WO2010143578A1 - アルキルスルホン化合物の製造方法 - Google Patents

アルキルスルホン化合物の製造方法 Download PDF

Info

Publication number
WO2010143578A1
WO2010143578A1 PCT/JP2010/059434 JP2010059434W WO2010143578A1 WO 2010143578 A1 WO2010143578 A1 WO 2010143578A1 JP 2010059434 W JP2010059434 W JP 2010059434W WO 2010143578 A1 WO2010143578 A1 WO 2010143578A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
sulfone
isopropyl
ethyl
formula
Prior art date
Application number
PCT/JP2010/059434
Other languages
English (en)
French (fr)
Inventor
伏屋一郎
竹内剛
李春
ポール クアド
檜山武寛
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN2010800247466A priority Critical patent/CN102459161A/zh
Priority to EP10786109A priority patent/EP2441751A4/en
Priority to US13/376,728 priority patent/US20120136175A1/en
Priority to JP2011518488A priority patent/JPWO2010143578A1/ja
Publication of WO2010143578A1 publication Critical patent/WO2010143578A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/02Preparation of sulfones; Preparation of sulfoxides by formation of sulfone or sulfoxide groups by oxidation of sulfides, or by formation of sulfone groups by oxidation of sulfoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/04Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton

Definitions

  • the present invention relates to a method for producing an alkylsulfone compound and an alkylsulfone compound.
  • aprotic polar solvents such as sulfolane and propylene carbonate have been used as solvents for electrochemical devices such as lithium batteries and electric double layer capacitors.
  • aprotic polar solvents generally include acyclic sulfone compounds.
  • an alkyl sulfide is used as a raw material and is oxidized using hydrogen peroxide in an acetic acid solvent (Non-patent Documents 1 and 2)
  • an alkyl sulfide is used as a raw material
  • a method of oxidizing with t-butyl peroxide in a chloroform solvent (Non-patent Document 3) is known.
  • these methods use an organic solvent and a peroxide, an explosive organic peroxide may be generated in the reaction system.
  • An object of the present invention is to provide a method for producing an alkylsulfone compound easily and safely in a high yield, and an alkylsulfone compound.
  • the present invention relates to a method for producing an alkylsulfone compound and an alkylsulfone compound as described below.
  • Item 1 The manufacturing method of the alkylsulfone compound represented by Formula (2) obtained by oxidizing the alkylsulfide compound represented by Formula (1) using an oxidizing agent in presence of a tungstate catalyst.
  • R 1 represents an alkyl group having 1 to 3 carbon atoms
  • R 2 represents an alkyl group having 3 to 5 carbon atoms.
  • R 1 and R 2 each represent the same alkyl group as in formula (1).
  • Item 2 The method for producing an alkylsulfone compound according to Item 1, wherein the tungstate catalyst is sodium tungstate or potassium tungstate.
  • Item 3 The method for producing an alkylsulfone compound according to Item 1 or 2, wherein the oxidizing agent is hydrogen peroxide.
  • Item 4. An alkylsulfone compound used in an electrolytic solution for an electrochemical device obtained by the method for producing an alkylsulfone compound according to any one of Items 1 to 3.
  • Item 5 The alkylsulfone compound according to Item 4, which has a purity of 99% or more and a water content of 0.1% by weight or less.
  • the alkyl sulfide compound represented by the formula (1) can be obtained by a commercially available product, a known synthesis method (Non-patent Documents 1 and 2, etc.) or a production method shown below. Among them, those obtained by the production method shown below are preferably used from the viewpoint of easily obtaining the alkyl sulfide compound with high yield.
  • the alkyl thiol represented by the formula (3) is converted into an alkyl thiol salt represented by the formula (4) using a base in the presence of a reducing agent, and this and an alkyl halide represented by the formula (5) Can be obtained as an alkyl sulfide compound represented by the formula (1) by reacting in the presence of a phase transfer catalyst.
  • R 1 represents an alkyl group having 1 to 3 carbon atoms.
  • R 1 represents the same alkyl group as in formula (3), and M represents an alkali metal atom.
  • R 2 represents an alkyl group having 3 to 5 carbon atoms
  • X represents a halogen atom
  • R 1 represents the same alkyl group as in formula (3)
  • R 2 represents the same alkyl group as in formula (5).
  • alkyl thiol represented by the formula (3) examples include methane thiol, ethane thiol, 1-propane thiol and 2-propane thiol.
  • Examples of the base used when the alkylthiol is converted to an alkylthiol salt represented by the formula (4) using a base in the presence of a reducing agent include, for example, alkali hydroxides such as sodium hydroxide and potassium hydroxide. Examples thereof include metals, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal alcoholates such as sodium methylate and sodium ethylate. Of these, sodium hydroxide is preferably used from the viewpoint of economy.
  • the use ratio of the base is preferably 0.5 to 5.0 mol, more preferably 0.8 to 2.0 mol, per 1 mol of alkylthiol.
  • the use ratio of the base is less than 0.5 mol, the yield of the alkyl sulfide compound may be reduced, and when it exceeds 5.0 mol, the viscosity of the reaction solution may increase and stirring may become difficult. is there.
  • Examples of the reducing agent include sodium borohydride, lithium borohydride, lithium aluminum hydride, sodium cyanoborohydride, diisopropylaluminum hydride and the like. Of these, sodium borohydride is preferably used because of its availability.
  • the ratio of the reducing agent used is preferably 0.001 to 1.0 mol, more preferably 0.01 to 0.2 mol, per 1 mol of alkylthiol.
  • the use ratio of the reducing agent is less than 0.001 mol, there is a possibility that an alkyl disulfide compound as an impurity may be formed, and when it exceeds 1.0 mol, the viscosity of the reaction solution may increase and stirring may become difficult. There is.
  • alkyl halide represented by the formula (5) examples include normal propyl chloride, isopropyl chloride, normal butyl chloride, isobutyl chloride, 1,1-dimethylethyl chloride, normal pentyl chloride, 1,2-dimethylpropyl chloride, 2-methylbutyl chloride, 3-methylbutyl chloride, 2,2-dimethylpropyl chloride, normal propyl bromide, isopropyl bromide, normal butyl bromide, isobutyl bromide, 1,1-dimethylethyl bromide, normal pentyl bromide, 1,2- Examples thereof include dimethylpropyl bromide, 2-methylbutyl bromide, 3-methylbutyl bromide and 2,2-dimethylpropyl bromide.
  • the proportion of the alkyl halide used is preferably 0.5 to 10 mol, more preferably 0.8 to 5.0 mol, per 1 mol of alkylthiol.
  • the use ratio of the alkyl halide is less than 0.5 mol, the reaction may not be completed and the yield may be reduced. If it exceeds 10 moles, the purity of the resulting alkyl sulfide compound may be reduced.
  • phase transfer catalyst used in the reaction of the alkylthiol salt represented by the formula (4) and the alkyl halide represented by the formula (5) include benzyltriethylammonium bromide, benzyltrimethylammonium bromide, and hexadecyltriethyl.
  • Quaternary ammonium salts such as ammonium chloride, dodecyltrimethylammonium chloride, tetra-n-butylammonium bromide, tetraethylammonium chloride and trioctylmethylammonium bromide, and hexadodecyltriethylphosphonium bromide, hexadecyltributylphosphonium chloride and tetra-n-butyl And quaternary phosphonium salts such as phosphonium chloride.
  • tetra-n-butylammonium bromide is preferably used from the viewpoint of improving the yield and economical efficiency.
  • the amount of the phase transfer catalyst used is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the alkyl halide.
  • the amount of the phase transfer catalyst used is less than 0.1 parts by weight, the reaction may not be completed and the yield may be reduced.
  • the amount exceeds 100 parts by weight separation from the product becomes difficult and the production is difficult. There is a risk that the yield of the product will decrease.
  • reaction solvent used for the reaction of the alkylthiol salt represented by the formula (4) and the alkyl halide represented by the formula (5) include water, tetrahydrofuran, 1,4-dioxane, methanol and ethanol. Etc. Among these, ethanol is preferably used from the viewpoint of improving the yield and economical efficiency.
  • the amount of the reaction solvent used is preferably 10 to 5000 parts by weight, and more preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the alkylthiol.
  • the amount of the reaction solvent used is less than 10 parts by weight, stirring becomes difficult and the yield may be lowered.
  • it exceeds 5000 parts by weight the production efficiency may be lowered and the economy may be lowered. is there.
  • the reaction temperature of the reaction between the alkyl thiol salt represented by the formula (4) and the alkyl halide represented by the formula (5) is preferably 30 to 120 ° C., and preferably 60 to 110 ° C. More preferred. When the reaction temperature is less than 30 ° C., it may take a long time to complete the reaction, and when it exceeds 120 ° C., side reactions may occur and the yield of the target compound may be reduced.
  • the reaction time is, for example, about 1 to 30 hours.
  • the alkyl sulfide compound thus obtained can be obtained by washing with water and separating as necessary. Further, it can be isolated with increased purity by distillation.
  • alkyl sulfide compound represented by the formula (1) used in the present invention examples include, for example, methyl normal propyl sulfide, methyl isopropyl sulfide, methyl normal butyl sulfide, methyl isobutyl sulfide, methyl 1,1-dimethylethyl sulfide.
  • ethyl isopropyl sulfide ethyl isobutyl sulfide, propyl isobutyl sulfide and isopropyl isobutyl sulfide are preferably used.
  • Examples of the tungstate catalyst used in the present invention include sodium tungstate, potassium tungstate, ammonium tungstate, calcium tungstate, iron tungstate, manganese tungstate, and the hydrates thereof.
  • sodium tungstate dihydrate and potassium tungstate dihydrate are preferable from the viewpoint of availability and economy.
  • the amount of the tungstate catalyst used is preferably 0.01 to 10 parts by weight and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the alkyl sulfide compound. If the amount of the tungstate catalyst used is less than 0.01 parts by weight, the reaction may not be completed and the yield may be reduced. If it exceeds 10 parts by weight, separation from the product becomes difficult. The product yield may be reduced. In addition, when the said tungstate catalyst is a hydrate, the usage-amount of the said tungstate catalyst is converted as an anhydride.
  • the alkylsulfide compound is oxidized using an oxidizing agent in the presence of the tungstate catalyst and an acid to obtain an alkylsulfone compound.
  • the acid include hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, formic acid, acetic acid, carbonic acid, citric acid, and methanesulfonic acid.
  • hydrochloric acid and sulfuric acid are preferable from the viewpoint of availability and economical efficiency.
  • the amount of the acid used is preferably 0.01 to 100 parts by weight and more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the alkyl sulfide compound.
  • the amount of the acid used is less than 0.1 parts by weight, the reaction system does not become sufficiently acidic, so the reaction may not be completed and the yield may decrease. Separation from the product becomes difficult, and the yield of the product may decrease.
  • Examples of the oxidizing agent used in the present invention include hydrogen peroxide, potassium permanganate, potassium chromate, oxygen, 3-chloroperbenzoic acid and peracetic acid. Among these, hydrogen peroxide is preferable from the viewpoints of safety and economy.
  • the ratio of the oxidizing agent used is preferably 1.8 to 10 moles, more preferably 2 to 5 moles per mole of the alkyl sulfide compound.
  • the use ratio of the oxidizing agent is less than 1.8 mol, the reaction may not be completed and the yield may be lowered.
  • the use ratio exceeds 10 mol, there is no effect corresponding to the use ratio and it is not economical.
  • reaction solvent it is preferable not to use a reaction solvent from the viewpoints of improving production efficiency and safety, suppressing mixing of organic solvents and moisture, and increasing purity.
  • problems such as reduced function may occur, so a solvent with low moisture and high purity is desired.
  • the resulting alkylsulfone compound can be made to have a purity of 99% or more and a water content of 0.1% by weight or less, and thus is suitably used as the solvent for electrochemical devices.
  • a solvent inert to the reaction may be used if necessary.
  • the reaction temperature for the reaction of oxidizing the alkyl sulfide compound represented by the formula (1) using an oxidizing agent in the presence of a tungstate catalyst is preferably 0 to 200 ° C., more preferably 10 to 150 ° C. .
  • the reaction time is, for example, about 1 to 30 hours.
  • the alkylsulfone compound thus obtained is represented by the formula (2).
  • R 1 and R 2 each represent the same alkyl group as in formula (1).
  • the alkylsulfone compound according to the present invention can be isolated by washing, separating and distilling the reaction solution as necessary.
  • alkylsulfone compound represented by the formula (2) include, for example, methyl normal propyl sulfone, methyl isopropyl sulfone, methyl normal butyl sulfone, methyl isobutyl sulfone, methyl 1,1-dimethylethyl sulfone, Methyl normal pentyl sulfone, methyl 1,2-dimethylpropyl sulfone, methyl 2-methylbutyl sulfone, methyl 3-methylbutyl sulfone, methyl 2,2-dimethylpropyl sulfone, ethyl normal propyl sulfone, ethyl isopropyl sulfone, ethyl normal butyl sulfone Ethyl isobutyl sulfone, ethyl 1,1-dimethylethyl sulfone, ethyl normal
  • ethyl isopropyl sulfone ethyl isobutyl sulfone, propyl isobutyl sulfone, and isopropyl isobutyl sulfone are preferable from the viewpoint of excellent characteristics as a solvent for electrochemical devices.
  • the alkyl sulfone compound obtained by the production method of the present invention has high purity, low melting point and low viscosity, and excellent thermal stability. Therefore, lithium batteries, electric double layer capacitors, fuel cells, and dye-sensitized solar cells It is suitably used as an electrolyte for electrochemical devices such as batteries. It can also be used for applications such as BTX extraction solvents, acid gas removers, various reaction solvents for aromatic compounds, and photoresist strippers.
  • Synthesis Example 2 [Synthesis of ethyl isobutyl sulfide] 118.4 g of ethyl isobutyl sulfide was obtained in the same manner as in Synthesis Example 1 except that 150.72 g (1.10 mol) of isobutyl bromide was used instead of 135.29 g of 2-bromopropane in Synthesis Example 1. The yield of the obtained ethyl isobutyl sulfide was 100% with respect to ethanethiol, and the purity by gas chromatography analysis was 95.0%.
  • Synthesis Example 3 [Synthesis of propylisobutyl sulfide] Instead of 62.13 g of ethanethiol in Synthesis Example 1, 76.16 g (1.00 mol) of 1-propanethiol was used, and 150.72 g (1.10 mol) of isobutyl bromide was used instead of 135.29 g of 2-bromopropane. Except that it was used, 126.98 g of propylisobutyl sulfide was obtained in the same manner as in Synthesis Example 1. The yield of the obtained propylisobutyl sulfide was 96% with respect to 1-propanethiol, and the purity by gas chromatography analysis was 95.6%.
  • Synthesis Example 4 [Synthesis of isopropyl isobutyl sulfide] Instead of 62.13 g of ethanethiol in Synthesis Example 1, 76.16 g (1.00 mol) of 2-propanethiol was used, and 150.72 g (1.10 mol) of isobutyl bromide was used instead of 135.29 g of 2-bromopropane. 124.33 g of isopropyl isobutyl sulfide was obtained in the same manner as in Synthesis Example 1 except that it was used. The yield of the obtained isopropyl isobutyl sulfide was 94% with respect to 2-propanethiol, and the purity by gas chromatography analysis was 90.6%.
  • Example 1 In a 500 mL four-necked flask equipped with a stirrer, a thermometer and a condenser, under a nitrogen atmosphere, 104.2 g (1.00 mol) of ethyl isopropyl sulfide obtained in Synthesis Example 1 was added to sodium tungstate dihydrate. 0 g and 52 g sulfuric acid aqueous solution 52 g were added, heated to 50 ° C. using a hot water bath, followed by addition of 35 wt% hydrogen peroxide water 194.0 g (2.00 mol), heated to 60 ° C. and stirred for 2 hours. And reacted.
  • the melting point and heat generation starting temperature of the obtained ethyl isopropyl sulfone were measured using a differential scanning calorimeter in a nitrogen atmosphere.
  • the viscosity was measured using a rotational viscometer (trade name of DIGITAL VISCOMETER, manufactured by Tokimec Co., Ltd.).
  • Example 2 130.7 g of ethyl isobutyl sulfone was obtained in the same manner as in Example 1 except that 118.2 g of ethyl isobutyl sulfide obtained in Synthesis Example 2 was used instead of 104.2 g of ethyl isopropyl sulfide in Example 1.
  • the yield of the obtained ethyl isobutyl sulfone was 87% with respect to ethyl isobutyl sulfide, and the purity by gas chromatography analysis was 99.9%. Further, the water content by Karl Fischer analysis was 0.04% by weight.
  • Example 3 142.91 g of propylisobutylsulfone was obtained in the same manner as in Example 1 except that 132.27 g of propylisobutylsulfide obtained in Synthesis Example 3 was used in place of 104.2 g of ethylisopropylsulfide in Example 1.
  • the yield of the obtained propylisobutylsulfone was 87% with respect to propylisobutylsulfide, and the purity by gas chromatography analysis was 99.3%. Further, the water content by Karl Fischer analysis was 0.02% by weight.
  • the melting point, exothermic start temperature and viscosity of the obtained propylisobutylsulfone were measured using the same method as in Example 1.
  • Example 4 121.56 g of isopropyl isobutyl sulfone was obtained in the same manner as in Example 1 except that 132.27 g of isopropyl isobutyl sulfide obtained in Synthesis Example 4 was used instead of 104.2 g of ethyl isopropyl sulfide in Example 1.
  • the yield of the obtained isopropyl isobutyl sulfone was 74% with respect to isopropyl isobutyl sulfide, and the purity by gas chromatography analysis was 99.7%. Further, the water content by Karl Fischer analysis was 0.04% by weight.
  • Example 5 123.95 g of ethyl isopropyl sulfone was obtained in the same manner as in Example 1 except that 4.0 g of potassium tungstate was used instead of 4.0 g of sodium tungstate dihydrate.
  • the yield of the obtained isopropyl isobutyl sulfone was 91% with respect to ethyl isopropyl sulfide, and the purity by gas chromatography analysis was 99.9%. Further, the water content by Karl Fischer analysis was 0.01% by weight.
  • the melting point, exothermic start temperature and viscosity of the obtained isopropyl isobutyl sulfone were measured using the same method as in Example 1.
  • Comparative Example 1 In a 500 mL four-necked flask equipped with a stirrer, a thermometer and a condenser, under a nitrogen atmosphere, 400 g of acetic acid was added to 104.2 g (1.00 mol) of ethyl isopropyl sulfide obtained in Synthesis Example 1, and a hot water bath was added. And heated to 50 ° C. 194.0 g (2.00 mol) of 35% aqueous hydrogen peroxide was added, and the mixture was stirred at 25 ° C. for 48 hours and at 100 ° C. for 4 hours. After the reaction, 95.0 g of ethyl isopropyl sulfone as a colorless transparent liquid was obtained by simple distillation.
  • the yield of ethyl isopropyl sulfone obtained was 80% with respect to ethyl isopropyl sulfide, and the purity by gas chromatography analysis was 97.8%. Further, the water content by Karl Fischer analysis was 0.51% by weight.
  • Comparative Example 2 130.7 g of ethyl isobutyl sulfone was obtained in the same manner as in Comparative Example 1, except that 118.2 g of ethyl isobutyl sulfide obtained in Synthesis Example 2 was used instead of 104.2 g of ethyl isopropyl sulfide in Comparative Example 1.
  • the yield of ethyl isobutyl sulfone obtained was 87% with respect to ethyl isobutyl sulfide, and the purity by gas chromatography analysis was 97.5%. Further, the water content by Karl Fischer analysis was 0.23% by weight.
  • Table 1 shows the measurement results of melting points, heat generation start temperatures and viscosities in Examples 1 to 4 together with sulfolane and propylene carbonate as a comparison.
  • Example 1 From comparison between Example 1, Example 5 and Comparative Example 1, and Example 2 and Comparative Example 2, it can be seen that the alkylsulfone compound according to the present invention has high purity and low water content.
  • the characteristics shown in Table 1 indicate that the alkylsulfone compound according to the present invention has a low melting point and a low viscosity and a high heat generation starting temperature, and thus has excellent thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、アルキルスルホン化合物を簡便かつ安全に、高収率で製造する方法および、アルキルスルホン化合物を提供することを目的とする。 本発明は、式(1)で表されるアルキルスルフィド化合物を、タングステン酸塩触媒の存在下、酸化剤を用いて酸化して得られる式(2)で表されるアルキルスルホン化合物の製造方法である。 式(1)中、Rは炭素数1~3のアルキル基を示し、Rは炭素数3~5のアルキル基を示す。 式(2)中、RおよびRは、それぞれ式(1)と同じアルキル基を示す。

Description

アルキルスルホン化合物の製造方法
 本発明は、アルキルスルホン化合物の製造方法およびアルキルスルホン化合物に関する。
 近年、リチウム電池や電気二重層キャパシタ等の電気化学デバイス用溶媒として、スルホランやプロピレンカーボネート等の非プロトン性極性溶媒が用いられている。非プロトン性極性溶媒としては、一般に、これらの他に非環状のスルホン化合物が挙げられる。
 非環状のスルホン化合物の製造方法としては、例えば、アルキルスルフィドを原料とし、酢酸溶媒中、過酸化水素を用いて酸化する方法(非特許文献1および非特許文献2)、アルキルスルフィドを原料とし、クロロホルム溶媒中、t-ブチルペルオキシドを用いて酸化する方法(非特許文献3)等が知られている。しかしながら、これらの方法は、有機溶媒と過酸化物とを用いるため、反応系内に爆発性の有機過酸化物が生成するおそれがある。
Journal of the American Chemical Society (1951), 73, 3627-3632 Journal of Organic Chemistry (1946), 11, 475-481 Inorganic Chemistry (2002), 41, 1272-1280
 本発明は、アルキルスルホン化合物を簡便かつ安全に、高収率で製造する方法および、アルキルスルホン化合物を提供することを目的とする。
 本発明は、以下に示すとおりのアルキルスルホン化合物の製造方法およびアルキルスルホン化合物に関する。
 項1.式(1)で表されるアルキルスルフィド化合物を、タングステン酸塩触媒の存在下、酸化剤を用いて酸化して得られる式(2)で表されるアルキルスルホン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは炭素数1~3のアルキル基を示し、Rは炭素数3~5のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、RおよびRは、それぞれ式(1)と同じアルキル基を示す。
 項2.前記タングステン酸塩触媒が、タングステン酸ナトリウムまたはタングステン酸カリウムである項1に記載のアルキルスルホン化合物の製造方法。
 項3.前記酸化剤が、過酸化水素である項1または2に記載のアルキルスルホン化合物の製造方法。
 項4.項1~3のいずれかに記載のアルキルスルホン化合物の製造方法によって得られる電気化学デバイス用電解液に用いられるアルキルスルホン化合物。
 項5.項4に記載のアルキルスルホン化合物であって、純度99%以上、含水率0.1重量%以下であるアルキルスルホン化合物。
 本発明において、式(1)で表されるアルキルスルフィド化合物は、市販品、既知の合成方法(非特許文献1、2等)または、以下に示す製造方法により得ることができる。中でも、アルキルスルフィド化合物を容易に高収率で得られる観点から、以下に示す製造方法により得られたものが好ましく用いられる。
 すなわち、式(3)で表されるアルキルチオールを、還元剤存在下、塩基を用いて、式(4)で表されるアルキルチオール塩とし、これと式(5)で表されるアルキルハライドとを、相間移動触媒存在下、反応させて、式(1)で表されるアルキルスルフィド化合物として得ることができる。
Figure JPOXMLDOC01-appb-C000005
式(3)中、Rは、炭素数が1~3のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000006
式(4)中、Rは、式(3)と同じアルキル基を示し、Mは、アルカリ金属原子を示す。
Figure JPOXMLDOC01-appb-C000007
式(5)中、Rは、炭素数3~5のアルキル基を示し、Xは、ハロゲン原子を示す。
Figure JPOXMLDOC01-appb-C000008
式(1)中、Rは、式(3)と同じアルキル基を示し、Rは式(5)と同じアルキル基を示す。
 前記式(3)で表されるアルキルチオールとしては、例えば、メタンチオール、エタンチオール、1-プロパンチオールおよび2-プロパンチオール等が挙げられる。
 前記アルキルチオールを、還元剤存在下、塩基を用いて、式(4)で表されるアルキルチオール塩とする際に用いられる塩基としては、例えば、水酸化ナトリウムおよび水酸化カリウム等の水酸化アルカリ金属、炭酸ナトリウムおよび炭酸カリウム等の炭酸アルカリ金属、並びにナトリウムメチラートおよびナトリウムエチラート等のアルカリ金属アルコラート等が挙げられる。中でも、経済性の観点から、水酸化ナトリウムが好ましく用いられる。
 前記塩基の使用割合は、アルキルチオール1モルに対して、0.5~5.0モルであることが好ましく、0.8~2.0モルであることがより好ましい。塩基の使用割合が0.5モル未満である場合、アルキルスルフィド化合物の収率が低下するおそれがあり、5.0モルを超える場合、反応液の粘性が高くなり、攪拌が困難になるおそれがある。
 前記還元剤としては、例えば、ナトリウムボロハイドライド、リチウムボロハイドライド、リチウムアルミニウムハイドライド、ナトリウムシアノボロハイドライドおよびジイソプロピルアルミニウムハイドライド等が挙げられる。中でも、入手のしやすさから、ナトリウムボロハイドライドが好ましく用いられる。
 前記還元剤の使用割合は、アルキルチオール1モルに対して、0.001~1.0モルであることが好ましく、0.01~0.2モルであることがより好ましい。還元剤の使用割合が0.001モル未満である場合、不純物となるアルキルジスルフィド化合物が生成するおそれがあり、1.0モルを超える場合、反応液の粘性が高くなり、攪拌が困難になるおそれがある。
 前記式(5)で表されるアルキルハライドとしては、例えば、ノルマルプロピルクロライド、イソプロピルクロライド、ノルマルブチルクロライド、イソブチルクロライド、1,1-ジメチルエチルクロライド、ノルマルペンチルクロライド、1,2-ジメチルプロピルクロライド、2-メチルブチルクロライド、3-メチルブチルクロライド、2,2-ジメチルプロピルクロライド、ノルマルプロピルブロマイド、イソプロピルブロマイド、ノルマルブチルブロマイド、イソブチルブロマイド、1,1-ジメチルエチルブロマイド、ノルマルペンチルブロマイド、1,2-ジメチルプロピルブロマイド、2-メチルブチルブロマイド、3-メチルブチルブロマイドおよび2,2-ジメチルプロピルブロマイド等が挙げられる。
 前記アルキルハライドの使用割合としては、アルキルチオール1モルに対して、0.5~10モルであることが好ましく、0.8~5.0モルであることがより好ましい。アルキルハライドの使用割合が0.5モル未満である場合、反応が完結せず、収率が低下するおそれがある。10モルを超える場合、得られるアルキルスルフィド化合物の純度が低下するおそれがある。
 前記式(4)で表されるアルキルチオール塩と前記式(5)で表されるアルキルハライドとの反応に用いられる相間移動触媒は、例えば、ベンジルトリエチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムブロマイド、ヘキサデシルトリエチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、テトラ-n-ブチルアンモニウムブロマイド、テトラエチルアンモニウムクロライドおよびトリオクチルメチルアンモニウムブロマイド等の4級アンモニウム塩、並びにヘキサドデシルトリエチルホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライドおよびテトラ-n-ブチルホスホニウムクロライド等の4級ホスホニウム塩等が挙げられる。中でも、収率を向上させる観点および経済性の観点から、テトラ-n-ブチルアンモニウムブロマイドが好ましく用いられる。
 前記相間移動触媒の使用量は、アルキルハライド100重量部に対して、0.1~100重量部であることが好ましく、0.1~10重量部であることがより好ましい。相間移動触媒の使用量が0.1重量部未満である場合、反応が完結せず、収率が低下するおそれがあり、100重量部を超える場合、生成物との分離が困難になり、生成物の収率が低下するおそれがある。
 前記式(4)で表されるアルキルチオール塩と前記式(5)で表されるアルキルハライドとの反応に用いられる反応溶媒としては、例えば、水、テトラヒドロフラン、1,4-ジオキサン、メタノールおよびエタノール等が挙げられる。中でも、収率を向上させる観点および経済性の観点から、エタノールが好ましく用いられる。
 前記反応溶媒の使用量は、前記アルキルチオール100重量部に対して、10~5000重量部であることが好ましく、100~1000重量部であることがより好ましい。反応溶媒の使用量が10重量部未満である場合、攪拌が困難になって、収率が低下するおそれがあり、5000重量部を超える場合、生産効率が低下し、経済性が低下するおそれがある。
 前記式(4)で表されるアルキルチオール塩と前記式(5)で表されるアルキルハライドとの反応の反応温度は、30~120℃であることが好ましく、60~110℃であることがより好ましい。反応温度が、30℃未満である場合、反応を完結させるために長時間が必要になるおそれがあり、120℃を超える場合、副反応が起こり、目的化合物の収率が低下するおそれがある。反応時間としては、例えば、1~30時間程度である。
かくして得られるアルキルスルフィド化合物は、必要に応じて水洗、分液して取得できる。また、蒸留することにより純度を高めて単離することができる。
 本発明に用いられる式(1)で表されるアルキルスルフィド化合物の具体例としては、例えば、メチルノルマルプロピルスルフィド、メチルイソプロピルスルフィド、メチルノルマルブチルスルフィド、メチルイソブチルスルフィド、メチル1,1-ジメチルエチルスルフィド、メチルノルマルペンチルスルフィド、メチル1,2-ジメチルプロピルスルフィド、メチル2-メチルブチルスルフィド、メチル3-メチルブチルスルフィド、メチル2,2-ジメチルプロピルスルフィド、エチルノルマルプロピルスルフィド、エチルイソプロピルスルフィド、エチルノルマルブチルスルフィド、エチルイソブチルスルフィド、エチル1,1-ジメチルエチルスルフィド、エチルノルマルペンチルスルフィド、エチル1,2-ジメチルプロピルスルフィド、エチル2-メチルブチルスルフィド、エチル3-メチルブチルスルフィド、エチル2,2-ジメチルプロピルスルフィド、プロピルノルマルプロピルスルフィド、プロピルイソプロピルスルフィド、プロピルノルマルブチルスルフィド、プロピルイソブチルスルフィド、プロピル1,1-ジメチルエチルスルフィド、プロピルノルマルペンチルスルフィド、プロピル1,2-ジメチルプロピルスルフィド、プロピル2-メチルブチルスルフィド、プロピル3-メチルブチルスルフィド、プロピル2,2-ジメチルプロピルスルフィド、イソプロピルノルマルプロピルスルフィド、イソプロピルイソプロピルスルフィド、イソプロピルノルマルブチルスルフィド、イソプロピルイソブチルスルフィド、イソプロピル1,1-ジメチルエチルスルフィド、イソプロピルノルマルペンチルスルフィド、イソプロピル1,2-ジメチルプロピルスルフィド、イソプロピル2-メチルブチルスルフィド、イソプロピル3-メチルブチルスルフィドおよびイソプロピル2,2-ジメチルプロピルスルフィド等が挙げられる。中でも、エチルイソプロピルスルフィド、エチルイソブチルスルフィド、プロピルイソブチルスルフィドおよびイソプロピルイソブチルスルフィドが好ましく用いられる。
 本発明に用いられるタングステン酸塩触媒としては、例えば、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム、タングステン酸カルシウム、タングステン酸鉄およびタングステン酸マンガン等とその水和物が挙げられる。中でも、入手のしやすさおよび経済性の観点から、タングステン酸ナトリウム2水和物およびタングステン酸カリウム2水和物であることが好ましい。
 前記タングステン酸塩触媒の使用量は、アルキルスルフィド化合物100重量部に対して、0.01~10重量部であることが好ましく、0.1~10重量部であることがより好ましい。前記タングステン酸塩触媒の使用量が、0.01重量部未満の場合、反応が完結せず、収率が低下するおそれがあり、10重量部を超える場合、生成物との分離が困難になり、生成物の収率が低下するおそれがある。
 なお、前記タングステン酸塩触媒が水和物である場合は、前記タングステン酸塩触媒の使用量は、無水物として換算する。
 本発明において、前記アルキルスルフィド化合物は、前記タングステン酸塩触媒および酸の存在下、酸化剤を用いて酸化して、アルキルスルホン化合物を得ることが好ましい。前記酸としては、塩酸、硫酸、硝酸、過塩素酸、ギ酸、酢酸、炭酸、クエン酸およびメタンスルホン酸等が挙げられる。中でも、入手の容易性および経済性の観点から塩酸および硫酸であることが好ましい。
 前記酸の使用量はアルキルスルフィド化合物100重量部に対して、0.01~100重量部であることが好ましく、0.1~100重量部であることがより好ましい。前記酸の使用量が、0.1重量部未満の場合、反応系が十分に酸性にならないために、反応が完結せず、収率が低下するおそれがあり、100重量部を超える場合、生成物との分離が困難になり、生成物の収率が低下するおそれがある。
 本発明に用いられる酸化剤としては、例えば、過酸化水素、過マンガン酸カリウム、クロム酸カリウム、酸素、3-クロロ過安息香酸および過酢酸等が挙げられる。中でも、安全性の観点および経済性の観点から、過酸化水素であることが好ましい。
 前記酸化剤の使用割合は、アルキルスルフィド化合物1モルに対して、1.8~10モルであることが好ましく、2~5モルであることがより好ましい。前記酸化剤の使用割合が、1.8モル未満の場合、反応が完結せず、収率が低下するおそれがあり、10モルを超える場合、使用割合に見合う効果がなく経済的でない。
 本発明においては、生産効率および安全性を向上させるとともに、有機溶媒や水分の混入を抑制し、純度を高める観点から、反応溶媒は用いないのが好ましい。特に、電気化学デバイス溶媒用途においては、機能が低下する等の不具合が起こる場合があることから、水分が低く、純度が高い溶媒が望まれる。
 本発明の製造方法を用いれば、得られるアルキルスルホン化合物を、純度99%以上、含水率0.1重量%以下とすることができるため、前記電気化学デバイス用溶媒として好適に用いられる。なお、反応液粘度が高く、攪拌が不十分な場合には、必要に応じて反応に不活性な溶媒を用いてもよく、例えば、水、トルエン、モノクロロベンゼン、ノルマルヘプタン、シクロヘキサン、ジクロロメタンおよびジクロロエタン等が挙げられる。
 前記式(1)で表されるアルキルスルフィド化合物を、タングステン酸塩触媒の存在下、酸化剤を用いて酸化する反応の反応温度としては、0~200℃が好ましく、10~150℃がより好ましい。反応温度が0℃未満の場合、反応が遅くなり完結するまでに長時間が必要になるおそれがあり、200℃を超える場合、副反応が起こり、目的化合物の収率が低下するおそれがある。反応時間は、例えば、1~30時間程度である。
 かくして得られるアルキルスルホン化合物は、式(2)で表される。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、RおよびRは、それぞれ式(1)と同じアルキル基を示す。
 本発明にかかるアルキルスルホン化合物は、前記反応液を必要に応じて、水洗、分液し、蒸留することにより単離することができる。
 本発明にかかる式(2)で表されるアルキルスルホン化合物の具体例としては、例えば、メチルノルマルプロピルスルホン、メチルイソプロピルスルホン、メチルノルマルブチルスルホン、メチルイソブチルスルホン、メチル1,1-ジメチルエチルスルホン、メチルノルマルペンチルスルホン、メチル1,2-ジメチルプロピルスルホン、メチル2-メチルブチルスルホン、メチル3-メチルブチルスルホン、メチル2,2-ジメチルプロピルスルホン、エチルノルマルプロピルスルホン、エチルイソプロピルスルホン、エチルノルマルブチル スルホン、エチルイソブチルスルホン、エチル1,1-ジメチルエチルスルホン、エチルノルマルペンチルスルホン、エチル1,2-ジメチルプロピルスルホン、エチル2-メチルブチルスルホン、エチル3-メチルブチルスルホン、エチル2,2-ジメチルプロピルスルホン、プロピルノルマルプロピルスルホン、プロピルイソプロピルスルホン、プロピルノルマルブチルスルホン、プロピルイソブチルスルホン、プロピル1,1-ジメチルエチルスルホン、プロピルノルマルペンチルスルホン、プロピル1,2-ジメチルプロピルスルホン、プロピル2-メチルブチルスルホン、プロピル3-メチルブチルスルホン、プロピル2,2-ジメチルプロピルスルホン、イソプロピルノルマルプロピルスルホン、イソプロピルイソプロピルスルホン、イソプロピルノルマルブチルスルホン、イソプロピルイソブチルスルホン、イソプロピル1,1-ジメチルエチルスルホン、イソプロピルノルマルペンチルスルホン、イソプロピル1,2-ジメチルプロピルスルホン、イソプロピル2-メチルブチルスルホン、イソプロピル3-メチルブチルスルホンおよびイソプロピル2,2-ジメチルプロピルスルホン等が挙げられる。中でも、電気化学デバイス用溶媒等としての特性に優れる観点から、エチルイソプロピルスルホン、エチルイソブチルスルホン、プロピルイソブチルスルホンおよびイソプロピルイソブチルスルホンが好ましい。
 本発明の製造方法により得られたアルキルスルホン化合物は、純度が高く、融点および粘度が低く、熱安定性に優れていることから、リチウム電池、電気二重層キャパシタ、燃料電池および色素増感型太陽電池等の電気化学デバイス用電解液として好適に用いられる。また、BTX抽出溶剤、酸性ガスの除去剤、芳香族化合物の各種反応溶媒およびフォトレジスト剥離剤等の用途にも使用可能である。
 本発明により、電気化学デバイス用溶媒等に適したアルキルスルホン化合物を簡便かつ安全に、高収率で製造する方法および、アルキルスルホン化合物を提供することができる。
 以下に実施例を挙げ、本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 合成例1 [エチルイソプロピルスルフィドの合成]
 攪拌機、温度計および冷却器を備え付けた500mL容の四つ口フラスコに窒素雰囲気下で、エタンチオール62.13g(1.00mol)とナトリウムボロハイドライド1.89g(0.05mol)を加えた。これを氷浴を用いて5℃まで冷却し、15重量%の水酸化ナトリウム水溶液を346.67g(1.30mol)添加し、エタンチオールナトリウム塩の水溶液を調製した。別途、攪拌機、温度計および冷却器を備え付けた1000mL容の四つ口フラスコに窒素雰囲気下で、2-ブロモプロパン135.29g(1.10mol)と50重量%テトラブチルアンモニウムブロマイド水溶液32.24g(0.05mol)を加えた。これを湯浴を用いて50℃まで昇温し、前記エタンチオールナトリウム塩の全量を一時間かけて滴下した。これを2時間保温した後、分液し、上層の有機層(エチルイソプロピルスルフィド)104.4gを取得した。得られたエチルイソプロピルスルフィドの収率は、エタンチオールに対して100%であり、ガスクロマトグラフィー分析による純度は99.6%であった。
 合成例2 [エチルイソブチルスルフィドの合成]
 合成例1における2-ブロモプロパン135.29gに代えて、イソブチルブロマイド150.72g(1.10mol)とした以外は、合成例1と同様にしてエチルイソブチルスルフィド118.4gを取得した。得られたエチルイソブチルスルフィドの収率は、エタンチオールに対して100%であり、ガスクロマトグラフィー分析による純度は95.0%であった。
 合成例3 [プロピルイソブチルスルフィドの合成]
 合成例1におけるエタンチオール62.13gに代えて、1-プロパンチオール76.16g(1.00mol)を用い、2-ブロモプロパン135.29gに代えて、イソブチルブロマイド150.72g(1.10mol)を用いた以外は、合成例1と同様にしてプロピルイソブチルスルフィド126.98gを取得した。得られたプロピルイソブチルスルフィドの収率は、1-プロパンチオールに対して96%であり、ガスクロマトグラフィー分析による純度は95.6%であった。
 合成例4 [イソプロピルイソブチルスルフィドの合成]
 合成例1におけるエタンチオール62.13gに代えて、2-プロパンチオール76.16g(1.00mol)を用い、2-ブロモプロパン135.29gに代えて、イソブチルブロマイド150.72g(1.10mol)を用いた以外は、合成例1と同様にしてイソプロピルイソブチルスルフィド124.33gを取得した。得られたイソプロピルイソブチルスルフィドの収率は、2-プロパンチオールに対して94%であり、ガスクロマトグラフィー分析による純度は90.6%であった。
 実施例1
 攪拌機、温度計および冷却器を備え付けた500mL容の四つ口フラスコに窒素雰囲気下、合成例1で得られたエチルイソプロピルスルフィド104.2g(1.00mol)にタングステン酸ナトリウム2水和物4.0gおよび25重量%硫酸水溶液52gを加え、湯浴を用いて50℃に加熱し、引き続き、35重量%過酸化水素水194.0g(2.00mol)を加え、60℃に加熱し2時間攪拌して反応させた。反応後、亜硫酸ナトリウム7.19gを添加し、30重量%水酸化ナトリウム水溶液30.7gを添加、攪拌後、分液して、水層を除去した。得られた有機層を単蒸留することにより無色透明液体のエチルイソプロピルスルホン122.6gを得た。得られたエチルイソプロピルスルホンの収率は、エチルイソプロピルスルフィドに対して90%であり、ガスクロマトグラフィー分析による純度は99.9%であった。また、カールフィッシャ分析による含水率は0.03重量%であった。
 得られたエチルイソプロピルスルホンの融点および発熱開始温度について、窒素雰囲気下、示差走査熱量計を用いて測定した。また、粘度は回転粘度計(株式会社トキメックの商品名:DIGITAL VISCOMETER)を用いて測定した。
 実施例2
 実施例1のエチルイソプロピルスルフィド104.2gに代えて、合成例2で得られたエチルイソブチルスルフィド118.2gを用いた以外は、実施例1と同様にしてエチルイソブチルスルホン130.7gを得た。得られたエチルイソブチルスルホンの収率は、エチルイソブチルスルフィドに対して87%であり、ガスクロマトグラフィー分析による純度は99.9%であった。また、カールフィッシャ分析による含水率は0.04重量%であった。
 得られたエチルイソブチルスルホンの融点、発熱開始温度および粘度を実施例1と同様の方法を用いて測定した。
 実施例3
 実施例1のエチルイソプロピルスルフィド104.2gに代えて、合成例3で得られたプロピルイソブチルスルフィド132.27gを用いた以外は、実施例1と同様にしてプロピルイソブチルスルホン142.91gを得た。得られたプロピルイソブチルスルホンの収率は、プロピルイソブチルスルフィドに対して87%であり、ガスクロマトグラフィー分析による純度は99.3%であった。また、カールフィッシャ分析による含水率は0.02重量%であった。
 得られたプロピルイソブチルスルホンの融点、発熱開始温度および粘度を実施例1と同様の方法を用いて測定した。
 実施例4
 実施例1のエチルイソプロピルスルフィド104.2gに代えて、合成例4で得られたイソプロピルイソブチルスルフィド132.27gを用いた以外は、実施例1と同様にしてイソプロピルイソブチルスルホン121.56gを得た。得られたイソプロピルイソブチルスルホンの収率は、イソプロピルイソブチルスルフィドに対して74%であり、ガスクロマトグラフィー分析による純度は99.7%であった。また、カールフィッシャ分析による含水率は0.04重量%であった。
 実施例5
 タングステン酸ナトリウム2水和物4.0gに代えて、タングステン酸カリウム4.0gを用いた以外は、実施例1と同様にしてエチルイソプロピルスルホン123.95gを得た。得られたイソプロピルイソブチルスルホンの収率は、エチルイソプロピルスルフィドに対して91%であり、ガスクロマトグラフィー分析による純度は99.9%であった。また、カールフィッシャ分析による含水率は0.01重量%であった。
 得られたイソプロピルイソブチルスルホンの融点、発熱開始温度および粘度を実施例1と同様の方法を用いて測定した。
 比較例1
 攪拌機、温度計および冷却器を備え付けた500mL容の四つ口フラスコに窒素雰囲気下で、合成例1で得られたエチルイソプロピルスルフィド104.2g(1.00mol)に酢酸400gを加え、湯浴を用いて50℃に加熱した。35%過酸化水素水194.0g(2.00mol)を加え、25℃で48時間、100℃で4時間攪拌した。反応後、単蒸留することにより無色透明液体のエチルイソプロピルスルホン95.0gを得た。得られたエチルイソプロピルスルホンの収率は、エチルイソプロピルスルフィドに対して80%であり、ガスクロマトグラフィー分析による純度は97.8%であった。また、カールフィッシャ分析による含水率は0.51重量%であった。
 比較例2
 比較例1のエチルイソプロピルスルフィド104.2gに代えて、合成例2で得られたエチルイソブチルスルフィド118.2gを用いた以外は、比較例1と同様にしてエチルイソブチルスルホン130.7gを得た。得られたエチルイソブチルスルホンの収率は、エチルイソブチルスルフィドに対して87%であり、ガスクロマトグラフィー分析による純度は97.5%であった。また、カールフィッシャ分析による含水率は0.23重量%であった。
 実施例1~4における融点、発熱開始温度および粘度の測定結果を、比較としてのスルホランおよびプロピレンカーボネートとともに表1に示す。
Figure JPOXMLDOC01-appb-T000010
 実施例1、実施例5と比較例1、および実施例2と比較例2との比較から、本発明にかかるアルキルスルホン化合物は、高純度、低含水率であることがわかる。また、表1に示す特性から、本発明にかかるアルキルスルホン化合物は、融点および粘度が低く、発熱開始温度が高いことから熱安定性に優れていることがわかる。
 本発明によれば、アルキルスルホン化合物を簡便かつ安全に、高収率で製造する方法および、アルキルスルホン化合物を提供することができる。
 

Claims (5)

  1.  式(1)で表されるアルキルスルフィド化合物を、タングステン酸塩触媒の存在下、酸化剤を用いて酸化して得られる式(2)で表されるアルキルスルホン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは炭素数1~3のアルキル基を示し、Rは炭素数3~5のアルキル基を示す。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、RおよびRは、それぞれ式(1)と同じアルキル基を示す。
  2.  前記タングステン酸塩触媒が、タングステン酸ナトリウムまたはタングステン酸カリウムである請求項1に記載のアルキルスルホン化合物の製造方法。
  3.  前記酸化剤が、過酸化水素である請求項1または2に記載のアルキルスルホン化合物の製造方法。
  4.  請求項1~3のいずれかに記載のアルキルスルホン化合物の製造方法によって得られる電気化学デバイス用電解液に用いられるアルキルスルホン化合物。
  5.  請求項4に記載のアルキルスルホン化合物であって、純度99%以上、含水率0.1重量%以下であるアルキルスルホン化合物。
PCT/JP2010/059434 2009-06-09 2010-06-03 アルキルスルホン化合物の製造方法 WO2010143578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800247466A CN102459161A (zh) 2009-06-09 2010-06-03 烷基砜化合物的制造方法
EP10786109A EP2441751A4 (en) 2009-06-09 2010-06-03 METHOD FOR PRODUCING ALKYL-SULPHON COMPOUNDS
US13/376,728 US20120136175A1 (en) 2009-06-09 2010-06-03 Process for preparation of alkyl sulfone compounds
JP2011518488A JPWO2010143578A1 (ja) 2009-06-09 2010-06-03 アルキルスルホン化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-137909 2009-06-09
JP2009137909 2009-06-09
JP2009-140677 2009-06-12
JP2009140677 2009-06-12

Publications (1)

Publication Number Publication Date
WO2010143578A1 true WO2010143578A1 (ja) 2010-12-16

Family

ID=43308833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059434 WO2010143578A1 (ja) 2009-06-09 2010-06-03 アルキルスルホン化合物の製造方法

Country Status (7)

Country Link
US (1) US20120136175A1 (ja)
EP (1) EP2441751A4 (ja)
JP (1) JPWO2010143578A1 (ja)
KR (1) KR20120025588A (ja)
CN (1) CN102459161A (ja)
TW (1) TW201100363A (ja)
WO (1) WO2010143578A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060385A (ja) * 2011-09-13 2013-04-04 Sumitomo Seika Chem Co Ltd 含フッ素アルキルスルホン化合物の製造方法、および電気化学デバイス用電解液

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360143B1 (en) * 2008-11-17 2017-08-16 Sumitomo Seika Chemicals CO. LTD. Sulfone compounds for use as solvent for electrochemical devices
CN103959544A (zh) 2011-09-02 2014-07-30 纳幕尔杜邦公司 氟化电解质组合物
JP6178317B2 (ja) 2011-09-02 2017-08-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company リチウムイオン電池
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
JP6319305B2 (ja) 2012-06-01 2018-05-09 ソルベー エスアー リチウムイオンバッテリ
CN102827043A (zh) * 2012-09-21 2012-12-19 中国乐凯胶片集团公司 1,2-双乙烯磺乙酰胺基乙烷的制备方法
JP2016519400A (ja) 2013-04-04 2016-06-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 非水性電解質組成物
WO2015051141A1 (en) * 2013-10-04 2015-04-09 E. I. Du Pont De Nemours And Company Methods for preparation of fluorinated sulfur-containing compounds
CN105461600B (zh) * 2015-12-18 2018-03-16 三门峡奥科化工有限公司 一种甲基乙基砜的制备方法
CN108329241A (zh) * 2018-04-12 2018-07-27 重庆华邦胜凯制药有限公司 一种氨苯砜的制备方法
US11897853B2 (en) 2018-12-31 2024-02-13 Adama Makhteshim Ltd. Synthesis of 1,1,2-trifluoro-4-(substituted sufonyl)-but-1-ene
MX2022006101A (es) 2019-11-28 2022-06-14 Saltigo Gmbh Procedimiento mejorado para la preparacion de sulfuros de dialquilo asimetricos.
CN111377838B (zh) * 2020-03-09 2021-10-15 华东师范大学 一种大位阻烷基-烷基砜类化合物及其合成方法和应用
CN114940658A (zh) * 2022-05-12 2022-08-26 山东华阳药业有限公司 一种色瑞替尼的制备工艺及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140786A (en) * 1981-02-25 1982-08-31 Sagami Chem Res Center Preparation of sulfone compound substituted with alpha-silyl group
JPS6440457A (en) * 1987-08-05 1989-02-10 Seitetsu Kagaku Co Ltd Production of nitrophenylphenylsulfones
JPH08143534A (ja) * 1994-11-24 1996-06-04 Sumitomo Seika Chem Co Ltd アルキルフェニルスルホンの製造方法
JP2000103779A (ja) * 1998-09-30 2000-04-11 Sumitomo Seika Chem Co Ltd アルキルスルホニルベンズアルデヒド類の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078866A2 (en) * 2005-01-19 2006-07-27 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Electric current-producing device having sulfone-based electrolyte
CN100497305C (zh) * 2007-08-06 2009-06-10 湖南化工研究院 乙磺酰基乙腈的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140786A (en) * 1981-02-25 1982-08-31 Sagami Chem Res Center Preparation of sulfone compound substituted with alpha-silyl group
JPS6440457A (en) * 1987-08-05 1989-02-10 Seitetsu Kagaku Co Ltd Production of nitrophenylphenylsulfones
JPH08143534A (ja) * 1994-11-24 1996-06-04 Sumitomo Seika Chem Co Ltd アルキルフェニルスルホンの製造方法
JP2000103779A (ja) * 1998-09-30 2000-04-11 Sumitomo Seika Chem Co Ltd アルキルスルホニルベンズアルデヒド類の製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH R. ET AL.: "Unusual Two-Bond C, C Coupling Constants in Sulphones", MAGNETIC RESONANCE IN CHEMISTRY, vol. 26, 1988, pages 1103 - 1108, XP008157226 *
D. T. MCALLAN ET AL.: "The Preparation and Properties of Sulfur Compounds Related to Petroleum. I. The Dialkyl Sulfides and Disulfides", J. AM. CHEM. SOC., vol. 73, 1951, pages 3627 - 3632, XP002055386 *
INORGANIC CHEMISTRY, 2002, pages 41
JOURNAL OF ORGANIC CHEMISTRY, vol. 11, 1946, pages 475 - 481
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 73, 1951, pages 3627 - 3632
KAZUHIKO S. ET AL.: "Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions", TETRAHEDRON, vol. 57, 2001, pages 2469 - 2476, XP004232204 *
See also references of EP2441751A4 *
Z. STEC ET AL.: "Oxidation of Sulfides with H202 Catalyzed by Na2W04 under Phase-Transfer Conditions", POLISH J. CHEM., vol. 70, no. 9, 1996, pages 1121 - 1123, XP008158521 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060385A (ja) * 2011-09-13 2013-04-04 Sumitomo Seika Chem Co Ltd 含フッ素アルキルスルホン化合物の製造方法、および電気化学デバイス用電解液

Also Published As

Publication number Publication date
US20120136175A1 (en) 2012-05-31
JPWO2010143578A1 (ja) 2012-11-22
TW201100363A (en) 2011-01-01
EP2441751A1 (en) 2012-04-18
KR20120025588A (ko) 2012-03-15
CN102459161A (zh) 2012-05-16
EP2441751A4 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2010143578A1 (ja) アルキルスルホン化合物の製造方法
JPS6223741B2 (ja)
BR102012001638A2 (pt) Processo para preparação de 4-amino-3-cloro-5-fluoro-6(substituídos)picolinatos
WO2010047257A1 (ja) スルホン化合物
TW201127794A (en) Method for producing bis(sulfonyl)imide ammonium salts, bis(sulfonyl)imide, and bis(sulfonyl)imide lithium salts
TW201726610A (zh) 陽離子亞碸中間體、聚芳硫醚單體、以及聚芳硫 醚的製備方法
KR101135088B1 (ko) 1,3-프로펜설톤의 제조방법
JP5317836B2 (ja) アルキルスルフィド化合物の製造方法
JP2004099452A (ja) イオン性化合物、並びに、これを用いた電解質及び電気化学デバイス
US6433190B1 (en) 3,6-Di(3′,5′-bis(fluoroalkyl) phenyl) pyromellitic dianhydride and method for the preparation thereof
WO2009096265A1 (ja) 含フッ素エポキシドの製造方法
JP5645557B2 (ja) スルホン化合物
CN113891871B (zh) 制备氟化醇的方法
CN109422748B (zh) 合成tnni3k抑制剂的方法
TWI438183B (zh) Compounds
JP6620142B2 (ja) 2,2,2−トリフルオロエタンチオールの合成
JP2004210773A (ja) フラーレン誘導体とその製造方法
JP4465674B2 (ja) ベンジル(ジフルオロメチル)スルフィド化合物の製造方法
JP4582286B2 (ja) スルホオキシアルキニルチオフェン化合物及びその製造法
WO2011024429A1 (ja) ピリミジニルアセトニトリル誘導体の製造方法及びその合成中間体
CN106146302A (zh) 丙酸酯的制备方法
JP4336501B2 (ja) 新規な4,4”−ジアルコキシターフェニル類
JP2008037772A (ja) 2,2−ビス(4−アミノ−3−ヒドロキシフェニル)プロパン化合物の製造方法
JPH0480910B2 (ja)
EP4349841A1 (en) Method for producing oxadisilacyclopentane compound

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024746.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011518488

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010786109

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 130/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127000304

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13376728

Country of ref document: US