WO2011024770A1 - 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 - Google Patents

半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 Download PDF

Info

Publication number
WO2011024770A1
WO2011024770A1 PCT/JP2010/064208 JP2010064208W WO2011024770A1 WO 2011024770 A1 WO2011024770 A1 WO 2011024770A1 JP 2010064208 W JP2010064208 W JP 2010064208W WO 2011024770 A1 WO2011024770 A1 WO 2011024770A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
film
thin film
oxide semiconductor
Prior art date
Application number
PCT/JP2010/064208
Other languages
English (en)
French (fr)
Inventor
悟 高澤
雅紀 白井
石橋 暁
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201080038623.8A priority Critical patent/CN102484137B/zh
Priority to JP2011528782A priority patent/JP4970622B2/ja
Priority to KR1020127003038A priority patent/KR101175085B1/ko
Publication of WO2011024770A1 publication Critical patent/WO2011024770A1/ja
Priority to US13/402,120 priority patent/US20120206685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to the field of wiring films used for minute semiconductor devices, and more particularly to the technical field of electrode layers in contact with oxide semiconductors.
  • Amorphous silicon can be formed at low temperatures and does not adversely affect other materials, but has the disadvantage of low mobility, and oxide semiconductors that can form high-mobility thin films on large-area substrates by low-temperature formation attract attention Has been.
  • auxiliary film having a barrier property against diffusion and an adhesion property that increases the adhesion strength of the copper wiring between the copper thin film and the semiconductor or insulating film in contact with the copper thin film.
  • the auxiliary film include a TiN film and a W film.
  • the copper thin film is difficult to dry etch, and the wet etching method is generally used.
  • the copper thin film etchant and the auxiliary film etchant are different, a wiring film having a two-layer structure of the auxiliary film and the copper thin film is used. It cannot be etched in a single etching step. Therefore, an auxiliary film that has barrier properties and adhesion and can be etched with the same etching solution as the copper thin film is required.
  • the present invention was created to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide an electrode film having high adhesion and preventing copper atoms from diffusing into an oxide semiconductor or an oxide thin film. .
  • the present invention provides a semiconductor element having an oxide semiconductor layer and an electrode layer in contact with the oxide semiconductor layer, wherein the electrode layer is in contact with the oxide semiconductor layer. It consists of a high adhesion barrier film and a copper thin film in contact with the high adhesion barrier film, and the high adhesion barrier film contains copper, magnesium, and aluminum, and contains copper, magnesium, and aluminum.
  • the total number of atoms is 100 at%, magnesium is in the range of 0.5 at% to 5 at% and aluminum is in the range of 5 at% to 15 at%.
  • the electrode layer has a source electrode layer and a drain electrode layer separated from each other, and the source electrode layer and the drain electrode layer are in contact with the source region and the drain region of the oxide semiconductor layer, respectively.
  • the semiconductor device is a transistor in which a gate electrode layer is disposed in a channel region between the source region and the drain region with a gate insulating film interposed therebetween.
  • an insulating film made of an oxide is disposed on the oxide semiconductor layer, and the source electrode layer and the drain electrode layer are disposed on a surface of the insulating film, and are formed on the source region and the drain region.
  • a high adhesion barrier film of the source electrode layer and the drain electrode layer is disposed on an inner peripheral surface of a connection hole of the insulating film formed on the upper side.
  • the present invention includes a semiconductor device, a pixel electrode, a liquid crystal disposed on the pixel electrode, and an upper electrode positioned on the liquid crystal, and the pixel electrode is electrically connected to the electrode layer. It is a liquid crystal display device.
  • the present invention is a semiconductor element having an oxide semiconductor layer and an electrode layer in contact with the oxide semiconductor layer, the electrode layer having a high adhesion barrier film in contact with the oxide semiconductor layer, A copper thin film in contact with the high adhesion barrier film, wherein the high adhesion barrier film contains copper, magnesium and aluminum, and the total number of atoms of copper, magnesium and aluminum is 100 at%.
  • magnesium is in a range of 0.5 at% to 5 at% and aluminum is in a range of 5 at% to 15 at%, and an oxide thin film is formed on a surface of the oxide semiconductor layer.
  • the oxide thin film is partially removed to form a stopper layer made of the oxide thin film, the oxide semiconductor layer is exposed in the portion where the oxide thin film is removed, and the strike Forming the high adhesion barrier film in contact with the exposed surface of the oxide semiconductor layer on the par layer, the source region, and the drain region; and forming the copper thin film on the high adhesion barrier film.
  • a manufacturing method of a semiconductor device formed to form the electrode layer According to the present invention, a gate insulating film is formed on a channel region between the source region and the drain region of the oxide semiconductor layer, and a gate electrode layer is disposed on the gate insulating film. In the method of manufacturing a semiconductor device, the high adhesion barrier film of the electrode layer is formed in contact with the source region and the drain region in a state where the source region and the drain region of the layer are exposed.
  • the electrode film can be used as a source electrode or a drain electrode. Even when an oxide stopper layer is provided as an etching stopper, the stopper layer and the insulating film made of oxide have high adhesion and barrier properties, so that etching using the stopper layer can be performed.
  • the copper thin film is also in contact with the interlayer insulating film and the gate insulating film through the high adhesion barrier film on the inner peripheral surface of the connection hole formed in the interlayer insulating film and the gate insulating film. There is no diffusion of copper atoms into it.
  • the copper thin film and the high adhesion barrier film can be etched with the same etching solution.
  • FIG. 5 shows a liquid crystal display device according to an embodiment of the present invention, and a cross-sectional view of the transistor 11 of the first example of the present invention is shown together with a liquid crystal display section.
  • the transistor 11 will be described.
  • an elongated gate electrode layer 32 is disposed on the surface of a glass substrate 31.
  • a gate insulating film 33 is disposed at least in the width direction. Has been.
  • An oxide semiconductor layer 34 is disposed on the gate insulating film 33, and the source electrode layer 51 and the drain are disposed at both ends in the width direction of the gate insulating film 33 in the oxide semiconductor layer 34 positioned on the gate electrode layer 32.
  • An electrode layer 52 is formed.
  • a recess 55 is provided between the source electrode layer 51 and the drain electrode layer 52, and the source electrode layer 51 and the drain electrode layer 52 are separated by the recess 55 so that different voltages can be applied.
  • Reference numeral 36 denotes a stopper layer.
  • the stopper layer 36 prevents the etching solution from contacting the oxide semiconductor layer 34.
  • a protective film 41 is formed on the source electrode layer 51, the drain electrode layer 52, and the recess 55 therebetween, but the stopper layer 36 is located between the oxide semiconductor layer 34 and the protective film 41. is doing.
  • a gate voltage is applied to the gate electrode layer 32 with a voltage applied between the source electrode layer 51 and the drain electrode layer 52, and the gate electrode layer 32 in the oxide semiconductor layer 34 is interposed through the gate insulating film 33.
  • a channel layer of a conductivity type opposite to the conductivity type of the oxide semiconductor layer 34 (or a low-resistance channel layer of the same conductivity type) is formed in the facing portion, the source electrode layer 51 of the oxide semiconductor layer 34 is formed.
  • the portion in contact with the drain electrode layer 52 and the portion in contact with the drain electrode layer 52 are connected with a low resistance by the channel layer 73 (or low resistance layer), and as a result, the source electrode layer 51 and the drain electrode layer 52 are electrically connected.
  • the transistor 11 becomes conductive.
  • the channel layer 73 (or the low resistance layer) disappears, and the source electrode layer 51 and the drain electrode layer 52 have a high resistance and are electrically separated.
  • a pixel electrode 82 is disposed in the liquid crystal display region 14, and a liquid crystal 83 is disposed on the pixel electrode 82.
  • An upper electrode 81 is positioned on the liquid crystal 83.
  • the pixel electrode 82 is electrically connected to the source electrode layer 51 and the drain electrode layer 52, and voltage application to the pixel electrode 82 is started and ended when the transistor 11 is turned ON / OFF.
  • the pixel electrode 82 is composed of a part of the wiring layer 42 connected to the drain electrode layer 52.
  • the wiring layer 42 is a transparent conductive layer made of ITO, and the wiring layer 42 is formed on the glass substrate 31 similarly to the gate electrode layer 32, and is a wiring layer made of the same thin film as the thin film constituting the gate electrode layer 32. 84.
  • a first conductive thin film is formed on a glass substrate 31 by a vacuum thin film forming method such as sputtering or vapor deposition, and the first conductive thin film is patterned to form a gate electrode layer 32.
  • a vacuum thin film forming method such as sputtering or vapor deposition
  • the first conductive thin film is patterned to form a gate electrode layer 32.
  • a thin film such as a metal or polysilicon having high adhesion to glass can be used.
  • Reference numeral 32 in FIG. 1A denotes a gate electrode layer formed on the glass substrate 31.
  • the gate electrode layer 32 is formed by patterning, the glass substrate surface is exposed except for the portion where the gate electrode layer 32 is located, and the surfaces of the glass substrate 31 and the gate electrode layer 32 as shown in FIG. Then, a gate insulating film 33 such as SiO 2 or SiNx is formed. The gate insulating film 33 is patterned as necessary.
  • an oxide semiconductor thin film is formed on the gate insulating film 33 and patterned to form an oxide semiconductor layer 34 composed of the patterned oxide semiconductor thin film, as shown in FIG. .
  • an oxide insulating thin film 35 is formed over the surface of the oxide semiconductor layer 34 and the surface of the gate insulating film 33 exposed between the oxide semiconductor layers 34.
  • the oxide insulating thin film 35 is patterned to form a stopper layer 36 made of an oxide insulating thin film.
  • the oxide semiconductor layer 34 is provided with a source region 71 and a drain region 72 that are spaced from each other at both ends in the width direction of the gate electrode layer 32, and the stopper layer 36 is a source on the surface of the oxide semiconductor layer 34.
  • the region 71 and the drain region 72 are exposed so as to cover the surface of the other part.
  • An adhesion barrier film 37 is formed, and then, as shown in FIG. 3A, a copper thin film 38 is formed on the surface of the high adhesion barrier film 37, and the high adhesion barrier film 37 and the copper thin film 38 are formed.
  • the electrode layer 40 is formed.
  • oxygen gas is not introduced into the sputtering atmosphere, and the copper thin film 38 does not contain copper oxide, so that a low resistance copper thin film 38 is obtained.
  • the high adhesion barrier film is a thin film made of Cu—Mg—Al, and the process of forming this high adhesion barrier film will be described.
  • the surface of the stopper layer 36 and the source region 71 of the oxide semiconductor layer 34 are described. 2B is exposed to the inside of the sputtering apparatus, and a target made of Cu—Mg—Al alloy is sputtered to form sputtered particles.
  • a highly adhesive barrier film 37 that contacts the surface of the stopper layer 36 and the exposed portions of the source region 71 and drain region 72 of the oxide semiconductor layer 34 is formed.
  • the high adhesion barrier film 37 has high adhesion to the oxide, and the electrode layer 40 does not peel from the oxide semiconductor thin film or the oxide thin film. In addition, since the adhesion between the high adhesion barrier film 37 and the copper thin film 38 is high, the copper thin film 38 does not peel from the high adhesion barrier film 37.
  • the high adhesion barrier film 37 is formed on the surface of the stopper layer 36 which is an oxide made of SiO 2 and the oxide semiconductor layer 34, and the copper thin film 38 is formed on the surface of the high adhesion barrier film 37. Yes. Therefore, the copper thin film 38 does not peel from the stopper layer 36 or the oxide semiconductor layer 34.
  • the high adhesion barrier film 37 has a barrier function against copper atoms, copper atoms do not diffuse from the high adhesion barrier film 37 into the oxide semiconductor layer 34, and the copper thin film 38 and the oxide Since the high adhesion barrier film 37 is located between the semiconductor layers 34, the copper atoms in the copper thin film 38 are prevented from diffusing by the high adhesion barrier film 37, and the copper atoms into the oxide semiconductor layer 34 are Diffusion is prevented.
  • a resist film is formed on the surface of the copper thin film 38, and the resist film is patterned. As shown in FIG. The resist film 39 is disposed at a position above the source region 71 and a position above the drain region 72.
  • the copper thin film 38 exposed between the resist films 39 and the high adhesion barrier film 37 located immediately below the exposed portion of the copper thin film 38 are etched. Only the portion on the source region 71 and the portion on the drain region 72 that are etched by the resist film 39 remain, and the high adhesion barrier film remaining on the source region 71 as shown in FIG. 37 and the copper thin film 38 form a source electrode layer 51, and the high adhesion barrier film 37 and the copper thin film 38 remaining on the drain region 72 form a drain electrode layer 52.
  • the source electrode layer 51 and the drain electrode layer 52 are separated from each other.
  • a part of the source electrode layer 51 is located on one end of the gate electrode layer 32 and a part of the drain electrode layer 52 is located on the other end. Yes.
  • the edge portion of the source electrode layer 51 and the edge portion of the drain electrode layer 52 are on the stopper layer 36.
  • the transistor 11 is composed of the gate insulating film 33 and the gate / source / drain electrode layers 32, 51 and 52.
  • a protective film 41 made of an insulating film such as SiNx or SiO 2 is formed.
  • a connection hole 43 such as a via hole or a contact hole is formed in the protective film 41, and a wiring layer 42 in which the source electrode layer 51 and the drain electrode layer 52 exposed on the bottom surface of the connection hole 43 and other electrode layers are patterned.
  • the liquid crystal 83 and the upper electrode 81 are arranged in a later step.
  • the stopper layer 36 prevents the etching solution from contacting the oxide semiconductor layer 34.
  • the stopper layer 36 is unnecessary because the oxide semiconductor layer 34 can contact the etching solution.
  • FIG. 6C shows the transistor 12 which is a part of the liquid crystal display device and does not have the stopper layer 36.
  • the liquid crystal display area is omitted.
  • a patterned oxide semiconductor layer 34 is formed on the gate insulating film 33, a high adhesion barrier film 37 and a copper thin film 38 are stacked in this order, and the source of the oxide semiconductor layer 34 is obtained.
  • the resist film 39 is disposed on the surface of the copper thin film 38 on the region 71 and the surface of the copper thin film 38 on the drain region 72, and the oxide semiconductor layer 34 is immersed in an etching solution that does not erode, thereby being highly adhered to the copper thin film 38.
  • a portion of the conductive barrier film 37 that is not covered with the resist film 39 is removed by etching.
  • the oxide semiconductor layer 34 and the etching solution are in contact with each other, but the oxide semiconductor layer 34 is not eroded, and after the resist film 39 is removed, the connection hole 43 is formed in the protective film 41 as shown in FIG.
  • the transistor 12 without the stopper layer 36 can be operated. From the glass substrate 31 side, the gate electrode layer 32, the gate insulating film 33, the oxide semiconductor layer 34, and the source / drain electrode layers 51 and 52 are positioned in this order, which is a bottom gate type transistor. 7 may be a top gate transistor 13 as shown in FIG.
  • an oxide semiconductor layer 34 is partially formed on a glass substrate 31, and a gate insulating film 33 is formed on the glass substrate 31 exposed between the oxide semiconductor layer 34 and the oxide semiconductor layer 34. Is formed.
  • a source region 71 and a drain region 72 are formed at both ends on each oxide semiconductor layer 34, and a channel region 73 in which a channel layer is formed is formed between the source region 71 and the drain region 72. ing.
  • a gate electrode layer 32 is disposed on a portion of the gate insulating film 33 on the channel region 73, and the gate insulating film 33 is a thin film made of an oxide so as to cover the gate electrode layer 32.
  • An interlayer insulating layer 61 is disposed.
  • a connection hole 43 is formed in a portion on the source region 71 and a portion on the drain region 72 of the gate insulating film 33 and the interlayer insulating layer 61.
  • the high adhesion barrier film 37 and the copper thin film 38 are laminated in this order with the surface of the source region 71 and the surface of the drain region 72 exposed at the bottom of the connection hole 43.
  • a layered electrode layer is formed.
  • This electrode layer is patterned, and the high-adhesion barrier film 37 is in contact with the surface of the source region 71 and the drain electrode layer 52 is in contact with the surface of the drain region 72 and separated from the source electrode layer 51.
  • a transistor When a gate voltage is applied to the gate electrode layer 32 in a state where a voltage is applied to the source electrode layer 51 and the drain electrode layer 52, a low-resistance channel of the same conductivity type as that of the channel region 73 or the opposite conductivity type in the channel region 73.
  • a layer is formed, and the source region 71 and the drain region 72 are conducted.
  • a protective film 41 is formed on the source electrode layer 51, the drain electrode layer 52, and the interlayer insulating layer 61 exposed therebetween.
  • the copper thin film 38 is not in direct contact with the insulating film made of an oxide such as the interlayer insulating layer 61 or the oxide semiconductor layer 34, but in contact with the high adhesion barrier film 37.
  • the copper thin film 38 does not peel off due to the high adhesion of the high adhesion barrier film 37, and the copper in the copper thin film 38 or the high adhesion barrier film 37 depends on the barrier properties of the high adhesion barrier film 37. The atoms are prevented from diffusing into the insulating film or the semiconductor region.
  • Cu (copper) as a main component, Mg (magnesium) and Al (aluminum) are contained in a desired ratio, a target is prepared, the target is sputtered, and an insulating thin film made of an oxide (here, a SiO 2 thin film) ) And an oxide semiconductor thin film (here, IGZO film: InGaZnO), a high adhesion barrier film made of Cu—Mg—Al having the same composition as the target is formed, and pure copper is formed on the formed high adhesion barrier film.
  • a thin film was formed to form an electrode layer composed of a high adhesion barrier film and a pure copper thin film.
  • the adhesion and barrier properties of high adhesion barrier films with different addition ratios of Mg and Al were evaluated.
  • the evaluation results for the oxide semiconductor are shown in Table 1, and the evaluation results for the insulating thin film are shown in Table 2.
  • the insulating thin film made of SiO 2 was formed on the glass substrate, but the “SiH 4 -based SiO 2 film” was formed on the glass substrate by the CVD method using SiH 4 gas and N 2 O gas as raw materials. It is a SiO 2 film, and the “TEOS-based SiO 2 film” is a SiO 2 film formed by a CVD method using TEOS and O 2 gas.
  • Mg content and Al content in Tables 1 and 2 indicate that the total number of Cu atoms, Mg atoms, and Al atoms in the target or high adhesion barrier film is 100 at%.
  • the Mg atom number ratio (Xat%) and the Al atom number ratio (Yat%) are shown, and “-” indicates that the content is zero.
  • the case where Cu, Mg and Al materials could be formed on the target was classified as “ ⁇ ”, and the case where the target could not be formed was classified as “X”.
  • the evaluation in the “adhesion” column is “ ⁇ ” when the adhesive tape is applied to the surface of the pure copper thin film, peeled off, and peeled off at the interface between the adhesive tape and the pure copper thin film. Or the case of peeling at the interface between the electrode layer and the insulating thin film or oxide semiconductor was classified as “x”.
  • the barrier property the presence or absence of diffusion of Cu atoms into the oxide semiconductor thin film or the insulating thin film made of oxide in contact with the high adhesion barrier film was measured by Auger electron spectroscopy. The case where it was not detected was classified as “ ⁇ ”, and the case where it was detected was classified as “x”.
  • the high adhesion barrier film 37 which is a thin film made of Cu—Mg—Al in each of the above embodiments of the present invention, has a total number of Cu atoms, Mg atoms, and Al atoms of 100 at%.
  • the conductive thin film has an Mg content of 0.5 at% or more and 5 at% or less and an Al content of 5 at% or more and 15 at% or less.
  • the copper thin film 38 formed on the high adhesion barrier film 37 in contact with the high adhesion barrier film 37 has a low resistance containing copper at a content exceeding 50 at% when the total number of atoms is 100 at%. It is a conductive thin film.
  • oxide semiconductor is InGaZnO
  • the present invention is not limited thereto, and includes oxide semiconductors such as ZnO and SnO 2 .
  • the insulating film made of an oxide with which the high adhesion barrier film 37 contacts is an SiO 2 film
  • the present invention is not limited to this, and the insulating film made of an oxide.
  • the film includes a thin film containing an oxide.
  • Insulating films of the present invention include, for example, SiON films, SiOC films, SiOF films, Al 2 O 3 films, Ta 2 O 5 films, HfO 2 films, and ZrO 2 films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 酸化物半導体や酸化物薄膜から剥離せず、また、酸化物半導体や酸化物薄膜中に銅原子が拡散しない電極膜を提供する。電極層を、Cu-Mg-Alの薄膜である高密着性バリア膜37と、銅薄膜38で構成させ、酸化物半導体や酸化物薄膜には高密着性バリア膜37を接触させた。高密着性バリア膜37は、銅と、マグネシウムと、アルミニウムとの合計原子数を100at%としたとき、マグネシウムを0.5at%以上5at%以下、アルミニウムを5at%以上15at%以下の範囲で含有させると密着性とバリア性が両立する。ソース電極層51とドレイン電極層52は酸化物半導体層34に接触するので、この電極層が適しており、酸化物から成るストッパー層36を電極層の下層に配置することもできる。

Description

半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
 本発明は、微小な半導体デバイスに使用される配線膜の分野に係り、特に、酸化物半導体に接触する電極層の技術分野に関する。
 FPD(フラットパネルディスプレイ)や薄膜太陽電池等、近年製造される電気製品は広い基板上にトランジスタを一様に配置する必要があり、そのため、大面積基板に均一な特性の半導体層を形成できる(水素化)アモルファスシリコン等が用いられている。
 アモルファスシリコンは低温で形成することができ、他の材料に悪影響を与えないが、移動度が低いという欠点があり、低温形成で高移動度の薄膜が大面積基板に形成できる酸化物半導体が注目されている。
 他方、近年では半導体集積回路や、FPD中のトランジスタの電極、配線に、低抵抗の銅薄膜が用いられるようになっており、デジタル信号の伝達速度を速めたり、電力損失の低減による消費電力の低減が図られている。
 しかしながら銅薄膜は、酸化物半導体や酸化物薄膜との密着性が悪く、また、銅薄膜の構成物質である銅原子は酸化物半導体中や酸化物薄膜中に拡散し、信頼性低下の原因になる場合がある。
 特に、酸化物半導体と銅薄膜が接触したり、酸化物から成る層間絶縁膜と銅薄膜が接触すると、銅原子の酸化物中への拡散は大きな問題となる。
 この場合、銅薄膜と、銅薄膜と接触する半導体や絶縁膜等との間に、拡散に対するバリア性や、銅配線の付着強度を増大させる密着性を有する補助膜を設ける必要がある。補助膜には、例えば、TiN膜やW膜等がある。
 銅薄膜はドライエッチングが難しく、一般的にウェットエッチング法が用いられているが、銅薄膜のエッチング液と補助膜のエッチング液とは異なるため、補助膜と銅薄膜の二層構造の配線膜を一回のエッチング工程でエッチングすることはできない。
 そのため、バリア性、密着性を有し、銅薄膜と同じエッチング液によってエッチングできる補助膜が求められている。
特開2009- 99847号公報 特開2007-250982号公報
 本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、密着性が高く、酸化物半導体や酸化物薄膜に銅原子が拡散しない電極膜を提供することにある。
 上記課題を解決するために、本発明は、酸化物半導体層と、前記酸化物半導体層と接触する電極層とを有する半導体素子であって、前記電極層は、前記酸化物半導体層に接触する高密着性バリア膜と、前記高密着性バリア膜に接触する銅薄膜とから成り、前記高密着性バリア膜は、銅と、マグネシウムと、アルミニウムとを含有し、銅と、マグネシウムと、アルミニウムとの合計原子数を100at%としたとき、マグネシウムは0.5at%以上5at%以下、アルミニウムは5at%以上15at%以下の範囲にされた半導体装置である。
 本発明は、前記電極層は、互いに分離されたソース電極層とドレイン電極層を有し、前記ソース電極層と前記ドレイン電極層は、前記酸化物半導体層のソース領域とドレイン領域とにそれぞれ接触し、前記ソース領域と前記ドレイン領域との間のチャネル領域には、ゲート絶縁膜を間に挟んでゲート電極層が配置されたトランジスタである半導体装置である。
 本発明は、前記酸化物半導体層上には酸化物から成る絶縁膜が配置され、前記ソース電極層と前記ドレイン電極層は、前記絶縁膜の表面に配置され、前記ソース領域上と前記ドレイン領域上とに形成された前記絶縁膜の接続孔の内周面には、前記ソース電極層と前記ドレイン電極層の高密着性バリア膜が配置された半導体装置である。
 本発明は、半導体装置と、画素電極と、前記画素電極上に配置された液晶と、前記液晶上に位置する上部電極とを有し、前記画素電極は前記電極層に電気的に接続された液晶表示装置である。
 本発明は、酸化物半導体層と、前記酸化物半導体層と接触する電極層とを有する半導体素子であって、前記電極層は、前記酸化物半導体層に接触する高密着性バリア膜と、前記高密着性バリア膜に接触する銅薄膜とから成り、前記高密着性バリア膜は、銅と、マグネシウムと、アルミニウムとを含有し、銅と、マグネシウムと、アルミニウムとの合計原子数を100at%としたとき、マグネシウムは0.5at%以上5at%以下、アルミニウムは5at%以上15at%以下の範囲にされた半導体装置の製造方法であって、前記酸化物半導体層の表面に酸化物薄膜を形成し、前記酸化物薄膜を部分的に除去して前記酸化物薄膜から成るストッパー層を形成し、前記酸化物薄膜が除去された部分に前記酸化物半導体層を露出させ、前記ストッパー層上と前記ソース領域上と前記ドレイン領域上に、露出された前記酸化物半導体層の表面に接触する前記高密着性バリア膜を形成し、前記高密着性バリア膜上に前記銅薄膜を形成して前記電極層を形成する半導体装置の製造方法である。
 本発明は、前記酸化物半導体層の前記ソース領域と前記ドレイン領域の間のチャネル領域上にゲート絶縁膜を形成し、前記ゲート絶縁膜上にゲート電極層を配置しておき、前記酸化物半導体層の前記ソース領域と前記ドレイン領域とを露出させた状態で、前記電極層の前記高密着性バリア膜を、前記ソース領域と前記ドレイン領域に接触させて形成する半導体装置の製造方法である。
 電極膜の高密着性バリア膜は酸化物半導体層に対する密着性とバリア性が高いので、電極膜をソース電極やドレイン電極に使用することができる。
 エッチングストッパーとして酸化物から成るストッパー層を設けた場合でも、ストッパー層と、酸化物から成る絶縁膜に対する密着性とバリア性とが高いので、ストッパー層を用いたエッチングを行うことができる。
 層間絶縁膜やゲート絶縁膜に形成する接続孔の内周面でも、銅薄膜は高密着性バリア膜を介して層間絶縁膜やゲート絶縁膜に接触しているので、ゲート絶縁膜や層間絶縁膜中への銅原子の拡散は生じない。
 銅薄膜と高密着性バリア膜は同じエッチング液でエッチングすることができる。
(a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(1) (a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(2) (a)~(c):本発明の第一例のトランジスタの製造工程を説明するための工程図(3) (a)、(b):本発明の第一例のトランジスタの製造工程を説明するための工程図(4) 本発明の第一例のトランジスタと本発明の液晶表示装置を説明するための断面図 (a)~(c):本発明の第二例のトランジスタの製造工程を説明するための工程図 本発明の第三例のトランジスタを説明するための断面図
 11、12、13……トランジスタ
 31……ガラス基板
 32……ゲート電極層
 33……ゲート絶縁膜
 34……酸化物半導体層
 36……ストッパー層
 37……高密着性バリア膜
 38……銅薄膜
 43……接続孔
 51……ソース電極層
 52……ドレイン電極層
 61……層間絶縁層
 71……ソース領域
 72……ドレイン領域
 73……チャネル領域
 81……上部電極
 82……画素電極
 83……液晶
 図5は、本発明の実施例の液晶表示装置であり、本発明の第一例のトランジスタ11の断面図が、液晶表示部と共に示されている。
 このトランジスタ11を説明すると、該トランジスタ11は、ガラス基板31の表面に細長のゲート電極層32が配置されており、ゲート電極層32上には、少なくとも幅方向に亘ってゲート絶縁膜33が配置されている。
 ゲート絶縁膜33上には、酸化物半導体層34が配置されており、ゲート電極層32上に位置する酸化物半導体層34のうち、ゲート絶縁膜33の幅方向両端にソース電極層51とドレイン電極層52とが形成されている。ソース電極層51とドレイン電極層52の間には凹部55が設けられ、この凹部55によってソース電極層51とドレイン電極層52とは分離されており、異なる電圧を印加できるように構成されいる。
 符号36は、ストッパー層であり、エッチングによって凹部55を形成してソース電極層51とドレイン電極層52とを分離する際に、このストッパー層36によって、エッチング液が酸化物半導体層34に接触しないようにされている。
 ソース電極層51上と、ドレイン電極層52上と、その間の凹部55上には、保護膜41が形成されているが、酸化物半導体層34と保護膜41の間にはストッパー層36が位置している。
 ソース電極層51とドレイン電極層52の間に電圧を印加した状態でゲート電極層32にゲート電圧を印加し、酸化物半導体層34内のゲート電極層32に対してゲート絶縁膜33を介して対面した部分に、酸化物半導体層34の導電型と反対の導電型のチャネル層(又は同一の導電型の低抵抗のチャネル層)が形成されると、酸化物半導体層34のソース電極層51が接触した部分とドレイン電極層52が接触した部分とがチャネル層73(又は低抵抗層)によって低抵抗で接続され、その結果、ソース電極層51とドレイン電極層52とが電気的に接続され、トランジスタ11が導通する。
 ゲート電圧の印加を停止すると、チャネル層73(又は低抵抗層)は消滅し、ソース電極層51とドレイン電極層52との間は高抵抗になり、電気的に分離される。
 液晶表示領域14には画素電極82が配置されており、画素電極82上には液晶83が配置されている。液晶83上には上部電極81が位置しており、画素電極82と上部電極81との間に電圧が印加されると、液晶83を通る光の偏光性が偏光され、偏光フィルタの通過性が制御される。
 画素電極82はソース電極層51やドレイン電極層52と電気的に接続されており、トランジスタ11がON・OFFすることで、画素電極82への電圧印加の開始・終了が行われる。
 ここでは画素電極82は、ドレイン電極層52に接続された配線層42の一部から成っている。配線層42はITOで構成された透明導電層であり、配線層42は、ゲート電極層32と同様にガラス基板31上に形成され、ゲート電極層32を構成する薄膜と同じ薄膜から成る配線層84に接続されている。
 このトランジスタ11の製造工程を説明する。
 このトランジスタ11は、先ず、ガラス基板31上に、スパッタ法や蒸着法等の真空薄膜形成方法によって第一の導電性薄膜を形成し、第一の導電性薄膜をパターニングしてゲート電極層32を形成する。第一の導電性薄膜には、ガラスとの密着性が高い金属やポリシリコン等の薄膜等を用いることができる。
 図1(a)の符号32は、ガラス基板31上に形成されたゲート電極層を示している。
 パターニングしてゲート電極層32を形成すると、ゲート電極層32が位置する部分以外はガラス基板表面が露出しており、図1(b)に示すように、ガラス基板31とゲート電極層32の表面に、SiO2、SiNx等のゲート絶縁膜33を形成する。このゲート絶縁膜33は、必要に応じてパターニングする。
 次に、ゲート絶縁膜33上に酸化物半導体の薄膜を形成し、パターニングして、図1(c)に示すように、パターニングされた酸化物半導体の薄膜から成る酸化物半導体層34を形成する。
 次いで、図2(a)に示すように、酸化物半導体層34の表面と、酸化物半導体層34の間に露出するゲート絶縁膜33の表面に亘って酸化物絶縁薄膜35を形成し、図2(b)に示すように、その酸化物絶縁薄膜35をパターニングして、酸化物絶縁薄膜から成るストッパー層36を形成する。
 酸化物半導体層34には、ゲート電極層32の幅方向両端に互いに離間して位置するソース領域71とドレイン領域72とが設定されており、ストッパー層36は、酸化物半導体層34表面のソース領域71とドレイン領域72を露出させ、他の部分の表面を覆うように位置しており、その状態で、先ず、スパッタリング法により、少なくともストッパー層36と酸化物半導体層34の露出部分上に高密着性バリア膜37を形成し、次いで、図3(a)に示すように、高密着性バリア膜37の表面に、銅薄膜38を形成し、高密着性バリア膜37と銅薄膜38とで電極層40を形成する。
 銅薄膜38の形成の際、酸素ガスはスパッタリング雰囲気中に導入せず、銅薄膜38中に酸化銅を含有させていないので、低抵抗の銅薄膜38を得ている。
 本発明では、高密着性バリア膜はCu-Mg-Alから成る薄膜であり、この高密着性バリア膜を形成する工程を説明すると、ストッパー層36の表面と酸化物半導体層34のソース領域71及びドレイン領域72の部分の表面とが露出している図2(b)の処理対象物80をスパッタ装置の内部に搬入し、Cu-Mg-Al合金から成るターゲットをスパッタし、スパッタリング粒子を成膜対象物の表面に到着させると、ストッパー層36の表面と、酸化物半導体層34のソース領域71及びドレイン領域72の露出部分の表面とに接触する高密着性バリア膜37が形成される。
 高密着性バリア膜37は酸化物との密着性が高く、電極層40は酸化物半導体の薄膜や酸化物の薄膜から剥離しない。また、高密着性バリア膜37と銅薄膜38の密着性も高いので、銅薄膜38が高密着性バリア膜37から剥離することもない。
 高密着性バリア膜37は、SiO2から成る酸化物であるストッパー層36や、酸化物半導体層34の表面に形成されており、銅薄膜38は高密着性バリア膜37の表面に形成されている。従って、銅薄膜38は、ストッパー層36や酸化物半導体層34から剥離することはない。
 また、高密着性バリア膜37は、銅原子に対するバリア機能を有しており、高密着性バリア膜37から酸化物半導体層34内に銅原子は拡散せず、また、銅薄膜38と酸化物半導体層34の間には高密着性バリア膜37が位置しているから、銅薄膜38中の銅原子は拡散を高密着性バリア膜37で阻止され、酸化物半導体層34中への銅原子拡散が防止されている。
 高密着性バリア膜37と銅薄膜38とが形成された後、銅薄膜38表面にレジスト膜を形成し、レジスト膜をパターニングして、図3(b)に示すように、銅薄膜38表面の、ソース領域上71の位置とドレイン領域72の上の位置とに、レジスト膜39を配置する。
 この状態で、銅等の金属を溶解させるエッチング液に浸漬すると、レジスト膜39の間に露出した銅薄膜38と、銅薄膜38の露出部分直下に位置する高密着性バリア膜37とがエッチング液によってエッチングされ、レジスト膜39で覆われたソース領域71上の部分とドレイン領域72上の部分だけが残り、図3(c)に示すように、ソース領域71上で残った高密着性バリア膜37と銅薄膜38によってソース電極層51が形成され、ドレイン領域72上で残った高密着性バリア膜37と銅薄膜38によってドレイン電極層52が形成される。ソース電極層51とドレイン電極層52は互いに離間されており、ゲート電極層32の一端上にソース電極層51の一部が位置し、他端上にドレイン電極層52の一部が位置している。ソース電極層51の縁部分と、ドレイン電極層52の縁部分は、ストッパー層36上に乗っている。
 酸化物半導体層34の、ソース領域71とドレイン領域72の間がチャネル領域73であり、ゲート電極層32は、ゲート絶縁膜33を挟んでチャネル領域73と対向する位置にある。この状態は、ゲート絶縁膜33と、ゲート・ソース・ドレイン電極層32、51、52とでトランジスタ11が構成されている。
 次いで、図4(a)に示すようにレジスト膜39を除去し、図4(b)に示すようにSiNxやSiO2等の絶縁膜から成る保護膜41を形成し、図5に示すように保護膜41にヴィアホールやコンタクトホール等の接続孔43を形成し、接続孔43底面に露出するソース電極層51やドレイン電極層52等や他の素子の電極層の間をパターニングした配線層42で接続すると、ゲート・ソース・ドレイン電極層32、51、52に電圧を印加できるようになり、トランジスタ11は動作することができる。(液晶83と上部電極81は後工程で配置する。)
 以上は、酸化物半導体層34を浸食するエッチング液を用いて銅薄膜38と高密着性バリア膜37とをエッチングしたため、ストッパー層36によってエッチング液を酸化物半導体層34に接触させないようにしていたが、酸化物半導体層34を浸食しないエッチング液を用いる場合は、酸化物半導体層34はエッチング液に接触できるのでストッパー層36は不要である。
 図6(c)は、液晶表示装置の一部であり、ストッパー層36を有さないトランジスタ12が示されている。液晶表示領域は省略されている。
 図6(a)は、ゲート絶縁膜33上にパターニングした酸化物半導体層34を形成した後、高密着性バリア膜37と銅薄膜38をこの順序で積層形成し、酸化物半導体層34のソース領域71上の銅薄膜38表面とドレイン領域72上の銅薄膜38表面とにレジスト膜39を配置した状態であり、酸化物半導体層34を浸食しないエッチング液に浸漬し、銅薄膜38と高密着性バリア膜37のうちのレジスト膜39で覆われていない部分をエッチング除去する。
 このとき、酸化物半導体層34とエッチング液が接触するが、酸化物半導体層34は浸食されず、レジスト膜39除去後、図6(c)に示すように、保護膜41に接続孔43を形成して配線をソース電極層51やドレイン電極層52に接続すると、ストッパー層36を有さないトランジスタ12が動作できる状態になる。ガラス基板31側から、ゲート電極層32、ゲート絶縁膜33、酸化物半導体層34、ソース・ドレイン電極層51、52がこの順序で位置しており、ボトムゲート型のトランジスタであったが、図7に示すようなトップゲート型のトランジスタ13であってもよい。
 このトランジスタ13は、ガラス基板31上に、部分的に酸化物半導体層34が形成されており、酸化物半導体層34と、酸化物半導体層34間に露出するガラス基板31上にゲート絶縁膜33が形成されている。
 各酸化物半導体層34上の両端部には、それぞれソース領域71とドレイン領域72とが形成されており、ソース領域71とドレイン領域72の間は、チャネル層が形成されるチャネル領域73にされている。
 ゲート絶縁膜33のうちのチャネル領域73上の部分には、ゲート電極層32が配置されており、ゲート絶縁膜33上には、ゲート電極層32を覆うように、酸化物から成る薄膜である層間絶縁層61が配置されている。
 ゲート絶縁膜33と層間絶縁層61のソース領域71上の部分とドレイン領域72上の部分とには、接続孔43が形成されている。層間絶縁層61上には、接続孔43の底部にソース領域71表面とドレイン領域72表面とが露出された状態で、高密着性バリア膜37と銅薄膜38がこの順序で積層形成され、二層構造の電極層が構成されている。
 この電極層はパターニングされており、高密着性バリア膜37がソース領域71表面と接触したソース電極層51と、ドレイン領域72表面と接触し、ソース電極層51とは分離されたドレイン電極層52とが形成され、トランジスタが構成されている。
 ソース電極層51とドレイン電極層52に電圧を印加した状態でゲート電極層32にゲート電圧を印加すると、チャネル領域73内に、チャネル領域73と同じ導電型又は反対の導電型の低抵抗のチャネル層が形成され、ソース領域71とドレイン領域72が導通する。
 なお、ソース電極層51とドレイン電極層52と、その間に露出された層間絶縁層61上には保護膜41が形成されている。
 このトランジスタ13でも、銅薄膜38は層間絶縁層61等の酸化物から成る絶縁膜や、酸化物半導体層34には直接接触しておらず、高密着性バリア膜37を介して接触するようになっており、高密着性バリア膜37の高い密着力によって銅薄膜38は剥離せず、また、高密着性バリア膜37のバリア特性によって、銅薄膜38中や高密着性バリア膜37中の銅原子は、絶縁膜や半導体領域内に拡散しないようになっている。
 Cu(銅)を主成分として、Mg(マグネシウム)とAl(アルミニウム)を所望割合で含有させ、ターゲットを作製し、そのターゲットをスパッタリングし、酸化物から成る絶縁性薄膜(ここでは、SiO2薄膜)や酸化物半導体薄膜(ここでは、IGZO膜:InGaZnO)の表面に、ターゲットと同じ組成のCu-Mg-Alから成る高密着性バリア膜を形成し、形成した高密着性バリア膜上に純銅薄膜を形成して、高密着性バリア膜と純銅薄膜とから成る電極層を形成した。
 MgとAlの添加割合が異なる高密着性バリア膜の密着性とバリア性について評価した。
 酸化物半導体に対する評価結果を表1に記載し、絶縁性薄膜に対する評価結果を表2に記載する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2では、SiO2から成る絶縁性薄膜はガラス基板上に形成したが、「SiH4系SiO2膜」は、ガラス基板上にSiH4ガスとN2Oガスを原料としてCVD法によって形成したSiO2膜であり、「TEOS系SiO2膜」はTEOSとO2ガスを用いてCVD法によって形成したSiO2膜である。
 表1、2中の「Mg含有量」と「Al含有量」中の数値は、ターゲット又は高密着性バリア膜中のCu原子数とMg原子数とAl原子数の合計個数を100at%としたときの、含有するMg原子数割合(Xat%)及びAl原子数割合(Yat%)を示しており、“-”は含有量がゼロの場合である。
 「Target製作可否」の欄は、Cu、Mg、Alの材料がターゲットに成形できた場合を“○”、ターゲットに成形できなかった場合を“×”に分類した。
 「密着性」の欄の評価は、純銅薄膜の表面に粘着テープを貼付し、粘着テープを引き剥がし、粘着テープが、粘着テープと純銅薄膜の界面で剥離した場合を“○”、電極層内部の破壊、又は電極層と絶縁性薄膜や酸化物半導体との界面で剥離した場合を“×”として分類した。
 バリア性については、オージェ電子分光分析法によって、高密着性バリア膜と接触した酸化物半導体の薄膜、又は、酸化物から成る絶縁性薄膜中へのCu原子の拡散の有無を測定し、Cuが検出されない場合を“○”、検出された場合を“×”として分類した。
 表1、2に記載した測定結果から、MgとAlの両方を含有しないと、特に、アニール後の密着性やバリア性が悪く、Mg含有率が0.5at%以上5at%以下であって、Al含有率が5at%以上15at%以下の場合が、密着性とバリア性の両方に優れていることが分かる。従って、本発明の上記各実施例のCu-Mg-Alから成る薄膜である高密着性バリア膜37は、Cu原子数とMg原子数とAl原子数の合計個数を100at%としたときに、Mg含有率が0.5at%以上5at%以下であって、Al含有率5at%以上15at%以下である導電性薄膜である。
 高密着性バリア膜37上に高密着性バリア膜37と接触して形成される銅薄膜38は全体の原子数を100at%としたとき、50at%を越える含有率で銅を含有する低抵抗な導電性薄膜である。
 なお、上記酸化物半導体はInGaZnOであったが、本発明はそれに限定されるものではなく、ZnOやSnO2等の酸化物半導体も含まれる。
 また、高密着性バリア膜37が接触する酸化物から成る絶縁膜(一例として上記ストッパー層36)はSiO2膜であったが、本発明はそれに限定されるものではなく、酸化物から成る絶縁膜には、酸化物を含有する薄膜も含まれる。本発明の絶縁膜には例えばSiON膜、SiOC膜、SiOF膜、Al23膜、Ta25膜、HfO2膜、ZrO2膜が含まれる。

Claims (6)

  1.  酸化物半導体層と、
     前記酸化物半導体層と接触する電極層とを有する半導体素子であって、
     前記電極層は、前記酸化物半導体層に接触する高密着性バリア膜と、前記高密着性バリア膜に接触する銅薄膜とから成り、
     前記高密着性バリア膜は、銅と、マグネシウムと、アルミニウムとを含有し、銅と、マグネシウムと、アルミニウムとの合計原子数を100at%としたとき、マグネシウムは0.5at%以上5at%以下、アルミニウムは5at%以上15at%以下の範囲にされた半導体装置。
  2.  前記電極層は、互いに分離されたソース電極層とドレイン電極層を有し、
     前記ソース電極層と前記ドレイン電極層は、前記酸化物半導体層のソース領域とドレイン領域とにそれぞれ接触し、
     前記ソース領域と前記ドレイン領域との間のチャネル領域には、ゲート絶縁膜を間に挟んでゲート電極層が配置されたトランジスタである請求項1記載の半導体装置。
  3.  前記酸化物半導体層上には酸化物から成る絶縁膜が配置され、前記ソース電極層と前記ドレイン電極層は、前記絶縁膜の表面に配置され、前記ソース領域上と前記ドレイン領域上とに形成された前記絶縁膜の接続孔の内周面には、前記ソース電極層と前記ドレイン電極層の高密着性バリア膜が配置された請求項2記載の半導体装置。
  4.  請求項1乃至請求項3のいずれか1項記載の半導体装置と、画素電極と、前記画素電極上に配置された液晶と、前記液晶上に位置する上部電極とを有し、
     前記画素電極は前記電極層に電気的に接続された液晶表示装置。
  5.  酸化物半導体層と、
     前記酸化物半導体層と接触する電極層とを有する半導体素子であって、
     前記電極層は、前記酸化物半導体層に接触する高密着性バリア膜と、前記高密着性バリア膜に接触する銅薄膜とから成り、
     前記高密着性バリア膜は、銅と、マグネシウムと、アルミニウムとを含有し、銅と、マグネシウムと、アルミニウムとの合計原子数を100at%としたとき、マグネシウムは0.5at%以上5at%以下、アルミニウムは5at%以上15at%以下の範囲にされた半導体装置の製造方法であって、
     前記酸化物半導体層の表面に酸化物薄膜を形成し、前記酸化物薄膜を部分的に除去して前記酸化物薄膜から成るストッパー層を形成し、前記酸化物薄膜が除去された部分に前記酸化物半導体層を露出させ、
     前記ストッパー層上と前記ソース領域上と前記ドレイン領域上に、
     露出された前記酸化物半導体層の表面に接触する前記高密着性バリア膜を形成し、前記高密着性バリア膜上に前記銅薄膜を形成して前記電極層を形成する半導体装置の製造方法。
  6.  前記酸化物半導体層の前記ソース領域と前記ドレイン領域の間のチャネル領域上にゲート絶縁膜を形成し、
     前記ゲート絶縁膜上にゲート電極層を配置しておき、
     前記酸化物半導体層の前記ソース領域と前記ドレイン領域とを露出させた状態で、前記電極層の前記高密着性バリア膜を、前記ソース領域と前記ドレイン領域に接触させて形成する請求項5記載の半導体装置の製造方法。
PCT/JP2010/064208 2009-08-26 2010-08-24 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法 WO2011024770A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080038623.8A CN102484137B (zh) 2009-08-26 2010-08-24 半导体装置、具有半导体装置的液晶显示装置、半导体装置的制造方法
JP2011528782A JP4970622B2 (ja) 2009-08-26 2010-08-24 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
KR1020127003038A KR101175085B1 (ko) 2009-08-26 2010-08-24 반도체 장치, 반도체 장치를 갖는 액정 표시 장치, 반도체 장치의 제조 방법
US13/402,120 US20120206685A1 (en) 2009-08-26 2012-02-22 Semiconductor device, liquid crystal display device having semiconductor device, and method for producing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009196039 2009-08-26
JP2009-196039 2009-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/402,120 Continuation US20120206685A1 (en) 2009-08-26 2012-02-22 Semiconductor device, liquid crystal display device having semiconductor device, and method for producing semiconductor device

Publications (1)

Publication Number Publication Date
WO2011024770A1 true WO2011024770A1 (ja) 2011-03-03

Family

ID=43627875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064208 WO2011024770A1 (ja) 2009-08-26 2010-08-24 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20120206685A1 (ja)
JP (1) JP4970622B2 (ja)
KR (1) KR101175085B1 (ja)
CN (1) CN102484137B (ja)
TW (1) TWI377673B (ja)
WO (1) WO2011024770A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913267B2 (ja) * 2009-10-27 2012-04-11 株式会社アルバック 配線層、半導体装置、半導体装置を有する液晶表示装置
KR20130015170A (ko) * 2011-08-02 2013-02-13 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR20130092463A (ko) * 2012-02-09 2013-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치를 갖는 표시 장치, 반도체 장치를 갖는 전자 기기, 및 반도체 장치의 제작 방법
KR101364361B1 (ko) 2011-08-31 2014-02-18 가부시키가이샤 재팬 디스프레이 표시 장치 및 표시 장치의 제조 방법
JP6768180B1 (ja) * 2019-04-09 2020-10-14 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
WO2020208904A1 (ja) * 2019-04-09 2020-10-15 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772934B2 (en) 2012-08-28 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Aluminum interconnection apparatus
KR102001057B1 (ko) * 2012-10-31 2019-07-18 엘지디스플레이 주식회사 어레이 기판의 제조방법
KR102094841B1 (ko) 2013-05-16 2020-03-31 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR101450841B1 (ko) * 2013-07-11 2014-10-15 (주)그린광학 박막 트랜지스터 및 그 제조방법
US9455184B2 (en) 2014-06-17 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Aluminum interconnection apparatus
CN104952932A (zh) 2015-05-29 2015-09-30 合肥鑫晟光电科技有限公司 薄膜晶体管、阵列基板及其制作方法、显示装置
JP2019523565A (ja) * 2016-08-29 2019-08-22 シェンジェン ロイオル テクノロジーズ カンパニー リミテッドShenzhen Royole Technologies Co., Ltd. 薄膜トランジスタの製造方法
KR20190132342A (ko) * 2017-04-13 2019-11-27 가부시키가이샤 알박 액정 표시 장치, 유기 el 표시 장치, 반도체 소자, 배선막, 배선 기판, 타깃
CN113035890B (zh) * 2021-03-10 2022-08-26 湖北长江新型显示产业创新中心有限公司 一种显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062799A (ja) * 1996-08-21 1998-03-06 Canon Inc 配線基板、該配線基板の製造方法、該配線基板を備えた液晶素子及び該液晶素子の製造方法
JPH1154458A (ja) * 1997-05-08 1999-02-26 Applied Materials Inc メタライゼーション構造体
JP2005190992A (ja) * 2003-11-14 2005-07-14 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2010053445A (ja) * 2008-08-01 2010-03-11 Mitsubishi Materials Corp フラットパネルディスプレイ用配線膜形成用スパッタリングターゲット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2007250982A (ja) * 2006-03-17 2007-09-27 Canon Inc 酸化物半導体を用いた薄膜トランジスタ及び表示装置
JP5110803B2 (ja) * 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
KR100858088B1 (ko) * 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062799A (ja) * 1996-08-21 1998-03-06 Canon Inc 配線基板、該配線基板の製造方法、該配線基板を備えた液晶素子及び該液晶素子の製造方法
JPH1154458A (ja) * 1997-05-08 1999-02-26 Applied Materials Inc メタライゼーション構造体
JP2005190992A (ja) * 2003-11-14 2005-07-14 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2010053445A (ja) * 2008-08-01 2010-03-11 Mitsubishi Materials Corp フラットパネルディスプレイ用配線膜形成用スパッタリングターゲット

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913267B2 (ja) * 2009-10-27 2012-04-11 株式会社アルバック 配線層、半導体装置、半導体装置を有する液晶表示装置
US9589998B2 (en) 2011-08-02 2017-03-07 Samsung Display Co., Ltd. Thin film transistor array panel and manufacturing method thereof
KR20130015170A (ko) * 2011-08-02 2013-02-13 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
JP2013033927A (ja) * 2011-08-02 2013-02-14 Samsung Electronics Co Ltd 薄膜トランジスタ表示板及びその製造方法
KR101934977B1 (ko) 2011-08-02 2019-03-19 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US9837446B2 (en) 2011-08-02 2017-12-05 Samsung Display Co., Ltd. Thin film transistor array panel and manufacturing method thereof
KR101364361B1 (ko) 2011-08-31 2014-02-18 가부시키가이샤 재팬 디스프레이 표시 장치 및 표시 장치의 제조 방법
JP2014179625A (ja) * 2012-02-09 2014-09-25 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013179290A (ja) * 2012-02-09 2013-09-09 Semiconductor Energy Lab Co Ltd 半導体装置、半導体装置を有する表示装置、半導体装置を有する電子機器及び半導体装置の作製方法
JP2018093216A (ja) * 2012-02-09 2018-06-14 株式会社半導体エネルギー研究所 トランジスタの作製方法
KR20130092463A (ko) * 2012-02-09 2013-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치를 갖는 표시 장치, 반도체 장치를 갖는 전자 기기, 및 반도체 장치의 제작 방법
US10249764B2 (en) 2012-02-09 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
KR102055239B1 (ko) * 2012-02-09 2019-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치를 갖는 표시 장치, 반도체 장치를 갖는 전자 기기, 및 반도체 장치의 제작 방법
JP6768180B1 (ja) * 2019-04-09 2020-10-14 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
WO2020208904A1 (ja) * 2019-04-09 2020-10-15 株式会社アルバック Cu合金ターゲット、配線膜、半導体装置、液晶表示装置

Also Published As

Publication number Publication date
JPWO2011024770A1 (ja) 2013-01-31
TWI377673B (en) 2012-11-21
JP4970622B2 (ja) 2012-07-11
KR101175085B1 (ko) 2012-08-21
TW201125121A (en) 2011-07-16
KR20120048597A (ko) 2012-05-15
US20120206685A1 (en) 2012-08-16
CN102484137B (zh) 2015-06-17
CN102484137A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4970622B2 (ja) 半導体装置、半導体装置を有する液晶表示装置、半導体装置の製造方法
JP5963804B2 (ja) 半導体装置の製造方法
US8928828B2 (en) Array substrate, manufacturing method thereof, liquid crystal panel, and display device
JP4970621B2 (ja) 配線層、半導体装置、液晶表示装置
CN110246900B (zh) 半导体装置及其制造方法
JPWO2008081805A1 (ja) 配線膜の形成方法、トランジスタ、及び電子装置
JP4913267B2 (ja) 配線層、半導体装置、半導体装置を有する液晶表示装置
JP6768180B1 (ja) Cu合金ターゲット、配線膜、半導体装置、液晶表示装置
US20210215986A1 (en) Cu alloy target, wiring film, semiconductor device, and liquid crystal display device
US20210230718A1 (en) Cu ALLOY TARGET
JP2011091365A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
JP2020012190A (ja) 密着膜用ターゲット、配線層、半導体装置、液晶表示装置
WO2018181296A1 (ja) チャネルエッチ型薄膜トランジスタの製造方法
KR20150029843A (ko) 박막 트랜지스터, 박막 트랜지스터를 포함하는 박막 트랜지스터 표시판 및 박막 트랜지스터의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038623.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528782

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811820

Country of ref document: EP

Kind code of ref document: A1