WO2014046514A1 - 유기발광 표시장치 - Google Patents

유기발광 표시장치 Download PDF

Info

Publication number
WO2014046514A1
WO2014046514A1 PCT/KR2013/008505 KR2013008505W WO2014046514A1 WO 2014046514 A1 WO2014046514 A1 WO 2014046514A1 KR 2013008505 W KR2013008505 W KR 2013008505W WO 2014046514 A1 WO2014046514 A1 WO 2014046514A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
light emitting
substrate
emitting layer
display device
Prior art date
Application number
PCT/KR2013/008505
Other languages
English (en)
French (fr)
Inventor
경충현
안희철
김대용
임우빈
Original Assignee
네오뷰코오롱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130112665A external-priority patent/KR20140040650A/ko
Application filed by 네오뷰코오롱 주식회사 filed Critical 네오뷰코오롱 주식회사
Priority to US14/429,575 priority Critical patent/US20150236302A1/en
Priority to CN201380049744.6A priority patent/CN104685404A/zh
Publication of WO2014046514A1 publication Critical patent/WO2014046514A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field

Definitions

  • the present invention relates to an organic light emitting display device, and more particularly, to display an image having an increased image forming distance by increasing an image forming distance of an image generated in a light emitting area of the display device, thereby displaying a head up display for a vehicle or an aircraft.
  • the present invention relates to an organic light emitting display device suitable for use.
  • Head-Up Display is a display device designed to display the driving information of these vehicles on the front of the driver without moving the driver's eyes while driving the vehicle or aircraft.
  • instrument panel information such as speedometer, fuel gauge, and thermometer of the vehicle was mainly displayed, but recently, the function of displaying specific information on the display screen of the navigation in conjunction with a navigation (navigation) that helps to find a way through a map guide.
  • the head-up display which uses a flat display device such as a transparent organic light-emitting display (TOLED), as a display unit, is directly integrated with the windshield of the vehicle or windscreen due to the large and expensive price.
  • a head-up display is installed and used in a vehicle interior inside the shield.
  • the driver's gaze should be located at a relatively distant point away from the front of the vehicle in order to check the road situation or the distance to the vehicle in front of the vehicle, but the installation position of the head-up display is a windshield or a windshield in the vehicle interior. Being in front of the shield, there is a significant distance difference between the driver's line of sight and the head-up display.
  • the driver in order for the driver driving the vehicle to check driving information displayed on the head-up display, the driver must move his / her eyes from the front position of the vehicle, which is the position of the driver's eyes, to the head-up display in front of the windshield.
  • the eye's focal length inevitably changes, but there is a slight parallax between the eye's movement and the eye's change in eye's focal length, so if the driver's gaze moves from the front view to the head-up display or vice versa, There is a period in which the driver is not in focus for a time corresponding to the parallax, and in some cases, it is difficult to look forward.
  • imaging distance refers to a position where an image formed by light generated in an organic light emitting layer of an organic light emitting display device used as a display unit of a head-up display is visually recognized by the driver,
  • the distance between the eyes is referred to, and the present invention increases the imaging distance more than the distance from the driver's eyes to the installation position of the organic light emitting display device so that the driver recognizes that an image is formed in front of the head-up display.
  • the conventional head-up display of Patent Document 1 is an OLED (100) for separating and transmitting the left eye image and the right eye image in the inner and outer bonding film (230, 240) respectively bonded in the double glass (210, 220) of the vehicle wind shield Insert and heat and press-bond, and attach a lenticular sheet 110 having a semi-cylindrical lenticular lens densely arranged thereon, and the left and right images are separated according to the angle of each lens of the lenticular sheet 110, respectively.
  • the OLED 100 By generating binocular disparity so that the right eye can be seen, the OLED 100 makes the image appear as a stereoscopic image, thereby increasing the imaging distance in such a manner that the stereoscopic image is seen as an image formed at a far distance.
  • Patent Document 1 Publication No. 10-2012-59846 (Published June 11, 2012)
  • Patent Document 1 employs a stereoscopic method of stereoscopically displaying a display image due to binocular disparity as a method for increasing the imaging distance of a head-up display, and separating a left eye image and a right eye image as a display device for this purpose.
  • Employing OLED is adopted.
  • Patent Literature 1 it is possible to increase the image forming distance due to the stereoscopic image.
  • the stereoscopic image here is not an actual stereoscopic image but an image that is stereoscopically created by artificially generating binocular disparity, so that the driver is able to move up the front of the vehicle and head up.
  • the driver is able to move up the front of the vehicle and head up.
  • Patent Document 1 a complex optical configuration for the separation of the left and right eyes for OLED to separate and transmit the left eye image and the right eye image is required, which increases the volume and price of the head-up display There is no choice but to lead to a rise.
  • Patent Document 1 also has a problem that the structure is complicated because the lenticular sheet is attached to the outside of the OLED to increase the imaging distance of the OLED.
  • This invention is made
  • the organic light emitting display device of the present invention for solving the above problems is an organic light emitting display device including an organic light emitting layer interposed between the first electrode and the second electrode formed between the first substrate and the second substrate, respectively, An organic light emitting display device including an optical unit disposed on one or both surfaces of a first substrate and increasing an imaging distance of an image formed by the light emitted from the organic light emitting layer.
  • the organic light emitting display device of the present invention is an organic light emitting display device including an organic light emitting layer interposed between a first electrode and a second electrode formed between a first substrate and a second substrate, respectively, A first optical part disposed on one of both surfaces, and a second optical part disposed on a surface of the second substrate facing the organic light emitting layer, wherein the first optical part and the second optical part
  • the organic light emitting display device increases the imaging distance of an image formed by the light emitted from the organic light emitting layer.
  • the organic light emitting display device of the present invention can increase the image forming distance of the display device by a simple configuration, so that the organic light emitting display device other than the organic light emitting display device when used as a head-up display of a vehicle or the like can be added.
  • An organic light emitting display device which does not require a constitution and can increase the image forming distance of the display image by the organic light emitting display itself, and can increase the image forming distance of the display image without creating a stereoscopic image by artificially generating binocular disparity. Can be provided.
  • FIG. 1 is a schematic diagram of a display schematically showing a conventional head-up configuration
  • FIG. 2 is a view schematically showing the configuration of an OLED of preferred embodiment 1 of the present invention
  • FIG. 3 is a diagram schematically showing a state in which a standing virtual image in which an image forming distance of an image is increased by an OLED of Embodiment 1 is formed;
  • FIG. 4 is a diagram schematically showing a configuration of an OLED 301 of Modification Example 1;
  • FIG. 5 is a diagram schematically showing a configuration of an OLED 303 of Modification Example 2;
  • FIG. 6 is a diagram schematically showing the configuration of an OLED 305 of Modification Example 3,
  • FIG. 7 is a diagram schematically showing a configuration of an OLED 400 of Embodiment 2 of the present invention.
  • FIG. 8 is a diagram schematically showing a state in which a standing virtual image having an increased image forming distance is formed by the OLED 400 of Embodiment 2;
  • FIG. 9 is a diagram schematically showing the configuration of OLED 401 of the fourth modification.
  • OLED 300 the organic light emitting display device (hereinafter simply referred to as "OLED") 300 according to the first embodiment of the present invention will be described.
  • 2 is a cross-sectional view schematically showing the configuration of the OLED 300 of the first preferred embodiment of the present invention.
  • the OLED 300 of Embodiment 1 includes an organic light emitting layer 320 interposed between the front substrate 310 and the rear substrate 330, and the organic light emission of the front substrate 310.
  • An optical part 340 is formed on the side surface 311a of the layer 320.
  • the OLED 300 may include a negative electrode formed on the front substrate 310 and a negative electrode formed between the rear substrate 330 and the organic light emitting layer 320 or on the rear substrate 330. And excitons are generated by injecting holes and electrons into the organic light emitting layer 320 from the pair of electrodes consisting of the positive electrode and the negative electrode to recombine to lose the activity of the excitons.
  • the OLED 300 emits light using the emission of light at the time.
  • a transparent substrate made of a transparent material such as glass or plastic is used, and the positive electrode is formed on the front substrate 310, and the plurality of pixels 320a of the organic light emitting layer 320 described later.
  • a conductive material may be coated or an electrode made of a material such as ITO or IZO may be separately formed by a known method.
  • the organic light emitting layer 320 is a layer composed of an organic light emitting material that emits light by emitting an electric field applied between the positive electrode and the negative electrode, and as shown in FIG. A region corresponding to each of the positive electrode and the negative electrode is divided into a plurality of pixels 320a which are light emitting regions.
  • a negative electrode is formed on the organic light emitting layer 320, and a rear substrate 330 is disposed on the negative electrode.
  • the negative electrode may be formed directly on the rear substrate 330.
  • the back substrate 330 uses a transparent substrate such as glass or plastic, and functions as a cover substrate of the OLED 300.
  • the optical unit 340 is disposed at a position corresponding to the plurality of pixels 320a, and functions to increase an imaging distance of an image generated by light emission of the plurality of pixels 320a.
  • the unit 340 includes a plurality of micro lenses 340a disposed at positions respectively corresponding to the plurality of pixels 320a.
  • the microlens 340a is formed on the first surface 310a which is the surface facing the organic light emitting layer 320 of the front substrate 310.
  • the plurality of pixels 320a of the organic light emitting layer 320 are arranged with the adjacent pixels 320a at first periodic array intervals, respectively.
  • periodic arrangement interval means that the interval between the centers of adjacent pixels in the center of one pixel or the interval from one end of one pixel to one end of the adjacent pixel is the same in all the plurality of pixels. Arranged in the same manner as the concept of "pitch" generally used in the technical field of the present invention.
  • the plurality of micro lenses 340a also have a second periodic array interval with the adjacent micro lens 340a, and the first and second periodic array intervals may or may not be the same as each other. Preferably, the first and second periodic arrangement intervals are the same.
  • the size of each of the plurality of micro lenses 340a is preferably equal to or greater than the size of the light emitting area of the corresponding pixel 320a. That is, the size of each of the plurality of micro lenses 340a is greater than or equal to the size of the light emitting area of the corresponding pixel 320a, or the size of each of the plurality of micro lenses 340a is the area of the light emitting area of the corresponding pixel 320a. It is preferable that it is above.
  • the distance from the center point of the microlens 340a to the outermost part is preferably equal to or greater than the distance from the center point of the emission area of the corresponding pixel 320a to the outermost part.
  • the distance from the center point of the microlens 340a to the outermost part is preferably less than twice the distance from the center point of the emission area of the corresponding pixel 320a to the outermost part.
  • the plurality of micro lenses 340a are shown as being configured as convex lenses, respectively. However, this is merely an example. If the conditions are satisfied, the plurality of micro lenses 340a are not limited to the convex lenses. Or a concave lens, a flat convex lens, a flat concave lens, or a combination thereof.
  • the aperture ratio of the plurality of micro lenses 340a is expressed as a value obtained by dividing the area of the micro lens by the square of the first periodic array interval (Equation 1). If the aperture ratio is too low, the transmittance of light is lowered so that the OLED 300 In contrast, when the aperture ratio is too high and the aperture ratio is too high, the size of the microlens 340a of the optical unit 340 becomes relatively small, making it difficult to increase the imaging distance desired by the present invention, and at the same time, resolution of an image formed. There is a problem such that the image is blurred due to a low level, or in a severe case, only a part of the image is not displayed.
  • the aperture ratio of the plurality of micro lenses 340a is preferably less than 70%, preferably less than 60%, more preferably less than 50%, and may be, for example, 15%, 10% or 5%. have.
  • Aperture ratio (area of microlens) / (first periodic array interval) 2
  • FIG. 3 is a diagram schematically showing a state in which a standing virtual image having an increased image forming distance is formed by the OLED 300 of the first embodiment.
  • FIG. 3 illustrates a case in which the plurality of micro lenses 340a of the optical unit 340 are a single lens made of a convex lens.
  • a person skilled in the art to which the present invention pertains includes the micro lens 340a.
  • the image formation when) is a convex lens, a concave lens, or a flat concave lens, or a flat convex lens, or a combination lens composed of a combination of these lenses.
  • an inverted image is formed at the rear of the lens when the object is located outside the front focal point of the lens, and when the object is located inside the front focal point of the lens, an upright virtual image is placed in front of the lens. Is formed.
  • an object P corresponding to the pixel 320a of the OLED 300 is located in the front focal point F1 of the microlens 340a and is parallel to the axis of the microlens 340a from the object P.
  • the object P (actually, each of the plurality of pixels 320a) Is formed as an upright virtual image at a position separated by the distance S from the position of the actual pixel.
  • the following method can be considered as a method of increasing the imaging distance by moving the imaging position of the image displayed by the organic light emitting layer 320.
  • the viewer adjusts the distance between the microlens 340a of the optical unit 340 and the pixel 320a of the organic light emitting layer 320 corresponding thereto. Since it appears as an upright virtual image located at a distance S from the pixel 320a in front of the 320a, as a result, the OLED 300 is controlled by adjusting the distance between the optical unit 340 and the organic light emitting layer 320. Can increase the imaging distance.
  • a buffer layer (not shown) made of a predetermined buffer material is further formed between the microlens 340a of the optical unit 340 and the pixel 320a of the organic light emitting layer 320 to form an image of the display image. You can also increase the distance.
  • the buffer material may include any one of a photoresist material and an oxide compound.
  • the photoresist material may include a positive type or a negative type, and any known photoresist material may be used.
  • the oxide compound may include SiO 2 , TiO 2 , Al 2 O 3 , Ta 2 O 5 , HfOx, and the like.
  • the image forming distance of the display image is increased by adjusting at least one of the focal length of the microlens, the material of the microlens (for example, lens material such as glass, plastic, photoresist), or the refractive index of the microlens.
  • the microlens 340a of the optical unit 340 may include at least one of a concave lens, a convex lens, a flat convex lens and a flat concave lens, or a combination thereof. If necessary, the plurality of micro lenses 340a may use different types of lenses or combinations thereof, even in one OLED 300.
  • Embodiment 1 Next, the modification of Embodiment 1 is demonstrated, referring drawings.
  • FIG. 4 is a diagram schematically showing the configuration of the OLED 301 of Modification Example 1.
  • FIG. 4 is a diagram schematically showing the configuration of the OLED 301 of Modification Example 1.
  • the formation position of the optical portion 341 is different from that in the first embodiment, and all other configurations are the same as those in the first embodiment, and thus the description of the same parts is omitted.
  • the optical unit 340 is formed on the side 311a facing the organic light emitting layer 320 of the front substrate 310, but as shown in FIG. 4, the OLED of Modification Example 1
  • An optical portion 341 is formed on the outer surface 311b side of the front substrate 311 at 301.
  • the plurality of microlenses 340a of the optical unit 340 are respectively disposed on the side surface 311a facing the organic light emitting layer 320 of the front substrate 310.
  • a plurality of micro lenses 340a are disposed outside the front substrate 311. Pluralities are formed at positions corresponding to the plurality of pixels 321a of the organic light emitting layer 321 on the surface 311b.
  • the imaging position of the image in which the display image of the OLED 301 is recognized by the observer D is different from that in the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the OLED 303 of Modification Example 2.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the OLED 303 of Modification Example 2.
  • the position at which the optical portion 343 is formed is different from that in Embodiment 1, and all other configurations except for the position at which the optical portion 343 is formed are the same as those in Embodiment 1, so that the description of other configurations is described. Is omitted.
  • the optical unit 340 is formed only on the side 311a facing the organic light emitting layer 320 of the front substrate 310, but the OLED of Modification 2
  • the optical portion 343 of 303 is formed on both sides 313a and 313b of the front substrate 311.
  • the plurality of microlenses 340a of the optical unit 340 are respectively disposed on the side surface 311a facing the organic light emitting layer 320 of the front substrate 310.
  • a plurality of pixels 320a may be formed at positions corresponding to the plurality of pixels 320a of the plurality of pixels, but the optical unit 343 of the OLED 303 of the second modified example may include a plurality of organic light emitting layers 323 of the front substrate 313.
  • the imaging position of the image by which the display image of the OLED 303 is recognized by the observer D by this is It differs from Embodiment 1.
  • 6 is a cross-sectional view schematically showing the configuration of the OLED 305 of the third modification.
  • the third embodiment is different from the first embodiment in that the OLED 300 of the first embodiment has a micro lens 340a formed on the side where the optical unit 340 faces the organic light emitting layer 320 of the front substrate 310.
  • the OLED 305 of the third modified example includes a first optical part 345 formed of a microlens 345a formed on a surface of which the optical part faces the organic light emitting layer 325 of the front substrate 315.
  • the second optical unit 355 is formed of a reflecting plate 355a formed on the side facing the organic light emitting layer 325 of the rear substrate 335.
  • the first optical portion 345 made of the micro lens 345a formed on the side facing the organic light emitting layer 325 of the front substrate 315 is the optical portion 340 made of the micro lens 340a in the first embodiment. Same as).
  • the second optical unit 355 is formed of a reflecting plate 355a formed on the side facing the organic light emitting layer 325 of the rear substrate 335, and the reflecting plate 355a is formed of the organic light emitting layer of the rear substrate 335 ( A plurality of surfaces of the organic light emitting layer 325 are formed at positions corresponding to the plurality of pixels 325a of the organic light emitting layer 325.
  • the reflecting plate 355a prevents the image from being distorted by passing light incident to the OLED 305 through the rear substrate 335 from the outside through the microlens 345a of the first optical unit 345 and at the same time, organic light emission.
  • the light traveling from the plurality of pixels 325a of the layer 325 toward the rear substrate 335 is reflected toward the microlens 345a of the first optical unit 345 to simultaneously improve the brightness.
  • the second optical unit 355 including the plurality of reflecting plates 355a is added to the OLED 300 according to the first embodiment. 301 and 303 may be applied in the same manner.
  • FIG. 7 is a diagram schematically showing the configuration of an OLED 400 of Embodiment 2 of the present invention.
  • the second embodiment differs from the second embodiment in that the OLED 300 of the first embodiment includes a plurality of the organic light emitting layers 320 of the front substrate 310 with the optical unit 340 including the plurality of micro lenses 340a.
  • the OLED 400 of Embodiment 2 is formed on the surface facing each of the plurality of pixels 420a of the organic light emitting layer 420 of the rear panel 430.
  • the second optical part 440b which consists of) is provided, and the other structure is the same as that of Embodiment 1. As shown in FIG.
  • the micro mirror 440a 'constituting the third optical unit 440a is either a convex mirror or a concave mirror.
  • the reflecting plate 440b ' may be a reflecting plate of any material as long as it can reflect light, and reflects light passing through the front panel 410 from the plurality of pixels 420a of the organic light emitting layer 420. This is to prevent it from entering your eyes.
  • each of the plurality of pixels 420a is arranged at a third periodic array interval with an adjacent pixel
  • each of the plurality of reflecting plates 440b ' is arranged at a fourth periodic array interval with an adjacent reflecting plate
  • a plurality of micro mirrors ( 440a ') are each arranged with adjacent micromirrors at a fifth periodic arrangement.
  • the third, fourth and fifth periodic arrangement intervals may or may not be identical to each other, preferably the same.
  • each of the plurality of reflecting plates 440b ' is equal to or larger than the size of the light emitting region of the corresponding pixel 420a. That is, the size of each of the plurality of reflecting plates 440b 'is preferably equal to or greater than the size of the light emitting area of the corresponding pixel 420a or more than the area of the light emitting area of each of the plurality of pixels 420a.
  • the distance from the center point of the plurality of reflecting plates 440b 'to the outermost part is preferably equal to or greater than the distance from the center point of the emission area of the corresponding pixel 420a to the outermost part.
  • the distance from the center point of each of the plurality of reflecting plates 440b 'to the outermost part is preferably less than twice the distance from the center point of the emission area of the corresponding pixel 420a to the outermost part.
  • the aperture ratios of the plurality of reflecting plates 440b 'and the micromirrors 440a' are respectively obtained by dividing the area of the reflecting plate or the micromirrors by the square of the third periodic array interval (Equation 2).
  • the value is preferably less than 70%, preferably less than 60%, more preferably less than 50%, for example 15%, 10% or 5%.
  • Opening ratio (area of reflector plate) / (third periodic arrangement interval) 2
  • Embodiment 8 illustrates a principle of increasing an image forming distance of an image formed in the OLED 400 by the above configuration.
  • the position and the optical position of the third optical unit 440a are different from those of the first embodiment. Since only the kind of optical component which comprises a part differs, other structure is substantially the same, and an imaging distance can be increased by the method similar to Embodiment 1, and a detailed description is abbreviate
  • FIG. 9 is a diagram schematically showing the configuration of OLED 401 of the fourth modification.
  • the OLED 401 of the fourth modified example differs only in the position of the reflective plate 441b 'of the OLED 400 of the second embodiment and the fourth optical portion 441b, and the rest of the configuration is the same as that of the second embodiment.
  • the fourth optical portion 441b including the plurality of reflecting plates 441b ' is disposed on the outer surface of the front substrate 411. different.
  • a transparent organic light emitting display device in which both the front substrate and the rear substrate of the organic light emitting display device uses a transparent substrate is described as an example, but is not limited thereto.
  • the organic light emitting display device of the top emission type or the bottom emission type is also described. Applicable
  • each said embodiment and each modified example may be implemented individually, or may be implemented in combination with each other.

Abstract

본 발명은 예를 들어 헤드업 디스플레이의 표시부로 이용되는 유기발광 표시장치에서 형성되는 화상의 위치가 실제 유기발광 표시장치의 위치보다 더 전방에 위치하도록 결상 거리를 증가시킨 유기발광 표시장치에 관한 것으로, 본 발명의 유기발광 표시장치(300)는 양전극이 형성된 전면 기판(310)과, 음전극이 형성된 후면 기판(330) 및 양 기판 사이에 배치되며 복수의 화소(320a)로 구획된 유기발광 층(320)과, 전면 기판(310)의 양면 중 어느 한 면 또는 양면에 형성되며, 상기 복수의 화소 각각에 대응하는 위치에 형성된 복수의 마이크로 렌즈(340a)로 이루어지는 광학부(340)를 포함한다.

Description

유기발광 표시장치
본 발명은 유기발광 표시장치에 관한 것으로서, 특히, 당해 표시장치의 발광영역에서 발생하는 화상의 결상 거리를 증가시켜서 결상 거리가 증가된 화상을 표시함으로써 차량이나 항공기 등의 운송수단의 헤드업 디스플레이용으로 사용하기에 적합한 유기발광 표시장치에 관한 것이다.
헤드업 디스플레이(Head-Up Display : HUD)는 차량이나 항공기 등의 운송수단을 운전하는 운전자의 시선 이동 없이 이들 운송수단의 운행정보를 운전자의 전면에 표시하도록 설계된 표시장치를 말하며, 차량에서의 사용 초기에는 주로 차량의 속도계, 연료계, 온도계 등의 계기판정보를 표시하였으나, 최근에는 지도 안내를 통해 길 찾기 등을 도와주는 내비게이션(navigation)과 연동하여, 내비게이션의 표시화면 중 특정 정보를 표시하는 기능을 갖는 헤드업 디스플레이도 등장하고 있다.
상기 용도로 사용되는 헤드업 디스플레이로 이미지 발생장치로부터 발생한 화상을 차량의 윈드 실드에 투사하여 투사 화상을 표시하는 이른바 프로젝션 타입의 헤드업 디스플레이가 있으나, 프로젝션 타입 헤드업 디스플레이는 광학계가 복잡하여 부피가 크고 가격도 고가라는 등의 이유에서 최근에는 투명 유기발광 표시장치(Transparent Organic Light-Emitting Display : TOLED) 등의 평면형 표시장치를 표시부로 이용하는 헤드업 디스플레이를 직접 차량의 윈드 실드와 일체로 하거나 또는 윈드 실드의 안쪽의 차량 실내에 설치하는 방식의 헤드업 디스플레이가 개발 및 사용되고 있다.
통상 도로사정이나 앞차와의 거리 등을 확인하기 위해서 운전 중의 운전자의 시선은 차량의 전방으로부터 일정 거리 떨어진 비교적 먼 지점에 위치하여야 하나, 상기 헤드업 디스플레이의 설치위치는 윈드 실드 내 또는 차량 실내의 윈드 실드 앞쪽이므로, 운전자의 시선과 헤드업 디스플레이 사이에는 상당한 거리의 차이가 발생한다.
따라서 차량을 운전중인 운전자가 헤드업 디스플레이에 표시되는 운행정보를 확인하기 위해서는 운전 중의 시선의 위치인 차량의 전방 위치로부터 윈드 실드 앞쪽의 헤드업 디스플레이로 시선을 이동하여야 하며, 이와 같은 이동에 따른 운전자의 눈의 초점거리가 변화가 불가피하나, 눈의 이동과 실제로 눈의 초점거리의 변화 사이에는 약간의 시차가 존재하므로 운전자의 시선이 전방 시야에서 헤드업 디스플레이로, 또는 그 역으로 이동하는 경우에는 상기 시차에 상당하는 시간 동안 운전자의 초점이 맞지 않는 기간이 존재하게 되며, 경우에 따라서는 전방 주시가 곤란해지는 경우도 발생한다.
일반적으로 헤드업 디스플레이의 결상 위치가 운전자의 눈으로부터 대략 2m 전후에 위치하는 경우에는 상기와 같은 문제가 발생하지 않는 것으로 알려져 있다.
이와 같은 문제의 해결을 위해서는 차량의 윈드 실드 부근에 설치하는 헤드업 디스플레이에서 형성된 상이 인간의 눈에 인식되는 위치인 결상 위치를 가능한 한 통상 운전시의 운전자의 시선의 위치와 일치시키는 것이 바람직하며, 헤드업 디스플레이의 결상 위치를 헤드업 디스플레이의 실제 위치가 아닌 윈드 실드 바깥쪽에 위치하도록 하는, 즉, 헤드업 디스플레이의 결상 거리를 증가시키는 기술로 예를 들어 특허문헌 1에 기재된 기술이 있다.
참고로, 본 명세서에서 「결상 거리」라는 용어는 헤드업 디스플레이의 표시부로 이용되는 유기발광 표시장치의 유기발광 층에서 발생하는 광에 의해 형성되는 화상이 운전자에 의해서 시각적으로 인식되는 위치와 운전자의 눈 간의 거리를 말하며, 본 발명에서는 이 결상 거리를 운전자의 눈에서부터 유기발광 표시장치의 설치 위치까지의 거리보다 더 증가시킴으로써 운전자는 헤드업 디스플레이의 전방에 화상이 형성된 것으로 인식하도록 하고 있다.
도 1은 특허문헌 1의 종래의 헤드업 디스플레이의 구성을 개략적으로 나타내는 도면이다.
특허문헌 1의 종래의 헤드업 디스플레이는 차량용 윈드 실드의 이중유리(210, 220) 내에 각각 접합되는 내측 및 외측 접합필름(230, 240) 내에 좌안 영상 및 우안 영상을 분리하여 송출하는 OLED(100)를 삽입하여 가열 및 가압 접착하고, 그 상부에 반 원통형 렌티큘라 렌즈가 밀집 형성된 렌티큘러 시트(110)를 부착하여, 렌티큘러 시트(110)의 각각의 렌즈의 각도에 따라서 좌우 영상이 분리되어 각각 좌안 및 우안에 보이도록 양안 시차를 발생시켜서 OLED(100)이 화상을 입체 화상으로 보이도록 함으로써, 이 입체화상이 마치 원거리에 형성된 화상으로 보이도록 하는 방식으로 결상 거리를 증가시키는 효과를 얻고 있다.
<선행기술문헌>
<특허문헌>
특허문헌 1 : 공개특허 10-2012-59846호 공보(2012. 6. 11. 공개)
상기 특허문헌 1의 기술은 헤드업 디스플레이의 결상 거리를 증가시키기 위한 방법으로 양안 시차의 발생에 의해 표시 화상을 입체화하는 입체화방식을 채용하고 있고, 이를 위한 표시장치로 좌안 영상 및 우안 영상을 분리하여 송출하는 OLED를 채용하고 있다.
그러나 특허문헌 1과 같이 화상의 입체화에 의한 결상 거리의 증가는 가능할 것으로 보이나, 여기에서의 입체화상은 실제 입체화상이 아니라 인위적으로 양안 시차를 발생시켜서 입체화한 화상이므로 운전자가 차량의 전방과 헤드업 디스플레이의 화상을 교대로 보는 경우에는 피로감을 느낄 수 있다는 문제가 있다.
또, 특허문헌 1에는 구체적으로 기재되어 있지는 않으나, OLED가 좌안 영상과 우안 영상을 분리하여 송출하기 위한 좌, 우안 영상의 분리를 위한 복잡한 광학적 구성이 필요하며, 이는 헤드업 디스플레이의 부피 증가 및 가격 상승으로 연결될 수밖에 없다.
또, 특허문헌 1은 OLED의 결상 거리를 증가시키기 위해 OLED의 외부에 별도의 렌티큘러 시트를 부착하고 있으므로 역시 구조가 복잡해진다는 문제도 있다.
본 발명은 종래 기술의 상기 과제를 고려하여 이루어진 것으로, 특허문헌 1과 같이 OLED 이외의 부가적인 구성을 필요로 하지 않고, OLED 자체에 의해 표시화상의 결상 거리의 증가가 가능한 동시에, 인위적으로 양안 시차를 발생시켜서 입체화하지 않고도 표시화상의 결상 거리를 증가시킬 수 있는 유기발광 표시장치를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 유기발광 표시장치는, 제 1 기판과 제 2 기판 사이에 각각 형성된 제 1 전극과 제 2 전극 사이에 삽입된 유기발광 층을 포함하는 유기발광 표시장치로, 상기 제 1 기판의 양면 중 어느 한 면 또는 양면에 배치되며, 상기 유기발광 층의 발광 광에 의해 형성되는 화상의 결상 거리를 증가시키는 광학부를 포함하는 유기발광 표시장치이다.
또, 본 발명의 유기발광 표시장치는, 제 1 기판과 제 2 기판 사이에 각각 형성된 제 1 전극과 제 2 전극 사이에 삽입된 유기발광 층을 포함하는 유기발광 표시장치로, 상기 제 1 기판의 양면 중 어느 한 면에 배치되는 제 1 광학부와, 상기 제 2 기판에 상기 유기발광 층과 마주하는 측의 면에 배치되는 제 2 광학부를 포함하며, 상기 제 1 광학부 및 상기 제 2 광학부에 의해 유기발광 층의 발광 광에 의해 형성되는 화상의 결상 거리를 증가시키는 유기발광 표시장치이다.
<발명의 효과>
이상 설명한 바와 같이, 본 발명의 유기발광 표시장치는 간단한 구성에 의해 당해 표시장치의 결상 거리를 증가시킬 수 있으므로, 차량 등의 운송수단의 헤드업 디스플레이로 사용하는 경우에 유기발광 표시장치 이외의 부가적인 구성을 필요로 하지 않으며, 유기발광 표시장치 자체에 의해 표시화상의 결상 거리의 증가가 가능한 동시에, 인위적으로 양안 시차를 발생시켜서 입체화하지 않고도 표시화상의 결상 거리를 증가시킬 수 있는 유기발광 표시장치를 제공할 수 있다.
도 1은 종래의 헤드업 구성을 개략적으로 나타내는 디스플레이의 개략도,
도 2는 본 발명의 바람직한 실시형태 1의 OLED의 구성을 개략적으로 나타내는 도면,
도 3은 실시형태 1의 OLED에 의해 화상의 결상 거리가 증가한 정립 허상이 형성되는 모습을 모식적으로 나타내는 도면,
도 4는 변형 예 1의 OLED(301)의 구성을 개략적으로 나타내는 도면,
도 5는 변형 예 2의 OLED(303)의 구성을 개략적으로 나타내는 도면,
도 6은 변형 예 3의 OLED(305)의 구성을 개략적으로 나타내는 도면,
도 7은 본 발명의 실시형태 2의 OLED(400)의 구성을 개략적으로 나타내는 도면,
도 8은 실시형태 2의 OLED(400)에 의해 화상의 결상 거리가 증가한 정립 허상이 형성되는 모습을 모식적으로 나타내는 도면,
도 9는 변형 예 4의 OLED(401)의 구성을 개략적으로 나타내는 도면이다.
이하, 첨부한 도면을 참조하면서 본 발명의 바람직한 실시형태에 대해서 설명한다.
1. 실시형태 1
먼저, 본 발명의 바람직한 실시형태 1의 유기발광 표시장치(이하, 간단하게 「OLED」라고 한다)(300)에 대해서 설명한다. 도 2는 본 발명의 바람직한 실시형태 1의 OLED(300)의 구성을 개략적으로 나타내는 단면도이다.
도 2에 도시하는 것과 같이, 실시형태 1의 OLED(300)는 전면 기판(310)과 후면 기판(330) 사이에 삽입된 유기발광 층(320)을 포함하고, 전면 기판(310)의 유기발광 층(320) 쪽 면(311a)에는 광학부(340)가 형성되어 있다.
또, 도 2에는 도시되어 있지 않으나, OLED(300)는 전면 기판(310) 상에 형성된 양전극과 후면 기판(330)과 유기발광 층(320) 사이 또는 상기 후면 기판(330) 상에 형성된 음전극을 포함하며, 상기 양전극과 음전극으로 이루어지는 한 쌍의 전극으로부터 유기발광 층(320)에 정공(hole) 및 전자(electron)를 주입하여 재결합시킴으로써 여기자(exciton)를 생성시켜서, 이 여기자의 활성이 상실될 때의 광의 방출을 이용하여 OLED(300)가 발광한다.
전면 기판(310)은 예를 들어 유리나 플라스틱 등의 투명한 재료로 이루어지는 투명 기판이 사용되며, 상기 양전극은 전면 기판(310) 상에, 후술하는 상기 유기발광 층(320)의 복수의 화소(320a) 각각에 대응하는 위치에, 예를 들어 전도성 물질을 코팅하거나 또는 ITO, IZO 등의 물질로 이루어지는 전극을 공지의 방법에 의해 별도로 형성할 수 있다.
유기발광 층(320)은 양전극과 음전극 사이에 인가되는 전계에 의해 발광하여 광을 방출하는 유기발광물질로 구성되는 층이며, 도 2에 도시하는 것과 같이 유기발광 층(320)은 미 도시의 복수의 양전극과 음전극에 각각 대응하는 영역이 발광영역인 복수의 화소(320a)로 구획되어 있다.
상기 유기발광 층(320) 상에는 음전극이 형성되고, 음전극 상에는 후면 기판(330)이 배치된다. 그러나 음전극은 상기 후면 기판(330) 상에 직접 형성되어도 좋다.
후면 기판(330)은 유리 또는 플라스틱 등의 투명한 기판이 이용되며, OLED(300)의 커버 기판으로서의 기능을 한다.
광학부(340)는 상기 복수의 화소(320a)에 대응하는 위치에 배치되어, 상기 복수의 화소(320a)의 발광에 의해 생성되는 화상의 결상 거리를 증가시키는 기능을 하며, 본 실시형태에서는 광학부(340)는 상기 복수의 화소(320a)에 각각 대응하는 위치에 배치되는 복수의 마이크로 렌즈(340a)로 이루어진다.
본 실시형태에서는 마이크로 렌즈(340a)는 전면 기판(310)의 유기발광 층(320)과 마주하는 면인 제 1 면(310a)에 형성되어 있다.
또, 본 실시형태에서는 유기발광 층(320)의 복수의 화소(320a)는 각각 인접하는 화소(320a)와 제 1 주기적 배열간격으로 배열되어 있다. 여기서, 「주기적 배열간격」이라는 용어는 어느 하나의 화소의 중심에서 인접하는 화소의 중심 사이의 간격, 또는 어느 하나의 화소의 일단에서 인접하는 화소의 일단까지의 간격이 복수의 화소 전체에서 동일한 간격으로 배열된다는 의미이며, 본 발명의 기술분야서 일반적으로 사용되는 「피치」의 개념과 동일하다.
또, 복수의 마이크로 렌즈(340a)도 각각 인접하는 마이크로 렌즈(340a)와 제 2 주기적 배열간격을 가지며, 상기 제 1 주기적 배열간격과 제 2 주기적 배열간격은 서로 동일해도 좋고 동일하지 않아도 좋으나, 바람직하게는 상기 제 1 및 제 2 주기적 배열간격은 동일한 것이 더 좋다.
한편, 복수의 마이크로 렌즈(340a) 각각의 크기는 대응하는 화소(320a)의 발광영역의 크기 이상인 것이 바람직하다. 즉, 복수의 마이크로 렌즈(340a) 각각의 크기는 대응하는 화소(320a)의 발광영역의 크기 이상이거나, 또는 복수의 마이크로 렌즈(340a) 각각의 크기는 대응하는 화소(320a)의 발광영역의 면적 이상인 것이 바람직하다. 또는 마이크로 렌즈(340a)의 중심점에서 가장 외곽까지의 거리는 대응하는 화소(320a)의 발광영역의 중심점에서 가장 외곽까지의 거리 이상인 것이 바람직하다.
본 발명자들의 실험에 의하면 마이크로 렌즈(340a)의 중심점에서 가장 외곽까지의 거리는 대응하는 화소(320a)의 발광영역의 중심점에서 가장 외곽까지의 거리의 2배 미만인 것이 바람직하다.
도 2에서는 복수의 마이크로 렌즈(340a)는 각각 볼록렌즈로 구성하는 것으로 도시하고 있으나, 이는 예시에 불과하며, 상기 조건은 만족하는 렌즈라면 복수의 마이크로 렌즈(340a)는 볼록렌즈에 한정되는 것은 아니며, 오목 렌즈, 평 볼록렌즈, 평 오목렌즈, 또는 이들의 조합으로 해도 좋다.
상기 복수의 마이크로 렌즈(340a)의 개구율은 상기 마이크로 렌즈의 면적을 상기 제 1 주기적 배열간격의 제곱으로 나눈 값(수학식 1)으로 표시되며, 만일 개구율이 너무 낮으면 광의 투과율이 낮아져서 OLED(300)의 휘도가 저하하고, 반대로 개구율이 너무 높은 경우에는 광학부(340)의 마이크로 렌즈(340a)의 사이즈가 상대적으로 작아져서 본 발명이 목적하는 결상 거리의 증가가 곤란해지는 동시에 결상되는 화상의 해상도가 낮아져서 상이 흐리게 보이거나, 심한 경우에는 전체 화상이 표시되지 않고 일부만 표시되게 되는 등의 문제가 있다.
본 발명자들의 실험에 의하면 복수의 마이크로 렌즈(340a)의 개구율은 70% 미만, 바람직하게는 60% 미만, 더 바람직하게는 50% 미만인 것이 좋으며, 예를 들어 15%, 10% 또는 5%일 수도 있다.
[수학식 1]
개구율 = (마이크로 렌즈의 면적)/(제 1 주기적 배열간격)2
다음에, 실시형태 1의 OLED(300)의 작용에 대해 도 3을 이용하여 간략하게 설명한다. 도 3은 실시형태 1의 OLED(300)에 의해 화상의 결상 거리가 증가한 정립 허상이 형성되는 모습을 모식적으로 나타내는 도면이다.
설명의 간략화를 위해 도 3에서는 광학부(340)의 복수의 마이크로 렌즈(340a)가 볼록렌즈로 이루어지는 단일 렌즈인 경우를 설명하고 있으나, 본 발명이 속하는 기술분야의 통상의 기술자라면 마이크로 렌즈(340a)가 볼록렌즈, 또는 오목렌즈, 또는 평 오목렌즈, 또는 평 볼록렌즈, 또는 이들 렌즈의 조합으로 구성되는 복합렌즈인 경우의 상의 형성에 대해서도 이해할 수 있을 것이다.
먼저, 주지하는 것과 같이, 볼록렌즈에서는 물체가 렌즈의 앞 초점 바깥쪽에 위치하는 경우에는 렌즈의 후방에 도립 실상이 형성되고, 물체가 렌즈의 앞 초점 안쪽에 위치하는 경우에는 렌즈의 전방에 정립 허상이 형성된다.
도 3에서는 OLED(300)의 화소(320a)에 대응하는 물체(P)가 마이크로 렌즈(340a)의 앞 초점(F1) 내에 위치하고 있고, 이 물체(P)로부터 마이크로 렌즈(340a)의 축에 평행하게 입사한 광선은 굴절 후 뒤 초점(F2)을 통과하며, 렌즈의 중심(O)을 지나는 광선은 그대로 나아간다는 볼록렌즈의 성질에 따라서, 물체(P)(실제로는 복수의 화소(320a) 각각에 의해 형성되는 화상)는 관찰자(D)에게는 실제 화소의 위치로부터 거리 S만큼 떨어진 위치에서 정립 허상으로 인식되게 된다.
이상으로부터 유기발광 층(320)에 의해 표시되는 화상의 결상 위치를 이동시켜서 결상 거리를 증가시키는 방법으로 다음의 방법을 생각할 수 있다.
먼저, 도 3에서는 광학부(340)의 마이크로 렌즈(340a)와 이에 대응하는 유기발광 층(320)의 화소(320a) 사이의 거리를 조정함으로써 관찰자(D, 예를 들어 운전자 등)에게 당해 화소(320a)의 전방의, 화소(320a)로부터 거리 S만큼 떨어진 위치에 있는 정립 허상으로 보이게 되므로, 결과적으로 광학부(340)와 유기발광 층(320) 사이의 거리의 조절에 의해 OLED(300)의 결상 거리를 증가시킬 수 있다.
또는, 광학부(340)의 마이크로 렌즈(340a)와 대응하는 유기발광 층(320)의 화소(320a) 사이에 소정의 버퍼 물질로 이루어지는 버퍼 층(미 도시)을 더 형성하여 상기 표시 화상의 결상 거리를 증가시킬 수도 있다.
상기 버퍼 물질은 포토레지스트 물질 또는 옥사이드계 화합물 중 어느 하나를 포함할 수 있다. 포토레지스트 물질은 포지티브형 또는 네거티브형을 포함할 수 있으며, 기 공지된 포토레지스트 물질을 모두 이용할 수 있다. 옥사이드계 화합물은 SiO2, TiO2, Al2O3, Ta2O5, HfOx 등을 포함할 수 있다.
또는, 마이크로 렌즈의 초점거리, 또는 마이크로 렌즈의 재료(예를 들어, 유리, 플라스틱, 포토레지스트 등의 렌즈 재질), 또는 마이크로 렌즈의 굴절률 중 적어도 어느 하나를 조정함으로써 상기 표시 화상의 결상 거리를 증가시킬 수도 있다.
앞에서도 설명한 것과 같이, 본 실시형태에서 광학부(340)의 마이크로 렌즈(340a)는 오목렌즈, 볼록 렌즈, 평 볼록렌즈 및 평 오목렌즈, 또는 이들의 조합 중 적어도 어느 하나를 포함할 수 있고, 또, 필요에 따라서는 하나의 OLED(300)에서도 복수의 마이크로 렌즈(340a)는 각각 서로 다른 종류의 렌즈 또는 그 조합을 이용할 수도 있다.
2. 변형 예
이어서, 실시형태 1의 변형 예에 대해서 도면을 참조하면서 설명한다.
2. 1. 변형 예 1
먼저, 변형 예 1에 대해서 설명한다. 도 4는 변형 예 1의 OLED(301)의 구성을 개략적으로 나타내는 도면이다.
변형 예 1의 OLED(301)는 광학부(341)의 형성 위치가 실시형태 1과 다르며, 그 이외의 다른 구성은 모두 실시형태 1과 동일하므로 동일한 부분에 대한 설명은 생략한다.
실시형태 1에서는 광학부(340)를 전면 기판(310)의 유기발광 층(320)과 마주하는 쪽 면(311a)상에 형성하는 것으로 하였으나, 도 4에 도시하는 것과 같이, 변형 예 1의 OLED(301)는 광학부(341)가 전면 기판(311)의 바깥쪽 면(311b) 측에 형성되어 있다.
구체적으로는, 실시형태 1에서는 광학부(340)의 복수의 마이크로 렌즈(340a)는 각각 전면 기판(310)의 유기발광 층(320)과 마주하는 쪽 면(311a)상에서 유기발광 층(320)의 복수의 화소(320a)에 각각 대응하는 위치에 복수 형성하는 것으로 하였으나, 변형 예 1의 OLED(301)의 광학부(341)는 복수의 마이크로 렌즈(340a)가 전면 기판(311)의 바깥쪽 면(311b)상에서 유기발광 층(321)의 복수의 화소(321a)에 각각 대응하는 위치에 복수 형성되어 있다.
이와 같이, 변형 예 1은 광학부(341)의 위치가 실시형태 1과 다르므로, 복수의 화소(321a)와 복수의 마이크로 렌즈(341a) 사이의 거리가 실시형태 1보다 멀어지는 효과가 있으며, 이에 의해 OLED(301)의 표시 화상이 관찰자(D)에게 인식되는 화상의 결상 위치가 실시형태 1과는 다르다.
2. 2. 변형 예 2
다음에, 변형 예 2에 대해서 설명한다. 도 5는 변형 예 2의 OLED(303)의 구성을 개략적으로 나타내는 단면도이다.
변형 예 2의 OLED(303)는 광학부(343)의 형성 위치가 실시형태 1과 다르며, 광학부(343)의 형성 위치 이외의 다른 구성은 모두 실시형태 1과 동일하므로 그 외의 구성에 대한 설명은 생략한다.
도 5에 도시하는 것과 같이, 실시형태 1에서는 광학부(340)를 전면 기판(310)의 유기발광 층(320)과 마주하는 쪽 면(311a)상에만 형성하는 것으로 하였으나, 변형 예 2의 OLED(303)의 광학부(343)는 전면 기판(311)의 양쪽 면(313a, 313b) 측에 모두 형성되어 있다.
구체적으로는, 실시형태 1에서는 광학부(340)의 복수의 마이크로 렌즈(340a)는 각각 전면 기판(310)의 유기발광 층(320)과 마주하는 쪽 면(311a)상에서 유기발광 층(320)의 복수의 화소(320a)에 각각 대응하는 위치에 복수 형성하는 것으로 하였으나, 변형 예 2의 OLED(303)에서의 광학부(343)는 전면 기판(313)의 유기발광 층(323)의 복수의 화소(323a)와 마주하는 면(313a) 측에 형성된 복수의 제 1 마이크로 렌즈(343a)와 전면 기판(313)의 바깥쪽 면(313b) 측에 형성된 복수의 제 2 마이크로 렌즈(343b)의 2열의 마이크로 렌즈로 구성되어 있다.
이와 같이, 변형 예 2는 광학부(343)의 마이크로 렌즈의 형성 위치 및 배열이 실시형태 1과 다르므로, 이에 의해 OLED(303)의 표시 화상이 관찰자(D)에게 인식되는 화상의 결상 위치가 실시형태 1과는 다르다.
2. 3. 변형 예 3
다음에, 변형 예 3에 대해서 설명한다. 도 6은 변형 예 3의 OLED(305)의 구성을 개략적으로 나타내는 단면도이다.
변형 예 3이 실시형태 1과 다른 점은 실시형태 1의 OLED(300)는 광학부(340)가 전면 기판(310)의 유기발광 층(320)과 마주하는 쪽 면에 형성된 마이크로 렌즈(340a)로 이루어지는 것으로 하였으나, 변형 예 3의 OLED(305)는 광학부가 전면 기판(315)의 유기발광 층(325)과 마주하는 쪽 면에 형성된 마이크로 렌즈(345a)로 이루어지는 제 1 광학부(345)와 후면 기판(335)의 유기발광 층(325)과 마주하는 쪽 면에 형성된 반사판(355a)으로 이루어지는 제 2 광학부(355)로 구성된다는 점에서 차이가 있다.
따라서 실시형태 1과 다른 부분을 중심으로 설명하고, 그 이외의 동일한 부분에 대한 설명은 생략한다.
전면 기판(315)의 유기발광 층(325)과 마주하는 쪽 면에 형성된 마이크로 렌즈(345a)로 이루어지는 제 1 광학부(345)는 실시형태 1에서의 마이크로 렌즈(340a)로 이루어지는 광학부(340)와 동일하다.
제 2 광학부(355)는 후면 기판(335)의 유기발광 층(325)과 마주하는 쪽 면에 형성된 반사판(355a)으로 이루어지며, 반사판(355a)은 후면 기판(335)의 유기발광 층(325)과 마주하는 쪽 면에서 유기발광 층(325)의 복수의 화소(325a)에 각각 대응하는 위치에 복수 형성된다.
상기 반사판(355a)은 외부로부터 후면 기판(335)을 통해서 OLED(305)로 입사하는 광이 제 1 광학부(345)의 마이크로 렌즈(345a)를 통과함으로써 상이 왜곡되는 것을 방지하는 동시에, 유기발광 층(325)의 복수의 화소(325a)로부터 후면 기판(335) 측으로 진행하는 광을 제 1 광학부(345)의 마이크로 렌즈(345a) 측으로 반사시켜서 휘도를 향상시키기 위한 기능을 동시에 갖는다.
한편, 도 6에서는 실시형태 1의 OLED(300)에 복수의 반사판(355a)으로 이루어지는 제 2 광학부(355)를 부가하는 것으로 하고 있으나, 본 변형 예 3은 상기 변형 예 1, 2의 OLED(301, 303)에도 동일한 방식으로 적용할 수 있다.
3. 실시형태 2
이어서, 본 발명의 바람직한 실시형태 2에 대해서 설명한다. 도 7은 본 발명의 실시형태 2의 OLED(400)의 구성을 개략적으로 나타내는 도면이다.
실시형태 2가 실시형태 2과 다른 점은, 실시형태 1의 OLED(300)는 복수의 마이크로 렌즈(340a)로 이루어지는 광학부(340)를 전면 기판(310)의 유기발광 층(320)의 복수의 화소(321a) 각각과 마주하는 면 측에 형성하였으나, 실시형태 2의 OLED(400)는 후면 패널(430)의 유기발광 층(420)의 복수의 화소(420a)와 각각 마주하는 면에 형성된 복수의 마이크로 거울(440a')로 이루어지는 제 3 광학부(440a)와 전면 패널(410)의 유기발광 층(420)의 복수의 화소(420a)와 각각 마주하는 면에 형성된 복수의 반사판(440b')으로 이루어지는 제 2 광학부(440b)를 구비하는 것에 있고, 그 외의 다른 구성은 실시형태 1과 동일하다.
따라서 실시형태 1과의 차이점을 중심으로 설명하며, 동일한 부분에 대한 설명은 생략한다.
제 3 광학부(440a)를 구성하는 마이크로 거울(440a')은 볼록거울 또는 오목거울 중 어느 하나이다.
또, 반사판(440b')은 광을 반사할 수 있는 것이라면 어떤 재질의 반사판이라도 좋으며, 유기발광 층(420)의 복수의 화소(420a)로부터 전면 패널(410)을 통과하는 광을 반사시킴으로써 관찰자의 눈으로 들어오는 것을 방지하기 위한 것이다.
본 실시형태에서도 복수의 화소(420a) 각각은 인접 화소와 제 3 주기적 배열간격으로 배열되고, 복수의 반사판(440b') 각각은 인접 반사판과 제 4 주기적 배열간격으로 배열되며, 복수의 마이크로 거울(440a') 각각은 인접 마이크로 거울과 제 5 주기적 배열간격으로 배열된다. 상기 제 3, 4 및 5 주기적 배열간격은 서로 동일하거나 동일하지 않을 수 있고, 서로 동일한 것이 바람직하다.
또, 복수의 반사판(440b') 각각의 크기는 대응하는 화소(420a)의 발광영역의 크기 이상이다. 즉, 복수의 반사판(440b') 각각의 크기는 대응하는 화소(420a)의 발광영역의 크기 이상이거나, 또는 복수의 각 화소(420a)의 발광영역의 면적 이상인 것이 바람직하다. 또는 복수의 반사판(440b')의 중심점에서 가장 외곽까지의 거리는 대응하는 화소(420a)의 발광영역의 중심점에서 가장 외곽까지의 거리 이상인 것이 바람직하다.
본 발명자들의 실험에 의하면 복수의 반사판(440b') 각각의 중심점에서 가장 외곽까지의 거리는 대응하는 화소(420a)의 발광영역의 중심점에서 가장 외곽까지의 거리의 2배 미만인 것이 바람직하다.
상기 복수의 반사판(440b') 및 상기 마이크로 거울(440a')의 개구율은 각각 상기 반사판 또는 상기 마이크로 거울의 면적을 상기 제 3 주기적 배열간격의 제곱으로 나눈 값(수학식 2)이 되며, 실시형태 1과 마찬가지 이유에서 그 값은 70% 미만, 바람직하게는 60% 미만, 더 바람직하게는 50% 미만인 것이 좋으며, 예를 들어 15%, 10% 또는 5%일 수도 있다.
[수학식 2]
개구율 = (반사판의 면적)/(제 3 주기적 배열간격)2
개구율 = (마이크로 거울의 면적)/(제 3 주기적 배열간격)2
상기 구성에 의해 OLED(400)에 형성되는 화상의 결상 거리가 증가하는 원리를 예시적으로 도 8에 도시하고 있으나, 본 실시형태는 실시형태 1과는 제 3 광학부(440a)의 위치 및 광학부를 구성하는 광학 부품의 종류가 다를 뿐, 그 외의 구성은 사실상 동일하므로 사실상 실시형태 1과 동일한 방법에 의해 결상 거리를 증가시킬 수 있으며, 여기에서는 상세한 설명은 생략한다. 실시형태 1을 참조하기 바란다.
4. 변형 예 4
다음에, 변형 예 4에 대해서 설명한다. 도 9는 변형 예 4의 OLED(401)의 구성을 개략적으로 나타내는 도면이다.
변형 예 4의 OLED(401)는 실시형태 2의 OLED(400)와 제 4 광학부(441b)의 반사판(441b')의 위치만 다를 뿐, 그 외의 구성은 실시형태 2와 동일하다.
구체적으로는, 변형 예 4의 OLED(401)는 실시형태 2와는 달리 복수의 반사판(441b')으로 이루어지는 제 4 광학부(441b)가 전면 기판(411)의 바깥쪽 면에 배치되어 있다는 점에서 다르다.
이상 본 발명의 바람직한 실시형태 및 변형 예에 대하여 설명하였으나, 본 발명은 상기 각 실시형태 및 변형 예에 예시된 형태로 한정되는 것은 아니며, 본 발명의 기술 사상의 범위 내에서 다양한 변경 또는 변형이 가능하다.
이상의 설명에서는 유기발광 표시장치의 전면 기판 및 후면 기판 모두 투명기판을 사용하는 투명 유기발광 표시장치를 예로 들어서 설명하나, 이에 한정되는 것은 아니며, 전면 발광형 또는 후면 발광형의 유기발광 표시장치에 대해서도 적용 가능하다.
또, 상기 각 실시형태 및 각 변형 예는 개별적으로 실시해도 좋고 서로 조합해서 실시해도 좋다.
<부호의 설명>
300, 301, 303, 305, 400, 401 유기발광 표시장치
310, 311, 313, 315, 410, 411 전면 기판
330, 331, 333, 353, 430, 431 후면 기판
320, 321, 323, 325, 420, 421 유기발광 층
320a, 321a, 323a, 325a, 420a, 421a 화소
340, 341, 343 광학부
355a, 440b', 441b' 반사판

Claims (11)

  1. 제 1 기판과 제 2 기판 사이에 각각 형성된 제 1 전극과 제 2 전극 사이에 삽입된 유기발광 층을 포함하는 유기발광 표시장치로,
    상기 제 1 기판의 양면 중 어느 한 면 또는 양면에 배치되며, 상기 유기발광 층의 발광 광에 의해 형성되는 화상의 결상 거리를 증가시키는 광학부를 포함하는 유기발광 표시장치.
  2. 청구항 1에 있어서,
    상기 유기발광 층은 복수의 화소로 구획되고,
    상기 광학부는 상기 복수의 화소 각각에 대응하는 위치에 배치되는 마이크로 렌즈인 유기발광 표시장치.
  3. 청구항 2에 있어서,
    상기 마이크로 렌즈는 볼록렌즈, 오목 렌즈, 평 볼록렌즈, 평 오목렌즈, 또는 이들의 조합 중 어느 하나로 이루어지는 유기발광 표시장치.
  4. 청구항 2에 있어서,
    상기 복수의 마이크로 렌즈와 상기 화소 사이에는 버퍼 물질로 이루어지는 버퍼 층이 더 형성되는 유기발광 표시장치.
  5. 청구항 4에 있어서,
    상기 버퍼 물질은 포토레지스트 물질 또는 옥사이드계 화합물 중 어느 하나인 유기발광 표시장치.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 제 2 기판의 상기 유기발광 층과 마주하는 면에 형성되며, 상기 제 2 기판을 통해서 입사하는 광을 차단하는 동시에 유기발광 층에서 발생하여 상기 제 2 기판 측으로 진행하는 광을 상기 광학부 측으로 반사시키는 반사판을 더 구비하는 유기발광 표시장치.
  7. 제 1 기판과 제 2 기판 사이에 각각 형성된 제 1 전극과 제 2 전극 사이에 삽입된 유기발광 층을 포함하는 유기발광 표시장치로,
    상기 제 1 기판의 양면 중 어느 한 면에 배치되는 제 1 광학부와,
    상기 제 2 기판에 상기 유기발광 층과 마주하는 측의 면에 배치되는 제 2 제 2 광학부를 포함하며,
    상기 제 1 광학부 및 상기 제 2 광학부에 의해 유기발광 층의 발광 광에 의해 형성되는 화상의 결상 거리를 증가시키는 유기발광 표시장치.
  8. 청구항 7에 있어서,
    상기 유기발광 층은 복수의 화소로 구획되며,
    상기 제 1 광학부는 상기 복수의 화소 각각에 대응하는 위치에 형성된 복수의 마이크로 거울이고,
    상기 제 2 광학부는 상기 복수의 화소 각각에 대응하는 위치에 형성된 반사판인 유기발광 표시장치.
  9. 청구항 8에 있어서,
    상기 복수의 마이크로 거울은 볼록거울 또는 오목거울 중 어느 하나인 유기발광 표시장치.
  10. 청구항 2 또는 8에 있어서,
    상기 마이크로 렌즈, 상기 반사판 및 상기 마이크로 거울의 개구율은 각각 5% 이상 70% 미만인 유기발광 표시장치.
  11. 청구항 2 또는 8에 있어서,
    상기 유기발광 표시장치는 투명 유기발광 표시장치인 유기발광 표시장치.
PCT/KR2013/008505 2012-09-24 2013-09-24 유기발광 표시장치 WO2014046514A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/429,575 US20150236302A1 (en) 2012-09-24 2013-09-24 Organic light-emitting display device
CN201380049744.6A CN104685404A (zh) 2012-09-24 2013-09-24 有机发光显示器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120106063 2012-09-24
KR10-2012-0106063 2012-09-24
KR1020130112665A KR20140040650A (ko) 2012-09-24 2013-09-23 유기발광 표시장치
KR10-2013-0112665 2013-09-23

Publications (1)

Publication Number Publication Date
WO2014046514A1 true WO2014046514A1 (ko) 2014-03-27

Family

ID=50341721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008505 WO2014046514A1 (ko) 2012-09-24 2013-09-24 유기발광 표시장치

Country Status (1)

Country Link
WO (1) WO2014046514A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091299A (ko) * 2003-04-21 2004-10-28 일진다이아몬드(주) 투과율이 향상된 액정 디스플레이 패널 및 액정 프로젝터
US20080192111A1 (en) * 2004-01-09 2008-08-14 Koninklijke Philips Electronic, N.V. Volumetric Display
KR20090017212A (ko) * 2007-08-14 2009-02-18 엘지전자 주식회사 차량용 hud 시스템의 이미지 보정 장치
KR20120059846A (ko) * 2010-12-01 2012-06-11 현대자동차주식회사 헤드업 디스플레이 장치
KR20120073183A (ko) * 2009-05-13 2012-07-04 네오뷰코오롱 주식회사 유기전계발광소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040091299A (ko) * 2003-04-21 2004-10-28 일진다이아몬드(주) 투과율이 향상된 액정 디스플레이 패널 및 액정 프로젝터
US20080192111A1 (en) * 2004-01-09 2008-08-14 Koninklijke Philips Electronic, N.V. Volumetric Display
KR20090017212A (ko) * 2007-08-14 2009-02-18 엘지전자 주식회사 차량용 hud 시스템의 이미지 보정 장치
KR20120073183A (ko) * 2009-05-13 2012-07-04 네오뷰코오롱 주식회사 유기전계발광소자 및 그 제조방법
KR20120059846A (ko) * 2010-12-01 2012-06-11 현대자동차주식회사 헤드업 디스플레이 장치

Similar Documents

Publication Publication Date Title
KR20140040650A (ko) 유기발광 표시장치
US8411359B2 (en) Stereoscopic image displaying device and a method of manufacturing the same
JP5269983B2 (ja) 表示装置
WO2010114204A1 (en) Display apparatus
US20100073579A1 (en) Optical member, display device using the optical member and movable body using the display device
WO2010104257A1 (en) Display apparatus
US20100027113A1 (en) Display device
WO2015005552A1 (en) Prism sheet member and multivision display apparatus having the same
CN101630067A (zh) 显示器
TW201403177A (zh) 顯示裝置
JP2011085790A (ja) 電気光学装置及び電子機器
WO2010104256A1 (en) Display apparatus
KR20150016608A (ko) 무안경 입체 디스플레이 디바이스 및 구동 방법
WO2011111990A2 (ko) 다중렌즈를 이용한 차량용 허드장치
US20210333456A1 (en) Display apparatus and imaging apparatus
JP2014130218A (ja) 表示装置
JP2012009154A (ja) 照明装置および表示装置
CN112987295A (zh) 近眼显示装置和虚拟/增强现实设备
JP4946645B2 (ja) 表示装置及び電子機器
WO2019107825A1 (ko) 엘이디 디스플레이 장치
CN212083822U (zh) 增强现实显示光学器件、眼镜及hud显示系统
WO2014204228A1 (ko) 입체영상 표시장치용 2d/3d 스위칭 렌즈
WO2010104255A1 (en) Display apparatus
WO2014046514A1 (ko) 유기발광 표시장치
WO2015163705A1 (ko) 3차원 디스플레이 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429575

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838260

Country of ref document: EP

Kind code of ref document: A1