WO2010137595A1 - 共役ジエンの製造方法 - Google Patents

共役ジエンの製造方法 Download PDF

Info

Publication number
WO2010137595A1
WO2010137595A1 PCT/JP2010/058842 JP2010058842W WO2010137595A1 WO 2010137595 A1 WO2010137595 A1 WO 2010137595A1 JP 2010058842 W JP2010058842 W JP 2010058842W WO 2010137595 A1 WO2010137595 A1 WO 2010137595A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
conjugated diene
reactor
catalyst
butene
Prior art date
Application number
PCT/JP2010/058842
Other languages
English (en)
French (fr)
Inventor
宗市 折田
弘 竹尾
賢 宇都宮
拓真 西尾
宏幸 八木
成康 嘉糠
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CA2763317A priority Critical patent/CA2763317C/en
Publication of WO2010137595A1 publication Critical patent/WO2010137595A1/ja
Priority to US13/305,078 priority patent/US20120130137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • the present invention relates to a method for producing a conjugated diene, and more particularly to a method for producing a conjugated diene such as butadiene by a catalytic oxidative dehydrogenation reaction of a monoolefin having 4 or more carbon atoms such as n-butene.
  • BBSS mixture of hydrocarbons having 4 carbon atoms
  • the process shown in FIG. 7 can be given as an example.
  • the C 4 fraction is introduced into the first extractive distillation column 32 via the evaporation column 31, and butadiene and the like are extracted with an extractant (dimethylformamide (DMF) or the like), and other C 4 components (hereinafter referred to as “ May be referred to as “BBS”).
  • DMF dimethylformamide
  • BBS C 4 components
  • the butadiene extract from the first extractive distillation column 32 is then separated in the pre-dispersion tower 34 and the first diffusion tower 35 from the extractant DMF and the like, and then introduced into the second extractive distillation tower 37 via the compressor 36. And re-extraction with an extractant (DMF, etc.).
  • the acetylenes separated in the second extractive distillation tower 37 are recovered as fuel through a butadiene recovery tower 38 and a second diffusion tower 39.
  • the crude BD from the second extractive distillation column 37 is further purified by the first distillation column 40 and the second distillation column 41 to recover high-purity 1,3-butadiene.
  • reference numerals 200 to 219 denote piping.
  • Patent Document 1 proposes the following butadiene production method. (1) a reaction step of producing butadiene by vapor-phase catalytic oxidative dehydrogenation of n-butene, (2) a cooling step of cooling the product gas obtained from the reaction step and removing a trace amount of high-boiling by-products contained in the product gas; (3) an aldehyde removal step for removing a small amount of aldehydes contained in the cooled product gas; (4) a compression step for compressing the derived product gas; (5) A C 4 recovery step of recovering C 4 components including butadiene and other C 4 hydrocarbons from the compressed product gas.
  • Examples of the composite oxide catalyst used in the catalytic oxidative dehydrogenation reaction of n-butene can include the catalyst described in Patent Document 2, and include at least one of molybdenum, iron, nickel or cobalt and silica. However, there is no description of a specific method for producing butadiene.
  • Patent Documents 1 and 2 describe nothing about a method for avoiding an explosion when butadiene is produced by oxidative dehydrogenation of butene and then a hydrocarbon containing butadiene is recovered from the product gas using a solvent.
  • a gas containing a combustible gas such as hydrocarbons and oxygen
  • explosion during the reaction must be avoided.
  • the flammable gas concentration is made lower than the lower explosion limit or higher than the upper explosion limit. Below the lower explosion limit, the raw material gas concentration is low, and it is disadvantageous in terms of efficiency and economy for industrial implementation. Therefore, a reaction above the upper explosion limit is preferable.
  • the present invention has been made in view of the above problems, and in the method for producing a conjugated diene such as butadiene by a catalytic oxidative dehydrogenation reaction of a monoolefin such as n-butene, the catalyst is used continuously.
  • the catalyst is used continuously.
  • this invention relates to the manufacturing method of the following conjugated diene.
  • ⁇ 2> The method for producing a conjugated diene according to the above ⁇ 1>, further comprising a step of contacting the product gas containing the conjugated diene with an absorbing solvent to obtain a solvent containing the conjugated diene.
  • the catalyst is a composite oxide catalyst containing at least molybdenum, bismuth and cobalt.
  • ⁇ 4> The method for producing a conjugated diene according to ⁇ 3>, wherein the catalyst is a composite oxide catalyst represented by the following general formula (1).
  • ⁇ 6> Measuring the oxygen concentration in the product gas at the outlet of the reactor, and controlling at least one of the amount of molecular oxygen-containing gas supplied to the reactor and the reactor temperature according to the oxygen concentration
  • the method for producing a conjugated diene according to any one of ⁇ 1> to ⁇ 5> above, wherein the oxygen concentration in the product gas is maintained in the range of 2.5% by volume to 8% by volume .
  • the raw material gas is generated by dehydrogenation or oxidative dehydrogenation of a gas containing 1-butene, cis-2-butene, trans-2-butene or a mixture thereof obtained by dimerization of ethylene, or a mixture thereof.
  • a process for producing conjugated dienes is a process for producing conjugated dienes.
  • the present invention when producing a conjugated diene by an oxidative dehydrogenation reaction of a monoolefin having 4 or more carbon atoms, it is possible to suppress the accumulation of carbon-like carbon in the catalyst in the reactor, and The amount of high-boiling by-products precipitated in the cooling step after the reaction step can be reduced, and the plant can be operated safely and continuously.
  • FIG. 3 is a three-component diagram showing an explosion range of combustible gas (BBSS) -air-inert gas.
  • FIG. 6 is a three-component diagram showing the state of the concentration of combustible gas in the gas at the reactor inlet in Examples 1 to 9 and Comparative Examples 2 and 3.
  • FIG. 3 is a three-component diagram showing an explosion range of combustible gas (butadiene) -air-inert gas.
  • (A) It is a three component figure which shows the density
  • FIG. 1 It is a three component figure which shows the density
  • FIG. (A) It is a graph which shows the oxygen concentration of the cooler 3 exit in Example 2, and reactor heat-medium temperature.
  • FIG. (B) It is a graph which shows the oxygen concentration of the cooler 3 exit in Example 3, and reactor heat-medium temperature. It is a process diagram showing an extraction separation process butadiene from C 4 fraction.
  • a raw material gas containing a monoolefin having 4 or more carbon atoms and a molecular oxygen-containing gas are supplied to a reactor having a catalyst layer, and a corresponding conjugated diene is produced by an oxidative dehydrogenation reaction.
  • the raw material gas of the present invention contains a monoolefin having 4 or more carbon atoms.
  • the monoolefin having 4 or more carbon atoms include butene (n-butene such as 1-butene and / or 2-butene, isobutene), pentene And monoolefins having 4 or more carbon atoms, preferably 4 to 6 carbon atoms, such as methylbutene and dimethylbutene, which can be effectively applied to the production of the corresponding conjugated dienes by catalytic oxidative dehydrogenation.
  • it is most suitably used for the production of butadiene from n-butene (n-butene such as 1-butene and / or 2-butene).
  • the isolated monoolefin having 4 or more carbon atoms as a raw material gas containing a monoolefin having 4 or more carbon atoms, and it can be used in the form of an arbitrary mixture as necessary.
  • high-purity n-butene (1-butene and / or 2-butene) can be used as a raw material gas, but the C4 fraction (BB) produced as a by-product in the naphtha decomposition described above is used.
  • BBSS fractions
  • n-butane containing n-butene (1-butene and / or 2-butene) as a main component obtained by separating butadiene and i-butene (isobutene) from A butene fraction produced by an elementary reaction can also be used.
  • a gas containing high-purity 1-butene, cis-2-butene, trans-2-butene or a mixture thereof obtained by dimerization of ethylene may be used as a raw material gas.
  • ethylene ethylene obtained by a method such as ethane dehydrogenation, ethanol dehydration, or naphtha decomposition can be used.
  • fluid oil cracking Flud Catalytic Cracking
  • FCC-C4 Fluid Catalytic Cracking
  • impurities such as phosphorus and arsenic are removed from FCC-C4.
  • the raw material is usually 40% by volume or more, preferably 60% by volume or more, more preferably 75% by volume or more, and particularly preferably 99% by volume or more with respect to the raw material gas.
  • the source gas of the present invention may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
  • impurities that may be contained, specifically, branched monoolefins such as isobutene; propane, n-butane, i-butane, Saturated hydrocarbons such as pentane; olefins such as propylene and pentene; dienes such as 1,2-butadiene; acetylenes such as methylacetylene, vinylacetylene and ethylacetylene.
  • the amount of this impurity is usually 40% or less, preferably 20% or less, more preferably 10% or less, and particularly preferably 1% or less. If the amount is too large, the concentration of 1-butene or 2-butene as the main raw material will decrease, and the reaction will be slow, or the yield of butadiene as the target product will tend to decrease.
  • the concentration of the linear monoolefin having 4 or more carbon atoms in the raw material gas is not particularly limited, but is usually 70.00 to 99.99 vol%, preferably 71.00. It is ⁇ 99.0 vol%, more preferably 72.00 to 95.0 vol%.
  • the oxidative dehydrogenation catalyst used in the present invention is preferably a composite oxide catalyst containing at least molybdenum, bismuth and cobalt. Among these, a composite oxide catalyst represented by the following general formula (1) is more preferable.
  • X is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce), and samarium (Sm).
  • Y is at least one element selected from the group consisting of sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and thallium (Tl).
  • Z is at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (As), and tungsten (W).
  • a to j represent atomic ratios of the respective elements.
  • this composite oxide catalyst is preferably manufactured through a process of heating the source compounds of the component elements constituting the composite oxide catalyst by integrating them in an aqueous system.
  • all of the source compounds of the component elements may be integrated and heated in the aqueous system.
  • an aqueous solution or an aqueous dispersion of a raw material compound containing at least one selected from the group consisting of a molybdenum compound, an iron compound, a nickel compound, and a cobalt compound and silica, or a dried product obtained by drying this is heat-treated.
  • the catalyst precursor by a method having a pre-process and a post-process in which the catalyst precursor, the molybdenum compound and the bismuth compound are integrated with an aqueous solvent, dried and fired.
  • the obtained composite oxide catalyst exhibits high catalytic activity, so that a conjugated diene such as butadiene can be produced in a high yield, and a reaction product gas having a low aldehyde content is obtained.
  • the aqueous solvent means water, an organic solvent having compatibility with water such as methanol or ethanol, or a mixture thereof.
  • the molybdenum used in the previous step is molybdenum corresponding to a partial atomic ratio (a 1 ) of the total atomic ratio (a) of molybdenum
  • the molybdenum used in the step is preferably molybdenum corresponding to the remaining atomic ratio (a 2 ) obtained by subtracting a 1 from the total atomic ratio (a) of molybdenum.
  • the a 1 is preferably a value satisfying 1 ⁇ a 1 / (c + d + e) ⁇ 3
  • the a 2 is preferably a value satisfying 0 ⁇ a 2 / b ⁇ 8.
  • the component element source compounds include oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, carboxylic acid ammonium salts, ammonium halide salts, hydrogen acids, acetylacetonate of the component elements. , Alkoxides and the like, and specific examples thereof include the following.
  • Mo supply source compounds include ammonium paramolybdate, molybdenum trioxide, molybdic acid, ammonium phosphomolybdate, and phosphomolybdic acid.
  • Fe source compounds include ferric nitrate, ferric sulfate, ferric chloride, and ferric acetate.
  • Co source compound examples include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, and cobalt acetate.
  • Ni source compound examples include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate and the like.
  • Si source compounds include silica, granular silica, colloidal silica, and fumed silica.
  • Bi source compounds include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth subcarbonate.
  • a complex carbonate compound of Bi and Na can be obtained by dropping an aqueous solution of a water-soluble bismuth compound such as bismuth nitrate into an aqueous solution of sodium carbonate or sodium bicarbonate.
  • the precipitate can be produced by washing with water and drying.
  • the complex carbonate compound of Bi and the X component is prepared by mixing an aqueous solution of a water-soluble compound such as bismuth nitrate and nitrate of the X component with an aqueous solution of ammonium carbonate or ammonium bicarbonate, etc. It can be produced by washing with water and drying.
  • a complex carbonate compound with Bi, Na and X components can be produced.
  • Examples of source compounds of other component elements include the following.
  • Examples of the source compound for K include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, and potassium acetate.
  • Examples of Rb source compounds include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, and rubidium acetate.
  • Examples of the Cs supply source compound include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, and cesium acetate.
  • Examples of Tl source compounds include thallium nitrate, thallium chloride, thallium carbonate, and thallium acetate.
  • Examples of the source compound for B include borax, ammonium borate, and boric acid.
  • Examples of P source compounds include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, phosphorus pentoxide, and the like.
  • Examples of the source compound for As include dialsenooctammonium molybdate, ammonium dialseno18 tungstate, and the like.
  • Examples of W source compounds include ammonium paratungstate, tungsten trioxide, tungstic acid, and phosphotungstic acid.
  • Examples of the Mg source compound include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, and magnesium acetate.
  • Examples of the source compound for Ca include calcium nitrate, calcium sulfate, calcium chloride, calcium carbonate, and calcium acetate.
  • Examples of the Zn source compound include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, and zinc acetate.
  • Examples of the Ce source compound include cerium nitrate, cerium sulfate, cerium chloride, cerium carbonate, and cerium acetate.
  • Examples of Sm source compounds include samarium nitrate, samarium sulfate, samarium chloride, samarium carbonate, and samarium acetate.
  • the aqueous solution or aqueous dispersion of the raw material compound used in the preceding step is an aqueous solution containing at least molybdenum (corresponding to a 1 in the total atomic ratio a), iron, nickel or cobalt, and silica as a catalyst component, water slurry Or cake.
  • Preparation of the aqueous solution or aqueous dispersion of this raw material compound is performed by integrating the source compound in an aqueous system.
  • the integration of the source compounds of the component elements in the aqueous system means that at least one of the aqueous solution or the aqueous dispersion of the source compounds of the component elements is mixed or stepwise mixed and aged. That means. (B) a method in which the source compounds are mixed together, (b) a method in which the source compounds are mixed together and aged, and (c) each of the source compounds.
  • aging refers to the processing of industrial raw materials or semi-finished products under specific conditions such as constant temperature for a certain period of time to obtain the required physical and chemical properties, increase or advance the prescribed reaction, etc.
  • the fixed time is usually in the range of 10 minutes to 24 hours, and the fixed temperature is usually in the range of room temperature to the boiling point of the aqueous solution or aqueous dispersion.
  • a solution obtained by mixing an acidic salt selected from catalyst components for example, a solution obtained by mixing an acidic salt selected from catalyst components, and a solution obtained by mixing a basic salt selected from catalyst components
  • Specific examples include a method of adding a mixture of at least one of an iron compound, a nickel compound, and a cobalt compound to an aqueous molybdenum compound solution while heating, and mixing silica.
  • the aqueous solution or aqueous dispersion of the raw material compound containing silica thus obtained is heated to 60 to 90 ° C. and aged.
  • This aging means that the catalyst precursor slurry is stirred at a predetermined temperature for a predetermined time.
  • This aging increases the viscosity of the slurry, alleviates sedimentation of the solid components in the slurry, and is particularly effective in suppressing the unevenness of the components in the next drying step, and is the final product obtained.
  • the catalytic activity such as the raw material conversion rate and selectivity of the composite oxide catalyst becomes better.
  • the temperature in the aging is preferably 60 to 90 ° C, more preferably 70 to 85 ° C.
  • the aging temperature is less than 60 ° C.
  • the aging effect is not sufficient, and good activity may not be obtained.
  • it exceeds 90 ° C. the water is often evaporated during the aging time, which is disadvantageous for industrial implementation.
  • a pressure vessel is required for the dissolution tank, and handling becomes complicated, which is extremely disadvantageous in terms of economy and operability.
  • the aging time is preferably 2 to 12 hours, and preferably 3 to 8 hours. If the aging time is less than 2 hours, the activity and selectivity of the catalyst may not be sufficiently developed. On the other hand, the aging effect does not increase even if it exceeds 12 hours, which is disadvantageous for industrial implementation.
  • any method can be adopted as the stirring method, and examples thereof include a method using a stirrer having a stirring blade and a method using external circulation using a pump.
  • the aged slurry is subjected to heat treatment as it is or after drying.
  • a powdery dried product can be obtained using a normal spray dryer, slurry dryer, drum dryer or the like.
  • a block-shaped or flake-shaped dried product may be obtained using a normal box-type dryer or a tunnel-type firing furnace.
  • the raw material salt aqueous solution or granules or cakes obtained by drying the raw salt solution are heat-treated in air at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. for a short time.
  • a normal box-type furnace, tunnel-type furnace, etc. may be used to heat the dried product in a fixed state.
  • the dried product may be heated while flowing using a Tarry-kiln or the like.
  • the ignition loss of the catalyst precursor obtained after the heat treatment is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight. By setting the ignition loss within this range, a catalyst having a high raw material conversion rate and high selectivity can be obtained.
  • the catalyst precursor obtained in the previous step, the molybdenum compound (corresponding to the remaining a2 obtained by subtracting the equivalent of a1 from the total atomic ratio a), and the bismuth compound are integrated in an aqueous solvent.
  • the addition of the X, Y, and Z components is also preferably performed in the subsequent step.
  • the bismuth source compound of the present invention is bismuth which is hardly soluble or insoluble in water. This compound is preferably used in the form of a powder.
  • These compounds as the catalyst production raw material may be particles larger than the powder, but are preferably smaller particles in view of the heating step in which thermal diffusion should be performed. Therefore, if these compounds as raw materials are not such particles, they should be pulverized before the heating step.
  • the obtained slurry is sufficiently stirred and then dried.
  • the dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding.
  • this is preferably subjected to a final heat treatment for about 1 to 16 hours under a temperature condition of 450 to 650 ° C.
  • a composite oxide catalyst having a high activity and a desired oxidation product in a high yield can be obtained.
  • the molecular oxygen-containing gas of the present invention is usually a gas containing 10% by volume or more of molecular oxygen, preferably 15% by volume or more, more preferably 20% by volume or more. Air.
  • the upper limit of the molecular oxygen content is usually 50% by volume or less, preferably 30% by volume. Hereinafter, it is more preferably 25% by volume or less.
  • the molecular oxygen-containing gas may contain an arbitrary impurity as long as the effects of the present invention are not impaired.
  • impurities include nitrogen, argon, neon, helium, CO, CO 2 , and water.
  • nitrogen the amount of this impurity is usually 90% by volume or less, preferably 85% by volume or less, more preferably 80% by volume or less.
  • components other than nitrogen it is usually 10% by volume or less, preferably 1% by volume or less. When this amount is too large, it tends to be difficult to supply oxygen necessary for the reaction.
  • the raw material gas and the molecular oxygen-containing gas are mixed, and the mixed gas (hereinafter sometimes referred to as “mixed gas”) is supplied to the reactor.
  • the ratio of the raw material gas in the mixed gas of the present invention is usually 4.2% by volume or more, preferably 7.6% by volume or more, more preferably 8.0% by volume or more.
  • the upper limit is 20.0 vol% or less, preferably 17.0 vol% or less, and more preferably 15.0 vol% or less. The smaller the upper limit value, the less the cause of coking of the catalyst on the catalyst in the raw material gas.
  • Nitrogen gas adjusts the concentration of combustible gas and oxygen in the same way as nitrogen gas, because the concentration of combustible gas and oxygen is adjusted so that the mixed gas does not form squeal. For reasons and to suppress coking of the catalyst, it is preferable to further mix water (steam) and nitrogen gas into the mixed gas and supply it to the reactor.
  • the water vapor When supplying water vapor to the reactor, it is preferably introduced at a ratio of 0.5 to 5.0 with respect to the supply amount of the raw material gas. As this ratio increases, the amount of wastewater tends to increase, and as the ratio decreases, the yield of the target product butadiene tends to decrease. Therefore, the water vapor is preferably 0.8 to 4.5, more preferably 1.0 to 4.0, with respect to the supply amount of the raw material gas.
  • the nitrogen gas When supplying nitrogen gas to the reactor, it is preferably introduced at a ratio (volume ratio) of 0.5 to 8.0 with respect to the supply amount of the raw material gas. As this ratio increases, the load of the process of compressing the product gas in the subsequent process tends to increase, and as the ratio decreases, the amount of steam used to supply the reactor tends to increase. Therefore, the nitrogen gas is preferably supplied at a ratio (volume ratio) of 1.0 to 6.0, more preferably 2.0 to 5.0 with respect to the supply amount of the raw material gas.
  • the method of supplying the mixed gas of the source gas and the molecular oxygen-containing gas, the nitrogen gas supplied as necessary, and water (water vapor) is not particularly limited, and may be supplied through separate pipes.
  • nitrogen gas is supplied to the source gas or the molecular oxygen-containing gas in advance, and in this state, the source gas and the molecular oxygen-containing gas are mixed. It is preferable to mix to obtain a mixed gas and supply the mixed gas.
  • each gas (raw gas, air, and if necessary, nitrogen gas and water (water vapor)) should not enter the explosion range.
  • control of the gas mixture can be adjusted to the mixed gas composition as described above (iodine the C 4 fraction If you have).
  • the explosion range here is a range having a composition in which a gas containing oxygen and a combustible gas is ignited in the presence of some ignition source.
  • a gas containing oxygen and a combustible gas is ignited in the presence of some ignition source.
  • N 2 gas air and inert gas
  • the concentration of the combustible gas in the gas is lower than a certain value, it does not ignite even if an ignition source is present, and this concentration is called the lower explosion limit. Further, it is known that if the concentration of the combustible gas in the gas is higher than a certain value, it does not ignite even if an ignition source is present, and this concentration is called the upper limit of explosion.
  • concentration depends on the oxygen concentration in the gas. In general, the lower the oxygen concentration, the closer the two values become, and the two match when the oxygen concentration reaches a certain value. The oxygen concentration at this time is called a critical oxygen concentration. If the oxygen concentration is lower than this, the gas will not ignite regardless of the concentration of the combustible gas.
  • the concentration of the combustible gas in the gas supplied to the oxidative dehydrogenation reactor is not less than the upper limit of explosion. Adjust the amount of gaseous oxygen-containing gas, nitrogen, and water vapor so that the oxygen concentration in the mixed gas at the reactor inlet is below the critical oxygen concentration, and then start supplying flammable gas (mainly raw material gas) Next, the supply amount of the combustible gas (mainly raw material gas) and the molecular oxygen-containing gas such as air is preferably increased so that the concentration of the combustible gas in the mixed gas becomes higher than the upper limit of explosion.
  • the supply of mixed gas may be constant by reducing the supply of at least one of nitrogen and water vapor. Good. By doing so, the residence time of the mixed gas in the piping and the reactor can be kept constant, and the pressure fluctuation can be suppressed.
  • a mixed gas having a combustible gas concentration exceeding the upper explosion limit is supplied to the reactor, and a product gas is obtained by performing an oxidative dehydrogenation reaction in the presence of a catalyst.
  • the combustible gas is above the upper explosion limit, the flammable gas concentration is not reduced by the oxidative dehydrogenation reaction, so the composition at the reactor outlet is usually above the upper explosion limit and there is no risk of explosion. .
  • a process of obtaining a solvent containing a conjugated diene by contacting a product gas described below with an absorption solvent to absorb a hydrocarbon such as olefin or conjugated diene in the absorption solvent (hereinafter sometimes referred to as a solvent absorption process). ),
  • the concentration of combustible gases such as hydrocarbons in the product gas may be reduced in the solvent absorption step, and may enter the explosion range.
  • the product gas is diluted with an inert gas such as nitrogen and then brought into contact with the absorbing solvent, but the reaction conditions are set in advance so that the composition at the outlet of the reactor is below the critical oxygen concentration. It is easier to adjust.
  • the oxygen concentration in the product gas needs to be 8.0% by volume or less, preferably 7.5% by volume or less, more preferably 7.0% by volume or less. is there.
  • the smaller this upper limit the more the gas composition can be prevented from entering the explosion range even when a flammable gas such as conjugated diene is absorbed by the solvent in the solvent absorption step, and the by-product solids in the product gas are further reduced. It tends to decrease.
  • the oxygen concentration in the product gas needs to be 2.5% by volume or more, preferably 3% by volume or more, and more preferably 4.0% by volume or more. As this lower limit value is increased, the adhesion (coking) of carbon or the like to the catalyst surface can be reduced.
  • the oxygen concentration in the product gas can be measured at the outlet of the reactor or at the post-reaction step using a known oxygen concentration meter such as a magnetic dumbbell type or gas chromatography.
  • the amount of oxygen supplied to the reactor and the reactor according to the measured oxygen concentration in the product gas It is preferable to operate at least one of the temperatures.
  • a target oxygen concentration is determined within a range of 2.5% by volume or more and 8.0% by volume or less, and when the oxygen concentration is lower than the target concentration, an oxygen flow rate supplied to the reactor
  • the oxygen concentration at the reactor outlet is increased by increasing the temperature, decreasing the temperature of the reactor, or both, while supplying the reactor when the oxygen concentration is higher than the target concentration Measured between the outlet of the reactor 1 and the solvent absorber 10 by reducing the oxygen concentration at the reactor outlet by reducing the oxygen flow rate, increasing the temperature of the reactor, or both.
  • the oxygen concentration of the product gas can be maintained at 2.5 volume% or more and 8.0 volume% or less.
  • the oxygen concentration in the generated gas is set to 2.5% by volume. It is preferable to supply oxygen to the reactor so as to achieve the above. It is also possible to reduce the oxygen concentration to 8.0% or less by diluting the product gas with an inert gas such as nitrogen so that the oxygen concentration in the product gas does not exceed 8.0% by volume. However, it is economically disadvantageous to add a component such as an inert gas to be separated in the solvent absorption step.
  • the reactor used for the oxidative dehydrogenation reaction of the present invention is not particularly limited, and specific examples include a tubular reactor, a tank reactor, or a fluidized bed reactor, preferably a fixed bed reactor, More preferred are fixed bed multitubular reactors and plate reactors, and most preferred is a fixed bed multitubular reactor.
  • the reactor when the reactor is a fixed bed reactor, the reactor has a catalyst layer having the above-described oxidative dehydrogenation reaction catalyst.
  • the catalyst layer may be composed of a layer composed only of the catalyst, or may be composed only of a layer containing a catalyst and a solid that is not reactive with the catalyst, or a solid that is not reactive with the catalyst and the catalyst. It may be composed of a plurality of layers including a substance and a layer composed only of a catalyst.
  • the catalyst layer includes a layer containing a catalyst and a solid that is not reactive with the catalyst, a rapid temperature increase of the catalyst layer due to heat generation during the reaction can be suppressed.
  • the plurality of layers are formed in layers from the inlet of the reactor toward the direction of the product gas outlet of the reactor.
  • the catalyst dilution rate represented by the following formula is preferably 10% by volume or more, more preferably 20% by volume or more, More preferably, it is 30 volume% or more. As this lower limit value increases, the occurrence of hot spots in the catalyst layer can be suppressed, and the effect of suppressing the accumulation of carbon content on the catalyst becomes higher.
  • the upper limit of the dilution rate of the catalyst layer is not particularly limited, but is usually 99 vol% or less, preferably 90 vol% or less, and more preferably 80 vol% or less.
  • the catalyst layer provided in the reactor may be a single layer or two or more layers, preferably 2 to 5 layers, and more preferably 3 to 4 layers. As the number of catalyst layers increases, the catalyst filling operation tends to become complicated, and as the number of catalyst layers decreases, it tends to be easier.
  • the dilution rate of each catalyst layer can be appropriately determined depending on the reaction conditions and reaction temperature, but it is preferable to provide catalyst layers having different dilution rates.
  • Dilution rate [(volume of solids not reactive with catalyst) / (volume of catalyst + volume of solids not reactive with catalyst)] ⁇ 100
  • the non-reactive solid used in the present invention is stable under conjugated diene formation reaction conditions, and is a material that is not reactive with raw materials such as monoolefins having 4 or more carbon atoms, and products such as conjugated diene. If it is a thing, it will not specifically limit, Generally, it may also be called an inner ball. Specific examples include ceramic materials such as alumina and zirconia. Moreover, the shape is not specifically limited, Any of spherical shape, a column shape, a ring shape, and an indefinite shape may be sufficient. Moreover, the magnitude
  • the packing length of the catalyst layer is the activity of the catalyst to be packed (when diluted with a non-reactive solid, the activity as a diluted catalyst), the size of the reactor, the reaction raw material gas temperature, the reaction temperature, If reaction conditions are decided, it can obtain
  • the oxidative dehydrogenation reaction of the present invention is an exothermic reaction, and the temperature rises due to the reaction.
  • the reaction temperature is usually adjusted to a range of 250 to 450 ° C., preferably 280 to 400 ° C. As the temperature increases, the catalytic activity tends to decrease rapidly, and as the temperature decreases, the yield of the conjugated diene that is the target product tends to decrease.
  • the reaction temperature can be controlled using a heat medium (for example, dibenzyltoluene or nitrite).
  • the reaction temperature here means the temperature of the heat medium.
  • the temperature in the reactor is not particularly limited, but is usually 250 to 450 ° C., preferably 280 to 400 ° C., and more preferably 320 to 395 ° C.
  • the temperature of the catalyst layer exceeds 450 ° C., the catalytic activity tends to decrease rapidly as the reaction is continued.
  • the temperature of the catalyst layer is lower than 250 ° C., the conjugate which is the target product. The yield of diene tends to decrease.
  • the temperature in the reactor is determined by the reaction conditions, but can be controlled by the dilution rate of the catalyst layer, the flow rate of the mixed gas, and the like.
  • the temperature in a reactor here is the temperature of the product gas in the exit of a reactor, or the temperature of the catalyst layer in the case of the reactor which has a catalyst layer.
  • the pressure in the reactor of the present invention is not particularly limited, but the lower limit is usually 0 MPaG or more, preferably 0.001 MPa or more, more preferably 0.01 MPaG or more. As this value increases, there is an advantage that a large amount of reaction gas can be supplied to the reactor.
  • the upper limit is 0.5 MPaG or less, preferably 0.3 MPaG or less, and more preferably 0.1 MPaG or less. As this value decreases, the explosion range tends to narrow.
  • the residence time of the reactor in the present invention is not particularly limited, but the lower limit is usually 0.36 seconds or longer, preferably 0.80 seconds or longer, more preferably 0.90 seconds or longer. There is a merit that the higher the value, the higher the conversion rate of monoolefin in the raw material gas.
  • the upper limit is 3.60 seconds or less, preferably 2.80 seconds or less, and more preferably 2.10 seconds or less. The smaller this value, the smaller the reactor.
  • the ratio of the flow rate of the mixed gas to the amount of catalyst in the reactor is 1000 to 10000 h ⁇ 1 , preferably 1300 to 4500 h ⁇ 1 , more preferably 1700 to 4000 h ⁇ 1 . is there. As this value increases, solid precipitation tends to be suppressed, and as the value decreases, solid tends to precipitate more easily.
  • the flow rate difference between the inlet and outlet of the reactor depends on the flow rate of the raw material gas at the reactor inlet and the flow rate of the product gas at the reactor outlet, but the ratio of the outlet flow rate to the inlet flow rate is usually 100. It is ⁇ 110 vol%, preferably 102 to 107 vol%, more preferably 103 to 105 vol%.
  • the outlet flow rate increases because butene is oxidized and dehydrogenated to produce butadiene and water, and CO and CO 2 are produced by side reactions. This is because the number of molecules increases stoichiometrically in the reaction. A small increase in the outlet flow rate is not preferable because the reaction does not proceed, and an excessive increase in the outlet flow rate is not preferable because CO and CO 2 increase due to side reactions.
  • the conjugated diene corresponding to the monoolefin is produced by the oxidative dehydrogenation reaction of the monoolefin in the raw material gas, and the produced gas containing the conjugated diene is obtained.
  • the concentration of the conjugated diene corresponding to the monoolefin in the raw material gas contained in the product gas depends on the concentration of the monoolefin contained in the raw material gas, but is usually 1 to 15 vol%, preferably 5 to 13 vol%, More preferably, it is 9 to 11 vol%.
  • the product gas may also contain unreacted monoolefin, and its concentration is usually 0 to 7 vol%, preferably 0 to 4 vol%, more preferably 0 to 2 vol%.
  • the high-boiling by-product contained in the product gas is one having a boiling point of 200 to 500 ° C. under normal pressure, although it varies depending on the type of impurities contained in the raw material gas used.
  • specific examples include phthalic acid, anthraquinone, fluorenone and the like. These amounts are not particularly limited, but are usually 0.05 to 0.10 vol% in the reaction gas.
  • the method for producing a conjugated diene of the present invention further includes a cooling step, a dehydration step, a solvent absorption step, a separation step, a purification step and the like in order to separate the conjugated diene from the product gas containing the conjugated diene. Also good.
  • the product gas obtained from the reactor becomes compressed gas and dehydrated gas in the dehydration step.
  • these gases have the same content ratio other than water, and since most of the contained water is liquid, the component ratio of the gas portion of each gas may be considered to be the same. For this reason, hereinafter, the generated gas, the compressed gas, and the dehydrated gas may be simply referred to as “generated gas”.
  • cooling process which cools the product gas containing the conjugated diene obtained from a reactor.
  • the cooling step is not particularly limited as long as the product gas obtained from the outlet of the reactor can be cooled, but a method of cooling by directly contacting the cooling solvent and the product gas is preferably used.
  • a cooling solvent Preferably it is water and alkaline aqueous solution, Most preferably, it is water.
  • the cooling temperature of the product gas varies depending on the temperature of the product gas obtained from the reactor outlet and the kind of the cooling solvent, but is usually 5 to 100 ° C., preferably 10 to 50 ° C., and more preferably 15 to 40. Cool to ° C. The higher the temperature to be cooled, the lower the construction cost and the cost required for operation. The lower the temperature, the lower the load on the process of compressing the product gas.
  • the pressure in a cooling tower is not specifically limited, Usually, it is 0.03 MPaG.
  • the product gas contains a large amount of high-boiling by-products, polymerization between the high-boiling by-products and deposition of solid precipitates due to the high-boiling by-products in the process are likely to occur.
  • the cooling solvent used in the cooling tower is often circulated, clogging with solid precipitates may occur when the production of the conjugated diene is continued continuously. For this reason, it is preferable to avoid introducing high-boiling by-products in the product gas into the cooling process as much as possible.
  • Dehydration process Moreover, in this invention, you may have a dehydration process which removes the water
  • the dehydration process of the present invention is not particularly limited as long as it is a process capable of removing moisture contained in the product gas.
  • the dehydration step may be performed anywhere as long as it is a subsequent step of the reactor, but it is preferable to perform the dehydration step after the above-described cooling step.
  • the amount of water contained in the product gas discharged from the reactor varies depending on the type of raw material gas, the amount of molecular oxygen-containing gas, and water vapor mixed with the raw material gas. It contains ⁇ 35 vol%, preferably 10-30 vol% moisture. (When this has passed the cooling step using water, the water concentration is reduced to 100 vol ppm to 2.0 vol%).
  • the dew point is 0 to 100 ° C., preferably 10 to 80 ° C.
  • the means for dehydrating the water from the product gas is not particularly limited, and a desiccant (moisture adsorbent) such as calcium oxide, calcium chloride, and molecular sieve can be used.
  • a desiccant moisture adsorbent
  • desiccants moisture adsorbents
  • molecular sieves are preferably used from the viewpoint of ease of regeneration and ease of handling.
  • high-boiling by-products contained in the generated gas are adsorbed and removed in addition to water.
  • the high-boiling by-products removed here are anthraquinone, fluorenone, phthalic acid, and the like.
  • the water content in the product gas obtained through the dehydration step is usually 10 to 10,000 volppm, preferably 20 to 1000 volppm, and the dew point is ⁇ 60 to 80 ° C., preferably ⁇ 50 to 20 ° C. .
  • the moisture content in the product gas increases, the contamination of the reboiler of the solvent absorption tower and the solvent separation tower tends to increase.
  • the service cost used in the dehydration process tends to increase. is there.
  • solvent absorption process In the present invention, it is preferable to have a solvent absorption step in which the product gas is brought into contact with an absorption solvent to absorb a hydrocarbon such as olefin or conjugated diene in the absorption solvent to obtain a solvent containing the conjugated diene. As a preferable reason, it is preferable to recover the conjugated diene by absorbing the product gas in a solvent from the viewpoint of reducing the energy cost required for the separation of the conjugated diene.
  • the solvent absorption step may be performed anywhere as long as it is a subsequent step of the reactor, but is preferably provided after the above-described dehydration step.
  • a method using an absorption tower is preferable.
  • absorption towers packed towers, wet wall towers, spray towers, cyclones scrubbers, bubble towers, bubble stirring tanks, plate towers (bubble bell towers, perforated plate towers), foam separation towers and the like can be used.
  • a spray tower, a bubble bell tower, and a perforated plate tower are preferable.
  • the absorption solvent and the product gas are usually brought into countercurrent contact so that the conjugated diene in the product gas and the unreacted monoolefin having 4 or more carbon atoms and the hydrocarbon having 3 or less carbon atoms are used.
  • the compound is absorbed into the solvent.
  • the hydrocarbon compound having 3 or less carbon atoms include methane, acetylene, ethylene, ethane, methylacetylene, propylene, propane, and allene.
  • the pressure in the absorption tower is not particularly limited, but is usually 0.1 to 2.0 MPaG, preferably 0.2 to 1.5 MPaG, More preferably, it is 0.25 to 1.0 MPaG.
  • the temperature in the absorption tower 10 is not particularly limited, but is usually 0 to 50 ° C., preferably 10 to 40 ° C., more preferably 20 to 30 ° C. The higher this temperature is, the more advantageous is that oxygen, nitrogen, and the like are less likely to be absorbed by the solvent, and the smaller is the advantage that the absorption efficiency of hydrocarbons such as conjugated dienes is improved.
  • the absorption solvent used in the solvent absorption step of the present invention is not particularly limited, and C 6 to C 10 saturated hydrocarbons, C 6 to C 8 aromatic hydrocarbons, amide compounds, and the like are used.
  • C 6 to C 10 saturated hydrocarbons C 6 to C 8 aromatic hydrocarbons, amide compounds, and the like are used.
  • dimethylformamide (DMF) toluene, xylene, N-methyl-2-pyrrolidone (NMP) and the like can be used.
  • C 6 to C 8 aromatic hydrocarbons are preferable because toluene is difficult to dissolve inorganic gas, and toluene is particularly preferable.
  • the amount of the absorbing solvent used is not particularly limited, but is usually 1 to 100 times by weight, preferably 2 to 50 times by weight with respect to the flow rate of the target product supplied to the recovery step. As the amount of the absorbing solvent used increases, it tends to be uneconomical, and as the amount used decreases, the recovery efficiency of the conjugated diene tends to decrease.
  • the solvent containing the conjugated diene obtained in the solvent absorption step mainly contains the conjugated diene which is the target product, and the concentration of the conjugated diene in the solvent absorption liquid is usually 1 to 20% by weight. Yes, preferably 3 to 10% by weight.
  • the higher the concentration of the conjugated diene in this solvent the more conjugated diene is lost due to polymerization or volatilization.
  • the lower the concentration the more the solvent needs to be circulated in the same production amount. Energy costs tend to increase.
  • a deaeration step of gasifying and removing nitrogen and oxygen dissolved in the solvent may be provided.
  • the degassing step is not particularly limited as long as it is a step capable of gasifying and removing nitrogen and oxygen dissolved in the solvent absorption liquid.
  • a separation step of separating the crude conjugated diene from the solvent containing the conjugated diene thus obtained may be included, and the crude conjugated diene can be obtained by this step.
  • the separation step is not particularly limited as long as the crude conjugated diene can be separated from the solvent absorption liquid of the conjugated diene, but the crude conjugated diene can be usually separated by distillation separation.
  • the conjugated diene is distilled and separated by a reboiler and a condenser, and a conjugated diene fraction is extracted from the vicinity of the top of the column.
  • the separated absorption solvent is extracted from the bottom of the column, and when it has a recovery step that uses the solvent in the previous step, it is recycled as an absorption solvent in the recovery step. Impurities may accumulate during recycling of the solvent, and a part of the solvent should be extracted and removed by known purification methods such as distillation, decantation, sedimentation, contact treatment with adsorbents, ion exchange resins, etc. Is desirable.
  • the pressure during distillation of the distillation column used in the separation step can be arbitrarily set, but it is usually preferable that the column top pressure is 0.05 to 2.0 MPaG. More preferably, the tower top pressure is 0.1 to 1.0 MPaG, and particularly preferably 0.15 to 0.8 MPaG. If the pressure at the top of the column is too low, a large amount of cost is required to condense the conjugated diene distilled off at a low temperature, and if it is too high, the temperature at the bottom of the distillation column increases, resulting in an increase in steam costs. End up.
  • the tower bottom temperature is usually 50 to 200 ° C, preferably 80 to 180 ° C, more preferably 100 to 160 ° C. If the column bottom temperature is too low, it will be difficult to distill the conjugated diene from the column top. If the temperature is too high, the solvent will be distilled off from the top of the column.
  • the reflux ratio may be 1 to 10, and preferably 2 to 4.
  • the distillation tower either a packed tower or a plate tower can be used, but multistage distillation is preferred.
  • the theoretical column of the distillation column is 5 or more, particularly 10 to 20 stages.
  • a distillation column having more than 50 stages is not preferable for economics of construction of the distillation column, operational difficulty, and safety management. If the number of stages is too small, separation becomes difficult.
  • the crude conjugated diene may be further purified by distillation purification or the like to obtain a purified high-purity conjugated diene.
  • the pressure during distillation of the distillation column used here can be arbitrarily set, but usually the column top pressure is preferably 0.05 to 0.4 MPaG. More preferably, the tower top pressure is 0.1 to 0.3 MPaG, and particularly preferably 0.15 to 0.2 MPaG.
  • the tower bottom temperature is usually 30 ° C. to 100 ° C., preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 60 ° C. If the column bottom temperature is too low, it will be difficult to distill the conjugated diene from the column top. If the temperature is too high, the amount of condensation at the top of the tower increases and costs increase.
  • the reflux ratio may be 1 to 10, and preferably 2 to 4.
  • the distillation tower either a packed tower or a plate tower can be used, but multistage distillation is preferred.
  • the number of theoretical columns of the distillation column is preferably 5 or more, particularly 10 to 20 plates.
  • a distillation column having more than 50 stages is not preferable for economics of construction of the distillation column, operational difficulty, and safety management. If the number of stages is too small, separation becomes difficult.
  • the purified conjugated diene thus obtained is a conjugated diene having a purity of 99.0 to 99.9%.
  • FIG. 1 shows one embodiment of the process of the present invention.
  • 1 is a reactor (reaction tower)
  • 2 is a quench tower
  • 3 are coolers (heat exchangers)
  • 4, 7 and 14 are drain pots
  • 8A and 8B are dehydration towers
  • 9 is Heaters (heat exchangers)
  • 10 is a solvent absorption tower
  • 11 is a degassing tower
  • 12 is a solvent separation tower
  • 100 to 126 are pipes.
  • FIG. 1 shows a case where butene is used as BBSS and butadiene is used as the resulting conjugated diene.
  • a raw material n-butene or a mixture containing n-butene such as the above-mentioned BBSS is gasified by a vaporizer (not shown) and introduced from the pipe 101, and from the pipes 102, 103 and 104, nitrogen gas, Air (molecular oxygen-containing gas) and water (steam) were introduced, and the mixed gas was heated to about 150 to 400 ° C. with a preheater (not shown), and then the catalyst was filled from the pipe 100.
  • a multi-tubular reactor 1 (oxidation dehydrogenation reactor) is supplied. The reaction product gas from the reactor 1 is sent to the quench tower 2 through the pipe 105 and cooled to about 20 to 99 ° C.
  • the cooling water is introduced into the quench tower 2 from the pipe 106 and comes into countercurrent contact with the generated gas. And the water which cooled the product gas by this countercurrent contact is discharged
  • the cooling waste water is cooled by a heat exchanger (not shown) and is circulated again in the quench tower 2.
  • the product gas cooled in the quench tower 2 is distilled from the top of the tower, and then cooled to room temperature via the cooler 3 from the pipe 108.
  • the condensed water generated by cooling is separated into the drain pot 4 through the pipe 109.
  • the gas after water separation is further pressurized to about 0.1 to 0.5 MPa by the compressor 5 through the pipe 110, and the pressurized gas is cooled again to about 10 to 30 ° C. by the cooler 6 through the pipe 111.
  • Condensed water generated by cooling is separated from the pipe 112 into the drain pot 7.
  • the compressed gas after water separation is introduced into dehydration towers 8A and 8B filled with a desiccant such as molecular sieve and dehydrated.
  • dehydration of the compressed gas and regeneration by heating and drying of the desiccant are performed alternately. That is, the compressed gas is first introduced into the dehydration tower 8A through the pipes 113 and 113a, dehydrated, and supplied to the solvent absorption tower 10 through the pipes 114a and 114.
  • nitrogen gas heated to about 150 to 250 ° C. is introduced into the dehydration tower 8B via the pipe 122, the heater 9, and the pipes 123, 123a, and 123b, and moisture is desorbed by heating the desiccant. .
  • the nitrogen gas containing the desorbed water is cooled to room temperature by the cooler 13 through the pipes 124 a, 124 b, and 124, and the condensed water is separated from the pipe 125 into the drain pot 14 and then discharged from the pipe 126.
  • the gas flow path is switched, the compressed gas is dehydrated in the dehydration tower 8B, and the desiccant in the dehydration tower 8A is regenerated.
  • the regeneration time of the desiccant in the dehydration tower in the dehydration step is not particularly limited, but is usually 6 to 48 hours, preferably 12 to 36 hours, and more preferably 18 to 30 hours.
  • the dehydrated gas from the dehydration towers 8A and 8B is cooled to about 10 to 30 ° C. by a cooler (not shown) as necessary, and then sent to the solvent absorption tower 10 to be supplied with a solvent (absorption from the pipe 115). Solvent). Thereby, the conjugated diene and the unreacted raw material gas in the dehydrated gas are absorbed by the absorption solvent.
  • the component (off gas) that has not been absorbed by the absorption solvent is discharged from the top of the solvent absorption tower 10 via the pipe 117 and is combusted and discarded.
  • a step of recovering a solvent having a low boiling point using a solvent having a higher boiling point may be provided at the end of the pipe 117.
  • the solvent absorption liquid in which butadiene and unreacted source gas are absorbed by the absorption solvent is extracted from the bottom of the solvent absorption tower 10 and fed to the deaeration tower 11 through the pipe 116. Since a certain amount of nitrogen and oxygen are also absorbed in the solvent absorption liquid of butadiene obtained in the solvent absorption tower 10, the solvent absorption liquid is then supplied to the deaeration tower 11 and heated. Gasify and remove dissolved nitrogen and oxygen.
  • the butadiene, the raw material gas, and the solvent may be gasified. Therefore, this is liquefied by a capacitor (not shown) provided at the top of the degassing tower 11 to be solvent. Collect in absorbent. Uncondensed raw material gas, butadiene, and the like are extracted from the pipe 118 as a mixed gas of nitrogen and oxygen, and are circulated to the inlet side of the compressor 5 and processed again in order to increase the recovery rate of the conjugated diene. On the other hand, the degassed treatment liquid from which the solvent absorption liquid has been degassed is sent to the solvent separation tower 12 through the pipe 119.
  • conjugated diene is distilled and separated by a reboiler and a condenser, and a crude butadiene fraction is extracted from the top of the column via a pipe 120.
  • the separated absorption solvent is extracted from the bottom of the tower through a pipe 121 and is circulated and used as the absorption solvent of the solvent absorption tower 10.
  • the granular solid (ignition loss: 1.4% by weight) of the obtained catalyst precursor was pulverized, and 40.1 g of ammonium paramolybdate was dispersed in a solution obtained by adding 10 ml of ammonia water to 150 ml of pure water. Next, 0.85 g of borax and 0.36 g of potassium nitrate were dissolved in 40 ml of pure water under heating at 25 ° C. and added to the slurry.
  • FIG. 2 shows the explosion range when the flammable gas is BBSS
  • FIG. 4 shows the explosion range when the flammability is butadiene.
  • Explosion pressure increase rate is over 10%
  • Example 1 Production of 1,3-butadiene
  • 1,3-butadiene was produced using the process shown in FIG. Note that gas chromatography (manufactured by Shimadzu Corporation: GC-2014) was used for gas analysis in the examples.
  • the reaction tube in the reactor 1 equipped with 113 reaction tubes having an inner diameter of 27 mm and a length of 3500 mm was added to 1162 ml of the composite oxide catalyst produced in Production Example 1 and an inert ball (Tipton Corp) per reaction tube. 407 ml).
  • the catalyst layer was composed of three layers, and the dilution rate of each layer was 60% by volume, 40% by volume, and 0% by volume from the inlet of the reactor toward the product gas outlet of the reactor.
  • thermometers were provided with thermometers, and the temperature in the reactor was measured.
  • the thermometer used was a multipoint thermocouple (manufactured by Okazaki Manufacturing Co., Ltd.), and the temperature distribution of the catalyst layer was measured from the inlet to the outlet of the reaction tube.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reactor 1 and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • BBSS combustible gas
  • An oxidative dehydrogenation reaction was performed in the reactor, and a product gas containing butadiene was discharged from the reactor 1 outlet.
  • the temperature inside the reaction tube was adjusted to 341 to 352 ° C. by flowing a heat medium (dibenzyltoluene) at 319 ° C. around the reaction tube in the reactor 1.
  • BBSS 13.2 capacity part / hr ⁇ Air: 77.3 parts by volume / hr ⁇ Nitrogen: 28.5 parts by volume / hr Water vapor: 22.4 parts by volume / hr
  • the composition of the BBSS is as follows. Propane: 0.035 mol% ⁇ Cyclopropane: 0.057 mol% Propylene: 0.109 mol% Isobutane: 4.784 mol% N-Butane: 16.903 mol% ⁇ Trans-2-butene: 16.903 mol% 1-butene: 43.487 mol% Isobutene: 2.264 mol% ⁇ 2,2-Dimethylpropane: 0.197 mol% Cis-2-butene: 12.950 mol% ⁇ Isopentane: 0.044 mol% ⁇ N-Pentane: 0.002 mol% ⁇ 1,2-Butadiene: 0.686 mol% ⁇ 1,3-Butadiene: 1.075 mol% ⁇ Methylacetylene: 0.017 mol% ⁇ 3-Methyl-1-butene: 0.057 mol% ⁇ 2-Pentene: 0.001 mol% Vinyl acetylene:
  • the product gas from the outlet of the reactor 1 was brought into contact with water in the quench tower 2 and cooled to 86 ° C., and further cooled to room temperature with the cooler 3. This gas was sampled and analyzed by gas chromatography. As a result, the reaction results were a butene conversion rate of 95% and a butadiene selectivity of 86%.
  • the water condensed here was collected in the drain pot 4.
  • This gas was pressurized to 0.3 MPa by the compressor 5 and further cooled to about 17 ° C. by the cooler 6 to condense the water and recovered in the drain pot 7.
  • the compressed gas was supplied to a dehydration tower 8A or 8B packed with molecular sieve 3A (manufactured by Union Showa Co., Ltd.).
  • the dehydration gas is supplied to the solvent absorption tower 10 at a pressure of 0.2 MpaG and a temperature of 16 ° C., and toluene as the absorption solvent is supplied at 600 kg / h, and is brought into countercurrent contact to absorb hydrocarbons such as butadiene and further desorbed. Oxygen and nitrogen were separated by the air column 11, and further, 1,3-butadiene was separated and recovered from toluene by the solvent separation column 12. As a result of sampling and analyzing the gas supplied to the solvent absorption tower 10 and the gas distilled from the top of the solvent absorption tower 10, the results were as follows.
  • Gas mixture supplied to the solvent absorption tower 10 oxygen concentration: 6.1% by volume (29% in terms of air), combustible gas concentration: 10.0% by volume -Distilled product gas from the top of the solvent absorption tower 10 ... oxygen concentration: 6.8 vol% (32.4% in terms of air), combustible gas concentration: 0.6 vol%
  • the product gas from the reaction tube was cooled to room temperature with a cooler, drain was separated, and the gas composition was analyzed by gas chromatography.
  • FIG. 5B When this result is described in a three-component diagram showing the explosion range of combustible gas (butadiene) -air-inert gas, it is as shown in FIG. 5B, and the combustible gas (butadiene) in the generated gas is It was shown that the composition crossed the explosion range by being absorbed in the absorption tower. In FIG. 5B, the oxygen concentration is converted into air and displayed.
  • Example 2 Adjustment of oxygen concentration
  • BBSS combustible gas
  • BBSS combustible gas
  • BBSS 12.7 capacity parts / hr ⁇ Air: 69.6 parts by volume / hr ⁇ Nitrogen: 36.1 parts by volume / hr Water vapor: 22.6 parts by volume / hr ⁇ Raw material preheater temperature 219 °C ⁇ Heat medium temperature 321.3 °C The catalyst layer temperature was 335 to 352 ° C.
  • the oxygen concentration of the reaction gas measured with a magnetic dumbbell-type oxygen concentration meter installed behind the cooler 3 was 5.0%.
  • the operation was continued with the target oxygen concentration set at 5.0%, but the oxygen concentration increased to 5.2% after 18 hours. Although the operating conditions were not changed, it is considered that the composition of BBSS or the activity of the catalyst changed.
  • FIG. 6A shows detailed changes in oxygen concentration and heat medium temperature at this time. From this result, it can be seen that the oxygen concentration of the product gas can be controlled by changing the heating medium temperature.
  • Example 3 (Adjustment of oxygen concentration) The same procedure as in Example 1 was performed except that the raw material supply amount, the preheater, and the heating medium temperature were changed as follows.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reactor 1 and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • BBSS 12.7 capacity parts / hr ⁇ Air: 69.8 parts by volume / hr ⁇ Nitrogen: 36.1 parts by volume / hr Water vapor: 22.4 parts by volume / hr ⁇ Raw material preheater temperature 219 °C ⁇ Heat medium temperature 319.7 °C The catalyst layer temperature was 332 to 350 ° C.
  • the oxygen concentration of the reaction gas measured with a magnetic dumbbell-type oxygen concentration meter installed behind the cooler 3 was 5.4%.
  • the operation was continued with the target oxygen concentration set at 5.4%, but after 26 hours, the oxygen concentration dropped to 5.2%.
  • the operating conditions were not changed, it is considered that the composition of BBSS or the activity of the catalyst changed.
  • FIG. 6B shows detailed changes in oxygen concentration and heat medium temperature at this time.
  • Example 4 Adjustment of oxygen concentration
  • BBSS combustible gas
  • BBSS combustible gas
  • BBSS 13.2 capacity part / hr ⁇ Air: 70.1 parts by volume / hr ⁇ Nitrogen: 36.0 parts by volume / hr Water vapor: 22.5 parts by volume / hr ⁇ Raw material preheater temperature 217.8 °C ⁇ Heat medium temperature 322.5 °C The catalyst layer temperature was 339 to 354 ° C., and the instruction of the oximeter installed behind the cooler 3 was 4.7%. Hereinafter, the target oxygen concentration was set to 4.7%. The reaction results were butene conversion: 93% and butadiene selectivity: 89%.
  • the reaction results were a butene conversion rate of 96% and a butadiene selectivity of 84%.
  • the instruction of the oxygen concentration meter was 3.6%, which was lower than the target oxygen concentration. Therefore, when the flow rate of air supplied to the reactor was increased to 80 vol parts / hr and the flow rate of nitrogen was reduced to 26 vol parts / hr so that the total flow rate of the raw materials did not change, the instruction of the oximeter was 4.6. % Was almost as planned. From this result, it was found that the oxygen concentration of the product gas can also be controlled by changing the supply amount of air.
  • Example 5 A stainless steel reaction tube having an inner diameter of 23.0 mm and a length of 500 mm was mixed and filled with 20.0 ml of the composite oxide catalyst produced in Production Example 1 and 20.0 ml of an inert ball (Chipton). The dilution rate of the layer was 50% by volume. An insertion tube having an outer diameter of 2.0 mm was installed in these reaction tubes, and a thermocouple was installed in the insertion tube to measure the temperature in the reactor. An electric furnace was used as the heat medium.
  • BBSS which is a raw material gas having the composition shown in Table 1 is supplied.
  • Table 1 shows a typical component composition (mol%) contained in BBSS which is a raw material gas.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • BBSS combustible gas
  • the average temperature of the catalyst layer in the reactor was 354 ° C., and the pressure was 2 kPa in terms of gauge pressure.
  • the product gas from the outlet of the reactor was cooled in a cooling pipe provided with a filter, then contacted with water, further cooled, and analyzed by gas chromatography (model number GC-8A, GC-9A manufactured by Shimadzu Corporation).
  • the oxygen concentration in the product gas was 7.2% by volume.
  • n-butene conversion rate (the total conversion rate of 1-butene, cis-2-butene and trans-2-butene) was 79.6 mol%, and the butadiene selectivity was 92.6 mol%.
  • the reaction was stopped after 8 hours, and the amount of solid by-product trapped on the filter in the cooling tube was 38.9 mg, and the amount of solid by-product produced per hour was 4.6 mg / h.
  • the amount of butadiene produced was 4529 mg / h, and the amount of solids produced relative to the amount of butadiene produced was 0.10 wt%.
  • Table 1 The results are shown in Table 1.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • the oxygen concentration in the product gas was 6.6% by volume. The results are shown in Table 1.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • the oxygen concentration in the product gas was 4.5% by volume. The results are shown in Table 1.
  • Example 8 A stainless steel reaction tube having an inner diameter of 23.0 mm and a height of 500 mm is preliminarily filled with 24 ml of inner ball (size per grain: about 0.065 mm3) (packed layer length: 210 mm). -Only 20.0 ml of the composite oxide catalyst produced in Production Example 1 was filled on the packed bed of toboles, and the dilution rate of the catalyst layer was 0% by volume.
  • an insertion tube with an outer diameter of 2.0 mm is installed in the reaction tube, and a sheath type thermocouple (manufactured by Takahashi Motor Sensor Co., Ltd.) is placed in the insertion tube, and the temperature inside the reactor (catalyst layer outlet temperature) The maximum temperature of the catalyst layer) was measured.
  • An electric furnace was used as the heat medium.
  • Nitrogen is supplied in advance to the preheater at 7.8 L / hr, air is 16.0 L / hr, and water vapor is 5.5 L / hr, and then BBSS as a raw material gas is supplied at 2.8 L / hr.
  • the mixture was mixed in a preheater and heated to 345 ° C. as a mixed gas. Table 1 shows typical compositions (mol%) contained in the source gas.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • BBSS combustible gas
  • the average temperature of the catalyst layer in the reaction tube was 374 ° C., and the pressure was 2 kPa in terms of gauge pressure.
  • the maximum temperature in the reaction tube was 387 ° C.
  • the product gas from the outlet of the reactor was cooled in a cooling pipe provided with a filter, then contacted with water, further cooled, and analyzed by gas chromatography (model number: GC4000 manufactured by GL Sciences).
  • the oxygen concentration in the product gas was 4.8% by volume.
  • n-butene conversion rate (the total conversion rate of 1-butene, cis-2-butene and trans-2-butene) was 91.4 mol%, and the butadiene selectivity was 89.0 mol%.
  • Reaction was stopped 200 hours after supplying BBSS which is source gas.
  • the total catalyst was extracted from the reaction tube, and the amount of carbon adhering to the extracted catalyst was measured (measuring device: carbon sulfur analyzer manufactured by LECO, model number CS600).
  • the carbon concentration was 2.1 wt% (catalyst particles before and after the reaction).
  • the increase in the concentration of carbon adhering to (0.6 wt%).
  • Table 1 The results are shown in Table 1.
  • Example 9 In [Example 8], 23.0 ml of the composite oxide catalyst produced in Production Example 1 and 23.0 ml of inner ball (size per grain: about 0.065 mm 3 ) are mixed and filled. The dilution rate of the catalyst layer was 50% by volume.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • the oxygen concentration in the product gas was 3.5% by volume. The results are shown in Table 1.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • the oxygen concentration in the product gas was 8.1% by volume. The results are shown in Table 1.
  • FIG. 3 shows a three-component diagram showing the state of the combustible gas (BBSS) concentration of the mixed gas supplied to the reaction tube and the explosion range of the combustible gas (BBSS) -air-inert gas.
  • the oxygen concentration in the product gas was 2.0% by volume. The results are shown in Table 1.
  • the present invention when producing a conjugated diene by an oxidative dehydrogenation reaction of a monoolefin having 4 or more carbon atoms, it is possible to suppress the accumulation of carbon-like carbon in the catalyst in the reactor, and The amount of high-boiling by-products precipitated in the cooling step after the reaction step can be reduced, and the plant can be operated safely and continuously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明は、n-ブテン等のモノオレフィンの接触酸化脱水素反応によりブタジエン等の共役ジエンを製造する方法において、より安全に運転ができ、更に高い収率で安定的に共役ジエンの製造を行うことができる方法を提供することを目的とする。本発明は、炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを混合して反応器に供給する工程と、触媒の存在下、前記炭素原子数4以上のモノオレフィンの酸化脱水素反応により生成した対応する共役ジエンを含む生成ガスを得る工程とを有する共役ジエンの製造方法であって、前記反応器に供給されるガス中の可燃性ガスの濃度が爆発上限界以上であり、かつ、前記生成ガス中の酸素濃度が2.5容量%以上8.0容量%以下であることを特徴とする共役ジエンの製造方法に関する。

Description

共役ジエンの製造方法
 本発明は、共役ジエンの製造方法にかかり、特にn-ブテン等の炭素原子数4以上のモノオレフィンの接触酸化脱水素反応により、ブタジエン等の共役ジエンを製造する方法に関する。
 n-ブテン等のモノオレフィンを触媒の存在下に酸化脱水素反応させてブタジエン(以下、「BD」と称す場合がある。)等の共役ジエンを製造する方法としては、下記の反応式に従う接触酸化脱水素反応等があげられる。この反応においては、水が副生する。
  C+1/2O→C+H
 この接触酸化脱水素反応によるブタジエンの工業的な製造法として、ナフサ分解で副生するC留分(炭素原子数4の炭化水素の混合物。以下、「BB」と称す場合がある。)からのブタジエンの抽出分離プロセスにおいて、抽出蒸留塔でブタジエンを分離して得られた、1-ブテンの他、2-ブテン等を含む混合物(以下、この混合物を「BBSS」と称す場合がある。)を、原料として用い、このBBSS中に含まれるブテンからブタジエンを製造する方法が提案されている。
 C留分からのブタジエンの抽出分離プロセスを示す代表的なプロセスとしては、図7に示すプロセスを例としてあげることができる。まず、C留分は、蒸発塔31を経て第1抽出蒸留塔32に導入され、抽出剤(ジメチルホルムアミド(DMF)等)でブタジエン等が抽出されると共に、他のC成分(以下「BBS」と称す場合がある。)が蒸発除去される。BBSは次いでi-ブテン分離塔33でi-ブテンが除去され、BBSSが系外へ排出される。
 第1抽出蒸留塔32からのブタジエン抽出液は次いで予放散塔34、及び第1放散塔35で抽出剤のDMF等が分離され、その後、圧縮機36を経て第2抽出蒸留塔37に導入され、抽出剤(DMF等)で再抽出される。この第2抽出蒸留塔37で分離されたアセチレン類はブタジエン回収塔38、第2放散塔39を経て燃料として回収される。
 第2抽出蒸留塔37からの粗BDは更に第1蒸留塔40、及び第2蒸留塔41で精製され高純度の1,3-ブタジエンが回収される。なお、図7において、200~219は配管を示す。
 前記n-ブテンの接触酸化脱水素反応によるブタジエンの代表的な製造方法としては、特許文献1に、下記に示すブタジエンの製造方法が提案されている。
(1)n-ブテンを気相接触酸化脱水素せしめてブタジエンを製造する反応工程、
(2)該反応工程から得られる生成ガスを冷却し生成ガス中に含まれる微量の高沸点副生物を除去する冷却工程、
(3)冷却した生成ガス中に含まれる少量のアルデヒド類を除去するアルデヒド除去工程、
(4)導出した生成ガスを圧縮する圧縮工程、
(5)圧縮された生成ガスからブタジエン及びその他のC炭化水素を含むC成分を回収するC回収工程。
 また、n-ブテンの接触酸化脱水素反応で用いられる複合酸化物触媒の例としては、特許文献2に記載されている触媒をあげることができ、モリブデン、鉄、ニッケル又はコバルトの少なくとも一種及びシリカを含む複合酸化物触媒が記載されているが、具体的なブタジエンの製造方法の記載はない。
日本国特開昭60-115532号公報 日本国特開2003-220335号公報
 特許文献1,2には、ブテンの酸化脱水素反応によりブタジエンを製造した後、溶媒を使用して生成ガスからブタジエンを含む炭化水素を回収するにあたり、爆発を回避する方法については何ら記載されていないが、酸化脱水素反応においては、原料の炭化水素などの可燃性ガスと酸素とを含むガスを使用するため、反応中での爆発を回避しなければならない。爆発を回避する方法の一つとして、ガス中の可燃性ガス濃度を、可燃性ガスの組成、酸素及びイナ-トガスから決定される爆発範囲から外すことが考えられる。その場合、更に可燃性ガス濃度を爆発下限界以下にする場合と爆発上限界以上にする場合の二通りが考えられる。爆発下限界以下では原料ガス濃度が低く工業的に実施するには、効率性・経済性の面で不利なため、爆発上限界以上での反応が好ましい。
 一方、可燃性ガス濃度が爆発上限界以上のガスで反応を行った場合、反応工程では爆発範囲外となり安全に反応が行われるものの、生成ガスを吸収溶媒と接触させ生成物である炭化水素を溶媒に吸収させると、爆発上限界以上であった可燃性ガス濃度が低下していく。その結果、生成ガスの組成が爆発範囲を横切って、反応工程以降の後段の工程で爆発が発生する可能性が高くなる。更に、触媒の存在下、ブテンの酸化脱水素反応によりブタジエンを製造する際に、ガス中の酸素濃度が低すぎると、触媒上で炭素分などのコ-キングが進行することで、反応器の差圧が上昇し、運転継続に支障をきたすおそれがある。一方、ガス中の酸素濃度が高すぎると、高沸点副生物が多く生じ、それらが生成ガス中に含有され、後段の冷却工程で、その高沸点副生物を含有する生成ガスを冷却すると、生成ガス中の高沸点副生物に起因する固形物が冷却工程内に析出していき、結果として、冷却工程で閉塞が起こり、運転継続に支障をきたす、という問題が判明した。
 本発明は、前記課題に鑑みてなされたものであって、n-ブテン等のモノオレフィンの接触酸化脱水素反応によりブタジエン等の共役ジエンを製造する方法において、継続的に触媒を使用する際に、触媒上へのコ-キングを抑制し、高沸点副生物の生成量を低減し、より安全に高い収率で安定的にブタジエン等の共役ジエンの製造を行うことができる方法を提供することを目的とする。
 すなわち、本発明は下記の共役ジエンの製造方法に関する。
<1>
 炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを混合して反応器に供給する工程と、触媒の存在下、前記炭素原子数4以上のモノオレフィンの酸化脱水素反応により生成した対応する共役ジエンを含む生成ガスを得る工程とを有する共役ジエンの製造方法であって、前記反応器に供給されるガス中の可燃性ガスの濃度が爆発上限界以上であり、かつ、前記生成ガス中の酸素濃度が2.5容量%以上8.0容量%以下であることを特徴とする共役ジエンの製造方法。
<2>
 前記共役ジエンを含む生成ガスを吸収溶媒と接触させ、共役ジエンを含む溶媒を得る工程を更に有することを特徴とする上記<1>に記載の共役ジエンの製造方法。
<3>
 前記触媒が、少なくともモリブデン、ビスマス及びコバルトを含有する複合酸化物触媒であることを特徴とする上記<1>又は<2>に記載の共役ジエンの製造方法。
<4>
 前記触媒が、下記一般式(1)で表される複合酸化物触媒であることを特徴とする上記<3>に記載の共役ジエンの製造方法。
  MoBiCoNiFeSi     (1)
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a~jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5~7、c=0~10、d=0~10(但しc+d=1~10)、e=0.05~3、f=0~2、g=0.04~2、h=0~3、i=5~48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
<5>
 前記複合酸化物触媒が、この複合酸化物触媒を構成する各成分元素の供給源化合物を水系内で一体化して加熱する工程を経て製造される触媒であり、モリブデン化合物、鉄化合物、ニッケル化合物及びコバルト化合物よりなる群から選ばれる少なくとも1種とシリカとを含む原料化合物の水溶液若しくは水分散液、又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程と、この触媒前駆体、モリブデン化合物及びビスマス化合物を水性溶媒とともに一体化し、乾燥、焼成する後工程とを有する方法で製造されたものであることを特徴とする上記<4>に記載の共役ジエンの製造方法。
<6>
 前記反応器の出口で、前記生成ガス中の酸素濃度を測定し、該酸素濃度に応じて、反応器への供給する分子状酸素含有ガスの量及び反応器温度のうち少なくとも一方を制御することにより、生成ガス中の酸素濃度を、2.5容量%以上8容量%以下の範囲に維持することを特徴とする上記<1>~<5>のいずれか1に記載の共役ジエンの製造方法。
<7>
 前記原料ガスが、エチレンの2量化により得られる1-ブテン、シス-2-ブテン、トランス-2-ブテン若しくはこれらの混合物を含有するガス、n-ブタンの脱水素若しくは酸化脱水素反応により生成するブテン留分、又は重油留分を流動接触分解する際に得られる炭素原子数が4の炭化水素を含むガスであることを特徴とする上記<1>~<6>のいずれか1に記載の共役ジエンの製造方法。
 本発明によれば、炭素原子数4以上のモノオレフィンの酸化脱水素反応により共役ジエンを製造するにあたり、反応器内の触媒にコ-クのような炭素分が蓄積するのを抑制でき、かつ反応工程後の冷却工程で析出する高沸点副生物の生成量を低減でき、より安全に継続的なプラントの安定運転が可能となる。
本発明の共役ジエンの製造方法の実施の形態を示すプロセス図である。 可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図である。 実施例1~9、及び比較例2,3における反応器入口でのガス中の可燃性ガスの濃度の状態を示す三成分図である。 可燃性ガス(ブタジエン)-空気-イナ-トガスの爆発範囲を示した三成分図である。 (a)実施例1における生成ガスの溶媒吸収塔前後での可燃性ガスの濃度変化を示す三成分図である。(b)比較例1における生成ガスの溶媒吸収塔前後での可燃性ガスの濃度変化を示す三成分図である。 (a)実施例2における冷却器3出口の酸素濃度と反応器熱媒温度を示すグラフである。(b)実施例3における冷却器3出口の酸素濃度と反応器熱媒温度を示すグラフである。 留分からのブタジエンの抽出分離プロセスを示すプロセス図である。
 以下に本発明の共役ジエンの製造方法の実施の形態を詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されない。
 本発明では、炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを触媒層を有する反応器に供給し、酸化脱水素反応により対応する共役ジエンを製造する。
<炭素原子数4以上のモノオレフィンを含む原料ガス>
 本発明の原料ガスは炭素原子数4以上のモノオレフィンを含むが、炭素原子数4以上のモノオレフィンとしては、ブテン(1-ブテン及び/又は2-ブテン等のn-ブテン、イソブテン)、ペンテン、メチルブテン、ジメチルブテン等の炭素原子数4以上、好ましくは炭素原子数4~6のモノオレフィンが挙げられ、接触酸化脱水素反応による対応する共役ジエンの製造に有効に適用することができる。この中でも、n-ブテン(1-ブテン及び/又は2-ブテン等のn-ブテン)からのブタジエンの製造に最も好適に用いられる。
 また、炭素原子数4以上のモノオレフィンを含む原料ガスとしては、単離した炭素原子数4以上のモノオレフィンそのものを使用する必要はなく、必要に応じて任意の混合物の形で用いることができる。例えばブタジエンを得ようとする場合には高純度のn-ブテン(1-ブテン及び/又は2-ブテン)を原料ガスとすることもできるが、前述のナフサ分解で副生するC4留分(BB)からブタジエン及びi-ブテン(イソブテン)を分離して得られるn-ブテン(1-ブテン及び/又は2-ブテン)を主成分とする留分(BBSS)やn-ブタンの脱水素又は酸化脱水素反応により生成するブテン留分を使用することもできる。また、エチレンの2量化により得られる高純度の1-ブテン、シス-2-ブテン、トランス-2-ブテン又はこれらの混合物を含有するガスを原料ガスとして使用しても差し支えない。尚、このエチレンはエタン脱水素、エタノ-ル脱水、又はナフサ分解などの方法で得られるエチレンを使用することができる。更に、石油精製プラントなどで原油を蒸留した際に得られる重油留分を、流動層状態で粉末状の固体触媒を使って分解し、低沸点の炭化水素に変換する流動接触分解(Fluid Catalytic Cracking)から得られる炭素原子数4の炭化水素類を多く含むガス(以下、FCC-C4と略記することがある)をそのまま原料ガスとする、又は、FCC-C4からリンや砒素などの不純物を除去したものを原料ガスとして使用しても差し支えない。なお、ここでいう、主成分とは、原料ガスに対して、通常40体積%以上、好ましくは60体積%以上、より好ましくは75体積%以上、特に好ましくは99体積%以上を示す。
 また、本発明の原料ガス中には、本発明の効果を阻害しない範囲で、任意の不純物を含んでいても良い。n-ブテン(1-ブテン及び2-ブテン)からブタジエンを製造する場合、含んでいても良い不純物として、具体的には、イソブテンなどの分岐型モノオレフィン;プロパン、n-ブタン、i-ブタン、ペンタンなどの飽和炭化水素;プロピレン、ペンテンなどのオレフィン;1,2-ブタジエンなどのジエン;メチルアセチレン、ビニルアセチレン、エチルアセチレンなどのアセチレン類等が挙げられる。この不純物の量は、通常40%以下、好ましくは20%以下、より好ましくは10%以下、特に好ましくは1%以下である。この量が多すぎると、主原料である1-ブテンや2-ブテンの濃度が下がって反応が遅くなったり、目的生成物であるブタジエンの収率が低下する傾向にある。また、本発明では、原料ガス中の炭素原子数4以上の直鎖型モノオレフィンの濃度は、特に限定されないが、通常は、70.00~99.99vol%であり、好ましくは、71.00~99.0vol%、更に好ましくは、72.00~95.0vol%である。
<酸化脱水素反応触媒>
 次に、本発明で好適に用いられる酸化脱水素反応触媒について説明する。本発明で用いる酸化脱水素触媒は、少なくともモリブデン、ビスマス及びコバルトを含有する複合酸化物触媒であることが好ましい。そして、この中でも、下記一般式(1)で表される複合酸化物触媒であることがより好ましい。
   MoBiCoNiFeSi     (1)
 なお、式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素である。Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素である。Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。
 さらに、a~jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5~7、c=0~10、d=0~10(但しc+d=1~10)、e=0.05~3、f=0~2、g=0.04~2、h=0~3、i=5~48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。
 また、この複合酸化物触媒は、この複合酸化物触媒を構成する各成分元素の供給源化合物を水系内で一体化して加熱する工程を経て製造する方法がよい。例えば、前記各成分元素の供給源化合物の全部を水系内で一体化して加熱してもよい。
 その中でも、モリブデン化合物、鉄化合物、ニッケル化合物及びコバルト化合物よりなる群から選ばれる少なくとも1種とシリカとを含む原料化合物の水溶液若しくは水分散液、又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程と、この触媒前駆体、モリブデン化合物及びビスマス化合物を水性溶媒とともに一体化し、乾燥、焼成する後工程とを有する方法で製造するのが好ましい。この方法を用いると、得られた複合酸化物触媒は、高い触媒活性を発揮するので、高収率でブタジエン等の共役ジエンを製造することができ、アルデヒド類含有量の少ない反応生成ガスを得ることができる。なお、水性溶媒とは、水、又はメタノ-ル、エタノ-ル等の水と相溶性を有する有機溶媒、又はこれらの混合物をいう。
 次に、本発明に好適な複合酸化物触媒の製造方法について説明する。
 まず、この複合酸化物触媒の製造方法においては、前記前工程で用いられるモリブデンが、モリブデンの全原子比(a)の内の一部の原子比(a)相当のモリブデンであり、前記後工程で用いられるモリブデンが、モリブデンの全原子比(a)からaを差し引いた残りの原子比(a)相当のモリブデンであることが好ましい。そして、前記aが1<a/(c+d+e)<3を満足する値であることが好ましく、さらに、前記aが0<a/b<8を満足する値であることが好ましい。
 前記成分元素の供給源化合物としては、成分元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナ-ト、アルコキシド等が挙げられ、その具体例としては、下記のようなものが挙げられる。
 Moの供給源化合物としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が挙げられる。
 Feの供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸第二鉄等が挙げられる。
 Coの供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等が挙げられる。
 Niの供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル等が挙げられる。
 Siの供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ、ヒュ-ムドシリカ等が挙げられる。 
 Biの供給源化合物としては、塩化ビスマス、硝酸ビスマス、酸化ビスマス、次炭酸ビスマス等が挙げられる。また、X成分(Mg,Ca,Zn,Ce,Smの1種又は2種以上)やY成分(Na,K,Rb,Cs,Tlの1種又は2種以上)を固溶させた、BiとX成分やY成分との複合炭酸塩化合物として供給することもできる。
 例えば、Y成分としてNaを用いた場合、BiとNaとの複合炭酸塩化合物は、炭酸ナトリウム又は重炭酸ナトリウムの水溶液等に、硝酸ビスマス等の水溶性ビスマス化合物の水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。
 また、BiとX成分との複合炭酸塩化合物は、炭酸アンモニウム又は重炭酸アンモニウムの水溶液等に、硝酸ビスマス及びX成分の硝酸塩等の水溶性化合物からなる水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。
 前記炭酸アンモニウム又は重炭酸アンモニウムの代わりに、炭酸ナトリウム又は重炭酸ナトリウムを用いると、Bi、Na及びX成分との複合炭酸塩化合物を製造することができる。
 その他の成分元素の供給源化合物としては、下記のものが挙げられる。
 Kの供給源化合物としては、硝酸カリウム、硫酸カリウム、塩化カリウム、炭酸カリウム、酢酸カリウム等を挙げることができる。
 Rbの供給源化合物としては、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム、酢酸ルビジウム等を挙げることができる。
 Csの供給源化合物としては、硝酸セシウム、硫酸セシウム、塩化セシウム、炭酸セシウム、酢酸セシウム等を挙げることができる。
 Tlの供給源化合物としては、硝酸第一タリウム、塩化第一タリウム、炭酸タリウム、酢酸第一タリウム等を挙げることができる。
 Bの供給源化合物としては、ホウ砂、ホウ酸アンモニウム、ホウ酸等を挙げることができる。
 Pの供給源化合物としては、リンモリブデン酸アンモニウム、リン酸アンモニウム、リン酸、五酸化リン等を挙げることができる。
 Asの供給源化合物としては、ジアルセノ十八モリブデン酸アンモニウム、ジアルセノ十八タングステン酸アンモニウム等を挙げることができる。
 Wの供給源化合物としては、パラタングステン酸アンモニウム、三酸化タングステン、タングステン酸、リンタングステン酸等を挙げることができる。
 Mgの供給源化合物としては、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、酢酸マグネシウム等が挙げられる。
 Caの供給源化合物としては、硝酸カルシウム、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、酢酸カルシウム等が挙げられる。
 Znの供給源化合物としては、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛等が挙げられる。
 Ceの供給源化合物としては、硝酸セリウム、硫酸セリウム、塩化セリウム、炭酸セリウム、酢酸セリウム等が挙げられる。
 Smの供給源化合物としては、硝酸サマリウム、硫酸サマリウム、塩化サマリウム、炭酸サマリウム、酢酸サマリウム等が挙げられる。
 前工程において用いる原料化合物の水溶液又は水分散液は、触媒成分として少なくともモリブデン(全原子比aの内のa相当)、鉄、ニッケル又はコバルトの少なくとも一方、及びシリカを含む水溶液、水スラリ-又はケ-キである。
 この原料化合物の水溶液又は水分散液の調製は、供給源化合物の水性系での一体化により行われる。ここで各成分元素の供給源化合物の水性系での一体化とは、各成分元素の供給源化合物の水溶液あるいは水分散液を一括に、あるいは段階的に混合及び熟成処理のうち少なくとも一方を行うことをいう。即ち、(イ)前記の各供給源化合物を一括して混合する方法、(ロ)前記の各供給源化合物を一括して混合し、そして熟成処理する方法、(ハ)前記の各供給源化合物を段階的に混合する方法、(ニ)前記の各供給源化合物を段階的に混合・熟成処理を繰り返す方法、及び(イ)~(ニ)を組み合わせる方法のいずれもが、各成分元素の供給源化合物の水性系での一体化という概念に含まれる。ここで、熟成とは、工業原料もしくは半製品を、一定時間、一定温度等の特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行等を図る操作をいい、一定時間とは、通常10分~24時間の範囲であり、一定温度とは通常室温~水溶液又は水分散液の沸点範囲をいう。
 前記の一体化の具体的な方法としては、例えば、触媒成分から選ばれた酸性塩を混合して得られた溶液と、触媒成分から選ばれた塩基性塩を混合して得られた溶液とを混合する方法等が挙げられ、具体例としてモリブデン化合物の水溶液に、鉄化合物とニッケル化合物及びコバルト化合物のうち少なくとも一方との混合物を加温下添加し、シリカを混合する方法等が挙げられる。
 このようにして得られたシリカを含む原料化合物の水溶液又は水分散液を60~90℃に加温し、熟成する。
 この熟成とは、前記触媒前駆体用スラリ-を所定温度で所定時間、撹拌することをいう。この熟成により、スラリ-の粘度が上昇し、スラリ-中の固体成分の沈降を緩和し、とりわけ次の乾燥工程での成分の不均一化を抑制するのに有効となり、得られる最終製品である複合酸化物触媒の原料転化率や選択率等の触媒活性がより良好となる。
 前記熟成における温度は、60~90℃が好ましく、70~85℃がより好ましい。熟成温度が60℃未満では、熟成の効果が十分ではなく、良好な活性を得られない場合がある。一方、90℃を超えると、熟成時間中の水の蒸発が多く、工業的な実施には不利である。更に100℃を超えると、溶解槽に耐圧容器が必要となり、また、ハンドリングも複雑になり、経済性及び操作性の面で著しく不利となる。
 前記熟成にかける時間は、2~12時間がよく、3~8時間が好ましい。熟成時間が2時間未満では、触媒の活性及び選択性が十分に発現しない場合がある。一方、12時間を超えても熟成効果が増大することはなく、工業的な実施には不利である。
 前記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹拌機による方法や、ポンプによる外部循環による方法等が挙げられる。
 熟成されたスラリ-は、そのままで、又は乾燥した後、加熱処理を行う。乾燥する場合の乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレ-ドライヤ-、スラリ-ドライヤ-、ドラムドライヤ-等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉を用いてブロック状又はフレ-ク状の乾燥物を得てもよい。
 前記の原料塩水溶液又はこれを乾燥して得た顆粒あるいはケ-キ状のものは、空気中で200~400℃、好ましくは250~350℃の温度域で短時間の熱処理を行う。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロ-タリ-キルン等を用いて乾燥物を流動させながら加熱してもよい。
 加熱処理後に得られた触媒前駆体の灼熱減量は、0.5~5重量%であることが好ましく、1~3重量%であるのがより好ましい。灼熱減量をこの範囲とすることで、原料転化率や選択率が高い触媒を得ることができる。なお、灼熱減量は、次式により与えられる値である。
  灼熱減量(%)=[(W-W)/W]×100
  ・W:触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)
  ・W:付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の重量(g)
 前記の後工程では、前記の前工程において得られる触媒前駆体とモリブデン化合物(全原子比aからa1相当を差し引いた残りのa2相当)とビスマス化合物の一体化を、水性溶媒下で行う。この際、アンモニア水を添加するのが好ましい。X、Y、Z成分の添加もこの後工程で行うのが好ましい。また、この発明のビスマス供給源化合物は、水に難溶性ないし不溶性のビスマスである。この化合物は、粉末の形態で使用することが好ましい。触媒製造原料としてのこれら化合物は粉末より大きな粒子のものであってもよいが、その熱拡散を行わせるべき加熱工程を考えれば小さい粒子である方が好ましい。従って、原料としてのこれらの化合物がこのように粒子の小さいものでなかった場合は、加熱工程前に粉砕を行うべきである。
 次に、得られたスラリ-を充分に撹拌した後、乾燥する。このようにして得られた乾燥品を、押出し成型、打錠成型、あるいは担持成型等の方法により任意の形状に賦形する。
 次に、このものを、好ましくは450~650℃の温度条件にて1~16時間程度の最終熱処理に付す。以上のようにして、高活性で、かつ目的とする酸化生成物を高い収率で与える複合酸化物触媒が得られる。
<分子状酸素含有ガス>
 本発明の分子状酸素含有ガスとは、通常、分子状酸素が10体積%以上、好ましくは、15体積%以上、更に好ましくは20体積%以上含まれるガスのことであり、具体的に好ましくは空気である。なお、分子状酸素含有ガスを工業的に用意するのに必要なコストが増加するという観点から、分子状酸素の含有量の上限としては、通常50体積%以下であり、好ましくは、30体積%以下、更に好ましくは25体積%以下である。また、本発明の効果を阻害しない範囲で、分子状酸素含有ガスには、任意の不純物を含んでいても良い。
 含んでいても良い不純物として、具体的には、窒素、アルゴン、ネオン、ヘリウム、CO、CO、水等が挙げられる。この不純物の量は、窒素の場合、通常90体積%以下、好ましくは85体積%以下、より好ましくは80体積%以下である。窒素以外の成分の場合、通常10体積%以下、好ましくは1体積%以下である。この量が多すぎると、反応に必要な酸素を供給するのが難しくなる傾向にある。
<ガス供給>
 本発明では、反応器に原料ガスを供給するにあたり、原料ガスと分子状酸素含有ガスとを混合し、その混合されたガス(以下、「混合ガス」呼ぶことがある)を反応器に供給する必要がある。なお、本発明の混合ガス中の、原料ガスの割合としては、通常、4.2体積%以上であり、好ましくは7.6体積%以上、更に好ましくは8.0体積%以上である。この下限値が大きくなるほど、反応器のサイズを小さくでき、建設費および運転に要するコストが低減する傾向にある。また、一方、上限は、20.0vol%以下であり、好ましくは、17.0vol%以下、更に好ましくは、15.0vol%以下である。この上限値が小さくなるほど、原料ガス中の触媒上へのコ-キングの起因物質も低減するため、触媒のコ-キングが発生しにくく好ましい。
<窒素ガス、水(水蒸気)>
 また、混合ガスと共に、窒素ガス、及び水(水蒸気)を反応器に供給してもよい。窒素ガスは、混合ガスが爆鳴気を形成しないように可燃性ガスと酸素の濃度を調整するという理由から、水(水蒸気)は窒素ガスと同様に可燃性ガスと酸素の濃度を調整するという理由と触媒のコ-キングを抑制するという理由から、混合ガスに、水(水蒸気)と窒素ガスとを更に混合し反応器に供給するのが好ましい。
 反応器に水蒸気を供給する場合、前記原料ガスの供給量に対して0.5~5.0の比率で導入することが好ましい。この比率が大きくなるほど、廃水量が増加する傾向にあり、小さくなるほど、目的生成物であるブタジエンの収率が低下する傾向にある。そのため、水蒸気を前記原料ガスの供給量に対して、好ましくは、0.8~4.5であり、更に好ましくは、1.0~4.0である。
 反応器に窒素ガスを供給する場合、前記原料ガスの供給量に対して0.5~8.0の比率(体積比)で導入することが好ましい。この比率が大きくなるほど、後工程の生成ガスを圧縮する工程の負荷が上がる傾向にあり、小さくなるほど、反応器に供給する水蒸気の使用量が増加する傾向にある。そのため、窒素ガスを前記原料ガスの供給量に対して、好ましくは、1.0~6.0、更に好ましくは、2.0~5.0の比率(体積比)で供給する。
 原料ガスと分子状酸素含有ガスの混合ガス、及び必要により供給される窒素ガス、及び水(水蒸気)を供給する方法は特に限定されず、別々の配管で供給してもよいが、爆鳴気の形成を確実に回避するために、混合ガスを得る前に、予め窒素ガスを原料ガス、もしくは分子状酸素含有ガスに供給しておき、その状態で、原料ガスと分子状酸素含有ガスとを混合して混合ガスを得、該混合ガスを供給することが好ましい。
 以下に、混合ガスの代表的な組成を示す。
[混合ガス組成]
・n-ブテン:C留分合計に対して50~100vol%
・C留分合計:5~15vol%
・O:C留分合計に対して40~120vol/vol%
・N:C留分合計に対して500~1000vol/vol%
・HO:C留分合計に対して90~900vol/vol%
 反応器に供給する混合ガスは、酸素と可燃性ガスの混合物であることから、爆発範囲に入らないように各々のガス(原料ガス、空気、及び必要に応じて窒素ガスと水(水蒸気))を供給する配管に設置された流量計にて流量を監視しながら、混合ガスの反応器入り口の組成制御を行い、上記のような混合ガス組成に調整することができる(C留分を用いた場合)。
 なお、ここでいう爆発範囲とは、酸素と可燃性ガスを含むガスが何らかの着火源の存在下で着火するような組成を持つ範囲のことである。例えば、可燃性ガスとしてBBSSを用い、これと空気及びイナ-トガス(Nガス)を用いた場合の爆発範囲は、後述する方法で測定した結果、図2に示す可燃性ガス(BBSS)-空気-イナ-トガスの三成分図において、左下の方の網掛け部分となり、また、可燃性ガスとして1,3-ブタジエンを用い、これと空気及びイナ-トガス(Nガス)を用いた場合の爆発範囲は、後述する方法で測定した結果、図4に示す可燃性ガス-空気-イナ-トガスの三成分図において、左下の方の網掛け部分となる。
 一般的に、ガス中の可燃性ガスの濃度がある値より低いと着火源が存在しても着火しないことが知られており、この濃度を爆発下限界という。また、ガス中の可燃性ガスの濃度がある値より高いとやはり着火源が存在しても着火しないことが知られており、この濃度を爆発上限界という。各々の値はガス中の酸素濃度に依存しており、一般に酸素濃度が低いほど両者の値が近づき、酸素濃度がある値になったとき両者が一致する。このときの酸素濃度を限界酸素濃度と言い、酸素濃度がこれより低ければ可燃性ガスの濃度によらずガスは着火しない。
 本発明では、酸化脱水素反応器に供給するガス中の可燃性ガスの濃度が爆発上限界以上であることが必要であるが、酸化脱水素反応を開始する際、予め反応器に供給する分子状酸素含有ガス、窒素、水蒸気の量を調整して反応器入り口の混合ガス中の酸素濃度が限界酸素濃度以下になるようにしてから可燃性ガス(主に原料ガス)の供給を開始し、次いで混合ガス中の可燃性ガス濃度が爆発上限界よりも高くなるように可燃性ガス(主に原料ガス)と空気などの分子状酸素含有ガスの供給量を増やしていくのがよい。
 可燃性ガス(主に原料ガス)と分子状酸素含有ガスの供給量を増やしていくときに窒素及び水蒸気のうち少なくとも一方の供給量を減らして混合ガスの供給量が一定となるようにしてもよい。こうすることで、配管および反応器における混合ガスの滞留時間を一定に保ち、圧力の変動を抑えることができる。
 本発明では、可燃性ガス濃度が爆発上限界以上である混合ガスを反応器に供給して、触媒の存在下、酸化脱水素反応を行うことで生成ガスを得るが、反応器の入り口混合ガスの組成において、可燃性ガスが爆発上限界以上である場合、酸化脱水素反応により可燃性ガス濃度が低下しないので、反応器出口の組成も通常は爆発上限界以上であり、爆発の恐れはない。
 本発明では、後述する生成ガスを吸収溶媒と接触させてオレフィンや共役ジエンなどの炭化水素を吸収溶媒に吸収させ共役ジエンを含む溶媒を得る工程(以下、溶媒吸収工程と記載することがある。)を有する場合、この溶媒吸収工程で生成ガス中の炭化水素などの可燃性ガスの濃度が低下し、爆発範囲に入る可能性がある。これを回避するには、生成ガスを窒素などのイナ-トガスで希釈してから吸収溶媒と接触させることが考えられるが、反応器出口の組成が限界酸素濃度以下になるように予め反応条件を調整した方が簡便である。
 更に、本発明では、生成ガス中の酸素濃度が8.0容量%以下であることが必要であるが、好ましくは、7.5容量%以下であり、より好ましくは7.0容量%以下である。この上限値が小さくなるほど、溶媒吸収工程で共役ジエンなどの可燃性ガスが溶媒に吸収された場合でも、ガス組成が爆発範囲内に入るのを防止でき、更に生成ガス中の副生固形物を低減する傾向になる。一方、生成ガス中の酸素濃度は2.5容量%以上であることが必要であるが、好ましくは、3容量%以上であり、更に好ましくは、4.0容量%以上である。この下限値が大きくなるほど、触媒表面に炭素分などが付着する(コ-キング)のを低減できる。
 生成ガス中の酸素濃度は、磁気ダンベル式などの公知の酸素濃度計やガスクロマトグラフィ-を使用して、反応器出口若しくは反応の後工程にて測定することができる。
 生成ガス中の酸素濃度を2.5容量%以上8.0容量%以下の範囲に維持するには、測定された生成ガス中の酸素濃度に応じて、反応器への供給酸素量及び反応器温度のうち少なくとも一方を操作することが好ましい。具体的に、例えば、酸素濃度が2.5容量%以上8.0容量%以下の範囲内で目標酸素濃度を定め、酸素濃度がこの目標濃度より低い場合は、前記反応器に供給する酸素流量を増やす、前記反応器の温度を下げる、若しくはその両方を行うことにより、前記反応器出口の酸素濃度を上昇させ、一方、前記酸素濃度が前記目標濃度より高い場合は、前記反応器に供給する酸素流量を減らす、前記反応器の温度を上げる、若しくはその両方を行うことにより、前記反応器出口の酸素濃度を低下させることにより、前記反応器1出口と溶媒吸収塔10の間で測定される生成ガスの酸素濃度を、2.5容量%以上8.0容量%以下に維持することができる。
 なお、供給酸素量が少なすぎると、酸化脱水素触媒の格子酸素が反応で消費されて結晶構造が崩れ、反応触媒が劣化する恐れがあるため、生成ガス中の酸素濃度を2.5容量%以上となるように反応器に酸素を供給することが好ましい。また、生成ガス中の酸素濃度が8.0容量%より大きくならないように、窒素などの不活性ガスを用いて生成ガスを希釈することにより酸素濃度を8.0容量%以下に下げることも可能であるが、溶媒吸収工程で分離されるべき不活性ガスなどの成分をあえて追加するのは経済的に不利益である。
<反応器>
 本発明の酸化脱水素反応に用いられる反応器は特に限定されないが、具体的には、管型反応器、槽型反応器、又は流動床反応器が挙げられ、好ましくは、固定床反応器、より好ましくは固定床の多管式反応器やプレ-ト式反応器であり、最も好ましくは固定床の多管式反応器である。
 また、反応器が固定床反応器の場合、反応器には、上述の酸化脱水素反応触媒を有する触媒層が存在する。その触媒層は、触媒のみからなる層から構成されていても、触媒と該触媒と反応性の無い固形物とを含む層のみから構成されていても、触媒と該触媒と反応性の無い固形物とを含む層と触媒のみからなる層の複数の層から構成されていてもよい。触媒層が、触媒と該触媒と反応性の無い固形物とを含む層を含むことで、反応時の発熱による触媒層の急激な温度上昇を抑制できる。尚、複数の層を有する場合、複数の層は反応器の入口から反応器の生成ガス出口の方向に向かって層状に形成される。触媒層が触媒と該触媒と反応性の無い固形物とを含む層を含む場合、下記式で示される触媒希釈率が10体積%以上であることが好ましく、より好ましくは、20体積%以上、更に好ましくは、30体積%以上である。この下限値が大きくなるほど、触媒層中でのホットスポットの発生を抑えることができ、触媒上への炭素分の蓄積を抑制する効果が高くなる。触媒層の希釈率の上限は特に限定されないが、通常、99vol%以下であり、好ましくは90vol%以下、更に好ましくは、80vol%以下である。この上限値が小さくなるほど、反応器の大きさを小さくすることができ、建設費や運転コストを抑えることができる。
 尚、上述の通り、反応器内に設けられる触媒層は、単層でも2層以上でもよいが、好ましくは、2~5層であり、更に好ましくは、3~4層である。触媒層の数が多くなるほど、触媒充填作業が煩雑になる傾向にあり、触媒層の数が少なくなるほど、容易という傾向にある。また、反応器内に触媒層を2層以上設ける場合は、各触媒層の希釈率は、反応条件や反応温度によって適宜決めることができるが、希釈率が異なる触媒層を設けることが好ましい。
 希釈率(体積%)=[(触媒と反応性の無い固形物の体積)/(触媒の体積+触媒と反応性の無い固形物の体積)]×100
 本発明に用いられる反応性の無い固形物は、共役ジエン生成反応条件下で安定であり、炭素原子数4以上のモノオレフィン等の原料物質、及び共役ジエン等の生成物と反応性がない材質のものであれば特に限定されず、一般的に、イナ-トボ-ルとも呼ばれることがある。具体的には、アルミナ、ジルコニア等のセラミック材等が挙げられる。また、その形状は、特に限定されず、球状、円柱状、リング状、不定形のいずれでもよい。また、その大きさは、本発明で使用する触媒と同等の大きさであればよい。その粒径は、通常、2~10mm程度である。
 触媒層の充填長は、充填される触媒の活性(反応性の無い固形物で希釈される場合は、希釈された触媒としての活性)、反応器の大きさ、反応原料ガス温度、反応温度及び反応条件が決まれば、物質収支及び熱収支計算によって求めることができる。
<反応条件>
 本発明の酸化脱水素反応は発熱反応であり、反応により温度が上昇するが、本発明では、通常、反応温度は250~450℃、好ましくは、280~400℃の範囲に調整される。この温度が大きくなるほど、触媒活性が急激に低下しやすい傾向にあり、小さくなるほど、目的生成物である共役ジエンの収率が低下する傾向にある。反応温度は、熱媒体(例えば、ジベンジルトルエンや亜硝酸塩など)を使用して制御することができる。なお、ここでいう反応温度は熱媒体の温度のことのことである。
 また、本発明における反応器内温度は、特に限定されないが、通常、250~450℃、好ましくは、280~400℃、更に好ましくは、320~395℃である。触媒層の温度が450℃を超えると、反応を継続するに従って、急激に触媒活性が低下する恐れがある傾向にあり、一方、触媒層の温度が250℃を下回ると、目的生成物である共役ジエンの収率が低下する傾向にある。反応器内温度は、反応条件によって決定されるが、触媒層の希釈率や混合ガスの流量等で制御することができる。なお、ここでいう反応器内温度とは、反応器出口での生成ガスの温度、又は触媒層を有する反応器の場合は、その触媒層の温度のことである。
 本発明の反応器内の圧力は、特に限定されないが、下限は、通常、0MPaG以上、好ましくは、0.001MPa以上、更に好ましくは、0.01MPaG以上である。この値が大きくなるほど、反応器に反応ガスを多量に供給できるというメリットがある。一方、上限は、0.5MPaG以下であり、好ましくは0.3MPaG以下、更に好ましくは、0.1MPaG以下である。この値が小さくなるほど、爆発範囲が狭くなる傾向にある。
 本発明における反応器の滞留時間は、特に限定されないが、下限は、通常0.36秒以上、好ましくは、0.80秒以上、更に好ましくは0.90秒以上である。この値が大きくなるほど、原料ガス中のモノオレフィンの転化率が高くなるというメリットがある。一方、上限は、3.60秒以下であり、好ましくは2.80秒以下、更に好ましくは、2.10秒以下である。この値が小さくなるほど、反応器が小さくなる傾向にある。
 また、本発明では、反応器内の触媒量に対する混合ガスの流量の比は、1000~10000h-1であり、好ましくは、1300~4500h-1であり、更に好ましくは、1700~4000h-1である。この値が大きくなるほど、固形物の析出が抑制される傾向にあり、小さくなるほど、固形物が析出しやすい傾向にある。
 反応器の入口と出口との流量差としては、原料ガスの反応器入口での流量、及び生成ガスの反応器出口での流量に依存するが、通常、入口流量に対する出口の流量の比率が100~110vol%、好ましくは、102~107vol%、更に好ましくは103~105vol%である。n-ブテン(1-ブテン及び2-ブテン)からブタジエンを製造する場合、出口流量が増えるのはブテンが酸化脱水素されてブタジエンと水が生成する反応や副反応でCOやCOが生成する反応において化学量論的に分子数が増えるためである。出口流量の増加が少ないと反応が進行していないので好ましくなく、出口流量が増えすぎると副反応でCOやCOが増加しているため好ましくない。
 かくして、原料ガス中のモノオレフィンの酸化脱水素反応により、該モノオレフィンに対応する共役ジエンが生成することとなり、該共役ジエンを含有する生成ガスを取得する。生成ガス中に含まれる原料ガス中のモノオレフィンに対応する共役ジエンの濃度は、原料ガス中に含まれるモノオレフィンの濃度に依存するが、通常1~15vol%、好ましくは、5~13vol%、更に好ましくは9~11vol%である。共役ジエンの濃度が大きいほど、回収コストが低いというメリットがあり、小さいほど次工程で圧縮したときに重合などの副反応が起き難いというメリットがある。また、生成ガス中には未反応のモノオレフィンも含まれていてもよく、その濃度は、通常0~7vol%、好ましくは、0~4vol%、更に好ましくは0~2vol%である。なお、本発明では、生成ガス中に含まれる高沸点副生物は、使用する原料ガス中に含まれる不純物の種類によって異なるが、常圧下での沸点が200~500℃のものを言う。n-ブテン(1-ブテン及び2-ブテン)からブタジエンを製造する場合、具体的に、フタル酸、アントラキノン、フルオレノン等である。これらの量は、特に限定されないが、通常、反応ガス中に0.05~0.10vol%である。
<後工程>
 本発明の共役ジエンの製造方法においては、共役ジエンを含有する生成ガスから共役ジエンを分離するために、更に、冷却工程、脱水工程、溶媒吸収工程、分離工程、精製工程等を有していてもよい。なお、反応器から得られる生成ガスは、脱水工程で、圧縮ガス、脱水ガスとなる。しかし、これらのガスは、水以外の含有割合は同一であり、また、含まれる水のほとんどは液状なので、各ガスの気体部分の成分割合は、同一と考えてよい。このため、以下において、生成ガス、圧縮ガス、及び脱水ガスについて、単に「生成ガス」と称する場合がある。
(冷却工程)
 本発明では、反応器から得られる共役ジエンを含む生成ガスを冷却する冷却工程を有していてもよい。冷却工程については、反応器出口から得られる生成ガスを冷却できる工程であれば、特に限定されないが、好適には、冷却溶媒と生成ガスとを直接接触させて冷却させる方法が用いられる。冷却溶媒としては、特に限定されないが、好ましくは水やアルカリ水溶液であり、最も好ましくは水である。
 また、生成ガスの冷却温度は、反応器出口から得られる生成ガス温度や冷却溶媒の種類などによって異なるが、通常、5~100℃、好ましくは、10~50℃、更に好ましくは、15~40℃に冷却される。冷却される温度が高くなるほど、建設費と運転に要するコストを下げられる傾向にあり、低くなるほど、生成ガスを圧縮する工程の負荷を下げられる傾向にある。冷却塔内の圧力は、特に限定されないが、通常は、0.03MPaGである。生成ガス中に高沸点副生物が多く含まれていると、高沸点副生物同士の重合や、工程内での高沸点副生物に起因する固形析出物の堆積が起きやすくなる。また、冷却塔で使用される冷却溶媒は、循環使用されることが多いため、共役ジエンの製造を連続的に継続すると、固形析出物での閉塞が起きることがある。
 そのため、可能な限り、生成ガス中の高沸点副生物を冷却工程に持ち込ませないようにすることが好ましい。
(脱水工程)
 また、本発明では、反応器から排出される生成ガスに含まれる水分を除去する脱水工程を有していても良い。脱水工程を設けることにより、後段のプロセスにおける各工程における水分による機器腐食や、後述する溶媒吸収工程や溶媒分離工程で使用する溶媒への不純物の蓄積を防止することができるため、好ましい。
 本発明の脱水工程については、生成ガスに含まれる水分を除去できる工程であれば、特に限定されない。脱水工程は反応器の後段の工程であれば、どこで行ってもよいが、上述の冷却工程の後に脱水工程を行うことが好ましい。通常、反応器から排出される生成ガス中に含まれる水分量は、原料ガスの種類や分子状酸素含有ガスの量、更には、原料ガスと共に混合される水蒸気等により異なるが、通常は、4~35vol%、好ましくは10~30vol%の水分が含有されている。(これが水を使用した冷却工程を経過した場合には、100volppm~2.0vol%まで水分濃度が低減されている)。また、露点として、0~100℃、好ましくは、10~80℃である。
 生成ガスから水分を脱水する手段としては、特に限定されないが、酸化カルシウム、塩化カルシウム、モレキュラ-シ-ブ等の乾燥剤(水分吸着剤)を利用することができる。この中でも、再生の容易さ、取り扱いの容易さという観点から、モレキュラ-シ-ブ等の乾燥剤(水分吸着剤)が好ましく利用される。
 脱水工程にモレキュラ-シ-ブ等の乾燥剤を利用する場合は、水以外にも生成ガス中に含まれる高沸点副生物が吸着除去される。ここで除去される高沸点副生物は、アントラキノン、フルオレノン、フタル酸などのことである。
 脱水工程を経て得られる生成ガス中の水分含有量は、通常は10~10000volppm、好ましくは、20~1000volppmであり、露点としては、-60~80℃、好ましくは、-50~20℃である。この生成ガス中の水分含有量が多くなるほど、溶媒吸収塔や溶媒分離塔のリボイラ-の汚れが増加する傾向にあり、一方で、少なくなると、脱水工程で使用する用役コストが増加する傾向にある。
(溶媒吸収工程)
 本発明では、生成ガスを吸収溶媒と接触させてオレフィンや共役ジエンなどの炭化水素を吸収溶媒に吸収させ共役ジエンを含む溶媒を得る溶媒吸収工程を有することが好ましい。好ましい理由としては、共役ジエンの分離に要するエネルギ-コストの低減という観点から、生成ガスを溶媒に吸収させて共役ジエンの回収することが好ましい。溶媒吸収工程については、反応器の後段の工程であれば、どこで行っても良いが、上述の脱水工程の後に設けることが好ましい。
 溶媒吸収工程で生成ガスを溶媒に吸収させる具体的な方法としては、例えば吸収塔を用いる方法が好ましい。吸収塔の種類としては、充填塔、濡れ壁塔、噴霧塔、サイクロンスクラバ-、気泡塔、気泡攪拌槽、段塔(泡鐘塔、多孔板塔)、泡沫分離塔などが使用可能である。好ましくは、噴霧塔、泡鐘塔、多孔板塔である。
 吸収塔を用いる場合、通常は、吸収溶媒と生成ガスとを向流接触させることで、生成ガス中の共役ジエンと未反応の炭素原子数4以上のモノオレフィン並びに炭素原子数3以下の炭化水素化合物が溶媒に吸収される。炭素原子数3以下の炭化水素化合物としては、例えば、メタン、アセチレン、エチレン、エタン、メチルアセチレン、プロピレン、プロパン、又はアレンなどが挙げられる。
 溶媒吸収工程において、吸収塔を用いて生成ガスを回収する場合、吸収塔内の圧力は、特に限定されないが、通常、0.1~2.0MPaG,好ましくは、0.2~1.5MPaG、更に好ましくは0.25~1.0MPaGである。この圧力が大きいほど、吸収効率が良くなるというメリットがあり、小さいほど吸収塔へのガス導入時の昇圧に要するエネルギ-を削減でき、さらに液中の溶存酸素量を低減できるというメリットがある。
 また、吸収塔10内の温度は、特に限定されないが、通常0~50℃、好ましくは、10~40℃、更に好ましくは20~30℃である。この温度が大きいほど、酸素や窒素などが溶媒に吸収されにくいというメリットがあり、小さいほど共役ジエンなどの炭化水素の吸収効率が良くなるというメリットがある。
 本発明の溶媒吸収工程で使用させる吸収溶媒としては、特に限定されないが、C~C10の飽和炭化水素やC~Cの芳香族炭化水素、アミド化合物などが用いられる。具体的には、例えばジメチルホルムアミド(DMF)、トルエン、キシレン、N-メチル-2-ピロリドン(NMP)等を用いることができる。これらの中でも、好ましくは、無機ガスを溶解しにくいことからC~Cの芳香族炭化水素が好ましく、特にトルエンが好ましい。
 吸収溶媒の使用量には特に制限はないが、回収工程に供給される目的生成物の流量に対して、通常、1~100重量倍、好ましくは、2~50重量倍である。吸収溶媒の使用量が多くなるほど、不経済となる傾向にあり、少なくなるほど、共役ジエンの回収効率が低下する傾向にある。
 溶媒吸収工程で得られる共役ジエンを含む溶媒中には、主として目的生成物である共役ジエンが含まれており、その共役ジエンの溶媒吸収液中の濃度としては、通常は1~20重量%であり、好ましくは3~10重量%である。この溶媒中の共役ジエンの濃度が高いほど、共役ジエンの重合あるいは揮発による消失分が多くなる傾向にあり、低いほど、同じ生産量での溶媒の循環必要量が増加する為に、運転に要するエネルギ-コストが大きくなる傾向にある。
 また、得られる共役ジエンを含む溶媒に、若干量の窒素、酸素も吸収されているため、溶媒に溶存する窒素や酸素をガス化して除去する脱気工程を有していても良い。脱気工程では、溶媒吸収液中に溶存する窒素や酸素をガス化して除去できる工程であれば、特に限定されない。
(分離工程)
 このようにして得られた共役ジエンを含む溶媒から粗共役ジエンの分離を行う分離工程を有していてもよく、この工程により粗共役ジエンを得ることができる。分離工程としては、共役ジエンの溶媒吸収液から粗共役ジエンを分離できる工程であれば、特に限定されないが、通常、蒸留分離により粗共役ジエンを分離することができる。具体的には、例えば、リボイラ-とコンデンサ-により共役ジエンの蒸留分離が行われ、塔頂付近より共役ジエン留分が抜き出される。分離された吸収溶媒は塔底から抜き出され、前段工程に溶媒を使用する回収工程を有する場合は、その回収工程で吸収溶媒として循環使用される。溶媒は循環使用するうち不純物が蓄積する場合があり、一部を抜き出して蒸留やデカンテ-ション、沈降、吸着剤やイオン交換樹脂などとの接触処理などの公知の精製方法により不純物を除去することが望ましい。
 分離工程で使用する蒸留塔の蒸留時の圧力は任意に設定することができるが、通常は、塔頂圧力を0.05~2.0MPaGとすることが好ましい。より好ましくは塔頂圧力が0.1~1.0MPaGであり、特に好ましくは0.15~0.8MPaGの範囲である。この塔頂圧力が低すぎると、留出した共役ジエンを低温で凝縮するために多大なコストが必要となり、また高すぎると蒸留塔の塔底部の温度が高くなり、蒸気コストの増大となってしまう。
 塔底温度は通常50~200℃であり、好ましくは80~180℃、より好ましくは100~160℃である。塔底温度が低すぎると共役ジエンを塔頂から留出させるのが困難となる。また温度が高すぎると、溶媒も塔頂から留出してしまう。還流比は1~10で差し支えなく、好ましくは2~4である。
 蒸留塔としては充填塔、棚段塔のいずれもが使用できるが、多段蒸留が好ましい。共役ジエンと溶媒を分離するには、蒸留塔理論段を5段以上、特に10段~20段とするのが好ましい。50段を越える蒸留塔は、蒸留塔建設の経済性、運転難易度、及び安全管理のためには好ましくない。また段数が小さすぎると分離が困難となる。
(精製工程)
 前記共役ジエンの分離工程で粗共役ジエンが得られるが、この粗共役ジエンを蒸留精製等により、更に精製された高純度の共役ジエンとする精製工程を有していてもよい。ここで使用する蒸留塔の蒸留時の圧力は任意に設定することができるが、通常は、塔頂圧力を0.05~0.4MPaGとすることが好ましい。より好ましくは塔頂圧力が0.1~0.3MPaGであり、特に好ましくは0.15~0.2MPaGの範囲である。この塔頂圧力が低すぎると、留出した共役ジエンを低温で凝縮するために多大なコストが必要となり、また高すぎると蒸留塔の塔底部の温度が高くなり、蒸気コストの増大となってしまう。
 塔底温度は通常30℃~100℃であり、好ましくは40℃~80℃、より好ましくは50℃~60℃である。塔底温度が低すぎると共役ジエンを塔頂から留出させるのが困難となる。また温度が高すぎると、塔頂で凝縮させる量が増えてコストが増大してしまう。また、還流比は1~10で差し支えなく、好ましくは2~4である。
 蒸留塔としては充填塔、棚段塔のいずれもが使用できるが、多段蒸留が好ましい。共役ジエンとフランなどの不純物を分離するには、蒸留塔理論段を5段以上、特に10段~20段とするのが好ましい。50段を越える蒸留塔は、蒸留塔建設の経済性、運転難易度、及び安全管理のためには好ましくない。また段数が小さすぎると分離が困難となる。このようにして得られる精製された共役ジエンは、純度が99.0~99.9%の共役ジエンである。
[プロセスの実施形態]
 以下に、図面を参照して、本発明の共役ジエンの製造方法に関するプロセスの実施形態について、ブタジエンを製造する例を挙げて説明する。
 図1は本発明プロセスの実施の態様の一つである。
 図1において、1は反応器(反応塔)、2はクエンチ塔、3,6,13は冷却器(熱交換器)、4,7,14はドレンポット、8A,8Bは脱水塔、9は加熱器(熱交換器)、10は溶媒吸収塔、11は脱気塔、12は溶媒分離塔を示し、符号100~126は配管を示す。
 なお、図1においては、BBSSとしてブテンを用い、得られる共役ジエンとしてブタジエンを用いた場合を示す。
 原料となるn-ブテン或いは前述のBBSS等のn-ブテンを含む混合物を、気化器(図示せず)でガス化して、配管101より導入すると共に、配管102、103、104より、窒素ガス、空気(分子状酸素含有ガス)、及び水(水蒸気)をそれぞれ導入し、これらの混合ガスを予熱器(図示せず)で150~400℃程度に加熱した後、配管100より触媒が充填された多管式の反応器1(酸化脱水素反応器)に供給する。反応器1からの反応生成ガスは、配管105よりクエンチ塔2に送給され、20~99℃程度に冷却される。
 クエンチ塔2には、配管106より冷却水が導入され、生成ガスと向流接触する。そして、この向流接触で生成ガスを冷却した水は、配管107より排出される。なお、この冷却排水は、熱交換器(図示せず)で冷却されて再度クエンチ塔2において循環使用される。
 クエンチ塔2で冷却された生成ガスは、塔頂から留出され、次いで配管108より冷却器3を経て室温に冷却される。冷却により発生した凝縮水は配管109よりドレンポット4に分離される。水分離後のガスは更に配管110を経て圧縮機5で0.1~0.5MPa程度に昇圧され、昇圧ガスは配管111を経て冷却器6で再度10~30℃程度に冷却される。冷却により発生した凝縮水は配管112よりドレンポット7に分離される。水分離後の圧縮ガスは、モレキュラ-シ-ブ等の乾燥剤が充填された脱水塔8A,8Bに導入され脱水処理される。脱水塔8A,8Bは圧縮ガスの脱水と乾燥剤の加熱乾燥による再生とが交互に行われる。即ち、圧縮ガスは、まず、配管113,113aを経て脱水塔8Aに導入されて脱水処理され、配管114a,114を経て溶媒吸収塔10に送給される。
 この間に、脱水塔8Bには、配管122、加熱器9、配管123,123a,123bを経て150~250℃程度に加熱された窒素ガスが導入され、乾燥剤の加熱による水分の脱着が行われる。脱着した水分を含む窒素ガスは、配管124a,124b、124を経て冷却器13で室温まで冷却され、凝縮水が配管125よりドレンポット14に分離された後、配管126より排出される。
 脱水塔8Aの乾燥剤が飽和に達したら、ガス流路を切り換え、脱水塔8Bで圧縮ガスの脱水処理を行い、脱水塔8A内の乾燥剤の再生を行う。
 脱水工程における脱水塔内の乾燥剤の再生時間は、特に限定されないが、通常6~48時間、好ましくは、12~36時間、更に好ましくは18~30時間である。
 脱水塔8A,8Bからの脱水ガスは、必要に応じて冷却器(図示せず)で10~30℃程度に冷却された後、溶媒吸収塔10に送給され、配管115からの溶媒(吸収溶媒)と向流接触される。これにより、脱水ガス中の共役ジエンや未反応の原料ガスが吸収溶媒に吸収される。吸収溶媒に吸収されなかった成分(offガス)は、溶媒吸収塔10の塔頂より配管117を経て排出され燃焼廃棄される。このとき、吸収溶媒として、トルエンのような比較的沸点の低い溶媒を用いると経済的に無視できない量の溶媒が配管117を経て揮散することがある。このような場合はより沸点の高い溶媒を用いて沸点の低い溶媒を回収する工程を配管117の先に設けてもよい。この溶媒吸収塔10で、ブタジエンや未反応の原料ガスを吸収溶媒に吸収した溶媒吸収液は、溶媒吸収塔10の塔底より抜き出され、配管116より脱気塔11に送給される。溶媒吸収塔10で得られるブタジエンの溶媒吸収液には、若干量の窒素、酸素も吸収されているため、次いでこの溶媒吸収液を脱気塔11に供給して加熱することにより、液中に溶存する窒素や酸素をガス化して除去する。
 この際、ブタジエンや原料ガス、溶媒の中には、その一部がガス化することがあるため、この脱気塔11の塔頂に設けたコンデンサ(図示せず)でこれを液化して溶媒吸収液中に回収する。凝縮しなかった原料ガス、ブタジエン等は窒素、酸素の混合ガスとして配管118より抜き出され、共役ジエンの回収率を高めるために圧縮機5の入口側へ循環され再度処理が行われる。一方、溶媒吸収液を脱気した脱気処理液は配管119より溶媒分離塔12へ送給される。
 溶媒分離塔12では、リボイラとコンデンサにより共役ジエンの蒸留分離が行われ、塔頂より配管120を経て粗ブタジエン留分が抜き出される。分離された吸収溶媒は塔底より配管121を経て抜き出され、溶媒吸収塔10の吸収溶媒として循環使用される。
[製造例1](複合酸化物触媒の調製)
 パラモリブデン酸アンモニウム54gを純水250mlに70℃に加温して溶解させた。次に、硝酸第二鉄7.18g、硝酸コバルト31.8g及び硝酸ニッケル31.8gを純水60mlに70℃に加温して溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
 次に、シリカ64gを加えて、充分に攪拌した。このスラリ-を75℃に加温し、5時間熟成した。その後、このスラリ-を加熱乾燥した後、空気雰囲気で300℃、1時間の熱処理に付した。
 得られた触媒前駆体の粒状固体(灼熱減量:1.4重量%)を粉砕し、パラモリブデン酸アンモニウム40.1gを純水150mlにアンモニア水10mlを加え溶解した溶液に分散した。次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを25℃の加温下に溶解させて、上記スラリ-に加えた。
 次に、Naを0.45%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合した。このスラリ-を130℃、12時間加熱乾燥した後、得られた粒状固体を、小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃、4時間の焼成を行って、触媒を得た。仕込み原料から計算される触媒は、次の原子比を有する複合酸化物であった。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:2.5:2.5:0.4:0.35:0.2:0.08:24
 また、調製の際のモリブデンの原子比a1とaは、それぞれ6.9と5.1であった。
[爆発範囲の測定]
 窒素、空気、可燃性ガスの混合割合を種々変更した混合ガスを用意し、それらを点火プラグと圧力計を備えた1Lの耐圧容器に導入し、点火プラグでスパ-クを飛ばして爆発するかどうかを調べた。爆発の判定は以下の基準で実施し、不爆または境界と判定された可燃物濃度をもって爆発範囲とした。
 可燃性ガスをBBSSとした場合の爆発範囲を図2に、また可燃性をブタジエンとした場合の爆発範囲を図4示す。なお、爆発圧力上昇率=(△P/Po)×100の式で爆発圧力上昇率を測定した(△P=爆発圧力、Po=測定初期圧力)。
 ・不爆:爆発圧力上昇率が8%未満
 ・境界:爆発圧力上昇率が8%を超えて10%未満
 ・爆発:爆発圧力上昇率が10%を超える
[実施例1](1,3-ブタジエンの製造)
 図1に示すプロセスを用いて、1,3-ブタジエンの製造を行った。なお、実施例におけるガスの分析には、ガスクロマトグラフィ-((株)島津製作所製:GC-2014)を用いた。
 内径27mm、長さ3500mmの反応管を113本備えた反応器1内の反応管に、反応管1本当たり、製造例1で製造された複合酸化物触媒1162mlとイナ-トボ-ル(Tipton Corp.製)407mlとを充填した。このとき触媒層は3層で構成されており、各層の希釈率は反応器の入口から反応器の生成ガス出口の方向に向かって、60体積%、40体積%、0体積%であった。
 また、これらの反応管のうち、3本の反応管には、温度計が設置されており、反応器内温度を測定した。なお、用いた温度計は、多点式熱電対((株)岡崎製作所製)で反応管の入口から出口にかけて、触媒層の温度分布を測定した。
 また、あらかじめ、反応器には空気(分子状酸素:21%)と窒素(純度:99.99%以上)を供給し、熱媒(ジベンジルトルエン)を流して昇温した。そして、反応器内温度が302℃になった後、ナフサ分解で副生するC留分からのブタジエンの抽出分離プロセスから排出されたBBSSと、空気と窒素と水蒸気を下記の流量(反応器の反応管1本当たり)で供給し混合した後、予熱器で217℃に加熱した後、反応器1に供給した。反応器1に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。反応器内で酸化脱水素反応を行い、ブタジエンを含有する生成ガスを反応器1出口から出た。なお、反応器1内の反応管の周囲には、319℃の熱媒(ジベンジルトルエン)を流して反応管内部の温度を341~352℃に調整した。
 ・BBSS:13.2容量部/hr
 ・空気  :77.3容量部/hr
 ・窒素  :28.5容量部/hr
 ・水蒸気 :22.4容量部/hr
 なお、前記BBSSの組成は、下記の通りである。
 ・プロパン        : 0.035mol%
 ・シクロプロパン     : 0.057mol%
 ・プロピレン       : 0.109mol%
 ・イソブタン       : 4.784mol%
 ・n-ブタン       :16.903mol%
 ・トランス-2-ブテン  :16.903mol%
 ・1-ブテン       :43.487mol%
 ・イソブテン       : 2.264mol%
 ・2,2-ジメチルプロパン:0.197mol%
 ・シス-2-ブテン    :12.950mol%
 ・イソペンタン      : 0.044mol%
 ・n-ペンタン      : 0.002mol%
 ・1,2-ブタジエン   : 0.686mol%
 ・1,3-ブタジエン   : 1.075mol%
 ・メチルアセチレン    : 0.017mol%
 ・3-メチル-1-ブテン :0.057mol%
 ・2-ペンテン      : 0.001mol%
 ・ビニルアセチレン    : 0.006mol%
 ・エチルアセチレン    : 0.282mol%
 反応器1の出口からの生成ガスは、クエンチ塔2で水と接触させて86℃に冷却した後、更に冷却器3で室温まで冷却した。このガスをサンプリングしてガスクロマトグラフィ-で分析した結果、反応成績はブテン転化率:95%、ブタジエン選択率:86%であった。
 ここで凝縮した水はドレンポット4で回収した。このガスを圧縮機5で0.3MPaまで加圧し、更に冷却器6で17℃程度に冷却して水分を凝縮させてドレンポット7に回収した。
 圧縮ガスを、モレキュラ-シ-ブ3A(ユニオン昭和(株)製)を充填した脱水塔8A又は8Bに供給した。
 脱水処理ガスは、圧力0.2MpaG、温度16℃で溶媒吸収塔10へ供給して吸収溶媒のトルエンを600kg/hで供給し、向流接触させてブタジエン等の炭化水素を吸収させ、更に脱気塔11で酸素や窒素を分離し、更に溶媒分離塔12でトルエンから1,3-ブタジエンを分離して回収した。
 溶媒吸収塔10へ供給したガス及び溶媒吸収塔10の塔頂から留出するガスをサンプリングして分析した結果、次の通りとなった。
 ・溶媒吸収塔10へ供給した混合ガス…酸素濃度:6.1容量%(エア-換算で29%)、可燃性ガス濃度:10.0容量%
 ・溶媒吸収塔10塔頂からの留出した生成ガス…酸素濃度:6.8容量%(エア-換算で32.4%)、可燃性ガス濃度:0.6容量%
 この結果を、上記爆発範囲を示す三成分図に記載すると、図5(a)に示す通りとなり、可燃性ガスが溶媒吸収塔で吸収されても爆発範囲を横切らないことが示された。なお、図5(a)では酸素濃度を空気に換算して表示した。
[比較例1]
 石英製の反応管1本に製造例1で製造された複合酸化物触媒2mlとFused Al2O3 2mlを充填した。このとき触媒層は2層で構成されており、各層の希釈率は反応器の入口から反応器の生成ガス出口の方向に向かって、66体積%、0体積%であった。
 純粋な1-ブテンと、空気と窒素を下記の流量で供給して、原料ガスとして混合した後、反応管に供給した。反応管の中央には熱電対を挿入して反応温度が測定できるようにし、電気炉で350℃に調整した。
  1-ブテン:23.2mmol/hr
  酸素  :33.5mmol/hr
  窒素  :126.0mmol/hr
 反応管からの生成ガスは、冷却器で室温まで冷やした後、ドレンを分離してガスクロマトグラフィ-でガス組成の分析を実施した。
 その結果、反応成績はブテン転化率:88%、ブタジエン選択率:79%で、酸素濃度は11.1%(エア-換算で52.9%)、可燃性ガス濃度は14.6%、窒素:74.3%であった。
 このガスをトルエンと接触させると爆発範囲に入る恐れがあり危険なため溶媒吸収実験は中止した。
 代わりに参考例で実施した爆発実験のデ-タと比較して爆発の可能性を調べた。実施例1のデ-タから反応ガスを溶媒吸収塔10で処理すると可燃性ガス濃度はほぼ無視できる濃度になる。従って酸素濃度は、
 11.1/(11.1+74.3)×100=13.0%(エア-換算で61.9%)
となると推定される。
 この結果を、可燃性ガス(ブタジエン)-空気-イナ-トガスの爆発範囲を示した三成分図に記載すると、図5(b)に示す通りとなり、生成ガス中の可燃性ガス(ブタジエン)が吸収塔で吸収されることにより組成が爆発範囲を横切ることが示された。
 なお、図5(b)では酸素濃度を空気に換算して表示した。
[実施例2](酸素濃度の調整)
 原料の供給量と予熱器および熱媒温度を以下のようにした以外は実施例1と同様に実施した。反応器1に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。
  ・BBSS:12.7容量部/hr
  ・空気  :69.6容量部/hr
  ・窒素  :36.1容量部/hr
  ・水蒸気 :22.6容量部/hr
  ・原料予熱器温度 219℃
  ・熱媒温度 321.3℃
触媒層温度は335~352℃となった。
 冷却器3の後ろに設置した磁気ダンベル式の酸素濃度計で反応ガスの酸素濃度を測定したところ、5.0%であった。目標酸素濃度を5.0%として運転を継続したが、18時間後に酸素濃度が5.2%に上昇した。運転条件は変更していないがBBSSの組成あるいは触媒の活性が変動したと考えられる。
 そこで熱媒加熱装置の設定温度を1℃上げたところ、熱媒温度は322.2℃となり、酸素濃度は5.0%に戻った。このときの詳細な酸素濃度および熱媒温度の変化を図6(a)に示す。
 この結果から熱媒温度を変えることにより生成ガスの酸素濃度を制御できることが分かる。
[実施例3](酸素濃度の調整)
 原料の供給量と予熱器および熱媒温度を以下のようにした以外は実施例1と同様に実施した。反応器1に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。
  ・BBSS:12.7容量部/hr
  ・空気  :69.8容量部/hr
  ・窒素  :36.1容量部/hr
  ・水蒸気 :22.4容量部/hr
  ・原料予熱器温度 219℃
  ・熱媒温度 319.7℃
触媒層温度は332~350℃となった。
 冷却器3の後ろに設置した磁気ダンベル式の酸素濃度計で反応ガスの酸素濃度を測定したところ、5.4%であった。目標酸素濃度を5.4%として運転を継続したが、26時間後に酸素濃度が5.2%に低下した。運転条件は変更していないがBBSSの組成あるいは触媒の活性が変動したと考えられる。
 そこで熱媒加熱装置の設定温度を1℃下げたところ、熱媒温度は318.3℃となり、酸素濃度は5.4%に戻った。このときの詳細な酸素濃度および熱媒温度の変化を図6(b)に示す。
[実施例4](酸素濃度の調整)
 原料の供給量と予熱器および熱媒温度を以下のようにした以外は実施例1と同様に実施した。反応器1に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。
  ・BBSS:13.2容量部/hr
  ・空気  :70.1容量部/hr
  ・窒素  :36.0容量部/hr
  ・水蒸気 :22.5容量部/hr
  ・原料予熱器温度 217.8℃
  ・熱媒温度 322.5℃
触媒層温度は339~354℃で、冷却器3の後ろに設置した酸素濃度計の指示は4.7%であった。以下、目標酸素濃度を4.7%とした。
反応成績はブテン転化率:93%、ブタジエン選択率:89%であった。
 ブテン転化率を上げるために熱媒温度を329℃に変更したところ、反応成績はブテン転化率:96%、ブタジエン選択率:84%となった。しかし、酸素濃度計の指示は3.6%になり目標酸素濃度よりも低くなった。そこで反応器に供給する空気の流量を80容量部/hrに増やし、原料の合計流量が変わらないように窒素の流量を26容量部/hrに減らしたところ、酸素濃度計の指示は4.6%とほぼ目標通りとなった。
 この結果から空気の供給量を変える事によっても生成ガスの酸素濃度を制御できることが分かった。
[実施例5]
 内径23.0mm、長さ500mmのステンレス製反応管に、製造例1で製造された複合酸化物触媒20.0mlとイナ-トボ-ル(チップトン製)20.0mlと混合して充填し、触媒層の希釈率を50体積%とした。
 これらの反応管には外径2.0mmの挿入管を設置し、挿入管の中に熱電対を設置して反応器内温度を測定した。なお、熱媒体は電気炉を使用した。
 そして、予め窒素を12.9L/hr、空気を16.2L/hr、及び水蒸気を14.3L/hrで予熱器に供給しておき、その後、表1に示す組成の原料ガスであるBBSSを3.6L/hr供給し、予熱器内で混合して混合ガスとして335℃に昇温した(反応器導入混合ガス組成=窒素:27.4vol%、空気:34.5vol%、水蒸気:30.5vol%、原料ガス:7.6vol%)。原料ガスであるBBSSに含まれる代表的な成分組成(mol%)を表1に示す。この際、混合ガス流量は47.0L/hであり、反応器内の触媒量と混合ガス流量の比は、2350h-1であった。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。
 上記の反応器に供給し、酸化脱水素反応を行った。反応器内触媒層温度は平均354℃で、圧力はゲ-ジ圧で2kPaであった。反応器出口からの生成ガスはフィルタ-を設置した冷却管にて冷却した後、水と接触させて更に冷却しガスクロマトグラフィ-(島津社製 型番GC-8A、GC-9A)で分析した。生成ガス中の酸素濃度は7.2容量%であった。
 n-ブテン転化率(1-ブテン、シス-2-ブテン、トランス-2-ブテンの合計での転化率)は79.6mol%、ブタジエン選択率は92.6mol%であった。8時間後に反応を停止させ、冷却管内のフィルタ-に捕捉された固形副生物は38.9mg、1時間当たりの固形副生物の生成量は4.6mg/hであった。ブタジエンの生成量は4529mg/hであり、ブタジエン生成量に対する固形物の生成量は0.10wt%であった。結果を表1に示す。
[実施例6]
 [実施例5]において、反応器内触媒層温度を平均357℃にして酸化脱水素反応を行った以外は同様の条件で実施した。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。生成ガス中の酸素濃度は6.6容量%であった。結果を表1に示す。
[実施例7]
 [実施例5]において、窒素を18.9L/hr、空気を13.1L/hr、水蒸気を11.2L/hr、及び原料ガスであるBBSSを3.6L/hr供給した以外は同様の条件で実施した。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。生成ガス中の酸素濃度は4.5容量%であった。結果を表1に示す。
[実施例8]
 内径23.0mm、高さ500mmのステンレス製反応管に、予めイナ-トボ-ル(1粒あたりの大きさ:約0.065mm3)を24ml充填(充填層長:210mm)しておき、そのイナ-トボ-ルの充填層の上に、製造例1で製造された複合酸化物触媒20.0mlのみを充填し、触媒層の希釈率を0体積%とした。
 なお、反応管には外径2.0mmの挿入管を設置し、挿入管の中にシ-ス型熱電対(タカハシサ-モセンサ-社製)を入れ、反応器内の温度(触媒層出口温度、触媒層最高温度)を測定した。なお、熱媒体としては電気炉を使用した。
 予め窒素を7.8L/hr、空気を16.0L/hr、及び水蒸気を5.5L/hrで予熱器に供給しておき、その後、原料ガスであるBBSSを2.8L/hrで供給し、予熱器内で混合して混合ガスとして345℃に昇温した。原料ガスに含まれる代表的な組成(mol%)を表1に示す。
 その後、この混合ガスを32.1L/hrで上記反応管の頂部から連続的に供給し、酸化脱水素反応を行い、生成ガスを反応管の底部から抜き出した。反応管内の触媒量と混合ガス流量の比は1400h-1であった。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。
 反応管内の触媒層平均温度は374℃で、圧力はゲ-ジ圧で2kPaであった。また、反応管内の最高温度は、387℃であった。反応器出口からの生成ガスはフィルタ-を設置した冷却管にて冷却した後、水と接触させて更に冷却しガスクロマトグラフィ-(GL Sciences社製 型番:GC4000)で分析した。生成ガス中の酸素濃度は4.8容量%であった。
 n-ブテン転化率(1-ブテン、シス-2-ブテン、トランス-2-ブテンの合計での転化率)は91.4mol%、ブタジエン選択率は89.0mol%であった。原料ガスであるBBSSを供給してから200時間後に反応を停止した。反応管から全触媒を抜き出し、抜き出した触媒に付着した炭素の量を測定(測定装置:LECO社製 炭素硫黄分析装置 型番CS600)したところ、炭素濃度は2.1wt%(反応前後での触媒粒子に付着した炭素濃度の増加量:0.6wt%)であった。結果を表1に示す。
[実施例9]
 [実施例8]において、製造例1で製造された複合酸化物触媒23.0mlとイナ-トボ-ル(1粒あたりの大きさ:約0.065mm)23.0mlとを混合して充填し、触媒層の希釈率を50体積%とした。
 また窒素を10.9L/hr、空気を12.9L/hr、水蒸気を5.5L/hr、及び原料ガスであるBBSSを2.8L/hrで供給した以外は、同様の条件で実施した。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。生成ガス中の酸素濃度は3.5容量%であった。結果を表1に示す。
[比較例2]
 [実施例5]において、触媒層を製造例1で製造された複合酸化物触媒10.0mlとイナ-トボ-ル(チップトン製)10.0mlを混合して充填し、窒素を3.6L/hr、空気を10.9L/hr、水蒸気を7.2L/hr、及び原料ガスであるBBSSを1.8L/hr供給した以外は、同様の条件で実施した。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。生成ガス中の酸素濃度は8.1容量%であった。結果を表1に示す。
[比較例3]
 [実施例8]において、製造例1で製造された複合酸化物触媒20.0mlとイナ-トボ-ル(1粒あたりの大きさ:約0.065mm3)20.0mlとを混合して充填し、触媒層の希釈率を50体積%とした。
 また窒素を11.1L/hr、空気を9.6L/hr、水蒸気を4.8L/hr、及び原料ガスであるBBSSを2.5L/hrで供給した以外は、同様の条件で実施した。反応管に供給された混合ガスの可燃性ガス(BBSS)濃度の状態を、可燃性ガス(BBSS)-空気-イナ-トガスの爆発範囲を示した三成分図を図3に示す。生成ガス中の酸素濃度は2.0容量%であった。結果を表1に示す。
[結果]
 実施例5~7と比較例2を比べると、生成ガス中の酸素濃度を8.0容量%以下とすることで、ブタジエン生成量に対する副生固形物の生成量が少ないことがわかる。
 また、実施例8~9と比較例3とを比べると、生成ガス中の酸素濃度を2.5容量%以上とすることで、触媒への炭素分の付着(コ-キング)などが少ないこと分かる。
 即ち、生成ガス中の酸素濃度を2.5容量%以上8.0容量%以下であれば、反応工程後の冷却工程で析出する高沸点副生物の生成量を低減可能であり、且つ、触媒上で炭素分などのコ-キングが進行を抑制可能であることがわかる。
 この結果から、工業的プロセスにおいて長期運転での反応器の差圧が上昇を抑制することが可能であり、また閉塞等によるトラブルが発生をも抑制でき、安定的にブタジエンが製造できることが理解される。
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2009年5月29日出願の日本特許出願(特願2009-131147)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、炭素原子数4以上のモノオレフィンの酸化脱水素反応により共役ジエンを製造するにあたり、反応器内の触媒にコ-クのような炭素分が蓄積するのを抑制でき、かつ反応工程後の冷却工程で析出する高沸点副生物の生成量を低減でき、より安全に継続的なプラントの安定運転が可能となる。
1 反応器(反応塔)
2 クエンチ塔
3,6,13 冷却器
4,7,14 ドレンポット
5 圧縮機
8A,8B 脱水塔
9 加熱器(熱交換器)
10 溶媒吸収塔
11 脱気塔
12 溶媒分離塔
31 蒸発塔
32 第1抽出蒸留塔
33 i-ブテン分離塔
34 予放散塔
35 第1放散塔
36 圧縮機
37 第2抽出蒸留塔
38 ブタジエン回収塔
39 第2放散塔
40 第1蒸留塔
41 第2蒸留塔
100~126 配管
200~219 配管

Claims (7)

  1.  炭素原子数4以上のモノオレフィンを含む原料ガスと分子状酸素含有ガスとを混合して反応器に供給する工程と、触媒の存在下、前記炭素原子数4以上のモノオレフィンの酸化脱水素反応により生成した対応する共役ジエンを含む生成ガスを得る工程とを有する共役ジエンの製造方法であって、前記反応器に供給されるガス中の可燃性ガスの濃度が爆発上限界以上であり、かつ、前記生成ガス中の酸素濃度が2.5容量%以上8.0容量%以下であることを特徴とする共役ジエンの製造方法。
  2.  前記共役ジエンを含む生成ガスを吸収溶媒と接触させ、共役ジエンを含む溶媒を得る工程を更に有することを特徴とする請求項1に記載の共役ジエンの製造方法。
  3.  前記触媒が、少なくともモリブデン、ビスマス及びコバルトを含有する複合酸化物触媒であることを特徴とする請求項1又は2に記載の共役ジエンの製造方法。
  4.  前記触媒が、下記一般式(1)で表される複合酸化物触媒であることを特徴とする請求項3に記載の共役ジエンの製造方法。
      MoBiCoNiFeSi     (1)
    (式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a~jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5~7、c=0~10、d=0~10(但しc+d=1~10)、e=0.05~3、f=0~2、g=0.04~2、h=0~3、i=5~48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
  5.  前記複合酸化物触媒が、この複合酸化物触媒を構成する各成分元素の供給源化合物を水系内で一体化して加熱する工程を経て製造される触媒であり、モリブデン化合物、鉄化合物、ニッケル化合物及びコバルト化合物よりなる群から選ばれる少なくとも1種とシリカとを含む原料化合物の水溶液若しくは水分散液、又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程と、この触媒前駆体、モリブデン化合物及びビスマス化合物を水性溶媒とともに一体化し、乾燥、焼成する後工程とを有する方法で製造されたものであることを特徴とする請求項4に記載の共役ジエンの製造方法。
  6.  前記反応器の出口で、前記生成ガス中の酸素濃度を測定し、該酸素濃度に応じて、反応器への供給する分子状酸素含有ガスの量及び反応器温度のうち少なくとも一方を制御することにより、生成ガス中の酸素濃度を、2.5容量%以上8容量%以下の範囲に維持することを特徴とする請求項1~5のいずれか1項に記載の共役ジエンの製造方法。
  7.  前記原料ガスが、エチレンの2量化により得られる1-ブテン、シス-2-ブテン、トランス-2-ブテン若しくはこれらの混合物を含有するガス、n-ブタンの脱水素若しくは酸化脱水素反応により生成するブテン留分、又は重油留分を流動接触分解する際に得られる炭素原子数が4の炭化水素を含むガスであることを特徴とする請求項1~6のいずれか1項に記載の共役ジエンの製造方法。
PCT/JP2010/058842 2009-05-29 2010-05-25 共役ジエンの製造方法 WO2010137595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2763317A CA2763317C (en) 2009-05-29 2010-05-25 Production process of conjugated diene
US13/305,078 US20120130137A1 (en) 2009-05-29 2011-11-28 Production process of conjugated diene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-131147 2009-05-29
JP2009131147 2009-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/305,078 Continuation US20120130137A1 (en) 2009-05-29 2011-11-28 Production process of conjugated diene

Publications (1)

Publication Number Publication Date
WO2010137595A1 true WO2010137595A1 (ja) 2010-12-02

Family

ID=43222703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058842 WO2010137595A1 (ja) 2009-05-29 2010-05-25 共役ジエンの製造方法

Country Status (6)

Country Link
US (1) US20120130137A1 (ja)
JP (1) JP5648319B2 (ja)
KR (1) KR20120026049A (ja)
CA (1) CA2763317C (ja)
TW (1) TWI464142B (ja)
WO (1) WO2010137595A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875314A (zh) * 2012-06-20 2013-01-16 张守义 一种丁烯氧化脱氢制丁二烯的双反应系统及抗积碳方法
JP2013213028A (ja) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp 共役ジエンの製造方法
CN103415494A (zh) * 2011-03-09 2013-11-27 三菱化学株式会社 共轭二烯的制造方法
WO2014061711A1 (ja) * 2012-10-17 2014-04-24 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
WO2014086768A1 (de) 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014086641A1 (de) 2012-12-06 2014-06-12 Basf Se Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014148323A1 (ja) * 2013-03-18 2014-09-25 Jsr株式会社 1,3-ブタジエンの製造方法
WO2015004042A2 (de) 2013-07-10 2015-01-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
JP2015514092A (ja) * 2012-03-29 2015-05-18 ティーピーシー・グループ・エルエルシー ブタジエンを製造するための低排出酸化脱水素方法
CN105683136A (zh) * 2013-10-30 2016-06-15 巴斯夫欧洲公司 由正丁烯通过氧化脱氢制备1,3-丁二烯的方法
US9399606B2 (en) 2012-12-06 2016-07-26 Basf Se Catalyst and process for the oxidative dehydrogenation of N-butenes to butadiene
JP2016533319A (ja) * 2013-11-22 2016-10-27 エルジー・ケム・リミテッド 酸化脱水素反応を介したブタジエン製造工程内の吸収溶媒の回収方法
CN106103390A (zh) * 2014-01-13 2016-11-09 巴斯夫欧洲公司 启动用于正丁烯的氧化脱氢的反应器的方法
WO2016177764A1 (de) 2015-05-06 2016-11-10 Basf Se Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
JP2017100989A (ja) * 2015-12-01 2017-06-08 Jxtgエネルギー株式会社 ブタジエンの製造方法
US10144681B2 (en) 2013-01-15 2018-12-04 Basf Se Process for the oxidative dehydrogenation of N-butenes to butadiene
US10407363B2 (en) 2017-08-16 2019-09-10 Saudi Arabian Oil Company Steam-less process for converting butenes to 1,3-butadiene

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072076A (ja) * 2010-09-28 2012-04-12 Asahi Kasei Chemicals Corp 共役ジオレフィンの製造方法
JP2012197272A (ja) * 2011-03-09 2012-10-18 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP5842689B2 (ja) * 2011-03-22 2016-01-13 三菱化学株式会社 共役ジエンの製造方法
JP5687800B2 (ja) * 2012-03-13 2015-03-18 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
SG11201406833PA (en) 2012-04-23 2014-11-27 Nippon Kayaku Kk Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst
JP6034372B2 (ja) * 2012-04-23 2016-11-30 日本化薬株式会社 ブタジエンの製造用触媒、その触媒の製造方法およびその触媒を用いたブタジエンの製造方法
WO2014111406A1 (de) * 2013-01-15 2014-07-24 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP2945922A1 (de) 2013-01-15 2015-11-25 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
MY169081A (en) 2013-01-16 2019-02-14 Basf Se Method for producing butadiene by oxidative dehydrogenation of n-butenes by monitoring the peroxide-content during product processing
JP2014181222A (ja) * 2013-03-21 2014-09-29 Mitsubishi Chemicals Corp 共役ジエンの製造方法
KR101507686B1 (ko) * 2013-05-06 2015-03-31 주식회사 엘지화학 메조포러스 복합 산화물 촉매, 그 제조방법 및 이를 이용한 1,3­부타디엔 합성방법
US20160122264A1 (en) * 2013-06-17 2016-05-05 Basf Se Method for the oxidative dehydration of n-butenes into 1,3-butadien
CN105555742A (zh) * 2013-07-18 2016-05-04 巴斯夫欧洲公司 由正丁烯通过氧化脱氢制备1,3-丁二烯的方法
WO2015007839A1 (de) * 2013-07-18 2015-01-22 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
DE102013226370A1 (de) 2013-12-18 2015-06-18 Evonik Industries Ag Herstellung von Butadien durch oxidative Dehydrierung von n-Buten nach vorhergehender Isomerisierung
KR101704902B1 (ko) * 2014-06-03 2017-02-08 주식회사 엘지화학 산화탈수소화 반응을 통한 부타디엔의 제조방법
KR101717817B1 (ko) * 2014-06-11 2017-03-17 주식회사 엘지화학 산화탈수소 반응을 통한 부타디엔 제조방법
EA201790358A1 (ru) * 2014-08-12 2017-07-31 Басф Се Способ получения 1,3-бутадиена из н-бутенов путем окислительного дегидрирования
CN106795066A (zh) * 2014-09-26 2017-05-31 巴斯夫欧洲公司 由正丁烯通过氧化脱氢制备1,3‑丁二烯的方法
JP6625634B2 (ja) 2014-11-03 2019-12-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 酸化的脱水素化によりn−ブテン類から1,3−ブタジエンを製造するための方法
US10384990B2 (en) 2014-11-14 2019-08-20 Basf Se Method for producing 1,3-butadiene by dehydrogenating n-butenes, a material flow containing butanes and 2-butenes being provided
EA033582B1 (ru) * 2014-12-11 2019-11-06 Uop Llc Усовершенствованный способ мто для повышенного образования пропилена и высокоценных продуктов
US20160168045A1 (en) * 2014-12-11 2016-06-16 Uop Llc High pressure swing fixed-bed process with optional ethylene recycle for highly selective methanol to olefins conversion
KR101709412B1 (ko) 2014-12-16 2017-03-08 주식회사 엘지화학 부타디엔 제조방법
WO2016099046A1 (ko) 2014-12-16 2016-06-23 (주) 엘지화학 부타디엔 제조방법
KR20160084046A (ko) * 2015-01-05 2016-07-13 주식회사 엘지화학 공액디엔의 제조 방법
KR101952365B1 (ko) * 2015-01-15 2019-02-26 주식회사 엘지화학 부타디엔의 제조방법
DE102015200702A1 (de) 2015-01-19 2016-07-21 Evonik Degussa Gmbh Herstellung von Butadien aus Ethen
JP6564847B2 (ja) * 2015-03-03 2019-08-21 日本化薬株式会社 共役ジオレフィン製造用触媒と、その製造方法
EP3269697B1 (en) * 2015-03-09 2021-01-06 Mitsubishi Chemical Corporation Process for producing conjugated diene
KR20170133404A (ko) 2015-03-26 2017-12-05 바스프 에스이 산화성 탈수소화에 의한 n-부텐으로부터의 1,3-부타디엔의 제조
EP3274319A1 (de) 2015-03-26 2018-01-31 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
WO2016150940A1 (de) 2015-03-26 2016-09-29 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
WO2016151074A1 (de) 2015-03-26 2016-09-29 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
KR102008794B1 (ko) * 2015-05-11 2019-08-08 주식회사 엘지화학 공액디엔의 제조방법
KR102070309B1 (ko) 2015-11-13 2020-01-28 주식회사 엘지화학 공액디엔 제조장치 및 제조방법
US20180354872A1 (en) * 2015-12-03 2018-12-13 Basf Se Method for producing butadiene by oxidatively dehydrogenating n-butenes
KR102026267B1 (ko) 2015-12-14 2019-09-30 주식회사 엘지화학 공액디엔 제조방법 및 제조장치
KR20180122606A (ko) 2016-01-13 2018-11-13 바스프 에스이 산화성 탈수소화에 의해 n-부텐으로부터 1,3-부타디엔을 제조하는 방법
KR20180121519A (ko) 2016-02-04 2018-11-07 바스프 에스이 산화성 탈수소화에 의해 n-부텐으로부터 1,3-부타디엔을 제조하는 방법
JP2019528264A (ja) 2016-08-09 2019-10-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se n−ブテンを酸化脱水素するための反応器の始動方法
WO2018095856A1 (de) 2016-11-22 2018-05-31 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine methacrolein-abtrennung bei der aufarbeitung
WO2018095776A1 (de) 2016-11-22 2018-05-31 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine wässrige wäsche des c4-produktgasstroms
EP3323797A1 (de) 2016-11-22 2018-05-23 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine saure wäsche des c4-produktgasstroms
WO2018095840A1 (de) 2016-11-22 2018-05-31 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine furan-abtrennung bei der aufarbeitung
RU2753508C2 (ru) * 2017-03-17 2021-08-17 Мицубиси Кемикал Корпорейшн Способ каталитического окисления и способ получения сопряженного диена
KR102224278B1 (ko) 2017-04-12 2021-03-08 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2018219996A1 (de) 2017-06-02 2018-12-06 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung in kreisgasfahrweise mit co2-angereichertem kreisgas
WO2018234158A1 (de) 2017-06-19 2018-12-27 Basf Se Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine wäsche des c4-produktgasstroms
KR102262896B1 (ko) * 2017-11-30 2021-06-09 주식회사 엘지화학 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
KR20200034410A (ko) 2018-09-21 2020-03-31 인하대학교 산학협력단 부타디엔 제조장치 및 부텐으로부터 부타디엔 제조방법
KR102283123B1 (ko) * 2018-11-30 2021-07-28 주식회사 엘지화학 부타디엔의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188826A (ja) * 1982-04-27 1983-11-04 Japan Synthetic Rubber Co Ltd 1,3−ブタジエンの製造方法
JPS59167525A (ja) * 1983-03-14 1984-09-21 Japan Synthetic Rubber Co Ltd 1,3−ブタジエンの製造方法
JPS60126235A (ja) * 1983-12-14 1985-07-05 Nippon Zeon Co Ltd ブタジエンの製造方法
JPS61234943A (ja) * 1985-04-11 1986-10-20 Nippon Shokubai Kagaku Kogyo Co Ltd 共役ジオレフィン製造用触媒の製造方法
JPS6354942A (ja) * 1986-08-23 1988-03-09 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
JP2010090083A (ja) * 2008-10-10 2010-04-22 Mitsubishi Chemicals Corp 共役ジエンの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309419A (en) * 1964-02-17 1967-03-14 Phillips Petroleum Co Paraffinic hydrocarbon dehydrogenation process
US3725493A (en) * 1970-08-24 1973-04-03 Phillips Petroleum Co Oxidative dehydrogenation
US3709951A (en) * 1971-05-17 1973-01-09 Phillips Petroleum Co Method of controlling an oxidative dehydrogenation
US4069272A (en) * 1976-02-25 1978-01-17 Phillips Petroleum Company Oxidative dehydrogenation effluent control
JPS58152825A (ja) * 1982-03-08 1983-09-10 Japan Synthetic Rubber Co Ltd 1,3−ブタジエンの製造法
JPS59116235A (ja) * 1982-12-24 1984-07-05 Japan Synthetic Rubber Co Ltd 共役ジオレフインの製造法
DE3336022A1 (de) * 1983-10-04 1985-04-18 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum vermischen einer fein verduesten fluessigkeit mit einem gas und erzeugen einer explosiven mischung
US4595788A (en) * 1983-11-25 1986-06-17 Nippon Zeon Co. Ltd. Process for producing butadiene
SU1665870A3 (ru) * 1986-03-24 1991-07-23 Мицубиси Петрокемикал Компани Лимитед (Фирма) Способ приготовлени окисного катализатора дл окислени пропилена
AU2002363405A1 (en) * 2001-11-08 2003-05-19 Mitsubishi Chemical Corporation Composite oxide catalyst and method for preparation thereof
JP4280797B2 (ja) * 2001-11-21 2009-06-17 三菱化学株式会社 複合酸化物触媒の製造方法
ZA200209470B (en) * 2001-12-04 2003-06-03 Rohm & Haas Improved processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes.
DE10361823A1 (de) * 2003-12-30 2005-08-11 Basf Ag Verfahren zur Herstellung von Butadien und 1-Buten
DE102004054766A1 (de) * 2004-11-12 2006-05-18 Basf Ag Verfahren zur Herstellung von Butadien aus n-Butan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188826A (ja) * 1982-04-27 1983-11-04 Japan Synthetic Rubber Co Ltd 1,3−ブタジエンの製造方法
JPS59167525A (ja) * 1983-03-14 1984-09-21 Japan Synthetic Rubber Co Ltd 1,3−ブタジエンの製造方法
JPS60126235A (ja) * 1983-12-14 1985-07-05 Nippon Zeon Co Ltd ブタジエンの製造方法
JPS61234943A (ja) * 1985-04-11 1986-10-20 Nippon Shokubai Kagaku Kogyo Co Ltd 共役ジオレフィン製造用触媒の製造方法
JPS6354942A (ja) * 1986-08-23 1988-03-09 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
JP2010090083A (ja) * 2008-10-10 2010-04-22 Mitsubishi Chemicals Corp 共役ジエンの製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415494A (zh) * 2011-03-09 2013-11-27 三菱化学株式会社 共轭二烯的制造方法
KR101942598B1 (ko) * 2011-03-09 2019-01-25 미쯔비시 케미컬 주식회사 공액 디엔의 제조 방법
KR20140053846A (ko) * 2011-03-09 2014-05-08 미쓰비시 가가꾸 가부시키가이샤 공액 디엔의 제조 방법
US9340472B2 (en) 2011-03-09 2016-05-17 Mitsubishi Chemical Corporation Method for producing conjugated diene
CN103415494B (zh) * 2011-03-09 2015-09-30 三菱化学株式会社 共轭二烯的制造方法
JP2013213028A (ja) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP2015514092A (ja) * 2012-03-29 2015-05-18 ティーピーシー・グループ・エルエルシー ブタジエンを製造するための低排出酸化脱水素方法
CN102875314A (zh) * 2012-06-20 2013-01-16 张守义 一种丁烯氧化脱氢制丁二烯的双反应系统及抗积碳方法
US9809511B2 (en) 2012-10-17 2017-11-07 Asahi Kasei Chemicals Corporation Method for producing conjugated diolefin
US10053402B2 (en) 2012-10-17 2018-08-21 Asahi Kasei Chemicals Corporation Method for producing conjugated diolefin
WO2014061711A1 (ja) * 2012-10-17 2014-04-24 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
JP5571273B1 (ja) * 2012-10-17 2014-08-13 旭化成ケミカルズ株式会社 共役ジオレフィンの製造方法
US9399606B2 (en) 2012-12-06 2016-07-26 Basf Se Catalyst and process for the oxidative dehydrogenation of N-butenes to butadiene
WO2014086768A1 (de) 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014086641A1 (de) 2012-12-06 2014-06-12 Basf Se Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien
US10144681B2 (en) 2013-01-15 2018-12-04 Basf Se Process for the oxidative dehydrogenation of N-butenes to butadiene
WO2014148323A1 (ja) * 2013-03-18 2014-09-25 Jsr株式会社 1,3-ブタジエンの製造方法
JP6070825B2 (ja) * 2013-03-18 2017-02-01 Jsr株式会社 1,3−ブタジエンの製造方法
WO2015004042A2 (de) 2013-07-10 2015-01-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
CN105683136A (zh) * 2013-10-30 2016-06-15 巴斯夫欧洲公司 由正丁烯通过氧化脱氢制备1,3-丁二烯的方法
CN105683136B (zh) * 2013-10-30 2018-06-01 巴斯夫欧洲公司 由正丁烯通过氧化脱氢制备1,3-丁二烯的方法
JP2018150341A (ja) * 2013-11-22 2018-09-27 エルジー・ケム・リミテッド 酸化脱水素反応を介したブタジエン製造工程内の吸収溶媒の回収方法
US9919260B2 (en) 2013-11-22 2018-03-20 Lg Chem, Ltd. Method of recovering absorption solvent in butadiene production process by oxidative dehydrogenation
JP2016533319A (ja) * 2013-11-22 2016-10-27 エルジー・ケム・リミテッド 酸化脱水素反応を介したブタジエン製造工程内の吸収溶媒の回収方法
CN106103390A (zh) * 2014-01-13 2016-11-09 巴斯夫欧洲公司 启动用于正丁烯的氧化脱氢的反应器的方法
WO2016177764A1 (de) 2015-05-06 2016-11-10 Basf Se Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
WO2017094382A1 (ja) * 2015-12-01 2017-06-08 Jxエネルギー株式会社 ブタジエンの製造方法
JP2017100989A (ja) * 2015-12-01 2017-06-08 Jxtgエネルギー株式会社 ブタジエンの製造方法
US10647638B2 (en) 2015-12-01 2020-05-12 Jxtg Nippon Oil & Energy Corporation Method for producing butadiene
US10407363B2 (en) 2017-08-16 2019-09-10 Saudi Arabian Oil Company Steam-less process for converting butenes to 1,3-butadiene

Also Published As

Publication number Publication date
TW201100372A (en) 2011-01-01
TWI464142B (zh) 2014-12-11
JP2011006395A (ja) 2011-01-13
US20120130137A1 (en) 2012-05-24
KR20120026049A (ko) 2012-03-16
JP5648319B2 (ja) 2015-01-07
CA2763317A1 (en) 2010-12-02
CA2763317C (en) 2016-12-20

Similar Documents

Publication Publication Date Title
WO2010137595A1 (ja) 共役ジエンの製造方法
JP5621305B2 (ja) 共役ジエンの製造方法
JP5621304B2 (ja) 共役ジエンの製造方法
JP5652151B2 (ja) 共役ジエンの製造方法
JP2010090083A (ja) 共役ジエンの製造方法
JP2010275210A (ja) 共役ジエンの製造方法
JP2010090082A (ja) 共役ジエンの製造方法
JP5780072B2 (ja) 共役ジエンの製造方法
JP2010280653A (ja) 共役ジエンの製造方法
JP5682130B2 (ja) 共役ジエンの製造方法
JP2012240963A (ja) 共役ジエンの製造方法
JP2011132218A (ja) 共役ジエンの製造方法
JP2013119530A (ja) 共役ジエンの製造方法
JP2012106942A (ja) 共役ジエンの製造方法
WO2014148323A1 (ja) 1,3-ブタジエンの製造方法
JP5780069B2 (ja) 共役ジエンの製造方法
JP2012111751A (ja) 共役ジエンの製造方法
JP6187334B2 (ja) 共役ジエンの製造方法
JP2013213028A (ja) 共役ジエンの製造方法
JP5780038B2 (ja) 共役ジエンの製造方法
JP6405857B2 (ja) 共役ジエンの製造方法
JP2011148764A (ja) 共役ジエンの製造方法
JP2012111699A (ja) 共役ジエンの製造方法
JP2011241208A (ja) 共役ジエンの製造方法
WO2014168051A1 (ja) 1,3-ブタジエンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2763317

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780550

Country of ref document: EP

Kind code of ref document: A1