WO2010131582A1 - 積層鉄心 - Google Patents

積層鉄心 Download PDF

Info

Publication number
WO2010131582A1
WO2010131582A1 PCT/JP2010/057597 JP2010057597W WO2010131582A1 WO 2010131582 A1 WO2010131582 A1 WO 2010131582A1 JP 2010057597 W JP2010057597 W JP 2010057597W WO 2010131582 A1 WO2010131582 A1 WO 2010131582A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting portion
core
laminated
divided
hole
Prior art date
Application number
PCT/JP2010/057597
Other languages
English (en)
French (fr)
Inventor
清久 牧
裕介 蓮尾
萌 荒添
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to EP10774840.2A priority Critical patent/EP2432099B1/en
Priority to US13/256,362 priority patent/US8466596B2/en
Priority to CN201080013503.2A priority patent/CN102365805B/zh
Publication of WO2010131582A1 publication Critical patent/WO2010131582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/10Incompletely punching in such a manner that the parts are still coherent with the work
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/026Wound cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention provides a linear laminated core obtained by laminating a predetermined number of connected divided core pieces obtained by connecting divided yoke pieces obtained by dividing the yoke pieces for each magnetic pole piece with a connecting part that can be bent.
  • a laminated iron core (generally referred to as a “bending core”) that is bent into a ring shape, or a connecting portion that can bend a split yoke piece that is obtained by dividing the yoke piece into one or more magnetic pole pieces. It is related with the laminated iron core (generally called a "winding core") formed by bend
  • the above-mentioned “bending core” is also referred to as “poki-poki core” in Japanese because each connecting portion bends when the linear laminated iron core is formed in an annular shape.
  • the connecting portion that connects the adjacent divided laminated cores is formed on the outermost peripheral portion of the core (specifically, the yoke portion). Is located at the outermost periphery of the yoke, the connecting portion that is bent when the ring shape is formed protrudes further outward from the outer periphery of the core, so that the holding force of the motor core decreases due to interference with the housing, or the motor core itself Problems such as deformation occur.
  • JP-A-11-262202 (FIGS. 8 and 9) Japanese Patent Laying-Open No. 2005-160170 (FIGS. 1 and 2)
  • the present invention has been made in view of such circumstances, and it is a first object of the present invention to provide a laminated core that relieves the stress generated in the connecting portion and eliminates the occurrence of cracks and breaks in the core piece, and further provides a material yield. It is a second object to provide a laminated iron core with good quality.
  • the laminated iron core according to the first aspect of the present invention comprises a predetermined number of linearly connected divided core pieces obtained by connecting the divided yoke pieces divided for each magnetic pole piece with a connecting portion that can be bent, In the laminated iron core that is formed in an annular shape by bending the part, When the number of the divided core pieces in one of the connected divided core pieces is n, the yoke piece on the radially inner side of the connected portion has an opening angle of 360 degrees / n. And having a V-shaped groove that opens radially inward, and a separating portion that separates the adjacent divided yoke piece portions radially outward from the connecting portion in the radially outer yoke piece portion of the connecting portion.
  • a first through-hole having a circular arc is formed at the radially outer end of the V-shaped groove in contact with the connecting portion, and a circular arc is formed at the radially inner end of the separating portion in contact with the connecting portion.
  • the 2nd through-hole which has is formed.
  • the laminated core according to the second aspect of the present invention that meets the above-described object is a strip-like connected divided core piece in which divided yoke pieces divided into one or more magnetic pole pieces are connected by a foldable connecting portion.
  • the laminated core formed by bending and winding at the connecting part When the number of the divided yoke pieces until the laminated iron core is wound by one turn is m, the band-like connected divided core pieces are opened at 360 degrees / m on the radially inner side of the connecting portions.
  • a V-shaped groove having a corner and opening inward in the radial direction is provided, and a separating portion for separating the adjacent divided yoke piece portions radially outward from the connecting portion is provided on the radially outer side of the connecting portion.
  • a first through hole formed by an arc is formed at the radially outer end of the V-shaped groove in contact with the connecting portion, and an arc at the radially inner end of the separating portion in contact with the connecting portion.
  • a second through hole is formed.
  • the radius of curvature of the second through hole is preferably larger than the radius of curvature of the first through hole.
  • the radius of curvature of the second through hole is more preferably in the range of 2 to 15 times the thickness of the connecting divided core piece.
  • the first and second through holes may be first and second circular holes, respectively.
  • a case where a part of the circular hole is cut out is included.
  • the directions of the arcs forming the radially outer side and the radially inner side of the connecting portion formed by the first and second through holes are equal.
  • a V-shaped or U-shaped connecting portion can be formed.
  • the width of the connecting portion formed by the first and second through holes is preferably equal to the minimum width of the connecting portion with an error of 0 to 20%.
  • the width of the connecting portion is not uniform exceeding 20% with respect to the minimum portion, stress is concentrated on the portion of the minimum width at the time of bending, and the deformation in the thickness direction is likely to increase.
  • the center of the radius of curvature of the arc that forms the radially outer side and the radially inner side of the connecting portion may be located radially inward from the connecting portion.
  • the line which forms the radial direction outer side and radial direction inner side of the said connection part can also be made into the straight line which each enlarged the curvature of the said circular arc.
  • the center of the radius of curvature of the arc forming the radially outer side and the radially inner side of the connecting portion may be located on the radially outer side of the connecting portion.
  • the laminated iron core formed in an annular shape has an outer position in the radial direction of the connecting portion at least 3% of the radius of the laminated iron core from the outermost position (more preferably 5% or 10% or more) is preferable.
  • the groove bottom position of the V-shaped groove is outside the position of 40% from the inside in the radial direction length of the divided yoke piece.
  • the separating portion may be a V-shaped groove or a U-shaped groove.
  • the laminated iron core according to the present invention has the following effects. (1) First, a predetermined number of linearly connected divided core pieces obtained by connecting divided yoke pieces divided for each magnetic pole piece portion with connecting portions that can be bent are stacked, and the connecting portions are bent to form a first shape.
  • a laminated iron core (bending core) according to the invention or a band-like connected divided core piece in which divided yoke piece parts divided into one or more magnetic pole piece parts are connected by a foldable connecting part is bent at the connecting part and wound.
  • the laminated iron core (winding core) according to the second invention formed by turning since the separating portion is provided on the radially outer side of the connecting portion via the second through hole having an arc, Since the stress (tensile force) generated when the connecting portion is bent is absorbed by the second through-hole and no extreme stress concentration occurs, the portion is unlikely to crack or break, and the laminated iron core that is the product Quality is ensured.
  • a V-shaped groove is formed on the radially inner side of the connecting portion via a first through hole having an arc on the radially outer side of the connecting portion. Since the cut-off portion is formed through the second through hole having an arc, punching and shearing processing of the V-shaped groove and the cut-out portion is facilitated, and the life of the blade can be secured.
  • segmentation iron core piece used for the manufacturing method of the same laminated iron core It is a schematic diagram explaining the yield of the laminated core. It is explanatory drawing which shows the boarding situation of the connection division
  • (A) is explanatory drawing of the laminated iron core which concerns on the 2nd Example of this invention
  • (B) is explanatory drawing of the laminated iron core which concerns on the 3rd Example of this invention. It is explanatory drawing of the laminated iron core which concerns on the 4th Example of this invention. It is explanatory drawing of the laminated iron core which concerns on the 5th Example of this invention. It is explanatory drawing of the laminated iron core which concerns on the 6th Example of this invention. It is explanatory drawing of the laminated iron core which concerns on the 7th Example of this invention. It is explanatory drawing of the laminated iron core which concerns on the further another Example of this invention.
  • (A), (B) is explanatory drawing of the manufacturing method of the laminated core which concerns on a prior art example, respectively.
  • FIG. 1 shows a laminated core 10 according to a first embodiment of the present invention.
  • the laminated iron core 10 is a stator core of a motor, and as shown in FIG. 2, a linear connection division in which a plurality of divided yoke piece portions 12 divided for each magnetic pole piece portion 11 are connected by a bendable connection portion 13.
  • a predetermined number of core pieces 14 are stacked, and the connecting portion 13 is bent to form an annular shape.
  • the radially outer position 15 of the connecting portion 13 is the inner position of 3% or more (preferably 5% or more, more preferably 10% or more) of the radius R of the laminated core 10. It is in. Further, the radially inner position 16 of the connecting portion 13 is located outside the inner position of the divided yoke piece portion 12 by exceeding 40% (preferably 50% or more) of the width H of the divided yoke piece portion 12.
  • the width w of the connecting portion 13 is preferably in the range of 0.3 to 1% (or 1 to 5 times the plate thickness) of the radius R of the laminated core 10, for example.
  • segmentation iron core piece 14 is stamped and formed, for example from a linear long strip material.
  • a V-shaped groove 17 having an opening angle ⁇ is opened on the radially outer side of the connecting portion 13.
  • a separation portion 18 that separates adjacent divided yoke piece portions 12 radially outward from the portion 13 is formed.
  • the opening angle ⁇ is 360 ° / n, where n is the number of magnetic poles of the laminated core 10, that is, the number of divided core pieces 19 of the connected divided core pieces 14.
  • the first through-hole 20 is an example of a first through-hole 20 having a circular arc in contact with the connecting portion 13 at the bottom (that is, radially outward) of each V-shaped groove 17 formed in the connecting divided iron core piece 14 in a straight state.
  • a second circular hole which is an example of the second through hole 21 having an arc in contact with the connecting portion 13 is formed on the inner side in the radial direction of each separating portion 18.
  • the separating part 18 is opened by an angle ⁇ , and the V-shaped groove 17 is closed and comes into contact.
  • the separation part 18 becomes a V-shaped groove having an angle ⁇ .
  • the core material can be saved by setting the position of the connecting portion 13 to an inner position of 3% or more of the radius R from the outermost position of the laminated core. The reason for this will be described with reference to FIG. As schematically shown in FIG. 3 and FIG. 4, if the connecting portion 13 a is at the outermost part of the laminated core 10 (that is, the split core piece 19), the connecting split core is ignored when the length of the connecting portion 13 a is ignored. In the piece 14a, the interval L between the adjacent divided core pieces 19 is 2R ⁇ sin (360 ° / 2n).
  • the connecting divided core piece 14 in which the connecting portion 13 is disposed radially inward is shorter than the connecting divided core piece 14 a by ⁇ , and the material yield can be improved. Since the material reduction rate is (L ⁇ L1) / L ⁇ 100%, if the distance from the outermost periphery of the motor core of the connecting portion is h (that is, L ⁇ L1 ⁇ h), this is expressed as h / R. As a result, the position is determined depending on where the connecting portion 13 is arranged in the radial direction.
  • a first through hole 20 made of a circular hole is formed on the radially inner side of the connecting portion 13 before bending, and a second through hole 21 made of a circular hole is formed on the radially outer side of the connected portion 13. Yes.
  • the diameter of the second through hole 21 made of a circular hole is 2 to 5 times larger than that of the first through hole 20 made of a circular hole. Therefore, the radius of curvature r2 of the arc formed on the radially outer side of the connecting portion 13 is sufficiently larger than the radius of curvature r1 of the arc formed on the radially inner side of the connecting portion 13.
  • the radius of curvature r2 is larger than the radius of curvature r1 of the arc formed on the radially inner side of the connecting portion 13 (for example, 2 to 15 times the thickness of the connecting divided core piece 14), so that the connecting portion 13 is connected when it is bent. The generation of cracks and cracks that are likely to occur on the outer side in the radial direction of the portion 13 is suppressed. If the radius of curvature r2 exceeds 15 times the thickness of the connected divided core piece 14, the magnetic path of the yoke portion is remarkably narrowed and the performance of the motor core is deteriorated.
  • first and second through holes 20 and 21 for example, circular holes
  • a press working blade is formed at the bottom of the V-shaped groove 17 and the radially inner end of the cut-off portion 18 as described above.
  • the first and second through holes 20 and 21 need not be circular holes that are in contact with the connecting portion 13, but are not limited to a circular shape.
  • the first and second through holes 20 and 21 may be elliptical, oval, or fan-shaped. Also good.
  • FIG. 5 shows a laminated connected divided core 10a formed by caulking and stacking the connected divided core pieces 14 formed as described above.
  • the magnetic pole portions 11a are wound and bent at the connecting portions 13 in FIG. It becomes the laminated core 10 to show.
  • the cut-out portion formed on the radially outer side of the connecting portion 29 that connects the adjacent divided yoke pieces 27 and 28 of the connecting divided core pieces to be used is the V-shaped groove 30. It is said. In this case, when the opening angle of the V-shaped groove 30 is ⁇ 1 (for example, 5 to 30 degrees) and the opening angle of the V-shaped groove 17 formed inside the connecting portion 29 is ⁇ , the V formed in the laminated iron core 24 is obtained.
  • the opening angle of the groove 30 is ( ⁇ 1 + ⁇ ).
  • the laminated core 25 according to the third embodiment of the present invention shown in FIGS. 1 and 6B is the same as the laminated core 10 according to the first embodiment, but the separating portion 33 has a certain width (for example, , 0.3 to 2 mm or 1 to 5 times the plate thickness).
  • the separation part 33 becomes a U-shaped groove.
  • the width of the separation part 33 is preferably as small as possible.
  • a V-shaped groove 49 is formed on the radially inner side of the connecting portion 48, and a round hole is formed at the top on the radially outer side.
  • One through hole 50 is formed.
  • the 2nd through-hole 51 which consists of a bending hole is provided in the radial direction outer side of the connection part 48, and the cutting
  • the centers of the radii of curvature r1 and r2 of the outer circle 53 and the inner circle 54 that form the radial end of the second through hole 51 and the radius of curvature r3 of the first through hole 50 are the center of the first through hole 50. Since it is in the same position as the center, the width of the connecting portion 48 is uniform in the circumferential direction. Therefore, when the connecting portion 48 is bent, a bending stress is evenly applied in the circumferential direction of the connecting portion 48 and, as a result, the load is dispersed, so that the stress applied to the connecting portion 48 is partially relieved.
  • the center of the radius of curvature r1 of the outer circle 53 is also coincident with the center of the first through hole 50, but this is not an essential requirement. Further, the center of the inner circle 54 of the second through hole 51 may be different from the center of the first through hole 50 within a certain range. In this case, it is preferable that the width of the connecting portion 48 be equal to the minimum width of the connecting portion 48 with an error of 0 to 20% (the same applies to the following fifth and sixth embodiments). That is, the direction of the arc of the inner circle 54 of the second through hole 51 that forms the connecting portion 48 and the direction of the arc of the first through hole 50 are in the same direction (radially outward). As a result, a substantially equal load is applied to the connecting portion 48, and the distortion of the connecting portion 48 is within a range that does not hinder the production of the laminated core.
  • a laminated core connecting portion 56 according to a fifth embodiment of the present invention shown in FIG. 8 will be described.
  • a V-shaped groove 58 is formed on the radially inner side of the connecting portion 56 via a first through hole 57, and a second through hole 59 is formed on the radially outer side of the connecting portion 56.
  • a separation part 60 is provided via the.
  • the first and second through holes 57 and 59 are rectangular notches each having a long side in a direction orthogonal to the radial direction, and the punching line 61 on the radially inner side of the connecting portion 56 and the punching on the radially outer side are formed.
  • the line 62 becomes a parallel straight line (that is, the radius of curvature of the arc is large, for example, infinite), and the connecting portion 56 has a uniform width in the circumferential direction (that is, a direction orthogonal to the radial direction). ing.
  • the connecting portion 56 When the connecting portion 56 is bent, the separating portion 60 opens in a V shape, and the V-shaped groove 58 is closed. In this case, the connecting portion 56 is slightly bent, but since the radial width is uniform, the load is dispersed and deformation in the plate thickness direction is small.
  • connection part 64 of the laminated iron core which concerns on the 6th Example of this invention shown in FIG. 9 is demonstrated.
  • a V-shaped groove 66 is formed on the inner side in the radial direction of the connecting portion 64 via a first through hole 65, and on the outer side in the radial direction of the connecting portion 64, a second through hole 67 made of a round hole is provided.
  • a separating portion 68 is provided.
  • the center of the radius of curvature of the arc 65 a radially outside the first through-hole 65, that is, the arc 65 a forming the radially inner side of the connecting portion 64, is provided on the radially outer side of the connecting portion 64.
  • the direction of the arc of the first through hole 65 that forms the inside of the connecting portion 64 and the direction of the arc of the second through hole 67 that forms the outside of the connecting portion 64 are the same direction (radial direction). Facing inward).
  • the direction of the circular arc which forms the outer side and inner side of the connection part 48 may face the radial direction outer side.
  • the connecting portion 64 since the center of the radius of curvature of the arc 65a and the center of the second through hole 67 are at substantially the same position, the connecting portion 64 has substantially the same width in the radial direction. Therefore, when the connecting portion 64 is bent, a partial bending load is not applied to the connecting portion 64, and distortion and deformation in the plate thickness direction are reduced.
  • the connected divided core piece 37 is formed by connecting divided yoke pieces 39 each having a plurality of (three in this embodiment) magnetic pole piece portions 38 via connecting portions 40. And this strip-shaped connection division
  • two such connected divided core pieces 37 are prepared, and the position of each connecting portion 40 is shifted by one magnetic pole piece.
  • segmentation iron core piece 37 is demonstrated, the structure is the same also in the connection division
  • the radially outermost portion of the connecting portion 40 in the laminated core 36 is at least 3% inside the radius R from the outer periphery with respect to the radius R of the laminated core 36, and the radially innermost portion of the connecting portion 40 ( That is, the groove bottom position of the V-shaped groove 43 is located outside the yoke portion (specifically, the divided yoke piece portion 39) from the inside to the outside of the yoke portion over 40% of the radial width.
  • the width of the connecting portion 40 is preferably in the range of 1 to 5 times the plate thickness of the divided core piece in consideration of the strength of the connecting portion 40 and the ease of bending.
  • the yield of material improves by arrange
  • connection part 40 segmentation iron core piece 37 used when manufacturing this laminated iron core 36, as shown to the elements on larger scale of FIG. 10, the radial direction inner side and outer side of the connection part 40 are respectively 1st which consists of a circular hole, respectively.
  • Second through holes 41 and 42 are formed.
  • the first and second through holes 41 and 42 need not be circular holes in contact with the connecting portion 40, but are not limited to a circular shape, and may be, for example, an ellipse, an ellipse, or a fan shape.
  • a V-shaped groove 43 is formed on the inner side in the radial direction of the first through hole 41, and a separation portion 44 is formed on the outer side in the radial direction of the second through hole 42.
  • Reference numeral 46 denotes a winding shaft.
  • the radius of curvature of the second through hole 42 that contacts the connecting portion 40 is in the range of 2 to 15 times (more preferably 2 to 5 times) the radius of curvature of the first through hole 41.
  • the three magnetic pole piece portions 38 are provided for one divided yoke piece portion 39, but may be 1, 2 or 4 or more. Further, this laminated iron core 36 was obtained by lap-wrapping two connected divided core pieces 37, but one or three or more connected divided core pieces 37 were wound in an annular manner by shifting the positions of the respective connecting portions. An iron core can also be manufactured.
  • a first through hole for example, a circular hole
  • the separating portion 44 is formed as shown in FIG.
  • a parallel groove specifically a U-shaped groove
  • a V-shaped groove as shown in FIG. 6A (applicable to all the embodiments).
  • Adjacent divided yoke pieces can be connected so as to be bendable using the connecting portions used in the laminated cores according to the first to sixth embodiments.
  • the laminated core with the magnetic pole pieces facing inward in the radial direction has been described.
  • FIG. It can also be applied to laminated iron cores facing outward.
  • FIG. 11 reference numerals corresponding to the laminated core and the core piece shown in FIG.
  • the radius of curvature of the arc on the radially outer side of the connecting portion can be made equal to the radius of curvature of the arc formed on the radially inner side of the connecting portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

材料の歩留りを向上させ、かつ連結部13に発生する応力を緩和させて鉄心片の亀裂や破断の発生をなくす積層鉄心10を提供する。 積層鉄心10を組み立てる場合に使用する連結分割鉄心片14は、分割鉄心片19の数をnとした場合、連結部13の半径方向内側には、360度/nの開き角を有して半径方向内側に開くV字溝17を有すると共に、連結部13の半径方向外側には、連結部13より半径方向外側の隣り合う分割ヨーク片部12を分離する切り離し部18を有し、しかも連結部13に接するV字溝17の半径方向外側端部には円弧を有する第1の貫通孔20が、連結部13に接する切り離し部18の半径方向内側端部には第1の貫通孔20の円弧より曲率半径の大きい円弧を有する第2の貫通孔21が形成されている。

Description

積層鉄心
本発明は、ヨーク片部を各磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で連結した連結分割鉄心片を所定枚数積層して直線状積層鉄心とした後、各連結部で折り曲げて環状に形成される積層鉄心(一般には、「折り曲げコア」と称される)、又はヨーク片部を1又は複数の磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で連結した連結分割鉄心片を連結部で折り曲げて巻回して形成された積層鉄心(一般には、「巻きコア」と称される)に関する。なお、前記した「折り曲げコア」は、直線状積層鉄心を環状に形成するときに、各連結部がポキポキと折れ曲がるので、日本語で「ポキポキコア」とも称される。
前記した「折り曲げコア」と称される積層鉄心(モータコア)において、隣り合う分割積層鉄心を連結する連結部は、コア(詳細にはヨーク部)の最外周部に形成されているが、連結部がヨークの最外周部に位置すると、環形状にした際に折り曲げられた連結部がコアの外周よりさらに外側に突出するため、ハウジングに干渉してモータコアの保持力が低下したり、モータコア自体が変形するといった問題が生じる。
そのため、特許文献1、2に示されるように、各分割鉄心片60、61を連結する連結部62、63を折り曲げて全体を環状に形成した場合、連結部62、63をヨークの最外周部65、66よりやや半径方向内側に設けるものが提案されている(図12(A)、(B)参照)。
特開平11-262202号公報(図8、図9) 特開2005-160170号公報(図1、図2)
しかしながら、特許文献1及び特許文献2に記載のようなモータコアは、全体を環状に成形するために、連結部62、63を折り曲げる際に、連結部62、63の半径方向外側角部に応力が集中し、この部分に番号68、69で示すように亀裂や破断が発生することがあり、モータコアの品質に悪影響を及ぼしているという問題があった。
また、連結部で連結された各分割鉄心片を直線状に形成する時点において、連結部が外周部に近いほど全体の直線長さが長くなり、材料歩留まりを低下させるという問題があった。
本発明は、かかる事情に鑑みてなされたもので、連結部に発生する応力を緩和させて鉄心片の亀裂や破断の発生をなくす積層鉄心を提供することを第1の目的とし、更に材料歩留りのよい積層鉄心を提供することを第2の目的とする。
前記目的に沿う第1の発明に係る積層鉄心は、各磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ直線状の連結分割鉄心片を所定枚数積層し、前記連結部を折り曲げて環状に形成される積層鉄心において、
前記直線状の連結分割鉄心片は、一つの前記連結分割鉄心片における分割鉄心片の数をnとした場合、前記連結部の半径方向内側のヨーク片部には、360度/nの開き角を有して半径方向内側に開くV字溝を有すると共に、前記連結部の半径方向外側のヨーク片部には、該連結部より半径方向外側の隣り合う前記分割ヨーク片部を分離する切り離し部を有し、しかも前記連結部と接する前記V字溝の半径方向外側端部には円弧を有する第1の貫通孔が、前記連結部に接する前記切り離し部の半径方向内側端部には円弧を有する第2の貫通孔が形成されている。
また、前記目的に沿う第2の発明に係る積層鉄心は、1又は2以上の磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ帯状の連結分割鉄心片を、前記連結部で折り曲げて巻回して形成される積層鉄心において、
前記帯状の連結分割鉄心片は、該積層鉄心を1周分巻回するまでの前記分割ヨーク片部の数をmとした場合、前記連結部の半径方向内側には、360度/mの開き角を有して半径方向内側に開くV字溝を有すると共に、前記連結部の半径方向外側には、該連結部より半径方向外側の隣り合う前記分割ヨーク片部を分離する切り離し部を有し、しかも前記連結部に接する前記V字溝の半径方向外側端部には円弧によって形成される第1の貫通孔が、前記連結部に接する前記切り離し部の半径方向内側端部には円弧によって形成される第2の貫通孔が形成されている。
なお、第1、第2の発明に係る積層鉄心において、前記第2の貫通孔の曲率半径は、前記第1の貫通孔の曲率半径より大きいのが好ましい。この場合、前記第2の貫通孔の曲率半径は、前記連結分割鉄心片の厚みの2~15倍の範囲にあるのがより好ましい。
第1、第2の発明に係る積層鉄心において、前記第1、第2の貫通孔はそれぞれ第1、第2の円孔であるのがよい。ここで、円孔には一部が切り欠かれている場合も含む。
第1、第2の発明に係る積層鉄心において、前記第1、第2の貫通孔によって形成される前記連結部の半径方向外側及び半径方向内側を形成する円弧の向きは等しいことが好ましい。これによって、V字状又はU字状の連結部を形成することができる。
更に、前記第1、第2の貫通孔によって形成される前記連結部の幅は、該連結部の最小幅に対して0~20%の誤差で等しいのが好ましい。ここで、連結部の幅が最小部に対して20%を超えて一様でなくなると、折り曲げ時に最小幅の部分に応力が集中し、厚み方向の変形が大きくなり易いからである。
第1、第2の発明に係る積層鉄心において、前記連結部の半径方向外側及び半径方向内側を形成する円弧の曲率半径の中心は、前記連結部より半径方向内側に位置することができる。また、前記連結部の半径方向外側及び半径方向内側を形成する線は、それぞれ前記円弧の曲率を大きくした直線とすることもできる。これによって、連結部の幅をより均等に近づけることができる。
第1、第2の発明に係る積層鉄心において、前記連結部の半径方向外側及び半径方向内側を形成する円弧の曲率半径の中心は、前記連結部の半径方向外側に位置することもできる。これによって、連結部の幅をより均等に近づけることができる。
更に、第1、第2の発明に係る積層鉄心において、環状に形成した該積層鉄心は、前記連結部の半径方向外側位置が最外位置より該積層鉄心の半径の3%以上(より好ましくは5%又は10%以上)の内側位置にあるのが好ましい。
そして、第1、第2の発明に係る積層鉄心において、前記V字溝の溝底位置は、前記分割ヨーク片部の半径方向長さの内側から40%位置より外側にあるのが好ましい。
また、第1、第2の発明に係る積層鉄心において、前記切り離し部はV字溝又はU字溝であってもよい。
本発明に係る積層鉄心においては、以下のような効果を有する。
(1)各磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ直線状の連結分割鉄心片を所定枚数積層し、連結部を折り曲げて環状に形成される第1の発明に係る積層鉄心(折り曲げコア)や、1又は2以上の磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ帯状の連結分割鉄心片を、連結部で折り曲げて巻回して形成される第2の発明に係る積層鉄心(巻きコア)においては、連結部の半径方向外側には、円弧を有する第2の貫通孔を介して、切り離し部が設けられているので、連結部の折り曲げ時に発生する応力(引っ張り力)が第2の貫通孔によって吸収され、極端な応力集中を生ずることがないので、その部分に亀裂や破断等が生じにくく、製品となる積層鉄心の品質が確保される。
(2)また、第1、第2の発明に係る積層鉄心において、連結部の半径方向内側には、円弧を有する第1の貫通孔を介してV字溝が、連結部の半径方向外側には円弧を有する第2の貫通孔を介して切り離し部が形成されているので、V字溝及び切り離し部の打ち抜き加工や剪断加工が容易となり、刃物の寿命を確保できる。
(3)第1、第2の発明に係る積層鉄心において、円周方向に伸びる連結部の幅が(長手方向に渡って)均等又は均等に近づくと、連結部の折り曲げ時にかかる荷重が分散し、連結部の一部に曲げ荷重が集積して生じる連結部の変形(例えば、厚み方向の膨らみ)を極力少なくできる。
(4)更には、連結部の半径方向外側位置が最外位置より積層鉄心の半径の3%以上の内側位置にある場合は、打ち抜き状態の隣り合う分割ヨーク片部の間隔が、従来より短くなり、鉄心片の材料歩留りを高めることができる。
(5)そして、V字溝の溝底位置が、分割ヨーク片部の半径方向長さの内側から40%位置より外側にあるようにすることによって、隣り合う分割ヨーク片部の接触面積を確保でき、積層鉄心の磁気的特性の劣化を防止することができる。
(6)切り離し部をV字溝又はU字溝によって形成した場合は、プレス加工が容易となり、刃物の寿命も伸びる。
本発明の第1の実施例に係る積層鉄心の平面図である。 同積層鉄心の製造方法に用いる連結分割鉄心片の説明図である。 同積層鉄心の歩留りを説明する模式図である。 同積層鉄心に使用する連結分割鉄心片の板取り状況と従来例に係る連結分割鉄心片の板取り状況を示す説明図である。 同積層鉄心の折り曲げ前の直線状態の積層鉄心を示す斜視図である。 (A)は本発明の第2の実施例に係る積層鉄心の説明図、(B)は本発明の第3の実施例に係る積層鉄心の説明図である。 本発明の第4の実施例に係る積層鉄心の説明図である。 本発明の第5の実施例に係る積層鉄心の説明図である。 本発明の第6の実施例に係る積層鉄心の説明図である。 本発明の第7の実施例に係る積層鉄心の説明図である。 本発明の更に他の実施例に係る積層鉄心の説明図である。 (A)、(B)はそれぞれ従来例に係る積層鉄心の製造方法の説明図である。
図1に本発明の第1の実施例に係る積層鉄心10を示す。積層鉄心10は、モータのステータコアであって、図2に示すように、各磁極片部11毎に分割した複数の分割ヨーク片部12を折り曲げ可能な連結部13で繋いだ直線状の連結分割鉄心片14を所定枚数積層し、連結部13を折り曲げて環状に形成される。
ここで、図1、図2に示すように、連結部13の半径方向外側位置15が、積層鉄心10の半径Rの3%以上(好ましくは5%以上、より好ましくは10%以上)内側位置にある。また、連結部13の半径方向内側位置16は、分割ヨーク片部12の内側位置から分割ヨーク片部12の幅Hの40%を超えて(好ましくは50%以上)外側の位置にある。なお、連結部13の幅wは積層鉄心10の半径Rの例えば、0.3~1%(又は板厚の1~5倍)の範囲であるのが好ましい。
この積層鉄心10を製造する場合には、図2に示すように、例えば、直線状に長い条材から連結分割鉄心片14を打ち抜き形成する。
連結分割鉄心片14の各分割ヨーク片部12の連結部13の半径方向内側には、半径方向内側に開き、開き角θのV字溝17が、連結部13の半径方向外側には、連結部13より半径方向外側の隣り合う分割ヨーク片部12を分離する切り離し部18が形成されている。開き角θは、積層鉄心10の磁極数、即ち、連結分割鉄心片14の分割鉄心片19の数をnとした場合、360°/nとなる。
また、直線状態の連結分割鉄心片14に形成された各V字溝17の底部(即ち、半径方向外側)には連結部13に接する円弧を有する第1の貫通孔20の一例である第1の円孔が形成され、各切り離し部18の半径方向内側には、連結部13に接する円弧を有する第2の貫通孔21の一例である第2の円孔が形成されている。
この連結分割鉄心片14を所定枚数重ね、連結部13の位置で折り曲げて全体を環状にすると、積層鉄心10となる。この場合、切り離し部18が角度θだけ開き、V字溝17は閉じて当接することになる。一方、切り離し部18は角度θのV字溝となる。
この積層鉄心10においては、連結部13の位置を積層鉄心の最外位置より半径Rの3%以上内側位置に設定することによって、鉄心材料の節減を行うことができるので、図3、図4を参照しながらこの理由について説明する。
図3、図4に模式的に示すように、連結部13aが積層鉄心10(即ち、分割鉄心片19)の最外部にあったとすると、連結部13aの長さを無視した場合、連結分割鉄心片14aにおいて、隣り合う分割鉄心片19の間隔Lは、2R・sin(360°/2n)となる。一方、連結部13を積層鉄心10の半径方向内側に位置させた場合は、その半径位置をR1(<R)とすると、隣り合う分割鉄心片19の間隔L1は、2R1・sin(360°/2n)(<L)となる。
従って、図4に示すように、連結分割鉄心片14aより連結部13を半径方向内側に配置した連結分割鉄心片14の方がδだけ短くなり、材料歩留りを向上させることができる。材料の削減率は(L-L1)/L×100%であるため、連結部のモータコア最外周からの距離をh(つまり、L-L1≒h)とすると、これはh/Rと表され、結果として、連結部13を半径方向の如何なる位置に配置したかで決定される。
そして、折り曲げ前の連結部13の半径方向内側には円孔からなる第1の貫通孔20が、連結部13の半径方向外側には円孔からなる第2の貫通孔21がそれぞれ形成されている。この円孔からなる第2の貫通孔21の直径は、円孔からなる第1の貫通孔20の2~5倍と大きくなっている。従って、連結部13の半径方向外側に形成される円弧の曲率半径r2は、連結部13の半径方向内側に形成される円弧の曲率半径r1より十分大きくなっている。
なお、曲率半径r2が連結部13の半径方向内側に形成される円弧の曲率半径r1より大きい(例えば、連結分割鉄心片14の厚みの2~15倍)ことで、連結部13の折り曲げ時に連結部13の半径方向外側に発生し易い亀裂や割れの発生を抑制している。なお、曲率半径r2が連結分割鉄心片14の厚みの15倍を超えると、ヨーク部の磁路が著しく狭まりモータコアの性能を落とすので、好ましくない。
また、このようにV字溝17の底部、及び切り離し部18の半径方向内側端部に第1、第2の貫通孔20、21(例えば、円孔)を設けると、プレス加工の刃物の形成も容易となり、先端鋭利の部分がなくなるので、刃物の寿命も伸びる。
なお、第1、第2の貫通孔20、21は、連結部13に接する円弧を有する貫通孔である必要はあるが、円形に限定されず、例えば、楕円、長円、扇形状であってもよい。
図5には、このようにして形成された連結分割鉄心片14をかしめ積層した積層連結分割鉄心10aを示すが、各磁極部11aに巻線を行って、連結部13で折り曲げて図1に示す積層鉄心10となる。
次に、図1、図6(A)、(B)を参照しながら、本発明の第2、第3の実施例に係る積層鉄心24、25について、図1~図5に示す第1の実施例に係る積層鉄心10と相違する点について説明する。
第2の実施例に係る積層鉄心24においては、使用する連結分割鉄心片の隣り合う分割ヨーク片部27、28を連結する連結部29の半径方向外側に形成される切り離し部をV字溝30としている。この場合のV字溝30の開き角をθ1(例えば、5~30度)とし、連結部29の内側に形成されるV字溝17の開き角をθとすると、積層鉄心24となったV字溝30の開き角は(θ1+θ)となる。
このように、第2の貫通孔の一例である円孔31を設け、これが溝底となるように切り離し部をV字溝30で形成すると、プレス加工が容易となり、刃物の寿命も伸びる。
図1、図6(B)に示す本発明の第3の実施例に係る積層鉄心25は、第1の実施例に係る積層鉄心10と同一であるが、切り離し部33が一定の幅(例えば、0.3~2mm又は板厚の1~5倍)を有している。その底部に第2の貫通孔の一例である円孔(真円、楕円、長円を含む)34が形成されている。
この円孔34の幅(直径)は、切り離し部33の幅と同一の場合には、切り離し部33がU字溝となる。ただし、切り離し部33の幅はできるだけ小さい方が好ましい。このように、円孔34を設けこれが溝底となるように切り離し部33を形成すると、プレス加工が容易となり、刃物の寿命も伸びる。
図7に示す本発明の第4の実施例に係る積層鉄心においては、連結部48の半径方向内側には、V字溝49が形成され、その半径方向外側の頂部には丸孔からなる第1の貫通孔50が形成されている。そして、連結部48の半径方向外側には屈曲孔からなる第2の貫通孔51が設けられ、その半径方向外側に切り離し部52が設けられている。
第2の貫通孔51の半径方向端部を形成する外側円53と内側円54の曲率半径r1、r2と、第1の貫通孔50の曲率半径r3の中心は、第1の貫通孔50の中心と同一位置にあるので、連結部48の幅は周方向に均一となっている。従って、連結部48を屈曲させた場合、連結部48の周方向に均等に曲げ応力がかかり、結果として荷重が分散するので、連結部48に部分的にかかる応力が緩和される。
前記第4の実施例においては、外側円53の曲率半径r1の中心も第1の貫通孔50の中心に一致させているが、必須の要件ではない。また、第2の貫通孔51の内側円54の中心は、第1の貫通孔50の中心と多少の範囲で異なる場合でもよい。この場合、連結部48の幅はこの連結部48の最小幅に対して0~20%の誤差で等しくするのが好ましい(以下の第5、第6の実施例においても同じ)。すなわち、連結部48を形成する第2の貫通孔51の内側円54の円弧の向きと、第1の貫通孔50の円弧の向きが同一方向(半径方向外側)を向いている。これによって、連結部48に略均等の荷重がかかり、連結部48の歪みが積層鉄心の製造に支障のない範囲となる。
続いて、図8に示す本発明の第5の実施例に係る積層鉄心の連結部56について説明する。図8に示すように、連結部56の半径方向内側には、第1の貫通孔57を介してV字溝58が形成され、連結部56の半径方向外側には、第2の貫通孔59を介して切り離し部60が設けられている。
第1、第2の貫通孔57、59は、半径方向に直交する方向にそれぞれ長辺を有する長方形の切欠きからなって、連結部56の半径方向内側の打ち抜き線61と半径方向外側の打ち抜き線62は、平行な直線(即ち、円弧の曲率半径を大きく、例えば無限大とした)となって、連結部56は円周方向(即ち、半径方向に直交する方向)に均一な幅となっている。
この連結部56を屈曲させると、切り離し部60はV字状に開き、V字溝58は閉じることになる。この場合、連結部56は多少折れ曲がるが、半径方向の幅が均一であるので、荷重が分散され、板厚方向の変形が少なくて済む。
次に、図9に示す本発明の第6の実施例に係る積層鉄心の連結部64について説明する。この連結部64の半径方向内側には、第1の貫通孔65を介してV字溝66が形成され、連結部64の半径方向外側には、丸孔からなる第2の貫通孔67を介して切り離し部68が設けられている。第1の貫通孔65の半径方向外側にある円弧65a、即ち連結部64の半径方向内側を形成する円弧65aの曲率半径の中心は、連結部64の半径方向外側に設けられている。この実施例においては、連結部64の内側を形成する第1の貫通孔65の円弧の向きと、連結部64の外側を形成する第2の貫通孔67の円弧の向きが同一方向(半径方向内側)を向いている。なお、図7に示すように、連結部48の外側と内側を形成する円弧の向きが半径方向外側を向く場合もある。
この実施例においては、円弧65aの曲率半径の中心と第2の貫通孔67の中心が略同一位置にあるので、連結部64は半径方向に対して略同一幅となる。従って、連結部64を折り曲げると、連結部64に部分的な曲げ荷重がかからず、板厚方向の歪みや変形も少ないことになる。
続いて、図10に示す本発明の第7の実施例に係る積層鉄心36について説明する。この実施例において、連結分割鉄心片37は複数(この実施例では3)の磁極片部38を備える分割ヨーク片部39を連結部40を介して連結して形成されている。そして、この帯状の連結分割鉄心片37を連結部40で折り曲げて螺旋状に巻回し、全体として環状に成形された積層鉄心36となる。なお、この実施例においては、このような連結分割鉄心片37を2枚用意し、それぞれの連結部40の位置を1磁極片部だけずらしている。以下、一枚の連結分割鉄心片37について説明するが、その下層に配置される連結分割鉄心片もその構成は同じである。
ここで、積層鉄心36における連結部40の半径方向最外側部は、積層鉄心36の半径Rに対して、外周から半径Rの3%以上内側にあり、連結部40の半径方向最内側部(即ち、V字溝43の溝底位置)はヨーク部(具体的には、分割ヨーク片部39)の内側からヨーク部の半径方向幅の40%を超えて外側位置にある。また、連結部40の幅は、連結部40の強度及び曲げ易さを考慮して、分割鉄心片の板厚の1~5倍の範囲にあるのがよい。このように、連結部40の位置を半径方向内側に配置することによって材料の歩留りが向上する。
そして、この積層鉄心36を製造する場合に用いる連結分割鉄心片37においては、図10の部分拡大図に示すように、連結部40の半径方向内側及び外側は、それぞれ円孔からなる第1、第2の貫通孔41、42が形成されている。なお、第1、第2の貫通孔41、42は、連結部40に接する円弧を有する貫通孔である必要はあるが、円形に限定されず、例えば、楕円、長円、扇形状でもよい。そして、第1の貫通孔41の半径方向内側にはV字溝43が、第2の貫通孔42の半径方向外側には、切り離し部44が形成されている。V字溝43の開き角度θは、この積層鉄心36を1周分巻き回すまでの分割ヨーク片部39の数をmとすると、θ=360度/mとなっている。なお、46は巻取り軸である。
そして、第2の貫通孔42の連結部40に接する曲率半径は、第1の貫通孔41の曲率半径の2~15倍(より好ましくは2~5倍)の範囲にある。これによって、連結部40を折り曲げる際に発生する亀裂や破断の発生を極力減らすことができる。また、第1、第2の貫通孔41、42を設けることによって、V字溝43や切り離し部44の形成加工が容易となる。
この実施例では、一つの分割ヨーク片部39に対して3つの磁極片部38を設けたが、1、2又は4以上であってもよい。また、この積層鉄心36は2枚の連結分割鉄心片37を重ね巻きしていたが、1枚又は3枚以上の連結分割鉄心片をそれぞれの連結部の位置をずらして環状に巻回して積層鉄心を製造することもできる。
前記実施例においては、具体的数字を用いて説明したが、本発明の要旨を変更しない範囲で、数値変更を行うことは当然可能であり、更に、隣り合う分割ヨーク片部の当接する部分にそれぞれ凹部(例えば半円凹部)と凸部(半円凸部)を設けてもよい。
また、第7の実施例に係る積層鉄心においては、連結部40に接する半径方向内側部分が円弧状となった第1の貫通孔(例えば、円孔)を設け、切り離し部44を図6(B)に示すように平行溝(具体的にはU字溝)、図6(A)に示すように、V字溝とすることもできる(全ての実施例に適用可能)。
第1~第6の実施例に係る積層鉄心に用いた連結部を用いて、隣り合う分割ヨーク片部を折り曲げ可能に連結することもできる。
また、本発明の第1~第7の実施例に係る積層鉄心は、磁極片部が半径方向内側を向いた積層鉄心について説明したが、図11に示すように、磁極片部11が半径方向外側を向いた積層鉄心についても適用可能である。なお、図11には図1に示す積層鉄心、鉄心片に対応する符号を付して詳しい説明を省略する。
以上の実施例に係る積層鉄心において、連結部の半径方向外側の円弧の曲率半径と、連結部の半径方向内側に形成される円弧の曲率半径を等しくすることもできる。
10:積層鉄心、10a:積層連結分割鉄心、11:磁極片部、11a:磁極部、12:分割ヨーク片部、13、13a:連結部、14、14a:連結分割鉄心片、15:半径方向外側位置、16:半径方向内側位置、17:V字溝、18:切り離し部、19:分割鉄心片、20:第1の貫通孔、21:第2の貫通孔、24、25:積層鉄心、27、28:分割ヨーク片部、29:連結部、30:V字溝、31:円孔、33:切り離し部、34:円孔、36:積層鉄心、37:連結分割鉄心片、38:磁極片部、39:分割ヨーク片部、40:連結部、41:第1の貫通孔、42:第2の貫通孔、43:V字溝、44:切り離し部、46:巻取り軸、48:連結部、49:V字溝、50:第1の貫通孔、51:第2の貫通孔、52:切り離し部、53:外側円、54:内側円、56:連結部、57:第1の貫通孔、58:V字溝、59:第2の貫通孔、60:切り離し部、61、62:打ち抜き線、64:連結部、65:第1の貫通孔、65a:円弧、66:V字溝、67:第2の貫通孔、68:切り離し部

Claims (12)

  1. 各磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ直線状の連結分割鉄心片を所定枚数積層し、前記連結部を折り曲げて環状に形成される積層鉄心において、
    前記直線状の連結分割鉄心片は、一つの前記連結分割鉄心片における分割鉄心片の数をnとした場合、前記連結部より半径方向内側のヨーク片部には、360度/nの開き角を有して半径方向内側に開くV字溝を有すると共に、前記連結部より半径方向外側のヨーク片部には、該連結部より半径方向外側の隣り合う前記分割ヨーク片部を分離する切り離し部を有し、しかも前記連結部と接する前記V字溝の半径方向外側端部には円弧を有する第1の貫通孔が、前記連結部と接する前記切り離し部の半径方向内側端部には円弧を有する第2の貫通孔が形成されていることを特徴とする積層鉄心。
  2. 1又は2以上の磁極片部毎に分割した分割ヨーク片部を折り曲げ可能な連結部で繋いだ帯状の連結分割鉄心片を、前記連結部で折り曲げて巻回して形成される積層鉄心において、
    前記帯状の連結分割鉄心片は、該積層鉄心を1周分巻回するまでの前記分割ヨーク片部の数をmとした場合、前記連結部の半径方向内側には、360度/mの開き角を有して半径方向内側に開くV字溝を有すると共に、前記連結部の半径方向外側には、該連結部より半径方向外側の隣り合う前記分割ヨーク片部を分離する切り離し部を有し、しかも前記連結部に接する前記V字溝の半径方向外側端部には円弧によって形成される第1の貫通孔が、前記連結部に接する前記切り離し部の半径方向内側端部には円弧によって形成される第2の貫通孔が形成されていることを特徴とする積層鉄心。
  3. 請求項1又は2記載の積層鉄心において、前記第2の貫通孔の曲率半径は、前記第1の貫通孔の曲率半径より大きいことを特徴とする積層鉄心。
  4. 請求項3記載の積層鉄心において、前記第2の貫通孔の曲率半径は、前記連結分割鉄心片の厚みの2~15倍の範囲にあることを特徴とする積層鉄心。
  5. 請求項1~4のいずれか1記載の積層鉄心において、前記第1、第2の貫通孔はそれぞれ第1、第2の円孔であることを特徴とする積層鉄心。
  6. 請求項1~3のいずれか1記載の積層鉄心において、前記第1、第2の貫通孔によって形成される前記連結部の半径方向外側及び半径方向内側を形成する円弧の向きは等しいことを特徴とする積層鉄心。
  7. 請求項6記載の積層鉄心において、前記連結部の半径方向外側及び半径方向内側を形成する円弧の曲率半径の中心は、前記連結部より半径方向内側に位置することを特徴とする積層鉄心。
  8. 請求項6記載の積層鉄心において、前記連結部の半径方向外側及び半径方向内側を形成する線は、それぞれ前記円弧の曲率を大きくした直線であることを特徴とする積層鉄心。
  9. 請求項6記載の積層鉄心において、前記連結部の半径方向外側及び半径方向内側を形成する円弧の曲率半径の中心は、前記連結部の半径方向外側にあることを特徴とする積層鉄心。
  10. 請求項1~9のいずれか1記載の積層鉄心において、環状に形成した該積層鉄心は、前記連結部の半径方向外側位置が最外位置より該積層鉄心の半径の3%以上の内側位置にあることを特徴とする積層鉄心。
  11. 請求項1~10のいずれか1記載の積層鉄心において、前記V字溝の溝底位置は、前記分割ヨーク片部の半径方向長さの内側から40%位置より外側にあることを特徴とする積層鉄心。
  12. 請求項1~11のいずれか1記載の積層鉄心において、前記切り離し部はV字溝又はU字溝であることを特徴とする積層鉄心。
PCT/JP2010/057597 2009-05-15 2010-04-28 積層鉄心 WO2010131582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10774840.2A EP2432099B1 (en) 2009-05-15 2010-04-28 Laminated core
US13/256,362 US8466596B2 (en) 2009-05-15 2010-04-28 Laminated core
CN201080013503.2A CN102365805B (zh) 2009-05-15 2010-04-28 层叠铁芯

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009118957 2009-05-15
JP2009-118957 2009-05-15
JP2010053419A JP5620126B2 (ja) 2009-05-15 2010-03-10 積層鉄心
JP2010-053419 2010-03-10

Publications (1)

Publication Number Publication Date
WO2010131582A1 true WO2010131582A1 (ja) 2010-11-18

Family

ID=43084955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057597 WO2010131582A1 (ja) 2009-05-15 2010-04-28 積層鉄心

Country Status (5)

Country Link
US (1) US8466596B2 (ja)
EP (1) EP2432099B1 (ja)
JP (1) JP5620126B2 (ja)
CN (1) CN102365805B (ja)
WO (1) WO2010131582A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557058B2 (ja) * 2011-01-18 2014-07-23 株式会社デンソー 回転電機の固定子及びその製造方法
CN103329408B (zh) * 2011-01-28 2015-11-25 新日铁住金株式会社 旋转电机用螺旋铁心的制造方法及旋转电机用螺旋铁心的制造装置
WO2012105262A1 (ja) * 2011-02-03 2012-08-09 パナソニック株式会社 モータのステータおよびモータ
JP2012170246A (ja) * 2011-02-15 2012-09-06 Nippon Steel Corp 螺旋コア形成用帯状金属板、回転電機の螺旋コア、及び螺旋コアの製造方法
JP5896948B2 (ja) * 2013-03-26 2016-03-30 三菱電機株式会社 回転電機の積層鉄心の製造方法
JP6060837B2 (ja) * 2013-07-05 2017-01-18 株式会社デンソー 回転電機の固定子鉄心およびその製造方法
KR101679470B1 (ko) * 2014-05-16 2016-11-25 뉴모텍(주) 모터의 적층 코어 및 제조 방법
CN104348312B (zh) * 2014-11-17 2016-08-17 信质电机股份有限公司 直条定子铁芯的制造工艺
CN104333153A (zh) * 2014-11-24 2015-02-04 广东美芝制冷设备有限公司 用于电机的定子及其制造方法、电机
JP6293712B2 (ja) * 2015-08-27 2018-03-14 株式会社三井ハイテック 電機子および電機子の製造方法
JP6578180B2 (ja) * 2015-09-30 2019-09-18 日本電産サンキョー株式会社 ステータ、モータおよびポンプ装置
WO2017183162A1 (ja) * 2016-04-21 2017-10-26 三菱電機株式会社 電動機および空気調和機
WO2018025035A1 (en) * 2016-08-03 2018-02-08 Intelligent Electric Motor Solutions Pty Ltd Electric machines
US11303167B2 (en) * 2017-03-06 2022-04-12 Mitsubishi Electric Corporation Spirally wound laminated core for a rotary electric machine, method for manufacturing spirally wound laminated core of a rotary electric machine, and rotary electric machine
JP7032436B2 (ja) * 2017-12-07 2022-03-08 京セラインダストリアルツールズ株式会社 固定子鉄心
CN108270330A (zh) * 2017-12-29 2018-07-10 日本电产芝浦(浙江)有限公司 定子铁芯弯曲设备、定子铁芯弯曲方法以及定子铁芯
KR20210003840A (ko) * 2018-04-25 2021-01-12 보그워너 스웨덴 아베 고정자
CN110971029B (zh) * 2018-09-28 2022-03-01 佛山市威灵洗涤电机制造有限公司 转子冲片、转子和电机
FR3088498B1 (fr) * 2018-11-08 2021-09-10 Valeo Equip Electr Moteur Corps de stator muni d'une culasse electrotechnique d'epaisseur reduite
DK3745559T3 (en) * 2019-05-27 2022-06-07 Magnax Bv Stator til aksialfluxmaskine
KR20210042619A (ko) * 2019-10-10 2021-04-20 엘지이노텍 주식회사 모터
DE102021106186A1 (de) * 2021-03-15 2022-09-15 Ebm-Papst Mulfingen Gmbh & Co. Kg Modular aufgebautes, segmentiertes Statorpaket
WO2024004433A1 (ja) * 2022-06-30 2024-01-04 ニデック株式会社 ステータコアの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787714A (ja) * 1993-09-14 1995-03-31 Sankyo Seiki Mfg Co Ltd 回転電機の積層コアとその製造方法
JP2000341889A (ja) * 1999-05-25 2000-12-08 Hitachi Ltd 回転機用コア、その製造方法、コア用素片および回転機
JP2003324870A (ja) * 2002-05-02 2003-11-14 Nidec Shibaura Corp 電動機鉄心、電動機及び電動機鉄心の製造方法
JP2005160170A (ja) * 2003-11-21 2005-06-16 Fujitsu General Ltd 電動機
JP2005168128A (ja) * 2003-12-01 2005-06-23 Honda Motor Co Ltd 回転電機用ロータ
JP2007228730A (ja) * 2006-02-23 2007-09-06 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2007267585A (ja) * 2006-02-28 2007-10-11 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2008289309A (ja) * 2007-05-21 2008-11-27 Kuroda Precision Ind Ltd 連結型積層鉄心、電機子製造方法および順送り金型装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2109301A5 (ja) * 1970-10-09 1972-05-26 Unelec
JPH0654489A (ja) * 1992-07-29 1994-02-25 Sankyo Seiki Mfg Co Ltd 回転電機の積層コア
JP3568364B2 (ja) * 1996-09-30 2004-09-22 松下電器産業株式会社 回転電機のコア
TW411653B (en) * 1997-04-11 2000-11-11 Toshiba Corp Stator for dynamoelectric machine and method of making the same
JP3567305B2 (ja) 1998-03-12 2004-09-22 テクノエクセル株式会社 積層用鉄心素材
DE19851363A1 (de) * 1998-11-09 2000-05-18 Daimler Chrysler Ag Verfahren zur Herstellung eines Stators für einen Elektromotor
DE10037410A1 (de) * 2000-08-01 2002-02-14 Abb Research Ltd Rotierende elektrische Maschine und Verfahren zu deren Herstellung
DE10248129A1 (de) * 2002-10-15 2004-04-29 Klinger, Friedrich, Prof. Dr.-Ing. Verfahren zur Herstellung ringförmiger Blechpakete für vielpolige elektrische Maschinen
US6919665B2 (en) * 2003-09-30 2005-07-19 Nidec Shibaura Corporation Stator core, an electric motor in which it is utilized, and method of manufacturing a stator core
US7348706B2 (en) * 2005-10-31 2008-03-25 A. O. Smith Corporation Stator assembly for an electric machine and method of manufacturing the same
JP4150397B2 (ja) * 2005-11-16 2008-09-17 株式会社三井ハイテック 積層鉄心及びその製造方法
CN101641852B (zh) * 2007-04-27 2011-10-12 株式会社三井高科技 层叠铁心及其制造方法
WO2008139843A1 (ja) * 2007-05-09 2008-11-20 Mitsui High-Tec, Inc. 積層鉄心及びその製造方法
JP2011147224A (ja) * 2010-01-13 2011-07-28 Yaskawa Electric Corp 回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787714A (ja) * 1993-09-14 1995-03-31 Sankyo Seiki Mfg Co Ltd 回転電機の積層コアとその製造方法
JP2000341889A (ja) * 1999-05-25 2000-12-08 Hitachi Ltd 回転機用コア、その製造方法、コア用素片および回転機
JP2003324870A (ja) * 2002-05-02 2003-11-14 Nidec Shibaura Corp 電動機鉄心、電動機及び電動機鉄心の製造方法
JP2005160170A (ja) * 2003-11-21 2005-06-16 Fujitsu General Ltd 電動機
JP2005168128A (ja) * 2003-12-01 2005-06-23 Honda Motor Co Ltd 回転電機用ロータ
JP2007228730A (ja) * 2006-02-23 2007-09-06 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2007267585A (ja) * 2006-02-28 2007-10-11 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2008289309A (ja) * 2007-05-21 2008-11-27 Kuroda Precision Ind Ltd 連結型積層鉄心、電機子製造方法および順送り金型装置

Also Published As

Publication number Publication date
EP2432099A4 (en) 2013-06-26
JP2010288439A (ja) 2010-12-24
US20120019093A1 (en) 2012-01-26
CN102365805A (zh) 2012-02-29
CN102365805B (zh) 2014-02-19
JP5620126B2 (ja) 2014-11-05
US8466596B2 (en) 2013-06-18
EP2432099B1 (en) 2016-08-31
EP2432099A1 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2010131582A1 (ja) 積層鉄心
JP5511956B2 (ja) 回転電機の積層鉄心
JP5579832B2 (ja) 回転電機の積層鉄心
JPWO2007141907A1 (ja) 分割型鉄心及びその製造方法、固定子鉄心
JP3989510B2 (ja) 積層鉄心及びその製造方法
JP4150397B2 (ja) 積層鉄心及びその製造方法
JP5469307B2 (ja) 回転子積層鉄心
JP2013070607A (ja) 固定子コア
JP2007267585A (ja) 積層鉄心及びその製造方法
JP2010193715A (ja) 積層鉄心及びその製造方法
JP5162786B2 (ja) 積層鉄心の製造方法および帯状鉄心片
JP5390869B2 (ja) 積層鉄心及びその製造方法
JP2011055646A (ja) 電機子磁芯の製造方法
JP4242435B2 (ja) 積層鉄心及びその製造方法
JP5276298B2 (ja) 回転子積層鉄心に用いる連続セグメント鉄心材及びこれを用いた回転子積層鉄心
JP2011229312A (ja) 積層鉄心
WO2016174889A1 (ja) 回転電機用固定子コア及び固定子、並びに回転電機
JP5292134B2 (ja) ステータおよびモータ
JPWO2017141761A1 (ja) 回転電機のステータ、これを用いた回転電機、および回転電機のステータの製造方法
JP4637159B2 (ja) ステータコア
WO2022137621A1 (ja) 分割コア、回転電機、分割コアの製造方法、および、回転電機の製造方法
JP5896948B2 (ja) 回転電機の積層鉄心の製造方法
WO2023182257A1 (ja) 固定子コアの製造方法、固定子コア及びモータ
JP5835839B2 (ja) ステータコア、モータ、及びステータコアの製造方法
JP2015100166A (ja) 電機子コア

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013503.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774840

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010774840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010774840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13256362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE