の前記ソース領域と前記ドレイン領域の間のチャネル領域上にゲート絶縁膜を形成し、前記ゲート絶縁膜上にゲート電極層を配置しておき、前記酸化物半導体層の前記ソース領域と前記ドレイン領域とを露出させた状態で、前記電極層の前記酸素拡散防止薄膜を、前記ソース領域と前記ドレイン領域に接触させて形成する半導体装置の製造方法である。
 本発明の酸素拡散防止薄膜により、電極層と酸化物半導体との間の界面付近における酸素の濃度勾配が緩和されるので、酸化物半導体から電極層への拡散移動が防止され、酸化物半導体の組成の変化が抑制される。
 銅を主成分とする薄膜(以下、銅薄膜)で、電極層中の高導電率の薄膜(高導電性薄膜)を構成する場合は、銅薄膜はドライエッチングが難しいことから、一般的にウェットエッチング法が用いられており、本発明の酸素拡散防止薄膜は、銅を主成分とし、高導電率の薄膜と同じエッチング液でエッチングできるため、一回のエッチング工程で電極をパターニング形成することができる。
 層間絶縁膜やゲート絶縁膜に形成された接続孔の内周面に電極層が接触する場合でも、本発明の電極層中の高導電性薄膜は、酸素拡散防止薄膜を介して層間絶縁膜やゲート絶縁膜に接触しているので、ゲート絶縁膜や層間絶縁膜から電極薄膜への酸素原子の拡散は生じない。
 銅薄膜と酸素拡散防止薄膜は同じエッチング液でエッチングすることができる。
(a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(1) (a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(2) (a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(3) (a)、(b):本発明の第一例のトランジスタの製造工程を説明するための工程図(4) 本発明の第一例のトランジスタと本発明の液晶表示装置を説明するための断面図 (a)~(c):本発明の第二例のトランジスタの製造工程を説明するための工程図 本発明の第三例のトランジスタを説明するための断面図
 IGZO薄膜(InGaZnOx薄膜)は、移動度が高いという優れた電気特性を持ち、また、可視光を透過させる光学特性を有し、透明膜を形成できる。
 また、アモルファスの場合は、IGZO薄膜は、室温から150℃という低温で成膜することができ、プラスチックスの基板上に形成できることから、フレキシブルデバイスの材料にも適している。
 本発明の実施例では、酸化物半導体としてアモルファスIGZO薄膜を採用し、電極材料には、銅を主成分としている。
 図5は、本発明の実施例の液晶表示装置であり、本発明の第一例のトランジスタ11の断面図が、液晶表示部と共に示されている。
 このトランジスタ11を説明すると、該トランジスタ11では、ガラス基板31の表面に細長のゲート電極層32が配置されており、ゲート電極層32上には、少なくとも幅方向に亘り、ゲート電極層32を覆うように、ゲート絶縁膜33が配置されている。
 ゲート絶縁膜33上には、酸化物半導体層34が配置され酸化物半導体層34上に、幅方向の両端に互いに分離して、ソース電極層51とドレイン電極層52とが形成されている。
 ソース電極層51とドレイン電極層52の間には凹部55が設けられ、この凹部55によってソース電極層51とドレイン電極層52とは分離された状態で、ソース電極層51とドレイン電極層52とは、それぞれ酸化物半導体層34に接続されている。
 ソース電極層51とドレイン電極層52は、本発明の電極層である。
 ソース電極層51とドレイン電極層52は、酸化物半導体層34上に形成された酸素拡散防止薄膜37と、酸素拡散防止薄膜37と接する高導電性薄膜38を有している。高導電性薄膜38は酸化物半導体層34と接しないことが好ましい。酸素拡散防止薄膜37は、酸素含有銅薄膜であり、高導電性薄膜38は、銅薄膜である。酸素含有銅薄膜は、銅を主成分とし酸素を含有する膜である。銅薄膜は、銅を主成分とし、酸素含有銅薄膜より酸素含有量が低く、抵抗が低い膜である。
 符号36は、ストッパー層である。
 ソース電極層51とドレイン電極層52は、後述する銅が主成分の二層構造の積層型電極層40(図3(a))によって構成されており、凹部55は、その積層型電極層40の部分的エッチングによって形成されている。この凹部55が形成される部分の積層型電極層40の下方位置には、ストッパー層36が配置され、積層型電極層40がエッチング除去されても、エッチング液はストッパー層36に接触しても、ストッパー層36よりも下方に位置する酸化物半導体層34には接触しないようにされている。
 ソース電極層51上と、ドレイン電極層52上と、その間の凹部55上には、水分等の侵入防止のため、保護膜41が形成されており、凹部55の部分では、酸化物半導体層34上のストッパー層36には、保護膜41が接触している。
 液晶表示領域14には画素電極82が配置されており、画素電極82上には液晶83が配置されている。液晶83上には上部電極81が位置しており、画素電極82と上部電極81との間に電圧が印加されると液晶83の配向が変化し、液晶83を通る光の偏光性が変わる。
 光の偏向性が変わると、光の偏光性と偏光フィルタの偏向性との間の関係がかわるから、偏光フィルタを透光していた光が遮蔽され、又は、偏光フィルタに遮蔽されていた光が透光する。
 このように、光の偏光性が変わると透光状態と遮光状態との間を切換えることができ、光の偏光性を変化させることで、光の透光状態と遮光状態とを制御することができる。
 画素電極82はソース電極層51やドレイン電極層52と電気的に接続されており、トランジスタ11がON・OFFすることで、画素電極82への電圧印加の開始・終了が行われる。
 ここでは画素電極82は、ドレイン電極層52に接続された配線層42の一部から成っている。配線層42は透明導電層であり、例えば、ITOで構成されている。配線層42は、ゲート電極層32を構成する薄膜と同じ薄膜から成る配線層84に接続されている。
 このトランジスタ11の製造工程を説明する。
 このトランジスタ11は、先ず、ガラス基板31上に、スパッタ法や蒸着法等の真空薄膜形成方法によって第一の導電性薄膜を形成し、第一の導電性薄膜をパターニングして図1(a)に示すように、ゲート電極層32を形成する。第一の導電性薄膜には、ガラスとの密着性が高い金属薄膜等を用いることができる。
 第一の導電性薄膜のパターニングによってゲート電極層32が形成されると、ゲート電極層32が位置する部分以外はガラス基板表面が露出する。
 図1(b)に示すように、ガラス基板31とゲート電極層32の表面に、SiO2、SiNx等のゲート絶縁膜33を形成する。このゲート絶縁膜33は、必要な平面形状にパターニングする。
 次に、ゲート絶縁膜33上に酸化物半導体の薄膜を形成し、パターニングして、図1(c)に示すように、パターニングされた酸化物半導体の薄膜から成る酸化物半導体層34を形成する。
 次いで、図2(a)に示すように、酸化物半導体層34の表面と、酸化物半導体層34の間に露出するゲート絶縁膜33の表面に亘って酸化物絶縁薄膜35を形成し、図2(b)に示すように、その酸化物絶縁薄膜35をパターニングして、酸化物絶縁薄膜から成るストッパー層36を形成する。
 そして図2(b)の状態の処理対象物80では、ストッパー層36の表面と、酸化物半導体層34のソース領域の部分の表面と、ドレイン領域の部分の表面とが露出しており、ストッパー層36は他の部分の表面を覆っている。
 上述したように、後の工程で、積層型電極層40を除去して凹部55を形成する部分の積層型電極層40の下方位置には、ストッパ層36が配置されている。
 この処理対象物80をスパッタ装置の内部の真空雰囲気中に搬入し、スパッタ装置の真空雰囲気中にスパッタリングガス(Arガス)と酸素ガスとを導入する。
 スパッタ装置の内部を、酸素が含有されたスパッタリング雰囲気にし、スパッタ装置内に配置され、銅を主成分(88at%以上)として含有する銅ターゲット(銅原子を100原子%としたとき、銅とは異なる金属である金属添加物を12原子%以下の範囲で含有するターゲットであり、金属添加物を含有しない純銅のターゲットを含む)を、スパッタ装置の内部に、スパッタリングガスと酸素ガスを導入しながらスパッタし、ストッパー層36の表面と、酸化物半導体層34のソース領域71及びドレイン領域72の露出部分の表面とに接触する酸素拡散防止薄膜37を形成する。スパッタリングガスは、アルゴンガス等の希ガスである。
 この酸素拡散防止薄膜37の銅と金属添加物との比率はターゲット中の銅と金属添加物の比率と同じ値であるが、銅と金属添加物(金属添加物が0原子%の場合を含む)のターゲットが酸素ガスを含む雰囲気中でスパッタされるため、酸素が銅と結合して酸化銅が生成され、酸素拡散防止薄膜37中には酸化銅が含有される。酸素拡散防止薄膜37は、高導電性薄膜38よりも含有する酸素の濃度は高い。
 次に、酸素ガスの導入を停止し、スパッタリングガスを導入しながら酸素拡散防止薄膜37を形成したときの銅ターゲットをスパッタリングし、図3(a)に示すように、酸素拡散防止薄膜37の表面に、銅原子を88原子%以上含有する高導電性薄膜38を形成し、酸素拡散防止薄膜37と高導電性薄膜38とから成る積層型電極層40を形成する。
 スパッタリングによる高導電性薄膜38の形成の際には、酸素ガスはスパッタリング雰囲気中に導入されておらず、高導電性薄膜38中には酸化銅は発生しないので高導電性薄膜38の導電率は高い。
 酸素拡散防止薄膜37と高導電性薄膜38の、銅に対する金属添加物の割合は、それらを形成したターゲットの割合と同じ、もしくは高導電性薄膜のみ純銅を用いてもよい。
 このように、本発明では、高導電性薄膜38と酸化物半導体層34の間には、酸素拡散防止薄膜37が配置されており、高導電性薄膜38は酸化物半導体層34とは接触しない。積層型電極層40と酸化物半導体層34との間の酸素の濃度差は、高導電性薄膜38が酸化物半導体層34と接触する場合よりも、酸素拡散防止薄膜37が酸化物半導体層34と接触する場合の方が小さくなっており、酸化物半導体層34から積層型電極層40への酸素の拡散が防止される。
 また、酸素拡散防止薄膜37は、酸素を含有することから、酸素拡散防止薄膜37の酸化物に対する密着性は高く、積層型電極層40は酸化物半導体層34や、他の酸化物の薄膜から剥離しない。また、酸素拡散防止薄膜37と高導電性薄膜38の両方とも、銅が88原子%以上含有されており、酸素拡散防止薄膜37と高導電性薄膜38とは同じ金属を主成分として含有しているので、互いの薄膜の間の密着性も高い。従って、高導電性薄膜38が酸素拡散防止薄膜37から剥離することもない。
 酸素拡散防止薄膜37は、ストッパー層36や、酸化物半導体層34の表面にも形成されており、高導電性薄膜38は酸素拡散防止薄膜37の表面に形成されている。従って、積層型電極層40は、ストッパー層36や酸化物半導体層34から剥離することはない。
 また、酸素拡散防止薄膜37は、銅原子に対するバリア機能を有しており、酸素拡散防止薄膜37から酸化物半導体層34内に銅原子は拡散せず、また、高導電性薄膜38と酸化物半導体層34の間には酸素拡散防止薄膜37が位置しているから、高導電性薄膜38中の銅原子は拡散を酸素拡散防止薄膜37で阻止され、酸化物半導体層34中への銅原子拡散が防止されている。
 酸素拡散防止薄膜37と高導電性薄膜38とが形成された後、高導電性薄膜38表面にレジスト膜を形成し、レジスト膜をパターニングし、高導電性薄膜38表面の、ソース領域71の上の位置と、ドレイン領域72の上の位置とに、レジスト膜を配置する。図3(b)の符号39は、そのレジスト膜を示している。
 この状態で、銅等の金属を溶解させるエッチング液に浸漬すると、レジスト膜39の間に露出した高導電性薄膜38と、高導電性薄膜38の露出部分直下に位置する酸素拡散防止薄膜37とがエッチング液によってエッチングされる。
 その結果、積層型電極層40は、レジスト膜39で覆われたソース領域71上の部分とドレイン領域72上の部分だけが残り、図3(c)に示すように、ソース領域71上で残った酸素拡散防止薄膜37と高導電性薄膜38とによってソース電極層51が形成され、ドレイン領域72上で残った酸素拡散防止薄膜37と高導電性薄膜38とによってドレイン電極層52が形成される。
 ソース電極層51とドレイン電極層52は互いに離間されており、ゲート電極層32の一端上にソース電極層51の一部が位置し、他端上にドレイン電極層52の一部が位置している。ソース電極層51の縁部分と、ドレイン電極層52の縁部分は、ストッパー層36上に乗っている。
 酸化物半導体層34の、ソース領域71とドレイン領域72の間がチャネル領域73であり、ゲート電極層32は、ゲート絶縁膜33を挟んでチャネル領域73と対向する位置にある。この状態では、酸化物半導体層34と、ゲート絶縁膜33と、ゲート・ソース・ドレイン電極層32、51、52とでトランジスタ11が構成されている。
 次いで、図4(a)に示すようにレジスト膜39を除去し、図4(b)に示すようにSiNxやSiO2等の絶縁膜から成る保護膜41を形成し、図5に示すように保護膜41にヴィアホールやコンタクトホール等の接続孔43を形成し、接続孔43底面に露出するソース電極層51やドレイン電極層52等と他の素子の電極層との間をパターニングした配線層42で接続し、ゲート・ソース・ドレイン電極層32、51、52に電圧を印加できるようになると、トランジスタ11は動作することができるようになる。符号83は液晶であり、符号81は上部電極であり、後工程で配置される。
 以上は、酸化物半導体層34を浸食するエッチング液を用いて高導電性薄膜38と酸素拡散防止薄膜37とをエッチングしたため、ストッパー層36によってエッチング液を酸化物半導体層34に接触させないようにしていたが、酸化物半導体層34を浸食しないエッチング液を用いる場合は、酸化物半導体層34はエッチング液に接触できるのでストッパー層36は不要である。
 その例を説明すると、図6(c)は、液晶表示装置の一部であり、ストッパー層36を有さないトランジスタ12が示されている。液晶表示領域は省略されている。
 ストッパー層36を有さないトランジスタ12の形成工程を説明すると、図6(a)を参照し、同図は、ゲート絶縁膜33上に、パターニングされた酸化物半導体層34を形成する。
 次いで、酸素拡散防止薄膜37と高導電性薄膜38をこの順序で形成して積層させ、積層型電極層40を構成し、酸化物半導体層34のソース領域71上の高導電性薄膜38表面とドレイン領域72上の積層型電極層40表面とにレジスト膜39を配置した状態であり、酸化物半導体層34を浸食しないエッチング液に浸漬し、高導電性薄膜38と酸素拡散防止薄膜37のうちのレジスト膜39で覆われていない部分をエッチング除去する。(図6(b))
 このとき、酸化物半導体層34とエッチング液が接触するが、酸化物半導体層34は浸食されない。
 レジスト膜39除去後、図6(c)に示すように、保護膜41に接続孔43を形成して配線をソース電極層51やドレイン電極層52に接続すると、ストッパー層36を有さないトランジスタ12が動作できる状態になる。
 このトランジスタ12では、ガラス基板31側から、ゲート電極層32、ゲート絶縁膜33、酸化物半導体層34、ソース・ドレイン電極層51、52がこの順序で位置しており、ボトムゲート型のトランジスタであるが、本発明は、図7に示すようなトップゲート型のトランジスタ13であってもよい。
 このトランジスタ13は、ガラス基板31上に、部分的に酸化物半導体層34が形成されており、酸化物半導体層34と、酸化物半導体層34間に露出するガラス基板31上にゲート絶縁膜33が形成されている。
 ゲート絶縁膜33のうちのチャネル領域73上の部分には、ゲート電極層32が配置されており、ゲート絶縁膜33上には、ゲート電極層32を覆うように、酸化物から成る薄膜である層間絶縁層61が配置されている。
 ゲート絶縁膜33と層間絶縁層61のソース領域71上の部分とドレイン領域72上の部分とには、接続孔43が形成されている。層間絶縁層61上には、接続孔43の底部にソース領域71表面とドレイン領域72表面とが露出された状態で、酸素拡散防止薄膜37と高導電性薄膜38がこの順序で積層形成され、二層構造の積層型電極層40が構成されている。
 この積層型電極層40はパターニングされており、酸素拡散防止薄膜37がソース領域71表面と接触したソース電極層51と、ドレイン領域72表面と接触し、ソース電極層51とは分離されたドレイン電極層52とが形成され、トランジスタ13が構成されている。
 なお、ソース電極層51とドレイン電極層52と、その間に露出された層間絶縁層61上には保護膜41が形成されている。
 このトランジスタ13でも、高導電性薄膜38は層間絶縁層61等の酸化物から成る絶縁膜や、酸化物半導体層34には直接接触しておらず、酸素拡散防止薄膜37を介して接触するようになっており、酸素拡散防止薄膜37の高い密着力によって高導電性薄膜38は剥離せず、また、酸素拡散防止薄膜37のバリア特性によって、高導電性薄膜38中や酸素拡散防止薄膜37中の銅原子は、絶縁膜や酸化物半導体層34内に拡散しないようになっている。
 以下の実施例や比較例では、酸化物半導体にはInGaZnOを用いた。酸素拡散防止薄膜37と高導電性薄膜38は、スパッタリング法により形成した。スパッタリングガスにはアルゴンガスを用い、酸化ガスには、酸素を用いた。
 本発明の実施例として、表1~表3中の、番号1~13で示した組成の酸素拡散防止薄膜37と高導電性薄膜38から成る積層型電極層40を形成し、積層型電極層40と酸化物半導体層34の密着性と、酸化物半導体層34の酸素引き抜き発生(還元発生)の有無を検査した。
 密着性は、積層型電極層40の表面に所定個数の接着テープを貼付した後、各接着テープを引き剥がし、接着テープに積層型電極層40が付着したか否かで判断した。
 還元発生の有無は、積層型電極層40と酸化物半導体層34を二次イオン分析(SIMS)し、積層型電極層40表面から酸化物半導体層34の内部までの酸素濃度を測定し、深さ方向の酸素含有量の変化と酸化銅の含有量の変化から還元性の有無を判断した。
 表1~3の「膜構成」の欄には、「/」の左側に高導電性薄膜38の構成材料が示され、右側に、酸素拡散防止薄膜37の構成材料が示されている。
 表1~3の1~13に記載された「膜構成」から分かるように、高導電性薄膜38は純銅の薄膜で構成されており、高導電性薄膜38を形成したターゲットもCu100原子%である。
 酸素拡散防止薄膜37の構成材料は、酸素を含まない場合と含む場合の両方が示されており、銅と金属添加物、又は銅と金属添加物と酸素である。
 「合金添加量 at%」の欄には、酸素拡散防止薄膜37の、銅を100原子%としたときの金属添加物の含有割合(原子%)が示されており、酸素拡散防止薄膜37を形成したターゲットの銅と金属添加物の割合もこの値である。
 「酸素添加量 %」の欄には、スパッタリングの際の、スパッタリングガス圧力に対する酸素ガスの圧力が示されている。酸素添加量がA%のとき、「スパッタガス(アルゴンガス)圧力:酸素ガス圧力=100:A」である。
 「IGZO膜との密着性」の欄は、密着性の検査結果であり、「as depo.」は、積層型電極層40の形成後、加熱する前の測定による検査結果であり、「400℃  aneal」は、保護膜41の形成条件を模擬し、保護膜41を形成せずに、酸化物半導体層34と積層型電極層40とが形成された測定対象物を、保護膜41の形成温度(ここでは400℃)に加熱した後の測定による検査結果である。
 引き剥がした接着テープに積層型電極層40が付着したことにより、密着性が悪いと判断すべきものを×、接着テープに積層型電極層40が付着しなかったことにより、密着性が高いと判断すべきものを○にして記載した。
 「IGZO膜の還元発生有無」については、保護膜41の形成温度(ここでは400℃)に加熱した後の測定であり、還元が発生したと判断すべきものを×、還元の発生は無かったと判断すべきものを○にして記載してある。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示されているように、金属添加物が、Mg(番号2)の積層型電極層40は、「IGZO膜との密着性」と「IGZO膜の還元発生有無」が全部○に成るのは、「合金添加量 at%」が1以上、且つ、「酸素添加量 %」が3以上の場合であり、Al(番号3)の積層型電極層40については、それぞれ5以上、3以上であり、各表1~3から、各金属添加物の「合金添加量 at%」と「酸素添加量 %」の必要な値の最低値が読み取れる。
 純銅の場合でも、「酸素添加量 %」の値が5(原子%)以上であれば、密着性が高く、還元反応は発生しなくなるから、金属添加物の有無に拘わらず、酸素添加量5原子%が酸素添加量の最小値になる。
 番号2、5の場合、金属添加物を最低1原子%含有させれば、酸素含有量は最低3原子%でよい。
 また、金属添加物の最大の含有量は、MgとAlを含有番号4の膜構成のときであり、Mgは2原子%、Alは10原子%の合計量12%が最大値となる。この金属添加物の含有量の最大値であるときは、銅の含有量は、最小値の88原子%となる。
 番号4の膜構成を除外したときには、金属添加物の含有量の最大値は、番号2、3の膜構成の5原子%となり、その場合には、銅の含有率の最小値は95原子%となる。
 なお、各番号1~13の種類の金属添加物において、「酸素添加量 %」は、20以上であっても「IGZO膜との密着性」と「IGZO膜の還元発生有無」の検査結果は○(良)になると予想されるが、抵抗値が大きくなって好ましくないので、最大値は20にすることが考えられる。
 上記酸化物半導体はInGaZnOであったが、本発明はそれに限定されるものではなく、ZnOやSnO2等の酸化物半導体も含まれる。
 また、本発明の酸素拡散防止薄膜は、スパッタ法によって形成する形成方法に限定されず、蒸着法等の他の成膜方法によって形成されたものも含まれる。
 また、酸素拡散防止薄膜37が接触する酸化物から成る絶縁膜(一例として上記ストッパー層36)はSiO2膜であったが、本発明はそれに限定されるものではなく、酸化物から成る絶縁膜には、酸化物を含有する薄膜も含まれる。本発明の絶縁膜には例えばSiON膜、SiOC膜、SiOF膜、Al23膜、Ta25膜、HfO2膜、ZrO2膜が含まれる。
 11、12、13……トランジスタ
 31……ガラス基板
 32……ゲート電極層
 33……ゲート絶縁膜
 34……酸化物半導体層
 36……ストッパー層
 37……酸素拡散防止薄膜
 38……高導電性薄膜
 43……接続孔
 51……ソース電極層
 52……ドレイン電極層
 61……層間絶縁層
 71……ソース領域
 72……ドレイン領域
 73……チャネル領域
 81……上部電極
 82……画素電極
 83……液晶
 

Claims (10)

  1.  酸化物半導体層と、
     前記酸化物半導体層と接触する電極層とを有する半導体装置であって、
     前記電極層は、銅薄膜と、前記銅薄膜と前記酸化物半導体層の間に配置され、前記銅薄膜より多く酸素を含有する酸素含有銅薄膜と、を有し、
     前記銅薄膜は、前記酸素含有銅薄膜より低抵抗である半導体装置。
  2.  酸素含有銅薄膜は酸素原子を含む酸化性ガスとスパッタガスの雰囲気中で、
     銅を主成分としたターゲットをスパッタして形成された薄膜である請求項1記載の半導体装置。
  3.  酸化性ガスは、酸素ガスを用い、前記酸素ガスが前記スパッタガスの圧力に対して3%~20%の圧力でスパッタする請求項2記載の半導体装置。
  4.  前記ターゲットは、添加金属が銅原子に対して12原子%以下の範囲で含有された請求項2又は請求項3のいずれか1項記載の半導体装置。
  5.  前記電極層は、互いに分離されたソース電極層とドレイン電極層を有し、
     前記ソース電極層と前記ドレイン電極層は、前記酸化物半導体層のソース領域とドレイン領域とにそれぞれ接触し、
     前記ソース領域と前記ドレイン領域との間のチャネル領域には、ゲート絶縁膜を間に挟んでゲート電極層が配置されたトランジスタである請求項1乃至請求項4のいずれか1項記載の半導体装置。
  6.  請求項1乃至請求項5のいずれか1項記載の半導体装置と、画素電極と、前記画素電極上に配置された液晶と、前記液晶上に位置する上部電極とを有し、
     前記画素電極は前記電極層に電気的に接続された液晶表示装置。
  7.  酸化物半導体層と、
     前記酸化物半導体層と接触する電極層とを有する半導体装置であって、
     前記電極層は、前記酸化物半導体層に接触する酸素拡散防止薄膜と、前記酸素拡散防止薄膜よりも低抵抗である高導電性薄膜とから成る半導体装置を製造する半導体装置の製造方法であって、
     前記酸素拡散防止薄膜は、添加金属が銅原子数に対して12原子%以下の範囲で含有されたターゲットを、スパッタガスに対して3%~20%の圧力で酸素ガスを含有するスパッタリング雰囲気中でスパッタリングして形成し、
     前記酸素拡散防止薄膜上に、前記酸素拡散防止薄膜よりも低抵抗であり、前記酸素拡散防止薄膜に接触した高導電性薄膜を形成する半導体装置の製造方法。
  8.  前記高導電性薄膜は、前記酸素拡散防止薄膜を形成した前記ターゲットをスパッタして形成する請求項7記載の半導体装置の製造方法。
  9.  前記酸化物半導体層の表面に酸化物薄膜を形成し、前記酸化物薄膜を部分的に除去して前記酸化物薄膜から成るストッパー層を形成し、前記酸化物薄膜が除去された部分に、前記ソース領域の少なくとも一部と、前記ドレイン領域の少なくとも一部とを露出させて、前記ソース領域の露出部分と前記ドレイン領域の露出部分に接触する前記電極層を形成する請求項7又は請求項8のいずれか1項記載の半導体装置の製造方法。
  10.  前記酸化物半導体層の前記ソース領域と前記ドレイン領域の間のチャネル領域上にゲート絶縁膜を形成し、
     前記ゲート絶縁膜上にゲート電極層を配置しておき、
     前記酸化物半導体層の前記ソース領域と前記ドレイン領域とを露出させた状態で、前記電極層の前記酸素拡散防止薄膜を、前記ソース領域と前記ドレイン領域に接触させて形成する請求項9記載の半導体装置の製造方法。
PCT/JP2011/063912 2010-06-21 2011-06-17 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 WO2011162177A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521452A JP5579848B2 (ja) 2010-06-21 2011-06-17 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-140381 2010-06-21
JP2010140381 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011162177A1 true WO2011162177A1 (ja) 2011-12-29

Family

ID=45371365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063912 WO2011162177A1 (ja) 2010-06-21 2011-06-17 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法

Country Status (3)

Country Link
JP (3) JP5579848B2 (ja)
TW (1) TW201205813A (ja)
WO (1) WO2011162177A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075465A (ja) * 2012-10-04 2014-04-24 Ulvac Japan Ltd 半導体素子製造方法
CN103765597A (zh) * 2012-11-02 2014-04-30 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板、显示装置和阻挡层
WO2015097586A1 (en) * 2013-12-25 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2016502264A (ja) * 2012-11-02 2016-01-21 京東方科技集團股▲ふん▼有限公司 薄膜トランジスター及びその製作方法、アレイ基板、表示装置及びストップ層
WO2016097936A1 (ja) * 2014-12-18 2016-06-23 株式会社半導体エネルギー研究所 半導体装置、表示装置、表示モジュールおよび電子機器
JP2017120910A (ja) * 2015-12-31 2017-07-06 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタ、薄膜トランジスタを有する表示装置、及び薄膜トランジスタの製造方法
KR101814315B1 (ko) * 2013-03-21 2018-01-02 보에 테크놀로지 그룹 컴퍼니 리미티드 박막 트랜지스터 및 그 제조 방법, 어레이 기판, 및 디스플레이 디바이스
JP2019523565A (ja) * 2016-08-29 2019-08-22 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 薄膜トランジスタの製造方法
WO2020213232A1 (ja) * 2019-04-19 2020-10-22 株式会社アルバック Cu合金ターゲット
WO2023092554A1 (zh) * 2021-11-29 2023-06-01 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示面板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867985A (zh) * 2015-05-18 2015-08-26 京东方科技集团股份有限公司 一种薄膜晶体管、其制备方法、阵列基板及显示装置
JP6837134B2 (ja) * 2017-04-13 2021-03-03 株式会社アルバック 液晶表示装置、有機el表示装置、半導体素子、配線膜、配線基板
CN109950134B (zh) * 2019-03-19 2022-01-21 中国科学院上海高等研究院 具有氧化物薄膜的结构及其制备方法
WO2020208904A1 (ja) * 2019-04-09 2020-10-15 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
JP6768180B1 (ja) * 2019-04-09 2020-10-14 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219008A (ja) * 2007-02-28 2008-09-18 Samsung Electronics Co Ltd 薄膜トランジスタ及びその製造方法
JP2009038284A (ja) * 2007-08-03 2009-02-19 Mitsubishi Materials Corp 薄膜トランジスター
JP2010080936A (ja) * 2008-08-28 2010-04-08 Canon Inc アモルファス酸化物半導体及び該アモルファス酸化物半導体を用いた薄膜トランジスタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354999B2 (ja) * 2007-09-26 2013-11-27 キヤノン株式会社 電界効果型トランジスタの製造方法
WO2009131035A1 (ja) * 2008-04-25 2009-10-29 株式会社アルバック 薄膜トランジスタの製造方法、薄膜トランジスタ
KR100958006B1 (ko) * 2008-06-18 2010-05-17 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
TWI476921B (zh) * 2008-07-31 2015-03-11 Semiconductor Energy Lab 半導體裝置及其製造方法
JP2010056541A (ja) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP5541651B2 (ja) * 2008-10-24 2014-07-09 三菱マテリアル株式会社 薄膜トランジスター用配線膜形成用スパッタリングターゲット
KR101184240B1 (ko) * 2008-10-24 2012-09-21 가부시키가이샤 알박 박막 트랜지스터의 제조 방법, 박막 트랜지스터
JP4752927B2 (ja) * 2009-02-09 2011-08-17 ソニー株式会社 薄膜トランジスタおよび表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219008A (ja) * 2007-02-28 2008-09-18 Samsung Electronics Co Ltd 薄膜トランジスタ及びその製造方法
JP2009038284A (ja) * 2007-08-03 2009-02-19 Mitsubishi Materials Corp 薄膜トランジスター
JP2010080936A (ja) * 2008-08-28 2010-04-08 Canon Inc アモルファス酸化物半導体及び該アモルファス酸化物半導体を用いた薄膜トランジスタ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075465A (ja) * 2012-10-04 2014-04-24 Ulvac Japan Ltd 半導体素子製造方法
CN103765597A (zh) * 2012-11-02 2014-04-30 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板、显示装置和阻挡层
JP2016502264A (ja) * 2012-11-02 2016-01-21 京東方科技集團股▲ふん▼有限公司 薄膜トランジスター及びその製作方法、アレイ基板、表示装置及びストップ層
US9331165B2 (en) 2012-11-02 2016-05-03 Boe Technology Group Co., Ltd. Thin-film transistor (TFT), manufacturing method thereof, array substrate, display device and barrier layer
KR101814315B1 (ko) * 2013-03-21 2018-01-02 보에 테크놀로지 그룹 컴퍼니 리미티드 박막 트랜지스터 및 그 제조 방법, 어레이 기판, 및 디스플레이 디바이스
US9722056B2 (en) 2013-12-25 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9478664B2 (en) 2013-12-25 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015097586A1 (en) * 2013-12-25 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10050132B2 (en) 2013-12-25 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2016097936A1 (ja) * 2014-12-18 2016-06-23 株式会社半導体エネルギー研究所 半導体装置、表示装置、表示モジュールおよび電子機器
JPWO2016097936A1 (ja) * 2014-12-18 2017-12-14 株式会社半導体エネルギー研究所 半導体装置、表示装置、表示モジュールおよび電子機器
JP2017120910A (ja) * 2015-12-31 2017-07-06 エルジー ディスプレイ カンパニー リミテッド 薄膜トランジスタ、薄膜トランジスタを有する表示装置、及び薄膜トランジスタの製造方法
US10741693B2 (en) 2015-12-31 2020-08-11 Lg Display Co., Ltd. Thin film transistor, display including the same, and method of fabricating the same
US11322621B2 (en) 2015-12-31 2022-05-03 Lg Display Co., Ltd. Thin film transistor, display including the same, and method of fabricating the same
US11777039B2 (en) 2015-12-31 2023-10-03 Lg Display Co., Ltd. Method of fabricating thin film transistor and display including the same
JP2019523565A (ja) * 2016-08-29 2019-08-22 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 薄膜トランジスタの製造方法
WO2020213232A1 (ja) * 2019-04-19 2020-10-22 株式会社アルバック Cu合金ターゲット
WO2023092554A1 (zh) * 2021-11-29 2023-06-01 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示面板

Also Published As

Publication number Publication date
JP5579848B2 (ja) 2014-08-27
JP5805270B2 (ja) 2015-11-04
TW201205813A (en) 2012-02-01
JP5963804B2 (ja) 2016-08-03
JP2014239217A (ja) 2014-12-18
JPWO2011162177A1 (ja) 2013-08-22
JP2014239216A (ja) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5963804B2 (ja) 半導体装置の製造方法
JP4970622B2 (ja) 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
JP4970621B2 (ja) 配線層、半導体装置、液晶表示装置
US7375373B2 (en) Thin film transistor array panel
US8373832B2 (en) Wiring layer, semiconductor device, and liquid crystal display device using semiconductor device
JP5368717B2 (ja) 表示装置およびこれに用いるCu合金膜
KR20120023082A (ko) 전자 장치의 형성 방법, 전자 장치, 반도체 장치 및 트랜지스터
JP6768180B1 (ja) Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
WO2020208904A1 (ja) Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
JP2011091365A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
KR20150029843A (ko) 박막 트랜지스터, 박막 트랜지스터를 포함하는 박막 트랜지스터 표시판 및 박막 트랜지스터의 제조 방법
JP2020012190A (ja) 密着膜用ターゲット、配線層、半導体装置、液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521452

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798061

Country of ref document: EP

Kind code of ref document: A1