WO2010131853A2 - 유기전계발광소자 및 그 제조방법 - Google Patents

유기전계발광소자 및 그 제조방법 Download PDF

Info

Publication number
WO2010131853A2
WO2010131853A2 PCT/KR2010/002721 KR2010002721W WO2010131853A2 WO 2010131853 A2 WO2010131853 A2 WO 2010131853A2 KR 2010002721 W KR2010002721 W KR 2010002721W WO 2010131853 A2 WO2010131853 A2 WO 2010131853A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
layer
light emitting
light
Prior art date
Application number
PCT/KR2010/002721
Other languages
English (en)
French (fr)
Other versions
WO2010131853A3 (ko
Inventor
하영보
신은철
김영은
임우빈
박현식
Original Assignee
네오뷰코오롱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네오뷰코오롱 주식회사 filed Critical 네오뷰코오롱 주식회사
Priority to CN2010800211360A priority Critical patent/CN102422454A/zh
Priority to EP10775055.6A priority patent/EP2432040A4/en
Priority to JP2012510738A priority patent/JP2012527083A/ja
Publication of WO2010131853A2 publication Critical patent/WO2010131853A2/ko
Publication of WO2010131853A3 publication Critical patent/WO2010131853A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic electroluminescent device, and more particularly, to an organic electroluminescent device having improved light transmittance of a transparent cathode and a method of manufacturing the same.
  • an organic light emitting diode includes a substrate, a lower electrode stacked on the substrate, an organic material layer stacked on the lower electrode, and an upper electrode stacked on the organic material layer.
  • the organic light emitting diode emits light by energization between an anode used as a lower electrode and a cathode used as an upper electrode. That is, light emission of the organic light emitting diode is generated in the organic material layer interposed between the upper electrode and the lower electrode by the electrons of the upper electrode and the holes of the lower electrode.
  • the organic light emitting diode is a double-sided organic light emitting diode (transparent OLED) to emit light through the upper electrode and the lower electrode according to the light emission method, the top OLED and a lower electrode to emit light through the upper electrode It is divided into a bottom emitting organic light emitting device (bottom OLED) emitting light through.
  • transparent OLED transparent organic light emitting diode
  • bottom OLED bottom emitting organic light emitting device
  • the organic light emitting device emits light through an electrode having permeability among the upper electrode and the lower electrode.
  • both the upper electrode and the lower electrode should have transparency.
  • a lower phosphorus-tin oxide electrode (ITO) is used.
  • the upper electrode uses a transparent metal thin film, and when the thickness of the metal thin film is reduced, the transmittance is increased.
  • an object of the present invention is to provide an organic light emitting device that can improve the transmittance of the cathode electrode.
  • Another object of the present invention is to provide an organic light emitting display device having an improved structure to prevent an increase in resistance due to an increase in transmittance of a cathode electrode.
  • Another object of the present invention to provide a method of manufacturing an organic light emitting device as described above.
  • An organic light emitting display device for achieving the above object, a substrate, a first electrode formed on the substrate, an organic material layer formed on the first electrode, a second formed on the organic material layer
  • An electrode may be formed between at least one of the organic material layer and the second electrode, and an upper portion of the second electrode, and may include a light-transmitting layer including any one of an oxide-based, nitride-based, salt, and composites thereof. .
  • the oxide series may include any one of MoO 3, ITO, IZO, IO, ZnO, TO, TiO 2 , SiO 2 , WO 3 , Al 2 O 3 , Cr 2 O 3 , TeO 2 , SrO 2 have.
  • the nitride series may include any one of SiN and AIN.
  • the salts may include any one of Cs 2 CO 3 , LiCO 3 , KCO 3 , NaCO 3 , LiF, CsF, ZnSe.
  • the thickness of the light transmitting layer is preferably formed in less than 0.1nm 100nm.
  • the organic material layer may include an electron transport layer formed by doping any one of metals having low work function and composites thereof to facilitate electron injection from the second electrode.
  • the metals having a low work function may include any one of Cs, Li, Na, K, and Ca.
  • the complex thereof may include any one of Li-Al, LiF, CsF, and Cs 2 CO 3 .
  • the organic light emitting device according to the present invention may exhibit a transmittance of 70 to 99% according to the wavelength (nm).
  • a method of manufacturing an organic light emitting display device comprising: forming a first electrode on a substrate, forming an organic material layer on the first electrode, and forming an organic material layer on the organic material layer Forming a second electrode, and forming a light-transmitting layer including any one of an oxide-based, a nitride-based, a salt, and a complex thereof between at least one of the organic material layer and the second electrode and an upper portion of the second electrode. It may include the step.
  • the organic light emitting display device and the method of manufacturing the same according to the present invention may include a light transmitting layer including any one of an oxide series, a nitride series, a salt, and a complex thereof between the organic layer and the second electrode (the cathode) and the second layer.
  • a light transmitting layer including any one of an oxide series, a nitride series, a salt, and a complex thereof between the organic layer and the second electrode (the cathode) and the second layer.
  • the light-transmitting layer of a material containing any one of oxide-based, nitride-based, salts and composites thereof, it is possible to prevent the increase in the internal resistance of the second electrode to improve the electrical performance of the product.
  • FIG. 1 is a cross-sectional view of an organic light emitting display device according to a preferred embodiment of the present invention.
  • FIG. 2 is a graph illustrating transmittance of a light transmitting layer of an organic light emitting display device according to the present invention.
  • 3 is a luminance graph of the light transmitting layer of the organic light emitting display device according to the present invention.
  • Figure 4 is a graph of the transmittance when the light-transmitting layer is formed of an oxide-based, salts and composites thereof in the organic light emitting device according to the present invention.
  • FIG. 5 is a flowchart illustrating a method of manufacturing an organic light emitting display device according to the present invention.
  • organic light emitting device 10 substrate
  • first electrode 50 second electrode
  • the organic light emitting display device 1 includes a substrate 10, a first electrode 30, a second electrode 50, an organic material layer 70, a light transmitting layer 90, and the like. It may include.
  • the substrate 10 supports the first electrode 30, the second electrode 50, the organic material layer 70, and the light transmitting layer 90.
  • the substrate 10 uses a glass material or a plastic material having transparency to allow light emitted therethrough.
  • the first electrode 30 may also be referred to as a lower electrode and is formed on the substrate 10.
  • the first electrode 30 is an anode, which is an anode, and is formed on the substrate 10 by thermal deposition using a sputtering method, an ion plating method, an electron gun, or the like. Is formed.
  • the first electrode 30 according to the embodiment of the present invention uses a transmissive indium tin-oxide electrode, but a transmissive indium zin-oxide electrode is used. It may be.
  • the second electrode 50 is also commonly referred to as an upper electrode facing the first electrode 30, and is formed on the organic material layer 70.
  • the second electrode 50 is a cathode which is a cathode opposite to the first electrode 30 that is an anode (+).
  • the second electrode 50 is selected from any one of silver (Ag), aluminum (Al), and magnesium-silver (Mg: Ag) alloys, which are transparent metals.
  • the organic layer 70 is interposed between the first electrode 30 and the second electrode 50 to emit light by energization between the first electrode 30 and the second electrode 50.
  • the organic layer 70 has a hole injection layer (HIL) 72 and a hole transporting layer (HTL) so as to emit light by energization between the first electrode 30 and the second electrode 50.
  • HIL hole injection layer
  • HTL hole transporting layer
  • EML emissive layer
  • ETL electron transporting layer
  • EIL electron injection layer
  • the organic layer 70 may be spin coated, thermal evaporation, spin casting, sputtering, e-beam evaporation and chemical vapor deposition. It is interposed between the first electrode 30 and the second electrode 50 by a chemical vapor deposition (CVD) method or the like.
  • CVD chemical vapor deposition
  • the hole injection layer 72 serves to inject holes from the first electrode 30, and the hole transport layer 74 is a hole injected from the hole injection layer 72 and the electrons of the second electrode 50 It serves as a movement of holes to meet.
  • the electron injection layer 79 serves to inject electrons from the second electrode 50, and the electron transfer layer 78 moves electrons injected from the electron injection layer 79 from the hole transport layer 74. It serves as a movement path of electrons to meet in the hole and the light emitting layer 76.
  • the electron transport layer 78 may be formed by doping any one of metals having low work function and composites thereof to facilitate electron injection from the second electrode 50, and the electron injection layer 79 may be present. All can be applied regardless.
  • the metals having a low work function may include Cs, Li, Na, K, Ca, and the like, and the complex thereof may include Li-Al, LiF, CsF, Cs 2 CO 3 , and the like.
  • the light emitting layer 76 is interposed between the hole transport layer 74 and the electron transport layer 78 to emit light by holes from the hole transport layer 74 and electrons from the electron transport layer 78. That is, the light emitting layer 76 emits light by holes and electrons which meet at the interface with the hole transport layer 74 and the electron transport layer 78, respectively.
  • the light transmitting layer 90 may be formed between at least one of the organic material layer 70 and the second electrode 50 and an upper portion of the second electrode 50.
  • the light transmitting layer 90 may be formed on both the top and bottom surfaces of the second electrode 50, or may be formed on only one of the bottom and top surfaces of the second electrode 50.
  • a configuration in which the light transmitting layer 90 is formed on both the top and bottom surfaces with the second electrode 50 interposed therebetween is not limited thereto.
  • the configuration formed only one can be applied equally.
  • the light transmission layer 90 includes a first light transmission layer 91 formed between the organic material layer 70 and the second electrode 50, and a second light transmission layer 92 formed on the second electrode 50. can do.
  • the first light transmission layer 91 may be formed between the electron injection layer 79 and the second electrode 50 of the organic material layer 70, or may be formed on the electron injection layer 79 itself.
  • the second light transmission layer 92 may be stacked on an upper surface of the second electrode 50 opposite to the first light transmission layer 91.
  • the light transmitting layer 90 functions to allow the second electrode 50 to have a high transmittance while having a transmittance. Then, the light transmitting layer 90 is formed of a thin film to reduce the sheet resistance of the second electrode 50, thereby preventing the performance of the organic electroluminescent device 1.
  • the characteristics of the light-transmitting layer 90 will be described in detail with reference to FIGS. 2 to 4 after describing oxide-based, nitride-based, salts, and composites thereof to be described later.
  • the light transmitting layer 90 of the present invention may include any one of oxide-based, nitride-based, salts, and composites thereof.
  • the oxide series may include MoO 3, ITO, IZO, IO, ZnO, TO, TiO 2 , SiO 2 , WO 3 , Al 2 O 3 , Cr 2 O 3 , TeO 2 , SrO 2 , and the like.
  • the nitride series may include SiN, AIN, and the like.
  • the salts may include Cs 2 CO 3 , LiCO 3 , KCO 3 , NaCO 3 , LiF, CsF, ZnSe and the like.
  • the oxide-based, nitride-based, salts, and composites of the light-transmitting layer 90 are used, as shown in FIGS. 2 to 4, excellent transmittance and luminance effects are preferable.
  • the materials for allowing the second electrode 50 to have a high transmittance while having a permeability can be included.
  • the light transmitting layer 90 may be made of the same material as the first light transmitting layer 91 and the second light transmitting layer 92, but may be made of different materials.
  • the first light transmission layer 91 may include an oxide series and the second light transmission layer 92 may include a nitride series, a salt, and a combination thereof.
  • the first light transmission layer 91 may include a nitride series
  • the second light transmission layer 92 may include an oxide series, salts, or a combination thereof.
  • the first light transmission layer 91 may include salts
  • the second light transmission layer 92 may include an oxide-based, nitride-based, or a combination thereof.
  • the thickness of the light transmitting layer 90 is 0.1 nm or more and less than 100 nm.
  • the reason for limiting the thickness value of the light-transmitting layer 90 will be described. For example, when the thickness of the light-transmitting layer 90 becomes smaller than 0.1 nm, the transmittance increases, but the resistance also increases in proportion to the organic light emitting device ( The performance of 1) is lowered.
  • the light transmitting layer 90 when the thickness of the light transmitting layer 90 becomes larger than 100 nm, the resistance decreases and performance degradation does not occur. However, as the thickness of the light transmitting layer 90 increases, the transmittance decreases.
  • the light transmitting layer 90 according to the embodiment of the present invention is preferably formed by thermal evaporation.
  • FIG. 2 is a graph illustrating transmittance according to the presence or absence of a light-transmitting layer 90 formed on the organic light emitting display device 1 according to the present invention.
  • 'a' in FIG. 2 is a diagram of the organic light emitting display device 1 according to the present invention in which the light transmitting layer 90 is formed
  • 'b' is an organic light emitting display having no light transmitting layer 90 unlike the present invention. It is a diagram of the element 1.
  • the organic light emitting display device 1 according to the present invention may exhibit transmittance of 70 to 99% depending on the wavelength (nm).
  • the transmittance of the organic light emitting display device 1 according to the present invention is about 80%, and the light transmitting layer 90 is The organic electroluminescent element 1 without which represents about 47%.
  • the transmittance of the organic light emitting device 1 having the light transmitting layer 90 is 1.7 times higher than that of the organic light emitting device 1 having no light transmitting layer 90.
  • FIG. 3 is a luminance graph of the organic light emitting display device 1 with or without the light transmitting layer 90.
  • 'C' shown in FIG. 3 is a diagram of the organic electroluminescent device 1 according to the present invention
  • 'd' is a diagram of the organic electroluminescent device 1 without the light transmitting layer 90.
  • the organic electroluminescent device 1 with the light-transmitting layer 90 is about 25000, the organic electroluminescent device 1 without the light-transmitting layer 90 is about 20000 have. It can be seen that the luminance remains 1.25 times different depending on the presence or absence of the light transmitting layer 90.
  • the 'e' diagram of FIG. 4 shows oxides such as MoO 3, ITO, IZO, IO, ZnO, TO, TiO 2 , SiO 2 , WO 3 , Al 2 O 3 , Cr 2 O 3 , TeO 2 , SrO 2, and the like.
  • the transmittance of the light-transmitting layer 90 formed as a series, and the 'f' diagram is the transmittance of the light-transmitting layer 90 formed of salts such as Cs 2 CO 3 , LiCO 3 , KCO 3 , NaCO 3 , LiF, CsF, ZnSe, and the like. to be.
  • the oxide-based light transmissive layer 90 has a transmittance of about 80%, and the salt transmissive layer 90 has a difference of about 75%. Since the light transmission layer 90 including the oxide series has a transmittance of about 5% higher than that of the light transmission layer 90 including the salts, it is only a difference. Thus, as shown in the embodiment of the present invention, the oxide series, the salts, and the composite thereof It may be desirable to use it selectively.
  • the organic material layer 70 is formed on the first electrode 30 (S30).
  • the organic layer 70 formed on the first electrode 30 is in the order of the hole injection layer 72, the hole transport layer 74, the light emitting layer 76, the electron transport layer 78, and the electron injection layer 79. To form.
  • a first light transmission layer 91 is formed on the organic layer 70 (S50).
  • the first light-transmitting layer 91 is an oxide-based MoO 3, ITO, IZO, IO, ZnO, TO, TiO 2 , SiO 2 , WO 3 , Al 2 O 3 , Cr 2 O 3 , TeO 2 , SrO 2 , and the like.
  • the first light transmitting layer 91 is formed to have a thickness of 0.1 nm or more and less than 100 nm in consideration of resistance and transmittance.
  • a second electrode 50 is formed on the first light-transmitting layer 91.
  • the second electrode 50 uses a metal thin film as the cathode ( ⁇ ).
  • the metal thin film used as the second electrode 50 uses one of silver (Ag), aluminum (Al), and magnesium-silver (Mg: Ag) alloy.
  • the second transparent layer 92 is formed again on the second electrode 50 (S90).
  • the second light transmission layer 92 may include an oxide-based like the 'S50' step.
  • the second light transmitting layer 92 formed on the second electrode 50 includes a nitride series such as SiN, AIN, or Cs 2 CO 3 , LiCO 3 , KCO 3 , NaCO 3 , LiF, CsF Salts such as ZnSe, and combinations thereof.
  • the light-transmitting layer 90 may be formed with the second electrode 50 interposed therebetween to implement double-sided light emission and to improve transmittance.
  • the thickness of the second electrode 50 may be adjusted by forming the light transmitting layer 90, thereby improving transmittance and electrical performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

투명 캐소드의 광 투과율을 개선한 유기전계발발광소자 및 그 제조방법이 개시된다. 본 발명의 유기전계발광소자는 기판, 기판 상에 형성되는 제 1 전극, 제 1 전극 상에 형성되는 유기물층, 유기물층 상에 형성되는 제 2 전극, 및 유기물층과 제 2 전극 사이 및 제 2 전극의 상부 중 적어도 어느 하나에 형성되며, 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 포함할 수 있다. 이에 의하여, 본 발명은 캐소드 전극에 투광층을 형성하여 광 투과율의 증대 및 저항의 감소를 실현함으로써 제품의 전기적 성능을 향상시킬 수 있다.

Description

유기전계발광소자 및 그 제조방법
본 발명은, 유기전계발광소자에 관한 것으로서, 보다 상세하게는, 투명 캐소드의 광 투과율을 개선한 유기전계발광소자 및 그 제조방법에 관한 것이다.
일반적으로 유기전계발광소자(organic light emitting diode: OLED)는 기판, 기판 상에 적층되는 하부전극, 하부전극 상에 적층되는 유기물층 및 유기물층 상에 적층되는 상부전극을 포함한다.
이러한 유기전계발광소자는 하부전극으로 사용되는 애노드(anode)와 상부전극으로 사용되는 캐소드(cathode) 사이의 통전에 의해 발광한다. 즉, 유기전계발광소자의 발광은 상부전극의 전자 및 하부전극의 정공에 의해 상부전극과 하부전극 사이에 개재된 유기물층에서 일어나는 것이다.
여기서, 유기전계발광소자는 발광 방식에 따라 상부전극 및 하부전극을 통해 발광하는 양면발광 유기전계발광소자(transparent OLED), 상부전극을 통해 발광하는 전면발광 유기전계발광소자(top OLED) 및 하부전극을 통해 발광하는 배면발광 유기전계발광소자(bottom OLED)로 구분된다.
유기전계발광소자의 발광 방식은 상부전극 및 하부전극 중 투과성을 갖는 전극을 통해 이루어진다. 양면발광 방식의 경우 상부전극 및 하부전극이 모두 투과성을 가지고 있어야 한다. 일반적으로 하부전극은 투과성이 있는 인-주석 산화물 전극(indium-tin oxide: ITO)이 사용된다. 상부전극은 투과성이 있는 금속 박막을 사용하며, 이러한 금속 박막의 두께를 감소시킬 경우 투과율이 증가된다.
그런데, 상부전극의 투과율을 증가하기 위한 상부전극의 두께 감소는 상부전극의 면저항의 증가를 가져온다. 즉, 상부전극의 투과율을 높이기 위해 그 두께를 감소시키면 이에 따라 저항이 높아져 전체적인 유기전계발광소자의 성능 저하를 가져오는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 캐소드 전극의 투과율을 향상시킬 수 있는 유기전계발광소자를 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 캐소드 전극의 투과율 증가에 따른 저항의 증가를 저지할 수 있도록 구조가 개선된 유기전계발광소자를 제공하는데 있다.
본 발명의 또 다른 목적은 상기와 같은 유기전계발광소자의 제조방법을 제공하는데 있다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해되어질 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 유기전계발광소자는, 기판, 상기 기판 상에 형성되는 제 1 전극, 상기 제 1 전극 상에 형성되는 유기물층, 상기 유기물층 상에 형성되는 제 2 전극, 및 상기 유기물층과 상기 제 2 전극 사이 및 상기 제 2 전극의 상부 중 적어도 어느 하나에 형성되며, 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 포함할 수 있다.
여기서, 상기 산화물 계열은 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 중 어느 하나를 포함할 수 있다.
또한, 상기 질화물 계열은 SiN, AIN 중 어느 하나를 포함할 수 있다.
또한, 상기 염류는 Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 중 어느 하나를 포함할 수 있다.
또한, 상기 투광층의 두께는 0.1nm 이상 100nm 미만으로 형성되는 것이 바람직하다.
또한, 상기 유기물층은 상기 제2전극으로부터의 전자 주입을 원활하게 하기 위해 일함수가 낮은 금속류 및 이들의 복합물 중 어느 하나를 도핑하여 형성한 전자 전달층을 포함할 수 있다.
여기서, 상기 일함수가 낮은 금속류는 Cs, Li, Na, K, Ca 중 어느 하나를 포함할 수 있다.
또한, 상기 이들의 복합물은 Li-Al, LiF, CsF, Cs2CO3 중 어느 하나를 포함할 수 있다.
또한, 본 발명에 따른 유기전계발광소자는 파장(nm)에 따라 70~99%의 투과율을 나타낼 수 있다.
상기 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 유기전계발광소자의 제조방법은, 기판 상에 제1전극을 형성하는 단계, 상기 제1전극 상에 유기물층을 형성하는 단계, 상기 유기물층 상에 제2전극을 형성하는 단계, 및 상기 유기물층과 상기 제2전극 사이 및 상기 제2전극의 상부 중 적어도 어느 하나에 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 형성하는 단계를 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
상기한 바와 같은 본 발명의 유기전계발광소자 및 그 제조방법은 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 유기물층과 제2전극(케소드 전극) 사이 및 제2전극의 상부 중 적어도 어느 하나에 형성함으로써, 양면발광을 구현하는 동시에 투과율을 향상시킬 수 있다.
또한, 투광층을 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 물질로 구성함으로써, 제2전극의 내부 저항의 증가를 저지할 수 있어 제품의 전기적 성능을 향상시킬 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 유기전계발광소자의 구성 단면도이다.
도 2는 본 발명에 따른 유기전계발광소자의 투광층에 따른 투과율 그래프이다.
도 3은 본 발명에 따른 유기전계발광소자의 투광층에 따른 휘도 그래프이다.
도 4는 본 발명에 따른 유기전계발광소자에 산화물 계열과, 염류 및 이들의 복합물로 각각 투광층을 형성할 때의 투과율 그래프이다.
도 5는 본 발명에 따른 유기전계발광소자의 제조방법에 대한 순서도이다.
<도면의 주요부분에 대한 부호의 설명>
1 : 유기전계발광소자 10 : 기판
30 : 제1전극 50 : 제2전극
70 : 유기물층 72 : 정공 주입층
74 : 정공 전달층 76 : 발광층
78 : 전자 전달층 79 : 전자 주입층
90 : 투광층 91 : 제1 투광층
92 : 제2투광층
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 유기전계발광소자 및 그 제조방법을 상세히 설명하기로 한다. 참고로 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1에 도시된 바와 같이, 본 발명의 유기전계발광소자(1)는 기판(10), 제1전극(30), 제2전극(50), 유기물층(70) 및 투광층(90) 등을 포함할 수 있다.
기판(10)은 제1전극(30), 제2전극(50), 유기물층(70) 및 투광층(90)을 지지한다. 기판(10)은 발광되는 빛이 투과할 수 있도록 투과성을 가지고 있는 유리 재질 또는 플라스틱 재질을 사용한다.
제1전극(30)은 통상적으로 하부전극이라고 지칭하기도 하며, 기판(10) 상에 형성된다. 제1전극(30)은 양극(+)인 애노드(anode)이며 스퍼터링(sputtering) 방식, 이온 플레이팅(ion plating) 방식 및 전자총(e-gun) 등을 이용한 열 증착법에 의해 기판(10) 상에 형성된다. 여기서, 본 발명의 실시 예에 따른 제1전극(30)은 투과성을 가진 인-주석 산화물(indium tin-oxide) 전극을 사용하나, 투과성을 가진 인-아연 산화물(indium zin-oxide) 전극을 사용할 수도 있다.
제2전극(50)은 통상적으로 제1전극(30)과 대향되는 상부전극이라 지칭하기도 하며, 유기물층(70) 상에 형성된다. 제2전극(50)은 양극(+)인 제1전극(30)과 상반된 음극(-)인 캐소드(cathode)이다. 제2전극(50)은 투과성을 갖는 금속인 은(Ag), 알루미늄(Al) 및 마그네슘-은(Mg:Ag) 합금 중에 어느 하나를 선택하여 사용한다.
유기물층(70)은 제1전극(30)과 제2전극(50) 사이에 개재되어, 제1전극(30)과 제2전극(50) 사이의 통전에 의해 발광한다. 유기물층(70)은 제1전극(30)과 제2전극(50) 사이의 통전에 의해 발광하도록 정공 주입층(hole injection layer: HIL)(72), 정공 전달층(hole transporting layer: HTL)(74), 발광층(emissive layer: EML)(76), 전자 전달층(electron transporting layer: ETL)(78) 및 전자 주입층(electron injection layer: EIL)(79)으로 형성된다.
여기서, 유기물층(70)은 스핀코팅(spin coating) 방식, 열 증착(thermal evaporation) 방식, 스핀캐스팅(spin casting) 방식, 스퍼터링(sputtering) 방식, 전자빔 증착(e-beam evaporation) 방식 및 화학기상증착(chemical vapor deposition: CVD) 방식 등에 의해 제1전극(30)과 제2전극(50) 사이에 개재된다.
정공 주입층(72)은 제1전극(30)으로부터의 정공이 주입되는 역할을 하며, 정공 전달층(74)은 정공 주입층(72)으로부터 주입된 정공이 제2전극(50)의 전자와 만나도록 정공의 이동로 역할을 한다.
전자 주입층(79)은 제2전극(50)으로부터의 전자가 주입되는 역할을 하며, 전자 전달층(78)은 전자 주입층(79)으로부터 주입된 전자가 정공 전달층(74)으로부터 이동하는 정공과 발광층(76)에서 만나도록 전자의 이동로 역할을 한다.
전자 전달층(78)에는 제 2 전극(50)으로부터 전자 주입을 원활하게 하기 위해 일함수가 낮은 금속류 및 이들의 복합물 중 어느 하나를 도핑하여 형성할 수 있으며, 이는 전자 주입층(79)의 유무에 관계없이 모두 적용될 수 있다.
여기서, 상기 일함수가 낮은 금속류는 Cs, Li, Na, K, Ca 등을 포함할 수 있으며, 상기 이들의 복합물은 Li-Al, LiF, CsF, Cs2CO3 등을 포함할 수 있다.
한편, 발광층(76)은 정공 전달층(74)과 전자 전달층(78) 사이에 개재되어 정공 전달층(74)으로부터의 정공과 전자 전달층(78)으로부터의 전자에 의해 발광한다. 즉, 발광층(76)은 각각 정공 전달층(74) 및 전자 전달층(78)과의 계면에서 만나는 정공과 전자에 의해 발광하는 것이다.
투광층(90)은 유기물층(70)과 제2전극(50) 사이 및 제 2 전극(50)의 상부 중 적어도 어느 하나에 형성될 수 있다. 예를 들어, 투광층(90)은 제2전극(50)의 상면과 하면에 모두 형성될 수 있거나, 제2전극(50)의 하면 및 상면 중 어느 하나에만 형성될 수도 있다.
이하, 본 실시예에서는 투광층(90)이 제2전극(50)을 사이에 두고 상면과 하면에 모두 형성되는 구성을 예시하였으나, 이에 한정되지 않고 제2전극(50)의 하면 및 상면 중 어느 하나에만 형성되는 구성도 동일하게 적용될 수 있음은 물론이다.
투광층(90)은 유기물층(70)과 제2전극(50) 사이에 형성되는 제1투광층(91)과, 제2전극(50)의 상부에 형성되는 제2투광층(92)을 포함할 수 있다.
바람직하게는, 제 1투광층(91)은 유기물층(70) 중 전자 주입층(79)과 제2전극(50) 사이에 형성될 수 있으며, 전자 주입층(79) 자체에 형성될 수도 있다. 또한, 제2투광층(92)은 제1투광층(91)에 대향된 제2전극(50)의 상면에 적층될 수 있다.
여기서, 투광층(90)은 제2전극(50)이 투과성을 가지는 동시에 높은 투과율을 가질 수 있도록 기능을 한다. 그리고, 투광층(90)은 박막으로 형성되어 제2전극(50)의 면저항을 감소함으로써, 유기전계발광소자(1)의 성능 저하를 저지한다. 이러한 투광층(90)의 특성에 대해서는 후술할 산화물 계열, 질화물 계열, 염류 및 이들의 복합물을 설명한 후, 도 2 내지 도 4를 참조하여 상세히 설명하기로 한다.
본 발명의 투광층(90)은 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함할 수 있다.
여기서, 상기 산화물 계열은 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 등을 포함할 수 있다. 또한, 상기 질화물 계열은 SiN, AIN 등을 포함할 수 있다. 또한, 상기 염류는 Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 등을 포함할 수 있다.
상기와 같이 투광층(90)을 구성하는 산화물 계열, 질화물 계열, 염류 및 이들의 복합물을 사용하게 되면, 도2 내지 도4에 도시된 바와 같이 우수한 투과율과 휘도 효과를 나타내므로 바람직하지만, 상기와 같은 물질들 이외에도 제2전극(50)이 투과성을 가지는 동시에 높은 투과율을 가질 수 있도록 하는 물질은 모두 포함할 수 있다.
투광층(90)은 제1투광층(91)과 제2투광층(92)이 동일한 물질로 구성되지만, 서로 상이한 물질로 구성될 수도 있다. 예를 들어, 제1투광층(91)은 산화물 계열을 포함하고 제2투광층(92)은 질화물 계열, 염류 및 이들의 복합물을 포함할 수 있다. 또는 제1투광층(91)은 질화물 계열을 포함하고 제2투광층(92)은 산화물 계열, 염류 및 이들의 복합물을 포함할 수 있다. 또는 제1투광층(91)은 염류를 포함하고 제2투광층(92)은 산화물 계열, 질화물 계열 및 이들의 복합물을 포함할 수 있다.
투광층(90)의 두께는 0.1nm 이상 100nm 미만으로 형성되는 것이 바람직하다. 이러한 투광층(90)의 두께 수치 한정 이유를 예를 들어 설명하면, 투광층(90)의 두께가 0.1nm 미만으로 작아질 경우 투과율은 증가하나, 이에 비례하여 저항도 증가하므로 유기전계발광소자(1)의 성능이 저하된다.
반면, 투광층(90)의 두께가 100nm 이상으로 커질 경우에는 저항이 감소하여 성능 저하는 발생하지 않으나, 투광층(90) 두께의 증가에 따라 투과율이 감소한다. 그리고, 본 발명의 실시 예에 따른 투광층(90)은 열 증착법에 의해 형성되는 것이 바람직하다.
다음으로 도 2 내지 도 4에 도시된 바와 같이, 이러한 구성에 대해 본 발명에 따른 유기전계발광소자(1)의 특성을 이하에서 살펴보면 다음과 같다.
도 2는 본 발명의 유기전계발광소자(1)에 형성된 투광층(90) 유무에 따른 투과율 그래프이다. 여기서, 도 2의 'a'는 투광층(90)을 형성한 본 발명에 따른 유기전계발광소자(1)의 선도이고, 'b'는 본 발명과 달리 투광층(90)이 없는 유기전계발광소자(1)의 선도이다.
본 발명에 따른 유기전계발광소자(1)는 파장(nm)에 따라 70~99%의 투과율을 나타낼 수 있다. 예를 들어, 도 2에 도시된 바와 같이, 파장(nm)에 따른 투과율을 살펴보면, 550nm에서 본 발명에 따른 유기전계발광소자(1)의 투과율은 약 80%를 나타내고, 투광층(90)이 없는 유기전계발광소자(1)는 약 47%를 나타내고 있다. 이러한 결과에 대해 투광층(90)이 있는 유기전계발광소자(1)의 투과율은 투광층(90)이 없는 유기전계발광소자(1)에 대비 1.7배가 더 높음을 알 수 있다.
그리고, 도 3은 투광층(90) 유무에 따른 유기전계발광소자(1)의 휘도 그래프이다. 도 3에 도시된 'c'는 본 발명에 따른 유기전계발광소자(1)의 선도이고, 'd'는 투광층(90)이 없는 유기전계발광소자(1)의 선도이다.
전압(V) 10V에 따른 휘도를 살펴보면, 투광층(90)이 있는 유기전계발광소자(1)는 약 25000을 나타내고, 투광층(90)이 없는 유기전계발광소자(1)는 약 20000을 나타내고 있다. 투광층(90)의 유무에 따라 휘도는 1.25배가 차이 남을 알 수 있다.
다음으로 도 4의 'e' 선도는 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 등의 산화물 계열로 형성된 투광층(90)에 대한 투과율이고, 'f' 선도는 Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 등의 염류로 형성된 투광층(90)에 대한 투과율이다.
도 4에 도시된 바와 같이, 산화물 계열로 투광층(90)을 형성할 때 약80%의 투과율을 가지고 있고, 염류로 투광층(90)을 형성할 때 약75%의 차이가 있다. 산화물 계열을 포함하는 투광층(90)이 염류를 포함하는 투광층(90)보다 5% 정도 투과율이 높기는 하나 미차일 뿐이므로, 본 발명의 실시예와 같이 산화물 계열과 염류 및 이들의 복합물을 선택적으로 사용하는 것이 바람직할 것이다.
이러한 본 발명에 따른 유기전계발광소자(1)의 제조방법을 도 5를 참조하여 이하에서 살펴보면 다음과 같다.
우선, 기판(10) 상에 양극(+)인 제1전극(30)을 형성한다(S10).
기판(10) 상에 제1전극(30)을 형성한 후, 제1전극(30) 상에 유기물층(70)을 형성한다(S30). 여기서, 제1전극(30) 상에 형성하는 유기물층(70)은 정공 주입층(72), 정공 전달층(74), 발광층(76), 전자 전달층(78) 및 전자 주입층(79) 순서로 형성한다.
유기물층(70) 상에 제1투광층(91)을 형성한다(S50). 본 발명의 일 실시 예로서, 제1투광층(91)은 산화물 계열인 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 등을 포함할 수 있다. 제 1 투광층(91)은 저항 및 투과율을 고려하여 0.1nm 이상 100nm 미만의 두께로 형성한다.
그리고, 제1투광층(91) 상에 제2전극(50)을 형성한다(S70). 제2전극(50)은 음극(-)으로서 금속 박막을 사용한다. 제2전극(50)으로 사용되는 금속 박막은 은(Ag), 알루미늄(Al) 및 마그네슘-은(Mg:Ag) 합금 중 어느 하나를 사용한다.
제2전극(50) 상에 제2투광층(92)을 다시 형성한다(S90). 제2투광층(92)은 'S50' 단계와 같이 산화물 계열을 포함할 수 있다. 그러나, 제2전극(50) 상에 형성되는 제2투광층(92)은 선도는 SiN, AIN 등의 질화물 계열을 포함하거나, Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 등의 염류 및 이들의 복합물을 포함할 수 있다.
이에, 제2전극(50)을 사이에 두고 투광층(90)을 형성하여 양면발광을 구현하며 투과율을 향상시킬 수 있다.
또한, 투광층(90)을 형성하여 제2전극(50)의 두께를 조정할 수 있고, 이에 따라 투과율 및 전기적 성능을 향상시킬 수 있다.

Claims (17)

  1. 기판;
    상기 기판 상에 형성되는 제 1 전극;
    상기 제 1 전극 상에 형성되는 유기물층;
    상기 유기물층 상에 형성되는 제 2 전극; 및
    상기 유기물층과 상기 제 2 전극 사이 및 상기 제 2 전극의 상부 중 적어도 어느 하나에 형성되며, 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 포함하는 유기전계발광소자.
  2. 제1항에 있어서, 상기 산화물 계열은 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 중 어느 하나를 포함하는 유기전계발광소자.
  3. 제1항에 있어서, 상기 질화물 계열은 SiN, AIN 중 어느 하나를 포함하는 유기전계발광소자.
  4. 제1항에 있어서, 상기 염류는 Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 중 어느 하나를 포함하는 유기전계발광소자.
  5. 제1항에 있어서, 상기 투광층의 두께는 0.1nm 이상 100nm 미만으로 형성되는 것을 특징으로 하는 유기전계발광소자.
  6. 제1항에 있어서, 상기 유기물층은 상기 제2전극으로부터의 전자 주입을 원활하게 하기 위해 일함수가 낮은 금속류 및 이들의 복합물 중 어느 하나를 도핑하여 형성한 전자 전달층을 포함하는 것을 특징으로 하는 유기전계발광소자.
  7. 제6항에 있어서, 상기 일함수가 낮은 금속류는 Cs, Li, Na, K, Ca 중 어느 하나를 포함하는 유기전계발광소자.
  8. 제6항에 있어서, 상기 이들의 복합물은 Li-Al, LiF, CsF, Cs2CO3 중 어느 하나를 포함하는 유기전계발광소자.
  9. 제1항에 있어서, 상기 유기전계발광소자는 파장(nm)에 따라 70~99%의 투과율을 나타내는 것을 특징으로 하는 유기전계발광소자.
  10. 기판 상에 제1전극을 형성하는 단계;
    상기 제1전극 상에 유기물층을 형성하는 단계;
    상기 유기물층 상에 제2전극을 형성하는 단계; 및
    상기 유기물층과 상기 제2전극 사이 및 상기 제2전극의 상부 중 적어도 어느 하나에 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나를 포함하는 투광층을 형성하는 단계를 포함하는 유기전계발광소자의 제조방법.
  11. 제10항에 있어서, 상기 산화물 계열은 MoO3, ITO, IZO, IO, ZnO, TO, TiO2, SiO2, WO3, Al2O3, Cr2O3, TeO2, SrO2 중 어느 하나를 포함하는 유기전계발광소자의 제조방법.
  12. 제10항에 있어서, 상기 질화물 계열은 SiN, AIN 중 어느 하나를 포함하는 유기전계발광소자의 제조방법.
  13. 제10항에 있어서, 상기 염류는 Cs2CO3, LiCO3, KCO3, NaCO3, LiF, CsF, ZnSe 중 어느 하나를 포함하는 유기전계발광소자의 제조방법.
  14. 제10항에 있어서, 상기 투광층을 형성하는 단계는 산화물 계열, 질화물 계열, 염류 및 이들의 복합물 중 어느 하나의 두께를 0.1nm 이상 100nm 미만으로 형성되는 것을 특징으로 하는 유기전계발광소자의 제조방법.
  15. 제10항에 있어서, 상기 유기물층은 상기 제2전극으로부터의 전자 주입을 원활하게 하기 위해 일함수가 낮은 금속류 및 이들의 복합물 중 어느 하나를 도핑하여 형성한 전자 전달층을 포함하는 것을 특징으로 하는 유기전계발광소자의 제조방법.
  16. 제15항에 있어서, 상기 일함수가 낮은 금속류는 Cs, Li, Na, K, Ca 중 어느 하나를 포함하는 유기전계발광소자의 제조방법.
  17. 제15항에 있어서, 상기 이들의 복합물은 Li-Al, LiF, CsF, Cs2CO3 중 어느 하나를 포함하는 유기전계발광소자의 제조방법.
PCT/KR2010/002721 2009-05-13 2010-04-29 유기전계발광소자 및 그 제조방법 WO2010131853A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800211360A CN102422454A (zh) 2009-05-13 2010-04-29 一种有机发光二极管及其制备方法
EP10775055.6A EP2432040A4 (en) 2009-05-13 2010-04-29 ORGANIC ELECTROLUMINESCENT DIODE AND METHOD FOR MANUFACTURING THE SAME
JP2012510738A JP2012527083A (ja) 2009-05-13 2010-04-29 有機電界発光素子およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0041540 2009-05-13
KR20090041540 2009-05-13
KR1020090047783A KR101148886B1 (ko) 2009-05-13 2009-05-29 유기전계발광소자 및 그 제조방법
KR10-2009-0047783 2009-05-29

Publications (2)

Publication Number Publication Date
WO2010131853A2 true WO2010131853A2 (ko) 2010-11-18
WO2010131853A3 WO2010131853A3 (ko) 2011-01-27

Family

ID=43407665

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2010/002721 WO2010131853A2 (ko) 2009-05-13 2010-04-29 유기전계발광소자 및 그 제조방법
PCT/KR2010/002722 WO2010131854A2 (ko) 2009-05-13 2010-04-29 유기전계발광소자 및 그 제조방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002722 WO2010131854A2 (ko) 2009-05-13 2010-04-29 유기전계발광소자 및 그 제조방법

Country Status (6)

Country Link
US (2) US20100289017A1 (ko)
EP (2) EP2432040A4 (ko)
JP (2) JP2012527084A (ko)
KR (7) KR101182673B1 (ko)
CN (2) CN102422453A (ko)
WO (2) WO2010131853A2 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145344A (ja) 2010-01-12 2011-07-28 Seiko Epson Corp 電気光学装置とその駆動方法、及び電子機器
WO2012138181A2 (ko) * 2011-04-06 2012-10-11 네오뷰코오롱 주식회사 광학기기용 정보 표시 스크린
CN103137878A (zh) * 2011-11-29 2013-06-05 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
US20150188078A1 (en) * 2012-06-14 2015-07-02 Konica Minolta, Inc. Electroluminescent Element and Lighting Apparatus Comprising the Same
KR20140040650A (ko) * 2012-09-24 2014-04-03 네오뷰코오롱 주식회사 유기발광 표시장치
WO2014046514A1 (ko) * 2012-09-24 2014-03-27 네오뷰코오롱 주식회사 유기발광 표시장치
KR102133451B1 (ko) * 2013-02-22 2020-07-14 삼성전자주식회사 광전 소자 및 이미지 센서
CN104183753A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制作方法
CN104183715A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制作方法
CN104183760A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制作方法
KR20150019620A (ko) 2013-08-14 2015-02-25 삼성디스플레이 주식회사 유기발광 표시 장치
KR102232945B1 (ko) * 2014-07-24 2021-03-25 엘지디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR20160116121A (ko) 2015-03-25 2016-10-07 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이를 포함하는 표시 장치
WO2016182370A1 (ko) * 2015-05-14 2016-11-17 서울대학교산학협력단 웨어러블 양자점 디스플레이 장치 및 이를 포함하는 웨어러블 전자 장치
CN109360903A (zh) * 2018-10-31 2019-02-19 武汉华星光电技术有限公司 有机发光二极管显示器及其制造方法
US11239305B2 (en) 2019-07-24 2022-02-01 Taiwan Semiconductor Manufacturing Company, Ltd. Display device and manufacturing method thereof
JP2023540880A (ja) * 2020-08-20 2023-09-27 アプライド マテリアルズ インコーポレイテッド Oled光照射野アーキテクチャ
CN113707821A (zh) * 2021-07-08 2021-11-26 合肥福纳科技有限公司 用于电子传输层的组合物及其制备方法和应用

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125469A (ja) * 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
DE69727987T2 (de) * 1996-11-29 2005-01-20 Idemitsu Kosan Co. Ltd. Organische elektrolumineszente Vorrichtung
US5739545A (en) 1997-02-04 1998-04-14 International Business Machines Corporation Organic light emitting diodes having transparent cathode structures
JP3374035B2 (ja) * 1997-03-21 2003-02-04 三洋電機株式会社 有機エレクトロルミネッセンス素子
US6468676B1 (en) * 1999-01-02 2002-10-22 Minolta Co., Ltd. Organic electroluminescent display element, finder screen display device, finder and optical device
US6639357B1 (en) * 2000-02-28 2003-10-28 The Trustees Of Princeton University High efficiency transparent organic light emitting devices
JP2001338755A (ja) * 2000-03-21 2001-12-07 Seiko Epson Corp 有機el素子およびその製造方法
JP4632628B2 (ja) * 2000-09-07 2011-02-16 出光興産株式会社 有機電界発光素子
TW574110B (en) * 2001-10-25 2004-02-01 Matsushita Electric Works Ltd Composite thin film holding substrate, transparent conductive film holding substrate, and panel light emitting body
JP2003142262A (ja) * 2001-11-06 2003-05-16 Seiko Epson Corp 電気光学装置、膜状部材、積層膜、低屈折率膜、多層積層膜、電子機器
US6833667B2 (en) * 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
KR100480361B1 (ko) * 2002-04-18 2005-03-30 네오뷰코오롱 주식회사 박막형 게터층이 형성된 밀봉형 유기 발광 소자 및 그제조방법
JP4165145B2 (ja) * 2002-08-07 2008-10-15 株式会社日立製作所 有機発光表示装置
KR100662297B1 (ko) * 2002-10-18 2007-01-02 엘지전자 주식회사 유기 el 소자
JP2004140267A (ja) * 2002-10-18 2004-05-13 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
DE10252903A1 (de) * 2002-11-12 2004-05-19 Philips Intellectual Property & Standards Gmbh Organische elektrolumineszente Lichtquelle mit Antireflexionsschicht
JP4429917B2 (ja) * 2002-12-26 2010-03-10 株式会社半導体エネルギー研究所 発光装置、表示装置及び電子機器
JP4186688B2 (ja) * 2003-04-17 2008-11-26 三菱化学株式会社 エレクトロルミネッセンス素子
KR100527191B1 (ko) * 2003-06-03 2005-11-08 삼성에스디아이 주식회사 저저항 캐소드를 사용하는 유기 전계 발광 소자
KR100563058B1 (ko) * 2003-11-21 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 소자
GB0401613D0 (en) * 2004-01-26 2004-02-25 Cambridge Display Tech Ltd Organic light emitting diode
JP4131243B2 (ja) * 2004-02-06 2008-08-13 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、及び電子機器
JP4792732B2 (ja) * 2004-11-18 2011-10-12 株式会社日立製作所 反射防止膜及び反射防止膜を用いた光学部品及び反射防止膜を用いた画像表示装置
KR100629259B1 (ko) * 2004-03-19 2006-09-29 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그의 제조 방법
JP3813616B2 (ja) * 2004-03-22 2006-08-23 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP4564773B2 (ja) * 2004-04-07 2010-10-20 株式会社 日立ディスプレイズ 発光素子及びその表示装置
KR100730114B1 (ko) * 2004-04-19 2007-06-19 삼성에스디아이 주식회사 평판표시장치
WO2005112515A1 (ja) * 2004-05-17 2005-11-24 Zeon Corporation エレクトロルミネッセンス素子、照明装置、および表示装置
JP4461367B2 (ja) * 2004-05-24 2010-05-12 ソニー株式会社 表示素子
JP2008226859A (ja) * 2004-10-22 2008-09-25 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法、及び有機エレクトロルミネッセンス装置
JP2006139932A (ja) * 2004-11-10 2006-06-01 Pentax Corp 有機エレクトロルミネセンス素子、および有機エレクトロルミネセンス素子の製造方法
KR100968191B1 (ko) * 2004-11-16 2010-07-06 인터내셔널 비지네스 머신즈 코포레이션 유전체 캐핑층들을 포함하는 유기 발광 소자들
KR100623356B1 (ko) * 2004-12-29 2006-09-19 엘지전자 주식회사 유기 전계 발광 소자 및 이를 제조하는 방법
KR20060091648A (ko) * 2005-02-16 2006-08-21 삼성에스디아이 주식회사 다층 캐소드를 포함하는 유기 발광 소자
US7602118B2 (en) * 2005-02-24 2009-10-13 Eastman Kodak Company OLED device having improved light output
EP1701395B1 (de) * 2005-03-11 2012-09-12 Novaled AG Transparentes lichtemittierendes Bauelement
JP2006269387A (ja) * 2005-03-25 2006-10-05 Aitesu:Kk 有機el素子
JP5266514B2 (ja) * 2005-03-29 2013-08-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2007046246A1 (ja) * 2005-10-17 2007-04-26 Hirose Engineering Co., Ltd. 発光性組成物及び発光素子
JP4736890B2 (ja) * 2006-03-28 2011-07-27 大日本印刷株式会社 有機エレクトロルミネッセンス素子
JP5021998B2 (ja) * 2006-05-15 2012-09-12 ペンタックスリコーイメージング株式会社 ファインダー装置
JP2008041209A (ja) * 2006-08-09 2008-02-21 Tdk Corp 受光素子及びそれを用いた光ヘッド並びにそれを用いた光記録再生装置
US20080049431A1 (en) * 2006-08-24 2008-02-28 Heather Debra Boek Light emitting device including anti-reflection layer(s)
JP2008065984A (ja) * 2006-09-04 2008-03-21 Shin Etsu Polymer Co Ltd Elシートおよび押釦スイッチ用カバー部材
JP2008098475A (ja) * 2006-10-13 2008-04-24 Fuji Electric Holdings Co Ltd 有機発光素子の構造
KR100777744B1 (ko) * 2006-10-27 2007-11-19 삼성에스디아이 주식회사 평판 디스플레이 장치
KR100796603B1 (ko) * 2006-11-28 2008-01-21 삼성에스디아이 주식회사 유기전계발광소자 및 그의 제조방법
JP2008153590A (ja) * 2006-12-20 2008-07-03 Canon Inc 有機発光表示装置
KR20080067877A (ko) * 2007-01-17 2008-07-22 삼성전자주식회사 표시장치
JP5042685B2 (ja) * 2007-03-30 2012-10-03 双葉電子工業株式会社 有機el素子及びその製造方法
DE102007024152A1 (de) * 2007-04-18 2008-10-23 Osram Opto Semiconductors Gmbh Organisches optoelektronisches Bauelement
JP2008282652A (ja) * 2007-05-10 2008-11-20 Canon Inc 有機el素子の製造方法
JP2009088419A (ja) * 2007-10-03 2009-04-23 Canon Inc 電界発光素子及びその製造方法、並びに表示装置
KR101528242B1 (ko) * 2007-10-10 2015-06-15 삼성디스플레이 주식회사 백색 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이장치
JP5551369B2 (ja) * 2008-02-28 2014-07-16 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2432040A4

Also Published As

Publication number Publication date
KR20100122834A (ko) 2010-11-23
KR101092967B1 (ko) 2011-12-12
KR20110124180A (ko) 2011-11-16
JP2012527084A (ja) 2012-11-01
CN102422453A (zh) 2012-04-18
KR20100122829A (ko) 2010-11-23
KR101148886B1 (ko) 2012-05-29
KR101196329B1 (ko) 2012-11-01
EP2432041A2 (en) 2012-03-21
EP2432041A4 (en) 2013-10-23
WO2010131854A2 (ko) 2010-11-18
KR20120073183A (ko) 2012-07-04
WO2010131853A3 (ko) 2011-01-27
CN102422454A (zh) 2012-04-18
KR20100122831A (ko) 2010-11-23
KR101182673B1 (ko) 2012-09-14
US20100289016A1 (en) 2010-11-18
KR20100122828A (ko) 2010-11-23
US20100289017A1 (en) 2010-11-18
KR101352370B1 (ko) 2014-01-27
JP2012527083A (ja) 2012-11-01
WO2010131854A3 (ko) 2011-01-27
KR20110120850A (ko) 2011-11-04
EP2432040A4 (en) 2013-10-23
EP2432040A2 (en) 2012-03-21
KR101086881B1 (ko) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2010131853A2 (ko) 유기전계발광소자 및 그 제조방법
CN100517792C (zh) 高效率的有机发光装置及其制造方法
CN1498048B (zh) 有机电致发光装置
WO2010030075A2 (ko) 디스플레이 장치, 이를 구비하는 모바일 기기 및 디스플레이 제어 방법
WO2015047049A1 (ko) 유기전자장치
CN100565970C (zh) 有机电致发光装置制造方法及有机电致发光装置
WO2009142462A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2010093119A2 (ko) Oled 패널의 화소 회로, 이를 이용한 표시 장치 및 oled 패널의 구동 방법
WO2015026185A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2012005540A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2010030074A2 (ko) 키패드 장치, 이를 구비하는 모바일 기기 및 키패드 제어 방법
CN104466022B (zh) 一种有机发光二极管显示器件及其制备方法
WO2009093873A2 (ko) 유기 발광 소자 및 이의 제작 방법
WO2015047044A1 (ko) 유기전자장치의 제조 방법
JP5744457B2 (ja) 有機発光表示装置およびその製造方法
WO2015047052A1 (ko) 유기 발광 소자
WO2016047936A1 (ko) 플렉서블 기판 및 그 제조방법
JP2008135625A (ja) 有機発光表示装置
WO2016111535A1 (ko) 탠덤형 유기발광소자
WO2014109533A1 (ko) 엘씨디 디스플레이 장치 및 이를 구비한 쇼윈도
WO2017074029A1 (ko) 유기발광소자
WO2016093603A1 (ko) 유기전계발광 소자 및 그를 포함하는 유기전계발광 표시장치
CN101017884A (zh) 自发光显示装置
US10700299B2 (en) Method for manufacturing organic light emitting diode using conductive protective layer
CN101872781B (zh) 影像显示系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021136.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10775055

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012510738

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010775055

Country of ref document: EP