WO2007046246A1 - 発光性組成物及び発光素子 - Google Patents

発光性組成物及び発光素子 Download PDF

Info

Publication number
WO2007046246A1
WO2007046246A1 PCT/JP2006/319990 JP2006319990W WO2007046246A1 WO 2007046246 A1 WO2007046246 A1 WO 2007046246A1 JP 2006319990 W JP2006319990 W JP 2006319990W WO 2007046246 A1 WO2007046246 A1 WO 2007046246A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
formula
light emitting
represented
mass
Prior art date
Application number
PCT/JP2006/319990
Other languages
English (en)
French (fr)
Inventor
Tadao Nakaya
Tauto Nakanishi
Sinta Morokoshi
Original Assignee
Hirose Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirose Engineering Co., Ltd. filed Critical Hirose Engineering Co., Ltd.
Publication of WO2007046246A1 publication Critical patent/WO2007046246A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to a light-emitting composition and a light-emitting device, and more particularly to a light-emitting composition suitable for a light-emitting layer in a light-emitting device and a light-emitting device capable of emitting light with high luminance.
  • An organic EL element has a light emitting layer, an electron transport layer, and a hole transport layer, and causes a light emitting substance to emit light by energy generated by recombination of electrons and holes injected from an electrode.
  • Non-patent Document 1 The development of such luminescent materials is progressing, but mainly low molecular weight compounds.
  • the low molecular weight light-emitting substance has a problem that it is inferior in workability because it is processed by a method such as vapor deposition, solvent, and coating after processing. .
  • vapor deposition is usually performed by heating a luminescent material into a vapor under high vacuum and solidifying and fixing the vapor of the luminescent material at a predetermined site. Therefore, the vapor deposition operation is extremely large, equipped with a vacuum exhaust device that realizes a high vacuum, a high-temperature heating device that heats the luminescent material, and a device that solidifies the luminescent material vapor on the electrode surface formed on the substrate. A vapor deposition apparatus is required.
  • a light emitting device using a low molecular weight light emitting compound has a problem that its light emission luminance is low and its practicality is poor.
  • Non-Patent Literature 1 Nihon Jitsugyo Publishing Co., Ltd., March 1, 2004, 6th edition, “All about organic EL” (P. 170) Disclosure of the invention
  • the present invention provides a luminescent composition suitable for a light-emitting layer in a light-emitting element that can form a light-emitting layer in the form of a solution without vapor deposition and realizes light emission with high brightness. Another object is to provide a light-emitting element that can emit light with high luminance.
  • Claim 1 is a polybulur rubazole, a dialkylfluoroxadiazole-pyrene structure represented by the following formula (1), and a dicarbazole compound represented by the following formula (2): It is a luminescent composition characterized by containing.
  • R 1 is an alkyl group having 1 to 15 carbon atoms
  • R 2 is an alkyl group having 1 to 15 carbon atoms.
  • the number of R 2 bonded to the pyrene skeleton is 0-9.
  • R 3 is an aromatic group in which the hydrogen atom is substituted with an alkyl group.
  • the second aspect of the present invention provides the polyvinyl carbazole based on the total of the polybulur rubazole, the dialkylfluorene oxadiazo-l-pyrene structure represented by the formula (1), and the dicarbazole compound represented by the formula (2). from the most 90 wt%, the dialkyl kill fluorene Okisajiazoru pyrene structure at most 60 mass 0/0, the deer Rubazorui ⁇ product is at most in each formulation a range of 70 wt%, the Poribyuru force Luba 2.
  • a third aspect of the present invention is a light emitting element comprising the luminescent composition according to the first or second aspect as a light emitting layer between electrodes.
  • the light-emitting composition according to the present invention comprises polyvinylcarbazole as a base material, and a dialkyl fluorenoxadiazole pyrene structure and a dicarbazole compound are dispersed in the base material. Therefore, this luminescent composition is suitably used for the light emitting layer of the light emitting device. Can be used.
  • Carbazole in divinylcarbazole, dialkylfluorene oxadiazo, fluorene in a one-lupylene structure, and carbazole in a dicarbazole compound all have similar structures. Therefore, the compatibility between the dialkylfluorene oxadiazole pyrene structure and the dicarbazole compound with respect to polybulur rubazole is good. Therefore, a light-emitting composition is formed in which the dialkylfluoroxadiazol-pyrene structure and the dicarbazole compound are uniformly dispersed in polyvinyl carbazole.
  • this light-emitting composition is used as a light-emitting layer in a light-emitting device, since the components forming the light-emitting layer are uniformly dispersed, the light-emitting layer itself becomes a uniform thread and can be formed from any part of the light-emitting layer. Uniform light emission is realized.
  • a force rubazole group is bonded as a side chain to a helix main chain.
  • These force rubazole groups protrude outside the helix coil of the main chain, and as a result of the interaction of the ⁇ electrons of the adjacent force rubazole groups, they function as hole transport agents.
  • the hole transport function of this polybulur rubazole is enhanced from dialkyl fluorene oxadiazole pyrene structure and dicarbazole compound. Therefore, a light-emitting element using this light-emitting composition can emit light with high luminance while having no simple structure of a laminated structure without the need to provide an electron transport layer.
  • the two alkyl groups R ⁇ R 1 in the fluorene skeleton of the dialkylfluorene oxaziazo-lupylene structure are loosely bonded to the polybule rubazole backbone in the luminescent composition, that is, due to van der Waals forces.
  • the pyrene skeleton in the dialkyl fluorene oxadiazo-lupilene structure and the force rubazole side chain in polyvinyl carbazole take an interaction-smooth space configuration.
  • the R 3 group attached to the nitrogen atom in the dicarbazyl compound also forms a loose bond with the polyvinyl rubazole backbone, ie, a van der Waals force bond.
  • the emission of high luminance occurs. Guess when possible.
  • it is possible to provide a light-emitting composition suitable for a light-emitting layer in a light-emitting element it is possible to easily form a light-emitting layer by a polymer processing technique, resulting in high brightness.
  • a light-emitting element that emits light can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a light emitting device of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another example of the light emitting device of the present invention.
  • FIG. 3 is an NMR vector chart showing a hydrazide compound (6) in Example 1.
  • FIG. 4 is an NMR vector chart of 9,9-dioctylfluorene oxadiazo-l-pyrene structure (7) in Example 1.
  • FIG. 5 is an IR ⁇ vector chart of the 9,9-dioctylfluoreneoxadiazo-l-pyrene structure (7) in Example 1.
  • FIG. 6 is a fluorescence spectrum chart of the 9,9-dioctylfluoreneoxadiazo-l-pyrene structure (7) in Example 1.
  • FIG. 7 is a graph showing the relationship between voltage and luminance, a graph showing the relationship between voltage and current density, a graph showing the relationship between current density and luminance, and A graph showing the relationship with luminous efficiency and an XY chromaticity diagram are shown.
  • FIG. 8 shows a relative spectral distribution of the light-emitting element in Example 1.
  • FIG. 9 shows the voltage, luminance, and luminance for a light-emitting element having a light-emitting layer formed of a light-emitting composition having a different concentration of the dicarbazole compound (8) represented by formula (8). It is a graph which shows the relationship of.
  • the light-emitting composition according to the present invention includes a polybulur rubazole, a dialkylfluorene oxadiazo-lupylene structure represented by the following formula (1), a dicarbazole compound represented by the following formula (2), and Containing.
  • the polyvinyl carbazole usually has a number average molecular weight of about tens of thousands to hundreds of thousands. When the molecular weight is smaller than this range, it is good as a light emitting layer in a light emitting device. However, when the molecular weight is larger than this range, the solubility in a solvent may be lowered. In the present invention, a commercially available polyvinyl carbazole can be used as it is.
  • the content of polyvinyl carbazole in the luminescent composition according to the present invention is usually represented by this polybulur rubazole, a dialkylfluorene diazol-lupylene structure represented by the above formula (1), and the above formula (2).
  • the polycarbazole and the dialkylfluorene oxadiazo-l-pyrene structure represented by the above formula (1) within a range of 90% by mass or less, preferably 5 to 90% by mass with respect to the total of the dicarbazole compound.
  • the dicarbazole compound represented by the above formula (2) are appropriately selected so that the total mixing ratio becomes 100%.
  • This polybulur rubazole exhibits a function as a hole transport agent when used in a light emitting layer of a light emitting device.
  • R 1 is an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 4 to 12 carbon atoms.
  • the carbon number of R 1 may be 16 or more, but a technical effect commensurate with the increase in the carbon number cannot be achieved.
  • the alkyl group represented by R 1 may be linear or branched.
  • the two substituents R 1 bonded to carbon in the fluorene skeleton may be the same or different.
  • R 2 in the dialkylfluorene oxadiazo-lupyrene structure represented by the formula (1) is an alkyl group having 1 to 15 carbon atoms.
  • the alkyl group represented by R 2 may be linear or branched.
  • the number of R 2 bonded to the pyrene skeleton is 0-9.
  • the dialkylfluorene oxadiazo-lupyrene structure represented by the formula (1) is composed of the polycarbcarbazole, the dialkylfluoreneoxazadiazole-pyrene structure represented by the formula (1), and the formula
  • the content ratio with respect to the total of the dicarbazole compound represented by (2) is at most 60% by mass, preferably within the range of 5 to 60% by mass.
  • the force S is appropriately selected so as to be 100% by mass.
  • dialkylfluorene oxaziazo-lupylene structure represented by the formula (1) is:
  • the starting material (2-1) in the reaction formula (3) can be easily produced by 9,9-dialkylfluorene force ordinary organic chemical synthesis techniques.
  • the starting material (2-2) in the reaction formula (3) can also be easily produced by a conventional method of organic chemical synthesis with pyrene force. Moreover, these can use a commercial item as it is.
  • the reaction between the starting material (2-1) and the starting material (2-2) is carried out by heating in the presence of pyridine or the like in an organic solvent such as a polar organic solvent such as THF or dioxane.
  • the intermediate (2-3) produced by the reaction is ring-closed by heating to give a dialkylfluorenoxadiazole pyrene structure represented by the formula (2).
  • This dialkylfluorene-oxadiazole-pyrene structure is a luminescent compound.
  • R 3 in the dicarbazole compound represented by the formula (2) is an aromatic group in which the hydrogen atom may be substituted with an alkyl group.
  • the aromatic group include a phenyl group, a naphthyl group, an anthryl group, and a pyrenyl group.
  • the alkyl group that may be bonded to the aromatic group include alkynole groups having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms.
  • the dicarbazole compound represented by the formula (2) and The content ratio with respect to the sum total of the dialkylfluorene oxadiazo-one-lupylene structure represented by the formula (1) and the dicarbazole compound represented by the formula (2) is 70% by mass, preferably 5 to 70% by mass. %, So that the total of the polyvinylcarbazole, the dialkylfluorene oxadiazo-lupylene structure represented by the formula (1) and the dicarbazole compound represented by the formula (2) is 100% by mass. Is selected as appropriate.
  • the dicarbazole compound represented by the formula (2) has a high compatibility with polyvinyl carbazole, and exhibits a hole transport function for transporting holes more efficiently than polyvinyl carbazole.
  • the light-emitting composition according to the present invention comprises the polyvinyl carbazole, the dialkylfluorene oxadiazo-lupylene structure represented by the formula (1), and the dicarbazole compound represented by the formula (2). It can also be obtained by simply mixing at a predetermined ratio, but usually, each component is uniformly distributed by dissolving in a solvent and mixing in the form of a solution, and then removing the solvent. A mixture can be obtained.
  • Examples of the solvent used for mixing include organic solvents such as black mouth form, DMF, DMSO, THF, dioxane, dichlorobenzene, nitrobenzene, toluene and xylene. Since this luminescent composition can be dissolved in the above-mentioned various organic solvents, it can be easily formed into a film by, for example, a casting method.
  • organic solvents such as black mouth form, DMF, DMSO, THF, dioxane, dichlorobenzene, nitrobenzene, toluene and xylene. Since this luminescent composition can be dissolved in the above-mentioned various organic solvents, it can be easily formed into a film by, for example, a casting method.
  • the luminescent composition according to the present invention is suitably used for a light emitting layer in a light emitting device.
  • FIG. 1 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light-emitting element 1 includes a transparent substrate 2, an anode 3, a hole injection layer 4, a hole transport layer (also referred to as a hole transport layer) 5, a light-emitting layer 6, an electron transport layer 7, and an electron injection layer 8 And the cathode 9 are stacked in that order.
  • Each layer constituting the light-emitting element 1 is formed on the transparent substrate 2, and examples of the transparent substrate 2 include a glass substrate, a plastic substrate, and a silicon substrate.
  • the anode 3 various materials can be adopted as long as the work function is large and transparent. For example, indium tin oxide (ITO), In O, SnO, ZnO, CdO, etc. Or a conductive polymer material such as polyaline.
  • ITO indium tin oxide
  • In O In O
  • SnO zinc oxide
  • ZnO zinc oxide
  • CdO conductive oxide
  • the unevenness of the thickness of the anode 3 affects the film thickness of the light emitting layer, so that smoothness is required.
  • the thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the anode 3 is formed on the transparent substrate 2 by chemical vapor deposition, spray pyrolysis, vacuum evaporation, electron beam evaporation, sputtering, ion beam sputtering, ion plating, ion assist. It can be formed by a method such as vapor deposition.
  • the hole injection layer 4 includes triphenylamine compounds such as N, N, -diphenyl N, N, one di (m tolyl) one benzidine (TPD), a-NPD, hydrazone.
  • triphenylamine compounds such as N, N, -diphenyl N, N, one di (m tolyl) one benzidine (TPD), a-NPD, hydrazone.
  • examples include stilbene compounds such as compounds, stilbenebis [N- (1 naphthyl) N phenol] benzidine compounds, heterocyclic compounds, and ⁇ -electron starburst hole transport materials. be able to.
  • the hole transport layer 5 is formed of a known material.
  • the hole transport layer 5 can be formed by, for example, a spin casting method, a coating method, a dip method or the like without using a vapor deposition method.
  • the light emitting layer 6 is a layer containing the light emitting composition according to the present invention.
  • the luminescent layer 6 can be formed by a coating method using a solution obtained by dissolving the luminescent composition according to the present invention in a solvent, for example, a spin casting method, a coating method, a dip method, or the like.
  • the thickness of the light emitting layer 6 is 5 nm to l ⁇ m, preferably 100 nm to 500 nm.
  • the electron transport layer 7 is formed of a known material.
  • the electron transport layer 7 can be formed by, for example, a spin casting method, a coating method, a dip method, or the like without using a vapor deposition method.
  • Examples of the electron injection layer 8 include 2,5 bis (1 naphthyl) 1,3,4 oxadiazole (BND), 2- (4-tert butylphenol) -5- (4 biphenyl). ) — Oxadiazole derivatives such as 1,3,4-oxadiazole, 2,5 bis (5,1 tertbutyl-1,2, benzoxazolyl) thiophene, tris (8 quinolinolato) aluminum complex (A lq3), benzo For example, a metal complex-based material such as quinolinol beryllium complex (Bebq2) may be used.
  • the electron injection layer 8 is formed by vapor deposition, coating, for example It can be formed by a pin casting method, a coating method, a dip method, or the like.
  • the cathode 9 is made of a material having a low work function, and is made of, for example, a simple metal such as Mg, Ag, an aluminum alloy, a metal calcium, or a metal alloy, and cesium carbonate. Can do. Suitable cathodes are cesium carbonate and aluminum bilayer electrodes and aluminum and small amounts of lithium alloy electrodes.
  • the cathode 9 is formed on the surface of each layer formed on the transparent substrate 2 by chemical vapor deposition, spray pyrolysis, vacuum evaporation, electron beam evaporation, sputtering, ion beam sputtering, ion It can be formed by a method such as plating or ion-assisted deposition.
  • the cathode film thickness is usually ⁇ ⁇ ! ⁇ 1 ⁇ m, preferably 50 to 200 nm.
  • the light emission efficiency is improved, which is convenient.
  • the light-emitting element 1 having such a layer configuration, holes are injected from the anode 3 into the hole injection layer 4 by passing an electric current, and the light is transmitted through the hole transport layer 5.
  • holes are injected into the light emitting layer 6, and electrons are injected from the cathode 9 toward the light emitting layer 6 containing the light emitting compound.
  • electrons and holes are combined, and the energy generated thereby excites the phosphor (light emitting compound) of the light emitting layer 6, and emits light when this excited state returns. Release energy.
  • the thickness of the light-emitting element 1 is usually 0.1 to 0.3 m.
  • the light emitting device according to the present invention is not limited to the light emitting device having the layer configuration shown in FIG. 1, and includes an applied voltage polarity variable structure type EL device, a temperature stable type multilayer EL device, and the like.
  • the light-emitting device according to the present invention has a hole transport layer 5 on the surface of the electrode 3, a light-emitting layer 6 made of the light-emitting composition according to the present invention, an electron transport layer 7 and an electrode. It includes a light emitting device in which 9 layers are stacked in this order.
  • the electrode 9 may be a single layer electrode or an electrode composed of a plurality of layers.
  • a sample solution was prepared by dissolving the identified 9,9-dioctylfluorenoxadiazole-pyrene structure (7) represented by the formula (7) in toluene.
  • This sample solution was loaded into an F-4500 spectrofluorometer manufactured by Hitachi, Ltd., and the fluorescence spectrum was measured under the following conditions. The obtained fluorescence spectrum chart is shown in FIG.
  • a light emitting device was manufactured as follows.
  • ITO substrate 50 X 50mm, Sanyo Vacuum Industry Co., Ltd.
  • semi-clean Yokohama Yushi Kogyo Co., Ltd.
  • pure water 10 minutes
  • oxygen plasm 120 seconds with plasma asher device (manufactured by Mori Engineering Co., Ltd.) It was processed.
  • a hole transport agent (Baytron PVPCH8000) was applied to the surface of this ITO substrate by spin coating (Mikasa Co., Ltd., 1H—D7, rotation speed: 4500 rpm), and dried at 200 ° C for 15 minutes. As a result, a hole transport layer having a thickness of 50 nm was formed.
  • the prepared toluene solution for the light emitting layer was placed on the hole transport layer on the ITO substrate using a spin coater (Mikasa Co., Ltd., 1H-D7, rotation speed: 2500 rpm). The solution was dropped and spin coated to form a light emitting layer.
  • a substrate with a light-emitting layer formed to a film thickness of 50 nm was heated and dried at 130 ° C for 15 minutes, and then the following formula was used with a vacuum evaporation system (Small-EL VESSOl l type, manufactured by Totsuki Corporation).
  • the sensitizer shown in (10) is vapor-deposited to a thickness of 36.9 nm, a Cs CO layer (thickness: 2.8 nm) is formed on the vapor-deposited layer, and an aluminum layer (thickness) is formed thereon.
  • This light-emitting element had a voltage of 13.50 V, a current of 98.47 mA, a luminance of 18240 CdZm 2 , a chromaticity X value of 0.2734, and a chromaticity Y value of 0.4850.
  • a graph showing the relationship between voltage and luminance, a graph showing the relationship between voltage and current density, a graph showing the relationship between current density and luminance, and the relationship between voltage and luminous efficiency are shown.
  • the graph and the XY chromaticity diagram are shown in FIG. 7, and the relative spectral distribution of the light emitting element is shown in FIG.
  • FIG. 9 is a graph showing the relationship between the voltage and the luminance of each of the light-emitting elements prepared in the same manner as described above except that the toluene solution for the light-emitting layer thus prepared was used.
  • the case where the content of the dicarbazole compound (8) represented by the formula (8) in the toluene solution for the light emitting layer is 61% by mass is indicated by “ ⁇ ”, and 51% by mass.
  • Some cases are indicated by “country”, and 46% by mass are indicated by “ ⁇ ”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、高輝度で発光可能な発光層に好適な発光性組成物及び高輝度で発光可能な発光素子を提供することを目的とする。本発明は、ポリビニルカルバゾールと、アルキル基が炭素数1~15であるジアルキルフルオレン-オキサジアゾール-ピレン構造体と、窒素原子にアルキル基が置換してもよい芳香族基を有するジカルバゾール化合物とを含有することを特徴とする発光性組成物、及び前記発光性組成物を発光層とし、この発光層を電極で挟んでなる発光素子である。

Description

明 細 書
発光性組成物及び発光素子
技術分野
[0001] この発明は、発光性組成物及び発光素子に関し、更に詳しくは、例えば発光素子 における発光層に好適な発光性組成物及び高輝度で発光可能な発光素子に関す る。
背景技術
[0002] 有機 EL素子は、発光層、電子輸送層及びホール輸送層を有し、電極から注入され た電子とホールとが再結合することによって生じるエネルギーにより発光物質を発光 させる。
[0003] このような発光物質の開発が進んでいるが、主に低分子系の化合物を中心になさ れてきた (非特許文献 1)。
[0004] し力しながら、低分子系の発光物質は、加工する際に、蒸着、溶媒へ溶解した後、 塗布等の方法によって、加工されるので、加工性に劣るという問題点があった。
[0005] 例えば、蒸着は、通常高真空下に発光物質を加熱して蒸気にし、発光物質の蒸気 を所定の部位に固化定着させることにより行われる。したがって、蒸着操作には、高 真空を実現する真空排気装置、発光物質を加熱させる高温加熱装置、基板上に形 成した電極表面に発光物質蒸気を固化させるための装置等を備えた、極めて大型 の蒸着装置が必要である。
[0006] このような大型で、複雑な装置構成を有する蒸着装置の使用は、有機 EL素子製造 における一つのネックとなって!/、る。
[0007] また、溶媒へ溶解させた後、塗布する方法においては、溶媒を選択することが困難 であると!/ヽぅ問題点が生ずる。
[0008] 低分子系の発光性化合物を用いた発光素子はその発光輝度が低くて実用性に乏 しいという問題もある。
[0009] 非特許文献 1:日本実業出版社、 2004年 3月 1日第 6刷発行、「有機 ELのすベて」 ( P. 170) 発明の開示
発明が解決しょうとする課題
[0010] 本発明は、蒸着によらずに溶液の形で発光層を形成することができ、し力も高輝度 の発光を実現する発光素子における発光層に好適な発光性組成物を提供し、また、 高輝度で発光可能な発光素子を提供することを課題とする。
課題を解決するための手段
[0011] この発明の前記課題を解決する手段として、
請求項 1は、ポリビュル力ルバゾールと、以下の式(1)で示されるジアルキルフルォレ ンーォキサジァゾールーピレン構造体と、以下の式(2)で示されるジカルバゾール化 合物とを含有することを特徴とする発光性組成物である。
[0012] [化 1]
Figure imgf000004_0001
[0013] [化 2]
Figure imgf000005_0001
[0014] [ただし、式(1)において R1は炭素数 1〜15のアルキル基であり、 R2は炭素数 1〜15 のアルキル基である。ピレン骨格に結合する R2の数は 0〜9である。
[0015] 式(2)にお 、て R3は、その水素原子がアルキル基で置換されて 、てもよ 、芳香族 基である。 ]
この発明の前記課題を解決する手段として、
請求項 2は、前記ポリビュル力ルバゾールと前記式(1)で示されるジアルキルフルォ レン ォキサジァゾ一ルーピレン構造体と前記式(2)で示されるジカルバゾール化 合物との合計に対し、前記ポリビニルカルバゾールが多くても 90質量%、前記ジアル キルフルオレン ォキサジァゾール ピレン構造体が多くても 60質量0 /0、前記ジカ ルバゾールイ匕合物が多くても 70質量%の各配合範囲内から、前記ポリビュル力ルバ ゾールと前記ジアルキルフルオレン ォキサジァゾール ピレン構造体と前記ジカ ルバゾールイ匕合物との配合合計が 100質量%になるように選択されてなる前記請求 項 1に記載の発光性組成物である。
[0016] この発明の前記課題を解決する手段として、
請求項 3は、前記請求項 1又は 2に記載の発光性組成物を発光層として電極間に有 してなることを特徴とする発光素子である。
発明の効果
[0017] この発明に係る発光性組成物は、ポリビニルカルバゾールを基材とし、ジアルキル フルオレン ォキサジァゾール ピレン構造体とジカルバゾール化合物とを基材中 に分散してなる。したがって、この発光性組成物を、発光素子の発光層に好適に使 用することができる。
[0018] ポリビ-ルカルバゾール中のカルバゾール、ジアルキルフルオレン ォキサジァゾ 一ルーピレン構造体におけるフルオレン、ジカルバゾール化合物におけるカルバゾ ールはいずれも類似の構造である。したがって、ポリビュル力ルバゾールに対する、 ジアルキルフルオレン ォキサジァゾール ピレン構造体とジカルバゾール化合物 との相溶性が、良好である。故に、ポリビ-ルカルバゾール中にジアルキルフルォレ ンーォキサジァゾールーピレン構造体とジカルバゾールイ匕合物とが均一に分散した 発光性組成物が形成される。この発光性組成物を発光素子における発光層とすると 、発光層を形成する各成分が均一に分散しているので、発光層自体が均一な糸且成と なり、発光層のいずれの部分からも均一な発光が実現される。
[0019] ポリビュル力ルバゾールは、ヘリックスとなった主鎖に、側鎖として力ルバゾール基 を結合する。これらの力ルバゾール基は主鎖のへリックスコイルの外側に突き出し、隣 接する力ルバゾール基の π電子が相互作用する結果として、ホール輸送剤としての 機能を獲得する。このポリビュル力ルバゾールの有するホール輸送機能力 ジアルキ ルフルオレン ォキサジァゾール ピレン構造体とジカルバゾール化合物と〖こより増 強される。したがって、この発光性組成物を用いた発光素子は、電子輸送層を設ける 必要がなく積層構成の簡単な構造でありながら、高輝度で発光可能となる。
[0020] ジアルキルフルオレン ォキサジァゾ一ルーピレン構造体のフルオレン骨格にお ける 2個のアルキル基 R^R1は、発光性組成物中で、ポリビュル力ルバゾール主鎖と 緩やかな結合、つまりファンデルワールス力による結合を形成することにより、ジアル キルフルオレン ォキサジァゾ一ルーピレン構造体におけるピレン骨格と、ポリビ- ルカルバゾールにおける力ルバゾール側鎖とが相互作用しゃすい空間配置を取る。 同様に、ジカルバジルイ匕合物における窒素原子に結合する R3基もまた、ポリビニル 力ルバゾール主鎖と緩やかな結合、つまりファンデルワールス力による結合を形成す る。そうすると、ポリビ-ルカルバゾールにおける力ルバゾール側鎖と、ジアルキルフ ルオレン ォキサジァゾール ピレン構造体におけるフルオレン骨格及びピレン骨 格とジカルバジル化合物における力ルバゾール骨格とがそれらの π電子が相互作用 するから、大きな輝度の発光が可能になると、推測される。 [0021] この発明〖こよると、発光素子における発光層に好適な発光性組成物を提供すること ができ、また、発光層を高分子加工技術により簡単に形成することができ、大きな輝 度で発光する発光素子を提供することができる。
図面の簡単な説明
[0022] [図 1]図 1は、この発明の発光素子の一例を模式的に示す断面図である。
[図 2]図 2は、この発明の発光素子の他の例を模式的に示す断面図である。
[図 3]図 3は、実施例 1におけるヒドラジドィ匕合物(6)を示す NMR ^ベクトルチャートで ある。
[図 4]図 4は、実施例 1における 9, 9ージォクチルフルオレン ォキサジァゾ一ルーピ レン構造体(7)の NMR ^ベクトルチャートである。
[図 5]図 5は、実施例 1における 9, 9ージォクチルフルオレン ォキサジァゾ一ルーピ レン構造体(7)の IR ^ベクトルチャートである。
[図 6]図 6は、実施例 1における 9, 9ージォクチルフルオレン ォキサジァゾ一ルーピ レン構造体(7)の蛍光スペクトルチャートである。
[図 7]図 7は、実施例 1における発光素子につき、電圧と輝度との関係を示すグラフ、 電圧と電流密度との関係を示すグラフ、電流密度と輝度との関係を示すグラフ、電圧 と発光効率との関係を示すグラフ、及び XY色度図を示す。
[図 8]図 8は、実施例 1における発光素子の相対分光分布を示す。
[図 9]図 9は、式 (8)で示されるジカルバゾールイ匕合物(8)の濃度が異なる発光性組 成物で形成された発光層を有する発光素子についての、電圧と輝度との関係を示す グラフである。
符号の説明
[0023] 1 発光素子
2 透明基板
3 陽極
4 正孔注入層
5 正孔輸送層 7 電子輸送層
8 電子注入層
9 陰極
発明を実施するための最良の形態
[0024] この発明に係る発光性組成物は、ポリビュル力ルバゾールと、以下の式(1)で示さ れるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体と、以下の式(2)で示 されるジカルバゾール化合物とを含有する。
[0025] [化 3]
Figure imgf000008_0001
Figure imgf000008_0002
[0027] 前記ポリビニルカルバゾールは、通常、数万〜数十万程度の数平均分子量を有す る。この範囲より小さい分子量を有する場合には、発光素子における発光層として良 質の成膜が困難になることがあり、一方、この範囲より大きな分子量を有する場合に は、溶媒に対する溶解性が低下することがある。この発明においては、ポリビニルカ ルバゾールは市販品をそのまま使用することができる。
[0028] この発明に係る発光性組成物におけるポリビニルカルバゾールの含有量は、通常、 このポリビュル力ルバゾールと前記式(1)で示されるジアルキルフルオレン ォキサ ジァゾ一ルーピレン構造体と前記式(2)で示されるジカルバゾールイ匕合物との合計 に対して 90質量%以下、好ましくは 5〜90質量%の範囲内から、このポリビニルカル バゾールと前記式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン 構造体と前記式(2)で示されるジカルバゾール化合物との配合合計割合が 100%に なるように、適宜に選択される。
[0029] このポリビュル力ルバゾールは発光素子の発光層に用いられるとき、ホール輸送剤 としての機能を発揮する。
[0030] 式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体にお!ヽ て、 R1は、炭素数 1〜15のアルキル基、好ましくは 4〜 12のアルキル基である。 R1の 炭素数力 以上であるとポリビュル力ルバゾールとの相溶性及び有機溶媒に対する 相溶性がさらに向上する。 R1の炭素数が 16以上であってもよいが炭素数を増大させ たことに見合った技術的効果を奏することができな 、。 R1で示されるアルキル基は、 直鎖状であっても分岐状であってもよい。フルオレン骨格における炭素に結合する二 つの置換基 R1は同一であっても相違して 、てもよ 、。
[0031] 前記式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体に おける R2は、炭素数 1〜15のアルキル基である。 R2で示されるアルキル基は直鎖状 であっても分岐状であってもよ 、。ピレン骨格に結合する R2の数は 0〜9である。
[0032] 前記式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体の 、前記ポリビ-ルカルバゾールと前記式(1)で示されるジアルキルフルオレンーォキ サジァゾールーピレン構造体と前記式(2)で示されるジカルバゾール化合物との合 計に対する含有割合は、多くとも 60質量%、好ましくは 5〜60質量%の範囲内から、 前記ポリビ-ルカルバゾールと前記式(1)で示されるジアルキルフルオレン ォキサ ジァゾ一ルーピレン構造体と前記式(2)で示されるジカルバゾールイ匕合物との合計 力 S 100質量%になるように、適宜に選択される。
[0033] 前記式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体は
、一例として以下の反応式(3)に示す反応により合成することができる。
[0034] [化 5]
Figure imgf000010_0001
[0035] 前記反応式(3)における出発物質(2—1)は、 9, 9ージアルキルフルオレン力 通 常の有機化学合成の手法により容易に製造されることができる。また同様に前記反 応式 (3)における出発物質 (2— 2)もピレン力 通常の有機化学合成の手法により容 易に製造されることができる。また、これらは市販品をそのまま使用することができる。 出発物質 (2— 1)と出発物質 (2— 2)との反応は極性有機溶媒例えば THF、ジォキ サン等の有機溶媒中で例えばピリジン等の存在下に加熱することにより行われる。
[0036] 反応により生成する中間体(2— 3)は加熱により閉環して式(2)で示されるジアルキ ルフルオレン ォキサジァゾール ピレン構造体となる。このジアルキルフルオレン —ォキサジァゾール—ピレン構造体は発光化合物である。フルオレン骨格、ォキサ ジァゾール骨格及びピレン骨格を有することにより青色〜緑色に発光する。
[0037] 前記式(2)で示されるジカルバゾールイ匕合物における R3は、その水素原子がアル キル基で置換されていてもよい芳香族基である。この芳香族基としては、フエニル基 、ナフチル基、アントリル基、ピレニル基等を挙げることができる。またこの芳香族基に 結合してもよいアルキル基としては、炭素数 1〜10、好ましくは炭素数 1〜8のアルキ ノレ基を挙げることができる。
[0038] 前記式(2)で示されるジカルバゾール化合物の、前記ポリビュル力ルバゾールと前 記式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体と前記 式(2)で示されるジカルバゾールイ匕合物との合計に対する含有割合は、多くとも 70 質量%、好ましくは 5〜70質量%の範囲内から、前記ポリビニルカルバゾールと前記 式(1)で示されるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体と前記式 (2)で示されるジカルバゾールイ匕合物との合計が 100質量%になるように、適宜に選 択される。
[0039] 前記式(2)で示されるジカルバゾール化合物は、ポリビ-ルカルバゾールとの相溶 性が高くて、ポリビニルカルバゾールよりも効率的に正孔を輸送する正孔輸送機能を 発揮する。
[0040] この発明に係る発光性組成物は、前記ポリビニルカルバゾールと前記式(1)で示さ れるジアルキルフルオレン ォキサジァゾ一ルーピレン構造体と前記式(2)で示され るジカルバゾールイ匕合物とを所定の割合で単に混合することによつても得ることがで きるが、通常は、溶媒に溶解して溶液の形で混合し、次いでその溶媒を除去すること により、各成分が均一に分布した混合物を得ることができる。
[0041] 混合に際して使用される溶媒としてはクロ口ホルム、 DMF、 DMSO、 THF、ジォキ サン、ジクロロベンゼン、ニトロベンゼン、トルエン及びキシレン等の有機溶媒を挙げ ることができる。この発光性組成物は、前記各種の有機溶媒に溶解されることができ るから、例えばキャスティング法により容易に製膜されることができる。
[0042] この発明に係る発光性組成物は、発光素子における発光層に好適に使用される。
[0043] この発明に係る発光素子の一例を、図面に基づいて説明する。図 1は、この発明の 発光素子の一例を模式的に示す断面である。
[0044] 発光素子 1は、透明基板 2、陽極 3、正孔注入層 4、正孔輸送層(ホール輸送層とも 称される。) 5、発光層 6、電子輸送層 7、電子注入層 8、および陰極 9が、その順に積 層されて成っている。
[0045] 発光素子 1を構成する各層は、透明基板 2上に形成され、この透明基板 2としては、 例えば、ガラス基板、プラスチック基板、シリコン基板等を挙げることができる。
[0046] 前記陽極 3としては、仕事関数が大きぐ透明である限り、種々の材料を採用するこ とができる。例えば、インジウムチンオキサイド (ITO)、 In O、 SnO、 ZnO、 CdOなど 、またはポリア-リンなどの導電性高分子材料などにより形成することができる。この 陽極 3の厚さの不均一は、発光層の膜厚に影響を与えるため、平滑性が要求される 。陽極の厚みは材料にもよる力 通常 10nm〜l μ m、好ましくは 10nm〜200nmの 範囲で選ばれる。
[0047] この陽極 3は、前記透明基板 2上に、化学気相成長法、スプレーパイロリシス、真空 蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーティ ング法、イオンアシスト蒸着法等の方法により形成することができる。
[0048] 前記正孔注入層 4としては、トリフエ-ルァミン系化合物、例えば、 N, N,—ジフエ- ルー N, N,一ジ(m トリル)一ベンジジン(TPD)、 a— NPDなど、ヒドラゾン系化合 物、スチルベンビス〔N—(1 ナフチル) N フエ-ル〕ベンジジンン系化合物等の スチルベン系化合物、複素環系化合物、 π電子系スターバースト正孔輸送物質など 力 形成される層を挙げることができる。
[0049] 発光素子 1においては、前記正孔輸送層 5が、公知の材料によって形成されている 。この正孔輸送層 5は、蒸着法によることなぐ例えば、スピンキャスト法、コート法又 はディップ法等により形成することができる。
[0050] 前記発光層 6は、本発明に係る発光性組成物を含有する層である。この発光層 6は 、この発明に係る発光性組成物を溶媒に溶解してなる溶液を用いた塗布法、例えば 、スピンキャスト法、コート法またはディップ法などにより形成することができる。発光層 6の厚さは 5nm〜l μ m、好ましくは 100nm〜500nmがよい。
[0051] 発光素子 1においては、前記電子輸送層 7が、公知の材料によって形成されている 。この電子輸送層 7は、蒸着法によることなぐ例えば、スピンキャスト法、コート法又 はディップ法等により形成することができる。
[0052] 前記電子注入層 8としては、例えば、 2, 5 ビス(1 ナフチル) 1 , 3, 4 ォキサ ジァゾール(BND)、 2 - (4— tert ブチルフエ-ル)—5— (4 ビフエ-リル)— 1 , 3, 4ーォキサジァゾール等のォキサジァゾール誘導体、 2, 5 ビス(5, 一 tert ブ チル一 2,一ベンゾキサゾリル)チォフェン、トリス(8 キノリノラト)アルミニウム錯体 (A lq3)、ベンゾキノリノールベリリウム錯体 (Bebq2)などの金属錯体系材料など力も形 成される層を挙げることができる。この電子注入層 8は、蒸着法、塗布法、例えば、ス ピンキャスト法、コート法又はディップ法などにより形成することができる。
[0053] また、前記陰極 9は、仕事関数の小さい物質が採用され、例えば、 Mg、 Ag、アルミ -ゥム合金、金属カルシウム等の金属単体または金属の合金、及び炭酸セシウム等 で形成することができる。好適な陰極は、炭酸セシウムとアルミニウムとの二層電極、 及びアルミニウムと少量のリチウムとの合金電極である。この陰極 9は、例えば、透明 基板 2の上に形成された各層の表面に、化学気相成長法、スプレーパイロリシス、真 空蒸着法、電子ビーム蒸着法、スパッタ法、イオンビームスパッタ法、イオンプレーテ イング法、イオンアシスト蒸着法等の方法により形成することができる。陰極の膜厚は 通常 ΙΟηπ!〜 1 μ m、好ましくは 50〜200nmの範囲で選ばれる。なお、発光を透過 させるため、発光素子における陽極又は陰極のいずれか一方が、透明又は半透明 であれば発光効率が向上して好都合である。
[0054] このような層構成を有する発光素子 1は、電流を流すことによって、陽極 3から正孔 注入層 4に正孔 (ホール)が注入され、さら〖こ、正孔輸送層 5を介して正孔 (ホール)が 発光層 6に注入され、陰極 9からは、発光化合物を含有する発光層 6に向けて電子が 注入される。この発光層 6においては、電子とホールとが結合して、これによつて生じ るエネルギーが発光層 6の蛍光体 (発光化合物)を励起し、この励起状態が元に戻る ときに発光してエネルギーを放出する。発光素子 1の厚さは、通常、 0. 1〜0. 3 m である。
[0055] この発明に係る発光素子は、図 1に示される層構成を有する発光素子に限られず、 印加電圧極性可変構造型 EL素子、温度安定型多層 EL素子等を含む。また、この 発明に係る発光素子は、図 2に示されるように、電極 3の表面に、ホール輸送層 5、こ の発明に係る発光性組成物からなる発光層 6、電子輸送層 7及び電極 9をこの順に 積層して成る発光素子を含む。電極 9は単層の電極であつても複数層カゝらなる電極 であってもよい。
実施例
[0056] 以下、実施例を挙げて、この発明をさらに具体的に説明する力 この実施例によつ て、この発明はなんら限定されることはない。
[0057] (実施例 1) 式(4)で示される 9, 9ージォクチルフルオレン化合物(4) 8. 85g (0. 0196モル)と 式(5)で示されるピレン化合物(5) 5. 2g (0. 0196モル)と THF90mLとピリジン 1. 86g (0. 0235モノレ)とを 300mL三口フラスコ内に人れ、 80°Cに 3時間カロ熱した。次 いでフラスコの内容物を氷水に投入し、生成した粘稠物質をデカンテーシヨンにより 分離し、この粘稠物質をクロ口ホルムに溶解し、得られる溶液をボウ硝で乾燥した。濾 過によりボウ硝を除去し、得られる乾燥溶液をエバポレーシヨンして固体生成物 11. 9gを得た。この固体精製物の NMR ^ベクトルチャート(図 3)から、式(6)に示すヒド ラジドィ匕合物(6)であると同定した。
[0058] [化 6]
1 ^ ^ C Q し 8 ri
Figure imgf000014_0001
( 4 )
( 5 )
Figure imgf000014_0002
[0059] 前記式(6)で示される固体生成物 11. 9g (0. 0175モル)とジォキサン 32mLと三 塩ィ匕才キシリン 26. 8g (0. 175モノレ)とを 500mLのフラスコ内に人れ、 110。Cで 5時 間反応を行った。反応終了後、フラスコの内容物を氷水に投入すると、粘稠物質が 沈殿生成した。この粘稠物質をクロ口ホルムで抽出した。クロ口ホルム抽出液を水洗し 、脱水してから、エバポレーシヨンにより溶媒を除去した。その後、シリカゲルクロマト グラフィー (展開溶媒:トルエン)により分離、生成して粘稠な固形分 4gを得た。 [0060] この粘稠な固形分の NMR ^ベクトルチャート(図 4)及び IR ^ベクトルチャート(図 5 )から、式(7)に示す 9, 9ージォクチルフルオレン ォキサジァゾ一ルーピレン構造 体(7)であると同定した。
[0061] [化 7]
Figure imgf000015_0001
[0062] 同定された前記式(7)で示される 9, 9ージォクチルフルオレンーォキサジァゾール —ピレン構造体 (7)をトルエンに溶解して試料液を調製した。この試料液を、 日立製 作所製の F— 4500型分光蛍光光度計に装填して、以下の条件にて蛍光スペクトル を測定した。得られた蛍光スペクトルチャートを図 6に示した。
[0063] 測定条件
測定モード 波長スキャン
励起波長 365nm
蛍光開始波長 400nm
蛍光終了波長 700nm
スキャンスピード 1200nm/分
励起側スリット 5. Onm
蛍光側スリット 5. Onm
以下のようにして発光素子を製造した。
[0064] ITO基板 (50 X 50mm,三容真空工業 (株)製)をセミクリーン (横浜油脂工業 (株) 製)で 30分間超音波洗浄した後に純水で 10分間超音波洗浄し、乾燥させた。その 後に、プラズマアッシャー装置( (株)モリエンジニアリング製)で 120秒間酸素プラズ マ処理した。
[0065] この ITO基板の表面に、ホール輸送剤 (Baytron PVPCH8000)をスピンコート法(ミ カサ (株)製、 1H— D7、回転速度: 4500rpm)により塗工し、 200°Cで 15分乾燥す ることにより、厚み 50nmのホール輸送層を形成した。
[0066] ポリビュル力ルバゾール 14質量%、以下の式(8)で示されるジカルバゾール化合 物(8) 61質量%と前記式(7)で示される 9, 9ージォクチルフルオレンーォキサジァ ゾールーピレン構造体(7) 25質量%をトルエンに溶解して発光層用トルエン溶液を 調整した。
[0067] [化 8]
Figure imgf000016_0001
( 8 )
[0068] 次いで、スピンコータ(ミカサ(株)製、 1H— D7、回転数: 2500rpm)を用いて、 IT O基板上の前記ホール輸送層上に、調製しておいた前記発光層用トルエン溶液を 滴下し、スピンコートして発光層を製膜した。膜厚 50nmに製膜された発光層を有す る基板を、 130°Cで 15分加熱乾燥させた後に、真空蒸着装置((株)トツキ製、 Small —EL VESSOl l型)で以下の式(10)で示される増感剤を 36. 9nmの厚みに蒸着し 、更に其の蒸着層上に Cs CO層(厚み: 2. 8nm)及びその上にアルミニウム層(厚
2 3
み: 198. 8nm)を、 4 X 10— 6Torrで蒸着し、力べして発光素子を製作した。この発光 素子につき (株)トプコン製の分光放射計 (Fast BM- 7)にて輝度及び色度を測定 した。
[0069] [化 9]
Figure imgf000017_0001
[0070] この発光素子は、電圧 13. 50V、電流 98. 47mAで、 18240CdZm2の輝度を有 し、色度 X値は 0. 2734、色度 Y値は 0. 4850であった。また、この発光素子につい ての、電圧と輝度との関係を示すグラフ、電圧と電流密度との関係を示すグラフ、電 流密度と輝度との関係を示すグラフ、電圧と発光効率との関係を示すグラフ、及び X Y色度図を図 7に示し、発光素子の相対分光分布を図 8に示した。
[0071] また、ポリビュル力ルバゾール 14質量%、前記式(8)で示されるジカルバゾール化 合物(8) 61質量%と前記式(7)で示される 9, 9ージォクチルフルオレンーォキサジ ァゾール―ピレン構造体 (7) 25質量%をトルエンに溶解して調製された発光層用ト ルェン溶液の代わりに、ポリビ-ルカルバゾール 17質量%、前記式(8)で示されるジ 力ルバゾール化合物(8) 51質量%と前記式(7)で示される 9, 9ージォクチルフルォ レン—ォキサジァゾ一ル―ピレン構造体(7) 32質量%をトルエンに溶解して調製さ れた発光層用トルエン溶液、及びポリビュル力ルバゾール 19質量%、前記式(8)で 示されるジカルバゾールイ匕合物(8) 46質量%と前記式(7)で示される 9, 9 ジォク チルフルオレン ォキサジァゾ一ルーピレン構造体(7) 35質量0 /0をトルエンに溶解 して調製された発光層用トルエン溶液を用いた他は前記と同様にして作成した発光 素子それぞれの電圧と輝度との関係を示すグラフを図 9に示した。図 9において、発 光層用トルエン溶液における前記式 (8)で示されるジカルバゾールイ匕合物(8)の含 有量が 61質量%である場合を「▲」で示し、 51質量%である場合を「國」で示し、 46 質量%である場合を「♦」で示した。

Claims

請求の範囲 ポリビュル力ルバゾールと、以下の式(1)で示されるジアルキルフルオレン ォキサ ジァゾ一ルビレン構造体と、以下の式(2)で示されるジカルバゾールイ匕合物とを含有 することを特徴とする発光性組成物。 [化 1]
(1)
[化 2]
Figure imgf000018_0002
[ただし、式(1)において R1は炭素数 1〜15のアルキル基であり、 R2は炭素数 1〜15 のアルキル基である。ピレン骨格に結合する R2の数は 0〜9である。
式(2)において R3は、その水素原子がアルキル基で置換されていてもよい芳香族 基である。 ]
前記ポリビ-ルカルバゾールと前記式(1)で示されるジアルキルフルオレンーォキ サジァゾールーピレン構造体と前記式(2)で示されるジカルバゾール化合物との合 計に対し、前記ポリビュル力ルバゾールが多くても 90質量%、前記ジアルキルフルォ レン ォキサジァゾール ピレン構造体が多くても 60質量0 /0、前記ジカルバゾール 化合物が多くても 70質量%の各配合範囲内から、前記ポリビニルカルバゾールと前 記ジアルキルフルオレン ォキサジァゾ一ルビレン構造体と前記ジカルバゾール化 合物との配合合計が 100質量%になるように選択されてなる前記請求項 1に記載の 発光性組成物。
前記請求項 1又は 2に記載の発光性組成物を発光層として電極間に有してなること を特徴とする発光素子。
PCT/JP2006/319990 2005-10-17 2006-10-05 発光性組成物及び発光素子 WO2007046246A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-302097 2005-10-17
JP2005302097 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046246A1 true WO2007046246A1 (ja) 2007-04-26

Family

ID=37962342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319990 WO2007046246A1 (ja) 2005-10-17 2006-10-05 発光性組成物及び発光素子

Country Status (2)

Country Link
TW (1) TW200720402A (ja)
WO (1) WO2007046246A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031484A1 (en) * 2009-08-10 2011-02-10 Samsung Mobile Display Co., Ltd. Condensed-cyclic compound and organic light emitting diode having organic layer including the same
JP2012527083A (ja) * 2009-05-13 2012-11-01 ネオビューコロン カンパニー,リミテッド 有機電界発光素子およびその製造方法
JP2013035752A (ja) * 2011-08-03 2013-02-21 Idemitsu Kosan Co Ltd ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
US8535814B2 (en) 2009-08-10 2013-09-17 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same
JP2015180642A (ja) * 2011-02-07 2015-10-15 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN108947926A (zh) * 2018-08-03 2018-12-07 瑞声科技(南京)有限公司 一种基于芘-噁二唑衍生物的双极性化合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281663A (ja) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd オキサジアゾール誘導体、エレクトロルミネッセンス素子材料およびエレクトロルミネッセンス素子
WO2006043539A1 (ja) * 2004-10-19 2006-04-27 Hirose Engineering Co., Ltd. 発光化合物、発光高分子化合物、および発光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281663A (ja) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd オキサジアゾール誘導体、エレクトロルミネッセンス素子材料およびエレクトロルミネッセンス素子
WO2006043539A1 (ja) * 2004-10-19 2006-04-27 Hirose Engineering Co., Ltd. 発光化合物、発光高分子化合物、および発光素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527083A (ja) * 2009-05-13 2012-11-01 ネオビューコロン カンパニー,リミテッド 有機電界発光素子およびその製造方法
US20110031484A1 (en) * 2009-08-10 2011-02-10 Samsung Mobile Display Co., Ltd. Condensed-cyclic compound and organic light emitting diode having organic layer including the same
US8535814B2 (en) 2009-08-10 2013-09-17 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same
US9045419B2 (en) * 2009-08-10 2015-06-02 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light emitting diode having organic layer including the same
JP2015180642A (ja) * 2011-02-07 2015-10-15 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2013035752A (ja) * 2011-08-03 2013-02-21 Idemitsu Kosan Co Ltd ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
CN108947926A (zh) * 2018-08-03 2018-12-07 瑞声科技(南京)有限公司 一种基于芘-噁二唑衍生物的双极性化合物及其应用

Also Published As

Publication number Publication date
TW200720402A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
JP2003031371A (ja) 有機電界発光素子及び青色発光素子
JP2001291593A (ja) 有機電界発光素子
JP4122901B2 (ja) 有機電界発光素子
JP3978976B2 (ja) 有機電界発光素子
JP2000215984A (ja) 有機電界発光素子
WO2007046246A1 (ja) 発光性組成物及び発光素子
JPH1135688A (ja) 珪素含有化合物、該珪素含有化合物の製造方法及び該珪素含有化合物を用いた発光素子
JP2000133453A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2003221579A (ja) 有機発光材料
JP4314771B2 (ja) 有機電界発光素子
JPH0913025A (ja) キノキサリン誘導体を用いた有機電界発光素子
JPH0888083A (ja) 有機電界発光素子
JP2002270369A (ja) 有機電界発光素子およびその製造方法
JP2003178884A (ja) 有機電界発光素子
JPH0812967A (ja) 有機電界発光素子
JP2007194338A (ja) 有機電界発光素子およびその製造方法
JP4321012B2 (ja) 有機電界発光素子
JP2007194338A5 (ja)
JP2003229279A (ja) 有機電界発光素子
JP3555271B2 (ja) 青色発光素子
JP3726316B2 (ja) 電界発光素子
TW417407B (en) Organic electroluminescent element material and organic electroluminescent element using the same
JP2000243571A (ja) 有機電界発光素子
JPH11307255A (ja) 有機電界発光素子
JP2002260863A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP