WO2014086641A1 - Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien - Google Patents

Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien Download PDF

Info

Publication number
WO2014086641A1
WO2014086641A1 PCT/EP2013/074874 EP2013074874W WO2014086641A1 WO 2014086641 A1 WO2014086641 A1 WO 2014086641A1 EP 2013074874 W EP2013074874 W EP 2013074874W WO 2014086641 A1 WO2014086641 A1 WO 2014086641A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
butenes
gas
butadiene
volume
Prior art date
Application number
PCT/EP2013/074874
Other languages
English (en)
French (fr)
Inventor
Wolfgang RÜTTINGER
Christian Walsdorff
Philipp GRÜNE
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to KR1020157017617A priority Critical patent/KR20150091386A/ko
Priority to EA201591089A priority patent/EA201591089A1/ru
Priority to JP2015545738A priority patent/JP2016505366A/ja
Priority to CN201380071859.5A priority patent/CN104968434A/zh
Priority to EP13795785.8A priority patent/EP2928601A1/de
Publication of WO2014086641A1 publication Critical patent/WO2014086641A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/843Arsenic, antimony or bismuth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • WO 2010/137595 discloses a multimetal oxide catalyst for the oxidative dehydrogenation of alkenes to dienes comprising at least molybdenum, bismuth and cobalt, of the general formula
  • a catalyst of the composition
  • Multimetal oxide catalysts for the oxidative dehydrogenation of alkenes to dienes have the problem that they contain toxic or carcinogenic substances and therefore their use in industrial production poses a threat to these toxins.
  • the element chromium is known to have a high toxicity.
  • oxides of chromium in the oxidation state + VI are to be avoided because of their carcinogenic effect.
  • the maximum chromium content of the catalyst disclosed in WO2009 / 124945 is low, some portion may be present in this oxidation state.
  • nickel oxide is a carcinogenic substance, which should be avoided.
  • X 2 Li, Na, K, Cs and / or Rb;
  • b 0 to 2, preferably 0 to 1;
  • f 0 to 1, preferably 0.01 to 0.5;
  • the multimetal has the formula Moi2Bio, 6Co 7 Fe 3 Mno, 5Ko, o8Sii.6 or Moi2Bio.6Co 7 Fe 3 Sii.6 on.
  • the catalyst according to the invention may be a solid material catalyst or a shell catalyst. If it is a shell catalyst, it has a carrier body (a) and a shell (b) containing the catalytically active, molybdenum and at least one further metal-containing multimetal oxide of the general formula (I).
  • the coated catalyst is prepared by applying a layer of molybdenum and at least one further metal-containing multimetal oxide to the carrier by means of a binder, drying and calcining the coated carrier.
  • the production of a full-material catalyst generally comprises steps (i) to (iii).
  • Suitable starting compounds of Bi, Fe and Co are in particular their nitrates.
  • Suitable starting compounds of manganese are in particular nitrates and acetates
  • the suspension is sprayed at elevated temperature with a spray head whose temperature is generally at 120 ° C to 350 ° C, and collected the dried product at a temperature of> 60 ° C.
  • the residual moisture, determined by drying the spray powder at 120 ° C, is generally less than 20 wt .-%, preferably less than 15 wt.% And particularly preferably less than 12 wt .-%.
  • the spray powder is transferred in a further step in a shaped body (step (ii)).
  • shaping aids e.g. Water, boron trifluoride or graphite into consideration.
  • the calcination of the catalyst precursor shaped body is usually carried out at temperatures exceeding 350 ° C. Normally, however, the temperature of 650 ° C is not exceeded during the thermal treatment. According to the invention is advantageous in Under the thermal treatment, the temperature of 600 ° C, preferably the temperature of 550 ° C and more preferably the temperature of 500 ° C is not exceeded. Furthermore, in the process according to the invention in the context of the thermal treatment of the catalyst precursor molded body preferably the temperature of 380 ° C, advantageously the temperature of 400 ° C, with particular advantage the temperature of 420 ° C and most preferably the temperature of 440 ° C exceeded. In this case, the thermal treatment can also be divided into several sections in their time sequence.
  • a thermal treatment at a temperature of 150 to 350 ° C, preferably from 220 to 280 ° C, and then a thermal treatment at a temperature of 400 to 600 ° C, preferably from 430 to 550 ° C are performed.
  • the thermal treatment of the catalyst precursor body takes several hours (usually more than 5 h) to complete. Often, the total duration of the thermal treatment extends to more than 10 hours. Treatment times of 45 hours and 35 hours are usually not exceeded within the scope of the thermal treatment of the catalyst precursor molding. Often the total treatment time is less than 30 h.
  • 500 ° C are not exceeded in the thermal treatment of the Katalysatorfor headphonesrform stresses and the treatment time in the temperature window of> 400 ° C extends to 5 to 30 h.
  • the thermal treatment of the catalyst precursor moldings below 350 ° C usually pursues the thermal decomposition of the sources of elemental constituents of the desired catalyst contained in the catalyst precursor moldings. Often, in the process according to the invention, this decomposition phase takes place during the heating to temperatures ⁇ 350.degree.
  • the catalytically active oxide composition obtained after calcination is then used to prepare a coated catalyst, e.g.
  • the fineness of the catalytically active oxide material applied to the surface of the carrier body becomes a matter of course hereby (step (iv), which is then applied to the outer surface of the carrier body by means of a liquid binder (step (v)) adapted to the desired shell thickness.
  • the support materials may be porous or non-porous.
  • the carrier material is preferably non-porous (total volume of the pores, based on the volume of the carrier body, preferably -i 1% by volume).
  • the application of the molybdenum and at least one further metal-containing multimetal oxide to the surface of the carrier body can be carried out according to the methods described in the prior art, for example as described in US-A 2006/0205978 and EP-A 0 714 700.
  • organic binders mono- or polyhydric organic alcohols such as ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol or glycerol, mono- or polyvalent organic carboxylic acids such as propionic acid, oxalic acid, malonic acid, glutaric acid or maleic acid, amino alcohols such as ethanolamine or diethanolamine and mono- or polyvalent organic amides such as formamide.
  • Monosaccharides and oligosaccharides such as glucose, fructose, sucrose and / or lactose are suitable as organic binder promoters which are soluble in water, in an organic liquid or in a mixture of water and an organic liquid.
  • the temperature in certain sections of the interior of the reactor during the reaction may be higher than that of the heat exchange medium, and a so-called hotspot is formed.
  • the location and height of the hotspot is determined by the reaction conditions, but it may also be regulated by the dilution ratio of the catalyst layer or the flow rate of mixed gas.
  • the difference between hotspot temperature and the temperature of the heat exchange medium is generally between 1 -150 ° C, preferably between 10-100 ° C and more preferably between 20-80 ° C.
  • the temperature at the end of the catalyst bed is generally between 0-100 ° C, preferably between 0.1-50 ° C, more preferably between 1 -25 ° C above the temperature of the heat exchange medium.
  • the oxydehydrogenation can be carried out in all fixed-bed reactors known from the prior art, such as, for example, in the hearth furnace, in the fixed bed tube or tubular reactor or in the plate heat exchanger reactor. A tube bundle reactor is preferred.
  • the product gas stream of the non-oxidative n-butane dehydrogenation typically contains 0.1 to 15% by volume of butadiene, 1 to 15% by volume of 1-butene, 1 to 25% by volume of 2-butene (cis / trans) 2-butene), 20 to 70% by volume of n-butane, 1 to 70% by volume of steam, 0 to 10% by volume of low-boiling hydrocarbons (methane, ethane, ethene, propane and propene), 0, 1 to 40% by volume of hydrogen, 0 to 70% by volume of nitrogen and 0 to 5% by volume of carbon oxides.
  • the product gas stream of the non-oxidative dehydrogenation can be fed to the oxidative dehydrogenation without further workup.
  • Possible inert gases include nitrogen, argon, neon, helium, CO, CO2 and water.
  • the amount of inert gases for nitrogen is generally 90% by volume or less, preferably 85% by volume or less, and more preferably 80% by volume or less. In the case of components other than nitrogen, it is generally 10% by volume or less, preferably 1% by volume or less. If this amount becomes too large, it becomes increasingly difficult to supply the reaction with the required oxygen.
  • a content of 0.1-8.0 (parts by volume), preferably 0.5-5.0, and more preferably 0.8-3.0, based on the introduction amount of the above-mentioned starting gas initiated.
  • the content of the starting gas containing the hydrocarbons in the mixed gas is generally 4.0% by volume or more, preferably 6.0% by volume or more, and still more preferably 8.0% by volume or more.
  • the upper limit is 20 vol% or less, preferably 16.0 vol% or less, and more preferably 13.0 vol% or less.
  • the product gas stream leaving the oxidative dehydrogenation generally contains unreacted n-butane and isobutane, 2-butene and water vapor.
  • the product gas stream leaving the oxidative dehydrogenation generally contains carbon monoxide, carbon dioxide, oxygen, nitrogen, methane, ethane, ethene, propane and propene, optionally hydrogen and oxygen-containing hydrocarbons, so-called oxygenates.
  • it contains only small amounts of 1-butene and isobutene.
  • the product gas stream leaving the oxidative dehydrogenation may be 1 to 40% by volume butadiene, 20 to 80% by volume n-butane, 0 to 5% by volume iso-butane, 0.5 to 40% by volume 2-butene, 0 to 5% by volume of 1-butene, 0 to 70% by volume of steam, 0 to 10% by volume of low-boiling hydrocarbons (methane, ethane, ethene, propane and propene), 0 to 40% by volume of hydrogen, 0 to 30% by volume. -% oxygen, 0 to 70% by volume of nitrogen, 0 to 10% by volume of carbon oxides and 0 to 10% by volume of oxygenates.
  • Oxygenates may include, for example, formaldehyde, furan, acetic acid, maleic anhydride, formic acid, methacrolein, methacrylic acid, crotonaldehyde, croton acid, propionic acid, acrylic acid, methyl vinyl ketone, styrene, benzaldehyde, benzoic acid, phthalic anhydride, fluorenone, anthraquinone and butyraldehyde.
  • the product gas stream at the reactor exit is characterized by a temperature near the temperature at the end of the catalyst bed.
  • the product gas stream is then brought to a temperature of 150-400 ° C, preferably 160-300 ° C, more preferably 170-250 ° C. It is possible to isolate the conduit through which the product gas stream flows to maintain the temperature in the desired range, but use of a heat exchanger is preferred. This heat exchanger system is optional, as long as the temperature of the product gas can be kept at the desired level with this system.
  • the two or more intended heat exchangers may be arranged in parallel.
  • the product gas is supplied to one or more, but not all, heat exchangers, and after a certain period of operation, these heat exchangers are replaced by other heat exchangers.
  • the cooling can be continued, part of the heat of reaction can be recovered, and in parallel, the high-boiling by-products deposited in one of the heat exchangers can be removed.
  • a solvent as long as it is capable of dissolving the high-boiling by-products, can be used without restriction, and as examples, an aromatic hydrocarbon solvent such as, for example, can be used.
  • an aromatic hydrocarbon solvent such as, for example, can be used.
  • toluene, xylene, etc. and an alkaline aqueous solvent such as the aqueous solution of sodium hydroxide can be used.
  • the oxygen removal is carried out immediately after the oxidative dehydrogenation.
  • a catalytic combustion stage is carried out for this purpose, in which oxygen is reacted with hydrogen added in this stage in the presence of a catalyst. As a result, a reduction in the oxygen content is achieved down to a few traces.
  • the product gas stream from the quench is compressed in at least one first compression stage and subsequently cooled, with at least one condensate stream comprising water condensing out and a gas stream containing n-butane, 1-butene, 2-butenes, butadiene, optionally hydrogen, water vapor, in small amounts Methane, ethane, ethene, propane and propene, iso-butane, carbon oxides and inert gases, optionally oxygen and hydrogen remains.
  • the compression can be done in one or more stages. Overall, a pressure in the range of 1, 0 to 4.0 bar (absolute) is compressed to a pressure in the range of 3.5 to 20 bar (absolute).
  • the condensate stream can therefore also comprise a plurality of streams in the case of multistage compression.
  • the condensate stream is generally at least 80 wt .-%, preferably at least 90 wt .-% of water and also contains minor amounts of low boilers, C4 hydrocarbons, oxygenates and carbon oxides.
  • Suitable compressors are, for example, turbo, rotary piston and reciprocating compressors. The compressors can be driven, for example, with an electric motor, an expander or a gas or steam turbine. Typical compression ratios (outlet pressure: inlet pressure) per compressor stage are between 1, 5 and 3.0, depending on the design.
  • the cooling of the compressed gas takes place with heat exchangers, which are used, for example, as a tube bundle, spiral or plate heat exchanger can be performed.
  • coolant cooling water or heat transfer oils are used in the heat exchangers.
  • air cooling is preferably used using blowers.
  • the butadiene, butene, butane, inert gases and optionally carbon oxides, oxygen, hydrogen and low-boiling hydrocarbons (methane, ethane, ethene, propane, propene) and small amounts of oxygenates containing stream is fed as output stream of further treatment.
  • the separation of the low-boiling secondary constituents from the product gas stream can be carried out by customary separation processes such as distillation, rectification, membrane process, absorption or adsorption.
  • the product gas mixture can be passed through a membrane which is usually designed as a tube and which is permeable only to molecular hydrogen.
  • the thus separated molecular hydrogen can, if necessary, at least partially used in a hydrogenation or else be supplied to another utilization, for example, be used for generating electrical energy in fuel cells.
  • the carbon dioxide contained in the product gas stream can be separated by CO2 gas scrubbing.
  • the carbon dioxide gas scrubber may be preceded by a separate combustion stage in which carbon monoxide is selectively oxidized to carbon dioxide.
  • the non-condensable or low-boiling gas constituents such as hydrogen, oxygen, carbon oxides, the low-boiling hydrocarbons (methane, ethane, ethene, propane, propene) and inert gas such as optionally nitrogen in an absorption / desorption cycle means separated from a high-boiling absorbent, wherein a C4 product gas stream is obtained, which consists essentially of the C4 hydrocarbons.
  • the C4 product gas stream consists of at least 80% by volume, preferably at least 90% by volume, more preferably at least 95% by volume, of the C4 hydrocarbons, essentially n-butane, 2-butene and butadiene.
  • the absorption stage can be carried out in any suitable absorption column known to the person skilled in the art. Absorption can be accomplished by simply passing the product gas stream through the absorbent. But it can also be in columns or in Rotational absorbers take place. It can be used in cocurrent, countercurrent or cross flow. Preferably, the absorption is carried out in countercurrent. Suitable absorption columns are z. B. tray columns with bell, centrifugal and / or sieve tray, columns with structured packings, eg. B. Sheet metal packings with a specific surface area of 100 to 1000 m 2 / m 3 as Mellapak® 250 Y, and packed columns.
  • an absorption column is fed in the lower region of the butadiene, butene, butane, and / or nitrogen and optionally oxygen, hydrogen and / or carbon dioxide-containing material stream.
  • the solvent and optionally water-containing material stream is abandoned.
  • Inert absorbent used in the absorption stage are generally high-boiling non-polar solvents in which the C4-hydrocarbon mixture to be separated has a significantly higher solubility than the other gas constituents to be separated off.
  • Suitable absorbents are relatively nonpolar organic solvents, for example aliphatic Cs to Cis alkanes, or aromatic hydrocarbons, such as the paraffin-derived middle oil fractions, toluene or bulky groups, or mixtures of these solvents, such as 1,2-dimethyl phthalate may be added.
  • Suitable absorbers are also esters of benzoic acid and phthalic acid with straight-chain d-Cs-alkanols, as well as so-called heat transfer oils, such as biphenyl and diphenyl ether, their chlorinated derivatives and triaryl alkenes.
  • a suitable absorbent is a overall mixture of biphenyl and diphenyl ether, preferably in the azeotropic composition, for example the commercially available Diphyl ®. Often, this solvent mixture contains di-methyl phthalate in an amount of 0.1 to 25 wt .-%.
  • Suitable absorbents are octanes, nonanes, decanes, undecanes, dodecanes, tridecanes, tetradecanes, pentadecanes, hexadecanes, heptadecanes and octadecanes, or fractions obtained from refinery streams containing as main components said linear alkanes.
  • an offgas stream is withdrawn, which is essentially inert gas, carbon oxides, optionally butane, butenes, such as 2-butenes and butadiene, optionally oxygen, hydrogen and low-boiling hydrocarbons (for example methane, ethane, ethene, propane, propene) and contains water vapor.
  • This stream can be partially fed to the ODH reactor or 02 removal reactor.
  • the inlet flow of the ODH reactor can be adjusted to the desired C4 hydrocarbon content.
  • the loaded with C4 hydrocarbons solvent stream is passed into a desorption column. All column internals known to those skilled in the art are suitable for this purpose.
  • the desorption step is carried out by relaxation and / or heating of the loaded solvent.
  • the preferred process variant is the addition of stripping steam and / or the supply of live steam in the bottom of the desorber. That of C 4 -
  • the extractive distillation may, for example, as described in "petroleum and coal - natural gas - petrochemistry", Volume 34 (8), pages 343 to 346 or “Ullmann's Encyclopedia of Industrial Chemistry", Volume 9, 4th edition 1975, pages 1 to 18, be performed.
  • the C 4 - product gas stream with an extractant preferably an N-methylpyrrolidone
  • the extraction zone is generally carried out in the form of a wash column which contains trays, fillers or packings as internals. This generally has 30 to 70 theoretical plates on, so that a sufficiently good release effect is achieved.
  • the wash column has a backwash zone in the column head. This backwash zone is used to recover the extractant contained in the gas phase by means of a liquid hydrocarbon reflux, to which the top fraction is condensed beforehand.
  • the mass ratio extractant to C4 product gas stream in the feed of the extraction zone is generally from 10: 1 to 20: 1.
  • the extractive distillation is preferably carried out at a bottom temperature in the range from 100 to 250 ° C., in particular at a temperature in the range from 110 to 210 ° C., a top temperature in the range from 10 to 100 ° C., in particular in the range from 20 to 70 ° C. ° C and a pressure in the range of 1 to 15 bar, in particular operated in the range of 3 to 8 bar.
  • the extractive distillation column preferably has from 5 to 70 theoretical plates.
  • Suitable extractants are butyrolactone, nitriles such as acetonitrile, propionitrile, methoxypropionitrile, ketones such as acetone, furfural, N-alkyl-substituted lower aliphatic acid amides such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-formylmorpholine, N-alkyl-substituted cyclic acid amides (lactams) such as N Alkylpyrrolidones, especially N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • alkyl-substituted lower aliphatic acid amides or N-alkyl substituted cyclic acid amides are used.
  • Particularly advantageous are dimethylformamide, acetonitrile, furfural and in particular NMP.
  • Particularly suitable is NMP, preferably in aqueous solution, preferably with 0 to 20 wt .-% water, particularly preferably with 7 to 10 wt .-% water, in particular with 8.3 wt .-% water.
  • a stream containing the extractant, water, butadiene and in small amounts butene and butane is obtained, which is fed to a distillation column. In this will be recovered overhead or as a side take butadiene.
  • an extractant and water-containing stream is obtained, wherein the composition of the extractant and water-containing stream corresponds to the composition as it is added to the extraction.
  • the extractant and water-containing stream is preferably returned to the extractive distillation.
  • the product stream obtained at the top of the column generally contains 90 to 100% by volume of butadiene, 0 to 10% by volume of 2-butene and 0 to 10% by volume of n-butane and isobutane.
  • a further distillation according to the prior art can be carried out.
  • Anchor stirrer 4.8 g of a KOH solution (33 wt .-% KOH) was added to the initially introduced water. The solution was heated to 60 ° C. Then, 1066 g of an ammonium heptamolybdate solution (( ⁇ 4) 6 ⁇ 7 ⁇ 24 * 4 H2O, 54% by weight of Mo) were added in portions over a period of 10 minutes. The suspension obtained was stirred for a further 10 minutes.
  • the resulting powder was mixed with 1 wt .-% graphite, compacted twice with 9 bar pressing pressure and comminuted through a sieve with a mesh size of 0.8 mm.
  • the split was again mixed with 2% by weight of graphite and the mixture was pressed with a Kilian S100 tablet press into rings 5 ⁇ 3 ⁇ 2 mm (outside diameter ⁇ length ⁇ inside diameter).
  • the catalyst precursor obtained was calcined in batches (1000 g) in a convection oven from Heraeus, DE (type K, 750/2 S, internal volume 55 l). The following program was used for this:
  • the original temperature was kept at 60 ° C.
  • the gas inlet temperature of the spray tower was 300 ° C, the gas outlet temperature 1 10 ° C.
  • the powder obtained had a particle size (d 50) of less than 40 ⁇ m.
  • the resulting powder was mixed with 1 wt .-% graphite, compacted twice with 9 bar pressing pressure and comminuted through a sieve with a mesh size of 0.8 mm.
  • the split was again mixed with 2% by weight of graphite and the mixture was pressed with a Kilian S100 tablet press into rings 5 ⁇ 3 ⁇ 2 mm (outside diameter ⁇ length ⁇ inside diameter).
  • the catalyst precursor obtained was calcined in batches (500 g) in a convection oven from Heraeus, DE (type K, 750/2 S, internal volume 55 l). The following program was used for this: - Heat up to 130 ° C in 72 minutes, hold for 72 minutes
  • the screening reactor was a salt bath reactor having a length of 120 cm and an inside diameter of 14.9 mm and a thermowell having an outside diameter of 3.17 mm.
  • the thermowell contained a multiple thermocouple with 7 measuring points.
  • the bottom 4 measuring points had a distance of 10 cm and the top 4 measuring points a distance of 5 cm.
  • the reactor was operated at 100 to 250 NL / h of a reaction gas of composition 8% 1-butene, 2% butane, 12% oxygen, 10% water, 68% nitrogen at a salt bath temperature of 330 ° C for 50 hours.
  • the product gases were analyzed by GC.
  • the turnover and selectivity data are listed in Tables 1 and 2.
  • the catalysts of Examples 1 to 3 were used for the reaction of butene to butadiene in the dehydrogenation reactor.
  • 60 g of the 5 ⁇ 3 ⁇ 2 mm rings (outer diameter ⁇ length ⁇ inner diameter) were mixed with 60 g of steatite rings of the same geometry. They were activated by heating in a mixture of oxygen, nitrogen and water vapor (10/80/10) at 400 ° C overnight.
  • the gas velocity was varied to change the conversion (100 NL / h to 250 NL / h).
  • the salt bath temperature was controlled so that a maximum of about 95% conversion was achieved.
  • the temperatures at which the conversion was about 90% are shown in Table 1.
  • Table 1 Activities of the tested catalysts from Examples 1 to 3
  • the sales and selectivity data are listed in Table 2.
  • the selectivities are compared at about 90% conversion. With a butene conversion of about 90%, all catalysts have the same selectivity for butadiene within the scattering of the measured values. The catalysts thus differ only in their activity (see temperatures for 90% conversion in Table 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Die Erfindung betrifft einen Katalysator umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel (I), Mo12BiaMnbCocFedX1 eX2 fOx (I), in der die Variablen die nachfolgenden Bedeutungen aufweisen: X1 = Si und/oder AI; X2 = Li, Na, K, Cs und/oder Rb; a = 0,2 bis 1; b = 0 bis 2; c = 2 bis 10; d = 0,5 bis 10; e = 0 bis 10; f = 0 bis 0,5; und x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird.

Description

Katalysator und Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien Beschreibung
Die Erfindung betrifft einen Katalysator und ein Verfahren zur oxidativen Dehydrierung von n- Butenen zu Butadien.
Butadien ist eine bedeutende Grundchemikalie und wird beispielsweise zur Herstellung von Synthesekautschuken (Butadien-Homopolymere, Styrol-Butadien-Kautschuk oder Nitril-
Kautschuk) oder zur Herstellung von thermoplastischen Terpolymeren (Acrylnitril-Butadien- Styrol-Copolymere) eingesetzt. Butadien wird ferner zu Sulfolan, Chloropren und 1 ,4-Hexa- methylendiamin (über 1 ,4-Dichlorbuten und Adipinsäuredinitril) umgesetzt. Durch Dimerisierung von Butadien kann ferner Vinylcyclohexen erzeugt werden, welches zu Styrol dehydriert werden kann.
Butadien kann durch thermische Spaltung (Steam-Cracken) gesättigter Kohlenwasserstoffe hergestellt werden, wobei üblicherweise von Naphtha als Rohstoff ausgegangen wird. Beim Steam-Cracken von Naphtha fällt ein Kohlenwasserstoff-Gemisch aus Methan, Ethan, Ethen, Acetylen, Propan, Propen, Propin, Allen, Butanen, Butenen, Butadien, Butinen, Methylallen, Cs- und höheren Kohlenwasserstoffen an.
Butadien kann auch durch oxidative Dehydrierung von n-Butenen (1 -Buten und/oder 2-Buten) erhalten werden. Als Ausgangsgasgemisch für die oxidative Dehydrierung von n-Butenen zu Butadien kann jedes beliebige n-Butene enthaltende Gemisch benutzt werden. Beispielsweise kann eine Fraktion verwendet werden, die als Hauptbestandteil n-Butene (1 -Buten und/oder 2- Buten) enthält und aus der C4-Fraktion eines Naphtha-Crackers durch Abtrennen von Butadien und Isobuten erhalten wurde. Des Weiteren können auch Gasgemische als Ausgangsgas eingesetzt werden, die 1 -Buten, cis-2-Buten, trans-2-Buten oder deren Gemische umfassen und durch Dimerisierung von Ethylen erhalten wurden. Ferner können als Ausgangsgas n-Butene enthaltende Gasgemische eingesetzt werden, die durch katalytisches Wirbelschichtkracken (Fluid Catalytic Cracking, FCC) erhalten wurden. n-Butene enthaltende Gasgemische, die als Ausgangsgas in der oxidativen Dehydrierung von n-Butenen zu Butadien eingesetzt werden, können auch durch nicht-oxidative Dehydrierung von n-Butan enthaltenden Gasgemischen hergestellt werden.
WO2009/124945 offenbart einen Schalenkatalysator für die oxidative Dehydrierung von 1 -Buten und/oder 2-Buten zu Butadien, der erhältlich ist aus einem Katalysator-Vorläufer umfassend
(a) einen Trägerköper,
(b) eine Schale enthaltend (i) ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel Moi2Bia Crb X1cFedX2eX3fOy mit
X1 = Co und/oder Ni,
X2 = Si und/oder AI,
X3 = Li, Na, K, Cs und/oder Rb,
0,2 < a < 1 ,
0 < b < 2,
2 < c < 10,
0,5 < d < 10,
0 < e < 10,
0 < f < 0,5 und
y = eine Zahl, die unter der Voraussetzung der Ladungsneutralität durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente bestimmt wird,
und (ii) mindestens einen Porenbildner.
WO 2010/137595 offenbart einen Multimetalloxidkatalysator für die oxidative Dehydrierung von Alkenen zu Dienen, der zumindest Molybdän, Bismut und Cobalt umfasst, der allgemeinen Formel
MoaBibCOcNidFeeXfYgZhSiiOj In dieser Formel ist X mindestens ein Element aus der Gruppe bestehend aus Magnesium
(Mg), Calcium (Ca), Zink (Zn), Cer (Ce) und Samarium (Sm). Y ist mindestens ein Element aus der Gruppe bestehend aus Natrium (Na), Kalium (K), Rubidium (Rb), Cäsium (Cs) und Thallium (Tl). Z ist mindestens ein Element aus der Gruppe bestehend aus Bor (B), Phosphor (P), Arsen (As) und Wolfram (W). a-j stehen für den Atomanteil des jeweiligen Elements, wobei a=12, b = 0,5-7, c = 0-10, d = 0-10, (wobei c+d = 1-10), e = 0,05-3, f = 0-2, g = 0,04-2, h = 0-3 und i = 5-48 sind. In den Ausführungsbeispielen wird ein Katalysator der Zusammensetzung
Moi2Bi5Co2,5Ni2,5Feo,4 ao,35Bo,2Ko,o8Si24 in Form von Tabletten mit einem Durchmesser von 5 mm und einer Höhe von 4 mm in der oxidativen Dehydrierung von n-Butenen zu Butadien eingesetzt.
EP 1 005 908 A2 beschreibt Multimetalloxid-Katalysatoren zur Herstellung von Acrolein aus Propen, die ein Ni- und Cr-freies Mischmetalloxid umfassen und in Form von Splitt, Formkörpern oder Schalenkatalysatoren vorliegen können. Die Multimetalloxidmasse weist die Formel Moi2BiaX1bFecX2dX3eOy auf, wobei
X1 = Co und/oder Ni, bevorzugt Co,
X2 = Si und/oder AI, bevorzugt Si, X3 = Alkali, vorzugsweise K, Na, Cs und/oder Rb, insbesondere K,
0,3 < a <1 ,
4 < b < 8,
0,5 < c < 10,
0 < d < 10,
0 < e < 0,5,
und
y dem Betrag der Zahl entspricht, der sich unter der Voraussetzung der Ladungsneutralität aus den Wertigkeiten und den stöchiometrischen Koeffizienten der übrigen Elemente ergibt.
Bei Multimetalloxidkatalysatoren für die oxidative Dehydrierung von Alkenen zu Dienen besteht das Problem, dass sie giftige oder krebserregende Stoffe enthalten und ihr Einsatz in der industriellen Produktion daher eine Gefährdung durch diese Giftstoffe darstellt. Das Element Chrom weist bekannter Maßen eine hohe Giftigkeit auf. Insbesondere sind Oxide von Chrom in der Oxidationsstufe +VI wegen ihrer krebserzeugenden Wirkung zu vermeiden. Obwohl der maximale Chrom Gehalt des in WO2009/124945 offenbarten Katalysators gering ist, kann ein gewisser Teil in dieser Oxidationsstufe vorliegen. Ähnliches gilt für den in WO 2010/137595 offenbarten Katalysator. Hier stellt Nickeloxid einen krebserzeugenden Stoff dar, den es zu vermeiden gilt.
Aufgabe der Erfindung ist es, einen Multimetalloxidkatalysator für die oxidative Dehydrierung von n-Butenen zu Butadien bereitzustellen, der kein Chrom als Dotierelement enthält und sich dennoch durch eine hohe Aktivität und Selektivität auszeichnet. Gelöst wird die Aufgabe durch einen Katalysator umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel (I),
Moi2BiaMnbCocFedX1eX2fOx (I) in der die Variablen die nachfolgenden Bedeutungen aufweisen:
X1 = Si und/oder AI;
X2 = Li, Na, K, Cs und/oder Rb;
a = 0,1 bis 5, vorzugsweise 0,3 bis 1 ,5;
b = 0 bis 2, vorzugsweise 0 bis 1 ;
c = 2 bis 10, vorzugsweise 3 bis 10;
d = 0,5 bis 10, vorzugsweise 1 bis 7;
e = 0 bis 24, vorzugsweise 0,1 bis 2;
f = 0 bis 1 , vorzugsweise 0,01 bis 0,5; und
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Ele- mente in (I) bestimmt wird. Es wurde gefunden, dass der Ersatz von Chrom durch Mangan als Dotierelement zu einem Katalysator mit vergleichbarer Aktivität und Selektivität führt. Im Gegensatz zu Chrom sind Manganoxide nicht als krebserzeugend eingestuft. In einer bevorzugten Ausführungsform ist X1 Silizium. In einer weiteren bevorzugten Ausführungsform ist X2 Kalium.
Besonders bevorzugt sind
a = 0,5 bis 1 ,4;
b = 0,1 bis 0,8;
c = 5 bis 9;
d = 2 bis 6;
e = 1 bis 1 ,9; und
f = 0,01 bis 0,3 .
Beispielsweise weist das Multimetalloxid die Formel Moi2Bio,6Co7Fe3Mno,5Ko,o8Sii.6 oder auch Moi2Bio.6Co7Fe3Sii.6 auf .
Der erfindungsgemäße Katalysator kann ein Vollmaterialkatalysator oder ein Schalenkatalysa- tor sein. Falls er ein Schalenkatalysator ist, weist er einen Trägerkörper (a) und eine Schale (b) enthaltend das katalytisch aktive, Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxid der allgemeinen Formel (I) auf.
Für Schalenkatalysatoren geeignete Trägermaterialien sind z.B. poröse oder bevorzugt unporö- se Aluminiumoxide, Siliciumdioxid, Zirkondioxid, Siliciumcarbid oder Silikate wie Magnesiumoder Aluminiumsilikat (z.B. Steatit des Typs C 220 der Fa. CeramTec). Die Materialien der Trägerkörper sind chemisch inert.
Die Trägermaterialien können porös oder nicht porös sein. Vorzugsweise ist das Trägermaterial nicht porös (Gesamtvolumen der Poren auf das Volumen des Trägerkörpers bezogen vorzugsweise < 1 Vol.-%).
Besonders geeignet ist die Verwendung von im Wesentlichen nicht porösen, oberflächenrauhen, kugelförmigen Trägern aus Steatit (z. B. Steatit des Typs C 220 der Fa. CeramTec), deren Durchmesser 1 bis 8 mm, bevorzugt 2 bis 6 mm, besonders bevorzugt 2 bis 3 oder 4 bis 5 mm beträgt. Geeignet ist aber auch die Verwendung von Zylindern aus chemisch inertem Trägermaterial als Trägerkörper, deren Länge 2 bis 10 mm und deren Außendurchmesser 4 bis 10 mm beträgt. Im Fall von Ringen als Trägerkörpern liegt die Wanddicke darüber hinaus üblicherweise bei 1 bis 4 mm. Bevorzugt zu verwendende ringförmige Trägerkörper besitzen eine Länge von 2 bis 6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm. Geeignet sind vor allem auch Ringe der Geometrie 7 mm x 3 mm x 4 mm (Außendurchmesser x Länge x Innendurchmesser) als Trägerkörper. Die Schichtdicke der Schale (b) aus einer Molybdän und mindestens ein weiteres Metall enthaltenden Multimetalloxidmasse liegt in der Regel bei 5 bis 1000 μηι. Bevorzugt sind 10 bis 800 μηη, besonders bevorzugt 50 bis 600 μηι und ganz besonders bevorzugt 80 bis 500 μηι.
Der Schalenkatalysator wird hergestellt, indem man auf den Trägerkörper mittels eines Binde- mittels eine Schicht aus dem Molybdän und mindestens ein weiteres Metall enthaltenden Mul- timetalloxid aufbringt, den beschichteten Trägerkörper trocknet und kalziniert.
Im Allgemeinen umfasst die Herstellung des Schalenkatalysators die Schritte (i) bis (vi): (i) Herstellung einer Molybdän und mindestens ein weiteres Metall enthaltenden Multi- metalloxid-Vorläufermasse,
(ii) Herstellung eines Formkörpers aus der Multimetalloxid-Vorläufermasse, (iii) Kalzination des Formkörpers aus der Multimetalloxid-Vorläufermasse zur Herstellung einer Multimetalloxidmasse,
(iv) Vermählen des Formkörpers zu Multimetalloxidpartikeln, (v) Beschichten des Trägerkörpers mit den Multimetalloxidpartikeln,
(vi) thermische Behandlung des beschichteten Trägerkörpers.
Die Herstellung eines Vollmaterialkatalysators umfasst im Allgemeinen die Schritte (i) bis (iii).
Erfindungsgemäß zu verwendende feinteilige, Molybdän und mindestens ein weiteres Metall enthaltende Multimetalloxide sind grundsätzlich dadurch erhältlich, dass man von Ausgangsverbindungen der elementaren Konstituenten der katalytisch aktiven Oxidmasse ein inniges Trockengemisch erzeugt und das innige Trockengemisch bei einer Temperatur von 150 bis 650 °C thermisch behandelt.
Herstellung des Multimetalloxid-Katalysators
Zur Herstellung der feinteiligen Multimetalloxidmassen (Schritt (i)) geht man von bekannten Ausgangsverbindungen der von Sauerstoff verschiedenen elementaren Konstituenten der gewünschten Multimetalloxidmasse im jeweiligen stöchiometrischen Verhältnis aus, und erzeugt aus diesen ein möglichst inniges, vorzugsweise feinteiliges Trockengemisch, welches dann der thermischen Behandlung unterworfen wird (Kalzination). Dabei kann es sich bei den Quellen entweder bereits um Oxide handeln, oder um solche Verbindungen, die durch Erhitzen, wenigs- tens in Anwesenheit von Sauerstoff, in Oxide überführbar sind. Neben den Oxiden kommen daher als Ausgangsverbindungen vor allem Halogenide, Nitrate, Formiate, Oxalate, Acetate, Carbonate oder Hydroxide in Betracht. Geeignete Ausgangsverbindungen des Molybdäns sind auch dessen Oxoverbindungen (Molyb- date) oder die von diesen abgeleiteten Säuren.
Geeignete Ausgangsverbindungen von Bi, Fe und Co sind insbesondere deren Nitrate. Geeig- nete Ausgangsverbindungen von Mangan sind insbesondere Nitrate und Acetate
Das innige Vermischen der Ausgangsverbindungen kann prinzipiell in trockener Form oder in Form der wässrigen Lösungen oder Suspensionen erfolgen. Eine wässrige Suspension kann beispielsweise durch das Vereinigen einer Lösung, die wenigstens Molybdän enthält, und einer wässrigen Lösung, die die übrigen Metalle enthält, hergestellt werden. Alkalimetalle oder Erdalkalimetalle können in beiden Lösungen vorliegen. Durch Vereinigen der Lösungen wird eine Fällung durchgeführt, die zur Bildung einer Suspension führt. Die Temperatur der Fällung kann höher als Raumtemperatur, bevorzugt von 30 °C bis 95 °C, und besonders bevorzugt von 35 °C bis 80 °C, sein. Die Suspension kann danach über einen gewissen Zeitraum bei erhöhter Temperatur gealtert werden. Der Alterungszeitraum liegt im Allgemeinen zwischen 0 und 24 Stunden, bevorzugt zwischen 0 und 12 Stunden, und besonders bevorzugt zwischen 0 und 8 Stunden. Die Temperatur der Alterung ist im Allgemeinen zwischen 20 °C und 99 °C, bevorzugt zwischen 30 °C und 90 °C, und besonders bevorzugt zwischen 35 °C und 80 °C. Während der Fällung und Alterung der Suspension wird diese im Allgemeinen durch Rühren gemischt. Der pH-Wert der gemischten Lösungen oder Suspension liegt im Allgemeinen zwischen pH 1 und pH 12, bevorzugt zwischen pH 2 und pH 1 1 und besonders bevorzugt zwischen pH 3 und pH 10. Durch Entfernen des Wassers wird ein Feststoff herstellt, der eine innige Mischung der zugegebenen Metallkomponenten darstellt. Der Trocknungsschritt kann im Allgemeinen durch Eindampfen, Sprühtrocknen oder Gefriertrocknen oder dergleichen durchgeführt werden. Bevorzugt erfolgt die Trocknung durch Sprühtrocknen. Die Suspension wird hierzu bei erhöhter Temperatur mit einem Sprühkopf, dessen Temperatur sich im Allgemeinen bei 120 °C bis 350 °C befindet, zerstäubt und das getrocknete Produkt bei einer Temperatur von >60 °C gesammelt. Die Restfeuchte, bestimmt durch Trocknung des Sprühpulvers bei 120 °C, beträgt im Allgemeinen weniger als 20 Gew.-%, bevorzugt weniger als 15 Gew. % und besonders bevorzugt weniger als 12 Gew.-%. Zur Herstellung von Vollmaterialkatalysatoren wird das Sprühpulver in einem weiteren Schritt in einen Formkörper (Schritt (ii)) überführt. Als Formungshilfsmittel (Gleitmittel) kommen z.B. Wasser, Bortrifluorid oder Graphit in Betracht. Bezogen auf die zum Katalysatorvorläuferformkörper zu formende Masse werden in der Regel ^ 10 Gew.-%, meist < 6 Gew.-%, vielfach < 4 Gew.- % an Formungshilfsmittel zugesetzt. Üblicherweise beträgt die vorgenannte Zusatzmenge >0,5 Gew.-%. Bevorzugtes Gleithilfsmittel ist Graphit.
Die Kalzination des Katalysatorvorläuferformkörpers (Schritt (iii)) erfolgt in der Regel bei Temperaturen, die 350 °C überschreiten. Normalerweise wird im Rahmen der thermischen Behandlung die Temperatur von 650 °C jedoch nicht überschritten. Erfindungsgemäß vorteilhaft wird im Rahmen der thermischen Behandlung die Temperatur von 600 °C, bevorzugt die Temperatur von 550 °C und besonders bevorzugt die Temperatur von 500 °C nicht überschritten. Ferner wird beim erfindungsgemäßen Verfahren im Rahmen der thermischen Behandlung des Katalysatorvorläuferformkörpers vorzugsweise die Temperatur von 380 °C, mit Vorteil die Temperatur von 400 °C, mit besonderem Vorteil die Temperatur von 420 °C und ganz besonders bevorzugt die Temperatur von 440 °C überschritten. Dabei kann die thermische Behandlung in ihrem zeitlichen Ablauf auch in mehrere Abschnitte gegliedert sein. Beispielsweise kann zunächst eine thermische Behandlung bei einer Temperatur von 150 bis 350 °C, vorzugsweise von 220 bis 280 °C, und daran anschließend eine thermische Behandlung bei einer Temperatur von 400 bis 600 °C, vorzugsweise von 430 bis 550 °C durchgeführt werden. Normalerweise nimmt die thermische Behandlung des Katalysatorvorläuferformkörpers mehrere Stunden (meist mehr als 5 h) in Anspruch. Häufig erstreckt sich die Gesamtdauer der thermischen Behandlung auf mehr als 10 h. Meist werden im Rahmen der thermischen Behandlung des Katalysatorvorläuferformkörpers Behandlungsdauern von 45 h bzw. 35 h nicht überschritten. Oft liegt die Gesamtbe- handlungsdauer unterhalb von 30 h. Vorzugsweise werden bei der thermischen Behandlung des Katalysatorvorläuferformkörpers 500 °C nicht überschritten und die Behandlungsdauer im Temperaturfenster von >400 °C erstreckt sich auf 5 bis 30 h.
Die Kalzination der Katalysatorvorläuferformkörper kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft (Gemisch aus Inertgas und Sauerstoff) sowie auch unter reduzierender Atmosphäre (z.B. Gemisch aus Inertgas, NH3, CO und/oder H2 oder Methan) erfolgen. Selbstredend kann die thermische Behandlung auch unter Vakuum ausgeführt werden. Prinzipiell kann die thermische Behandlung der Katalysatorvorläuferformkörper in den unterschiedlichsten Ofentypen wie z.B. beheizbare Umluftkammern, Hordenöfen, Drehrohröfen, Bandkalzinierer oder Schachtöfen durchgeführt werden. Bevorzugt erfolgt die thermische Behandlung der Katalysatorvorläuferformkörper in einer Bandkalziniervorrichtung, wie sie die DE- A 10046957 und die WO 02/24620 empfehlen. Die thermische Behandlung der Katalysatorvorläuferformkörper unterhalb von 350 °C verfolgt in der Regel die thermische Zersetzung der in den Katalysatorvorläuferformkörpern enthaltenen Quellen der elementaren Konstituenten des angestrebten Katalysators. Häufig erfolgt beim erfindungsgemäßen Verfahren diese Zersetzungsphase im Rahmen des Aufheizens auf Temperaturen < 350 °C.
Die nach der Kalzination erhaltene katalytisch aktive Oxidmasse wird zur Herstellung eines Schalenkatalysators anschließend z.B. durch Mahlen in ein feinteiliges Pulver überführt (Schritt (iv), das dann mit Hilfe eines flüssigen Bindemittels auf die äußere Oberfläche des Trägerkörpers aufgebracht wird (Schritt (v)). Die Feinheit der auf die Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse wird dabei selbstredend an die gewünschte Schalendicke angepasst.
Zur Herstellung von Schalenkatalysatoren geeignete Trägermaterialien sind poröse oder bevorzugt unporöse Aluminiumoxide, Siliciumdioxid, Zirkondioxid, Siliciumcarbid oder Silikate wie Magnesium- oder Aluminiumsilicat (z.B. Steatit des Typs C 220 der Fa. CeramTec). Die Materialien der Trägerkörper sind chemisch inert.
Die Trägermaterialien können porös oder nicht porös sein. Vorzugsweise ist das Trägermaterial nicht porös (Gesamtvolumen der Poren, bezogen auf das Volumen des Trägerkörpers, vorzugsweise -i 1 Vol-%).
Bevorzugte Hohlzylinder als Trägerkörper weisen eine Länge von 2 bis 10 mm und einen Außendurchmesser von 4 bis 10 mm auf. Die Wanddicke liegt darüber hinaus vorzugsweise bei 1 bis 4 mm. Besonders bevorzugte ringförmige Trägerkörper besitzen eine Länge von 2 bis
6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm. Ein Beispiel sind Ringe der Geometrie 7 mm x 3 mm x 4 mm (Außendurchmesser x Länge x Innendurchmesser) als Trägerkörper. Die Schichtdicke D aus einer Molybdän und mindestens ein weiteres Metall enthaltenden Mul- timetalloxidmasse liegt in der Regel bei 5 bis 1000 μηη. Bevorzugt sind 10 bis 800 μηη, besonders bevorzugt 50 bis 600 μηη und ganz besonders bevorzugt 80 bis 500 μηη.
Das Aufbringen des Molybdän und mindestens ein weiteres Metall enthaltenden Multime- talloxids auf die Oberfläche des Trägerkörpers kann entsprechend den im Stand der Technik beschriebenen Verfahren erfolgen, beispielsweise wie in US-A 2006/0205978 sowie EP-A 0 714 700 beschrieben.
Im Allgemeinen werden die feinteiligen Massen auf die Oberfläche des Trägerkörpers mit Hilfe eines flüssigen Bindemittels aufgebracht. Als flüssiges Bindemittel kommt z.B. Wasser, ein organisches Lösungsmittel oder eine Lösung einer organischen Substanz (z.B. eines organischen Lösungsmittels) in Wasser oder in einem organischen Lösungsmittel in Betracht.
Besonders vorteilhaft wird als flüssiges Bindemittel eine Lösung bestehend aus 20 bis 95 Gew.- % Wasser und 5 bis 80 Gew.-% einer organischen Verbindung verwendet. Vorzugsweise beträgt der organische Anteil an den vorgenannten flüssigen Bindemitteln 10 bis 50 Gew.-% und besonders bevorzugt 10 bis 30 Gew.-%.
Bevorzugt sind generell solche organischen Bindemittel bzw. Bindemittelanteile, deren Siede- punkt oder Sublimationstemperatur bei Normaldruck (1 atm) > 100 °C, vorzugsweise > 150 °C beträgt. Ganz besonders bevorzugt liegt der Siedepunkt oder Sublimationspunkt solcher organischen Bindemittel bzw. Bindemittelanteile bei Normaldruck gleichzeitig unterhalb der im Rahmen der Herstellung des Molybdän enthaltenden feinteiligen Multimetalloxids angewandten höchsten Kalzinationstemperatur. Üblicherweise liegt diese höchste Kalzinationstemperatur bei < 600 °C, häufig bei < 500 °C.
Beispielhaft genannt seien als organische Bindemittel ein- oder mehrwertige organische Alkohole wie z.B. Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol oder Glycerin, ein- oder mehrwertige organische Carbonsäuren wie Propionsäure, Oxalsäure, Malonsäure, Glutarsäure oder Malein- säure, Aminoalkohole wie Ethanolamin oder Diethanolamin sowie ein- oder mehrwertige organische Amide wie Formamid. Als in Wasser, in einer organischen Flüssigkeit oder in einem Gemisch aus Wasser und einer organischen Flüssigkeit lösliche organische Bindemittelpromotoren sind z.B. Monosaccharide und Oligosaccharide wie Glucose, Fructose, Saccharose und/oder Lactose geeignet.
Besonders bevorzugte flüssige Bindemittel sind Lösungen, die aus 20 bis 95 Gew.-% Wasser und 5 bis 80 Gew.-% Glycerin bestehen. Vorzugsweise beträgt der Glycerinanteil in diesen wässrigen Lösungen 5 bis 50 Gew.-% und besonders bevorzugt 8 bis 35 Gew.-%.
Das Aufbringen des Molybdän enthaltenden feinteiligen Multimetalloxids auf den Trägerkörper (Schritt (v)) kann in der Weise erfolgen, dass man die feinteilige Masse aus Molybdän enthaltendem Multimetalloxid in dem flüssigen Bindemittel dispers verteilt und die dabei resultierende Suspension auf bewegte und gegebenenfalls heiße Trägerkörper aufsprüht, wie beschrieben in DE-A 1642921 , DE-A 2106796 und die DE-A 2626887. Nach Beendigung des Aufsprühens kann, wie in DE-A 2909670 beschrieben, durch Überleiten von heißer Luft der Feuchtigkeitsgehalt der resultierenden Schalenkatalysatoren verringert werden.
Dem feinteiligen Multimetalloxid, welches auf den Träger aufgebracht wird, können zusätzlich Porenbildner wie Malonsäure, Melamin, Nonylphenolethoxylat, Stearinsäure, Glucose, Stärke, Fumarsäure und Bernsteinsäure zugesetzt werden, um eine geeignete Porenstruktur des Katalysators zu erzeugen und dessen Stofftransporteigenschaften zu verbessern.
Bevorzugt wird man aber die Trägerkörper zunächst mit dem flüssigen Bindemittel befeuchten und nachfolgend die feinteilige Masse aus Multimetalloxid dadurch auf die Oberfläche des mit Bindemittel angefeuchteten Trägerkörpers aufbringen, dass man die befeuchteten Trägerkörper in der feinteiligen Masse wälzt. Zur Erzielung der gewünschten Schichtdicke wird das vorstehend beschriebene Verfahren vorzugsweise mehrmals wiederholt, d. h. der grundbeschichtete Trägerkörper wird wiederum befeuchtet und dann durch Kontakt mit trockener feinteiliger Masse beschichtet.
Für eine Durchführung des Verfahrens im technischen Maßstab empfiehlt sich die Anwendung des in der DE-A 2909671 offenbarten Verfahrens, jedoch vorzugsweise unter Verwendung der in der EP-A 714700 empfohlenen Bindemittel. D.h., die zu beschichtenden Trägerkörper wer- den in einen vorzugsweise geneigten (der Neigungswinkel beträgt in der Regel 30 bis 90°) rotierenden Drehbehälter (z.B. Drehteller oder Dragierkessel) gefüllt.
Die Temperaturen, die notwendig sind, um das Entfernen des Haftvermittlers zu bewirken (Schritt (vi)) liegen unterhalb der höchsten Kalzinationstemperatur des Katalysators, im Allge- meinen zwischen 200 °C und 600 °C. Bevorzugt wird der Katalysator auf 240 °C bis 500 °C erhitzt, und besonders bevorzugt auf Temperaturen zwischen 260 °C und 400 °C. Die Zeit zum Entfernen des Haftvermittlers kann mehrere Stunden betragen. Der Katalysator wird im Allgemeinen zwischen 0.5 und 24 Stunden auf die genannte Temperatur erhitzt, um den Haftvermittler zu entfernen. Bevorzugt ist die Zeit zwischen 1 ,5 und 8 Stunden und besonders bevorzugt zwischen 2 und 6 Stunden. Eine Umströmung des Katalysators mit einem Gas kann das Entfernen des Haftvermittlers beschleunigen. Das Gas ist bevorzugt Luft oder Stickstoff und besonders bevorzugt Luft. Das Entfernen des Haftvermittlers kann zum Beispiel in einem gasdurchströmten Ofen oder in einer geeigneten Trocknungsapparatur, beispielsweise einem Bandtrockner, erfolgen.
Oxidative Dehydrierung (Oxidehydrierung, ODH)
In einem oder mehreren Produktionszyklen wird eine oxidative Dehydrierung von n-Butenen zu Butadien durchgeführt, indem ein n-Butene enthaltendes Ausgangsgasgemisch mit einem Sauerstoff enthaltenden Gas und gegebenenfalls zusätzlichem Inertgas oder Wasserdampf gemischt und in einem Festbettreaktor bei einer Temperatur von 220 bis 490 °C mit dem in einem Katalysatorfestbett angeordneten erfindungsgemäßen Katalysator in Kontakt gebracht wird. Die Reaktionstemperatur der Oxidehydrierung wird im Allgemeinen durch ein Wärmeaustauschmittel, welches sich um die Reaktionsrohre herum befindet, kontrolliert. Als solche flüssigen Wärmeaustauschmittel kommen z. B. Schmelzen von Salzen wie Kaliumnitrat, Kaliumnitrit, Natriumnitrit und/oder Natriumnitrat sowie Schmelzen von Metallen wie Natrium, Quecksilber und Legierungen verschiedener Metalle in Betracht. Aber auch ionische Flüssigkeiten oder Wärmeträgeröle sind einsetzbar. Die Temperatur des Wärmeaustauschmittels liegt zwischen 220 bis 490 °C und bevorzugt zwischen 300 bis 450 °C und besonders bevorzugt zwischen 350 und 420 °C.
Auf Grund der Exothermie der ablaufenden Reaktionen kann die Temperatur in bestimmten Abschnitten des Reaktorinneren während der Reaktion höher liegen als diejenige des Wärmeaustauschmittels, und es bildet sich ein so genannter Hotspot aus. Die Lage und Höhe des Hotspots ist durch die Reaktionsbedingungen festgelegt, aber sie kann auch durch das Verdünnungsverhältnis der Katalysatorschicht oder den Durchfluss an Mischgas reguliert werden. Die Differenz zwischen Hotspot-Temperatur und der Temperatur des Wärmeaustauschmittels liegt im Allgemeinen zwischen 1 -150 °C, bevorzugt zwischen 10-100 °C und besonders bevorzugt zwischen 20-80 °C. Die Temperatur am Ende des Katalysatorbettes liegt im Allgemeinen zwischen 0-100 °C, vorzugsweise zwischen 0,1 -50 °C, besonders bevorzugt zwischen 1 -25 °C oberhalb der Temperatur des Wärmeaustauschmittels. Die Oxidehydrierung kann in allen aus dem Stand der Technik bekannten Festbettreaktoren durchgeführt werden, wie beispielsweise im Hordenofen, im Festbettrohr- oder -Rohrbündelreaktor oder im Plattenwärmetauscherreaktor. Ein Rohrbündelreaktor ist bevorzugt.
Weiterhin kann die Katalysatorschicht, die im Reaktor eingerichtet ist, aus einer einzelnen Schicht oder aus 2 oder mehr Schichten bestehen. Diese Schichten können aus reinem Katalysator bestehen oder mit einem Material verdünnt sein, das nicht mit dem Ausgangsgas oder Komponenten aus dem Produktgas der Reaktion reagiert. Weiterhin können die Katalysatorschichten aus Vollmaterial oder geträgerten Schalenkatalysatoren bestehen. Als Ausgangsgas können reine n-Butene (1 -Buten und/oder cis-/trans-2-Buten), aber auch ein Butene enthaltendes Gasgemisch eingesetzt werden. Ein solches kann beispielsweise durch nicht-oxidative Dehydrierung von n-Butan erhalten werden. Es kann auch eine Fraktion verwendet werden, die als Hauptbestandteil n-Butene (1 -Buten und/oder 2-Buten) enthält, und aus der C4-Fraktion des Naphtha-Crackens durch Abtrennen von Butadien und Isobuten erhalten wurde. Des Weiteren können auch Gasgemische als Ausgangsgas eingesetzt werden, die reines 1 -Buten, cis-2-Buten, trans-2-Buten oder Mischungen daraus umfassen, und durch Dimeri- sierung von Ethylen erhalten wurden. Ferner können als Ausgangsgas n-Butene enthaltende Gasgemische eingesetzt werden, die durch katalytisches Wirbelschichtcracken (Fluid Catalytic Cracking, FCC) erhalten wurden.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird das n-Butene enthaltende Ausgangsgasgemisch durch nicht-oxidative Dehydrierung von n-Butan erhalten. Durch die Kopplung einer nicht-oxidativen katalytischen Dehydrierung mit der oxidativen Dehydrierung der gebildeten n-Butene kann eine hohe Ausbeute an Butadien, bezogen auf eingesetztes n-Butan, erhalten werden. Bei der nicht-oxidativen katalytischen n-Butan-Dehydrierung wird ein Gasgemisch erhalten, das neben Butadien 1 -Buten, 2-Buten und nicht umgesetztem n-Butan Nebenbestandteile enthält. Übliche Nebenbestandteile sind Wasserstoff, Wasserdampf, Stickstoff, CO und CO2, Methan, Ethan, Ethen, Propan und Propen. Die Zusammensetzung des die erste De- hydrierzone verlassenden Gasgemischs kann abhängig von der Fahrweise der Dehydrierung stark variieren. So weist bei Durchführung der Dehydrierung unter Einspeisung von Sauerstoff und zusätzlichem Wasserstoff das Produktgasgemisch einen vergleichsweise hohen Gehalt an Wasserdampf und Kohlenstoffoxiden auf. Bei Fahrweisen ohne Einspeisung von Sauerstoff weist das Produktgasgemisch der nicht-oxidativen Dehydrierung einen vergleichsweise hohen Gehalt an Wasserstoff auf.
Der Produktgasstrom der nicht-oxidativen n-Butan-Dehydrierung enthält typischerweise 0,1 bis 15 Vol.-% Butadien, 1 bis 15 Vol.-% 1 -Buten, 1 bis 25 Vol.-% 2-Buten (cis/trans-2-Buten), 20 bis 70 Vol.-% n-Butan, 1 bis 70 Vol.-% Wasserdampf, 0 bis 10 Vol.-% leichtsiedende Kohlenwas- serstoffe (Methan, Ethan, Ethen, Propan und Propen), 0,1 bis 40 Vol.-% Wasserstoff, 0 bis 70 Vol.-% Stickstoff und 0 bis 5 Vol.-% Kohlenstoffoxide. Der Produktgasstrom der nicht-oxidativen Dehydrierung kann ohne weitere Aufarbeitung der oxidativen Dehydrierung zugeführt werden.
Weiterhin können in dem Ausgangsgas der Oxidehydrierung beliebige Verunreinigungen in ei- nem Bereich, in dem die Wirkung der vorliegenden Erfindung nicht gehemmt wird, vorhanden sein. Bei der Herstellung von Butadien aus n-Butenen (1 -Buten und cis-/trans-2-Buten) können als Verunreinigungen gesättigte und ungesättigte, verzweigte und unverzweigte Kohlenwasserstoffe, wie z. B. Methan, Ethan, Ethen, Acetylen, Propan, Propen, Propin, n-Butan, iso-Butan, iso-Buten, n-Pentan sowie Diene wie 1 ,2-Butadien genannt werden. Die Mengen an Verunreini- gungen betragen im Allgemeinen 70 % oder weniger, vorzugsweise 30 % oder weniger, weiter bevorzugt 10 % oder weniger und besonders bevorzugt 1 % oder weniger. Die Konzentration an linearen Monoolefinen mit 4 oder mehr Kohlenstoffatomen (n-Butene und höherer Homologe) im Ausgangsgas ist nicht besonders eingeschränkt; sie beträgt im Allgemeinen 35,0- 99,99 Vol.-%, vorzugsweise 71 ,0-99,0 Vol.-% und noch mehr bevorzugt 75,0-95,0 Vol.-%. Zur Durchführung der oxidativen Dehydrierung bei Vollumsatz von Butenen wird ein Gasgemisch benötigt, welches ein molares Sauerstoff : n-Butene-Verhältnis von mindestens 0,5 aufweist. Bevorzugt wird bei einem Sauerstoff : n-Butene-Verhältnis von 0,55 bis 10 gearbeitet. Zur Einstellung dieses Wertes kann das Ausgangsstoffgas mit Sauerstoff oder einem sauerstoffhaltigem Gas, beispielsweise Luft, und gegebenenfalls zusätzlichem Inertgas oder Wasserdampf vermischt werden. Das erhaltene sauerstoffhaltige Gasgemisch wird dann der Oxidehydrierung zugeführt. Das molekularen Sauerstoff enthaltende Gas ist ein Gas, das im Allgemeinen mehr als 10 Vol.- %, vorzugsweise mehr als 15 Vol.-% und noch mehr bevorzugt mehr als 20 Vol.-% molekularen Sauerstoff umfasst, und konkret ist dies vorzugsweise Luft. Die Obergrenze für den Gehalt an molekularem Sauerstoff beträgt im Allgemeinen 50 Vol.-% oder weniger, vorzugsweise 30 Vol.- % oder weniger und noch mehr bevorzugt 25 Vol.-% oder weniger. Darüber hinaus können in dem molekularen Sauerstoff enthaltenden Gas beliebige Inertgase in einem Bereich, in dem die Wirkung der vorliegenden Erfindung nicht gehemmt wird, vorhanden sein. Als mögliche Inertgase können Stickstoff, Argon, Neon, Helium, CO, CO2 und Wasser genannt werden. Die Menge an Inertgase beträgt für Stickstoff im Allgemeinen 90 Vol.-% oder weniger, vorzugsweise 85 Vol.-% oder weniger und noch mehr bevorzugt 80 Vol.-% oder weniger. Im Falle anderer Be- standteile als Stickstoff beträgt sie im Allgemeinen 10 Vol.-% oder weniger, vorzugsweise 1 Vol.-% oder weniger. Wird diese Menge zu groß, wird es immer schwieriger, die Reaktion mit dem erforderlichen Sauerstoff zu versorgen.
Ferner können zusammen mit dem Mischgas aus Ausgangsgas und dem molekularen Sauer- stoff enthaltenden Gas auch Inertgase wie Stickstoff und weiterhin Wasser (als Wasserdampf) enthalten sein. Stickstoff ist zur Einstellung der Sauerstoffkonzentration und zur Verhinderung der Ausbildung eines explosionsfähigen Gasgemischs vorhanden, das gleiche gilt für Wasserdampf. Wasserdampf ist ferner zur Kontrolle des Verkokens des Katalysators und zur Abfuhr der Reaktionswärme vorhanden. Vorzugsweise werden Wasser (als Wasserdampf) und Stick- stoff in das Mischgas eingemischt und in den Reaktor eingeleitet. Beim Einleiten von Wasserdampf in den Reaktor wird vorzugsweise ein Anteil von 0,2-5,0 (Volumenteile) vorzugsweise 0,5-4 und noch mehr bevorzugt 0,8-2,5, bezogen auf die Einleitungsmenge an vorgenanntem Ausgangsgas, eingeleitet. Beim Einleiten von Stickstoffgas in den Reaktor wird vorzugsweise ein Anteil von 0,1-8,0 (Volumenteile), vorzugsweise mit 0,5-5,0 und noch mehr bevorzugt 0,8- 3,0 bezogen auf die Einleitungsmenge an vorgenanntem Ausgangsgas eingeleitet.
Der Anteil des die Kohlenwasserstoffe enthaltenden Ausgangsgases im Mischgas beträgt im Allgemeinen 4,0 Vol.-% oder mehr, vorzugsweise 6,0 Vol.-% oder mehr und noch mehr bevorzugt 8,0 Vol.-% oder mehr. Andererseits liegt die Obergrenze bei 20 Vol.-% oder weniger, vor- zugsweise bei 16,0 Vol.-% oder weniger und noch mehr bevorzugt bei 13,0 Vol.-% oder weniger. Um die Bildung von explosiven Gasgemischen sicher zu vermeiden, wird vor dem Erhalt des Mischgases zunächst Stickstoffgas in das Ausgangsgas oder in das molekularen Sauerstoff enthaltende Gas eingeleitet, das Ausgangsgas und das molekularen Sauerstoff enthaltende Gas wird gemischt und so das Mischgas erhalten, und dieses Mischgas wird nun vorzugsweise eingeleitet.
Während des stabilen Betriebs ist die Verweildauer im Reaktor in der vorliegenden Erfindung nicht besonders eingeschränkt, aber die Untergrenze beträgt im Allgemeinen 0,3 s oder mehr, vorzugsweise 0,7 s oder mehr und noch mehr bevorzugt 1 ,0 s oder mehr. Die Obergrenze beträgt 5,0 s oder weniger, vorzugsweise 3,5 s oder weniger und noch mehr bevorzugt 2,5 s oder weniger. Das Verhältnis von Durchfluss an Mischgas bezogen auf die Katalysatormenge im Reaktorinnern beträgt 500-8000 hr1, vorzugsweise 800-4000 hr1 und noch mehr bevorzugt 1200-3500 r1. Die Last des Katalysators an Butenen (ausgedrückt in gButene (g Katalysator *Stunde) beträgt im Allgemeinen im stabilen Betrieb 0,1 -5,0 hl-1, vorzugsweise 0,2-3,0 hr1 und noch mehr bevorzugt 0,25-1 ,0 hl-1. Volumen und Masse des Katalysators beziehen sich auf den kompletten Katalysator bestehend aus Träger und Aktivmasse. Regenerierung des Multimetalloxid-Katalysators
Im Allgemeinen wird ein Regenerierschritt zwischen jeweils zwei Produktionszyklen durchgeführt. Der Regenerierschritt wird vorzugsweise durchgeführt, bevor der Umsatzverlust bei konstanter Temperatur größer 25% beträgt. Der Regenerierschritt wird durch Überleiten eines sau- erstoffhaltigen Regeneriergasgemischs bei einer Temperatur von 200 bis 450 °C über das Katalysatorfestbett, wodurch der auf dem Multimetalloxid-Katalysator abgeschiedene Kohlenstoff abgebrannt wird, durchgeführt.
Das im Regenerierschritt eingesetzte sauerstoffhaltige Regeneriergasgemisch enthält im All- gemeinen ein sauerstoffhaltiges Gas und zusätzliche Inertgase, Wasserdampf und/oder Kohlenwasserstoffe. Im Allgemeinen enthält es 0,5 bis 22 Vol.-%, vorzugsweise 1 bis 20 Vol.-% und insbesondere 2 bis 18 Vol.-% Sauerstoff.
Aufarbeitung des Produktgasstroms
Der die oxidative Dehydrierung verlassende Produktgasstrom des Produktionsschritts enthält neben Butadien im Allgemeinen noch nicht umgesetztes n-Butan und iso-Butan, 2-Buten und Wasserdampf. Als Nebenbestandteile enthält er im Allgemeinen Kohlenmonoxid, Kohlendioxid, Sauerstoff, Stickstoff, Methan, Ethan, Ethen, Propan und Propen, gegebenenfalls Wasserstoff sowie sauerstoffhaltige Kohlenwasserstoffe, sogenannte Oxygenate. Im Allgemeinen enthält er nur noch geringe Anteile an 1 -Buten und iso-Buten.
Beispielsweise kann der die oxidative Dehydrierung verlassende Produktgasstrom 1 bis 40 Vol-% Butadien, 20 bis 80 Vol-% n-Butan, 0 bis 5 Vol.-% iso-Butan, 0,5 bis 40 Vol-% 2- Buten, 0 bis 5 Vol-% 1 -Buten, 0 bis 70 Vol-% Wasserdampf, 0 bis 10 Vol-% leichtsiedende Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan und Propen), 0 bis 40 Vol-% Wasserstoff, 0 bis 30 vol.-% Sauerstoff, 0 bis 70 Vol-% Stickstoff, 0 bis 10 Vol-% Kohlenstoffoxide und 0 bis 10 Vol-% Oxygenate aufweisen. Oxygenate können beispielsweise Formaldehyd, Furan, Essigsäure, Maleinsäureanhydrid, Ameisensäure, Methacrolein, Methacrylsäure, Crotonaldehyd, Croton- säure, Propionsäure, Acrylsäure, Methylvinylketon, Styrol, Benzaldehyd, Benzoesäure, Phthal- säureanhydrid, Fluorenon, Anthrachinon und Butyraldehyd sein.
Der Produktgasstrom am Reaktorausgang ist durch eine Temperatur nahe der Temperatur am Ende des Katalysatorbetts charakterisiert. Der Produktgasstrom wird dann auf eine Temperatur von 150 - 400 °C, bevorzugt 160 - 300 °C, besonders bevorzugt 170 - 250 °C gebracht. Es ist möglich, die Leitung, durch die der Produktgasstrom fließt, um die Temperatur im gewünschten Bereich zu halten, zu isolieren, jedoch ist ein Einsatz eines Wärmetauschers bevorzugt. Dieses Wärmetauschersystem ist beliebig, solange mit diesem System die Temperatur des Produktga- ses auf dem gewünschten Niveau gehalten werden kann. Als Beispiele von Wärmetauschern können Spiralwärmetauscher, Plattenwärmetauscher, Doppelrohrwärmetauscher, Multirohr- wärmetauscher, Kessel-Spiralwärmetauscher, Kessel-Mantelwärmetauscher, Flüssigkeit- Flüssigkeit-Kontakt-Wärmetauscher, Luft-Wärmetauscher, Direktkontaktwärmetauscher sowie Rippenrohrwärmetauscher genannt werden. Da, während die Temperatur des Produktgases auf die gewünschte Temperatur eingestellt wird, ein Teil der hochsiedenden Nebenprodukte, die im Produktgas enthalten sind, ausfallen kann, sollte daher das Wärmetauschersystem vorzugsweise zwei oder mehr Wärmetauscher aufweisen. Falls dabei zwei oder mehr vorgesehene Wärmetauscher parallel angeordnet sind, und so eine verteilte Kühlung des gewonnenen Produktgases in den Wärmetauschern ermöglicht wird, nimmt die Menge an hochsiedenden Nebenpro- dukten, die sich in den Wärmetauschern ablagern, ab, und so kann ihre Betriebsdauer verlängert werden. Als Alternative zu der oben genannten Methode können die zwei oder mehr vorgesehenen Wärmetauscher parallel angeordnet sein. Das Produktgas wird einem oder mehreren, nicht aber allen, Wärmetauscher zugeführt, und nach einer gewissen Betriebsdauer werden diese Wärmetauscher von anderen Wärmetauschern abgelöst. Bei dieser Methode kann die Kühlung fortgesetzt werden, ein Teil der Reaktionswärme zurückgewonnen werden und parallel dazu können die in einem der Wärmetauscher abgelagerten hochsiedenden Nebenprodukte entfernt werden. Als ein oben genanntes organisches Lösungsmittel kann ein Lösungsmittel, solange es in der Lage ist, die hochsiedenden Nebenprodukte aufzulösen, uneingeschränkt verwendet werden, und als Beispiele dazu können ein aromatisches Kohlenwasser- stoff lösungsm ittel, wie z. B. Toluen, Xylen etc. sowie ein alkalisches wässriges Lösungsmittel, wie z. B. die wässrige Lösung von Natriumhydroxid, verwendet werden.
Enthält der Produktgasstrom mehr als nur geringfügige Spuren Sauerstoff, so kann eine Verfahrensstufe zur Entfernung von Rest-Sauerstoff aus dem Produktgasstrom durchgeführt werden. Der Rest-Sauerstoff kann sich insoweit als störend auswirken, als er in nachgelagerten Verfahrensschritten eine Butadienperoxidbildung hervorrufen kann und als Initiator für Polymerisationsreaktionen wirken kann. Unstabilisiertes 1 ,3-Butadien kann in Gegenwart von Sauerstoff gefährliche Butadienperoxide bilden. Die Peroxide sind viskose Flüssigkeiten. Ihre Dichte ist höher als die von Butadien. Da sie außerdem nur wenig in flüssigem 1 ,3-Butadien löslich sind, setzen sie sich auf den Böden von Lagerbehältern ab. Trotz ihrer relativ geringen chemischen Reaktivität sind die Peroxide sehr instabile Verbindungen, die sich bei Temperaturen zwischen 85 und 1 10 °C spontan zersetzen können. Eine besondere Gefahr besteht in der hohen
Schlagempfindlichkeit der Peroxide, die mit der Brisanz eines Sprengstoffes explodieren. Die Gefahr der Polymerbildung ist insbesondere bei der destillativen Abtrennung von Butadien ge- geben und kann dort zu Ablagerungen von Polymeren (Bildung von so genanntem "Popcorn") in den Kolonnen führen. Vorzugsweise wird die Sauerstoffentfernung unmittelbar nach der oxidati- ven Dehydrierung durchgeführt. Im Allgemeinen wird hierzu eine katalytische Verbrennungsstufe durchgeführt, in der Sauerstoff mit in dieser Stufe zugesetztem Wasserstoff in Gegenwart eines Katalysators umgesetzt wird. Hierdurch wird eine Verringerung des Sauerstoffgehalts bis auf geringe Spuren erreicht.
Das Produktgas der 02-Entfernungsstufe wird nun auf ein identisches Temperaturniveau gebracht wie es für den Bereich hinter dem ODH-Reaktor beschrieben worden ist. Die Abkühlung des verdichteten Gases erfolgt mit Wärmetauschern, die beispielsweise als Rohrbündel-, Spiraloder Plattenwärmetauscher ausgeführt sein können. Die dabei abgeführte Wärme wird bevorzugt zur Wärmeintegration im Verfahren genutzt.
Anschließend können aus dem Produktgasstrom durch Abkühlung ein Großteil der hochsiedenden Nebenkomponenten und des Wassers abgetrennt werden. Diese Abtrennung erfolgt dabei vorzugsweise in einem Quench. Dieser Quench kann aus einer oder mehreren Stufen bestehen. Vorzugsweise wird ein Verfahren eingesetzt, bei dem das Produktgas direkt mit dem Kühlmedium in Kontakt gebracht und dadurch gekühlt wird. Das Kühlmedium ist nicht besonders eingeschränkt, aber vorzugsweise wird Wasser oder eine alkalische wässrige Lösung verwendet. Es wird ein Gasstrom erhalten, in welchem n-Butan, 1 -Buten, 2-Butene, Butadien, gegebenenfalls Sauerstoff, Wasserstoff, Wasserdampf, in geringen Mengen Methan, Ethan, Ethen, Propan und Propen, iso-Butan, Kohlenstoffoxide und Inertgase verbleibt. Weiterhin können in diesem Produktgasstrom Spuren von hochsiedenden Komponenten verbleiben, welche im Quench nicht quantitativ abgetrennt wurden.
Anschließend wird der Produktgasstrom aus dem Quench in mindestens einer ersten Kompressionsstufe komprimiert und nachfolgend abgekühlt, wobei mindestens ein Kondensatstrom enthaltend Wasser auskondensiert und ein Gasstrom enthaltend n-Butan, 1 -Buten, 2-Butene, Butadien, gegebenenfalls Wasserstoff, Wasserdampf, in geringen Mengen Methan, Ethan, Ethen, Propan und Propen, iso-Butan, Kohlenstoffoxide und Inertgase, gegebenenfalls Sauerstoff und Wasserstoff verbleibt. Die Kompression kann ein- oder mehrstufig erfolgen. Insgesamt wird von einem Druck im Bereich von 1 ,0 bis 4,0 bar (absolut) auf einen Druck im Bereich von 3,5 bis 20 bar (absolut) komprimiert. Nach jeder Kompressionsstufe folgt eine Abkühlstufe, in der der Gasstrom auf eine Temperatur im Bereich von 15 bis 60 °C abgekühlt wird. Der Kondensatstrom kann somit bei mehrstufiger Kompression auch mehrere Ströme umfassen. Der Kondensatstrom besteht im Allgemeinen zu mindestens 80 Gew.-%, vorzugsweise zu mindestens 90 Gew.-% aus Wasser und enthält daneben in geringem Umfang Leichtsieder, C4- Kohlenwasserstoffe, Oxygenate und Kohlenstoffoxide. Geeignete Verdichter sind beispielsweise Turbo-, Drehkolben- und Hubkolbenverdichter. Die Verdichter können beispielsweise mit einem Elektromotor, einem Expander oder einer Gasoder Dampfturbine angetrieben werden. Typische Verdichtungsverhältnisse (Austrittsdruck : Eintrittsdruck) pro Verdichterstufe liegen je nach Bauart zwischen 1 ,5 und 3,0. Die Abkühlung des verdichteten Gases erfolgt mit Wärmetauschern, die beispielsweise als Rohrbündel-, Spiral- oder Plattenwärmetauscher ausgeführt sein können. Als Kühlmittel kommen in den Wärmetauschern dabei Kühlwasser oder Wärmeträgeröle zum Einsatz. Daneben wird bevorzugt Luftkühlung unter Einsatz von Gebläsen eingesetzt. Der Butadien, Butene, Butan, Inertgase und gegebenenfalls Kohlenstoffoxide, Sauerstoff, Wasserstoff sowie leicht siedende Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan, Propen) und geringe Mengen von Oxygenaten enthaltende Stoffstrom wird als Ausgangsstrom der weiteren Aufbereitung zugeführt. Die Abtrennung der leicht siedenden Nebenbestandteile aus dem Produktgasstrom kann durch übliche Trennverfahren wie Destillation, Rektifikation, Membranverfahren, Absorption oder Adsorption erfolgen.
Zur Abtrennung von eventuell im Produktgasstrom enthaltenem Wasserstoff kann das Produkt- gasgemisch, gegebenenfalls nach erfolgter Kühlung, beispielsweise in einem Wärmetauscher, über eine in der Regel als Rohr ausgebildete Membran geleitet werden, die lediglich für molekularen Wasserstoff durchlässig ist. Der so abgetrennte molekulare Wasserstoff kann bei Bedarf zumindest teilweise in einer Hydrierung eingesetzt oder aber einer sonstigen Verwertung zugeführt werden, beispielsweise zur Erzeugung elektrischer Energie in Brennstoffzellen eingesetzt werden.
Das in dem Produktgasstrom enthaltene Kohlendioxid kann durch C02-Gaswäsche abgetrennt werden. Der Kohlendioxid-Gaswäsche kann eine gesonderte Verbrennungsstufe vorgeschaltet werden, in der Kohlenmonoxid selektiv zu Kohlendioxid oxidiert wird.
In einer bevorzugten Ausführungsform des Verfahrens werden die nicht kondensierbaren oder leicht siedenden Gasbestandteile wie Wasserstoff, Sauerstoff, Kohlenstoffoxide, die leicht siedenden Kohlenwasserstoffe (Methan, Ethan, Ethen, Propan, Propen) und Inertgas wie gegebenenfalls Stickstoff in einem Absorptions-/Desorptions-Zyklus mittels eines hoch siedenden Ab- sorptionsmittels abgetrennt, wobei ein C4-Produktgasstrom erhalten wird, der im Wesentlichen aus den C4-Kohlenwasserstoffen besteht. Im Allgemeinen besteht der C4-Produktgasstrom zu mindestens 80 Vol-%, bevorzugt zu mindestens 90 Vol-%, besonders bevorzugt zu mindestens 95 Vol-% aus den C4-Kohlenwasserstoffen, im Wesentlichen n-Butan, 2-Buten und Butadien. Dazu wird in einer Absorptionsstufe der Produktgasstrom nach vorheriger Wasserabtrennung mit einem inerten Absorptionsmittel in Kontakt gebracht und werden die C4-Kohlenwasserstoffe in dem inerten Absorptionsmittel absorbiert, wobei mit C4-Kohlenwasserstoffen beladenes Absorptionsmittel und ein die übrigen Gasbestandteile enthaltendes Abgas erhalten werden. In einer Desorptionsstufe werden die C4-Kohlenwasserstoffe aus dem Absorptionsmittel wieder freigesetzt.
Die Absorptionsstufe kann in jeder beliebigen, dem Fachmann bekannten geeigneten Absorptionskolonne durchgeführt werden. Die Absorption kann durch einfaches Durchleiten des Produktgasstroms durch das Absorptionsmittel erfolgen. Sie kann aber auch in Kolonnen oder in Rotationsabsorbern erfolgen. Dabei kann im Gleichstrom, Gegenstrom oder Kreuzstrom gearbeitet werden. Bevorzugt wird die Absorption im Gegenstrom durchgeführt. Geeignete Absorptionskolonnen sind z. B. Bodenkolonnen mit Glocken-, Zentrifugal- und/oder Siebboden, Kolonnen mit strukturierten Packungen, z. B. Blechpackungen mit einer spezifischen Oberfläche von 100 bis 1000 m2/m3 wie Mellapak® 250 Y, und Füllkörperkolonnen. Es kommen aber auch Riesel- und Sprühtürme, Graphitblockabsorber, Oberflächenabsorber wie Dickschicht und Dünnschichtabsorber sowie Rotationskolonnen, Tellerwäscher, Kreuzschleierwäscher und Rotationswäscher in Betracht. In einer Ausführungsform wird einer Absorptionskolonne im unteren Bereich der Butadien, Buten, Butan, und/oder Stickstoff und gegebenenfalls Sauerstoff, Wasserstoff und/oder Kohlendioxid enthaltende Stoffstrom zugeführt. Im oberen Bereich der Absorptionskolonne wird der Lösungsmittel und ggf. Wasser enthaltende Stoffstrom aufgegeben. In der Absorptionsstufe eingesetzte inerte Absorptionsmittel sind im Allgemeinen hochsiedende unpolare Lösungsmittel, in denen das abzutrennende C4-Kohlenwasserstoff-Gemisch eine deutlich höhere Löslichkeit als die übrigen abzutrennenden Gasbestandteile aufweist. Geeignete Absorptionsmittel sind vergleichsweise unpolare organische Lösungsmittel, beispielsweise aliphatische Cs- bis Cis-Alkane, oder aromatische Kohlenwasserstoffe wie die Mittelölfraktionen aus der Paraffindestillation, Toluol oder Ether mit sperrigen Gruppen, oder Gemische dieser Lösungsmittel, wobei diesen ein polares Lösungsmittel wie 1 ,2-Dimethylphthalat zugesetzt sein kann. Geeignete Absorptionsmittel sind weiterhin Ester der Benzoesäure und Phthalsäure mit geradkettigen d-Cs-Alkanolen, sowie sogenannte Wärmeträgeröle, wie Biphenyl und Diphe- nylether, deren Chlorderivate sowie Triarylalkene. Ein geeignetes Absorptionsmittel ist ein Ge- misch aus Biphenyl und Diphenylether, bevorzugt in der azeotropen Zusammensetzung, beispielsweise das im Handel erhältliche Diphyl®. Häufig enthält dieses Lösungsmittelgemisch Di- methylphthalat in einer Menge von 0,1 bis 25 Gew.-%.
Geeignete Absorptionsmittel sind Octane, Nonane, Decane, Undecane, Dodecane, Tridecane, Tetradecane, Pentadecane, Hexadecane, Heptadecane und Octadecane oder aus Raffinerieströmen gewonnene Fraktionen, die als Hauptkomponenten die genannten linearen Alkane enthalten.
In einer bevorzugten Ausführungsform wird als Lösungsmittel für die Absorption ein Alkange- misch wie Tetradekan (technischer C14-C17 Schnitt) eingesetzt.
Am Kopf der Absorptionskolonne wird ein Abgasstrom abgezogen, der im wesentlichen Inertgas, Kohlenstoffoxide, gegebenenfalls Butan, Butene, wie 2-Butene und Butadien, ggf. Sauerstoff, Wasserstoff und leicht siedende Kohlenwasserstoffe (zum Beispiel Methan, Ethan, Ethen, Propan, Propen) und Wasserdampf enthält. Dieser Stoffstrom kann teilweise dem ODH-Reaktor oder dem 02-Entfernungsreaktor zugeführt werden. Damit lässt sich zum Beispiel der Eintrittsstrom des ODH-Reaktors auf den gewünschten C4-Kohlenwasserstoffgehalt einstellen. Der mit C4-Kohlenwasserstoffen beladene Lösungsmittelstrom wird in eine Desorptionskolonne geleitet. Alle dem Fachmann bekannten Kolonneneinbauten sind für diesen Zweck geeignet. In einer Verfahrensvariante wird der Desorptionsschritt durch Entspannung und/oder Erhitzen des beladenen Lösungsmittels durchgeführt. Bevorzugte Verfahrensvariante ist die Zugabe von Strippdampf und/oder die Zufuhr von Frischdampf im Sumpf des Desorbers. Das von C4-
Kohlenwasserstoffen abgereicherte Lösungsmittel kann als Gemisch gemeinsam mit dem kondensierten Dampf (Wasser) einer Phasentrennung zugeführt werden, so dass das Wasser vom Lösungsmittel abgeschieden wird. Alle dem Fachmann bekannten Apparate sind hierfür geeignet. Möglich ist zudem die Nutzung des vom Lösungsmittel abgetrennten Wassers zur Erzeu- gung des Strippdampfes.
Bevorzugt werden 70 bis 100 Gew.-% Lösungsmittel und 0 bis 30 Gew.-% Wasser, besonders bevorzugt 80 bis 100 Gew.-% Lösungsmittel und 0 bis 20 Gew.-% Wasser, insbesondere 85 bis 95 Gew.-% Lösungsmittel und 5 bis 15 Gew.-% Wasser eingesetzt. Das in der Desorptionsstufe regenerierte Absorptionsmittel wird in die Absorptionsstufe zurückgeführt.
Die Abtrennung ist im Allgemeinen nicht ganz vollständig, so dass in dem C4-Produktgasstrom - je nach Art der Abtrennung - noch geringe Mengen oder auch nur Spuren der weiteren Gasbestandteile, insbesondere der schwer siedenden Kohlenwasserstoffe, vorliegen können. Die durch die Abtrennung auch bewirkte Volumenstromverringerung entlastet die nachfolgenden Verfahrensschritte.
Der im Wesentlichen aus n-Butan, Butenen, wie 2-Butenen und Butadien bestehende C4- Produktgasstrom enthält im Allgemeinen 20 bis 80 Vol.-% Butadien, 20 bis 80 Vol.-% n-Butan, 0 bis 10 Vol.-% 1 -Buten, und 0 bis 50 Vol.-% 2-Butene, wobei die Gesamtmenge 100 Vol.-% ergibt. Weiterhin können geringe Mengen an iso-Butan enthalten sein.
Der C4-Produktgasstrom kann anschließend durch eine Extraktivdestillation in einen im Wesentlichen aus n-Butan und 2-Buten bestehenden Strom und einen aus Butadien bestehenden Strom getrennt werden. Der im Wesentlichen aus n-Butan und 2-Buten bestehende Strom kann ganz oder teilweise in den C4-Feed des ODH-Reaktors rückgeführt werden. Da die Buten- Isomere dieses Rückführstroms im Wesentlichen aus 2-Butenen bestehen und diese 2-Butene im Allgemeinen langsamer zu Butadien oxidativ dehydriert werden als 1 -Buten, kann dieser Rückführstrom vor der Zuführung in den ODH-Reaktor einen katalytischen Isomerisierungspro- zess durchlaufen. In diesem katalytischen Prozess kann die Isomerenverteilung entsprechend der im thermodynamischen Gleichgewicht vorliegenden Isomerenverteilung eingestellt werden.
Die Extraktivdestillation kann beispielsweise, wie in„Erdöl und Kohle - Erdgas - Petrochemie", Band 34 (8), Seiten 343 bis 346 oder„Ullmanns Enzyklopädie der Technischen Chemie", Band 9, 4. Auflage 1975, Seiten 1 bis 18 beschrieben, durchgeführt werden. Hierzu wird der C4- Produktgasstrom mit einem Extraktionsmittel, vorzugsweise einem N-Methylpyrrolidon
(NMP)/Wasser-Gemisch, in einer Extraktionszone in Kontakt gebracht. Die Extraktionszone ist im Allgemeinen in Form einer Waschkolonne ausgeführt, welche Böden, Füllkörper oder Packungen als Einbauten enthält. Diese weist im Allgemeinen 30 bis 70 theoretische Trennstufen auf, damit eine hinreichend gute Trennwirkung erzielt wird. Vorzugsweise weist die Waschkolonne im Kolonnenkopf eine Rückwaschzone auf. Diese Rückwaschzone dient zur Rückgewinnung des in der Gasphase enthaltenen Extraktionsmittels mit Hilfe eines flüssigen Kohlenwasserstoffrücklaufs, wozu die Kopffraktion zuvor kondensiert wird. Das Massenverhältnis Extrakti- onsmittel zu C4-Produktgasstrom im Zulauf der Extraktionszone beträgt im Allgemeinen 10 : 1 bis 20 : 1 . Die Extraktivdestillation wird vorzugsweise bei einer Sumpftemperatur im Bereich von 100 bis 250 °C, insbesondere bei einer Temperatur im Bereich von 1 10 bis 210 °C, einer Kopftemperatur im Bereich von 10 bis 100-°C, insbesondere im Bereich von 20 bis 70-°C und einem Druck im Bereich von 1 bis 15 bar, insbesondere im Bereich von 3 bis 8 bar betrieben. Die Ex- traktivdestillationskolonne weist vorzugsweise 5 bis 70 theoretische Trennstufen auf.
Geeignete Extraktionsmittel sind Butyrolacton, Nitrile wie Acetonitril, Propionitril, Methoxypropio- nitril, Ketone wie Aceton, Furfural, N-alkylsubstituierte niedere aliphatische Säureamide wie Dimethylformamid, Diethylformamid, Dimethylacetamid, Diethylacetamid, N-Formylmorpholin, N-alkylsubstituierte zyklische Säureamide (Lactame) wie N-Alkylpyrrolidone, insbesondere N- Methylpyrrolidon (NMP). Im Allgemeinen werden alkylsubstituierte niedere aliphatische Säureamide oder N-alkylsubstituierte zyklische Säureamide verwendet. Besonders vorteilhaft sind Dimethylformamid, Acetonitril, Furfural und insbesondere NMP. Es können jedoch auch Mischungen dieser Extraktionsmittel untereinander, z.B. von NMP und Acetonitril, Mischungen dieser Extraktionsmittel mit Co-Lösungsmitteln und/oder tert.-Butyl- ether, z.B. Methyl-tert.-butylether, Ethyl-tert.-butylether, Propyl-tert.-butylether, n- oder iso-Butyl- tert.-butylether eingesetzt werden. Besonders geeignet ist NMP, bevorzugt in wässriger Lösung, vorzugsweise mit 0 bis 20 Gew.-% Wasser, besonders bevorzugt mit 7 bis 10 Gew.-% Wasser, insbesondere mit 8,3 Gew.-% Wasser.
Der Kopfproduktstrom der Extraktivdestillationskolonne enthält im Wesentlichen Butan und Bu- tene und in geringen Mengen Butadien und wird gasförmig oder flüssig abgezogen. Im Allgemeinen enthält der im Wesentlichen aus n-Butan und 2-Buten bestehende Strom 50 bis 100 Vol-% n-Butan, 0 bis 50 Vol-% 2-Buten und 0 bis 3 Vol-% weitere Bestandteile wie Isobutan, Isobuten, Propan, Propen und Cs+-Kohlenwasserstoffe.
Am Sumpf der Extraktivdestillationskolonne wird ein das Extraktionsmittel, Wasser, Butadien und in geringen Anteilen Butene und Butan enthaltender Stoffstrom gewonnen, der einer Destil- lationskolonne zugeführt wird. In dieser wird über Kopf oder als Seitenabzug Butadien gewonnen werden. Am Sumpf der Destillationskolonne fällt ein Extraktionsmittel und Wasser enthaltender Stoffstrom an, wobei die Zusammensetzung des Extraktionsmittel und Wasser enthaltenden Stoffstroms der Zusammensetzung entspricht, wie sie der Extraktion zugegeben wird. Der Extraktionsmittel und Wasser enthaltende Stoffstrom wird bevorzugt in die Extraktivdestilla- tion zurückgeleitet.
Die Extraktionslösung wird in eine Desorptionszone überführt, wobei aus der Extraktionslösung das Butadien desorbiert wird. Die Desorptionszone kann beispielsweise in Form einer Waschkolonne ausgeführt sein, die 2 bis 30, bevorzugt 5 bis 20 theoretische Stufen und gegebenen- falls eine Rückwaschzone mit beispielsweise 4 theoretischen Stufen aufweist. Diese Rückwaschzone dient zur Rückgewinnung des in der Gasphase enthaltenen Extraktionsmittels mit Hilfe eines flüssigen Kohlenwasserstoffrücklaufs, wozu die Kopffraktion zuvor kondensiert wird. Als Einbauten sind Packungen, Böden oder Füllkörper vorgesehen. Die Destillation wird vor- zugsweise bei einer Sumpftemperatur im Bereich von 100 bis 300 °C, insbesondere im Bereich von 150 bis 200 °C und einer Kopftemperatur im Bereich von 0 bis 70 °C, insbesondere im Bereich von 10 bis 50 °C durchgeführt. Der Druck in der Destillationskolonne liegt dabei vorzugsweise im Bereich von 1 bis 10 bar. Im Allgemeinen herrscht in der Desorptionszone gegenüber der Extraktionszone verminderter Druck und/oder eine erhöhte Temperatur.
Der am Kolonnenkopf gewonnene Wertproduktstrom enthält im Allgemeinen 90 bis 100 Vol-% Butadien, 0 bis 10 Vol.-% 2-Buten und 0 bis 10 Vol.-% n-Butan und iso-Butan. Zur weiteren Aufreinigung des Butadiens kann eine weitere Destillation nach dem Stand der Technik durchgeführt werden.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert. Beispiele Katalysatorherstellung Beispiel 1
Herstellung eines Vollmaterialkatalysators
Es wurden 2 Lösungen A und B hergestellt. Lösung A: In einem 10 I-Edelstahltopf wurden 3200 g Wasser vorgelegt. Unter Rühren mittels eines
Ankerrührers wurden 4,8 g einer KOH Lösung (33 Gew.-% KOH) zum vorgelegten Wasser zugegeben. Die Lösung wurde auf 60 °C erwärmt. Nun wurden 1066 g einer Ammoniumheptamo- lybdatlösung ((ΝΗ4)6Μθ7θ24*4 H2O, 54 Gew. % Mo) portionsweise über einen Zeitraum von 10 Minuten zugegeben. Die erhaltene Suspension wurde noch 10 Minuten nachgerührt.
Lösung B:
In einem 5 I-Edelstahltopf wurden 1629 g einer Kobalt(ll)nitratlösung (12,9 Gew.-% Co) vorgelegt und unter Rühren (Ankerrührer) auf 60 °C erhitzt. Nun wurden 600,9 g einer Eisen(lll)nitrat- lösung (14,2 Gew.-% Fe) über einen Zeitraum von 10 Minuten portionsweise unter Aufrechterhaltung der Temperatur zugegeben. Die entstandene Lösung wurde 10 min nachgerührt. Nun wurden 575,3 g einer Bismutnitratlösung (1 1 ,1 Gew.-% Bi) unter Aufrechterhaltung der Temperatur zugegeben. Nach weiteren 10 Minuten Nachrühren wurden 64,8 g Mangan(ll)nitrat portionsweise fest zugegeben und die entstandene dunkelrote Lösung 10 min weitergerührt. Bei 60 °C wurde innerhalb von 15 min die Lösung B zur Lösung A mittels einer Schlauchpumpe zugepumpt. Während der Zugabe und danach wurde mittels eines Intensivmischers (Ultra- Turrax) gerührt. Danach wurden 98,22 g einer Silikasuspension (Ludox; 49 Gew.-% Si02) zu- gegeben und noch 5 Minuten weitergerührt. Die erhaltene Suspension wurde in einem Sprühturm der Fa. NIRO (Sprühkopf-Nr. FOA1 , Drehzahl 25000 U/min) über einen Zeitraum von 1 ,5 h sprühgetrocknet. Dabei wurde die Vorlagetemperatur bei 60 °C gehalten. Die Gaseingangstemperatur des Sprühturmes betrug 340 °C, die Gasausgangstemperatur 130 °C. Das erhaltene Pulver wurde mit 1 Gew.-% Graphit vermischt, zweimal mit 9 bar Pressdruck kompaktiert und durch ein Sieb mit Maschenweite 0,8 mm zerkleinert. Der Split wurde wiederum mit 2 Gew.-% Graphit vermengt und die Mischung mit einer Kilian S100 Tablettenpresse in Ringe 5 x 3 x 2 mm (Außendurchmesser x Länge x Innendurchmesser) gepresst. Der erhaltene Katalysatorvorläufer wurde chargenweise (1000 g) in einem Umluftofen der Firma Heraeus, DE (Typ K, 750/2 S, Innenvolumen 55 I) kalziniert. Folgendes Programm wurde dafür verwendet:
- Aufheizen in 72 min auf 130 °C, 72 min halten
- Aufheizen in 36 min auf 190 °C, 72 min halten
- Aufheizen in 36 min auf 220 °C, 72 min halten
- Aufheizen in 36 min auf 265 °C, 72 min halten
- Aufheizen in 93 min auf 380 °C, 187 min halten
- Aufheizen in 93 min auf 430 °C, 187 min halten
- Aufheizen in 93 min auf 490 °C, 467 min halten Nach der Kalzination wurde der Katalysator der berechneten Stöchiometrie
Mo12Co7Fe3Bio.6K008Mno.5Si1.6Ox erhalten. Beispiel 2:
Ein Katalysator wird entsprechend Beispiel B (S.28) der DE 10 2007 004 961 A1 hergestellt. Der Katalysator hat die Stöchiometrie Moi2Co7Fe3Bio.6Ko.o8Sii,60x. Beispiel 3 (Vergleich)
Es wurden 2 Lösungen A und B hergestellt. Lösung A:
In einem 10 I-Edelstahltopf wurden 3200 g Wasser vorgelegt. Unter Rühren mittels eines Ankerrührers wurden 5,2 g einer KOH Lösung (32 Gew.-% KOH) zum vorgelegten Wasser zugegeben. Die Lösung wurde auf 60 °C erwärmt. Nun wurden 1066 g einer Ammoniumheptamo- lybdatlösung ((ΝΗ4)6Μθ7θ24*4 H2O, 54 Gew.-% Mo) portionsweise über einen Zeitraum von 10 Minuten zugegeben. Die erhaltene Suspension wurde noch 10 Minuten nachgerührt.
Lösung B:
In einem 5 I-Edelstahltopf wurden 1771 g einer Kobalt(ll)nitratlösung (12,3 Gew.-% Co) vorgelegt und unter Rühren (Ankerrührer) auf 60 °C erhitzt. Nun wurden 645 g einer Eisen(lll)nitrat- lösung (13,7 Gew.-% Fe) über einen Zeitraum von 10 Minuten portionsweise unter Aufrechterhaltung der Temperatur zugegeben. Die entstandene Lösung wurde 10 min nachgerührt. Nun wurden 619 g einer Bismutnitratlösung (10,7 Gew.-% Bi) unter Aufrechterhaltung der Temperatur zugegeben. Nach weiteren 10 Minuten Nachrühren wurden 109 g Chrom(lll)nitrat portionsweise fest zugegeben und die entstandene dunkelrote Lösung 10 min weitergerührt.
Unter Beibehaltung der 60 °C wurde innerhalb von 15 min die Lösung B zur Lösung A mittels Schlauchpumpe zugepumpt. Während der Zugabe und danach wurde mittels eines Intensivmischers (Ultra-Turrax) gerührt. Nach vollendeter Zugabe wurde noch 5 Minuten weitergerührt. Danach wurden 93,8 g einer S1O2 Suspension (Ludox; S1O2 ca. 49% , Fa. Grace) zugegeben und weitere 5 Minuten gerührt. Die erhaltene Suspension wurde in einem Sprühturm der Fa. NIRO (Sprühkopf-Nr. FOA1 ,
Drehzahl 25000 U/min) über einen Zeitraum von 1 ,5 h sprühgetrocknet. Dabei wurde die Vorlagetemperatur bei 60 °C gehalten. Die Gaseingangstemperatur des Sprühturmes betrug 300 °C, die Gasausgangstemperatur 1 10 °C. Das erhaltene Pulver hatte eine Partikelgröße (dso) kleiner 40 μηη.
Das erhaltene Pulver wurde mit 1 Gew.-% Graphit vermischt, zweimal mit 9 bar Pressdruck kompaktiert und durch ein Sieb mit Maschenweite 0,8 mm zerkleinert. Der Split wurde wiederum mit 2 Gew.-% Graphit vermengt und die Mischung mit einer Kilian S100 Tablettenpresse in Ringe 5 x 3 x 2 mm (Außendurchmesser x Länge x Innendurchmesser) gepresst.
Der erhaltene Katalysatorvorläufer wurde chargenweise (500 g) in einem Umluftofen der Firma Heraeus, DE (Typ K, 750/2 S, Innenvolumen 55 I) kalziniert. Folgendes Programm wurde dafür verwendet: - Aufheizen in 72 Minuten auf 130 °C, 72 Minuten halten
- Aufheizen in 36 Minuten auf 190 °C, 72 Minuten halten
- Aufheizen in 36 Minuten auf 220 °C, 72 Minuten halten
- Aufheizen in 36 Minuten auf 265 °C, 72 Minuten halten
- Aufheizen in 93 Minuten auf 380 °C, 187 Minuten halten
- Aufheizen in 93 Minuten auf 430 °C, 187 Minuten halten
- Aufheizen in 93 Minuten auf 490 °C, 467 Minuten halten
Nach der Kalzination wurden der Katalysator der berechneten Stöchiometrie
Moi2Co7Fe3Bio.6Ko.o8Cr0.5 SkeCv erhalten. Dehyd Tierversuche
Beispiele 4 bis 6
In einem Screening-Reaktor wurden Dehydrierungsversuche durchgeführt. Der Screening- Reaktor war ein Salzbadreaktor mit einer Länge von 120 cm und einem Innendurchmesser von 14,9 mm und einer Thermohülse mit einem Außendurchmesser von 3,17 mm. In der Ther- mohülse befand sich ein Mehrfachthermoelement mit 7 Messstellen. Die untersten 4 Messstel- len hatten einen Abstand von 10 cm und die obersten 4 Messstellen einen Abstand von 5 cm.
Butan sowie Raffinat-Il oder 1 -Buten wurden bei circa 10 bar flüssig durch einen Koriolis- Flussmesser dosiert, in einem statischen Mischer vermischt und anschließend in einer beheizten Verdampferstrecke entspannt und verdampft. Dieses Gas wurde nun mit Stickstoff gemischt und in einem Vorheizer mit einer Steatitschüttung geleitet. Wasser wurde flüssig dosiert und in einer Verdampferwendel in einem Luftstrom verdampft. Das Luft/Wasserdampfgemsich wurde im unteren Bereich des Vorheizers mit dem N2/Raffinat-Il/Butan-Gemisch vereinigt. Das komplett vermischte Eduktgas wurde dann dem Reaktor zugeführt, wobei ein Analysenstrom für die online-GC-Messung abgezogen werden kann. Aus dem Produktgas, welches den Reaktor ver- lässt, wird ebenfalls ein Analysenstrom abgezogen, welcher per online-GC-Messung analysiert werden kann oder mit Hilfe eines IR-Analysators auf den Volumenanteil an CO und CO2. Ein Druckregelventil schließt sich hinter dem Abzweig der Analysenleitung an, welches das Druckniveau des Reaktors einstellt. Auf den Katalysatorstuhl am unteren Ende des Screening-Reaktors wurde eine 6 cm lange Nachschüttung bestehend aus 16 g Steatitkugeln mit einem Durchmesser von 3,5 - 4,5 mm gefüllt. Danach wurden 44 g des Katalysators aus Beispiel 1 mit 88 g Steatitringen gleicher Geometrie ausgiebig gemischt und in den Reaktor gefüllt (146 ml Schüttvolumen, 88 cm Schütthöhe). An die Katalysatorschüttung schloss sich eine 7 cm lange Vorschüttung bestehend aus 16 g Steatitkugeln mit einem Durchmesser von 3,5 - 4,5 mm an.
Der Reaktor wurde mit 100 bis 250 NL/h eines Reaktionsgases der Zusammensetzung 8 % 1 - Buten, 2 % Butan, 12 % Sauerstoff, 10 % Wasser, 68 % Stickstoff bei einer Salzbadtemperatur von 330 °C für 50 Stunden betrieben. Die Produktgase wurden mittels eines GC analysiert. Die Umsatz- und Selektivitätsdaten sind in Tabellen 1 und 2 aufgeführt.
Die in den Beispielen berechneten Größen Umsatz (X) und Selektivität (S) wurden wie folgt bestimmt: mal(IiiΕ§η§β
moKB t dmna S)—wiai( t dieiißis j
^ ——
mal (Bu tan ee -mal (BuEi nea s) wobei mol(XXXein) die Stoffmenge der Komponente XXX am Reaktoreingang ist, mol(XXXaUs) die Stoffmenge der Komponente XXX am Reaktorausgang ist und Butene die Summe aus 1 - Buten, cis-2-Buten, trans-2-Buten und iso-Buten darstellt.
Die Katalysatoren aus den Beispielen 1 bis 3 wurden für die Reaktion von Buten zu Butadien im Dehydrier-Reaktor verwendet. 60 g der 5 x 3 x 2 mm-Ringe (Außendurchmesser x Länge x Innendurchmesser) wurden mit 60 g Steatitringen gleicher Geometrie gemischt. Sie wurden aktiviert, indem sie in einem Gemisch aus Sauerstoff, Stickstoff und Wasserdampf (10/80/10)auf 400 °C über Nacht erhitzt wurden. Die Gasgeschwindigkeit wurde variiert, um den Umsatz zu verändern (100 NL/h bis 250 NL/h). Die Salzbadtemperatur wurde so geregelt, dass maximal etwa 95% Umsatz erreicht wurde. Die Temperaturen, bei denen der Umsatz etwa 90 % betrug, sind in Tabelle 1 wiedergegeben. Tabelle 1 : Aktivitäten der getesteten Katalysatoren aus den Beispielen 1 bis 3
Figure imgf000025_0001
Die Umsatz- und Selektivitätsdaten sind in Tabelle 2 aufgeführt. Verglichen werden die Selektivitäten bei etwa 90 % Umsatz. Bei einem Buten-Umsatz von etwa 90% weisen alle Katalysato- ren innerhalb der Streuung der Messwerte die gleiche Selektivität für Butadien auf. Die Katalysatoren unterscheiden sich somit nur in ihrer Aktivität (siehe Temperaturen für 90 % Umsatz in Tabelle 1 ).
Tabelle 2: Selektivitäten der getesteten Katalysatoren aus den Beispielen 1 bis 3
Katalysator Umsatz Selektivität
Beispiel 1 88% 77%
90% 77%
Beispiel 2 88% 78%
91 % 79%
Beispiel 3 88% 80%
92% 76%

Claims

Patentansprüche
Katalysator umfassend ein katalytisch aktives, Molybdän und mindestens ein weiteres Metall enthaltendes Multimetalloxid der allgemeinen Formel (I),
Moi2BiaMnbCocFedX1eX2fOx (I) in der die Variablen die nachfolgenden Bedeutungen aufweisen:
X1 = Si und/oder AI;
X2 = Li, Na, K, Cs und/oder Rb;
a = 0,2 bis 1 ;
b = 0 bis 2;
c = 2 bis 10;
d = 0,5 bis 10;
e = 0 bis 10;
f = 0 bis 0,5; und
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird.
2. Katalysator nach Anspruch 1 , dadurch gekennzeichnet, dass in Formel (I) X1 Silizium ist.
3. Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Formel (I) X2 Kali- um ist.
4. Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Formel (i) a = 0,5 bis 4;
b = 0,1 bis 0,8;
c = 5 bis 9;
d = 2 bis 6;
e = 1 bis 1 ,0; und
f = 0,01 bis 0,3
ist.
5. Katalysator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er ein Vollmaterialkatalysator ist.
6. Katalysator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er ein Schalenkatalysator mit einem Trägerkörper (a) und einer Schale (b) ist.
7. Katalysator nach Anspruch 6, dadurch gekennzeichnet, dass der Trägerkörper ein Hohlzylinder mit einer Länge von 2 bis 6 mm, einem Außendurchmesser von 4 bis 8 mm und einer Wanddicke von 1 bis 2 mm ist.
8. Katalysator nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Trägerkörper aus Steatit ist.
9. Katalysator nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Schale (b) eine Schichtdicke D von 50 bis 600 μηη aufweist.
10. Verfahren zur oxidativen Dehydrierung von n-Butenen zu Butadien, bei dem ein n-Butene enthaltendes Ausgangsgasgemisch mit einem Sauerstoff enthaltenden Gas gemischt und in einem Festbettreaktor bei einer Temperatur von 220 bis 490 °C mit einem in einem Katalysatorfestbett angeordneten Schalenkatalysator nach einem der Ansprüche 1 bis 9 in Kontakt gebracht wird.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Festbettreaktor ein Festbettrohrreaktor oder Festbettrohrbündelreaktor ist.
12. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene enthaltende Ausgangsgasgemisch durch nicht-oxidative Dehydrierung von n-Butan erhalten wird.
13. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene ent- haltende Ausgangsgasgemisch aus der C4-Fraktion eines Naphtha-Crackers oder durch
Dimerisierung von Ethylen erhalten wird.
14. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das n-Butene enthaltende Ausgangsgasgemisch durch katalytisches Wirbelschichtcracken (Fluid Catalytic Cracking, FCC) erhalten wird.
15. Verwendung eines Katalysators nach einem der Ansprüche 1 bis 9 zur oxidativen Dehydrierung von n-Butenen zu Butadien.
PCT/EP2013/074874 2012-12-06 2013-11-27 Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien WO2014086641A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157017617A KR20150091386A (ko) 2012-12-06 2013-11-27 부타디엔을 제공하는 n-부텐의 산화성 탈수소화를 위한 촉매 및 방법
EA201591089A EA201591089A1 (ru) 2012-12-06 2013-11-27 Катализатор и способ окислительного дегидрирования н-бутенов в бутадиен
JP2015545738A JP2016505366A (ja) 2012-12-06 2013-11-27 n−ブテン類からブタジエンへの酸化的脱水素化のための触媒および方法
CN201380071859.5A CN104968434A (zh) 2012-12-06 2013-11-27 用于将正丁烯氧化脱氢成丁二烯的催化剂和方法
EP13795785.8A EP2928601A1 (de) 2012-12-06 2013-11-27 Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12195880 2012-12-06
EP12195880.5 2012-12-06
EP12196980 2012-12-13
EP12196980.2 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014086641A1 true WO2014086641A1 (de) 2014-06-12

Family

ID=49667166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074874 WO2014086641A1 (de) 2012-12-06 2013-11-27 Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Country Status (6)

Country Link
EP (1) EP2928601A1 (de)
JP (1) JP2016505366A (de)
KR (1) KR20150091386A (de)
CN (1) CN104968434A (de)
EA (1) EA201591089A1 (de)
WO (1) WO2014086641A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945923B1 (de) * 2013-01-15 2017-03-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867563B (zh) * 2015-12-14 2018-10-16 中国石油天然气股份有限公司 一种转化拔头油类轻烃的方法
CN106867578B (zh) * 2015-12-14 2018-09-04 中国石油天然气股份有限公司 一种低碳烃的转化利用工艺
CN105597799A (zh) * 2016-01-28 2016-05-25 惠生工程(中国)有限公司 用于绝热固定床丁烯氧化脱氢制丁二烯铁催化剂制备方法
CN106807453A (zh) * 2017-01-23 2017-06-09 山东三维石化工程股份有限公司 丁烯氧化脱氢制备丁二烯催化剂的方法
WO2018202639A1 (en) * 2017-05-01 2018-11-08 Dsm Ip Assets B.V. Metal powderdous catalyst for hydrogenation processes

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1642921A1 (de) 1965-05-18 1971-05-19 Basf Ag Vanadium- und Titan-haltiger Oxydationskatalysator
DE2106796A1 (de) 1971-02-12 1972-08-24 Wacker-Chemie GmbH, 8000 München Katalysatoren zur Herstellung von Phthalsäureanhydrid
DE2626887A1 (de) 1976-06-16 1977-12-22 Basf Ag Katalysator fuer die oxidation von (meth)acrolein zu (meth)acrylsaeure
DE2909670A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
DE2909671A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
EP0714700A2 (de) 1994-11-29 1996-06-05 Basf Aktiengesellschaft Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
EP1005908A2 (de) 1998-12-03 2000-06-07 Basf Aktiengesellschaft Multimetalloxidmasse zur gasphasenkatalytischen Oxidation organischer Verbindungen
WO2002024620A2 (de) 2000-09-21 2002-03-28 Basf Aktiengesellschaft Verfahren zur herstellung eines multimetalloxid-katalysators, verfahren zur herstellung ungesättigter aldehyde und/oder carbonsäuren und bandcalziniervorrichtung
EP1382383A1 (de) * 2002-07-15 2004-01-21 Basf Aktiengesellschaft Strukturierte Katalysator-Schüttung
WO2006091005A1 (en) * 2005-02-25 2006-08-31 Lg Chem, Ltd. Method of producing unsaturated aldehyde and/or unsaturated acid
US20060205978A1 (en) 2002-08-20 2006-09-14 Nippon Shokubai Co., Ltd. Production process for catalyst
DE102007004961A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
WO2009124945A2 (de) 2008-04-09 2009-10-15 Basf Se Schalenkatalysatoren enthaltend ein molybdän, bismut und eisen enthaltendes multimetalloxid
KR20100028702A (ko) * 2008-09-05 2010-03-15 서울대학교산학협력단 다성분계 비스무스 몰리브데이트 촉매, 그 제조방법 및 상기 촉매를 이용한 1,3-부타디엔 제조방법
EP2256101A2 (de) * 2008-03-28 2010-12-01 SK Energy Co., Ltd. Verfahren zur herstellung von 1,3-butadien aus normalbuten mithilfe eines doppelbettreaktors mit kontinuierlichem fluss
WO2010137595A1 (ja) 2009-05-29 2010-12-02 三菱化学株式会社 共役ジエンの製造方法
WO2013002459A1 (ko) * 2011-06-30 2013-01-03 (주) 엘지화학 1,3-부타디엔의 고수율 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888143B1 (ko) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 혼성 망간 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
CN102716754B (zh) * 2012-07-12 2014-06-18 上海碧科清洁能源技术有限公司 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1642921A1 (de) 1965-05-18 1971-05-19 Basf Ag Vanadium- und Titan-haltiger Oxydationskatalysator
DE2106796A1 (de) 1971-02-12 1972-08-24 Wacker-Chemie GmbH, 8000 München Katalysatoren zur Herstellung von Phthalsäureanhydrid
DE2626887A1 (de) 1976-06-16 1977-12-22 Basf Ag Katalysator fuer die oxidation von (meth)acrolein zu (meth)acrylsaeure
DE2909670A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
DE2909671A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
EP0714700A2 (de) 1994-11-29 1996-06-05 Basf Aktiengesellschaft Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
EP1005908A2 (de) 1998-12-03 2000-06-07 Basf Aktiengesellschaft Multimetalloxidmasse zur gasphasenkatalytischen Oxidation organischer Verbindungen
DE10046957A1 (de) 2000-09-21 2002-04-11 Basf Ag Verfahren zur Herstellung eines Multimetalloxid-Katalysators, Verfahren zur Herstellung ungesättigter Aldehyde und/oder Carbonsäuren und Bandcalziniervorrichtung
WO2002024620A2 (de) 2000-09-21 2002-03-28 Basf Aktiengesellschaft Verfahren zur herstellung eines multimetalloxid-katalysators, verfahren zur herstellung ungesättigter aldehyde und/oder carbonsäuren und bandcalziniervorrichtung
EP1382383A1 (de) * 2002-07-15 2004-01-21 Basf Aktiengesellschaft Strukturierte Katalysator-Schüttung
US20060205978A1 (en) 2002-08-20 2006-09-14 Nippon Shokubai Co., Ltd. Production process for catalyst
WO2006091005A1 (en) * 2005-02-25 2006-08-31 Lg Chem, Ltd. Method of producing unsaturated aldehyde and/or unsaturated acid
DE102007004961A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
EP2256101A2 (de) * 2008-03-28 2010-12-01 SK Energy Co., Ltd. Verfahren zur herstellung von 1,3-butadien aus normalbuten mithilfe eines doppelbettreaktors mit kontinuierlichem fluss
WO2009124945A2 (de) 2008-04-09 2009-10-15 Basf Se Schalenkatalysatoren enthaltend ein molybdän, bismut und eisen enthaltendes multimetalloxid
KR20100028702A (ko) * 2008-09-05 2010-03-15 서울대학교산학협력단 다성분계 비스무스 몰리브데이트 촉매, 그 제조방법 및 상기 촉매를 이용한 1,3-부타디엔 제조방법
WO2010137595A1 (ja) 2009-05-29 2010-12-02 三菱化学株式会社 共役ジエンの製造方法
WO2013002459A1 (ko) * 2011-06-30 2013-01-03 (주) 엘지화학 1,3-부타디엔의 고수율 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Erdöl und Kohle - Erdgas - Petrochemie", vol. 34, pages: 343 - 346
"Ullmanns Enzyklopädie der Technischen Chemie", 1975, pages: 1 - 18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945923B1 (de) * 2013-01-15 2017-03-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Also Published As

Publication number Publication date
JP2016505366A (ja) 2016-02-25
CN104968434A (zh) 2015-10-07
KR20150091386A (ko) 2015-08-10
EP2928601A1 (de) 2015-10-14
EA201591089A1 (ru) 2016-01-29

Similar Documents

Publication Publication Date Title
EP2928849B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP3019458B1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP3063112B1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
US9399606B2 (en) Catalyst and process for the oxidative dehydrogenation of N-butenes to butadiene
EP2928603A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014086768A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
EP2928601A1 (de) Katalysator und verfahren zur oxidativen dehydrierung von n-butenen zu butadien
DE10245585A1 (de) Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
EP3022168A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
US20140163292A1 (en) Process for the Oxidative Dehydrogenation of N-Butenes to Butadiene
US20140163290A1 (en) Process for the Oxidative Dehydrogenation of N-Butenes to Butadiene
WO2016023892A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
WO2006120233A1 (de) Verfahren zur herstellung wenigstens eines zielproduktes durch partielle oxidation und/oder ammoxidation von propylen
WO2016151074A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
WO2016150940A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung
US20140163291A1 (en) Process for the Oxidative Dehydrogenation of N-Butenes to Butadiene
EP2928602A1 (de) Schalenkatalysator zur oxidativen dehydrierung von n-butenen zu butadien
WO2015007841A1 (de) Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
US20140163289A1 (en) Coated Catalyst for the Oxidative Dehydrogenation of N-Butenes to Butadiene
WO2018095840A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine furan-abtrennung bei der aufarbeitung
WO2016177764A1 (de) Verfahren zur herstellung chrom enthaltender katalysatoren für die oxidehydrierung von n-butenen zu butadien unter vermeidung von cr(vi)-intermediaten
WO2018095776A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine wässrige wäsche des c4-produktgasstroms
WO2018095856A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine methacrolein-abtrennung bei der aufarbeitung
EP3323797A1 (de) Verfahren zur herstellung von 1,3-butadien aus n-butenen durch oxidative dehydrierung umfassend eine saure wäsche des c4-produktgasstroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13795785

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015545738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157017617

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013795785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201591089

Country of ref document: EA