WO2017074029A1 - 유기발광소자 - Google Patents

유기발광소자 Download PDF

Info

Publication number
WO2017074029A1
WO2017074029A1 PCT/KR2016/012097 KR2016012097W WO2017074029A1 WO 2017074029 A1 WO2017074029 A1 WO 2017074029A1 KR 2016012097 W KR2016012097 W KR 2016012097W WO 2017074029 A1 WO2017074029 A1 WO 2017074029A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic light
layer
emitting device
metal electrode
Prior art date
Application number
PCT/KR2016/012097
Other languages
English (en)
French (fr)
Inventor
이일하
박범석
황지영
김기환
이승헌
오동현
박찬형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/758,319 priority Critical patent/US20180269420A1/en
Priority to EP16860212.6A priority patent/EP3370274B1/en
Priority to CN201680054730.7A priority patent/CN108140742A/zh
Priority to JP2018509879A priority patent/JP6541089B2/ja
Publication of WO2017074029A1 publication Critical patent/WO2017074029A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present specification relates to an organic light emitting device.
  • Organic light emitting phenomenon refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • an appropriate organic layer is positioned between the anode and the cathode
  • holes are injected into the anode and electrons are injected into the organic layer in the cathode.
  • an exciton is formed, and when the excitons fall back to the ground, light is generated.
  • the high reflectivity metal electrode used in the organic light emitting device assists in improving the brightness in that it provides a surface for reflecting light generated internally toward the light transmissive substrate.
  • a metal electrode reflects ambient light incident on the device structure through the light transmissive substrate and the light transmissive electrode, thereby lowering the contrast of light emission perceived by the naked eye when the viewer sees it.
  • a method of additionally introducing a polarizing plate into the light transmissive substrate may be used.
  • the power is used to increase the efficiency to cause higher power consumption and shorter lifespan of the organic light emitting device.
  • the present specification provides an organic light emitting device capable of reducing reflection of external light.
  • a transparent electrode A metal electrode provided to face the transparent electrode; One or more organic material layers provided between the transparent electrode and the metal electrode; And a light reflection reduction layer provided in contact with a surface facing the transparent electrode of the metal electrode, wherein the light reflection reduction layer includes aluminum oxynitride.
  • An exemplary embodiment of the present specification provides a display device including the organic light emitting device.
  • the organic light emitting device may control the reflection of external light, thereby realizing excellent contrast.
  • the organic light emitting diode according to the exemplary embodiment of the present specification does not need to include a polarizing plate for blocking external light reflection, and thus may implement excellent luminance at low power.
  • FIG. 1 illustrates a laminated structure of an organic light emitting device according to an exemplary embodiment of the present specification.
  • FIG. 2 illustrates a laminated structure of an organic light emitting diode according to an exemplary embodiment of the present specification.
  • FIG 3 illustrates a laminated structure of an organic light emitting device according to an exemplary embodiment of the present specification.
  • FIG. 4 illustrates a laminated structure of an organic light emitting diode according to an exemplary embodiment of the present specification.
  • the movement of the holes and electrons between the anode, the cathode, and each layer provided therebetween is smoothly performed. If either layer is in an energy relationship with an adjacent layer, the organic light emitting device may not work.
  • the present inventors have completed the present invention as a result of studying the material and the position of the light reflection reducing layer which can prevent the reflection of the metal electrode due to external light and can operate the organic light emitting device. Specifically, the inventors of the present invention control the reflection of external light by the metal electrode when forming the light reflection reduction layer including aluminum oxynitride at a position in contact with the metal electrode, and furthermore, the operation of the organic light emitting device is not unreasonable. Revealed.
  • a transparent electrode A metal electrode provided to face the transparent electrode; One or more organic material layers provided between the transparent electrode and the metal electrode; And a light reflection reduction layer provided in contact with a surface facing the transparent electrode of the metal electrode, wherein the light reflection reduction layer includes aluminum oxynitride.
  • FIG. 1 illustrates a laminated structure of an organic light emitting device according to an exemplary embodiment of the present specification. Specifically, FIG. 1 illustrates an organic light emitting device in which the transparent electrode 100, the organic material layer 300, the light reflection reduction layer 400, and the metal electrode 200 are sequentially provided.
  • the organic light emitting device according to the exemplary embodiment of the present specification is not limited to the structure of FIG. 1, and an additional layer may be further provided.
  • the work function difference between the metal electrode and the light reflection reducing layer may be 0 eV or more and 1.4 eV or less.
  • the energy barrier of the metal electrode and the electron transport layer is about 1.4 eV, so the difference in the work function of the metal electrode and the light reflection reduction layer is 0 eV or more. It is preferable that it is 1.4 eV or less, For example, it is more preferable that the said work function difference is 0 eV or more and 0.5 eV or less, or 0 eV or more and 0.2 eV or less.
  • the organic light emitting diode when the work function difference between the metal electrode and the light reflection reduction layer is within the range, the organic light emitting diode may operate smoothly. Since the organic light emitting device has an important energy relationship between the layers, there is a problem that the efficiency of the organic light emitting device may drop sharply or may not work when it is out of the above range.
  • the work function of the light reflection reducing layer may be 3.5 eV or more and 4.2 eV or less.
  • the light reflection reduction layer includes aluminum oxynitride represented by Al x O y N z , x has a value of 55 to 65 as at% of aluminum, and y is oxygen It may have a value of 1 to 10 as at%, and z may have a value of 30 to 40 as at% of nitrogen.
  • the metal electrode may include one or two or more metals selected from the group consisting of Cu, Al, Mo, Ti, Ag, Ni, Mn, Au, Cr, and Co.
  • the metal electrode may be a metal electrode including Al as a main material. More specifically, according to one embodiment of the present specification, the metal electrode may be made of Al.
  • the thickness of the light reflection reducing layer may be 10 nm or more and 100 nm or less. Specifically, according to the exemplary embodiment of the present specification, the thickness of the light reflection reducing layer may be 20 nm or more and 60 nm or less.
  • the light reflectivity of the metal electrode may be sufficiently controlled, and further, the increase in thickness of the organic light emitting device may be minimized.
  • the light reflection reducing layer may be formed of a single layer, or may be formed of two or more layers.
  • the light reflection reducing layer preferably has a non-chromatic color, but is not particularly limited thereto.
  • the achromatic color means a color that appears when light incident on a surface of an object is not selectively absorbed and is evenly reflected and absorbed for the wavelength of each component.
  • the light reflection reduction layer may further include a metal layer of less than 10 nm provided in contact with the surface facing the transparent electrode.
  • the thickness of the metal layer may be 5 nm or less.
  • FIG. 2 illustrates a laminated structure of an organic light emitting diode according to an exemplary embodiment of the present specification. Specifically, FIG. 2 illustrates an organic light emitting diode having a transparent electrode 100, an organic material layer 300, a metal layer 500, a light reflection reduction layer 400, and a metal electrode 200 sequentially.
  • the organic light emitting device according to the exemplary embodiment of the present specification is not limited to the structure of FIG. 2, and an additional layer may be further provided.
  • the metal layer may be provided between the light reflection reducing layer and an adjacent layer to help smoothly move the charge.
  • the metal layer may be transparent or translucent.
  • the metal layer is made of a thin film of less than 10 nm transparent or opaque, the light reflectance on the surface of the transparent electrode may increase in part by the addition of the metal layer, it is possible to improve the electrical properties of the organic light emitting device. .
  • Transparent in the present specification means that the light reflectivity in the visible light region is 50% or more, 70% or more, or 80% or more.
  • translucent means that the light reflectivity in the visible light region is at least 20% or at least 30% or at least 40%.
  • the extinction coefficient k of the light reflection reduction layer may be 0.04 or more and 1.3 or less in light having a wavelength of 550 nm.
  • the extinction coefficient is in the above range, it is possible to effectively control the light reflectivity of the metal electrode, thereby further improving the visibility of the organic light emitting device.
  • the extinction coefficient may be measured using an Ellipsometer measuring device known in the art.
  • the extinction coefficient k may also be referred to as an absorption coefficient, and may be a measure for defining how strongly the target material absorbs light at a specific wavelength. Accordingly, the incoming light passes through the light reflection reducing layer having a thickness of t, and the first absorption occurs according to the degree of k, and the light reflected by the lower metal electrode passes through the light reflection reducing layer having a thickness of t again. After that, external reflections occur. Therefore, the value of the thickness and absorption coefficient of the light reflection reducing layer acts as an important factor affecting the overall reflectance.
  • the refractive index n of the light reflection reducing layer may be 2 or more and 3 or less in light having a wavelength of 550 nm.
  • the primary reflection occurs in the material of the light reflection reduction layer having an index of refraction (n) together with the extinction coefficient (k).
  • the main factors determining the primary reflection are the refractive index (n) and the absorption coefficient (k). Therefore, the refractive index n and the absorption coefficient k are closely related to each other, and the effect can be maximized within the above range.
  • the light reflectivity on the surface of the transparent electrode may be 20% or less in light of 550 nm wavelength.
  • the light reflectivity on the surface of the light reflection reduction layer provided on the metal electrode may be 20% or less, 15% or less, or 10% or less in light having a wavelength of 550 nm.
  • the light reflectance of external light on the surface of the transparent electrode from which light is extracted from the organic light emitting diode is greatly influenced by the light reflectivity on the surface of the metal electrode.
  • the light reflection reducing layer may be provided on the metal electrode to significantly lower the light reflectivity of the surface of the metal electrode by external light, thereby enabling the organic light emitting device to realize more vivid colors.
  • the transparent electrode or the metal electrode may be provided on a substrate.
  • FIG. 3 illustrates a laminated structure of an organic light emitting device according to an exemplary embodiment of the present specification. Specifically, FIG. 3 illustrates an organic light emitting diode having a substrate 600, a transparent electrode 100, an organic material layer 300, a light reflection reduction layer 400, and a metal electrode 200 sequentially.
  • the organic light emitting device according to the exemplary embodiment of the present specification is not limited to the structure of FIG. 3, and an additional layer may be further provided.
  • FIG. 4 illustrates a laminated structure of the organic light emitting device according to an embodiment of the present disclosure.
  • FIG. 4 illustrates an organic light emitting diode having a substrate 600, a metal electrode 200, a light reflection reduction layer 400, an organic material layer 300, and a transparent electrode 100 sequentially.
  • the organic light emitting device according to the exemplary embodiment of the present specification is not limited to the structure of FIG. 4, and an additional layer may be further provided.
  • light generated in the organic material layer 300 is extracted through the transparent electrode 200, not the substrate 600, and the light reflection reducing layer 400 is incident from the transparent electrode 100. Control the reflection of external light.
  • the substrate may be a substrate excellent in transparency, surface smoothness, ease of handling and waterproof.
  • a glass substrate, a thin film glass substrate, or a transparent plastic substrate may be used.
  • the plastic substrate may include a film such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether ether ketone (PEEK), and polyimide (PI) in the form of a single layer or a multilayer.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyether ether ketone
  • PI polyimide
  • the substrate may be a light scattering function is included in the substrate itself.
  • the substrate is not limited thereto, and a substrate commonly used in an organic light emitting device may be used.
  • the transparent electrode is a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are
  • the transparent electrode may be an anode, and the metal electrode may be a cathode.
  • the transparent electrode may be a cathode, and the metal electrode may be an anode.
  • the organic material layer includes at least one light emitting layer, a hole injection layer; Hole transport layer; Hole blocking layer; A charge generating layer; Electron blocking layer; Electron transport layer; And it may further comprise one or two or more selected from the group consisting of an electron injection layer.
  • the charge generating layer is a layer in which holes and electrons are generated when a voltage is applied.
  • a material capable of transporting holes from an anode or a hole injection layer to be transferred to a light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting layer material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene; Rubrene and the like, but are not limited thereto.
  • the electron transport layer material As the electron transport layer material according to the present specification, a material capable of injecting electrons well from a cathode and transferring the electrons to a light emitting layer is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • An exemplary embodiment of the present specification provides a display device including the organic light emitting device.
  • the organic light emitting diode may serve as a backlight in a display device.
  • the organic light emitting diode may serve as a light emitting layer of the pixel portion in the display device.
  • the configurations required for the display device may be applied to those known in the art.
  • the present inventors have examined whether charge transfer is possible in a structure in which an electron transport layer, a light reflection reduction layer, and a metal electrode are sequentially stacked.
  • the work function W may be defined as defined below.
  • -e is the charge amount of the charge
  • means the electrostatic potential of the vacuum near the material surface.
  • the work function is the minimum energy required to release free electrons from matter.
  • Al 60 N 35 O 5 Fermi level (E F) is of 0.2025 eV
  • the work function of the calculation through the defined work function by using this, the work function of Al 60 N 35 O 5 is 3.8975 eV.
  • the work function of Al is known as 4.08 eV
  • the work function difference between Al and Al 60 N 35 O 5 is 0.1825 eV
  • the energy barrier between layers is low, and thus there is no problem in transferring charge.
  • an organic light emitting diode was modeled using Alq as the electron transport layer, Al 58 N 38 O 4 as the light reflection reduction layer, and Al as the metal electrode.
  • the Fermi level (E F ) of Al 60 N 35 O 5 is -0.1444 eV
  • the work function of Al 58 N 38 O 4 is 4.0144 eV when the work function is calculated using the work function definition.
  • the work function of Al is known as 4.08 eV, and the work function difference between Al and Al 58 N 38 O 4 is 0.0656 eV, and there is no difficulty in transferring charge due to a low energy barrier between layers. Furthermore, it can be seen that there is no difficulty in moving from Al 58 N 38 O 4 to LUMO of Alq.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 투명 전극, 상기 투명 전극에 대향하여 구비되는 금속 전극, 상기 투명 전극과 상 기 금속 전극 사이에 구비된 1층 이상의 유기물층 및 상기 금속 전극의 투명 전극을 향하는 면에 접하여 구비된 광반사 저감층을 포함하고, 상기 광반사 저감층은 알루미늄 산질화물을 포함하는 것인 유기발광소자에 관한 것이다.

Description

유기발광소자
본 출원은 2015년 10월 27일에 한국 특허청에 제출된 한국 특허 출원 제10-2015-0149503호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 유기발광소자에 관한 것이다.
유기발광현상이란 유기물질을 이용하여 전기에너지를 빛 에너지로 전환시켜 주는 현상을 말한다. 즉, 애노드과 캐소드 사이에 적절한 유기물층을 위치시켰을 때, 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 캐소드에서는 전자가 상기 유기물층에 주입되게 된다. 이 주입된 정공과 전자가 만났을 때 여기자(exciton) 가 형성되고, 이 여기자가 다시 바닥상태로 떨어질 때 빛을 생성하게 된다.
유기발광소자에 사용되는 고반사율의 금속 전극은 내부적으로 발생된 광을 광투과성 기판 방향으로 반사 진행시키는 표면을 제공한는 점에서 휘도 개선을 보조한다. 그러나, 이러한 금속 전극은 광투과성 기판 및 광투과성 전극을 통해 소자 구조물에 입사하는 주위광을 반사시켜, 관찰자가 시인하는 경우 육안으로 인지된 발광의 콘트라스트(contrast)를 저하시킨다.
이와 같은 금속 전극의 외부광의 반사를 상쇄하기 위하여 광투과성 기판에 편광판을 추가로 도입하는 방법이 사용될 수 있다. 다만, 이와 같은 경우, 유기 발광층으로부터 생성된 빛 또한 차단이 되므로, 더 높은 효율을 내기 위하여 전력을 올려 사용하게 되어 유기발광소자의 전력 소모량 증가와 수명 단축의 원인이 된다.
그러므로, 유기발광소자의 금속 전극의 광반사를 저감하여 상기와 같은 문제를 해결하는 것이 필요하다.
본 명세서는 외부광의 반사를 저감할 수 있는 유기발광소자를 제공한다.
본 명세서의 일 실시상태는, 투명 전극; 상기 투명 전극에 대향하여 구비되는 금속 전극; 상기 투명 전극과 상기 금속 전극 사이에 구비된 1층 이상의 유기물층; 및 상기 금속 전극의 투명 전극을 향하는 면에 접하여 구비된 광반사 저감층을 포함하고, 상기 광반사 저감층은 알루미늄 산질화물을 포함하는 것인 유기발광소자를 제공한다.
본 명세서의 일 실시상태는, 상기 유기발광소자를 포함하는 디스플레이 장치를 제공한다.
본 명세서의 일 실시상태에 따른 유기발광소자는 외부광의 반사를 제어하여, 우수한 콘트라스트를 구현할 수 있다.
본 명세서의 일 실시상태에 따른 유기발광소자는 외부광 반사를 차단하기 위한 편광판을 구비하지 않아도 되므로, 낮은 전력으로 우수한 휘도를 구현할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다.
도 2는 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다.
도 3은 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다.
도 4는 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다.
도 5는 실시예 1에 따른 각층 간의 에너지 관계를 도시한 것이다.
도 6은 실시예 2에 따른 각층 간의 에너지 관계를 도시한 것이다.
100: 투명 전극
200: 금속 전극
300: 유기물층
400: 광반사 저감층
500: 금속층
600: 기판
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
유기발광소자의 경우, 애노드, 캐소드 및 이들 사이에 구비되는 각층간의 정공 및 전자의 이동이 원활하게 이루어져야 작동이 가능하다. 만일 어느 하나의 층이 인접하는 층과 에너지 관계가 맞지 않게 되는 경우, 유기발광소자는 작동하지 않을 수 있다.
본 발명자들은 외부광에 따른 금속 전극의 반사를 방지하고, 유기발광소자의 작동이 가능할 수 있는 광반사 저감층의 재료 및 위치에 대한 연구를 거듭한 결과, 본 발명을 완성하였다. 구체적으로, 본 발명자들은 금속 전극과 접하는 위치에 알루미늄 산질화물을 포함하는 광반사 저감층을 형성하는 경우, 금속 전극에 의한 외부광 반사를 제어하고, 나아가 유기발광소자의 작동에도 무리가 없다는 점을 밝혀내었다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태는, 투명 전극; 상기 투명 전극에 대향하여 구비되는 금속 전극; 상기 투명 전극과 상기 금속 전극 사이에 구비된 1층 이상의 유기물층; 및 상기 금속 전극의 투명 전극을 향하는 면에 접하여 구비된 광반사 저감층을 포함하고, 상기 광반사 저감층은 알루미늄 산질화물을 포함하는 것인 유기발광소자를 제공한다.
도 1은 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다. 구체적으로, 도 1은 투명 전극(100), 유기물층(300), 광반사 저감층(400) 및 금속 전극(200)이 순차적으로 구비된 유기발광소자를 나타낸 것이다. 다만, 본 명세서의 일 실시상태에 따른 유기발광소자는 도 1의 구조에 한정되지 않으며, 추가의 층이 더 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전극과 상기 광반사 저감층의 일함수 차이는 0 eV 이상 1.4 eV 이하 일 수 있다.
금속 전극과 유기물층 중 전자수송층이 당 기술 분야에 알려진 재료를 포함하는 경우, 금속 전극과 전자수송층의 에너지 베리어가 약 1.4eV 이므로, 상기 금속 전극과 상기 광반사 저감층의 일함수의 차이는 0eV 이상 1.4eV 이하인 것이 바람직하고, 예컨대 상기 일함수 차이는 0eV 이상 0.5eV 이하 또는 0eV 이상 0.2eV 이하인 것이 더 바람직하다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전극과 상기 광반사 저감층의 일함수 차이가 상기 범위 내인 경우, 유기발광소자가 원활하게 작동할 수 있다. 유기발광소자는 각 층간의 에너지 관계가 중요하므로, 상기 범위를 벗어나는 경우 유기발광소자의 효율이 급격하게 떨어지거나, 작동하지 않을 수 있는 문제가 있다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 일함수는 3.5 eV 이상 4.2 eV 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층은 AlxOyNz로 표시되는 알루미늄 산질화물을 포함하고, x는 알루미늄의 at%로서 55 내지 65의 값을 가지고, y는 산소의 at%로서 1 내지 10의 값을 가지며, z는 질소의 at%로서 30 내지 40의 값을 가질 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전극은 Cu, Al, Mo, Ti, Ag, Ni, Mn, Au, Cr 및 Co로 이루어진 군에서 선택되는 1 또는 2 이상의 금속을 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 금속 전극은 Al을 주재료로 포함하는 금속 전극일 수 있다. 보다 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 금속 전극은 Al로 이루어진 것일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 두께는 10 ㎚ 이상 100 ㎚ 이하일 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 두께는 20 ㎚ 이상 60 ㎚ 이하일 수 있다.
상기 광반사 저감층이 상기 범위 내인 경우, 금속 전극의 광반사도를 충분히 제어할 수 있고, 나아가 유기발광소자의 두께 증가를 최소화할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층은 단일층으로 이루어질 수도 있고, 2층 이상의 복수층으로 이루어질 수도 있다. 상기 광반사 저감층은 무채색(無彩色) 계열의 색상을 띠는 것이 바람직하나 특별이 이에 한정되지는 않는다. 이 때, 무채색 계열의 색상이라 함은 물체의 표면에 입사(入射)하는 빛이 선택 흡수되지 않고, 각 성분의 파장(波長)에 대해 골고루 반사 흡수될 때에 나타나는 색을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 투명 전극을 향하는 면에 접하여 구비된 10 ㎚ 미만의 금속층을 더 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 금속층의 두께는 5 ㎚ 이하일 수 있다.
도 2는 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다. 구체적으로, 도 2는 투명 전극(100), 유기물층(300), 금속층(500), 광반사 저감층(400) 및 금속 전극(200)이 순차적으로 구비된 유기발광소자를 나타낸 것이다. 다만, 본 명세서의 일 실시상태에 따른 유기발광소자는 도 2의 구조에 한정되지 않으며, 추가의 층이 더 구비될 수 있다.
상기 금속층은 광반사 저감층과 인접하는 층 사이에 구비되어, 전하의 이동을 보다 원활하게 돕는 역할을 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속층은 투명 또는 반투명할 수 있다.
또한, 상기 금속층은 10 ㎚ 미만의 박막으로 이루어져 투명 또는 불투명하고, 상기 금속층의 추가에 따라 상기 투명 전극 표면에서의 광반사율이 일부 상승할 수 있으나, 상기 유기발광소자의 전기적 특성을 향상시킬 수 있다.
본 명세서에서의 투명은, 가시 광선 영역에서의 광반사도가 50 % 이상, 70 % 이상 또는 80 % 이상인 것을 의미한다.
또한, 본 명세서에서의 반투명은 가시 광선 영역에서의 광반사도가 20 % 이상 또는 30 % 이상 또는 40 % 이상인 것을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 소멸계수(k)는 550 ㎚ 파장의 빛에서 0.04 이상 1.3 이하일 수 있다.
상기 소멸계수가 상기 범위 내인 경우, 상기 금속 전극의 광반사도를 효과적으로 제어할 수 있으며, 이에 따라 상기 유기발광소자의 시인성이 더욱 더 개선될 수 있다.
상기 소멸계수는 당업계에 알려진 Ellipsometer 측정장비 등을 이용하여 측정할 수 있다.
상기 소멸계수 k는 흡수계수(Absorption Coefficient)라고도 하며, 특정 파장에서 대상 물질이 빛을 얼마나 강하게 흡수하는지를 정의할 수 있는 척도가 될 수 있다. 이에 따라서 들어온 빛이 두께 t의 광반사 저감층을 지나며, k의 정도에 따라 1차 흡수가 일어나며, 하부의 금속 전극에 의하여 반사된 빛이 다시 두께 t의 광반사 저감층을 지나며 2차 흡수가 일어난 후 외부 반사가 일어나게 된다. 따라서, 광반사 저감층의 두께 및 흡수 계수의 값은 전체 반사율에 영향을 끼치는 중요한 인자로 작용하게 된다.
본 명세서의 일 실시상태에 따르면, 상기 광반사 저감층의 굴절율(n)은 550 ㎚ 파장의 빛에서 2 이상 3 이하일 수 있다.
소멸계수(k)와 함께 굴절율(n)을 가지는 광반사 저감층의 재료에서 1차 반사가 일어나게 되는데 이때 1차 반사를 결정하는 주요 인자는 굴절율(n)과 흡수계수(k)이다. 따라서, 굴절율(n)과 흡수계수(k)는 서로 밀접한 관련을 가지고 있으며 상기 범위 내에서 그 효과가 극대화 될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 투명 전극 표면에서의 광반사도는 550 ㎚ 파장의 빛에서 20 % 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전극 상에 구비된 상기 광반사 저감층 표면에서의 광반사도는 550 ㎚ 파장의 빛에서 20 % 이하, 15 % 이하, 또는 10 % 이하일 수 있다.
상기 유기발광소자에서 빛이 추출되는 상기 투명 전극 표면에서 외부광의 광반사율은 상기 금속 전극 표면에서의 광반사도에 크게 영향을 받는다. 상기 광반사 저감층은 상기 금속 전극 상에 구비되어, 외부광에 의한 금속 전극 표면의 광반사도를 크게 낮추어, 유기발광소자가 보다 선명한 색상을 구현할 수 있게 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 투명 전극 또는 상기 금속 전극은 기판 상에 구비될 수 있다.
도 3은 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다. 구체적으로, 도 3은 기판(600), 투명 전극(100), 유기물층(300), 광반사 저감층(400) 및 금속 전극(200)이 순차적으로 구비된 유기발광소자를 나타낸 것이다. 다만, 본 명세서의 일 실시상태에 따른 유기발광소자는 도 3의 구조에 한정되지 않으며, 추가의 층이 더 구비될 수 있다.
또한, 도 4는 본 명세서의 일 실시상태에 따른 유기발광소자의 적층 구조를 예시한 것이다. 구체적으로, 도 4는 기판(600), 금속 전극(200), 광반사 저감층(400), 유기물층(300), 및 투명 전극(100)이 순차적으로 구비된 유기발광소자를 나타낸 것이다. 다만, 본 명세서의 일 실시상태에 따른 유기발광소자는 도 4의 구조에 한정되지 않으며, 추가의 층이 더 구비될 수 있다. 나아가, 도 4와 같은 구조의 경우, 유기물층(300)에서 생성되는 빛은 기판(600)이 아닌 투명 전극(200)을 통하여 추출되고, 광반사 저감층(400)은 투명 전극(100)으로부터 입사되는 외부광의 반사를 제어한다.
상기 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 기판을 사용할 수 있다. 구체적으로, 유리 기판, 박막유리 기판 또는 투명 플라스틱 기판을 사용할 수 있다. 상기 플라스틱 기판은 PET(polyethylene terephthalate), PEN(Polyethylene naphthalate), PEEK(Polyether ether ketone) 및 PI(Polyimide) 등의 필름이 단층 또는 복층의 형태로 포함될 수 있다. 또한, 상기 기판은 기판 자체에 광산란 기능이 포함되어 있는 것일 수 있다. 다만, 상기 기판은 이에 한정되지 않으며, 유기발광소자에 통상적으로 사용되는 기판을 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 투명 전극은 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시예에 따르면, 상기 투명 전극은 애노드이고, 상기 금속 전극은 캐소드일 수 있다. 또한, 상기 투명 전극은 캐소드이고, 상기 금속 전극은 애노드일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 적어도 1층 이상의 발광층을 포함하고, 정공 주입층; 정공 수송층; 정공 차단층; 전하 발생층; 전자 차단층; 전자 수송층; 및 전자 주입층으로 이루어진 군에서 선택되는 1종 또는 2종 이상을 더 포함할 수 있다.
상기 전하 발생층(Charge Generating layer)은 전압을 걸면 정공과 전자가 발생하는 층을 말한다.
본 명세서에 따른 상기 정공 수송층 물질로는 애노드나 정공 주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 따른 상기 발광층 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌; 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 따른 상기 전자 수송층 물질로는 캐소드로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태는, 상기 유기발광소자를 포함하는 디스플레이 장치를 제공한다.
상기 유기발광소자는 디스플레이 장치에서 백라이트 역할을 할 수 있다. 또한, 상기 유기발광소자는 디스플레이 장치에서 화소부의 발광층 역할을 할 수 있다. 그 외, 디스플레이 장치에 필요한 구성들은 당 기술분야에 알려져 있는 것들이 적용될 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
본 발명자들은 본 명세서에 따른 유기발광소자가 원활하게 작동하는지 여부를 확인하기 위하여, 전자수송층, 광반사 저감층 및 금속 전극이 순차적으로 적층된 구조에서 전하 이동이 가능한지 여부에 대한 검토를 진행하였다.
[ 실시예 1]
본 명세서에 따른 유기발광소자의 전하 이동 여부를 확인하기 위하여, 전자수송층으로서 Alq, 광반사 저감층으로서 Al60N35O5, 금속 전극으로서 Al을 사용한 경우의 유기발광소자를 모델링하였다. 모델링은 제1 원리 밀도 함수 이론 (ab initio density functional theory) 계산법을 통하여 진행하였다.
일함수(W)는 하기의 정의와 같이 정의될 수 있다.
W = -eØ - EF
상기 일함수 정의에서 -e는 전하의 전하량이고, Ø는 물질 표면 근처의 진공(vacuum)의 정전위(electrostatic potential)를 의미한다. 즉, 일함수는 물질에서 자유 전자를 떼어 내는 데 필요한 최소한의 에너지이다.
Al60N35O5의 페르미 준위(EF)는 0.2025 eV이며, 이를 이용하여 상기 일함수 정의를 통하여 일함수를 계산하면 Al60N35O5의 일함수는 3.8975 eV이다.
도 5는 실시예 1에 따른 각층 간의 에너지 관계를 도시한 것이다.
서로 다른 물질은 페르미 준위가 다르며, 일함수 역시 다르다. 두 물질이 떨어져 있게 되면 서로 고유의 값을 가지게 되나 두 물질이 가까워져서 접합을 하게 될 경우 자유 전자들의 움직임으로 인하여 이종의 물질의 페르미 준위는 정렬 되게 된다. 이를 통하여, 금속과 금속 혹은 금속과 반도체 등의 접합부(junction) 에서는 페르미 준위가 같아지게 된다. 이때 일함수 값은 물질 고유의 값이므로 페르미 준위가 정렬 되면서 V = ØA - ØB 만큼의 접촉 전위차(Contact potential), 혹은 볼타 포텐셜이 생기게 된다. 이러한 원리에 따라서 도 5의 에너지 다이어그램이 그려지며, Al 금속과 Al60N35O5의 포텐셜 차이가 작아 두 물질 사이에 전자의 흐름이 어렵지 않게 된다.
도 5에 따르면, Al의 일함수는 4.08 eV로 알려져 있으며, Al과 Al60N35O5의 일함수 차이는 0.1825 eV로서, 층간 에너지 장벽이 낮아 전하가 이동하는 데에 무리가 없다. 나아가, Al60N35O5로부터 Alq의 LUMO 로 이동하기에 무리가 없는 것을 알 수 있다.
[실시예 2]
본 명세서에 따른 유기발광소자의 전하 이동 여부를 확인하기 위하여, 전자수송층으로서 Alq, 광반사 저감층으로서 Al58N38O4, 금속 전극으로서 Al을 사용한 경우의 유기발광소자를 모델링하였다.
Al60N35O5의 페르미 준위(EF)는 -0.1444 eV이며, 이를 이용하여 상기 일함수 정의를 통하여 일함수를 계산하면 Al58N38O4의 일함수는 4.0144 eV이다.
도 6은 실시예 2에 따른 각층 간의 에너지 관계를 도시한 것이다.
도 6에 따르면, Al의 일함수는 4.08 eV로 알려져 있으며, Al과 Al58N38O4의 일함수 차이는 0.0656 eV로서, 층간 에너지 장벽이 낮아 전하가 이동하는 데에 무리가 없다. 나아가, Al58N38O4로부터 Alq의 LUMO 로 이동하기에 무리가 없는 것을 알 수 있다.

Claims (13)

  1. 투명 전극;
    상기 투명 전극에 대향하여 구비되는 금속 전극;
    상기 투명 전극과 상기 금속 전극 사이에 구비된 1층 이상의 유기물층; 및
    상기 금속 전극의 투명 전극을 향하는 면에 접하여 구비된 광반사 저감층을 포함하고,
    상기 광반사 저감층은 알루미늄 산질화물을 포함하는 것인 유기발광소자.
  2. 청구항 1에 있어서,
    상기 금속 전극과 상기 광반사 저감층의 일함수 차이는 0 eV 이상 1.4 eV 이하인 것인 유기발광소자.
  3. 청구항 1에 있어서,
    상기 광반사 저감층의 일함수는 3.5 eV 이상 4.2 eV 이하인 것인 유기발광소자.
  4. 청구항 1에 있어서,
    상기 광반사 저감층은 AlxOyNz로 표시되는 알루미늄 산질화물을 포함하고,
    x는 알루미늄의 at%로서 55 내지 65의 값을 가지고,
    y는 산소의 at%로서 1 내지 10의 값을 가지며,
    z는 질소의 at%로서 30 내지 40의 값을 가지는 것인 유기발광소자.
  5. 청구항 1에 있어서,
    상기 금속 전극은 Cu, Al, Mo, Ti, Ag, Ni, Mn, Au, Cr 및 Co로 이루어진 군에서 선택되는 1 또는 2 이상의 금속을 포함하는 것인 유기발광소자.
  6. 청구항 1에 있어서,
    상기 광반사 저감층의 두께는 10 ㎚ 이상 100 ㎚ 이하인 것인 유기발광소자.
  7. 청구항 1에 있어서,
    상기 광반사 저감층의 투명 전극을 향하는 면에 접하여 구비된 10 ㎚ 미만의 금속층을 더 포함하는 것인 유기발광소자.
  8. 청구항 7 에 있어서,
    상기 금속층은 투명 또는 반투명한 것인 유기발광소자.
  9. 청구항 1에 있어서,
    상기 광반사 저감층의 소멸계수(k)는 550 ㎚ 파장의 빛에서 0.04 이상 1.3 이하인 것인 유기발광소자.
  10. 청구항 1에 있어서,
    상기 광반사 저감층의 굴절율(n)은 550 ㎚ 파장의 빛에서 2 이상 3 이하인 것인 유기발광소자.
  11. 청구항 1에 있어서,
    상기 투명 전극 표면에서의 광반사도는 550 ㎚ 파장의 빛에서 20 % 이하인 것인 유기발광소자.
  12. 청구항 1에 있어서,
    상기 투명 전극 또는 상기 금속 전극은 기판 상에 구비된 것인 유기발광소자.
  13. 청구항 1 내지 12 중 한 항에 따른 유기발광소자를 포함하는 디스플레이 장치.
PCT/KR2016/012097 2015-10-27 2016-10-26 유기발광소자 WO2017074029A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/758,319 US20180269420A1 (en) 2015-10-27 2016-10-26 Organic light emitting element
EP16860212.6A EP3370274B1 (en) 2015-10-27 2016-10-26 Organic light emitting element
CN201680054730.7A CN108140742A (zh) 2015-10-27 2016-10-26 有机发光元件
JP2018509879A JP6541089B2 (ja) 2015-10-27 2016-10-26 有機発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0149503 2015-10-27
KR1020150149503A KR102010401B1 (ko) 2015-10-27 2015-10-27 유기발광소자

Publications (1)

Publication Number Publication Date
WO2017074029A1 true WO2017074029A1 (ko) 2017-05-04

Family

ID=58630575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012097 WO2017074029A1 (ko) 2015-10-27 2016-10-26 유기발광소자

Country Status (7)

Country Link
US (1) US20180269420A1 (ko)
EP (1) EP3370274B1 (ko)
JP (1) JP6541089B2 (ko)
KR (1) KR102010401B1 (ko)
CN (1) CN108140742A (ko)
TW (1) TWI699921B (ko)
WO (1) WO2017074029A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864105A (zh) * 2020-07-09 2020-10-30 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021860A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 半導体装置およびその製造方法
KR100834820B1 (ko) * 2007-01-18 2008-06-03 성균관대학교산학협력단 산소질화알루미늄 계면층을 갖는 유기 발광 소자 및 그제조방법
KR20100129596A (ko) * 2009-06-01 2010-12-09 삼성모바일디스플레이주식회사 유기 발광 소자
KR20110066760A (ko) * 2009-12-11 2011-06-17 호서대학교 산학협력단 유기발광다이오드의 광간섭 반사광 방지 박막
KR20140030075A (ko) * 2012-08-31 2014-03-11 주식회사 엘지화학 전도성 구조체 및 이의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429451B1 (en) * 2000-05-24 2002-08-06 Eastman Kodak Company Reduction of ambient-light-reflection in organic light-emitting devices
US7045954B2 (en) * 2003-06-17 2006-05-16 City University Of Hong Kong Organic light-emitting device with reduction of ambient-light-reflection by disposing a multilayer structure over a semi-transparent cathode
WO2005109964A1 (ja) * 2004-04-21 2005-11-17 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
KR100752369B1 (ko) * 2004-11-17 2007-08-27 삼성에스디아이 주식회사 저반사전극을 구비하는 유기전계발광표시장치
US20070030569A1 (en) * 2005-08-04 2007-02-08 Guardian Industries Corp. Broad band antireflection coating and method of making same
TWI283939B (en) * 2006-01-20 2007-07-11 Au Optronics Corp Organic light emitting diode and organic electroluminescent device using the same
JP5084305B2 (ja) * 2006-03-08 2012-11-28 株式会社半導体エネルギー研究所 発光素子、発光装置並びに電子機器
EP1994118B1 (en) 2006-03-14 2018-10-17 LG Chem, Ltd. Organic light emitting diode having high efficiency and process for fabricating the same
JP2009081406A (ja) * 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
KR101224282B1 (ko) * 2011-03-04 2013-01-21 주식회사 엘지화학 전도성 구조체 및 이의 제조방법
KR101768276B1 (ko) * 2014-08-20 2017-08-16 삼성에스디아이 주식회사 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021860A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 半導体装置およびその製造方法
KR100834820B1 (ko) * 2007-01-18 2008-06-03 성균관대학교산학협력단 산소질화알루미늄 계면층을 갖는 유기 발광 소자 및 그제조방법
KR20100129596A (ko) * 2009-06-01 2010-12-09 삼성모바일디스플레이주식회사 유기 발광 소자
KR20110066760A (ko) * 2009-12-11 2011-06-17 호서대학교 산학협력단 유기발광다이오드의 광간섭 반사광 방지 박막
KR20140030075A (ko) * 2012-08-31 2014-03-11 주식회사 엘지화학 전도성 구조체 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370274A4 *

Also Published As

Publication number Publication date
EP3370274A4 (en) 2018-10-31
KR102010401B1 (ko) 2019-08-14
TWI699921B (zh) 2020-07-21
US20180269420A1 (en) 2018-09-20
JP2018526782A (ja) 2018-09-13
TW201733178A (zh) 2017-09-16
CN108140742A (zh) 2018-06-08
EP3370274A1 (en) 2018-09-05
JP6541089B2 (ja) 2019-07-10
KR20170048870A (ko) 2017-05-10
EP3370274B1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
KR100773674B1 (ko) 유기 전기발광 표시장치
CN101606436B (zh) 具有提高的发光效率的有机发光器件及其制备方法
WO2013187736A1 (en) Layered structure for oled device, method for manufacturing the same, and oled device having the same
WO2010131853A2 (ko) 유기전계발광소자 및 그 제조방법
CN106601932B (zh) 一种有机发光显示器件和装置
US8921872B2 (en) Display unit and method of manufacturing the same, electronic apparatus, illumination unit, and light-emitting device and method of manufacturing the same
WO2012005540A2 (ko) 유기 발광 소자 및 이의 제조방법
CN105210206B (zh) 有机发光器件及其制造方法
WO2015026185A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2015174673A1 (ko) 유기발광소자 및 이의 제조방법
TW200829068A (en) Organic light emitting display
CN104167508A (zh) 发光器件、发光器件的制造方法和显示单元
CN106463646A (zh) 有机发光元件
KR20140128864A (ko) 유기발광소자 및 이의 제조방법
WO2016182283A1 (ko) 유기발광 디스플레이 장치
WO2015174796A1 (ko) 유기발광소자
WO2013180544A1 (ko) 유기 발광 소자 및 이의 제조방법
WO2013180545A1 (ko) 유기 발광 소자 및 이의 제조방법
KR20140119657A (ko) 유기발광소자 및 이의 제조방법
TW201405909A (zh) 發光裝置、包含發光裝置之顯示單元以及電子設備
WO2017173680A1 (zh) 石墨烯显示器
WO2017074029A1 (ko) 유기발광소자
WO2017061776A1 (ko) 디스플레이 장치
JP2012009225A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2016093603A1 (ko) 유기전계발광 소자 및 그를 포함하는 유기전계발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018509879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE