WO2010113800A1 - 象牙質石灰化剤及びその製造方法 - Google Patents

象牙質石灰化剤及びその製造方法 Download PDF

Info

Publication number
WO2010113800A1
WO2010113800A1 PCT/JP2010/055379 JP2010055379W WO2010113800A1 WO 2010113800 A1 WO2010113800 A1 WO 2010113800A1 JP 2010055379 W JP2010055379 W JP 2010055379W WO 2010113800 A1 WO2010113800 A1 WO 2010113800A1
Authority
WO
WIPO (PCT)
Prior art keywords
dentin
particles
phosphate particles
alkali metal
weight
Prior art date
Application number
PCT/JP2010/055379
Other languages
English (en)
French (fr)
Inventor
正 橋本
麻梨子 杉浦
周明 石原
光伸 河島
岡田 浩一
Original Assignee
クラレメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレメディカル株式会社 filed Critical クラレメディカル株式会社
Priority to CN201080024026.XA priority Critical patent/CN102448471B/zh
Priority to JP2011507153A priority patent/JPWO2010113800A1/ja
Priority to US13/259,681 priority patent/US20120027829A1/en
Priority to EP10758572.1A priority patent/EP2425843B1/en
Publication of WO2010113800A1 publication Critical patent/WO2010113800A1/ja
Priority to US13/896,994 priority patent/US9415068B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/16Fluorine compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns

Definitions

  • the present invention relates to a dentin mineralizing agent that calcifies the dentin surface and deep dentinal tubules.
  • the so-called 8020 exercise (improving oral hygiene, preserving tooth quality (MI: Minimal Intervention)) that keeps more than 20 teeth even after the age of 80 has jumped.
  • MI Minimum Intervention
  • This is accompanied by a problem of dentin exposure due to new dental diseases (tooth wear, periodontal bone loss due to periodontal disease, etc.)
  • the exposed dentin is different from enamel. Since the mineral concentration of the tissue constituting the quality is low, the caries resistance is not good, and the dentinal tubules are opened by the action of acid in the oral cavity and cause hypersensitivity.
  • a method for improving the resistance a method of coating a polymer material or a method of sealing dentinal tubules by applying two types of materials alternately to precipitate inorganic salts and forming a physical barrier
  • these methods only cover a shallow portion and surface near the opening of the dentinal tubule, and have a problem that they are easily destroyed when worn with a toothbrush or the like.
  • it is a material with high affinity, there is also a problem that plaque adheres due to application of the material and causes inflammation and root caries.
  • TTCP tetracalcium phosphate
  • DCPA anhydrous calcium monohydrogen phosphate
  • CPC Calcium phosphate cement
  • Hp bioabsorbable hydroxyapatite
  • Patent Document 1 Japanese Patent No. 3017536
  • Patent Document 1 describes that a calcium phosphate composition containing tetracalcium phosphate and calcium hydrogen phosphate anhydride reacts in the presence of water to produce hydroxyapatite. Yes.
  • the hydroxyapatite thus obtained can be gradually replaced into bone by contact with living hard tissue, and the calcium phosphate composition has remineralization ability. It can be used.
  • an alkali metal salt of phosphoric acid such as disodium monohydrogen phosphate (Na 2 HPO 4 ) is added for the purpose of rapidly curing the calcium phosphate composition.
  • Na 2 HPO 4 disodium monohydrogen phosphate
  • Patent Document 2 JP-A-1-163127 (Patent Document 2) describes a composition for healing hypersensitivity comprising tetracalcium phosphate, calcium phosphate having a Ca / P molar ratio of less than 1.67, and a thickener.
  • hypersensitivity can be remarkably reduced by applying to a hypersensitive part of a tooth and holding it for a predetermined time.
  • the reason why the hypersensitivity is remarkably reduced is that calcium ions and phosphate ions eluted from the mixture of water and the like of the composition diffuse and penetrate into the dentinal tubule, and hydroxyapatite precipitates and deposits in the dentinal tubule This is to block mechanical stimulation, thermal stimulation, and chemical stimulation from the outside.
  • hydroxyapatite, calcium fluoride, titanium oxide, calcium hydroxide, sodium phosphate, ammonium phosphate, alumina for the above-mentioned composition for healing hypersensitivity to adjust kneadability with water and paste viscosity. It is described that other components such as silica may be added. However, there has been no description or suggestion of adding an alkali metal salt of phosphoric acid for the purpose of improving the effect of calcification.
  • the present invention has been made in order to solve the above-mentioned problems, and an ivory in which a dense HAp layer is formed on the dentin surface, and HAp is deposited to the deep part of the dentinal tubule to seal the dentinal tubule
  • the object is to provide a quality mineralizing agent.
  • the above-mentioned problem is a dentin calcification agent containing tetracalcium phosphate particles (A) and an alkali metal salt (B) of phosphoric acid, and phosphorous is added to 100 parts by weight of the total amount of the dentin calcification agent.
  • 1 to 80 parts by weight of the tetracalcium acid particles (A) and the blending amount of the alkali metal salt of phosphoric acid (B) with respect to 100 parts by weight of the tetracalcium phosphate particles (A) is 1 to 100 parts by weight. It is solved by providing a characterized dentin mineralizer.
  • the alkali metal salt (B) of phosphoric acid is disodium monohydrogen phosphate and / or monosodium dihydrogen phosphate, and it is further preferable to contain acidic calcium phosphate particles (C). is there.
  • Acidic calcium phosphate particles (C) are anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles, anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, tricalcium phosphate [Ca 3 (PO 4 ) 2.
  • the mixing ratio (A / C) of the calcium particles (A) and the acidic calcium phosphate particles (C) is preferably 40/60 to 60/40 in terms of molar ratio.
  • the average particle diameter of the tetracalcium phosphate particles (A) is preferably 0.5 to 40 ⁇ m, and the average particle diameter of the alkali metal salt of phosphoric acid (B) is preferably 0.5 to 20 ⁇ m. It is.
  • the acidic calcium phosphate particles (C) preferably have an average particle size of 0.1 to 7 ⁇ m, and further particles (E) selected from silica or metal oxide having an average particle size of 0.002 to 2 ⁇ m. It is preferable to contain.
  • the free alkali metal ion concentration of the suspension 10 minutes after the addition Is preferably 0.2 to 100 mg / L, and the standard deviation ⁇ when the average value of the free alkali metal ion concentration is d preferably satisfies ⁇ ⁇ 0.3d, and the alkali metal ion Is preferably a sodium ion.
  • the dentin permeation inhibition rate when treating one side of a 700 ⁇ m-thick bovine disc with the dentin mineralizing agent satisfies the following formula (I). [1- (permeation amount of calcified bovine disc) / (permeation amount of non-calcified bovine disc)] ⁇ 100 ⁇ 70 (I)
  • a tooth surface treatment material containing a dentin calcification agent is a preferred embodiment of the present invention
  • a dentifrice containing a dentin calcification agent is a preferred embodiment of the present invention.
  • a chewing gum containing a dentin mineralizer is a preferred embodiment of the present invention
  • a dentin hypersensitivity inhibitor comprising a dentin mineralizer is a preferred embodiment of the present invention.
  • dentin hypersensitivity inhibitor which consists of a dentin mineralization agent, Comprising: This dentin hypersensitivity inhibitor further contains acidic calcium phosphate particle (C), and the average particle diameter of tetracalcium phosphate particle (A) is The amount of tetracalcium phosphate particles (A) is 5 to 55 parts by weight with respect to 100 parts by weight of the dentin hypersensitivity inhibitor, and the dentinal tubules are rubbed into the surface of the dentin.
  • a dentin hypersensitivity inhibitor characterized in that it is used to block water is a preferred embodiment of the present invention.
  • dentin hypersensitivity inhibitor composed of a dentin mineralizing agent, and when a suspension is prepared by adding 0.05 g of the dentin hypersensitivity inhibitor to 200 g of pure water at 25 ° C.
  • a dentin hypersensitivity inhibitor characterized by a free alkali metal ion concentration of 0.2 to 100 mg / L after 10 minutes from the suspension is a preferred embodiment of the present invention.
  • the said subject is a manufacturing method of the dentin mineralization agent which mixes the liquid or water-based paste which has the liquid or water-based paste which has a tetracalcium phosphate particle (A), the alkali metal salt of phosphoric acid (B), and water as a main component, 1-100 parts by weight of an alkali metal salt of phosphoric acid (B) per 100 parts by weight of tetracalcium phosphate particles (A), and tetracalcium phosphate particles (100 parts by weight of dentin mineralizing agent)
  • the problem is solved by providing a method for producing a dentin calcification agent characterized in that the blending amount of A) is 1 to 80 parts by weight.
  • powder containing tetracalcium phosphate particles (A) and alkali metal salt of phosphoric acid (B), or tetracalcium phosphate particles (A), alkali metal salt of phosphoric acid (B) and acidic calcium phosphate particles It is preferable to preliminarily mix the powder containing C), and at the time of the mixing, selected from a jet mill, a likai machine, a ball mill, a high-speed rotary mill, a planetary mill, a hybridizer, a mechano-fusion, or a mixing extruder It is preferable to use at least one kind.
  • a liquid or aqueous paste containing water as a main component and containing an alkali metal salt of phosphoric acid (B) may be added to and mixed with the powder or non-aqueous paste containing the tetracalcium phosphate particles (A). Is preferred.
  • the above-mentioned problem is a dentin hypersensitivity inhibitor comprising mixing tetracalcium phosphate particles (A), alkali metal salt of phosphoric acid (B), acidic calcium phosphate particles (C) and a liquid or water-based paste containing water as a main component.
  • the dentin hypersensitivity inhibitor is used to seal dentinal tubules by rubbing into the dentin surface, and the average particle size of the tetracalcium phosphate particles (A) is 0.
  • a liquid or aqueous paste containing water as a main component and containing acidic calcium phosphate particles (C) is added to a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B).
  • A tetracalcium phosphate particles
  • B alkali metal salt of phosphoric acid
  • the above problem is a method for producing a dentin hypersensitivity inhibitor comprising mixing tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B), and a liquid or water-based paste containing water as a main component, 1 to 100 parts by weight of alkali metal salt (B) of phosphoric acid per 100 parts by weight of tetracalcium phosphate particles (A), and tetracalcium phosphate particles (100 parts by weight of dentin hypersensitivity inhibitor)
  • a suspension was prepared by adding 1 to 80 parts by weight of A) and adding 0.05 g of the dentin hypersensitivity inhibitor to 200 g of pure water at 25 ° C., 10 minutes after the addition.
  • the problem is solved by providing a method for producing a dentin hypersensitivity inhibitor characterized in that the free alkali metal ion concentration of the suspension is 0.2 to 100 mg / L.
  • the said subject is a dentin hypersensitivity suppression method using the dentin hypersensitivity inhibitor containing the tetracalcium phosphate particle (A), the alkali metal salt (B) of phosphoric acid, and acidic calcium phosphate particle (C).
  • the average particle diameter of the tetracalcium phosphate particles (A) is 0.5 to 40 ⁇ m, and the blending amount of the tetracalcium phosphate particles (A) is 5 with respect to 100 parts by weight of the total dentin hypersensitivity inhibitor.
  • the subject is a dentin calcification agent comprising a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt (B) of phosphoric acid, and a liquid or aqueous paste containing water as a main component. Solved by providing a kit.
  • the above-mentioned problems include a powder or non-aqueous paste containing tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B) and acidic calcium phosphate particles (C), and a liquid or aqueous paste containing water as a main component.
  • A tetracalcium phosphate particles
  • B alkali metal salt of phosphoric acid
  • C acidic calcium phosphate particles
  • the subject is a dentin mineralizing agent comprising a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and a liquid or aqueous paste containing water as a main component and containing an alkali metal salt of phosphoric acid (B). Solved by providing a kit.
  • the above-mentioned problems include a powder or non-aqueous paste containing tetracalcium phosphate particles (A), a powder or non-aqueous paste containing an alkali metal salt of phosphoric acid (B), and a liquid or water system containing water as a main component. It is solved by providing a dentin mineralizer kit comprising a paste.
  • the above-described problems include a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B), and a liquid or aqueous paste containing water as a main component and acidic calcium phosphate particles (C). It is solved by providing a dentine hypersensitivity inhibitor kit comprising:
  • the said subject is a powder or non-aqueous paste containing tetracalcium phosphate particles (A), a powder or non-aqueous paste containing an alkali metal salt of phosphoric acid (B), and acidic calcium phosphate particles (C). It is also solved by providing a dentine hypersensitivity inhibitor kit comprising a powder or non-aqueous paste containing water and a liquid or water-based paste containing water as a main component.
  • a dentin calcification agent capable of forming a dense HAp layer on the surface of the dentin and depositing the HAp deep in the dentinal tubule to seal the dentinal tubule.
  • pseudo-enamel is formed on the surface of the dentin to provide caries resistance and to treat hypersensitivity.
  • Example 1 it is a SEM photograph of the bovine dentin surface in which the HAp layer was formed. In Example 1, it is the SEM photograph which compared the bovine dentin surface where the dentinal tubule was sealed with HAp, and the bovine dentin surface where the dentinal tubule was exposed. In Example 25, it is the SEM photograph which compared the bovine dentin surface where the dentinal tubule was sealed with HAp, and the bovine dentin surface where the dentinal tubule was exposed. In Example 25, it is a SEM photograph of the bovine dentin cross section in which the dentinal tubule was sealed with HAp.
  • the dentin mineralizing agent of the present invention contains tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B).
  • a composition containing tetracalcium phosphate particles (A) is mixed in the presence of water, it is gradually converted into hydroxyapatite.
  • the present inventors have a high calcification effect. It was revealed that hydroxyapatite can be deposited deep in the dentinal tubules. Although the reason for this is not necessarily clear, the following mechanism is presumed.
  • pseudo-enamel is formed on the surface of the dentin to provide caries resistance (prevention of root caries) and to treat hypersensitivity.
  • HAp precipitates in the deep part of the dentinal tubule and the dentinal tubule is blocked, the apparent dentin mineral concentration is improved and the wear resistance is also improved.
  • the present inventors presume that the balance of the rate at which calcium ions and phosphate ions are supplied is important in order to achieve the above-described effects, and the compounds that supply calcium ions and phosphate ions It has been confirmed that the HAp precipitation is not good when the solubility of the compound supplying is low or extremely high.
  • the present invention in which the supply rate and supply balance of calcium ions and phosphate ions to dentin are appropriate by containing a certain amount of tetracalcium phosphate particles (A) and alkali metal salt (B) of phosphate.
  • A tetracalcium phosphate particles
  • B alkali metal salt
  • the present invention contains 1 to 80 parts by weight of tetracalcium phosphate particles (A) with respect to 100 parts by weight of the total amount of dentin mineralizing agent.
  • the amount is preferably 5 parts by weight or more. More preferably, it is more preferably 20 parts by weight or more.
  • the content of the tetracalcium phosphate particles (A) exceeds 80 parts by weight, precipitation of HAp may be inhibited and a calcification effect may not be obtained, and the amount is preferably 75 parts by weight or less.
  • the amount is more preferably no more than parts by weight and even more preferably no more than 60 parts by weight.
  • the blending amount of tetracalcium phosphate particles (A) is 5 to 55 wt% with respect to 100 parts by weight of the dentin hypersensitivity inhibitor. Part.
  • the blending amount of the tetracalcium phosphate particles (A) is less than 5 parts by weight, the precipitation of HAp may be inhibited and the sealing performance of the dentinal tubules may be lowered, and it is more preferably 10 parts by weight or more. More preferably, it is at least part by weight.
  • the blending amount of the tetracalcium phosphate particles (A) exceeds 55 parts by weight, the precipitation of HAp may be inhibited and the sealing performance of the dentinal tubules may be lowered, and it is more preferably 50 parts by weight or less. More preferably, it is 45 parts by weight or less.
  • the manufacturing method of the tetracalcium phosphate [Ca 4 (PO 4 ) 2 O] particles (A) used in the present invention is not particularly limited. Commercially available tetracalcium phosphate particles may be used as they are, or may be used by appropriately pulverizing and adjusting the particle diameter. As the pulverization method, a method similar to the pulverization method of the acidic calcium phosphate particles (C) described later can be employed.
  • the average particle diameter of the tetracalcium phosphate particles (A) used in the present invention is preferably 0.5 to 40 ⁇ m.
  • the average particle diameter of the tetracalcium phosphate particles (A) is more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the average particle size of the tetracalcium phosphate particles (A) is more preferably 35 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the average particle diameter of the tetracalcium phosphate particles (A) used in the present invention is measured and calculated using a laser diffraction particle size distribution measuring device.
  • the dentin mineralizing agent of the present invention contains 1 to 100 parts by weight of an alkali metal salt (B) of phosphoric acid with respect to 100 parts by weight of tetracalcium phosphate particles (A).
  • an alkali metal salt (B) of phosphoric acid with respect to 100 parts by weight of tetracalcium phosphate particles (A).
  • the calcification effect is high, and hydroxyapatite precipitates particularly deep in the dentinal tubule.
  • a dentin mineralizing agent can be provided.
  • the precipitation of HAp may be inhibited and the calcification effect may not be obtained, and the amount is preferably 2 parts by weight or more. More preferably, it is at least part.
  • the content of the alkali metal salt of phosphoric acid (B) exceeds 100 parts by weight, precipitation of HAp may be inhibited and a calcification effect may not be obtained, and is preferably 98 parts by weight or less.
  • the amount is more preferably 95 parts by weight or less, and still more preferably 90 parts by weight or less.
  • the alkali metal salt of phosphoric acid (B) used in the present invention is not particularly limited, and is disodium monohydrogen phosphate, dipotassium monohydrogen phosphate, dilithium monohydrogen phosphate, monosodium dihydrogen phosphate, phosphorus Examples include monopotassium dihydrogen acid, trisodium phosphate, tripotassium phosphate, and one or more of these are used.
  • the alkali metal salt (B) of phosphoric acid is disodium monohydrogen phosphate and / or monosodium dihydrogen phosphate from a viewpoint that a raw material with high safety and high purity can be easily obtained.
  • the alkali metal ion in the alkali metal salt (B) of phosphoric acid used in the present invention is preferably a sodium ion.
  • the average particle size of the alkali metal salt (B) of phosphoric acid used in the present invention is preferably 0.5 to 20 ⁇ m.
  • the average particle size of the alkali metal salt (B) of phosphoric acid is less than 0.5 ⁇ m, it becomes difficult to uniformly disperse the solution or powder in the liquid agent or powder because the aggregation becomes significant.
  • the calcifying agent is converted to hydroxyapatite, pores may be formed in the hydroxyapatite, and the dentin permeation suppression rate may be reduced, and it is more preferably 1 ⁇ m or more.
  • the average particle diameter of the alkali metal salt (B) of phosphoric acid exceeds 20 ⁇ m
  • the dentin mineralizing agent of the present invention when converted into hydroxyapatite, pores are generated in the hydroxyapatite, and the dentin There is a possibility that the permeation suppression rate is lowered.
  • the hole is generated in the dentinal tubule, it may be difficult to suppress hypersensitivity.
  • the surface of the dentin is rubbed to suppress hypersensitivity of the dentin, the undissolved alkali metal salt (B) of phosphoric acid remains in the paste, which increases the feeling of roughness and reduces the operability.
  • the average particle size of the alkali metal salt of phosphoric acid (B) is more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less, because it may damage the dentin.
  • the dentin mineralizing agent of the present invention preferably further contains acidic calcium phosphate particles (C) in addition to the tetracalcium phosphate particles (A) and the alkali metal salt of phosphoric acid (B).
  • C acidic calcium phosphate particles
  • the present inventors include acidic calcium phosphate particles (C) having low solubility in addition to tetracalcium phosphate particles (A) and alkali metal salt of phosphoric acid (B), so that calcium is applied after applying the paste. It is assumed that not only can ions and phosphate ions be supplied for a longer time, but also the supply balance becomes more appropriate.
  • the acidic calcium phosphate particles (C) used in the present invention are not particularly limited, and anhydrous calcium monohydrogen phosphate [CaHPO 4 ] particles, anhydrous calcium dihydrogen phosphate [Ca (H 2 PO 4 ) 2 ] particles, phosphoric acid Tricalcium [Ca 3 (PO 4 ) 2 ] particles, amorphous calcium phosphate [Ca 3 (PO 4 ) 2 xH 2 O] particles, acidic calcium pyrophosphate [CaH 2 P 2 O 7 ] particles, calcium monohydrogen phosphate At least one selected from the group consisting of dihydrate [CaHPO 4 .2H 2 O] particles and calcium dihydrogen phosphate monohydrate [Ca (H 2 PO 4 ) 2 .H 2 O] particles.
  • the average particle diameter of the acidic calcium phosphate particles (C) used in the present invention is preferably 0.1 to 7 ⁇ m.
  • the average particle size is less than 0.1 ⁇ m, the solution is excessively dissolved in the liquid agent, so that not only the supply balance of calcium ions and phosphate ions is lost, but also the viscosity of the paste obtained by mixing with the liquid agent may be too high. More preferably, it is 0.3 ⁇ m or more.
  • the average particle diameter exceeds 7 ⁇ m, the acidic calcium phosphate particles (C) are difficult to dissolve in the liquid agent, so that the tetracalcium phosphate particles (A) may be excessively dissolved.
  • the average particle diameter of the acidic calcium phosphate particles (C) is more preferably 3 ⁇ m or less.
  • the average particle diameter of the acidic calcium phosphate particles (C) is calculated in the same manner as the average particle diameter of the tetracalcium phosphate particles (A).
  • the production method of acidic calcium phosphate particles (C) having such an average particle diameter is not particularly limited, and if a commercially available product can be obtained, it may be used, but it is preferable to further grind the commercially available product.
  • a pulverizing apparatus such as a ball mill, a likai machine, or a jet mill can be used.
  • acidic calcium phosphate raw material powder is pulverized with a liquid medium such as alcohol using a lykai machine, a ball mill or the like to prepare a slurry, and the resulting slurry is dried to obtain acidic calcium phosphate particles (C). it can.
  • a ball mill is preferably used as the pulverizer at this time, and alumina or zirconia is preferably used as the material of the pot and ball.
  • the average particle size of (A) is more preferably 2 times or more than the average particle size of (C), more preferably 4 times or more, and particularly preferably 7 times or more.
  • the average particle size of (A) is more preferably 35 times or less of the average particle size of (C), still more preferably 30 times or less, and particularly preferably 25 times or less.
  • the blending ratio (A / C) of the tetracalcium phosphate particles (A) and the acidic calcium phosphate particles (C) is not particularly limited, and is used in a blending ratio such that the molar ratio is in the range of 40/60 to 60/40. It is preferable. By this, the dentin mineralizing agent of this invention with a high calcification effect can be obtained.
  • the blending ratio (A / C) is more preferably 45/55 to 55/45, and most preferably substantially 50/50.
  • the dentin mineralizing agent of the present invention preferably further contains a fluorine compound (D).
  • a fluorine compound (D) used in the present invention is not particularly limited, and is sodium fluoride, potassium fluoride, ammonium fluoride, lithium fluoride, cesium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, fluorine.
  • Strontium fluoride barium fluoride, copper fluoride, zirconium fluoride, aluminum fluoride, tin fluoride, sodium monofluorophosphate, potassium monofluorophosphate, hydrofluoric acid, sodium titanium fluoride, potassium titanium fluoride,
  • Examples include hexylamine hydrofluoride, laurylamine hydrofluoride, glycine hydrofluoride, alanine hydrofluoride, fluorosilanes, and silver fluorinated diamine.
  • sodium fluoride, sodium monofluorophosphate, and tin fluoride are preferably used from the viewpoint of the calcification promoting effect.
  • the amount of the fluorine compound (D) used is not particularly limited, and it is preferable to contain 0.01 to 3 parts by weight of converted fluoride ions of the fluorine compound (D) with respect to 100 parts by weight of the total amount of dentin calcification agent.
  • the usage-amount of the fluoride ion of a fluorine compound (D) is less than 0.01 weight part, there exists a possibility that the effect which accelerates
  • the usage-amount of the fluoride ion of a fluorine compound (D) exceeds 3 weight part, safety
  • the dentin mineralizing agent of the present invention includes tetracalcium phosphate particles (A), alkali metal salts of phosphoric acid (B), acidic calcium phosphate particles (C), and fluorine compounds (D) as long as the effects of the present invention are not impaired.
  • the thickener include carboxymethylcellulose, sodium carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polystyrene sulfonic acid, polystyrene sulfonate, polyglutamic acid, polyglutamate, Polyaspartic acid, polyaspartate, poly L lysine, poly L lysine salt, starch other than cellulose, alginic acid, alginate, carrageenan, guar gum, chitansan gum, cellulose gum, hyaluronic acid, hyaluronate, pectin, pectin salt, chitin , Polysaccharides such as chitosan, acidic polysaccharide esters such as propylene glycol alginate, collagen, gelatin and these One or two or more selected from polymers such as proteins such as conductors may be mentioned.
  • the thickener may be blended into the powder, the liquid, or the paste being mixed.
  • inorganic fillers such as silica and metal oxides, polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol and diglycerin, sugar alcohols such as xylitol, sorbitol and erythritol, polyethylene glycol and polypropylene glycol Polyethers such as aspartame, acesulfame potassium, licorice extract, artificial sweeteners such as saccharin and sodium saccharin may be added.
  • the dentin mineralizing agent of the present invention preferably contains an inorganic filler, and contains particles (E) selected from silica or metal oxide having an average particle size of 0.002 to 2 ⁇ m. It is more preferable to contain silica particles (E) having an average particle diameter of 0.002 to 2 ⁇ m.
  • any pharmacologically acceptable drug or the like can be blended.
  • Antibacterial agents typified by cetylpyridinium chloride, antiseptics, anticancer agents, antibiotics, blood circulation improving agents such as actosine and PEG1, growth factors such as bFGF, PDGF and BMP, osteoblasts, odontoblasts, and undifferentiated Bone marrow-derived stem cells, embryonic stem (ES) cells, induced pluripotent stem (iPS) cells obtained by dedifferentiation and production of differentiated cells such as fibroblasts by gene transfer, and cells such as these differentiated cells Cells or the like that promote tissue formation can be added.
  • ES embryonic stem
  • iPS induced pluripotent stem
  • the dentin mineralizing agent of the present invention was prepared by adding 0.05 g of the dentin mineralizing agent to 200 g of pure water at 25 ° C. to prepare a suspension.
  • the free alkali metal ion concentration is preferably 0.2 to 100 mg / L. When the free alkali metal ion concentration is in such a range, there is an advantage that a dentin mineralizing agent having a good dentin permeation suppression rate can be obtained.
  • the phosphate ion supplied together with the alkali metal ion is insufficient, so that the conversion to hydroxyapatite is not smooth, and the dentinal having a good dentin permeation suppression rate
  • a quality mineralizing agent is more preferably 0.5 mg / L or more, and even more preferably 1 mg / L or more.
  • the free alkali metal ion concentration exceeds 100 mg / L, the phosphate ion supplied together with the alkali metal ions becomes excessive, so that the conversion to hydroxyapatite is not smooth, and the dentin permeation inhibition rate is good.
  • the dentin calcification agent not be obtained, but excessive sodium ions may inhibit the conversion to hydroxyapatite, more preferably 50 mg / L or less, and even more preferably 30 mg / L or less. preferable.
  • Any method can be selected as a method for measuring free alkali metal ions. It is possible to collect the supernatant of the suspension and measure with an ICP emission spectrophotometer or ion chromatography. A measurement method that directly immerses the electrode in response to the alkali metal ion concentration in the suspension. It may be used.
  • the dentin mineralizing agent of the present invention has a standard deviation ⁇ satisfying ⁇ ⁇ 0.3d when the average value of the free alkali metal ion concentration is d, that is, the standard deviation ⁇ is the free alkali metal.
  • the value ( ⁇ / d) divided by the average value d of ion concentrations is preferably 0.3 or less.
  • the alkali metal salt (B) of phosphoric acid is aggregated, and the aggregated alkali metal salt of phosphoric acid (B) is present in water. It appears to be taken into the dentinal tubule with the dentin calcification agent prepared below.
  • the aggregated alkali metal salt (B) of phosphoric acid is dissolved when the dentin calcifying agent of the present invention is converted to HAp, causing pores in the HAp, and the dentin permeation inhibition rate is considered to decrease. It is done.
  • surface of the 700-micrometer-thick bovine disc with the dentin mineralizer of this invention satisfy
  • the dentin calcification agent of the present invention satisfying the following formula (I) is a caries-resistant material because the HAp is deposited deep in the dentinal tubule and the dentinal tubule is sealed, so that a pseudo-enamel is formed on the dentin surface. It has the advantage that sex can be imparted and hypersensitivity can be treated. [1- (permeation amount of calcified bovine disc) / (permeation amount of non-calcified bovine disc)] ⁇ 100 ⁇ 70 (I)
  • a paste-like ivory is prepared by mixing a powder containing tetracalcium phosphate particles (A) and an alkali metal salt (B) of phosphoric acid with a liquid mainly composed of water or an aqueous paste.
  • a quality mineralizing agent can be obtained. Since this paste-like dentin calcification agent containing water immediately begins to be converted into HAp, it is preferable to prepare it by mixing immediately before use in a medical field.
  • the mixing operation is not particularly limited, and hand mixing, mixing using a static mixer, and the like are preferably employed.
  • the present inventors have confirmed that the calcification effect is high when the content of the alkali metal salt (B) of phosphoric acid is in an appropriate range.
  • the above mixing method in which the alkali metal salt of phosphoric acid (B) is added in powder form is preferably employed.
  • the dentin calcification agent thus obtained is preferably used by applying it to the dentin surface.
  • the liquid containing water as a main component may be pure water, or a liquid containing water as a main component and containing other components, and the water-based paste containing water as a main component.
  • the paste-like liquid which has water as a main component and contains another component is shown.
  • Other components are not particularly limited, and the above-mentioned acidic calcium phosphate particles (C), polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, diglycerin, sugar alcohols such as xylitol, sorbitol, erythritol, polyethylene glycol, polypropylene glycol And the like.
  • acidic calcium phosphate particles (C) are contained as other components
  • acidic calcium phosphate particles containing water as a main component in a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B) A method of adding and mixing the liquid or aqueous paste containing (C) is also preferably employed.
  • a liquid or water-based paste containing water as a main component and containing an alkali metal salt of phosphoric acid (B) is added to and mixed with powder or non-aqueous paste containing tetracalcium phosphate particles (A).
  • the paste-like dentin mineralizing agent can also be obtained.
  • a reaction occurs in which the tetracalcium phosphate particles (A) are dissolved and gradually converted to HAp. Therefore, a liquid or aqueous paste containing water as a main component and the tetracalcium phosphate particles (A) Cannot be premixed and stored.
  • a method of mixing with the paste is preferably employed, and there is also an advantage that the operation at the time of mixing and preparing immediately before use is simple.
  • the solvent other than water used in the non-aqueous paste is not particularly limited, and examples thereof include polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, and diglycerin, and polyethers such as polyethylene glycol and polypropylene glycol. Is done.
  • a powder containing tetracalcium phosphate particles (A) and an alkali metal salt (B) of phosphoric acid, or tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B) and an acid It is preferable to previously mix powder containing calcium phosphate particles (C).
  • the dentin mineralizing agent of the present invention is suitably used as a dentin hypersensitivity inhibitor.
  • a jet mill it is preferable to use at least one selected from a jet mill, a likai machine, a ball mill, a high-speed rotary mill, a planetary mill, a hybridizer, a mechanofusion, or a mixing extruder.
  • a ball mill a lye machine, a high-speed rotary mill, and a jet mill.
  • the dentin mineralizing agent of the present invention is preferably used for various uses of tooth surface treatment materials, dentifrices or chewing gums.
  • a reaction occurs in which the tetracalcium phosphate particles (A) are dissolved and gradually converted to HAp, so that moisture is appropriately supplied at the time of use such as a dentifrice or chewing gum.
  • it may be a mode in which it is appropriately mixed with a liquid just before use, such as a tooth surface treatment material.
  • the dentin mineralizing agent of the present invention is capable of precipitating HAp to the deep part of the dentinal tubule and sealing the dentinal tubule as described above.
  • Dentin hypersensitivity inhibitor is a preferred embodiment of the present invention.
  • the present inventors provide a dentin hypersensitivity inhibitor comprising a dentin calcification agent containing tetracalcium phosphate particles (A) and an alkali metal salt (B) of phosphoric acid,
  • the quality hypersensitivity inhibitor further comprises acidic calcium phosphate particles (C), the average particle diameter of the tetracalcium phosphate particles (A) is 0.5 to 40 ⁇ m, and the total amount of the dentin hypersensitivity inhibitor is 100 parts by weight. It is possible to seal dentinal tubules by at least one treatment by rubbing the dentin hypersensitivity inhibitor containing 5 to 55 parts by weight of the tetracalcium phosphate particles (A) onto the surface of the dentin. It became clear. Although the reason for this is not necessarily clear, the following mechanism is presumed.
  • a dentin hypersensitivity inhibitor containing a certain amount of tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B), and acidic calcium phosphate particles (C) is prepared in the presence of water to prepare dentin.
  • tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B), and acidic calcium phosphate particles (C) is prepared in the presence of water to prepare dentin.
  • calcium ions and phosphate ions supplied from tetracalcium phosphate particles (A), alkali metal salt of phosphoric acid (B), and acidic calcium phosphate particles (C) react to generate energy. Seem to precipitate stable HAp crystallites.
  • the HAp microcrystals are inserted into the dentinal tubule together with the liquid containing the dentin hypersensitivity inhibitor, and as a result, the calcium ions and phosphate ions contained in the liquid are the HAp microcrystals inserted into the dentinal tubule. It seems that the crystal grows and becomes densified and integrated with the dentin. By this, since the sealing performance of a dentinal tubule becomes favorable, the effect which suppresses hypersensitivity becomes high.
  • a dentin hypersensitivity inhibitor characterized by being used to seal dentinal tubules by rubbing onto the dentin surface is a preferred embodiment of the present invention.
  • the dentin hypersensitivity suppression method by rubbing such a dentin hypersensitivity inhibitor on the dentin surface is also a preferred embodiment of the present invention.
  • a dentin hypersensitivity inhibitor comprising a dentin mineralizing agent containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B).
  • a dentin hypersensitivity inhibitor characterized by being 2 to 100 mg / L.
  • the dentin mineralizing agent of the present invention may be appropriately supplied with moisture at the time of use, or may be appropriately mixed with a liquid just before use. Therefore, a dentin calcification agent kit comprising a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B), and a liquid or aqueous paste containing water as a main component. It is one of the embodiments of the present invention.
  • a powder or non-aqueous paste containing tetracalcium phosphate particles (A), an alkali metal salt of phosphoric acid (B) and acidic calcium phosphate particles (C), and a liquid or water-based paste containing water as a main component.
  • a dentin mineralizer kit comprising a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and a liquid or aqueous paste containing water as a main component and containing an alkali metal salt of phosphoric acid (B). It is one of the embodiments of the present invention.
  • a powder or non-aqueous paste containing tetracalcium phosphate particles (A), a powder or non-aqueous paste containing an alkali metal salt of phosphoric acid (B), and a liquid or aqueous paste mainly containing water It is also one of the embodiments of this invention that it is a dentine mineralizer kit which consists of.
  • a powder or non-aqueous paste containing tetracalcium phosphate particles (A) and an alkali metal salt of phosphoric acid (B), and a liquid or aqueous paste containing water as a main component and containing acidic calcium phosphate particles (C).
  • A tetracalcium phosphate particles
  • B alkali metal salt of phosphoric acid
  • C acidic calcium phosphate particles
  • One embodiment of the present invention is a kit for inhibiting dentin hypersensitivity.
  • A tetracalcium phosphate particles
  • B powder or non-aqueous paste containing an alkali metal salt of phosphoric acid
  • C powder containing acidic calcium phosphate particles
  • One embodiment of the present invention is a dentin hypersensitivity inhibitor kit comprising a non-aqueous paste and a liquid or water-based paste containing water as a main component.
  • the average particle size of tetracalcium phosphate particles (A), alkali metal salt of phosphoric acid (B) particles, acidic calcium phosphate particles (C) and sodium fluoride (D) particles is measured by laser diffraction particle size distribution. Measurement was performed using a device (“SALD-2100 type” manufactured by Shimadzu Corporation), and the median diameter calculated from the measurement result was defined as the average particle diameter.
  • a solution obtained by diluting a 0.5M EDTA solution (manufactured by Wako Pure Chemical Industries, Ltd.) five times with respect to the bovine teeth was allowed to act on the dentin window for 30 seconds, followed by washing with water for 30 minutes or more. Furthermore, 10% sodium hypochlorite solution (Neo Cleaner “SEKINE”, Neo Pharmaceutical Co., Ltd.) is allowed to act for 2 minutes for cleaning, and then washed for about 30 minutes with water and air dried for 1 hour to remove bovine teeth used for calcification. Prepared.
  • Example 1 [Preparation of dentin mineralizing agent] (1) Preparation of Tetracalcium Phosphate Particles (A) Tetracalcium phosphate particles (A1) (average particle size 23.1 ⁇ m) used in this example grind crude tetracalcium phosphate prepared as follows. Was obtained. Commercially available anhydrous calcium monohydrogen phosphate particles (Product No. 1430, JTBaker Chemical Co., NJ) and calcium carbonate (Product No. 1288, JTBaker Chemical Co., NJ) are added to water to make an equimolar amount.
  • A1 Tetracalcium phosphate particles (A1) (average particle size 23.1 ⁇ m) used in this example grind crude tetracalcium phosphate prepared as follows. Was obtained. Commercially available anhydrous calcium monohydrogen phosphate particles (Product No. 1430, JTBaker Chemical Co., NJ) and calcium carbonate (Product No. 1288, JTBaker Chemical Co., NJ) are added to water to make an
  • the cake-like equimolar mixture obtained by filtration and drying was heated in an electric furnace (FUS732PB, Advantech Toyo Co., Ltd.) at 1500 ° C. for 24 hours, and then cooled to room temperature in a desiccator.
  • the tetracalcium phosphate lump was prepared. Further, the mixture was roughly crushed in a mortar and then sieved to remove fine powder and tetracalcium phosphate lump, and the particle size was adjusted to a range of 0.5 to 3 mm to obtain crude tetracalcium phosphate.
  • anhydrous calcium monohydrogen phosphate particles (C1) (average particle size 1.1 ⁇ m) used in this example are commercially available anhydrous phosphorus Calcium monohydrogen particles (Product No.
  • liquid paste for dentin mineralizing agent 1000 g of glycerin (manufactured by Wako Pure Chemical Industries, Ltd.), 500 g of propylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.), 500 g of xylitol (manufactured by Wako Pure Chemical Industries, Ltd.) , Polyethylene glycol (Macrogol 400, manufactured by Sanyo Chemical Industries, Ltd.) 300 g, cetylpyridinium chloride monohydrate (Wako Pure Chemical Industries, Ltd.) 5 g, silica particles (E) (Degussa “AEROSIL 130”, average
  • a liquid paste for dentin mineralizing agent was obtained by emulsifying and dispersing 400 g of particle size: 0.016 ⁇ m) and 1174 g of distilled water in a universal mixer (manufactured by Paulex Corporation).
  • the average value (d) of the sodium ion concentration of the powder in Example 1 is 10.4 mg / L, and the numerical value ( ⁇ / d) obtained by dividing the standard deviation ( ⁇ ) of the sodium ion concentration by (d) is 0.06. Met.
  • the obtained results are summarized in Table 1.
  • Epoxy resin was prepared according to the Lucas method, and an epoxy resin and a curing agent were uniformly mixed and then an accelerator was added.
  • Disposyringe of 100 ml disposable cup with 41 ml of Rubyak 812 (epoxy resin, manufactured by Nacalai Tesque), 31 ml of Rubyak MNA (hardener, manufactured by Nacalai Tesque), and 10 ml of Rubyak DDSA (hardener, manufactured by Nacalai Tesque) was added to a disposable cup and stirred for 10 minutes.
  • Lebeac DMP-30 (accelerator, manufactured by Nacalai Tesque Co., Ltd.) weighed with a disposable syringe was gradually dropped while stirring, and the mixture was further stirred for 10 minutes after the addition.
  • a bovine tooth sample was put in a plastic container containing an epoxy resin, and a curing reaction was performed at 45 ° C. for 1 day and at 60 ° C. for 2 days.
  • the polyethylene container and the precision low-speed cutting machine (BUEHLER, ISOMET 1000) were cut in a direction perpendicular to the demineralized surface to obtain a section having a thickness of about 1 mm including the cross section of the test portion.
  • a solution obtained by diluting a 0.5M EDTA solution (manufactured by Wako Pure Chemical Industries, Ltd.) five times on both surfaces of the bovine tooth disk is allowed to act on the dentin window for 180 seconds and then decalcified for about 30 seconds. Washed in distilled water. In addition, 10% sodium hypochlorite solution (Neo Cleaner “SEKINE”, Neo Pharmaceutical Co., Ltd.) was allowed to act for 120 seconds to clean, and then washed with distilled water for about 30 minutes to evaluate dentin permeation inhibition rate.
  • the bovine disc used was prepared.
  • Example 2 In Example 1, a dentin mineralizing agent was prepared in the same manner as in Example 1 except that anhydrous calcium hydrogen phosphate particles (C1) were not used and the balance was prepared with purified water. Measurement, morphological evaluation and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • C1 anhydrous calcium hydrogen phosphate particles
  • Example 3 In Example 1, except that it was prepared by adding disodium monohydrogen phosphate (B) particles to the liquid paste instead of preparing the powder paste, a dentin mineralizing agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 4 In Example 1, a dentin mineralizing agent was prepared in the same manner as in Example 1 except that the amount of disodium monohydrogen phosphate (B) was 0.5 parts by weight, and the remainder was prepared with purified water. Then, measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 5 In Example 1, instead of preparing 5 parts by weight of disodium monohydrogen phosphate (B) particles in the powder, 0.5 part by weight of disodium monohydrogen phosphate (B) particles was added to the liquid paste, and the balance A dentin mineralizing agent was prepared in the same manner as in Example 1 except that was prepared with purified water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 6 In Example 1, except that the amount of disodium monohydrogen phosphate (B) particles used was 25 parts by weight, and the remainder was prepared with purified water, a dentin mineralizing agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 7 In Example 1, instead of preparing 5 parts by weight of disodium monohydrogen phosphate (B) particles in the powder, 25 parts by weight of disodium monohydrogen phosphate (B) particles were added to the liquid paste, and the remainder was purified.
  • a dentin mineralizing agent was prepared in the same manner as in Example 1 except that it was prepared with water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 8 In Example 1, a dentin mineralizing agent was prepared in the same manner as in Example 1, except that the amount of disodium monohydrogen phosphate (B) particles used was 2.5 parts by weight and the remainder was prepared with purified water. Then, measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 9 In Example 1, except that the amount of disodium monohydrogen phosphate (B) particles used was 12 parts by weight and the remainder was prepared with purified water, a dentin calcification agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 10 In Example 1, except that the amount of disodium monohydrogen phosphate (B) particles used was 18 parts by weight and the remainder was prepared with purified water, a dentin calcifying agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 11 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 73.5 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 14 parts by weight, and anhydrous calcium hydrogen phosphate particles ( C1), except that glycerin, propylene glycol, xylitol, polyethylene glycol and silica particles (E) were not used, and the remainder was prepared with purified water, and a dentin mineralizing agent was prepared in the same manner as in Example 1 to obtain an alkali metal Measurement of ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 12 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 49 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 9.3 parts by weight, and anhydrous calcium hydrogen phosphate particles ( C1), except that glycerin, propylene glycol, xylitol, polyethylene glycol and silica particles (E) were not used, and the remainder was prepared with purified water, and a dentin mineralizing agent was prepared in the same manner as in Example 1 to obtain an alkali metal Measurement of ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 13 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 2.62 parts by weight, the amount of anhydrous calcium monohydrogen phosphate particles (C1) used was 0.98 parts by weight, and disodium monohydrogen phosphate. (B) Instead of preparing by adding 5 parts by weight of particles to the powder, Example, except that 0.5 parts by weight of disodium monohydrogen phosphate (B) particles were added to the liquid paste and the remainder was prepared with purified water.
  • the dentin mineralizing agent was prepared in the same manner as in No. 1, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 14 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 2.62 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 0.5 parts by weight, and anhydrous calcium hydrogen phosphate phosphate.
  • a dentin mineralizing agent was prepared in the same manner as in Example 1 except that the amount of the particles (C1) used was 0.98 parts by weight, and the balance was prepared with purified water. Measurement of alkali metal ion concentration, morphology Evaluation and dentin permeation inhibition rate evaluation. The composition of the used dentin mineralizing agent is summarized in Table 1, and the obtained evaluation results are summarized in Table 4.
  • Example 15 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 5.24 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 1 part by weight, and anhydrous calcium hydrogen phosphate particles ( A dentin calcification agent was prepared in the same manner as in Example 1 except that the amount of C1) used was 1.96 parts by weight, and the remainder was prepared with purified water, and the alkali metal ion concentration was measured and morphologically evaluated. And dentin permeation suppression rate evaluation was performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 16 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 13.1 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 2.5 parts by weight, and anhydrous calcium hydrogen phosphate phosphate A dentin calcification agent was prepared in the same manner as in Example 1 except that the amount of the particles (C1) used was 4.9 parts by weight, and the remainder was prepared with purified water. Measurement of alkali metal ion concentration, morphology Evaluation and dentin permeation inhibition rate evaluation. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 17 In Example 1, instead of using 5 parts by weight of disodium monohydrogen phosphate (B) particles, 5 parts by weight of monosodium dihydrogen phosphate (B) particles were used. A calcifying agent was prepared, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 18 In Example 1, instead of preparing 5 parts by weight of disodium monohydrogen phosphate (B) particles in the powder, 5 parts by weight of sodium dihydrogen phosphate (B) particles were added to the liquid paste, and the remainder was purified.
  • a dentin mineralizing agent was prepared in the same manner as in Example 1 except that it was prepared with water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 19 In Example 1, a dentin mineralizing agent was prepared in the same manner as in Example 1 except that sodium fluoride (D) particles were not used and the remaining part was prepared with purified water, and the alkali metal ion concentration was measured. And dentin permeation inhibition rate were evaluated.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 20 In Example 1, instead of using 9.8 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1), 12.3 parts of calcium monohydrogen phosphate dihydrate particles (C) (average particle size 1.2 ⁇ m) were used. A dentin calcification agent was prepared in the same manner as in Example 1 except that parts by weight were used and the remainder was prepared with purified water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. It was. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • the calcium monohydrogen phosphate dihydrate particles (C) (average particle size 1.2 ⁇ m) are commercially available calcium monohydrogen phosphate dihydrate particles (Wako Pure Chemical Industries, Ltd., average particles). It was obtained by preparing in the same manner as the method for preparing anhydrous calcium hydrogen phosphate phosphate particles (C1) in Example 1.
  • Example 21 In Example 1, 16.7 parts by weight of anhydrous calcium dihydrogen phosphate particles (C) (average particle size 1.1 ⁇ m) was used instead of 9.8 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1).
  • a dentin mineralizing agent was prepared in the same manner as in Example 1 except that the remainder was prepared with purified water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • anhydrous calcium dihydrogen phosphate particles (C) (average particle size 1.1 ⁇ m)
  • commercially available anhydrous calcium dihydrogen phosphate particles (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 18 ⁇ m) are used. It was obtained by preparing in the same manner as the method for preparing anhydrous calcium monohydrogen phosphate particles (C1) in Example 1.
  • Example 22 In Example 1, instead of using 9.8 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1), 15.4 parts by weight of acidic calcium pyrophosphate particles (C) (average particle size: 1.0 ⁇ m) was used, and the remainder was used.
  • a dentin calcification agent was prepared in the same manner as in Example 1 except that it was prepared with purified water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 1 As the acidic calcium pyrophosphate particles (C) (average particle size 1.0 ⁇ m), commercially available acidic calcium pyrophosphate particles (produced by Taihei Chemical Sangyo Co., Ltd., average particle size 13 ⁇ m) were used, and anhydrous phosphoric acid in Example 1 was used. It was obtained by preparing in the same manner as the method for preparing calcium monohydrogen particles (C1).
  • Example 23 In Example 1, the amount of tetracalcium phosphate particles (A1) used was 18.4 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 3.5 parts by weight, and the remainder was prepared with purified water. Except for the above, a dentin mineralizing agent was prepared in the same manner as in Example 1, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 24 In Example 1, instead of preparing the powder and liquid paste, 26.2 parts by weight of tetracalcium phosphate particles (A1), 0.21 parts by weight of sodium fluoride (D) particles, 0.5 parts of silica particles (E) Non-aqueous paste prepared using parts by weight, 18.09 parts by weight of glycerin and 5 parts by weight of propylene glycol, 5 parts by weight of disodium monohydrogen phosphate (B) particles, anhydrous calcium monohydrogen phosphate particles (C1) 9 8 parts by weight, 5 parts by weight of xylitol, 3 parts by weight of polyethylene glycol, 0.05 parts by weight of cetylpyridinium chloride monohydrate, 3.5 parts by weight of silica particles (E) and the rest of the aqueous paste prepared with purified water Were mixed to prepare a dentin mineralizing agent, and morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is summarized in Table 3,
  • Example 1 a dentin calcifying agent was prepared in the same manner as in Example 1 except that the amount of disodium monohydrogen phosphate (B) particles was 0.2 parts by weight and the remainder was prepared with purified water. Then, measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 2 In Example 1, instead of preparing 5 parts by weight of disodium monohydrogen phosphate (B) particles in the powder, 0.2 part by weight of disodium monohydrogen phosphate (B) particles was added to the liquid paste, and the balance A dentin mineralizing agent was prepared in the same manner as in Example 1 except that was prepared with purified water, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 3 In Example 1, except that the amount of disodium monohydrogen phosphate (B) particles used was 27 parts by weight and the remainder was prepared with purified water, a dentin mineralizing agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 4 the amount of tetracalcium phosphate particles (A1) used was 81.3 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 15.5 parts by weight, and anhydrous calcium hydrogen phosphate phosphate was used.
  • particles (C1), glycerin, propylene glycol, xylitol, polyethylene glycol and silica particles (E) the remainder was prepared with purified water, and a dentin mineralizing agent was prepared in the same manner as in Example 1, Measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 1 the amount of tetracalcium phosphate particles (A1) used was 0.87 parts by weight, the amount of disodium monohydrogen phosphate (B) particles used was 0.17 parts by weight, and anhydrous calcium hydrogen phosphate phosphate
  • a dentin mineralizing agent was prepared in the same manner as in Example 1 except that the amount of the particles (C1) used was 0.33 parts by weight, and the remainder was prepared with purified water, and the alkali metal ion concentration was measured and morphology Evaluation and dentin permeation inhibition rate evaluation.
  • the composition of the used dentin mineralizing agent is shown in Table 2, and the obtained evaluation results are shown in Table 4.
  • Example 25 [Preparation of dentin hypersensitivity inhibitor] (1) Preparation of Tetracalcium Phosphate Particles (A) Tetracalcium phosphate particles (A4) (average particle size 5.2 ⁇ m) used in this example grind crude tetracalcium phosphate prepared as follows. Was obtained. Commercially available anhydrous calcium monohydrogen phosphate particles (Product No. 1430, JTBaker Chemical Co., NJ) and calcium carbonate (Product No. 1288, JTBaker Chemical Co., NJ) are added to water to make an equimolar amount.
  • the cake-like equimolar mixture obtained by filtration and drying was heated in an electric furnace (FUS732PB, Advantech Toyo Co., Ltd.) at 1500 ° C. for 24 hours, and then cooled to room temperature in a desiccator.
  • the tetracalcium phosphate lump was prepared. Further, the mixture was roughly crushed in a mortar and then sieved to remove fine powder and tetracalcium phosphate lump, and the particle size was adjusted to a range of 0.5 to 1 mm to obtain crude tetracalcium phosphate.
  • Ethanol, Dehydrated (99.5) manufactured by Wako Pure Chemical Industries, Ltd.
  • HD-B-104 Pot Mill manufactured by Nikkato Co., Ltd.
  • tetracalcium phosphate particles (A2) having an average particle size of 35.6 ⁇ m were obtained.
  • tetracalcium phosphate particles (A3) having an average particle diameter of 20.3 ⁇ m were obtained by setting the pulverization time for preparing the tetracalcium phosphate particles (A4) to 4 hours.
  • tetracalcium phosphate particles (A5) having an average particle diameter of 1.5 ⁇ m were obtained by setting the pulverization time for preparing the tetracalcium phosphate particles (A4) to 24 hours.
  • Disodium monohydrogen phosphate (B) particles (average particle size 1.7 ⁇ m) used in this example are commercially available disodium monohydrogen phosphate particles (Wako Pure Chemical Industries, Ltd.) 50 g, 95% ethanol (Wako Pure Chemical Industries, Ltd.
  • Anhydrous calcium monohydrogen phosphate particles (C1) (average particle size 1.1 ⁇ m) used in this example are commercially available anhydrous calcium monohydrogen phosphate particles (Product No.
  • the average value (d) of the sodium ion concentration of the powder in Example 25 is 7.7 mg / L, and the numerical value ( ⁇ / d) obtained by dividing the standard deviation ( ⁇ ) of the sodium ion concentration by (d) is 0.04. Met.
  • the obtained results are summarized in Table 5.
  • This bovine tooth disk was immersed in a solution obtained by diluting a 0.5M EDTA solution (manufactured by Wako Pure Chemical Industries, Ltd.) five times for 180 seconds and washed in distilled water for about 30 seconds. Further, bovine teeth used for evaluation of dentin permeation inhibition rate by immersing a 10% sodium hypochlorite solution (Neo Cleaner “SEKINE”, Neo Pharmaceutical Co., Ltd.) for 120 seconds and washing with distilled water for about 30 minutes. Discs were prepared.
  • a solution obtained by diluting a 0.5 M EDTA solution (manufactured by Wako Pure Chemical Industries, Ltd.) five times with respect to the bovine teeth was allowed to act on the dentin window for 30 seconds, followed by washing with water for 30 minutes or more. Furthermore, 10% sodium hypochlorite solution (Neo Cleaner “SEKINE”, Neo Pharmaceutical Co., Ltd.) is allowed to act for 2 minutes to clean, and then washed for about 30 minutes or more to be used for calcification (dentinal tubule sealing) evaluation.
  • Bovine teeth were prepared. After the tooth surface treatment, half of the teeth in the longitudinal axis direction were masked with nail polish and the untreated state was maintained.
  • Example 26 In Example 25, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that it was prepared by adding disodium monohydrogen phosphate (B) particles to the liquid paste instead of preparing the powder. Then, measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 27 the dentin hypersensitivity inhibitor was used in the same manner as in Example 25 except that the amount of disodium monohydrogen phosphate (B) used was 0.15 parts by weight and the remainder was prepared with purified water. The alkali metal ion concentration was measured, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 28 In Example 25, a dentin hypersensitivity inhibitor was used in the same manner as in Example 25 except that the amount of disodium monohydrogen phosphate (B) particles was 0.3 parts by weight and the remainder was prepared with purified water. The alkali metal ion concentration was measured, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 29 In Example 25, a dentin hypersensitivity inhibitor was used in the same manner as in Example 25 except that the amount of disodium monohydrogen phosphate (B) particles was 2.5 parts by weight and the remainder was prepared with purified water. The alkali metal ion concentration was measured, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 30 In Example 25, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of disodium monohydrogen phosphate (B) was 20 parts by weight and the remaining part was prepared with purified water. Then, measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 31 In Example 25, the amount of tetracalcium phosphate particles (A4) used was 21.9 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 21 parts by weight, and anhydrous calcium hydrogen phosphate particles ( A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of C1) used was 8.1 parts by weight, and the remainder was prepared with purified water. Measurement of alkali metal ion concentration, morphological Evaluation and dentin permeation suppression rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 32 In Example 25, the amount of tetracalcium phosphate particles (A4) used was 21.9 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 27 parts by weight, and anhydrous calcium hydrogen phosphate particles ( A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of C1) used was 8.1 parts by weight, and the remainder was prepared with purified water. Measurement of alkali metal ion concentration, morphological Evaluation and dentin permeation suppression rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 33 In Example 25, the amount of tetracalcium phosphate particles (A4) used was 5.5 parts by weight, the amount of disodium monohydrogen phosphate (B) particles was 0.75 parts by weight, and anhydrous calcium hydrogen phosphate phosphate A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of the particles (C1) used was 2 parts by weight and the remainder was prepared with purified water, and the alkali metal ion concentration was measured. Evaluation and dentin permeation suppression rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 34 the amount of tetracalcium phosphate particles (A4) used was 7.5 parts by weight, the amount of disodium monohydrogen phosphate (B) particles used was 1.03 parts by weight, and anhydrous calcium hydrogen phosphate phosphate A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of the particles (C1) used was 2.8 parts by weight and the remainder was prepared with purified water. And dentin permeation inhibition rate were evaluated.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 35 In Example 25, the amount of tetracalcium phosphate particles (A4) used was 15 parts by weight, the amount of disodium monohydrogen phosphate (B) particles used was 2.06 parts by weight, and anhydrous calcium hydrogen phosphate particles (A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of C1) used was 5.6 parts by weight, and the remainder was prepared with purified water. Measurement of alkali metal ion concentration, morphological Evaluation and dentin permeation suppression rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 36 In Example 25, the amount of tetracalcium phosphate particles (A4) used was 50 parts by weight, the amount of disodium monohydrogen phosphate (B) particles used was 6.86 parts by weight, and anhydrous calcium hydrogen phosphate particles (A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that the amount of C1) used was 18.6 parts by weight and the remainder was prepared with purified water, and the alkali metal ion concentration was measured. Evaluation and dentin permeation suppression rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • Example 37 In Example 25, the amount of disodium monohydrogen phosphate (B) used was 5.58 parts by weight, the amount of anhydrous calcium monohydrogen phosphate particles (C1) used was 19.3 parts by weight, and the remainder was purified. Except having prepared with water, the dentin hypersensitivity inhibitor was prepared like Example 25, and the alkali metal ion density
  • Example 38 In Example 25, instead of using 5.36 parts by weight of disodium monohydrogen phosphate (B) particles and 13.5 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1), monohydrogen phosphate A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that 17.1 parts by weight of calcium dihydrate particles (C) (average particle size 1.2 ⁇ m) was used and the remainder was prepared with purified water. Then, measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • the calcium monohydrogen phosphate dihydrate particles (C) (average particle size 1.2 ⁇ m) are commercially available calcium monohydrogen phosphate dihydrate particles (Wako Pure Chemical Industries, Ltd., average particles). It was obtained by preparing in the same manner as the method for preparing anhydrous calcium monohydrogen phosphate particles (C1) in Example 25.
  • Example 39 In Example 25, instead of using 5.98 parts by weight of disodium monohydrogen phosphate (B) particles and 13.5 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1), dibasic phosphate dibasic acid was used.
  • a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that 23.3 parts by weight of calcium hydrogen particles (C) (average particle size 1.1 ⁇ m) was used and the balance was prepared with purified water. Measurement of metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 5, and the obtained evaluation results are summarized in Table 7.
  • anhydrous calcium dihydrogen phosphate particles (C) (average particle size 1.1 ⁇ m)
  • commercially available anhydrous calcium dihydrogen phosphate particles (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 18 ⁇ m) are used. It was obtained by preparing in the same manner as the method for preparing anhydrous calcium monohydrogen phosphate particles (C1) in Example 25.
  • Example 40 In Example 25, instead of using 6.74 parts by weight of disodium monohydrogen phosphate (B) particles and 13.5 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1), tricalcium phosphate A dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that 30.9 parts by weight of the particles (C) (average particle diameter of 3.2 ⁇ m) was used and the balance was prepared with purified water. Concentration measurement, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 41 In Example 25, instead of using 5 parts by weight of disodium monohydrogen phosphate (B) particles, 5 parts by weight of monosodium dihydrogen phosphate (B) particles were used. A quality perception hypersensitivity inhibitor was prepared, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 42 In Example 25, instead of preparing by adding 5 parts by weight of disodium monohydrogen phosphate (B) particles to the powder, it was prepared by adding 5 parts by weight of sodium dihydrogen phosphate (B) particles to the liquid paste. Prepared a dentin hypersensitivity inhibitor in the same manner as in Example 25, and measured alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 43 In Example 25, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that sodium fluoride (D) particles were not used and the remainder was prepared with purified water, and the alkali metal ion concentration was measured. Morphological evaluation and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 44 In Example 25, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that silica particles (E) were not used in the liquid paste and the remainder was prepared with purified water, and the alkali metal ion concentration was measured. Then, morphological evaluation and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 45 In Example 25, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that 2 parts by weight of silica particles (E) were added to the powder instead of adding to the liquid paste. Measurement, morphological evaluation and dentin permeation inhibition rate evaluation. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 46 In Example 25, instead of adding 36.5 parts by weight of tetracalcium phosphate particles (A4) having an average particle diameter of 5.2 ⁇ m, 36.5 weight parts of tetracalcium phosphate particles (A2) having an average particle diameter of 35.6 ⁇ m were added. Except for preparing part, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 47 In Example 25, instead of adding 36.5 parts by weight of tetracalcium phosphate particles (A4) having an average particle diameter of 5.2 ⁇ m, 36.5 weight parts of tetracalcium phosphate particles (A3) having an average particle diameter of 20.3 ⁇ m were added. Except for preparing part, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 48 In Example 25, instead of adding 36.5 parts by weight of tetracalcium phosphate particles (A4) having an average particle diameter of 5.2 ⁇ m, 36.5 weight parts of tetracalcium phosphate particles (A5) having an average particle diameter of 1.5 ⁇ m were added. Except for preparing part, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 49 In Example 25, instead of preparing the powder and liquid paste, 36.5 parts by weight of tetracalcium phosphate particles (A4), 0.21 parts by weight of sodium fluoride (D) particles, 2 parts by weight of silica particles (E) , Non-aqueous paste prepared using 6.29 parts by weight of glycerin and 5 parts by weight of propylene glycol, 5 parts by weight of disodium monohydrogen phosphate (B) particles, and anhydrous calcium monohydrogen phosphate particles (C1) 13.5 Part by weight, 5 parts by weight of xylitol, 3 parts by weight of polyethylene glycol, 0.05 part by weight of cetylpyridinium chloride monohydrate, 2 parts by weight of silica particles (E) and the aqueous paste prepared with purified water are mixed.
  • a dentin hypersensitivity inhibitor was prepared and measured for alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 3, and the obtained evaluation results are summarized in Table 7.
  • Example 50 In Example 25, the same amount of tetracalcium phosphate particles (A4), disodium monohydrogen phosphate (B) particles, and anhydrous monohydrogen phosphate were used instead of Method 1 in which the powder was prepared using a high-speed rotary mill. Calcium particles (C1) and sodium fluoride (D) particles are added together with 200 g of 10 mm zirconia balls into a 400 ml alumina grinding pot (“Type A-3 HD pot mill” manufactured by Nikkato Co., Ltd.) and 30 rpm at a rotation speed of 200 rpm. Powder was obtained by mixing for minutes. The method for preparing the powder obtained by mixing in this manner was designated as “Method 2”.
  • a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and alkali metal ion concentration measurement, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 51 In Example 25, the same amount of tetracalcium phosphate particles (A4), monosodium monohydrogen phosphate (B) particles, and anhydrous monohydrogen phosphate were used instead of Method 1 in which the powder was prepared using a high-speed rotary mill. Calcium particles (C1) and sodium fluoride (D) particles are added to a reiki machine (automatic mortar, “ANM-200” manufactured by ASONE Co., Ltd.), and the mortar is mixed at 6 rpm and the pestle at 100 rpm for 5 hours. A powder for dentin hypersensitivity inhibitor was obtained. The method for preparing the powder obtained by mixing in this manner was designated as “Method 3”.
  • a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 52 In Example 25, the same amount of tetracalcium phosphate particles (A4), monosodium monohydrogen phosphate (B) particles, and anhydrous monohydrogen phosphate were used instead of Method 1 in which the powder was prepared using a high-speed rotary mill. Calcium particles (C1) and sodium fluoride (D) particles were added to a 400 ml alumina grinding pot (“Type A-3 HD Pot Mill” manufactured by Nikkato Co., Ltd.) without adding zirconia balls, and 30 rpm at a rotational speed of 1500 rpm. The powder for dentin hypersensitivity inhibitor was obtained by mixing for minutes. The method for preparing the powder obtained by mixing in this manner was designated as “Method 4”.
  • a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and alkali metal ion concentration measurement, morphological evaluation, and dentin permeation inhibition rate evaluation were performed.
  • the composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 53 In Example 25, instead of adding 13.5 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1) having an average particle diameter of 1.1 ⁇ m, anhydrous calcium hydrogen phosphate particles (C2) having an average particle diameter of 10.2 ⁇ m were added. Except for the addition of 13.5 parts by weight, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation and dentin permeation inhibition rate evaluation were performed. . The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 54 In Example 25, instead of adding 13.5 parts by weight of anhydrous calcium monohydrogen phosphate particles (C1) having an average particle diameter of 1.1 ⁇ m, anhydrous calcium hydrogen phosphate particles (C3) having an average particle diameter of 17.1 ⁇ m were added. Except for the addition of 13.5 parts by weight, a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25, and measurement of alkali metal ion concentration, morphological evaluation, and dentin permeation inhibition rate evaluation were performed. . The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.
  • Example 25 a dentin hypersensitivity inhibitor was prepared in the same manner as in Example 25 except that disodium monohydrogen phosphate (B) particles were not used and the remainder was prepared with purified water. Measurement, morphological evaluation and dentin permeation inhibition rate evaluation. The composition of the used dentin hypersensitivity inhibitor is summarized in Table 6, and the obtained evaluation results are summarized in Table 7.

Abstract

 リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有する象牙質石灰化剤であって、該象牙質石灰化剤の全量100重量部に対してリン酸四カルシウム粒子(A)を1~80重量部含み、かつリン酸四カルシウム粒子(A)100重量部に対するリン酸のアルカリ金属塩(B)の配合量が1~100重量部であることを特徴とする。これにより、象牙質表面に緻密なHAp層が形成されるとともに、象牙細管の深部にまでHApが析出して象牙細管を封鎖することが可能な象牙質石灰化剤が提供される。

Description

象牙質石灰化剤及びその製造方法
 本発明は、象牙質表面ならびに深部象牙細管を石灰化させる象牙質石灰化剤に関する。
 80歳になっても20本以上自分の歯を保とうとする、いわゆる8020運動(口腔衛生の向上、歯質の保存(MI:Minimal Intervention)に伴い、高齢者に多くの歯が残る率が飛躍的に高まった。しかしながら、これに伴い新たな歯科疾患(歯の磨耗、歯周病による歯槽骨喪失等)による象牙質露出の問題が発生している。露出象牙質は、エナメル質と異なり象牙質を構成する組織のミネラル濃度が低いため、耐う蝕性が良好ではなく、また、象牙細管が口腔内の酸による作用で開孔して知覚過敏症が発病するなどの原因となる。これを改善する方法として、ポリマー系の材料を被覆する方法や、2種類の材料を交互に塗布して無機塩を析出させ、物理的な障壁を形成させることにより象牙細管を封鎖させる方法が知られている。しかしながら、これらの方法では象牙細管開口部付近の浅い部分や表面が覆われるのみであり、歯ブラシ等で磨耗されることにより容易に破壊されてしまう問題があった。また、生体親和性の高い材料とは言え、材料の塗布によりプラークが付着して炎症・根面う蝕の原因となる問題もあった。
 一方、硬化性を有するリン酸カルシウム組成物として、リン酸四カルシウム(以下「TTCP」と略記することがある)と無水リン酸一水素カルシウム(以下「DCPA」と略記することがある)とを組み合わせたリン酸カルシウムセメント(以下「CPC」と略記することがある)が知られており、生体内や口腔内において生体吸収性のヒドロキシアパタイト(以下「HAp」と略記することがある;Ca10(PO(OH))へ徐々に転化し、さらに形態を保ったままで生体硬組織と一体化し得るとされている。
 例えば、特許第3017536号公報(特許文献1)には、リン酸四カルシウムとリン酸水素カルシウム無水物を含むリン酸カルシウム組成物が水の存在下で反応してヒドロキシアパタイトを生成することが記載されている。こうして得られたヒドロキシアパタイトは、生体硬組織と接触することによって骨へと徐々に置換することが可能であり、また、上記リン酸カルシウム組成物は再石灰化能を有するため、再石灰化剤としても使用できるとされている。一方、上記リン酸カルシウム組成物を迅速に硬化させる目的で、リン酸一水素二ナトリウム(NaHPO)等のリン酸のアルカリ金属塩を加えることが記載されている。しかしながら、石灰化の効果を向上させる目的でリン酸のアルカリ金属塩を添加することについては記載も示唆もされていなかった。
 また、特開平1-163127号公報(特許文献2)には、リン酸四カルシウム、Ca/Pモル比が1.67未満のリン酸カルシウム、及び増粘剤よりなる知覚過敏症治癒用組成物について記載されている。これによれば、歯牙の知覚過敏部位へ塗布して所定時間保持することにより、知覚過敏を著しく軽減させることができるとされている。知覚過敏が著しく低減する理由として、該組成物の水等との練和物中から溶出したカルシウムイオンやリン酸イオンが象牙細管へ拡散浸透して、この象牙細管中でヒドロキシアパタイトが析出沈積することにより外界からの機械的刺激、熱刺激、及び化学的刺激を遮断するためとされている。一方、上記知覚過敏症治癒用組成物に、水との練和性やペースト粘度の調節のために、ヒドロキシアパタイト、フッ化カルシウム、酸化チタン、水酸化カルシウム、リン酸ナトリウム、リン酸アンモニウム、アルミナ、シリカ等の他の成分を添加してもよいことが記載されている。しかしながら、石灰化の効果を向上させる目的でリン酸のアルカリ金属塩を添加することについては記載も示唆もされていなかった。
特許第3017536号公報 特開平1-163127号公報
 本発明は上記課題を解決するためになされたものであり、象牙質表面に緻密なHAp層が形成されるとともに、象牙細管の深部にまでHApが析出して象牙細管を封鎖することができる象牙質石灰化剤を提供することを目的とするものである。
 上記課題は、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有する象牙質石灰化剤であって、該象牙質石灰化剤の全量100重量部に対してリン酸四カルシウム粒子(A)を1~80重量部含み、かつリン酸四カルシウム粒子(A)100重量部に対するリン酸のアルカリ金属塩(B)の配合量が1~100重量部であることを特徴とする象牙質石灰化剤を提供することによって解決される。
 このとき、リン酸のアルカリ金属塩(B)がリン酸一水素二ナトリウム及び/又はリン酸二水素一ナトリウムであることが好適であり、更に酸性リン酸カルシウム粒子(C)を含有することが好適である。酸性リン酸カルシウム粒子(C)が、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、リン酸三カルシウム[Ca(PO]粒子、非晶性リン酸カルシウム[Ca(PO・xHO]粒子、酸性ピロリン酸カルシウム[CaH]粒子、リン酸一水素カルシウム2水和物[CaHPO・2HO]粒子、及びリン酸二水素カルシウム1水和物[Ca(HPO・HO]粒子からなる群から選択される少なくとも1種であることが好適であり、リン酸四カルシウム粒子(A)と酸性リン酸カルシウム粒子(C)の配合割合(A/C)がモル比で40/60~60/40であることが好適である。更にフッ素化合物(D)を含有することが好適であり、フッ素化合物(D)がフッ化ナトリウムであることが好適である。リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであることが好適であり、リン酸のアルカリ金属塩(B)の平均粒径が0.5~20μmであることが好適である。酸性リン酸カルシウム粒子(C)の平均粒径が0.1~7μmであることが好適であり、更に平均粒径が0.002~2μmであるシリカ又は金属酸化物から選択される粒子(E)を含有することが好適である。
 また、このとき、該象牙質石灰化剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることが好適であり、遊離アルカリ金属イオン濃度の平均値をdとしたときの標準偏差σがσ≦0.3dを満たすことが好適であり、アルカリ金属イオンがナトリウムイオンであることが好適である。
 また、このとき、該象牙質石灰化剤で厚さ700μmの牛歯ディスクの片面を処置した際の象牙質透過抑制率が下記式(I)を満たすことが好適である。
 [1-(石灰化した牛歯ディスクの透過量)/(石灰化を行っていない牛歯ディスクの透過量)]×100≧70・・・(I)
 また、象牙質石灰化剤を含有する歯面処理材が本発明の好適な実施態様であり、象牙質石灰化剤を含有する歯磨材が本発明の好適な実施態様である。象牙質石灰化剤を含有するチューイングガムが本発明の好適な実施態様であり、象牙質石灰化剤からなる象牙質知覚過敏抑制剤が本発明の好適な実施態様である。
 また、象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤が更に酸性リン酸カルシウム粒子(C)を含み、リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、該象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部であり、象牙質表面にすり込むことにより象牙細管を封鎖させるために用いられるものであることを特徴とする象牙質知覚過敏抑制剤が本発明の好適な実施態様である。また、象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることを特徴とする象牙質知覚過敏抑制剤が本発明の好適な実施態様である。このとき、更に酸性リン酸カルシウム粒子(C)を含有することが好適である。
 また、上記課題は、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び水を主成分とする液体又は水系ペーストを混合する象牙質石灰化剤の製造方法であって、リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質石灰化剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を1~80重量部とすることを特徴とする象牙質石灰化剤の製造方法を提供することによって解決される。
 このとき、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体、又はリン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体を予め混合することが好適であり、前記混合の際に、ジェットミル、ライカイ機、ボールミル、高速回転ミル、遊星ミル、ハイブリダイザー、メカノフュージョン又は混合押出し機から選択される少なくとも1種を用いることが好適である。
 また、このとき、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストに、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストを加えて混合することが好適である。
 更に上記課題は、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、酸性リン酸カルシウム粒子(C)及び水を主成分とする液体又は水系ペーストを混合する象牙質知覚過敏抑制剤の製造方法であって、該象牙質知覚過敏抑制剤が象牙質表面にすり込むことにより象牙細管を封鎖するために用いられるものであり、リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を5~55重量部とすることを特徴とする象牙質知覚過敏抑制剤の製造方法を提供することによって解決される。
 このとき、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストに、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストを加えて混合することが好適である。
 上記課題は、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び水を主成分とする液体又は水系ペーストを混合する象牙質知覚過敏抑制剤の製造方法であって、リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を1~80重量部とし、該象牙質知覚過敏抑制剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度を0.2~100mg/Lとすることを特徴とする象牙質知覚過敏抑制剤の製造方法を提供することによって解決される。
 また、上記課題は、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含有する象牙質知覚過敏抑制剤を用いた象牙質知覚過敏抑制方法であって、リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、該象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部であり、かつリン酸四カルシウム粒子(A)100重量部に対するリン酸のアルカリ金属塩(B)の配合量が1~100重量部である象牙質知覚過敏抑制剤を象牙質表面にすり込むことを特徴とする象牙質知覚過敏抑制方法を提供することによって解決される。
 上記課題は、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットを提供することによって解決される。
 上記課題は、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットを提供することによって解決される。
 上記課題は、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストとからなる象牙質石灰化剤キットを提供することによって解決される。
 上記課題は、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットを提供することによって解決される。
 上記課題は、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キットを提供することによって解決される。
 また、上記課題は、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キットを提供することによっても解決される。
 本発明により、象牙質表面に緻密なHAp層が形成されるとともに、象牙細管の深部にまでHApが析出して象牙細管を封鎖することが可能な象牙質石灰化剤が提供される。このことにより、象牙質表面に疑似エナメル質が形成されて耐う蝕性を付与することができるとともに、知覚過敏症の治療が可能となる。
実施例1において、HAp層が形成された牛歯象牙質表面のSEM写真である。 実施例1において、象牙細管がHApで封鎖された牛歯象牙質表面と、象牙細管が露出された牛歯象牙質表面とを比較したSEM写真である。 実施例25において、象牙細管がHApで封鎖された牛歯象牙質表面と、象牙細管が露出された牛歯象牙質表面とを比較したSEM写真である。 実施例25において、象牙細管がHApで封鎖された牛歯象牙質断面のSEM写真である。
 本発明の象牙質石灰化剤は、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有するものである。リン酸四カルシウム粒子(A)を含む組成物を水の存在下で混合するとヒドロキシアパタイトへ徐々に転化する。本発明者らにより、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を一定量含有する象牙質石灰化剤を用いることにより、石灰化効果が高く、特に象牙細管の深部にまでヒドロキシアパタイトが析出して象牙細管を封鎖できることが明らかとなった。この理由については必ずしも明らかではないが、以下のようなメカニズムが推定される。
 すなわち、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を一定量含有する象牙質石灰化剤を水の存在下で調製して用いた際に、リン酸四カルシウム粒子(A)が溶解して得られるカルシウムイオンと、リン酸のアルカリ金属塩(B)が溶解して得られるリン酸イオンとが反応してエネルギー的に安定なHApが析出するようである。その結果、象牙質表面には緻密なHAp層が形成されるとともに、象牙細管の深部にまでHApが析出して象牙細管が封鎖されるようである。このことにより、象牙質表面に疑似エナメル質が形成されて耐う蝕性を付与(根面う蝕予防)することができるとともに、知覚過敏症の治療が可能となる。また、象牙細管の深部にまでHApが析出して象牙細管が封鎖されるため、見掛け上の象牙質ミネラル濃度が向上し耐摩耗性も良好となる。ここで本発明者らは、上記効果を奏するにはカルシウムイオンとリン酸イオンとが供給される速度のバランスが重要であると推察しており、また、カルシウムイオンを供給する化合物及びリン酸イオンを供給する化合物の溶解度が低い場合や極端に高い場合には、HApの析出が良好ではないことを確認している。したがって、リン酸四カルシウム粒子(A)とリン酸のアルカリ金属塩(B)を一定量含有することで、カルシウムイオンとリン酸イオンの象牙質への供給速度ならびに供給バランスが適切となる本発明の構成を採用する意義が大きい。
 本発明は、象牙質石灰化剤の全量100重量部に対してリン酸四カルシウム粒子(A)を1~80重量部含む。リン酸四カルシウム粒子(A)の含有量が1重量部未満の場合、HApの析出が阻害されて石灰化効果が得られないおそれがあり、5重量部以上であることが好ましく、10重量部以上であることがより好ましく、20重量部以上であることが更に好ましい。一方、リン酸四カルシウム粒子(A)の含有量が80重量部を超える場合、HApの析出が阻害されて石灰化効果が得られないおそれがあり、75重量部以下であることが好ましく、70重量部以下であることがより好ましく、60重量部以下であることが更に好ましい。
 ここで、本発明の象牙質石灰化剤を象牙質知覚過敏抑制剤として用いる場合、象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部であることが好ましい。リン酸四カルシウム粒子(A)の配合量が5重量部未満の場合、HApの析出が阻害されて象牙細管の封鎖性が低くなるおそれがあり、10重量部以上であることがより好ましく、20重量部以上であることが更に好ましい。一方、リン酸四カルシウム粒子(A)の配合量が55重量部を超える場合、HApの析出が阻害されて象牙細管の封鎖性が低くなるおそれがあり、50重量部以下であることがより好ましく、45重量部以下であることが更に好ましい。
 本発明で使用されるリン酸四カルシウム[Ca(POO]粒子(A)の製造方法は特に限定されない。市販されているリン酸四カルシウム粒子をそのまま用いてもよいし、適宜粉砕して粒径を整えて使用してもよい。粉砕方法としては、後に説明する酸性リン酸カルシウム粒子(C)の粉砕方法と同様の方法を採用できる。
 本発明で用いられるリン酸四カルシウム粒子(A)の平均粒径は、0.5~40μmであることが好ましい。平均粒径が0.5μm未満の場合、リン酸四カルシウム粒子(A)の溶解が過度になることにより水溶液中のpHが高くなりヒドロキシアパタイトの析出が円滑でなくなることで、石灰化効果が得られないおそれがある。リン酸四カルシウム粒子(A)の平均粒径は、より好適には5μm以上であり、更に好適には10μm以上である。一方、平均粒径が40μmを超える場合、液剤との混合により得られるペーストが十分な粘性を示さないなどペースト性状が好ましくないおそれがある。また、ペースト練和時のざらつき感が大きくなり操作性が損なわれる、あるいは練和に用いられるスタティックミキサーからのペーストの取り出しが困難となるおそれもある。リン酸四カルシウム粒子(A)の平均粒径は、35μm以下であることがより好ましく、30μm以下であることが更に好ましい。ここで、本発明で使用するリン酸四カルシウム粒子(A)の平均粒径とは、レーザー回折式粒度分布測定装置を用いて測定し、算出したものである。
 本発明の象牙質石灰化剤は、リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部含むものである。このように、リン酸四カルシウム粒子(A)に加えてリン酸のアルカリ金属塩(B)を一定量含有することにより、石灰化効果が高く、特に象牙細管の深部にまでヒドロキシアパタイトが析出する象牙質石灰化剤を提供することができる。リン酸のアルカリ金属塩(B)の含有量が1重量部未満の場合、HApの析出が阻害されて石灰化効果が得られないおそれがあり、2重量部以上であることが好ましく、5重量部以上であることがより好ましい。一方、リン酸のアルカリ金属塩(B)の含有量が100重量部を超える場合、HApの析出が阻害されて石灰化効果が得られないおそれがあり、98重量部以下であることが好ましく、95重量部以下であることがより好ましく、90重量部以下であることが更に好ましい。
 本発明で用いられるリン酸のアルカリ金属塩(B)としては特に限定されず、リン酸一水素二ナトリウム、リン酸一水素二カリウム、リン酸二水素一リチウム、リン酸二水素一ナトリウム、リン酸二水素一カリウム、リン酸三ナトリウム、リン酸三カリウム等が挙げられ、これらのうちの1種又は2種以上が用いられる。中でも、安全性や純度の高い原料が容易に入手できる観点から、リン酸のアルカリ金属塩(B)がリン酸一水素二ナトリウム及び/又はリン酸二水素一ナトリウムであることが好ましい。また、安全性の観点から、本発明で用いられるリン酸のアルカリ金属塩(B)におけるアルカリ金属イオンがナトリウムイオンであることが好ましい。
 本発明で用いられるリン酸のアルカリ金属塩(B)の平均粒径が0.5~20μmであることが好ましい。リン酸のアルカリ金属塩(B)の平均粒径が0.5μm未満の場合、凝集が顕著となることで液剤又は粉剤中に均一に分散させることが困難となることから、本発明の象牙質石灰化剤がヒドロキシアパタイトに転化した際に、当該ヒドロキシアパタイトに孔が生じてしまい、象牙質透過抑制率が低下してしまうおそれがあり、1μm以上であることがより好ましい。一方、リン酸のアルカリ金属塩(B)の平均粒径が20μmを超える場合、本発明の象牙質石灰化剤がヒドロキシアパタイトに転化した際に、当該ヒドロキシアパタイトに孔が生じてしまい、象牙質透過抑制率が低下してしまうおそれがある。特に、象牙細管において当該孔が生じてしまうと、知覚過敏を抑制することが困難となるおそれがある。また、象牙質表面にすり込んで象牙質知覚過敏を抑制する際に未溶解のリン酸のアルカリ金属塩(B)がペースト中に残存することでざらつき感が大きくなることで操作性が低下するだけでなく、象牙質を傷付けるおそれがあることから、リン酸のアルカリ金属塩(B)の平均粒径は15μm以下であることがより好ましく、10μm以下であることが更に好ましい。
 本発明の象牙質石灰化剤は、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)に加えて、更に酸性リン酸カルシウム粒子(C)を含有することが好ましい。このことにより、石灰化効果をより高めることが可能となる。本発明者らは、この理由について、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)に加えて溶解度の低い酸性リン酸カルシウム粒子(C)を含有することにより、ペースト塗布後にカルシウムイオンとリン酸イオンをより長時間供給できるだけでなく、供給バランスがより適切となるためと推察している。
 本発明で用いられる酸性リン酸カルシウム粒子(C)としては特に限定されず、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、リン酸三カルシウム[Ca(PO]粒子、非晶性リン酸カルシウム[Ca(PO・xHO]粒子、酸性ピロリン酸カルシウム[CaH]粒子、リン酸一水素カルシウム2水和物[CaHPO・2HO]粒子、及びリン酸二水素カルシウム1水和物[Ca(HPO・HO]粒子からなる群から選択される少なくとも1種であることが好ましい。これらの中でも、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、リン酸一水素カルシウム2水和物[CaHPO・2HO]粒子、及びリン酸二水素カルシウム1水和物[Ca(HPO・HO]粒子からなる群から選択される少なくとも1種がより好適に使用され、特に無水リン酸一水素カルシウム[CaHPO]粒子、及び無水リン酸二水素カルシウム[Ca(HPO]粒子からなる群から選択される少なくとも1種が更に好適に使用される。
 本発明で用いられる酸性リン酸カルシウム粒子(C)の平均粒径は、0.1~7μmであることが好ましい。平均粒径が0.1μm未満の場合、液剤への溶解が過多となるためカルシウムイオンとリン酸イオンの供給バランスが崩れるだけでなく、液剤との混合により得られるペーストの粘度が高くなり過ぎるおそれがあり、より好適には0.3μm以上である。一方、平均粒径が7μmを超える場合、酸性リン酸カルシウム粒子(C)が液剤へ溶解しにくくなるためリン酸四カルシウム粒子(A)の溶解が過度となるおそれがある。その結果、カルシウムイオンとリン酸イオンの供給バランスが崩れることに加え、水溶液のpHが高くなることでヒドロキシアパタイトの析出が円滑でなくなり、石灰化効果が低下するおそれがある。酸性リン酸カルシウム粒子(C)の平均粒径は、より好適には3μm以下である。酸性リン酸カルシウム粒子(C)の平均粒径は、上記リン酸四カルシウム粒子(A)の平均粒径と同様にして算出される。
 このような平均粒径を有する酸性リン酸カルシウム粒子(C)の製造方法は特に限定されず、市販品を入手できるのであればそれを使用してもよいが、市販品を更に粉砕することが好ましい場合が多い。その場合、ボールミル、ライカイ機、ジェットミルなどの粉砕装置を使用することができる。また、酸性リン酸カルシウム原料粉体をアルコールなどの液体の媒体と共にライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることにより酸性リン酸カルシウム粒子(C)を得ることもできる。このときの粉砕装置としては、ボールミルを用いることが好ましく、そのポット及びボールの材質としては、好適にはアルミナやジルコニアが採用される。
 ここで、酸性リン酸カルシウム粒子(C)の平均粒径に比べてリン酸四カルシウム粒子(A)の平均粒径を大きくすることによって、両者の溶解度のバランスが適切となり、水溶液のpHを中性付近に維持することが可能となる。その結果、ヒドロキシアパタイトの析出が円滑となり、石灰化効果を向上させることができる。具体的には(A)の平均粒径を(C)の平均粒径の2倍以上とすることがより好ましく、4倍以上とすることがさらに好ましく、7倍以上とすることが特に好ましい。一方、(A)の平均粒径を(C)の平均粒径の35倍以下とすることがより好ましく、30倍以下とすることが更に好ましく、25倍以下とすることが特に好ましい。
 リン酸四カルシウム粒子(A)と酸性リン酸カルシウム粒子(C)の配合割合(A/C)は特に限定されず、モル比で40/60~60/40の範囲となるような配合割合で使用されることが好ましい。このことにより、石灰化効果の高い本発明の象牙質石灰化剤を得ることができる。上記配合割合(A/C)は、より好適には45/55~55/45であり、実質的に50/50であることが最適である。
 本発明の象牙質石灰化剤は、更にフッ素化合物(D)を含有することが好ましい。このことにより、歯質に耐酸性を付与させるとともに石灰化を促進させることが可能となる。本発明で用いられるフッ素化合物(D)としては特に限定されず、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、フッ化リチウム、フッ化セシウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化ストロンチウム、フッ化バリウム、フッ化銅、フッ化ジルコニウム、フッ化アルミニウム、フッ化スズ、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、フッ化水素酸、フッ化チタンナトリウム、フッ化チタンカリウム、ヘキシルアミンハイドロフルオライド、ラウリルアミンハイドロフルオライド、グリシンハイドロフルオライド、アラニンハイドロフルオライド、フルオロシラン類、フッ化ジアミン銀等が挙げられる。中でも石灰化促進効果の観点からフッ化ナトリウム、モノフルオロリン酸ナトリウム、フッ化スズが好適に用いられる。フッ素化合物(D)の使用量は特に限定されず、象牙質石灰化剤の全量100重量部に対してフッ素化合物(D)の換算フッ化物イオンを0.01~3重量部含むことが好ましい。フッ素化合物(D)の換算フッ化物イオンの使用量が0.01重量部未満の場合、石灰化を促進する効果が低下するおそれがあり、0.05重量部以上であることがより好ましい。一方、フッ素化合物(D)の換算フッ化物イオンの使用量が3重量部を超える場合、安全性が損なわれるおそれがあり、1重量部以下であることがより好ましい。
 本発明の象牙質石灰化剤は、本発明の効果を阻害しない範囲でリン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、酸性リン酸カルシウム粒子(C)及びフッ素化合物(D)以外の成分を含有しても構わない。例えば、必要に応じて増粘剤を配合することができる。増粘剤の具体例としては、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリスチレンスルホン酸塩、ポリグルタミン酸、ポリグルタミン酸塩、ポリアスパラギン酸、ポリアスパラギン酸塩、ポリLリジン、ポリLリジン塩、セルロース以外のデンプン、アルギン酸、アルギン酸塩、カラジーナン、グアーガム、キタンサンガム、セルロースガム、ヒアルロン酸、ヒアルロン酸塩、ペクチン、ペクチン塩、キチン、キトサン等の多糖類、アルギン酸プロピレングリコールエステル等の酸性多糖類エステル、またコラーゲン、ゼラチン及びこれらの誘導体などのタンパク質類等の高分子などから選択される1つ又は2つ以上が挙げられるが、水への溶解性及び粘性の面からはカルボキシメチルセルロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、アルギン酸、アルギン酸塩、キトサン、ポリグルタミン酸、ポリグルタミン酸塩から選択される少なくとも1つが好ましい。増粘剤は、粉体に配合してもよいし液剤に配合してもよく、また混合中のペーストに配合してもよい。
 また、必要に応じてシリカ、金属酸化物等に代表される無機フィラー、グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール、キシリトール、ソルビトール、エリスリトール等の糖アルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル、アスパルテーム、アセスルファムカリウム、カンゾウ抽出液、サッカリン、サッカリンナトリウム等の人工甘味料などを加えてもよい。これらの中でも、本発明の象牙質石灰化剤は、無機フィラーを含有することが好ましく、平均粒径が0.002~2μmであるシリカ又は金属酸化物から選択される粒子(E)を含有することがより好ましく、平均粒径が0.002~2μmであるシリカ粒子(E)を含有することが更に好ましい。
 更に、薬理学的に許容できるあらゆる薬剤等を配合することができる。セチルピリジニウムクロリド等に代表される抗菌剤、消毒剤、抗癌剤、抗生物質、アクトシン、PEG1などの血行改善薬、bFGF、PDGF、BMPなどの増殖因子、骨芽細胞、象牙芽細胞、さらに未分化な骨髄由来幹細胞、胚性幹(ES)細胞、線維芽細胞等の分化細胞を遺伝子導入により脱分化・作製した人工多能性幹(iPS:induced Pluripotent Stem)細胞ならびにこれらを分化させた細胞など硬組織形成を促進させる細胞などを配合させることができる。
 本発明の象牙質石灰化剤は、該象牙質石灰化剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることが好ましい。前記遊離アルカリ金属イオン濃度がこのような範囲にあることで、象牙質透過抑制率の良好な象牙質石灰化剤が得られる利点を有する。前記遊離アルカリ金属イオン濃度が0.2mg/L未満の場合、アルカリ金属イオンと共に供給されるリン酸イオンが不足することからヒドロキシアパタイトへの転化が円滑でなくなり、象牙質透過抑制率の良好な象牙質石灰化剤が得られないおそれがあり、0.5mg/L以上であることがより好ましく、1mg/L以上であることが一層好ましい。一方、前記遊離アルカリ金属イオン濃度が100mg/Lを超える場合、アルカリ金属イオンと共に供給されるリン酸イオンが過多となることからヒドロキシアパタイトへの転化が円滑でなくなり、象牙質透過抑制率の良好な象牙質石灰化剤が得られないだけでなく、過剰のナトリウムイオンがヒドロキシアパタイトへの転化を阻害するおそれがあり、50mg/L以下であることがより好ましく、30mg/L以下であることが一層好ましい。遊離アルカリ金属イオンの測定方法は任意の方法を選択できる。懸濁液の上清を採取し、ICP発光分光分析装置あるいはイオンクロマトグラフィーにより測定を行うことも可能であるし、懸濁液中にアルカリ金属イオン濃度に応答する電極を直接浸漬する測定方法を用いても良い。
 また、本発明の象牙質石灰化剤は、前記遊離アルカリ金属イオン濃度の平均値をdとしたときの標準偏差σがσ≦0.3dを満たすこと、すなわち、標準偏差σを前記遊離アルカリ金属イオン濃度の平均値dで割った値(σ/d)が0.3以下であることが好ましい。このことにより、リン酸のアルカリ金属塩(B)の均一性が良好となり、更に象牙質透過抑制率の良好な象牙質石灰化剤が得られる利点を有する。特に、象牙細管の封鎖性が良好となるため、知覚過敏を抑制する効果が高くなる利点を有する。この理由については必ずしも明らかではないが、以下のようなメカニズムが推定される。すなわち、リン酸のアルカリ金属塩(B)の均一性が良好でない場合、リン酸のアルカリ金属塩(B)が凝集しており、該凝集したリン酸のアルカリ金属塩(B)が水の存在下で調製した象牙質石灰化剤とともに象牙細管内に取り込まれるようである。凝集したリン酸のアルカリ金属塩(B)は、本発明の象牙質石灰化剤がHApに転化した際に溶解し、当該HApに孔を生じさせてしまい、象牙質透過抑制率が低下すると考えられる。
 また、本発明の象牙質石灰化剤は、該象牙質石灰化剤で厚さ700μmの牛歯ディスクの片面を処置した際の象牙質透過抑制率が下記式(I)を満たすことが好ましい。下記式(I)を満たす本発明の象牙質石灰化剤は、象牙細管の深部にまでHApが析出して象牙細管が封鎖されるため、象牙質表面に疑似エナメル質が形成されて耐う蝕性を付与することができるとともに、知覚過敏症の治療が可能となる利点を有する。
 [1-(石灰化した牛歯ディスクの透過量)/(石灰化を行っていない牛歯ディスクの透過量)]×100≧70・・・(I)
 本発明では、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含有する粉体と、水を主成分とする液体又は水系ペーストとを混合することにより、ペースト状の象牙質石灰化剤を得ることができる。水を含むこのペースト状の象牙質石灰化剤は、直ちにHApに転化する反応が起こり始めるため、医療現場で使用する直前に混合して調製することが好ましい。混合操作としては特に限定されず、手混合、スタティックミキサーを用いた混合等が好ましく採用される。ここで、本発明者らはリン酸のアルカリ金属塩(B)の含有量が適切な範囲にあると石灰化効果が高いことを確認している。しかしながら、リン酸のアルカリ金属塩(B)の水に対する溶解度がそれ程高くないため、リン酸のアルカリ金属塩(B)を粉体で加える上記混合方法が好ましく採用される。
 こうして得られた象牙質石灰化剤は、象牙質表面に塗布等することにより好適に使用される。ここで、水を主成分とする液体とは、純水であっても、水を主成分とし他の成分を含有する液体であってもよく、また、水を主成分とする水系ペーストとは、水を主成分とし他の成分を含有するペースト状の液体を示す。他の成分としては特に限定されず、上述の酸性リン酸カルシウム粒子(C)、グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール、キシリトール、ソルビトール、エリスリトール等の糖アルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルなどが例示される。他の成分として酸性リン酸カルシウム粒子(C)を含む場合、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストに、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストを加えて混合する方法も好ましく採用される。
 また、本発明では、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストに、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストを加えて混合することによってもペースト状の象牙質石灰化剤を得ることができる。ここで、水の存在下ではリン酸四カルシウム粒子(A)が溶解して徐々にHApに転化する反応が起こるため、水を主成分とする液体又は水系ペーストとリン酸四カルシウム粒子(A)とを予め混合して保存しておくことができない。したがって、リン酸四カルシウム粒子(A)を含む粉体又は水以外の他の溶媒を主成分とする非水系ペーストと、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストとを混合する方法が好適に採用され、使用直前に混合して調製する際の操作が簡便である利点も有する。また、非水系ペーストに使用される水以外の溶媒としては特に限定されず、例えば、グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルなどが例示される。
 また、本発明において、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体、又はリン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体を予め混合することが好ましい。このことにより、象牙細管の封鎖性が良好となるため、知覚過敏を抑制する効果が高くなる利点を有する。したがって、後述するように、本発明の象牙質石灰化剤は、象牙質知覚過敏抑制剤として好適に用いられる。ここで、前記混合の際には、ジェットミル、ライカイ機、ボールミル、高速回転ミル、遊星ミル、ハイブリダイザー、メカノフュージョン又は混合押出し機から選択される少なくとも1種を用いることが好ましい。象牙細管の封鎖性をより高める観点から、ボールミル、ライカイ機、高速回転ミル、ジェットミルから選択される少なくとも1種を用いることが好ましい。
 本発明の象牙質石灰化剤は、歯面処理材、歯磨材、又はチューイングガムの各種用途に好ましく用いられる。水の存在下ではリン酸四カルシウム粒子(A)が溶解して徐々にHApに転化する反応が起こるため、歯磨材やチューイングガムなどのように使用時に適宜水分が供給されるような態様であってもよいし、歯面処理材などのように使用直前に液剤と適宜混合するような態様であってもよい。また、本発明の象牙質石灰化剤は、上記説明したように象牙細管の深部にまでHApが析出して象牙細管を封鎖することが可能であり、かかる観点から、象牙質石灰化剤からなる象牙質知覚過敏抑制剤が本発明の好適な実施態様である。
 ここで、本発明者らにより、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有する象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤が更に酸性リン酸カルシウム粒子(C)を含み、リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、該象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部である象牙質知覚過敏抑制剤を象牙質表面にすり込むことにより、少なくとも1回の治療で象牙細管を封鎖することが可能であることが明らかとなった。この理由については必ずしも明らかではないが、以下のようなメカニズムが推定される。
 すなわち、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム粒子(C)を一定量含有する象牙質知覚過敏抑制剤を水の存在下で調製して象牙質表面にすり込んだ際に、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム粒子(C)から供給されたカルシウムイオンとリン酸イオンとが反応して、エネルギー的に安定なHApの微結晶が析出するようである。このとき、象牙質知覚過敏抑制剤を含む液剤とともに前記HApの微結晶が象牙細管に挿入され、その結果、象牙細管に挿入された前記HAp微結晶が液剤中に含まれるカルシウムイオンとリン酸イオンとにより結晶成長し、緻密化して象牙質と一体化するようである。このことにより、象牙細管の封鎖性が良好となるため、知覚過敏を抑制する効果が高くなる。
 したがって、象牙質表面にすり込むことにより象牙細管を封鎖させるために用いられるものであることを特徴とする象牙質知覚過敏抑制剤が本発明の好適な実施態様である。また、このような象牙質知覚過敏抑制剤を象牙質表面にすり込むことによる象牙質知覚過敏抑制方法も本発明の好適な実施態様である。
 また、本発明の別の好適な実施態様は、リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有する象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることを特徴とする象牙質知覚過敏抑制剤である。
 本発明の象牙質石灰化剤は、上述のように、使用時に適宜水分が供給されるような態様であってもよいし、使用直前に液剤と適宜混合するような態様であってもよい。したがって、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットであることが本発明の実施態様の一つである。また、リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットであることが本発明の実施態様の一つである。また、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストとからなる象牙質石灰化剤キットであることが本発明の実施態様の一つである。また、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キットであることも本発明の実施態様の一つである。
 更に、リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キットであることが本発明の実施態様の一つである。また、リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キットであることも本発明の実施態様の一つである。
 以下、実施例を用いて本発明を更に具体的に説明する。本実施例においてリン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)粒子、酸性リン酸カルシウム粒子(C)及びフッ化ナトリウム(D)粒子の平均粒径は、レーザー回折式粒度分布測定装置(株式会社島津製作所製「SALD-2100型」)を用いて測定し、測定の結果から算出されるメディアン径を平均粒径とした。
[石灰化用牛歯の調製]
 健全牛歯切歯の頬側中央を#80,#1000研磨紙を用いて回転研磨機により研磨し、象牙質を露出させた。この牛歯研磨面をさらにラッピングフィルム(#1200,#3000,#8000,住友スリーエム社製)を用いて研磨し、平滑とした。この象牙質部分に歯に対して縦軸方向及び横軸方向に各7mm試験部分の窓を残し(以下、「象牙質窓」と称する)、周りをマニキュアでマスキングし、1時間風乾した。この牛歯に対して、0.5M EDTA溶液(和光純薬工業株式会社製)を5倍に希釈した溶液を30秒間象牙質窓に作用させ脱灰を行なった後、30分以上水洗した。更に10%次亜塩素酸ナトリウム溶液(ネオクリーナー「セキネ」、ネオ製薬工業株式会社)を2分間作用させ清掃した後、更に約30分水洗、1時間風乾することで石灰化に用いる牛歯を調製した。
[擬似唾液の調製]
 塩化ナトリウム(8.77g,150mmol)、リン酸二水素カリウム(122mg,0.9mmol)、塩化カルシウム(166mg,1.5mmol)、Hepes(4.77g,20mmol)をそれぞれ秤量皿に量り取り、約800mlの蒸留水を入れた2000mlビーカーに攪拌下に順次加えた。溶質が完全に溶解したことを確認した後、この溶液の酸性度をpHメータ(F55、堀場製作所)で測定しながら、10%水酸化ナトリウム水溶液を滴下し、pH7.0とした。次にこの溶液を1000mlメスフラスコに加えてメスアップし、擬似唾液1000mlを得た。
実施例1
[象牙質石灰化剤の調製]
(1)リン酸四カルシウム粒子(A)の調製
 本実施例で使用するリン酸四カルシウム粒子(A1)(平均粒径23.1μm)は、以下の通り調製した粗リン酸四カルシウムを粉砕することにより得た。市販の無水リン酸一水素カルシウム粒子(Product No. 1430, J.T.Baker Chemical Co., NJ)及び炭酸カルシウム(Product No. 1288, J.T.Baker Chemical Co., NJ)を等モルとなる様に水中に加え、1時間撹拌した後、ろ過・乾燥することで得られたケーキ状の等モル混合物を電気炉(FUS732PB,アドバンテック東洋(株)製)中で1500℃、24時間加熱し、その後デシケータ中で室温まで冷却することでリン酸四カルシウム塊を調製した。さらに、乳鉢中で荒く砕き、その後篩がけを行うことで微粉ならびにリン酸四カルシウム塊を除き、0.5~3mmの範囲に粒度を整え、粗リン酸四カルシウムを得た。この粗リン酸四カルシウム100g、及び直径が20mmのジルコニアボール200gを400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「Type A-3 HDポットミル」)中に加え、150rpmの回転速度で15時間粉砕することでリン酸四カルシウム粒子(A1)を得た。
(2)リン酸のアルカリ金属塩(B)粒子の調製
 リン酸のアルカリ金属塩(B)粒子の一例として本実施例で使用するリン酸一水素二ナトリウム(B)粒子(平均粒径1.7μm)は、市販のリン酸一水素二ナトリウム粒子(和光純薬工業株式会社製)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104 ポットミル」)中に加え、1500rpmの回転速度で5時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで得た。
(3)酸性リン酸カルシウム粒子(C)の調製
 酸性リン酸カルシウム粒子(C)の一例として本実施例で使用する無水リン酸一水素カルシウム粒子(C1)(平均粒径1.1μm)は、市販の無水リン酸一水素カルシウム粒子(Product No. 1430, J.T.Baker Chemical Co., NJ、平均粒径10.2μm)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104 ポットミル」)中に加え、1500rpmの回転速度で15時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで得た。
(4)象牙質石灰化剤用の粉剤の調製
 上記で得たリン酸四カルシウム粒子(A1)26.2g、リン酸一水素二ナトリウム(B)粒子5g、無水リン酸一水素カルシウム粒子(C1)9.8g及び特開平2-258602号公報に開示の方法で微粒子化したフッ化ナトリウム(D)粒子(平均粒径0.7μm)0.21gを高速回転ミル(アズワン株式会社製「SM-1」)中に加え、1000rpmの回転速度で3分間混合することで象牙質石灰化剤用の粉剤を得た。このように混合されて得られる粉剤の調製方法を「方法1」とした。
(5)象牙質石灰化剤用の液状ペーストの調製
 グリセリン(和光純薬工業株式会社製)1000g、プロピレングリコール(和光純薬工業株式会社製)500g、キシリトール(和光純薬工業株式会社製)500g、ポリエチレングリコール(マクロゴール400、三洋化成工業株式会社製)300g、セチルピリジニウムクロリド1水和物(和光純薬工業株式会社製)5g、シリカ粒子(E)(デグサ社製「AEROSIL 130」、平均粒径:0.016μm)400g及び蒸留水1174gをユニバーサルミキサー(株式会社パウレックス製)中で乳化分散させることで象牙質石灰化剤用の液状ペーストを得た。
(6)象牙質石灰化剤の調製
 上記(4)で得た粉剤0.41gを精秤し、これに上記(5)で得た液状ペースト0.59gを加え混合することで象牙質石灰化剤を調製した。象牙質石灰化剤の組成を表1にまとめて示す。
[アルカリ金属イオン濃度の測定]
 マグネティックスターラー上で25℃の純水200gを攪拌させている中に、上記象牙質石灰化剤用の粉剤0.05gを投入した。粉剤投入後10分時点で撹拌を停止し、上清を採取し、メンブレンフィルターでろ過した後にICP発光分光分析装置(IRIS AP、日本ジャーレルアッシュ株式会社製)を用いて粉剤スラリーの遊離ナトリウムイオン濃度を測定した(n=50)。実施例1における粉剤のナトリウムイオン濃度の平均値(d)は10.4mg/Lであり、ナトリウムイオン濃度の標準偏差(σ)を(d)で除した数値(σ/d)は0.06であった。得られた結果を表1にまとめて示す。
[石灰化試験]
 上記で調製した石灰化用牛歯を蒸留水に浸漬し、30分間静置した後、象牙質窓に対してペースト状の象牙質石灰化剤を塗布し、37℃、100%RH条件下で30分間インキュベートし、石灰化を行った。その後、象牙質石灰化剤を蒸留水で洗い流した後、擬似唾液中37℃で保存した。象牙質石灰化剤塗布は1日毎に実施し、連続して7回実施した。象牙質石灰化剤の塗布・除去作業時間以外は常時擬似唾液中に浸漬した。また、擬似唾液は毎日交換した(n=5)。
[形態学的評価]
(1)エポキシ樹脂の調製
 エポキシ樹脂の調製はLuft法に準じて行い、エポキシ樹脂、硬化剤を均一に混合した後、加速剤を添加する方法を用いた。100mlディスポカップに、ルベアック812(エポキシ樹脂、ナカライテスク株式会社製)41ml、ルベアックMNA(硬化剤、ナカライテスク株式会社製)31ml、ルベアックDDSA(硬化剤、ナカライテスク株式会社製)10mlをそれぞれディスポシリンジを用いて量り取りディスポカップに加え、10分間攪拌した。これにディスポシリンジで量り取ったルベアックDMP-30(加速剤、ナカライテスク株式会社製)1.2mlを攪拌しながら徐々に滴下し、添加後さらに10分間攪拌することで調製した。
(2)SEM観察用サンプルの作製
 擬似唾液から石灰化牛歯を取り出し、水洗した後、バイアル中の70%エタノール水溶液中に浸漬した。浸漬後、直ちにバイアルをデシケータ内に移し、10分間減圧条件下に置いた。この後、バイアルをデシケータから取り出し、低速攪拌機(TR-118,AS-ONE社製)に取り付け、約4rpmの回転速度で1時間攪拌した。同様の操作を、80%エタノール水溶液、90%エタノール水溶液、99%エタノール水溶液、100%エタノール(2回)を用いて行い、2回目の100%エタノールにはそのまま1晩浸漬した。翌日、プロピレンオキサイドとエタノールの1:1混合溶媒、プロピレンオキサイド100%(2回)についても順次同様の作業を行い、2回目のプロピレンオキサイドにそのまま1晩浸漬した。さらに、エポキシ樹脂:プロピレンオキサイド=1:1混合溶液、エポキシ樹脂:プロピレンオキサイド=4:1混合溶液、エポキシ樹脂100%(2回)についても同様の作業を行った。これらについては浸漬時間を2時間とした。最後にエポキシ樹脂を入れたポリ容器に牛歯サンプルを入れ、45℃にて1日間、60℃にて2日間硬化反応を行った。硬化終了後、ポリエチレン製容器とともに精密低速切断機(BUEHLER、ISOMET1000)により脱灰面に対して垂直方向に切断し、試験部分の断面を含む厚さ約1mmの切片を得た。この切片をラッピングフィルム(#1200,#3000,#8000,住友スリーエム社製)を用いて研磨し、SEM観察用サンプルとした(n=5)。
(3)SEM観察
 SEM測定にはS-3500N(日立ハイテク社製)を使用した。加速電圧15kVの条件で、象牙質表面上に形成されたヒドロキシアパタイト層の厚み、ならびに石灰化象牙質表面からヒドロキシアパタイトによる象牙細管封鎖が観察される最も深い距離測定を行った。上記象牙質石灰化剤により石灰化された牛歯象牙質表面上のヒドロキシアパタイト層の平均厚みは16μm、ヒドロキシアパタイトによる象牙細管封鎖が観察される最も深い距離の平均は323μmであった。得られた結果を表4にまとめて示す。また、図1及び図2のSEM写真からも分かるように、本発明の象牙質石灰化剤を象牙質表面に塗布することにより、該象牙質表面にHAp層が形成され、象牙細管がHApで封鎖されていることが確認された。
[象牙質透過抑制率評価]
(1)石灰化用牛歯ディスクの調製
 健全牛歯切歯の頬側中央を#80,#1000研磨紙を用いて回転研磨機によりトリミングし、直径約1.5cm、厚さ0.9mmのディスク状に成形した。この牛歯研磨面をさらにラッピングフィルム(#1200,#3000,#8000,住友スリーエム社製)を用いて研磨し、厚さ0.7mmまで研磨し、平滑とした。この牛歯ディスクの両面に対して、0.5M EDTA溶液(和光純薬工業株式会社製)を5倍に希釈した溶液を180秒間象牙質窓に作用させ脱灰を行なった後、約30秒間蒸留水中で洗浄した。更に10%次亜塩素酸ナトリウム溶液(ネオクリーナー「セキネ」、ネオ製薬工業(株))を120秒間作用させて清掃した後、約30分間蒸留水で洗浄することで象牙質透過抑制率評価に用いる牛歯ディスクを調製した。
(2)石灰化試験
 上記(1)で調製した石灰化用牛歯ディスクを蒸留水に浸漬し、30分間静置した後、ディスク面の一方(エナメル質側)に対してペースト状の象牙質石灰化剤を塗布し、37℃、100%RH条件下で30分間インキュベートし、石灰化を行った。その後、象牙質石灰化剤を蒸留水で洗い流した後、擬似唾液中37℃で保存した。象牙質石灰化剤の塗布は1日毎に同一面に対して実施し、連続して7回実施した。象牙質石灰化剤の塗布・除去作業時間以外は常時擬似唾液中に浸漬した。また、擬似唾液は毎日交換した(n=5)。
(3)象牙質透過抑制率評価試験
 象牙質透過抑制率の評価には、Pashleyらの方法(D.H.PASHLEY et al.,J.Dent.Res.65:417-420,1986.;K.C.Y.TAY et al.,J.Endod.33:1438-1443,2007.)に準じる方法を用いて実施した。同様の装置を設置し、上記で得た石灰化牛歯を歯髄からエナメル質の方向に液が透過する様に分割可能なチャンバー治具中に設置、固定した。Phosphate-buffered saline(Dulbecco’s PBS, Grand Island Biological Company, Grand Island, NY)の圧力を加える象牙質表面は、Oリングを用いて表面積を78.5mm(直径5mm)に規格化し、10psi(69kPa)で加圧し、24時間経過した際の透過量を測定した。また、同様の操作で上記の石灰化を行っていない牛歯ディスクの透過量を測定し、下記式を用いて透過抑制率を算出した。実施例1により石灰化した牛歯ディスクの透過抑制率は85%であった。得られた結果を表4にまとめて示す。
 透過抑制率(%)={1-(石灰化した牛歯ディスクの透過量)/(石灰化を行っていない牛歯ディスクの透過量)}×100
実施例2
 実施例1において、無水リン酸一水素カルシウム粒子(C1)を用いず、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例3
 実施例1において、リン酸一水素二ナトリウム(B)粒子を粉剤に加えて調製する代わりに液状ペーストに加えて調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例4
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を0.5重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例5
 実施例1において、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸一水素二ナトリウム(B)粒子0.5重量部を液状ペーストに加え、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例6
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を25重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例7
 実施例1において、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸一水素二ナトリウム(B)粒子25重量部を液状ペーストに加え、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例8
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を2.5重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例9
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を12重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例10
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を18重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例11
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を73.5重量部、リン酸一水素二ナトリウム(B)粒子の使用量を14重量部とし、無水リン酸一水素カルシウム粒子(C1)、グリセリン、プロピレングリコール、キシリトール、ポリエチレングリコール及びシリカ粒子(E)を用いず、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例12
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を49重量部、リン酸一水素二ナトリウム(B)粒子の使用量を9.3重量部とし、無水リン酸一水素カルシウム粒子(C1)、グリセリン、プロピレングリコール、キシリトール、ポリエチレングリコール及びシリカ粒子(E)を用いず、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例13
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を2.62重量部、無水リン酸一水素カルシウム粒子(C1)の使用量を0.98重量部とし、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸一水素二ナトリウム(B)粒子0.5重量部を液状ペーストに加え、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例14
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を2.62重量部、リン酸一水素二ナトリウム(B)粒子の使用量を0.5重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を0.98重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表1に、得られた評価結果を表4にまとめて示す。
実施例15
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を5.24重量部、リン酸一水素二ナトリウム(B)粒子の使用量を1重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を1.96重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例16
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を13.1重量部、リン酸一水素二ナトリウム(B)粒子の使用量を2.5重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を4.9重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例17
 実施例1において、リン酸一水素二ナトリウム(B)粒子を5重量部用いる代わりに、リン酸二水素一ナトリウム(B)粒子を5重量部用いた以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例18
 実施例1において、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸二水素一ナトリウム(B)粒子5重量部を液状ペーストに加え、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例19
 実施例1において、フッ化ナトリウム(D)粒子を用いず、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例20
 実施例1において、無水リン酸一水素カルシウム粒子(C1)を9.8重量部用いる代わりに、リン酸一水素カルシウム2水和物粒子(C)(平均粒径1.2μm)を12.3重量部用い、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。ここで、上記リン酸一水素カルシウム2水和物粒子(C)(平均粒径1.2μm)は、市販のリン酸一水素カルシウム2水和物粒子(和光純薬工業株式会社製、平均粒径19μm)を用い、実施例1における無水リン酸一水素カルシウム粒子(C1)を調製する方法と同様に調製することにより得た。
実施例21
 実施例1において、無水リン酸一水素カルシウム粒子(C1)を9.8重量部用いる代わりに、無水リン酸二水素カルシウム粒子(C)(平均粒径1.1μm)を16.7重量部用い、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。ここで、上記無水リン酸二水素カルシウム粒子(C)(平均粒径1.1μm)は、市販の無水リン酸二水素カルシウム粒子(和光純薬工業株式会社製、平均粒径18μm)を用い、実施例1における無水リン酸一水素カルシウム粒子(C1)を調製する方法と同様に調製することにより得た。
実施例22
 実施例1において、無水リン酸一水素カルシウム粒子(C1)を9.8重量部用いる代わりに、酸性ピロリン酸カルシウム粒子(C)(平均粒径1.0μm)を15.4重量部用い、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。ここで、上記酸性ピロリン酸カルシウム粒子(C)(平均粒径1.0μm)は、市販の酸性ピロリン酸カルシウム粒子(太平化学産業株式会社製、平均粒径13μm)を用い、実施例1における無水リン酸一水素カルシウム粒子(C1)を調製する方法と同様に調製することにより得た。
実施例23
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を18.4重量部、リン酸一水素二ナトリウム(B)粒子の使用量を3.5重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
実施例24
 実施例1において、粉剤及び液状ペーストを調製する代わりに、リン酸四カルシウム粒子(A1)26.2重量部、フッ化ナトリウム(D)粒子0.21重量部、シリカ粒子(E)0.5重量部、グリセリン18.09重量部及びプロピレングリコール5重量部を用いて調製した非水系ペーストと、リン酸一水素二ナトリウム(B)粒子5重量部、無水リン酸一水素カルシウム粒子(C1)9.8重量部、キシリトール5重量部、ポリエチレングリコール3重量部、セチルピリジニウムクロリド1水和物0.05重量部、シリカ粒子(E)3.5重量部及び残部を精製水で調製した水系ペーストとを混合することで象牙質石灰化剤を調製し、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表3に、得られた評価結果を表4にまとめて示す。
比較例1
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を0.2重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
比較例2
 実施例1において、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸一水素二ナトリウム(B)粒子0.2重量部を液状ペーストに加え、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
比較例3
 実施例1において、リン酸一水素二ナトリウム(B)粒子の使用量を27重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
比較例4
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を81.3重量部、リン酸一水素二ナトリウム(B)粒子の使用量を15.5重量部とし、無水リン酸一水素カルシウム粒子(C1)、グリセリン、プロピレングリコール、キシリトール、ポリエチレングリコール及びシリカ粒子(E)を用いず、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
比較例5
 実施例1において、リン酸四カルシウム粒子(A1)の使用量を0.87重量部、リン酸一水素二ナトリウム(B)粒子の使用量を0.17重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を0.33重量部とし、残部を精製水で調製した以外は、実施例1と同様にして象牙質石灰化剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質石灰化剤の組成を表2に、得られた評価結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
実施例25
[象牙質知覚過敏抑制剤の調製]
(1)リン酸四カルシウム粒子(A)の調製
 本実施例で使用するリン酸四カルシウム粒子(A4)(平均粒径5.2μm)は、以下の通り調製した粗リン酸四カルシウムを粉砕することにより得た。市販の無水リン酸一水素カルシウム粒子(Product No. 1430, J.T.Baker Chemical Co., NJ)及び炭酸カルシウム(Product No. 1288, J.T.Baker Chemical Co., NJ)を等モルとなる様に水中に加え、1時間撹拌した後、ろ過・乾燥することで得られたケーキ状の等モル混合物を電気炉(FUS732PB,アドバンテック東洋(株)製)中で1500℃、24時間加熱し、その後デシケータ中で室温まで冷却することでリン酸四カルシウム塊を調製した。さらに、乳鉢中で荒く砕き、その後篩がけを行うことで微粉ならびにリン酸四カルシウム塊を除き、0.5~1mmの範囲に粒度を整え、粗リン酸四カルシウムを得た。この粗リン酸四カルシウム50g、直径が10mmのジルコニアボール200g、及び99.5%脱水エタノール(和光純薬工業株式会社製「Ethanol,Dehydrated(99.5)」)100gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104 ポットミル」)中に加え、1500rpmの回転速度で12時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することでリン酸四カルシウム粒子(A4)を得た。
 また、上記リン酸四カルシウム粒子(A4)を調製する際の粉砕時間を1時間にすることで、平均粒径が35.6μmのリン酸四カルシウム粒子(A2)を得た。同様に、上記リン酸四カルシウム粒子(A4)を調製する際の粉砕時間を4時間にすることで、平均粒径が20.3μmのリン酸四カルシウム粒子(A3)を得た。また、同様に、上記リン酸四カルシウム粒子(A4)を調製する際の粉砕時間を24時間にすることで、平均粒径が1.5μmのリン酸四カルシウム粒子(A5)を得た。
(2)リン酸のアルカリ金属塩(B)粒子の調製
 本実施例で使用するリン酸一水素二ナトリウム(B)粒子(平均粒径1.7μm)は、市販のリン酸一水素二ナトリウム粒子(和光純薬工業株式会社製)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104 ポットミル」)中に加え、1500rpmの回転速度で5時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで得た。
(3)酸性リン酸カルシウム粒子(C)の調製
 本実施例で使用する無水リン酸一水素カルシウム粒子(C1)(平均粒径1.1μm)は、市販の無水リン酸一水素カルシウム粒子(Product No. 1430, J.T.Baker Chemical Co., NJ、平均粒径10.2μm)50g、95%エタノール(和光純薬工業株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104 ポットミル」)中に加え、1500rpmの回転速度で15時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで得た。
(4)象牙質知覚過敏抑制剤用粉剤の調製
 上記で得たリン酸四カルシウム粒子(A4)36.5g、リン酸一水素二ナトリウム(B)粒子5g、無水リン酸一水素カルシウム粒子(C1)13.5g及び特開平2-258602号公報に開示の方法で微粒子化したフッ化ナトリウム(D)粒子(平均粒径0.7μm)0.21gを高速回転ミル(アズワン株式会社製「SM-1」)中に加え、1000rpmの回転速度で3分間混合することで象牙質知覚過敏抑制剤用の粉剤を得た。このように混合されて得られる粉剤の調製方法を「方法1」とした。
(5)象牙質知覚過敏抑制剤用液状ペーストの調製
 セチリピリジニウムクロリド1水和物(和光純薬工業株式会社製)0.5g、シリカ粒子(E)(デグサ社製「AEROSIL 130」、平均粒径:0.016μm)20g及び蒸留水427.4gを5時間撹拌し、混合することで象牙質知覚過敏抑制剤用の液状ペーストを得た。
(6)象牙質知覚過敏抑制剤の調製
 上記(4)で得た粉剤0.55gを精秤し、これに上記(5)で得た液状ペースト0.45gを加え混合することで象牙質知覚過敏抑制剤を調製した。象牙質知覚過敏抑制剤の組成を表5にまとめて示す。
[アルカリ金属イオン濃度の測定]
 マグネティックスターラー上で25℃の純水200gを攪拌させている中に、上記方法1で得られた象牙質知覚過敏抑制剤用の粉剤0.05gを投入した。粉剤投入後10分時点で撹拌を停止し、上清を採取し、メンブレンフィルターでろ過した後にICP発光分析装置(IRIS AP、日本ジャーレルアッシュ株式会社製)を用いて粉剤スラリーの遊離ナトリウムイオン濃度を測定した(n=50)。実施例25における粉剤のナトリウムイオン濃度の平均値(d)は7.7mg/Lであり、ナトリウムイオン濃度の標準偏差(σ)を(d)で除した数値(σ/d)は0.04であった。得られた結果を表5にまとめて示す。
[象牙質透過抑制率評価]
(1)象牙質透過抑制率評価用牛歯の作製
 健全牛歯切歯の頬側象牙質から#80,#1000研磨紙を用いて回転研磨機によりトリミングし、直径約1.5cm、厚さ0.9mmの牛歯ディスクを作製した。この牛歯ディスク表面をさらにラッピングフィルム(#1200,#3000,#8000,住友スリーエム社製)を用いて研磨し、厚さ0.7mmまで研磨し、平滑とした。この牛歯ディスクを、0.5M EDTA溶液(和光純薬工業株式会社製)を5倍に希釈した溶液に180秒間浸漬し、約30秒間蒸留水中で洗浄した。更に10%次亜塩素酸ナトリウム溶液(ネオクリーナー「セキネ」、ネオ製薬工業(株))を120秒間浸漬した後、約30分間蒸留水で洗浄することで象牙質透過抑制率評価に用いる牛歯ディスクを調製した。
 上記牛歯ディスクの頬側象牙質表面に対して、スパーテルを用いて上記で調製した象牙質知覚過敏抑制剤約0.1gを付着させ、続いてマイクロブラシ(MICROBRUSH INTERNATIONAL製「REGULAR SIZE(2.0mm),MRB400」)を用いて、象牙質処理面中央部における直径5mmの象牙質に対して30秒間すり込みを行った。その後、象牙質表面のペーストを蒸留水で除去し、直ちに象牙質透過抑制率評価試験を実施した(n=5)。
(2)象牙質透過抑制率評価試験
 象牙質透過抑制率の測定には、Pashleyらの方法(D.H.PASHLEY et al.,J.Dent.Res.65:417-420,1986.;K.C.Y.TAY et al.,J.Endod.33:1438-1443,2007.)に準じる方法を用いて実施した。同様の装置を設置し、上記で得た知覚過敏抑制処置を行った牛歯ディスクを歯髄からエナメル質の方向に液が透過する様に分割可能なチャンバー治具中に設置、固定した。Phosphate-buffered saline(Dulbecco’s PBS, Grand Island Biological Company, Grand Island, NY)の圧力を加える象牙質表面は、Oリングを用いて表面積を78.5mm(直径5mm)に規格化し、10psi(69kPa)で加圧し、24時間経過した際の透過量を測定した。また、同様の操作で上記の石灰化(象牙細管封鎖)処置を行っていない牛歯ディスクの透過量を測定し、下記式を用いて透過抑制率を算出した。実施例25により石灰化(象牙細管封鎖)した牛歯ディスクの透過抑制率は92%であった。得られた結果を表7にまとめて示す。
 透過抑制率(%)={1-(石灰化(象牙細管封鎖)した牛歯ディスクの透過量)/(石灰化(象牙細管封鎖)を行っていない牛歯ディスクの透過量)}×100
[形態学的評価]
(1)形態学的評価用牛歯の作製
 健全牛歯切歯の頬側中央を#80,#1000研磨紙を用いて回転研磨機により研磨してトリミングし、頬側象牙質が露出した厚さ2mmの象牙質板を作製した。この頬側象牙質面をさらにラッピングフィルム(#1200,#3000,#8000,住友スリーエム社製)を用いて研磨し、平滑とした。この頬側象牙質部分に歯に対して縦軸方向及び横軸方向に各7mm試験部分の窓を残し、周りをマニキュアでマスキングし、1時間風乾した。この牛歯に対して、0.5M EDTA溶液(和光純薬工業株式会社製)を5倍に希釈した溶液を30秒間象牙質窓に作用させ脱灰を行った後、30分以上水洗した。更に10%次亜塩素酸ナトリウム溶液(ネオクリーナー「セキネ」、ネオ製薬工業(株))を2分間作用させ清掃した後、約30分以上水洗することで石灰化(象牙細管封鎖)評価に用いる牛歯を調製した。上記歯面処理の後、歯の縦軸方向に半分をマニキュアでマスキングし、未処理の状態を保持した。上記牛歯の頬側象牙質表面に対して、スパーテルを用いて上記で調製した象牙質知覚過敏抑制剤約0.1gを付着させ、続いてマイクロブラシ(MICROBRUSH INTERNATIONAL製「REGULAR SIZE(2.0mm),MRB400」)を用いて象牙質窓全面に対して30秒間すり込みを行った。その後、象牙質表面のペーストを蒸留水で除去した(n=10)。
(2)SEM観察用サンプルの作製
 上記処理後、牛歯サンプルをバイアル中の70%エタノール水溶液中に浸漬した。浸漬後、直ちにバイアルをデシケータ内に移し、10分間減圧条件下に置いた。この後、バイアルをデシケータから取り出し、低速攪拌機(TR-118,AS-ONE社製)に取り付け、約4rpmの回転速度で1時間攪拌した。同様の操作を、80%エタノール水溶液、90%エタノール水溶液、99%エタノール水溶液、100%エタノール(2回)を用いて行い、2回目の100%エタノールにはそのまま1晩浸漬した。翌日、プロピレンオキサイドとエタノールの1:1混合溶媒、プロピレンオキサイド100%(2回)についても順次同様の作業を行い、2回目のプロピレンオキサイドにそのまま1晩浸漬することで脱水、ならびにマニキュアの除去を行った。プロピレンオキサイド留去したサンプルを牛歯ディスクの石灰化(象牙細管封鎖)処理表面の形態観察用サンプルとした。また、プロピレンオキサイド留去後、2本のプライヤーを用いて石灰化(象牙細管封鎖)処置を行った象牙質を脆性的に破壊し、象牙質断面の形態観察用サンプルとした。
(3)SEM観察
 SEM観察にはS-3500N(日立ハイテク社製)を使用した。加速電圧は15kVの条件で、破壊前の牛歯ディスクの石灰化(象牙細管封鎖)処理-未処理境界付近の表面形態、並びに象牙質断面の石灰化(象牙細管封鎖)処理表面付近の形態を観察し、象牙質表面から象牙細管方向に知覚過敏抑制剤により封鎖が観察される最も深い距離(以下、「象牙細管封鎖深さ」ということがある)の測定を行った。実施例25の知覚過敏抑制剤による象牙細管封鎖深さの平均は15μmであった。得られた結果を表7に、得られたSEM写真を図3及び図4(図4中の矢印はHApで封鎖された象牙細管である)にまとめて示す。
実施例26
 実施例25において、リン酸一水素二ナトリウム(B)粒子を粉剤に加えて調製する代わりに液状ペーストに加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例27
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を0.15重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例28
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を0.3重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例29
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を2.5重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例30
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を20重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例31
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を21.9重量部、リン酸一水素二ナトリウム(B)粒子の使用量を21重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を8.1重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例32
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を21.9重量部、リン酸一水素二ナトリウム(B)粒子の使用量を27重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を8.1重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例33
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を5.5重量部、リン酸一水素二ナトリウム(B)粒子の使用量を0.75重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を2重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例34
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を7.5重量部、リン酸一水素二ナトリウム(B)粒子の使用量を1.03重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を2.8重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例35
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を15重量部、リン酸一水素二ナトリウム(B)粒子の使用量を2.06重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を5.6重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例36
 実施例25において、リン酸四カルシウム粒子(A4)の使用量を50重量部、リン酸一水素二ナトリウム(B)粒子の使用量を6.86重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を18.6重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例37
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を5.58重量部とし、無水リン酸一水素カルシウム粒子(C1)の使用量を19.3重量部とし、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。
実施例38
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を5.36重量部とし、無水リン酸一水素カルシウム粒子(C1)を13.5重量部用いる代わりに、リン酸一水素カルシウム2水和物粒子(C)(平均粒径1.2μm)を17.1重量部用い、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。ここで、上記リン酸一水素カルシウム2水和物粒子(C)(平均粒径1.2μm)は、市販のリン酸一水素カルシウム2水和物粒子(和光純薬工業株式会社製、平均粒径19μm)を用い、実施例25における無水リン酸一水素カルシウム粒子(C1)を調製する方法と同様に調製することにより得た。
実施例39
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を5.98重量部とし、無水リン酸一水素カルシウム粒子(C1)を13.5重量部用いる代わりに、無水リン酸二水素カルシウム粒子(C)(平均粒径1.1μm)を23.3重量部用い、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表5に、得られた評価結果を表7にまとめて示す。ここで、上記無水リン酸二水素カルシウム粒子(C)(平均粒径1.1μm)は、市販の無水リン酸二水素カルシウム粒子(和光純薬工業株式会社製、平均粒径18μm)を用い、実施例25における無水リン酸一水素カルシウム粒子(C1)を調製する方法と同様に調製することにより得た。
実施例40
 実施例25において、リン酸一水素二ナトリウム(B)粒子の使用量を6.74重量部とし、無水リン酸一水素カルシウム粒子(C1)を13.5重量部用いる代わりに、リン酸三カルシウム粒子(C)(平均粒径3.2μm)を30.9重量部用い、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。ここで、上記リン酸三カルシウム粒子(C)(平均粒径3.2μm)は、太平化学産業株式会社製「α-TCP-B(平均粒径3.2μm)」をそのまま用いた。
実施例41
 実施例25において、リン酸一水素二ナトリウム(B)粒子を5重量部用いる代わりに、リン酸二水素一ナトリウム(B)粒子を5重量部用いた以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例42
 実施例25において、リン酸一水素二ナトリウム(B)粒子5重量部を粉剤に加えて調製する代わりに、リン酸二水素一ナトリウム(B)粒子5重量部を液状ペーストに加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例43
 実施例25において、フッ化ナトリウム(D)粒子を用いず、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例44
 実施例25において、液状ペーストにシリカ粒子(E)を用いず、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例45
 実施例25において、シリカ粒子(E)2重量部を液状ペーストに加える代わりに粉剤に加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例46
 実施例25において、平均粒径5.2μmのリン酸四カルシウム粒子(A4)を36.5重量部加える代わりに、平均粒径35.6μmのリン酸四カルシウム粒子(A2)を36.5重量部加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例47
 実施例25において、平均粒径5.2μmのリン酸四カルシウム粒子(A4)を36.5重量部加える代わりに、平均粒径20.3μmのリン酸四カルシウム粒子(A3)を36.5重量部加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例48
 実施例25において、平均粒径5.2μmのリン酸四カルシウム粒子(A4)を36.5重量部加える代わりに、平均粒径1.5μmのリン酸四カルシウム粒子(A5)を36.5重量部加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例49
 実施例25において、粉剤及び液状ペーストを調製する代わりに、リン酸四カルシウム粒子(A4)36.5重量部、フッ化ナトリウム(D)粒子0.21重量部、シリカ粒子(E)2重量部、グリセリン6.29重量部及びプロピレングリコール5重量部を用いて調製した非水系ペーストと、リン酸一水素二ナトリウム(B)粒子5重量部、無水リン酸一水素カルシウム粒子(C1)13.5重量部、キシリトール5重量部、ポリエチレングリコール3重量部、セチルピリジニウムクロリド1水和物0.05重量部、シリカ粒子(E)2重量部及び残部を精製水で調製した水系ペーストとを混合することで象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表3に、得られた評価結果を表7にまとめて示す。
実施例50
 実施例25において、高速回転ミルを用いて粉剤を調製した方法1の代わりに、それぞれ同量のリン酸四カルシウム粒子(A4)、リン酸一水素二ナトリウム(B)粒子、無水リン酸一水素カルシウム粒子(C1)及びフッ化ナトリウム(D)粒子を10mmのジルコニアボール200gとともに400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「Type A-3 HDポットミル」)中に加え、200rpmの回転速度で30分間混合することで粉剤を得た。このように混合されて得られる粉剤の調製方法を「方法2」とした。次いで、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例51
 実施例25において、高速回転ミルを用いて粉剤を調製した方法1の代わりに、それぞれ同量のリン酸四カルシウム粒子(A4)、リン酸一水素二ナトリウム(B)粒子、無水リン酸一水素カルシウム粒子(C1)及びフッ化ナトリウム(D)粒子をライカイ機(自動乳鉢、アズワン株式会社製「ANM-200」)中に加え、乳鉢を6rpm、乳棒を100rpmの回転速度で5時間混合することで象牙質知覚過敏抑制剤用の粉剤を得た。このように混合されて得られる粉剤の調製方法を「方法3」とした。次いで、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例52
 実施例25において、高速回転ミルを用いて粉剤を調製した方法1の代わりに、それぞれ同量のリン酸四カルシウム粒子(A4)、リン酸一水素二ナトリウム(B)粒子、無水リン酸一水素カルシウム粒子(C1)及びフッ化ナトリウム(D)粒子をジルコニアボールを加えずに400mlのアルミナ製粉砕ポット(株式会社ニッカトー製「Type A-3 HDポットミル」)中に加え、1500rpmの回転速度で30分間混合することで象牙質知覚過敏抑制剤用の粉剤を得た。このように混合されて得られる粉剤の調製方法を「方法4」とした。次いで、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例53
 実施例25において、平均粒径1.1μmの無水リン酸一水素カルシウム粒子(C1)を13.5重量部加える代わりに、平均粒径10.2μmの無水リン酸一水素カルシウム粒子(C2)を13.5重量部加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
実施例54
 実施例25において、平均粒径1.1μmの無水リン酸一水素カルシウム粒子(C1)を13.5重量部加える代わりに、平均粒径17.1μmの無水リン酸一水素カルシウム粒子(C3)を13.5重量部加えて調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
比較例6
 実施例25において、リン酸一水素二ナトリウム(B)粒子を用いず、残部を精製水で調製した以外は、実施例25と同様にして象牙質知覚過敏抑制剤を調製し、アルカリ金属イオン濃度の測定、形態学的評価及び象牙質透過抑制率評価を行った。用いた象牙質知覚過敏抑制剤の組成を表6に、得られた評価結果を表7にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
  1 緻密HAp層
  2 未処理部分
  3 HApで封鎖された象牙細管
  4 未処理部分
  5 石灰化(象牙細管封鎖)処理部分

Claims (36)

  1.  リン酸四カルシウム粒子(A)、及びリン酸のアルカリ金属塩(B)を含有する象牙質石灰化剤であって、該象牙質石灰化剤の全量100重量部に対してリン酸四カルシウム粒子(A)を1~80重量部含み、かつリン酸四カルシウム粒子(A)100重量部に対するリン酸のアルカリ金属塩(B)の配合量が1~100重量部であることを特徴とする象牙質石灰化剤。
  2.  リン酸のアルカリ金属塩(B)がリン酸一水素二ナトリウム及び/又はリン酸二水素一ナトリウムである請求項1記載の象牙質石灰化剤。
  3.  更に酸性リン酸カルシウム粒子(C)を含有する請求項1又は2記載の象牙質石灰化剤。
  4.  酸性リン酸カルシウム粒子(C)が、無水リン酸一水素カルシウム[CaHPO]粒子、無水リン酸二水素カルシウム[Ca(HPO]粒子、リン酸三カルシウム[Ca(PO]粒子、非晶性リン酸カルシウム[Ca(PO・xHO]粒子、酸性ピロリン酸カルシウム[CaH]粒子、リン酸一水素カルシウム2水和物[CaHPO・2HO]粒子、及びリン酸二水素カルシウム1水和物[Ca(HPO・HO]粒子からなる群から選択される少なくとも1種である請求項3記載の象牙質石灰化剤。
  5.  リン酸四カルシウム粒子(A)と酸性リン酸カルシウム粒子(C)の配合割合(A/C)がモル比で40/60~60/40である請求項3又は4記載の象牙質石灰化剤。
  6.  更にフッ素化合物(D)を含有する請求項1~5のいずれか記載の象牙質石灰化剤。
  7.  フッ素化合物(D)がフッ化ナトリウムである請求項6記載の象牙質石灰化剤。
  8.  リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmである請求項1~7のいずれか記載の象牙質石灰化剤。
  9.  リン酸のアルカリ金属塩(B)の平均粒径が0.5~20μmである請求項1~8のいずれか記載の象牙質石灰化剤。
  10.  酸性リン酸カルシウム粒子(C)の平均粒径が0.1~7μmである請求項1~9のいずれか記載の象牙質石灰化剤。
  11.  更に平均粒径が0.002~2μmであるシリカ又は金属酸化物から選択される粒子(E)を含有する請求項1~10のいずれか記載の象牙質石灰化剤。
  12.  該象牙質石灰化剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることを特徴とする請求項1~11のいずれか記載の象牙質石灰化剤。
  13.  遊離アルカリ金属イオン濃度の平均値をdとしたときの標準偏差σがσ≦0.3dを満たす請求項12記載の象牙質石灰化剤。
  14.  アルカリ金属イオンがナトリウムイオンである請求項12又は13記載の象牙質石灰化剤。
  15.  該象牙質石灰化剤で厚さ700μmの牛歯ディスクの片面を処置した際の象牙質透過抑制率が下記式(I)を満たす請求項1~14のいずれか記載の象牙質石灰化剤。
     [1-(石灰化した牛歯ディスクの透過量)/(石灰化を行っていない牛歯ディスクの透過量)]×100≧70・・・(I)
  16.  請求項1~15のいずれか記載の象牙質石灰化剤を含有する歯面処理材。
  17.  請求項1~15のいずれか記載の象牙質石灰化剤を含有する歯磨材。
  18.  請求項1~15のいずれか記載の象牙質石灰化剤を含有するチューイングガム。
  19.  請求項1~15のいずれか記載の象牙質石灰化剤からなる象牙質知覚過敏抑制剤。
  20.  請求項1~15のいずれか記載の象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤が更に酸性リン酸カルシウム粒子(C)を含み、
    リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、
    該象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部であり、
    象牙質表面にすり込むことにより象牙細管を封鎖させるために用いられるものであることを特徴とする象牙質知覚過敏抑制剤。
  21.  請求項1~15のいずれか記載の象牙質石灰化剤からなる象牙質知覚過敏抑制剤であって、該象牙質知覚過敏抑制剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度が0.2~100mg/Lであることを特徴とする象牙質知覚過敏抑制剤。
  22.  更に酸性リン酸カルシウム粒子(C)を含有する請求項21記載の象牙質知覚過敏抑制剤。
  23.  リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び水を主成分とする液体又は水系ペーストを混合する象牙質石灰化剤の製造方法であって、
    リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質石灰化剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を1~80重量部とすることを特徴とする象牙質石灰化剤の製造方法。
  24.  リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体、又はリン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体を予め混合する請求項23記載の象牙質石灰化剤の製造方法。
  25.  前記混合の際に、ジェットミル、ライカイ機、ボールミル、高速回転ミル、遊星ミル、ハイブリダイザー、メカノフュージョン又は混合押出し機から選択される少なくとも1種を用いる請求項24記載の象牙質石灰化剤の製造方法。
  26.  リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストに、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストを加えて混合する請求項23記載の象牙質石灰化剤の製造方法。
  27.  リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、酸性リン酸カルシウム粒子(C)及び水を主成分とする液体又は水系ペーストを混合する象牙質知覚過敏抑制剤の製造方法であって、
    該象牙質知覚過敏抑制剤が象牙質表面にすり込むことにより象牙細管を封鎖するために用いられるものであり、
    リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、
    リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を5~55重量部とすることを特徴とする象牙質知覚過敏抑制剤の製造方法。
  28.  リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストに、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストを加えて混合する請求項27記載の象牙質知覚過敏抑制剤の製造方法。
  29.  リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)、及び水を主成分とする液体又は水系ペーストを混合する象牙質知覚過敏抑制剤の製造方法であって、
    リン酸四カルシウム粒子(A)100重量部に対してリン酸のアルカリ金属塩(B)を1~100重量部配合し、象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量を1~80重量部とし、
    該象牙質知覚過敏抑制剤0.05gを25℃の純水200gに投入して懸濁液を調製した際に、投入から10分後における該懸濁液の遊離アルカリ金属イオン濃度を0.2~100mg/Lとすることを特徴とする象牙質知覚過敏抑制剤の製造方法。
  30.  リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含有する象牙質知覚過敏抑制剤を用いた象牙質知覚過敏抑制方法であって、
    リン酸四カルシウム粒子(A)の平均粒径が0.5~40μmであり、
    該象牙質知覚過敏抑制剤の全量100重量部に対するリン酸四カルシウム粒子(A)の配合量が5~55重量部であり、かつ
    リン酸四カルシウム粒子(A)100重量部に対するリン酸のアルカリ金属塩(B)の配合量が1~100重量部である象牙質知覚過敏抑制剤を象牙質表面にすり込むことを特徴とする象牙質知覚過敏抑制方法。
  31.  リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キット。
  32.  リン酸四カルシウム粒子(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キット。
  33.  リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、水を主成分としリン酸のアルカリ金属塩(B)を含む液体又は水系ペーストとからなる象牙質石灰化剤キット。
  34.  リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質石灰化剤キット。
  35.  リン酸四カルシウム粒子(A)及びリン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、水を主成分とし酸性リン酸カルシウム粒子(C)を含む液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キット。
  36.  リン酸四カルシウム粒子(A)を含む粉体又は非水系ペーストと、リン酸のアルカリ金属塩(B)を含む粉体又は非水系ペーストと、酸性リン酸カルシウム粒子(C)を含む粉体又は非水系ペーストと、水を主成分とする液体又は水系ペーストとからなる象牙質知覚過敏抑制剤キット。
PCT/JP2010/055379 2009-03-30 2010-03-26 象牙質石灰化剤及びその製造方法 WO2010113800A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080024026.XA CN102448471B (zh) 2009-03-30 2010-03-26 牙本质矿化剂和其制造方法
JP2011507153A JPWO2010113800A1 (ja) 2009-03-30 2010-03-26 象牙質石灰化剤及びその製造方法
US13/259,681 US20120027829A1 (en) 2009-03-30 2010-03-26 Dentin mineralizing agent and method for production thereof
EP10758572.1A EP2425843B1 (en) 2009-03-30 2010-03-26 Dentin mineralizing agent for use in the treatment of hyperesthesia
US13/896,994 US9415068B2 (en) 2009-03-30 2013-05-17 Method for inhibiting dentinal hypersensitivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-082957 2009-03-30
JP2009082957 2009-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/259,681 A-371-Of-International US20120027829A1 (en) 2009-03-30 2010-03-26 Dentin mineralizing agent and method for production thereof
US13/896,994 Division US9415068B2 (en) 2009-03-30 2013-05-17 Method for inhibiting dentinal hypersensitivity

Publications (1)

Publication Number Publication Date
WO2010113800A1 true WO2010113800A1 (ja) 2010-10-07

Family

ID=42828091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055379 WO2010113800A1 (ja) 2009-03-30 2010-03-26 象牙質石灰化剤及びその製造方法

Country Status (5)

Country Link
US (2) US20120027829A1 (ja)
EP (1) EP2425843B1 (ja)
JP (2) JPWO2010113800A1 (ja)
CN (1) CN102448471B (ja)
WO (1) WO2010113800A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077025A (ja) * 2010-09-30 2012-04-19 Kuraray Medical Inc 象牙細管封鎖剤及びその製造方法
EP2461840A1 (en) * 2009-08-04 2012-06-13 Biomatcell AB Ion substituted calcium phosphate particles
WO2013047558A1 (ja) * 2011-09-28 2013-04-04 クラレノリタケデンタル株式会社 歯牙石灰化剤及びその製造方法
JP2013071917A (ja) * 2011-09-28 2013-04-22 Kuraray Noritake Dental Inc 象牙質石灰化剤及びその製造方法
JP2013082702A (ja) * 2011-09-30 2013-05-09 Kuraray Noritake Dental Inc 象牙細管封鎖材、及び象牙細管封鎖材と硬化性組成物とを組み合わせてなる歯科用処置材
JP2014189488A (ja) * 2013-03-26 2014-10-06 Kuraray Noritake Dental Inc 歯科修復用キット
WO2015019601A1 (ja) 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 象牙細管封鎖材
WO2015019600A1 (ja) 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
WO2015046491A1 (ja) 2013-09-30 2015-04-02 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
JPWO2014038195A1 (ja) * 2012-09-05 2016-08-08 株式会社サンギ 口腔用組成物
US10603250B2 (en) 2014-10-30 2020-03-31 Kuraray Noritake Dental Inc. One-pack type dentinal tubule occlusion material
WO2020090965A1 (ja) * 2018-10-31 2020-05-07 国立大学法人大阪大学 歯科治療用組成物
WO2022145480A1 (ja) 2020-12-28 2022-07-07 クラレノリタケデンタル株式会社 歯科用硬化性リン酸カルシウムセメント

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626058B1 (en) 2010-10-06 2019-05-01 Kuraray Noritake Dental Inc. Dentinal tubule sealant and method for producing the same
EP2861202B1 (en) * 2012-06-18 2018-07-18 3M Innovative Properties Company Powder composition for air polishing the surface of hard dental tissue
DE102013109847A1 (de) 2013-09-09 2015-03-12 Heraeus Kulzer Gmbh Formulierungen und Kit zur biomimetischen Abscheidung von Apatit auf Zähnen
DE102013109846A1 (de) 2013-09-09 2015-03-12 Heraeus Kulzer Gmbh Formulierungen und Kit zur biomimetischen Abscheidung von Apatit auf Zähnen
DE102013109848A1 (de) 2013-09-09 2015-03-12 Heraeus Kulzer Gmbh Applikationssystem zur einfachen, 3-dimensionalen Anwendung von medizinischen, kosmetischen oder Arzneimittel enthaltenden Zahnpflegeprodukten
WO2016027901A1 (ja) * 2014-08-22 2016-02-25 国立大学法人 岡山大学 口腔内バイオフィルム抑制剤
WO2018099669A1 (en) * 2016-11-30 2018-06-07 Unilever N.V. Oral care composition
AU2018276068B2 (en) * 2017-06-02 2024-03-28 Marine Biomedical Pty Ltd Method for manufacturing a calcified tissue substitute
EP3668477A1 (en) * 2017-08-18 2020-06-24 Unilever N.V. Oral care composition
ES2716942B2 (es) * 2018-06-22 2021-03-29 Univ Cardenal Herrera Ceu Composicion y procedimiento para la obtencion y aplicacion de un compuesto bioactivo que contiene fluoruro y el producto obtenido.

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167607A (ja) * 1985-01-18 1986-07-29 Taihei Kagaku Sangyo Kk 歯科用修復材料
JPH01163127A (ja) 1987-12-21 1989-06-27 Tokuyama Soda Co Ltd 知覚過敏症治癒用組成物
JPH02258602A (ja) 1989-03-31 1990-10-19 Kuraray Co Ltd 金属フツ化物微粒子の製造方法および該金属フツ化物微粒子を含む歯科用組成物
JPH0317536B2 (ja) 1987-11-20 1991-03-08 Hosokawa Seisakusho
JPH05255029A (ja) * 1992-03-11 1993-10-05 G C:Kk 歯面処置用組成物
JP3017536B2 (ja) * 1993-03-12 2000-03-13 アメリカン デンタル アソシエイション ヘルス ファウンデイション リン酸カルシウム・ヒドロキシアパタイト前駆物質および同物質の製法および使用法
JP2003516190A (ja) * 1999-12-09 2003-05-13 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング マグネシウム塩で安定化されたブラッシュ石水硬セメント
JP2007197329A (ja) * 2006-01-23 2007-08-09 Kuraray Medical Inc リン酸カルシウム組成物及びその製造方法
JP2007524635A (ja) * 2003-07-02 2007-08-30 エーディーエー ファウンデーション 再石灰化作用のある歯科用セメント
JP2007537844A (ja) * 2004-05-20 2007-12-27 スケルタル キネティクス エルエルシー 迅速に硬化するリン酸カルシウムセメント
JP2009512713A (ja) * 2005-10-21 2009-03-26 エイディーエイ ファウンデーション 歯科および歯内充填材料並びに方法
WO2009099136A1 (ja) * 2008-02-07 2009-08-13 Kuraray Medical Inc. リン酸カルシウム組成物及びその製造方法
JP2009195452A (ja) * 2008-02-21 2009-09-03 Kuraray Medical Inc リン酸カルシウム組成物及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833954A (en) * 1996-08-20 1998-11-10 American Dental Association Health Foundation Anti-carious chewing gums, candies, gels, toothpastes and dentifrices
US6840995B2 (en) * 1999-07-14 2005-01-11 Calcitec, Inc. Process for producing fast-setting, bioresorbable calcium phosphate cements
JP3520268B2 (ja) * 2001-04-03 2004-04-19 日本ゼトック株式会社 ハイドロキシアパタイトの製造方法
US9101436B2 (en) 2005-10-21 2015-08-11 Ada Foundation Dental and endodontic filling materials and methods
WO2007083601A1 (ja) * 2006-01-16 2007-07-26 Kuraray Medical Inc. リン酸カルシウム組成物及びその製造方法
JP4951244B2 (ja) * 2006-01-19 2012-06-13 クラレメディカル株式会社 医療用リン酸カルシウム組成物及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167607A (ja) * 1985-01-18 1986-07-29 Taihei Kagaku Sangyo Kk 歯科用修復材料
JPH0317536B2 (ja) 1987-11-20 1991-03-08 Hosokawa Seisakusho
JPH01163127A (ja) 1987-12-21 1989-06-27 Tokuyama Soda Co Ltd 知覚過敏症治癒用組成物
JPH02258602A (ja) 1989-03-31 1990-10-19 Kuraray Co Ltd 金属フツ化物微粒子の製造方法および該金属フツ化物微粒子を含む歯科用組成物
JPH05255029A (ja) * 1992-03-11 1993-10-05 G C:Kk 歯面処置用組成物
JP3017536B2 (ja) * 1993-03-12 2000-03-13 アメリカン デンタル アソシエイション ヘルス ファウンデイション リン酸カルシウム・ヒドロキシアパタイト前駆物質および同物質の製法および使用法
JP2003516190A (ja) * 1999-12-09 2003-05-13 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング マグネシウム塩で安定化されたブラッシュ石水硬セメント
JP2007524635A (ja) * 2003-07-02 2007-08-30 エーディーエー ファウンデーション 再石灰化作用のある歯科用セメント
JP2007537844A (ja) * 2004-05-20 2007-12-27 スケルタル キネティクス エルエルシー 迅速に硬化するリン酸カルシウムセメント
JP2009512713A (ja) * 2005-10-21 2009-03-26 エイディーエイ ファウンデーション 歯科および歯内充填材料並びに方法
JP2007197329A (ja) * 2006-01-23 2007-08-09 Kuraray Medical Inc リン酸カルシウム組成物及びその製造方法
WO2009099136A1 (ja) * 2008-02-07 2009-08-13 Kuraray Medical Inc. リン酸カルシウム組成物及びその製造方法
JP2009195452A (ja) * 2008-02-21 2009-09-03 Kuraray Medical Inc リン酸カルシウム組成物及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. H.PASHLEY ET AL., J. DENT. RES., vol. 65, 1986, pages 417 - 420
K. C. Y. TAY ET AL., J. ENDOD., vol. 33, 2007, pages 1438 - 1443
See also references of EP2425843A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461840A1 (en) * 2009-08-04 2012-06-13 Biomatcell AB Ion substituted calcium phosphate particles
EP2461840A4 (en) * 2009-08-04 2013-11-06 Biomatcell Ab IONALLY SUBSTITUTED CALCIUM PHOSPHATE PARTICLES
US9205035B2 (en) 2009-08-04 2015-12-08 Psilox Ab Ion substituted calcium phosphate particles
JP2012077025A (ja) * 2010-09-30 2012-04-19 Kuraray Medical Inc 象牙細管封鎖剤及びその製造方法
JPWO2013047558A1 (ja) * 2011-09-28 2015-03-26 クラレノリタケデンタル株式会社 歯牙石灰化剤及びその製造方法
WO2013047558A1 (ja) * 2011-09-28 2013-04-04 クラレノリタケデンタル株式会社 歯牙石灰化剤及びその製造方法
JP2013071917A (ja) * 2011-09-28 2013-04-22 Kuraray Noritake Dental Inc 象牙質石灰化剤及びその製造方法
JP2013082702A (ja) * 2011-09-30 2013-05-09 Kuraray Noritake Dental Inc 象牙細管封鎖材、及び象牙細管封鎖材と硬化性組成物とを組み合わせてなる歯科用処置材
JPWO2014038195A1 (ja) * 2012-09-05 2016-08-08 株式会社サンギ 口腔用組成物
JP2014189488A (ja) * 2013-03-26 2014-10-06 Kuraray Noritake Dental Inc 歯科修復用キット
JPWO2015019601A1 (ja) * 2013-08-06 2017-03-02 クラレノリタケデンタル株式会社 象牙細管封鎖材
US9827268B2 (en) 2013-08-06 2017-11-28 Kuraray Noritake Dental Inc. Curable calcium phosphate composition for biological hard tissue repair, bone repair material, and various dental materials
WO2015019601A1 (ja) 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 象牙細管封鎖材
US9526675B2 (en) 2013-08-06 2016-12-27 Kuraray Noritake Dental Inc. Dentinal tubule sealing material
EP3031441A4 (en) * 2013-08-06 2017-02-08 Kuraray Noritake Dental Inc. Curable calcium phosphate composition for in vivo hard tissue repair, bone repair material, and various dental materials
EP3031442A4 (en) * 2013-08-06 2017-02-08 Kuraray Noritake Dental Inc. Dentinal tubule sealing material
WO2015019600A1 (ja) 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
JPWO2015019600A1 (ja) * 2013-08-06 2017-03-02 クラレノリタケデンタル株式会社 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
WO2015046491A1 (ja) 2013-09-30 2015-04-02 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
EP3053570A4 (en) * 2013-09-30 2017-05-24 Kuraray Noritake Dental Inc. One-component-type dentinal tubule sealant
JPWO2015046491A1 (ja) * 2013-09-30 2017-03-09 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
US9962319B2 (en) 2013-09-30 2018-05-08 Kuraray Noritake Dental Inc. One-component-type dentinal tubule sealant
US10603250B2 (en) 2014-10-30 2020-03-31 Kuraray Noritake Dental Inc. One-pack type dentinal tubule occlusion material
WO2020090965A1 (ja) * 2018-10-31 2020-05-07 国立大学法人大阪大学 歯科治療用組成物
WO2022145480A1 (ja) 2020-12-28 2022-07-07 クラレノリタケデンタル株式会社 歯科用硬化性リン酸カルシウムセメント

Also Published As

Publication number Publication date
JP2015028069A (ja) 2015-02-12
EP2425843A1 (en) 2012-03-07
US20130251767A1 (en) 2013-09-26
US9415068B2 (en) 2016-08-16
US20120027829A1 (en) 2012-02-02
JPWO2010113800A1 (ja) 2012-10-11
EP2425843A4 (en) 2012-10-03
CN102448471B (zh) 2017-04-12
JP5816352B2 (ja) 2015-11-18
CN102448471A (zh) 2012-05-09
EP2425843B1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5816352B2 (ja) 象牙質知覚過敏抑制剤の製造方法
JP5838524B2 (ja) 象牙質知覚過敏抑制材及びその製造方法
JP5501346B2 (ja) 歯牙石灰化剤の製造方法
JP6333821B2 (ja) 象牙細管封鎖材
EP3053570B1 (en) One-component-type dentinal tubule sealant
JP2012097075A (ja) 歯牙石灰化剤及びその製造方法
JP5834355B2 (ja) 知覚過敏抑制剤及びその製造方法
JP6083742B2 (ja) 象牙細管封鎖材キット
JP5665465B2 (ja) 象牙細管封鎖剤
JP6316296B2 (ja) 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
JP6550395B2 (ja) 1材型の象牙細管封鎖材
JP6035608B2 (ja) 歯牙石灰化剤及びその製造方法
JP2012077024A (ja) 歯牙石灰化剤及びその製造方法
JP2024005110A (ja) 歯科用硬化性リン酸カルシウムセメント
JP6114962B2 (ja) 歯科修復用キット
WO2022145480A1 (ja) 歯科用硬化性リン酸カルシウムセメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024026.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259681

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010758572

Country of ref document: EP