WO2010100949A1 - Iii族窒化物半導体発光素子及びその製造方法、並びにランプ - Google Patents

Iii族窒化物半導体発光素子及びその製造方法、並びにランプ Download PDF

Info

Publication number
WO2010100949A1
WO2010100949A1 PCT/JP2010/001567 JP2010001567W WO2010100949A1 WO 2010100949 A1 WO2010100949 A1 WO 2010100949A1 JP 2010001567 W JP2010001567 W JP 2010001567W WO 2010100949 A1 WO2010100949 A1 WO 2010100949A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
type semiconductor
translucent electrode
light
Prior art date
Application number
PCT/JP2010/001567
Other languages
English (en)
French (fr)
Inventor
平岩大介
篠原裕直
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US13/255,037 priority Critical patent/US8502254B2/en
Priority to KR1020117021390A priority patent/KR101324442B1/ko
Publication of WO2010100949A1 publication Critical patent/WO2010100949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to a group III nitride semiconductor light-emitting device having a light-emitting diode (LED) structure, a method for manufacturing the same, and a lamp.
  • LED light-emitting diode
  • Group III nitride semiconductors have attracted attention as semiconductor materials for light-emitting elements that emit light of short wavelengths.
  • MOCVD method metal organic chemical vapor deposition method
  • MBE method molecular beam epitaxy method
  • an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer made of a group III nitride semiconductor are stacked in this order on a sapphire single crystal substrate.
  • the sapphire substrate is an insulator, its element structure generally has a structure in which the positive electrode formed on the p-type semiconductor layer and the negative electrode formed on the n-type semiconductor layer exist on the same plane.
  • a sapphire substrate using a translucent electrode as a positive electrode to extract light from the p-type semiconductor side and a highly reflective film such as Ag as a positive electrode there are two types of flip chip methods that extract light from the side.
  • External quantum efficiency is used as an index of the output of such a light emitting element. If the external quantum efficiency is high, it can be said that the light-emitting element has a high output.
  • the external quantum efficiency is expressed as a product of the internal quantum efficiency and the light extraction efficiency.
  • the internal quantum efficiency is a rate at which the energy of current injected into the device is converted into light in the light emitting layer.
  • the light extraction efficiency is a ratio of light that can be extracted outside the light emitting element in the light generated in the light emitting layer. Therefore, in order to improve the external quantum efficiency, it is necessary to improve the light extraction efficiency in addition to the light emission efficiency in the light emitting layer.
  • the gallium nitride compound semiconductor device having the above composition As a characteristic of the gallium nitride compound semiconductor device having the above composition, there is a small current diffusion in the lateral direction. For this reason, current is injected only into the semiconductor directly under the electrode, and light emitted from the light emitting layer is blocked by the electrode and is not extracted outside. Therefore, in such a light emitting element, a translucent electrode is usually used, and light is extracted through the translucent electrode.
  • a known conductive material such as a layer structure in which an oxide such as Ni or Co and Au as a contact metal are combined is used for the translucent electrode.
  • the entire light emitting layer (semiconductor layer) emits light uniformly as well as directly under the electrode.
  • a translucent electrode is provided on a semiconductor layer and a bonding pad electrode is provided thereon
  • current concentration is generated immediately below the bonding pad electrode as described above. For this reason, the light emitting action by the light emitting layer is concentrated just under the bonding pad electrode as described above, and there is a possibility that the light emission efficiency is lowered and the luminance is lowered.
  • Patent Documents 1 and 2 According to the light-emitting elements described in Patent Literatures 1 and 2, by providing the insulating layer having the above-described configuration, it is possible to effectively promote current diffusion in the lateral direction of the translucent electrode and to increase the light emission efficiency. Has been. However, Patent Documents 1 and 2 have a problem in that light emission is strong in the vicinity of the n-side bonding pad electrode, and it is difficult to obtain good electrical characteristics, and the light emission efficiency is not necessarily improved.
  • the present invention has been made in view of the above problems, and current concentration in the translucent electrode and the semiconductor layer directly under the n-side bonding pad electrode is suppressed, so that the light emission efficiency is excellent, and light absorption and multiplexing by the electrodes are improved. It is an object of the present invention to provide a group III nitride semiconductor light-emitting device that suppresses loss due to reflection, has excellent light extraction efficiency, and has high external quantum efficiency and electrical characteristics. Another object of the present invention is to provide a method for producing a group III nitride semiconductor light-emitting device capable of producing a light-emitting device having excellent light emission efficiency and light extraction efficiency as described above. Furthermore, an object of the present invention is to provide a lamp that uses the above-mentioned group III nitride semiconductor light emitting device and has excellent light emission characteristics.
  • the present inventor has intensively studied to solve the above problem, and in the conventional light emitting device, the sheet resistance of the n-side layer and the p-side layer is set to be approximately the same, and the current is uniformly diffused in terms of luminous efficiency.
  • the sheet resistance of the n-type semiconductor layer on the n side is lower than the sheet resistance of the translucent electrode on the p side. It has been found that light extraction efficiency is improved by reducing light emission. At this time, it is clear that light absorption and multiple reflection by the p-side bonding pad electrode can be prevented by providing an insulating layer immediately below.
  • the present inventors have found that the sheet resistance of the n-side layer is dominant in the driving voltage of the light-emitting element, and by reducing the sheet resistance of the n-side layer, in particular, 30 to The inventors have found that the electrical characteristics are greatly improved when a large driving current of about 100 mA is applied to the light emitting element, and thus completed the present invention. That is, the present invention relates to the following.
  • a semiconductor layer in which an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer are sequentially stacked is formed on a single crystal group III nitride semiconductor layer formed on a substrate, and the p-type semiconductor
  • a positive electrode bonding pad is provided on the surface of the translucent electrode above the insulating layer provided on the p-type semiconductor layer, and a sheet resistance of the n-type semiconductor layer However, it is lower than the sheet resistance of the said translucent electrode,
  • the group III nitride semiconductor light-emitting device characterized by the above-mentioned.
  • the translucent electrode includes indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium cerium oxide (ICO: Indium Tin Oxide).
  • a method of manufacturing a group III nitride semiconductor light-emitting device comprising: a semiconductor layer forming step of forming a transparent electrode; and a transparent electrode forming step of forming a transparent electrode on the p-type semiconductor layer,
  • the translucent electrode forming step an insulating layer is formed on at least a part of the p-type semiconductor layer, and then the translucent electrode is formed on the p-type semiconductor layer so as to cover the insulating layer,
  • a positive electrode forming step of forming a positive electrode bonding pad above the insulating layer formed on the p-type semiconductor layer on the surface of the translucent electrode is provided,
  • the semiconductor layer forming step is the n-type
  • the n-type semiconductor layer is formed to have a sheet resistance of 15 ⁇ / ⁇ or less, and in the translucent electrode forming step, the translucent electrode is set to 30 ⁇ / ⁇ or less.
  • the translucent electrode forming step includes indium tin oxide (ITO), indium zinc oxide (IZO), and indium gallium oxide (IGO) as materials for forming the translucent electrode. Any one of the above [6] to [8], wherein at least one selected from the group consisting of Indium Gallium Oxide), Indium Cerium Oxide (ICO) and Conductive Titanium Oxide (TiO 2 ) is used.
  • the III according to any one of [6] to [9], wherein the translucent electrode forming step uses silicon oxide (SiO 2 ) as a material for forming the insulating layer.
  • a lamp comprising the group III nitride semiconductor light-emitting device according to any one of [1] to [5] above.
  • a transparent electrode is formed on the p-type semiconductor layer, and an insulating layer is provided on at least a part of the p-type semiconductor layer, and the transparent electrode covers the insulating layer. Since the positive electrode bonding pad is provided above the insulating layer provided on the p-type semiconductor layer on the surface of the translucent electrode, at a position corresponding to the positive electrode bonding pad in the translucent electrode and the semiconductor layer.
  • an epitaxial process for forming a single crystal group III nitride semiconductor layer on a substrate, and an n-type semiconductor layer on the group III nitride semiconductor layer A semiconductor layer forming step of forming a semiconductor layer by sequentially laminating a light emitting layer and a p-type semiconductor layer, and a translucent electrode forming step of forming a translucent electrode on the p-type semiconductor layer.
  • the conductive electrode forming step an insulating layer is formed on at least a part of the p-type semiconductor layer, and then a translucent electrode is formed on the p-type semiconductor layer so as to cover the insulating layer.
  • a positive electrode forming step of forming a positive electrode bonding pad on the surface of the translucent electrode and above the insulating layer formed on the p-type semiconductor layer is provided.
  • Sheet resistance is higher than sheet resistance of translucent electrode Since the n-type semiconductor layer is formed so as to be low, the above-described group III nitride semiconductor light-emitting device having excellent light emission efficiency and light extraction efficiency, high external quantum efficiency, and excellent electrical characteristics Can be manufactured.
  • the lamp according to the present invention uses the group III nitride semiconductor light-emitting device of the present invention, the lamp has excellent light emission characteristics.
  • FIG. 4 is a diagram schematically illustrating another example of the group III nitride semiconductor light-emitting device according to the present invention, and is a perspective view illustrating a main part of FIG. 3.
  • a group III nitride semiconductor light-emitting device (hereinafter sometimes abbreviated as a light-emitting device) according to the present invention, a manufacturing method thereof, and an embodiment of a lamp will be described with reference to FIGS. 1 to 6 as appropriate. .
  • the light emitting device 1 includes a single crystal underlayer (group III nitride semiconductor layer) 3 formed on the main surface 11a of the substrate 11 as shown in FIG. 1 and FIG.
  • a semiconductor layer 20 in which a p-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6 are sequentially stacked is formed, and a translucent electrode 7 is formed on the p-type semiconductor layer 6.
  • An insulating layer 15 is provided on at least a part of the transparent electrode 7, and the translucent electrode 7 is formed so as to cover the insulating layer 15.
  • the light emitting element 1 of the illustrated example has a planar shape in the direction in which the positive electrode bonding pad 8 and the negative electrode bonding pad 9 are separated, that is, the chip length dimension (L) in FIG. 2 is the chip width dimension (W). It is longer than that and is configured as a substantially rectangular shape.
  • the light emitting element 1 of the example demonstrated by this embodiment is comprised as a light emitting diode (LED) like an example of illustration with the said structure.
  • LED light emitting diode
  • the material that can be used for the substrate 11 as described above is not particularly limited as long as it is a substrate material on which a group III nitride semiconductor crystal is epitaxially grown, and various materials are selected.
  • a substrate material on which a group III nitride semiconductor crystal is epitaxially grown can be used.
  • sapphire is particularly preferably used, and the buffer layer 2 described in detail later is formed on the main surface 11a made of the c-plane of the substrate 11 made of sapphire. desirable.
  • the buffer layer 2 is formed without using ammonia.
  • the buffer layer 2 also functions as a coat layer, which is effective in preventing chemical alteration of the substrate 11.
  • the temperature of the substrate 11 can be kept low. Therefore, even when the substrate 11 made of a material that decomposes at a high temperature is used, the substrate 11 is damaged.
  • Each layer can be formed on the substrate without giving.
  • Buffer layer In the present invention, it is preferable to form the buffer layer 2 on the main surface 11a of the substrate 11 and form the underlayer 3 thereon.
  • Buffer layer 2 for example, is laminated on the substrate 11 by Al X Ga 1-X N ( 0 ⁇ x ⁇ 1) having a composition, for example, activated by plasma and a gas and metal material including a V group element reactions It can be formed by the reactive sputtering method.
  • a film formed by a method using a plasma metal raw material as in this embodiment has an effect that alignment is easily obtained.
  • the buffer layer 2 serves to alleviate the difference in lattice constant between the substrate 11 and the base layer 3 and facilitate the formation of a C-axis oriented single crystal layer on the C surface of the substrate 11. Therefore, when a single crystal group III nitride semiconductor layer (underlying layer 3) is laminated on the buffer layer 2, the underlayer 3 having better crystallinity can be formed.
  • the buffer layer 2 may be omitted.
  • the buffer layer 2 is preferably composed of the composition Al X Ga 1-X N (0 ⁇ x ⁇ 1), and more preferably AlN.
  • the buffer layer to be laminated on the substrate preferably has a composition containing Al, and the group III nitride compound represented by the general formula Al X Ga 1-X N (0 ⁇ x ⁇ 1) Any material can be used, and a composition containing As or P as the group V can also be used.
  • the buffer layer 2 has a composition containing Al, it is preferably GaAlN.
  • the Al composition is more preferably 50% or more.
  • the buffer layer 2 is most preferably configured with AlN.
  • the material constituting the buffer layer 2 a material having the same crystal structure as that of the group III nitride semiconductor can be used, but the length of the lattice is close to that of the group III nitride semiconductor constituting the underlayer described later. And nitrides of group IIIa elements of the periodic table are particularly preferred.
  • the group III nitride crystal forming the buffer layer 2 has a hexagonal crystal structure, and can be formed into a single crystal film by controlling the film forming conditions. Further, the group III nitride crystal can be formed into a columnar crystal (polycrystal) having a texture based on a hexagonal column by controlling the film forming conditions. Note that the columnar crystal described here is a crystal which is separated by forming a crystal grain boundary between adjacent crystal grains, and is itself a columnar shape as a longitudinal sectional shape.
  • the buffer layer 2 preferably has a single crystal structure from the viewpoint of the buffer function.
  • the group III nitride crystal has a hexagonal crystal and forms a structure based on a hexagonal column.
  • Group III nitride crystals can be grown not only in the upward direction but also in the in-plane direction by controlling the film formation conditions and the like.
  • the buffer layer 2 having such a single crystal structure is formed on the substrate 11, the buffer function of the buffer layer 2 works effectively, so that the group III nitride semiconductor layer formed thereon is A crystal film having good orientation and crystallinity is obtained.
  • the thickness of the buffer layer 2 is preferably in the range of 0.01 to 0.5 ⁇ m. By setting the film thickness of the buffer layer 2 within this range, the buffer has good orientation and effectively functions as a coat layer when each layer made of a group III nitride semiconductor is formed on the buffer layer 2. Layer 2 is obtained. When the thickness of the buffer layer 2 is less than 0.01 ⁇ m, a sufficient function as the above-described coat layer cannot be obtained, and a buffer function that relaxes the difference in lattice constant between the substrate 11 and the base layer 3 can be obtained. It may not be obtained sufficiently.
  • the buffer layer 2 when the buffer layer 2 is formed with a film thickness exceeding 0.5 ⁇ m, the film forming process time becomes long despite the fact that the buffer function and the function as the coat layer are not changed, and the productivity may be reduced. There is.
  • the thickness of the buffer layer 2 is more preferably in the range of 0.02 to 0.1 ⁇ m.
  • the underlayer (group III nitride semiconductor layer) 3 provided in the light emitting device 1 of the present invention is made of a group III nitride semiconductor as described above, and is laminated on the buffer layer 2 by a conventionally known MOCVD method. can do.
  • the use of the 1-y N layer (0 ⁇ y ⁇ 1, preferably 0 ⁇ y ⁇ 0.5, more preferably 0 ⁇ y ⁇ 0.1) allows formation of the underlayer 3 with good crystallinity. And more preferable.
  • a material different from that of the buffer layer 2 may be used as the material of the base layer 3, but the same material as that of the buffer layer 2 may be used.
  • the underlayer 3 may have a configuration in which n-type impurities are doped within the range of 1 ⁇ 10 17 to 1 ⁇ 10 19 atoms / cm 3 as necessary, but may be undoped ( ⁇ 1 ⁇ 10 17 elements). / Cm 3 ), and undoped is preferable in that good crystallinity can be maintained.
  • the substrate 11 is conductive, electrodes can be formed above and below the light emitting element by doping the base layer 3 with a dopant to make it conductive.
  • an insulating material is used for the substrate 11, a chip structure is provided in which the positive electrode and the negative electrode are provided on the same surface of the light emitting element.
  • the n-type impurity doped in the underlayer 3 is not particularly limited, and examples thereof include Si, Ge, and Sn, and preferably Si and Ge.
  • the thickness of the underlayer 3 is preferably in the range of 1 to 8 ⁇ m from the viewpoint of obtaining an underlayer with good crystallinity, and in the range of 2 to 5 ⁇ m shortens the process time required for film formation. This is more preferable in terms of productivity.
  • the semiconductor layer 20 formed on the base layer 3 includes an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer each made of a group III nitride semiconductor. Each layer of such a semiconductor layer 20 is formed by MOCVD, so that higher crystallinity can be obtained.
  • the n-type semiconductor layer 4 is usually composed of an n-type contact layer 4a and an n-type cladding layer 4b.
  • the n-type contact layer 4a can also serve as the n-type cladding layer 4b.
  • the n-type contact layer 4a is a layer for providing a negative electrode.
  • the n-type contact layer 4a is composed of an Al x Ga 1-x N layer (0 ⁇ x ⁇ 1, preferably 0 ⁇ x ⁇ 0.5, more preferably 0 ⁇ x ⁇ 0.1). preferable.
  • the n-type contact layer 4a is preferably doped with an n-type impurity, and the n-type impurity is preferably 1.5 ⁇ 10 17 to 1.5 ⁇ 10 20 / cm 3 , preferably 1.5 ⁇ 10 18.
  • n-type semiconductor layer 4 When contained at a concentration of ⁇ 1.5 ⁇ 10 19 / cm 3 , it is preferable in terms of maintaining good ohmic contact with the negative electrode and effectively reducing the sheet resistance Rs2 of the n-type semiconductor layer 4.
  • an n-type impurity For example, Si, Ge, Sn, etc. are mentioned, Preferably Si and Ge are mentioned.
  • the film thickness of the n-type contact layer 4a is preferably 0.5 to 5 ⁇ m, and more preferably set to a range of 1 to 3 ⁇ m. When the film thickness of the n-type contact layer 4a is in the above range, the crystallinity of the semiconductor is favorably maintained.
  • the n-type cladding layer 4b is a layer that injects carriers into the light emitting layer 5 and confines carriers.
  • the n-type cladding layer 4b can be formed of AlGaN, GaN, GaInN, or the like. Alternatively, a heterojunction of these structures or a superlattice structure in which a plurality of layers are stacked may be used. Needless to say, when the n-type cladding layer 4b is formed of GaInN, it is preferably larger than the GaInN band gap of the light emitting layer 5.
  • the film thickness of the n-type cladding layer 4b is not particularly limited, but is preferably 0.005 to 0.5 ⁇ m, and more preferably 0.005 to 0.1 ⁇ m.
  • the n-type doping concentration of the n-type cladding layer 4b is preferably 1.5 ⁇ 10 17 to 1.5 ⁇ 10 20 / cm 3 , more preferably 1.5 ⁇ 10 18 to 1.5 ⁇ 10 19 / cm 3 . is there. A doping concentration within this range is preferable from the standpoint that it is possible to effectively reduce the sheet resistance Rs2 of the n-type semiconductor layer 4 in addition to maintaining good crystallinity and reducing the operating voltage of the element.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is lower than the sheet resistance Rs1 of the translucent electrode 7 to be described in detail later.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is preferably 15 ⁇ / ⁇ or less, and the sheet resistance Rs1 of the translucent electrode 7 is more preferably 30 ⁇ / ⁇ or less.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is as described above, it is preferable that the thickness of the entire n-type semiconductor layer 4 is 2 ⁇ m or more.
  • a method of controlling the sheet resistance Rs2 of the n-type semiconductor layer 4 a method of controlling the doping amount of n-type impurities such as Si can also be performed.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 has a characteristic lower than that of the sheet resistance Rs1 of the translucent electrode 7, a conventional light emitting device is provided with a doping amount of an n-type impurity such as Si.
  • it is preferably about 1.5 times the standard doping amount of the n-type semiconductor layer.
  • the sheet resistance Rs2 can be controlled within the desired range described above, and specifically, the dope amount is preferably set within the above range.
  • the sheet resistance of the n-type semiconductor layer 4 and the p-side translucent electrode 7 is set to be approximately the same, whereby a current is uniformly supplied to the translucent electrode 7 and the semiconductor layer 20. It has been considered preferable to diffuse in view of luminous efficiency. However, such a configuration has a problem that the light emission efficiency and the light extraction efficiency are lowered.
  • an insulating layer 15 (to be described in detail later) is provided on the p-type semiconductor layer 6 and the sheet resistance (Rs2) of the n-type semiconductor layer 4 is transparent.
  • the sheet resistance (Rs1) of the photoelectrode 7 By controlling to be lower than the sheet resistance (Rs1) of the photoelectrode 7, light emission near the negative electrode bonding pad 9 provided on the n-type semiconductor layer 4 is suppressed, while the light emitting layer 15 is removed. It has been found that the light extraction efficiency is improved in the vicinity of the positive electrode bonding pad 8 that is not formed because the area of the portion with high emission intensity is increased.
  • the present inventors have found that the sheet resistance Rs2 of the n-type semiconductor layer 4 works dominantly on the driving voltage (Vf) of the light emitting element 1, and this sheet resistance Rs2 is used as the sheet of the translucent electrode 7. It has been found that the electrical characteristics are greatly improved by lowering the resistance (Rs1). Thereby, the light extraction efficiency is improved, the external quantum efficiency is excellent, and the light emitting device 1 having high light emission output and electrical characteristics is obtained.
  • the n-type cladding layer 4b is a layer including a superlattice structure, a detailed illustration is omitted, but an n-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less. And an n-side second layer made of a group III nitride semiconductor having a composition different from that of the n-side first layer and having a film thickness of 100 angstroms or less may be included.
  • the n-type cladding layer 4b may include a structure in which n-side first layers and n-side second layers are alternately and repeatedly stacked. Preferably, either the n-side first layer or the n-side second layer is in contact with the light emitting layer 5).
  • the n-side first layer and the n-side second layer as described above include, for example, AlGaN-based Al (sometimes simply referred to as AlGaN), GaInN-based (including simply InGaN), and In.
  • the composition can be GaN.
  • the n-side first layer and the n-side second layer are composed of an alternate structure of GaInN / GaN, an alternate structure of AlGaN / GaN, an alternate structure of GaInN / AlGaN, and an alternate structure of GaInN / GaInN having different compositions (“The description of “differing composition” means that each elemental composition ratio is different, and the same applies hereinafter), and may be an AlGaN / AlGaN alternating structure having a different composition.
  • the n-side first layer and the n-side second layer are preferably GaInN / GaInN having different GaInN / GaN structures or different compositions.
  • the superlattice layers of the n-side first layer and the n-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Most preferred. If the film thickness of the n-side first layer and the n-side second layer forming the superlattice layer is more than 100 angstroms, crystal defects are likely to occur, which is not preferable.
  • the n-side first layer and the n-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure.
  • the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
  • Si is suitable as an impurity.
  • the n-side superlattice multilayer film as described above may be manufactured while doping is appropriately turned ON / OFF, even if the composition represented by GaInN, AlGaN, or GaN is the same.
  • the n-type cladding layer 4b has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting device 1 having excellent electric characteristics can be obtained.
  • Light emitting layer Examples of the light emitting layer stacked on the n-type semiconductor layer include the light emitting layer 5 having a structure such as a single quantum well structure or a multiple quantum well structure.
  • the well layer having a quantum well structure as shown in FIG. 1 is generally a group III nitride having a composition of Ga 1-y In y N (0 ⁇ y ⁇ 0.4) in the case of a structure emitting blue light.
  • a material semiconductor is used, such as Ga 1-y In y N0.07 ⁇ y ⁇ 0.20. Used.
  • the Ga 1-y In y N is used as the well layer 5b, and Al x Ga 1-x N (0 ⁇ 5) having a larger band gap energy than the well layer 5b. z ⁇ 0.3) is preferably the barrier layer 5a. Further, the well layer 5b and the barrier layer 5a may or may not be doped with impurities.
  • the film thickness of the well layer 5b can be set to a film thickness that can provide a quantum effect, for example, 1 to 10 nm, and more preferably 2 to 6 nm, from the viewpoint of light emission output.
  • the p-type semiconductor layer 6 is generally composed of a p-type cladding layer 6a and a p-type contact layer 6b.
  • the p-type contact layer 6b can also serve as the p-type cladding layer 6a.
  • the p-type cladding layer 6a is a layer for confining carriers in the light emitting layer 5 and injecting carriers.
  • the composition of the p-type cladding layer 6a is not particularly limited as long as it is larger than the band gap energy of the light-emitting layer 5 and can confine carriers in the light-emitting layer 5, but is preferably Al x Ga 1-1. xN (0 ⁇ x ⁇ 0.4).
  • the p-type cladding layer 6a is made of such AlGaN, it is preferable in terms of confining carriers in the light emitting layer.
  • the film thickness of the p-type cladding layer 6a is not particularly limited, but is preferably 1 to 400 nm, more preferably 5 to 100 nm.
  • the p-type doping concentration of the p-type cladding layer 6a is preferably 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , more preferably 1 ⁇ 10 19 to 1 ⁇ 10 20 / cm 3 .
  • the p-type dope concentration is in the above range, a good p-type crystal can be obtained without reducing the crystallinity.
  • the p-type cladding layer 6a may have a superlattice structure in which a plurality of layers are stacked.
  • the p-type cladding layer 6a is a layer including a superlattice structure
  • a detailed illustration is omitted, but a p-side first layer made of a group III nitride semiconductor having a thickness of 100 angstroms or less and A structure in which a p-side second layer made of a group III nitride semiconductor having a composition different from that of the p-side first layer and having a film thickness of 100 angstroms or less is stacked may be included. Further, it may include a structure in which p-side first layers and p-side second layers are alternately and repeatedly stacked.
  • the p-side first layer and the p-side second layer as described above may have different compositions, for example, any composition of AlGaN, GaInN, or GaN.
  • the GaInN / GaN alternating structure AlGaN.
  • An alternating structure of / GaN or an alternating structure of GaInN / AlGaN may be used.
  • the p-side first layer and the p-side second layer preferably have an AlGaN / AlGaN or AlGaN / GaN alternating structure.
  • the superlattice layers of the p-side first layer and the p-side second layer are each preferably 60 angstroms or less, more preferably 40 angstroms or less, and each in the range of 10 angstroms to 40 angstroms. Is most preferred. If the thickness of the p-side first layer and the p-side second layer forming the superlattice layer exceeds 100 angstroms, it becomes a layer containing many crystal defects and the like, which is not preferable.
  • the p-side first layer and the p-side second layer may each have a doped structure, or a combination of a doped structure and an undoped structure.
  • the impurity to be doped conventionally known impurities can be applied to the material composition without any limitation.
  • Mg is suitable as an impurity.
  • the p-side superlattice multilayer film as described above may be manufactured while doping is appropriately turned on and off even if the composition represented by GaInN, AlGaN, and GaN is the same.
  • the p-type cladding layer 6a has a layer structure including a superlattice structure, the light emission output is remarkably improved and the light emitting device 1 having excellent electric characteristics can be obtained.
  • the p-type contact layer 6b is a layer for providing a positive electrode.
  • the p-type contact layer 6b is preferably Al x Ga 1-x N (0 ⁇ x ⁇ 0.4).
  • Al composition is in the above range, it is preferable in terms of maintaining good crystallinity and good ohmic contact with the p ohmic electrode.
  • a p-type impurity (dopant) is contained at a concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 / cm 3 , preferably 5 ⁇ 10 19 to 5 ⁇ 10 20 / cm 3 , good ohmic contact can be obtained. It is preferable in terms of maintenance, prevention of crack generation, and good crystallinity.
  • the thickness of the p-type contact layer 6b is not particularly limited, but is preferably 0.01 to 0.5 ⁇ m, and more preferably 0.05 to 0.2 ⁇ m. When the film thickness of the p-type contact layer 6b is within this range, it is preferable in terms of light emission output.
  • an insulating layer 15 made of an insulating material is provided at least partly on the p-type semiconductor layer 6, in the light emitting device 1 of the example shown in FIGS.
  • the insulating layer 15 is formed so as to be covered with the translucent electrode 7.
  • the material of the insulating layer 15 is not particularly limited, and a conventionally known insulating oxide film or the like can be used without any limitation, but silicon oxide (SiO 2 ) is particularly preferable.
  • the conductive thin film forming the translucent electrode 7 that is not provided with the insulating layer 15 made of an insulating material is formed in the lateral direction rather than the current diffusion in the vertical direction (semiconductor layer direction). Since current diffusion in the (in-film direction) is small, current concentration tends to occur immediately below the bonding pad electrode (positive electrode bonding pad 8) formed thereon. For this reason, the region where the light emitting action is obtained in the light emitting layer 5 is only directly below the bonding pad electrode, and there is a problem that the light emission efficiency of the light extracted from the light emitting element is lowered and a desired luminance cannot be obtained.
  • the insulating layer 15 having the above-described structure covered with the translucent electrode 7 is provided on the p-type semiconductor layer 6, thereby allowing the translucent electrode 7 to be within the film.
  • Current diffusion at is promoted. That is, in the translucent electrode 8 and the semiconductor layer 20, the current is diffused mainly in the periphery of the position corresponding to the insulating layer 15 and the positive electrode bonding pad 8.
  • the light emitting action is suppressed at a position immediately below the insulating layer 15 in the light emitting layer 5, and a good light emitting action is obtained in the peripheral part and the peripheral part of the negative electrode bonding pad 9, so that the light extracted from the light emitting element can be obtained.
  • Luminous efficiency is improved. Therefore, the light emitting device 1 having excellent internal quantum efficiency and enhanced emission luminance can be realized.
  • FIG. 5 is a graph showing the relationship between the forward current (I) of the light emitting element and the light emission output (Po).
  • curves (a), (b), and (c) are provided with an insulating layer.
  • the characteristics of the light emitting device according to the present invention are also shown.
  • curves (d) and (e) indicate characteristics of a light-emitting element that does not include an insulating layer.
  • the light emitting device according to the present invention in which an insulating layer is provided and current is diffused to the periphery of the insulating layer and the positive electrode bonding pad is compared with the light emitting device in which the insulating layer is not provided.
  • a high light emission output (Po) can be obtained even when the forward current (I) is the same.
  • the insulating layer 15 is provided on the p-type semiconductor layer 6, so that a current flows in the periphery of the position A corresponding to the insulating layer 15 and the positive electrode bonding pad 8 in the translucent electrode 7 and the semiconductor layer 20. This is considered to be because the light is diffused and the peripheral portion emits light effectively.
  • the thickness of the insulating layer 15 is preferably in the range of 50 to 500 nm, and more preferably in the range of 100 to 300 nm. If the thickness of the insulating layer 15 is in the above range, the effect of suppressing the current concentration as described above can be obtained more effectively.
  • the shape of the insulating layer 15 in plan view is not particularly limited, and for example, a substantially circular shape or a substantially square shape can be selected and adopted as appropriate. Is a substantially circular shape.
  • the diameter is preferably larger than the diameter of the positive electrode bonding pad 8 within a range of 30 ⁇ m or less, and is 10 ⁇ m or less. It is more preferable to form large within the range.
  • the translucent electrode 7 is a translucent electrode made of a conductive oxide film or the like, and a translucent material usually used in this technical field can be used without any limitation.
  • a translucent material for example, ITO (In 2 O 3 —SnO 2 ), AZO (ZnO—Al 2 O 3 ), IZO (In 2 O 3 —ZnO: indium zinc oxide), GZO (Indium Zinc Oxide), GZO ( ZnO—Ga 2 O 3 ), IGO (In 2 O 3 —Ga 2 O 3 ), ICO (In 2 O 3 —Ce 2 O 3 ), titanium oxide doped with any impurity element (TiO 2 ), etc.
  • the material to include is mentioned.
  • reduced TiO 2 -X obtained by partially reducing TiO 2 may be used as titanium oxide, as long as it is conductive.
  • examples of the material doped into titanium oxide include Nb. In the present invention, it is more preferable to use at least one of ITO, IZO, IGO, ICO, and conductive titanium oxide.
  • the method of forming the translucent electrode 7 is not particularly limited, and can be provided by conventional means well known in this technical field.
  • the structure of the translucent electrode 7 can also be used without any limitation including any conventionally known structure.
  • the translucent electrode 7 may be formed so as to cover the entire surface of the insulating layer 15 and to cover almost the entire surface of the p-type semiconductor layer 6, or may be formed in a lattice shape or a tree shape with a gap. It is also possible.
  • thermal annealing for the purpose of alloying or transparency may or may not be performed.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is lower than the sheet resistance Rs1 of the translucent electrode 7 on the p side.
  • the light emitting layer 5 at the position around the positive electrode bonding pad 8 mainly emits light, so that light emission near the negative electrode bonding pad 9 provided on the n-type semiconductor layer 4 is suppressed, while the light emitting layer 15 In the vicinity of the positive electrode bonding pad 8 that has not been removed, the area of the portion with high emission intensity is increased, so that the light extraction efficiency is improved.
  • the film thickness of the translucent electrode 7 can be made thin, the light transmittance can be improved and the light extraction efficiency can be further improved. Thereby, the light emitting element 1 which is excellent in light emission efficiency and light extraction efficiency, and has high light emission intensity and electrical characteristics can be realized.
  • the sheet resistance Rs1 of the translucent electrode 7 is 30 ⁇ / ⁇ or less.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is lower than the sheet resistance Rs1 of the translucent electrode 7 on the p side, and the sheet resistance Rs2 of the n-type semiconductor layer 4 is 15 ⁇ / ⁇ .
  • the method for controlling the sheet resistance Rs1 of the translucent electrode 7 is not particularly limited.
  • a method of controlling the film resistance by adjusting the film thickness or annealing may be employed.
  • the sheet resistance Rs1 of the translucent electrode 7 is made higher than the sheet resistance Rs2 of the n-type semiconductor layer 4 and the sheet resistance Rs1 is 30 ⁇ / ⁇ or less as in the present embodiment, for example, It is possible to control to a desired characteristic by reducing the film thickness.
  • the thickness of the translucent electrode 7 is preferably 100 nm or less. By setting the thickness of the translucent electrode 7 as described above, the sheet resistance Rs1 can be controlled to 30 ⁇ / ⁇ or less. Further, the maximum thickness of the translucent electrode 7 is preferably set to 600 nm or less in consideration of productivity.
  • the light emitting element 1 which concerns on this invention, it is more preferable to set it as the structure by which the unevenness
  • FIG. Thereby, the light extraction efficiency from the translucent electrode 7 is improved, and the sheet resistance Rs1 of the translucent electrode 7 can be controlled by optimizing the shape and size of the unevenness.
  • the positive electrode bonding pad 8 is provided on the translucent electrode 7, and the negative electrode bonding pad 9 is provided so as to be in contact with the n-type contact layer provided in the n-type semiconductor layer 4. .
  • the positive electrode bonding pad 8 is provided on a part of the translucent electrode 7 made of a translucent conductive oxide film layer in contact with the p-type semiconductor layer 6 and the insulating layer 15. . Further, the positive electrode bonding pad 8 in the illustrated example is provided at a position A corresponding to the insulating layer 15 on the surface 7 a of the translucent electrode 7.
  • the positive electrode bonding pad 8 is provided for electrical connection with a circuit board, a lead frame or the like.
  • various structures using Au, Al, Ni, Cu and the like are well known, and these known materials and structures can be used without any limitation.
  • the thickness of the positive electrode bonding pad 8 is preferably in the range of 100 to 1500 nm. In addition, in view of the characteristics of the bonding pad, the larger the thickness, the higher the bondability. Therefore, the thickness of the positive electrode bonding pad 8 is more preferably 300 nm or more.
  • the positive electrode bonding pad 8 is preferably provided at the position A corresponding to the insulating layer 15 on the surface 7a of the translucent electrode 7.
  • a through hole (not shown) is provided at a position A corresponding to the insulating layer 15 on the surface 7a of the translucent electrode 7, and the positive electrode bonding pad 8 is in contact with the insulating layer 15 through the through hole. It is also possible to have a configuration provided. With such a configuration, an effect that the bonding strength of the positive electrode bonding pad 8 is improved can be obtained.
  • the negative electrode bonding pad 9 is formed in contact with the n-type semiconductor layer 4 of the semiconductor layer 20. For this reason, when forming the negative electrode bonding pad 9, a part of the light emitting layer 5 and the p-type semiconductor layer 6 is removed to expose the n-type contact layer of the n-type semiconductor layer 4, and the negative electrode bonding pad is formed thereon. 9 is formed.
  • compositions and structures are known, and these known compositions and structures can be used without any limitation, and can be provided by conventional means well known in this technical field.
  • the formation position on the light emitting element 1 and the distance between electrode centers of the positive electrode bonding pad 8 and the negative electrode bonding pad 9 described above are not particularly limited. However, in order to obtain more excellent light emission efficiency and light extraction efficiency, it is preferable to appropriately adjust the formation position of each bonding pad and the distance between the electrode centers.
  • the light emitting element 1 having a substantially rectangular shape in plan view as in the example shown in FIGS. 1 and 2 is configured, first, the negative electrode bonding pad 9 is disposed near one end side in the longitudinal direction of the light emitting element 1 to emit light.
  • a configuration in which the positive electrode bonding pad 8 is disposed in the vicinity of the approximate center of the element 1 or in the vicinity of the other end side in the longitudinal direction is preferable from the viewpoint of easily obtaining the high light emission efficiency and the light extraction efficiency as described above.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 provided in the semiconductor layer 20 is lower than the sheet resistance Rs1 of the translucent electrode 7. This suppresses current concentration when current flows from the negative electrode bonding pad 9 through the n-type semiconductor layer 4 through the light-emitting layer 5 and the p-type semiconductor layer 6 and flows through the translucent electrode 7.
  • the light emitting device 1 excellent in the above can be obtained.
  • the chip size of the light emitting element 1 in plan view that is, the electrode separation direction dimension (chip length dimension) L in the direction in which the positive electrode bonding pad 8 and the negative electrode bonding pad 9 are separated, and the electrode separation direction.
  • the chip width dimension W in the direction orthogonal to is not particularly limited.
  • the electrode separation direction dimension L and the chip width dimension W may be a dimensional ratio in which the chip shape in plan view is a square shape, or may be a dimensional ratio in which the chip shape is a rectangular shape.
  • the effect of improving the luminous efficiency according to the present invention can be obtained. However, in order to make the effect of improving the light emission efficiency obtained by the above configuration even more remarkable, as shown in the example of FIG. It is more preferable to make it long and have a substantially rectangular shape.
  • the light-emitting element includes the insulating layer 15 having the above-described configuration, and the sheet resistance Rs2 of the n-type semiconductor layer 4 is lower than the sheet resistance Rs1 of the translucent electrode 7.
  • the drive current (forward current) IF is preferably used in the range of about 30 to 100 mA.
  • the light emitting element driven under such conditions is used for illumination using a reflector or the like, for headlamp applications, and the like.
  • the light emitting element 1 is driven with a relatively large current to obtain a high light emission intensity, and is suitable for the above-described illumination application. A more preferable chip size when the light emitting element 1 is driven under the above conditions will be described in detail below.
  • the dimension L in the electrode separation direction in a plan view is 400 ⁇ m or more, more preferably 400 to 550 ⁇ m
  • the chip width dimension W is 180 ⁇ m or more, more preferably 180 to 260 ⁇ m.
  • the chip size (W ⁇ L) in plan view can be a combination of 260 ⁇ 550 ⁇ m, 240 ⁇ 400 ⁇ m, 180 ⁇ 400 ⁇ m, and the like.
  • the semiconductor layer 20 (light emission) immediately below the positive electrode bonding pad 8 is formed by adopting the above chip size and shape.
  • the action of suppressing light emission in the layer 5) and suppressing light emission in the vicinity of the negative electrode bonding pad 9 becomes more remarkable.
  • the light emitting layer 5 located mainly in the periphery of the positive electrode bonding pad 8 emits light effectively, while light emission near the negative electrode bonding pad 9 provided on the n-type semiconductor layer 4 is further suppressed. Therefore, in the periphery of the positive electrode bonding pad 8 from which the light emitting layer 15 has not been removed, the area of the portion with high light emission intensity is further increased, so that the light emission efficiency is further improved.
  • the horizontal and vertical dimensions of the light-emitting element 1, that is, the electrode separation direction dimension L ⁇ the chip width dimension W are within the above range, and the area in plan view is about 180,000 ⁇ m 2 or less. It is preferable from the point that the above-mentioned effect of improving the luminous efficiency becomes remarkable.
  • the planar view area is 154,000 ⁇ m 2
  • the chip size (W ⁇ L) is 280 ⁇ 550 ⁇ m
  • the planar view area is 143 If it is 2,000 ⁇ m 2 and 240 ⁇ 400 ⁇ m, it is 96,000 ⁇ m 2 , and if it is 180 ⁇ 400 ⁇ m, it is 72,000 ⁇ m 2 .
  • the sheet resistance Rs2 on the n-type semiconductor layer 4 side is lower as the planar view area of the light emitting element is larger.
  • the sheet resistance Rs2 on the n-type semiconductor layer 4 side is a translucent electrode particularly when the light emitting element is driven by applying a large current and has a large area in plan view, that is, a light emitting area. 7, the light emission efficiency improvement effect as described above can be obtained more remarkably.
  • the electrode separation direction dimension L ⁇ chip width dimension W of the light emitting element 1 and the planar view area are within the above ranges, and the horizontal / vertical dimension ratio in the planar view, that is, (electrode separation) It is preferable that the direction dimension L) / (chip width dimension W) is in the range of 1.5 to 2.7 from the viewpoint that the above-described effect of improving the light emission efficiency becomes remarkable. For example, when the chip size (L ⁇ W) is 280 ⁇ 550 ⁇ m, the horizontal / vertical dimension ratio (L / W) is 2.0.
  • the distance between the electrode centers of the positive electrode bonding pad 8 and the negative electrode bonding pad 9 described above is limited by the electrode separation direction dimension L of the light emitting element 1.
  • the distance between the electrode centers is expressed by the following expression ⁇ dimension L dimension of the light emitting element L ⁇ 0.5 to 0.75 ⁇ with the planar view size and shape of the light emitting element 1 as the above conditions.
  • the range is preferable because the effects of the present invention become remarkable and higher luminous efficiency can be obtained without causing uneven light emission.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is configured to be lower than the sheet resistance Rs1 of the translucent electrode 7, so that the light emitting device used by applying a large forward current IF. Even so, there is an effect that the occurrence of uneven light emission is suppressed.
  • the n-type semiconductor layer 4, the light-emitting layer 5, and the p-type semiconductor layer 6 are sequentially formed on the single crystal base layer 3 formed on the substrate 11.
  • a stacked semiconductor layer 20 is formed, a translucent electrode 7 is formed on the p-type semiconductor layer 6, and an insulating layer 15 is provided on at least a part of the p-type semiconductor layer 6 and the translucent light is transmitted.
  • the conductive electrode 7 is formed so as to cover the insulating layer 15, and the positive electrode bonding pad 8 is provided on the surface 7 a of the translucent electrode 7 at a position A above the insulating layer 15 provided on the p-type semiconductor layer 6.
  • the substrate 100 has a principal surface 110 composed of a plane 111 composed of a (0001) C plane and a plurality of convex portions 112.
  • the base layer 103 may be formed by epitaxially growing a group III nitride semiconductor on the main surface 110 so as to cover the flat surface 111 and the convex portion 112.
  • a plurality of convex portions 112 are formed on the substrate 11A in the example shown in FIGS. And the part in which the convex part 112 is not formed in the main surface 110 of the board
  • substrate 100 is made into the plane 111 which consists of a (0001) C surface. Therefore, as in the example shown in FIGS. 3 and 4, the main surface 110 of the substrate 100 is composed of a flat surface 111 formed of a C surface and a plurality of convex portions 112.
  • the convex portion 112 is composed of a surface 112c that is not parallel to the C-plane, and the C-plane does not appear on the surface 112c.
  • the planar shape of the base 112a is substantially circular, the outer shape gradually decreases toward the top, and the side surface 112b has a bowl-like (hemispherical) shape curved outward. ing.
  • a convex part is comprised from oxides or nitrides other than sapphire so that a detail may mention later, it is good also as a column shape.
  • the planar arrangement of the convex portions 112 is arranged in a grid pattern at equal intervals.
  • the protrusion 112 has a base width d 1 in the range of 0.05 to 1.5 ⁇ m, a height h in the range of 0.05 to 1 ⁇ m, and is not less than 1 ⁇ 4 of the base width d 1.
  • the interval d 2 is 0.3 to 5 times the base width d 1 .
  • the base width d 1 of the convex portion 112 refers to the length of the maximum width on the bottom side (base portion 12 a) of the convex portion 112.
  • the distance d 2 between adjacent convex portions 112 refers to the distance between the edge of the base portion 112a of the protrusion 112 in closest proximity.
  • the distance d 2 between the adjacent convex portions 112 is preferably 0.5 to 5 times the base width d 1 .
  • the distance d 2 between the protrusions 112 is less than 0.3 times the base width d 1 , the plane formed by the C plane when epitaxially growing the base layer 103 constituting the n-type semiconductor layer 4 (semiconductor layer 20). It becomes difficult for crystal growth from above 111 to be promoted, and it becomes difficult to completely fill the protrusion 112 with the base layer 103, and the flatness of the surface 103a of the base layer 103 may not be sufficiently obtained.
  • the crystal of the semiconductor layer forming the LED structure is formed on the base layer 103 by filling the protrusion 112, this crystal naturally has a lot of pits, and the III-nitride semiconductor light-emitting element formed is formed. It will lead to deterioration of output and electrical characteristics.
  • the distance d 2 between the protrusions 112 exceeds 5 times the base width d 1 , the substrate 100 and the substrate 100 are formed when the group 100 nitride semiconductor light-emitting device is formed using the substrate 100.
  • the chance of irregular reflection of light at the interface with the group III nitride semiconductor layer may be reduced, and the light extraction efficiency may not be sufficiently improved.
  • the base width d 1 is preferably 0.05 to 1.5 ⁇ m. If the base width d 1 is less than 0.05 ⁇ m, when a group III nitride semiconductor light emitting device is formed using the substrate 100, the effect of irregularly reflecting light may not be obtained sufficiently. On the other hand, when the base width d 1 exceeds 1.5 ⁇ m, it is difficult to epitaxially grow the base layer 1033 by filling the convex portions 112. Even if an underlayer with good flatness and crystallinity can be formed, the strain between the underlayer and the light emitting layer increases, leading to a decrease in internal quantum efficiency. Further, if the base width d 1 is smaller in the above range, the light output of the light emitting element can be further improved.
  • the base width d 1 is more preferably 0.05 to 1 ⁇ m.
  • the height h of the convex 112 is preferably 0.05 to 1 ⁇ m. If the height h of the protrusion 112 is less than 0.05 ⁇ m, when a group III nitride semiconductor light emitting device is formed using the substrate 100, the effect of irregular reflection of light may not be obtained sufficiently. If the height h of the convex portion 112 exceeds 1 ⁇ m, it may be difficult to epitaxially grow the base layer 103 by filling the convex portion 112, and the surface flatness of the base layer 103 may not be sufficiently obtained. .
  • the height h of the convex portion 112 is preferably 1/4 or more of the base width d 1.
  • the effect of irregularly reflecting light when the substrate 100 is used to form a group III nitride semiconductor light-emitting device and the light extraction efficiency are improved. There is a possibility that the effect of improving cannot be obtained sufficiently.
  • the shape of the convex part 112 is not limited to the example shown in FIG.3 and FIG.4, What kind of shape may be sufficient if it consists of a surface non-parallel to C surface.
  • the planar shape of the base portion may be a substantially polygonal shape, the outer shape gradually decreases toward the top, and the side surface 111 may be curved outward.
  • the side surface may have a substantially conical shape or a substantially polygonal pyramid shape including a slope whose outer shape gradually decreases toward the top.
  • the shape which the inclination angle of a side surface changes in two steps may be sufficient.
  • planar arrangement of the convex portions 112 is not limited to the illustrated example, and may be equally spaced or not equally spaced. Further, the planar arrangement of the convex portions 112 may be a quadrangular shape, a triangular shape, or a random shape.
  • substrate 100 can be formed by etching the board
  • the convex portion may be formed by depositing another material forming the convex portion on the C surface of the substrate 100 on the substrate.
  • a method for depositing another material for forming the convex portion on the substrate for example, a sputtering method, a vapor deposition method, a CVD method, or the like can be used.
  • the material forming the convex portion it is preferable to use a material having a refractive index substantially equal to the material of the substrate, such as oxide or nitride.
  • the substrate is a sapphire substrate, for example, SiO 2 , Al 2 O 3 , SiN, ZnO, or the like can be used.
  • the interface between the substrate 100 and the underlayer 103 is a buffer layer. Since the projections and depressions are formed through 102, light confinement inside the light emitting element is reduced by diffused reflection of light, and a light emitting element with excellent light extraction efficiency can be realized.
  • the manufacturing method of the group III nitride semiconductor light emitting device includes an epitaxial process for forming a single crystal underlayer (group III nitride semiconductor layer) 3 on the main surface 11 a of the substrate 11, A semiconductor layer forming step in which the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 are sequentially stacked to form the semiconductor layer 20, and the translucent electrode 7 is formed on the p-type semiconductor layer 6.
  • An electrode forming step, and the transparent electrode forming step covers the insulating layer 15 on the p-type semiconductor layer 6 after forming the insulating layer 15 on at least a part of the p-type semiconductor layer 6.
  • positive electrode bonding is performed on the surface A of the translucent electrode 7 at a position A above the insulating layer 15 formed on the p-type semiconductor layer 6.
  • a positive electrode forming step for forming the pad 8 is provided.
  • Process is a method of the sheet resistance of the n-type semiconductor layer 4 to form a n-type semiconductor layer 4 to be lower than the sheet resistance of the transparent electrode 7.
  • buffer layer formation process In the manufacturing method according to the present invention, it is preferable that a buffer layer forming step of forming the buffer layer 2 on the main surface 11a of the substrate 11 is provided before the epitaxial step. In the present invention, the buffer layer may be omitted. In this case, the buffer layer forming step may not be performed.
  • Pretreatment of substrate In this embodiment, after introducing the substrate 11 into the chamber of the sputtering apparatus and before forming the buffer layer 2, it is desirable to perform pretreatment using a method such as reverse sputtering by plasma treatment.
  • “Deposition of buffer layer” After performing the pretreatment to the substrate 11, on the main surface 11a of the substrate 11, by a reactive sputtering method, forming an Al X Ga 1-X N ( 0 ⁇ X ⁇ 1) comprising a buffer layer 2 of the composition.
  • the ratio of the nitrogen flow rate with respect to the flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is in the range of 50 to 100%. It is preferable to control so that it is about 75%.
  • the ratio of the nitrogen flow rate to the flow rate of the nitrogen source and the inert gas in the chamber of the sputtering apparatus is set so that the nitrogen source is 1 to 50%. It is preferable to control to be within the range, and more preferably about 25%.
  • the buffer layer is not limited to the reactive sputtering method described above, and can be formed using, for example, the MOCVD method. However, the buffer layer is formed using the reactive sputtering method from the viewpoint of simplification of the process. It is preferable.
  • the growth method of the gallium nitride-based compound semiconductor (group III nitride semiconductor) when forming the underlayer 3, the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer 6 is not particularly limited. All methods known to grow nitride semiconductors such as reactive sputtering, MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy) are applied. it can.
  • n-type monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material
  • organic germanium compounds such as tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used.
  • elemental germanium can also be used as a doping source.
  • p-type for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) is used as the Mg raw material.
  • the gallium nitride-based compound semiconductor as described above can contain other group III elements in addition to Al, Ga, and In. If necessary, such as Ge, Si, Mg, Ca, Zn, and Be can be used. A dopant element can be contained. Furthermore, it is not limited to the element added intentionally, but may include impurities that are inevitably included depending on the film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.
  • the MOCVD method is preferably used because a film having good crystallinity can be obtained.
  • an example using the MOCVD method in the epitaxial step and the semiconductor layer forming step is used. explain.
  • a base layer 3 is formed on the buffer layer 2 formed on the substrate 11 by using a conventionally known MOCVD method.
  • MOCVD method the method of forming the underlayer 3 using the MOCVD method is described.
  • the method of laminating the underlayer 3 is not particularly limited, and crystal growth that can cause dislocation looping is produced. Any method can be used without any limitation.
  • the MOCVD method, the MBE method, the VPE method, and the like are preferable in that a film with favorable crystallinity can be formed because migration can occur.
  • the MOCVD method can be used more suitably in that a film having particularly good crystallinity can be obtained.
  • the temperature of the substrate 11 when the underlayer 3 is formed is preferably 800 ° C. or higher. This is because atom migration tends to occur by increasing the temperature of the substrate 11 when forming the underlayer 3, and dislocation looping easily proceeds, more preferably 900 ° C. or more. 1000 ° C. or higher is most preferable.
  • the temperature of the substrate 11 when forming the base layer 3 needs to be lower than the temperature at which the crystals decompose, and is preferably less than 1200 ° C. If the temperature of the substrate 11 when forming the underlayer 3 is within the above range, the underlayer 3 with good crystallinity can be obtained.
  • the underlayer 3 can be formed by doping with impurities as necessary, but undoped is preferable from the viewpoint of improving crystallinity. It is also possible to form a base layer made of a group III nitride semiconductor using a reactive sputtering method. When the sputtering method is used, the apparatus can have a simple configuration as compared with the MOCVD method, the MBE method, or the like.
  • semiconductor layer formation process Next, in the semiconductor layer forming step, after the epitaxial step, as shown in FIG. 1, a semiconductor composed of an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6 on the base layer 3.
  • the layer 20 is laminated using a conventionally known MOCVD method.
  • the n-type semiconductor layer 4 is formed by sequentially laminating the n-type contact layer 4a and the n-type clad layer 4b on the base layer 3 formed by the epitaxial process using a conventionally known MOCVD method.
  • a film forming apparatus for forming the n-type contact layer 4a and the n-type clad layer 4b the MOCVD apparatus used for forming the above-described underlayer 3 and the light-emitting layer 5 described later may be used by appropriately changing various conditions. Is possible.
  • the n-type contact layer 4a and the n-type cladding layer 4b can be formed by a reactive sputtering method.
  • n-type semiconductor layer 4 has a sheet resistance Rs2 that is lower than sheet resistance Rs1 of translucent electrode 7 formed in the subsequent translucent electrode formation step.
  • a type semiconductor layer 4 is formed.
  • the n-type semiconductor layer 4 is formed so that the sheet resistance Rs2 is, for example, 15 ⁇ / ⁇ or less.
  • the method for adjusting the film thickness and the method for controlling the doping amount of n-type impurities such as Si are appropriately employed. Is possible.
  • the n-type semiconductor layer 4 is formed so that the sheet resistance Rs2 is reduced.
  • the doping amount of n-type impurities such as Si is compared with the doping amount in the conventional light emitting device. About 1.5 times.
  • the n-type semiconductor layer 4 can be formed while controlling the sheet resistance Rs2 to be, for example, 15 ⁇ / ⁇ or less.
  • the light emitting layer 5 is formed on the n-type cladding layer 4b (n-type semiconductor layer 4) by a conventionally known MOCVD method.
  • the light emitting layer 5 formed in the present embodiment has a stacked structure starting with a GaN barrier layer and ending with the GaN barrier layer, and includes a seven-layer barrier layer 5 a made of GaN, and a non-doped layer.
  • Six well layers 5b made of Ga 0.8 In 0.2 N are alternately stacked.
  • the light emitting layer 5 can be formed using the same film forming apparatus (MOCVD apparatus) used for forming the n-type semiconductor layer 4 described above.
  • the p-type semiconductor layer 6 composed of the p-type cladding layer 6a and the p-type contact layer 6b is formed on the light-emitting layer 5, that is, on the barrier layer 5a that is the uppermost layer of the light-emitting layer 5, by a conventionally known MOCVD method.
  • MOCVD method a conventionally known MOCVD method.
  • the p-type cladding layer 6a and the p-type contact layer 6b constituting the p-type semiconductor layer 6 can be formed by using a reactive sputtering method.
  • a p-type cladding layer 6a made of Mg-doped Al 0.1 Ga 0.9 N is formed on the light emitting layer 5 (the uppermost barrier layer 5a), and further, Mg A p-type contact layer 6b made of Al 0.02 Ga 0.98 N doped with is formed.
  • the same MOCVD apparatus can be used for stacking the p-type cladding layer 6a and the p-type contact layer 6b.
  • not only Mg but also zinc (Zn), for example, can be used as the p-type impurity.
  • the insulating layer 15 is formed on at least a part of the p-type semiconductor layer 6, and then the insulating layer 15 is covered on the p-type semiconductor layer 6.
  • a translucent electrode 7 is formed on the substrate.
  • the insulating layer 15 made of an insulating material is formed on at least a part of the p-type semiconductor layer 6, in the example shown in FIGS.
  • the material used for forming the insulating layer 15 is not particularly limited, and a conventionally known insulating oxide film or the like can be used without any limitation.
  • silicon oxide (SiO 2 ) can be used.
  • a conventionally known method such as a sputtering method can be used without any limitation.
  • the transparent electrode 7 is formed by laminating IZO on the p-type semiconductor layer 6 formed by the above method so as to cover the insulating layer 15.
  • the method for forming the translucent electrode 7 is not particularly limited, and can be provided by conventional means well known in this technical field. In addition, any structure including a conventionally known structure can be used without any limitation.
  • the translucent electrode 7 can be formed using a material such as ITO, ITO, IGO, ICO, AZO, GZO, or conductive titanium oxide (for example, TiO 2 doped with Nb) in addition to IZO. . Moreover, after forming the translucent electrode 7, you may perform the thermal annealing for the purpose of alloying and transparency.
  • the translucent electrode forming step of the present embodiment it is more preferable to form irregularities on the surface 7 a of the translucent electrode 7. Thereby, the light extraction efficiency from the translucent electrode 7 is improved, and the sheet resistance Rs1 of the translucent electrode 7 can be controlled by appropriately adjusting the shape and size of the unevenness.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is formed to be lower than the sheet resistance Rs1 of the translucent electrode 7.
  • the sheet resistance Rs2 of the n-type semiconductor layer 4 is translucent while the translucent electrode 7 is controlled so that the sheet resistance Rs1 is, for example, 30 ⁇ / ⁇ or less. It is necessary to form the conductive electrode 7 so as to be lower than the sheet resistance Rs1. For this reason, by forming the film thickness of the translucent electrode 7 to be, for example, 100 nm or more and 600 nm or less, the sheet resistance Rs1 of the translucent electrode 7 can be controlled to be 30 ⁇ / ⁇ or less. .
  • a method of controlling the sheet resistance Rs1 of the translucent electrode 7 there is a method of reducing the resistance value by performing an annealing treatment in addition to the method of optimizing the film thickness as described above.
  • the annealing process to the translucent electrode 7 it is preferable to carry out on the conditions made into the temperature range of 500 degreeC or more and 900 degrees C or less in nitrogen atmosphere.
  • the crystal structure of the translucent electrode 7 becomes a hexagonal crystal, and the sheet resistance Rs1 can be effectively reduced and controlled to a desired resistance value.
  • the annealing temperature exceeds 900 ° C.
  • the crystal structure of the translucent electrode made of IZO becomes cubic, and it becomes difficult to control the sheet resistance Rs1 appropriately.
  • the sheet resistance Rs1 of the translucent electrode 7 is, for example, 30 ⁇ / ⁇ or less, and the relationship between the translucent electrode 7 and the sheet resistances Rs1 and Rs2 of the n-type semiconductor layer 4 is as follows. Thus, it becomes easy to control the relationship represented by the following formula (Rs1> Rs2).
  • the positive electrode bonding pad 8 is formed on the surface 7 a of the translucent electrode 7 at the position A corresponding to the insulating layer 15 formed on the p-type semiconductor layer 6.
  • the positive electrode bonding pad 8 can be formed, for example, by laminating Ti, Al, and Au materials in order from the surface side of the translucent electrode 7 by a conventionally known method.
  • Formation of negative electrode bonding pads When forming the negative electrode bonding pad 9, first, a part of the p-type semiconductor layer 6, the light emitting layer 5 and the n-type semiconductor layer 4 formed on the substrate 11 is removed by a method such as dry etching, whereby n A part of the mold contact layer 4a is exposed. Then, on this exposed region, for example, each material of Ni, Al, Ti, and Au is laminated in order from the surface side of the exposed region by a conventionally known method, so that the detailed illustration is omitted. A negative electrode bonding pad 9 can be formed.
  • the planar view shape is as shown in FIG. More preferably, it is formed as a long, substantially rectangular shape. Thereby, it becomes possible to manufacture the light emitting element 1 which is more excellent in luminous efficiency.
  • an epitaxial layer for forming a single crystal underlayer (group III nitride semiconductor layer) 3 on the main surface 11a of the substrate 11 is formed.
  • a step of forming a semiconductor layer 20 by sequentially stacking an n-type semiconductor layer 4, a light emitting layer 5, and a p-type semiconductor layer 6 on the base layer 3; and a light-transmitting property on the p-type semiconductor layer 6.
  • the translucent electrode forming step includes forming the insulating layer 15 on at least part of the p-type semiconductor layer 6, and then forming the insulating layer 15 on the p-type semiconductor layer 6.
  • the translucent electrode 7 is formed so as to cover the insulating layer 15, and after the translucent electrode forming step, on the surface 7 a of the translucent electrode 7, above the insulating layer 15 formed on the p-type semiconductor layer 6.
  • a positive electrode forming step of forming a positive electrode bonding pad 8 at position A The semiconductor layer forming step is a method of forming the n-type semiconductor layer 4 so that the sheet resistance Rs2 of the n-type semiconductor layer 4 is lower than the sheet resistance Rs1 of the translucent electrode 7.
  • the light emitting device 1 having excellent light emission efficiency and light extraction efficiency, high external quantum efficiency, and excellent electrical characteristics can be manufactured.
  • the lamp of the present invention uses the group III nitride semiconductor light-emitting device of the present invention.
  • Examples of the lamp of the present invention include a combination of the group III nitride semiconductor light emitting device of the present invention and a phosphor.
  • a lamp in which a group III nitride semiconductor light-emitting device and a phosphor are combined can have a configuration well known to those skilled in the art by means well known to those skilled in the art.
  • Conventionally, a technique for changing the emission color by combining a group III nitride semiconductor light-emitting element and a phosphor is known, and such a technique should be adopted in the lamp of the present invention without any limitation. Is possible.
  • FIG. 6 is a schematic view schematically showing an example of a lamp configured using the group III nitride semiconductor light emitting device according to the present invention.
  • the lamp 80 shown in FIG. 5 is a cannonball type, and the light emitting element 1 shown in FIGS. 1 and 2 is used.
  • the positive electrode bonding pad 8 of the light emitting element 1 is bonded to one of the two frames 81 and 82 (the frame 81 in FIG. 6) with a wire 83, and the negative electrode bonding pad 9 of the light emitting element 1 is
  • the light emitting element 1 is mounted by being joined to the other frame 82 by the wire 84. Further, the periphery of the light emitting element 1 is sealed with a mold 85 made of a transparent resin.
  • the lamp of the present invention uses the light-emitting element 1 of the present invention, the lamp has excellent light emission characteristics.
  • the lamp of the present invention can be used for any purpose such as a bullet type for general use, a side view type for portable backlight use, and a top view type used for a display.
  • Example 1 a sample of a light-emitting element was manufactured by the procedure described below (see FIGS. 1 to 4, FIG. 7, etc.).
  • substrate 11 which has the main surface 11a which consists of a (0001) C surface of a sapphire substrate was prepared.
  • the substrate 11 having a plurality of convex portions (not shown) formed on the main surface 11a is used (the protrusions formed on the main surface 110 in FIGS. 3 and 4). Part 112).
  • the base width d 1 of the convex portion formed on the main surface 11a is 1.3 .mu.m
  • the height h was used 0.7 [mu] m
  • a substrate spacing d 2 is set to the 0.7 [mu] m.
  • a 50 nm thick buffer layer 2 made of AlN having a single crystal structure was formed on the main surface 11a of the substrate 11 using RF sputtering.
  • the sputtering film forming apparatus an apparatus having a high-frequency power source and having a mechanism capable of moving the position of the magnet in the target was used.
  • an underlayer 3 made of a group III nitride semiconductor was formed by using the low pressure MOCVD method described below (epitaxial process).
  • the substrate 11 on which the buffer layer 2 was formed taken out from the sputter deposition apparatus, was introduced into a reaction furnace for growing a group III nitride semiconductor layer by MOCVD.
  • the temperature of the substrate 11 is raised to 1120 ° C. in a hydrogen atmosphere, and supply of trimethylgallium (TMG) into the vapor phase growth reactor is started.
  • TMG trimethylgallium
  • Undoped GaN was epitaxially grown to a thickness of 3 ⁇ m.
  • an initial layer of the n-type contact layer 4a made of GaN was formed by the same MOCVD apparatus (semiconductor layer forming step). At this time, the n-type contact layer 4a was doped with Si. Crystal growth was performed under the same conditions as the underlayer except that SiH 4 was circulated as a Si dopant material.
  • the n-type cladding layer 4b was laminated on the n-type contact layer 4a produced by the above procedure using the same MOCVD apparatus. Further, when the n-type semiconductor layer 4 was formed, the sheet resistance was appropriately adjusted within the range shown in Table 1 below by appropriately adjusting the Si doping amount.
  • the light emitting layer 5 formed in the present example has a multiple quantum well structure including a barrier layer 5a made of GaN and a well layer 5b made of Ga 0.85 In 0.15 N.
  • a barrier layer 5a is first formed on an n-type cladding layer 4b having a superlattice structure of Si-doped GaInN and GaN, and Ga 0.85 In is formed on the barrier layer 5a.
  • a well layer 5b made of 0.15 N was formed.
  • the seventh barrier layer 5a is formed on the sixth well layer 5b, and the barrier layers 5a are arranged on both sides of the light emitting layer 5 having the multiple quantum well structure.
  • the structure was as follows.
  • the light emitting layer 5 having a multiple quantum well structure was formed by the above procedure.
  • a p-type cladding layer 6a having a superlattice structure made of GaN doped with four layers of non-doped Al 0.06 Ga 0.94 N and three layers of Mg is formed.
  • a film was formed.
  • a p-type contact layer 6b made of Mg-doped GaN having a thickness of 200 nm was formed thereon to form a p-type semiconductor layer 6.
  • the n-type semiconductor layer 4, the light emitting layer 5, and the p-type semiconductor layer p were stacked in this order on the base layer 3 to form the semiconductor layer 20.
  • a light-emitting diode which is a kind of semiconductor light-emitting element, was produced by the following procedure using the wafer obtained by the above procedure (see FIGS. 1 and 2).
  • an insulating layer 15 made of SiO 2 was formed at one place on the p-type semiconductor layer 6 using a known sputtering method. At this time, the insulating layer 15 was formed to a thickness of 200 nm and a circular shape having a diameter of 100 ⁇ m.
  • a translucent electrode 7 was formed by depositing a layer made of an IZO material on the p-type semiconductor layer 6 so as to cover the insulating layer 15 by using a known photolithography technique. Electrode forming step). At this time, the film resistance was adjusted to 250 nm and the sheet resistance of the translucent electrode 7 was appropriately adjusted with the numerical values shown in Table 1 below by annealing in a nitrogen atmosphere.
  • a positive electrode bonding pad having a three-layer structure is formed by sequentially stacking Ti, Al, and Au on the surface 7a of the translucent electrode 7 at a position corresponding to the underlying insulating layer 15 by a known photolithography technique. 8 was formed (positive electrode forming step). At this time, the positive electrode bonding pad 8 was formed in a circular shape having a diameter of 90 ⁇ m. Then, a part of the semiconductor layer 20 and the translucent positive electrode 7 is removed by dry etching to provide an exposed region where the n-type contact layer 4a is exposed, and then Ni, Al, Ti, and Au are formed thereon. By sequentially laminating these layers, a negative electrode bonding pad 9 as shown in FIGS. 1 and 2 was formed. At this time, the distance between the centers of the positive electrode bonding pad 8 and the negative electrode bonding pad 9 in a plan view of the wafer was set to 440 ⁇ m.
  • the wafer is 240 ⁇ m (chip width dimension W) ⁇ 600 ⁇ m (electrode separation direction dimension L) square.
  • An LED (light emitting diode) chip (light emitting element 1) was cut into rectangular chips. Then, this chip was placed on the lead frame 81 so that the positive electrode bonding pad 8 and the negative electrode bonding pad 9 were on top, and connected to the lead frame with a gold wire to produce a lamp 80 (see FIG. 6). .
  • Examples 2 and 3 and Comparative Examples 1 and 2 In Examples 2 and 3 and Comparative Examples 1 and 2, the presence / absence of an insulating layer, the film thickness of the translucent electrode, and the distance between the centers of the positive electrode bonding pad and the negative electrode bonding pad in the wafer plan view are shown in Table 1 below. In the same manner as in Example 1 except that the sheet resistance is adjusted so that the relationship between the sheet resistances is as shown in Table 1 below, a rectangle of 240 ⁇ m ⁇ 600 ⁇ m square is formed. A chip of a group nitride semiconductor light emitting device was fabricated. In the same manner as described above, a lamp was manufactured using this chip.
  • Table 1 below shows the measurement results of sheet resistance, translucent electrode thickness, light emission output (Po), and drive voltage (Vf) in Examples 1 to 3 and Comparative Examples 1 and 2.
  • Example 4 to 6 the relationship between the film thickness of the translucent electrode and each sheet resistance was set as shown in Table 2 below, and the electrode separation direction dimension (L: chip length dimension) in wafer plan view and A group III nitride semiconductor light emitting device chip was fabricated in the same manner as in Example 1 except that the chip width dimension (W) in the direction orthogonal to the above was adjusted as appropriate so as to have the relationship shown in Table 2 below. did. In the same manner as described above, a lamp was manufactured using this chip.
  • the light emission output Po (when a forward current IF of 30 mA is passed between the electrodes on the p side (positive electrode bonding pad) and n side (negative electrode bonding pad) of the lamp and if necessary, 100 mA is flowed. mW) was measured.
  • the sample of Example 1 having the configuration of the light emitting device according to the present invention has a light emission output (Po) of 20.8 mW at a forward current (IF) of 20 mA, and a high light emission output is obtained.
  • the driving voltage (Vf) at this time was also greatly reduced to 3.15 mV, and it was revealed that the device had excellent electrical characteristics.
  • the light emission output is as high as 19.6 mW or more. It was confirmed that it had a light emission output.
  • the sheet resistance of the n-type semiconductor layer is higher than the sheet resistance of the translucent electrode, and each sample of Comparative Examples 1 and 2 that does not satisfy the relationship defined in the present invention has a light emission output of 18.6. ⁇ 18.9 mW, which is a lower output than the samples of the above examples.
  • the sample of Comparative Example 1 in which no insulating layer is provided has the lowest light output of 18.6 mW.
  • the samples of Comparative Examples 1 and 2 are manufactured as a configuration in which the sheet resistance of the n-type semiconductor layer is higher than the sheet resistance of the translucent electrode, and in Comparative Example 1, no insulating layer is provided. For this reason, in the samples of Comparative Examples 1 and 2, the semiconductor layer at the position corresponding to the negative electrode bonding pad on the n side emitted light mainly, so that the area of the portion with high emission intensity was reduced and the light extraction rate was reduced. it is conceivable that.
  • the light emission output when the forward current (IF) is 30 mA is 31. The output is as high as 5 mW.
  • the light emission output is 31.8 mW. , 28.1 mW.
  • the group III nitride semiconductor light-emitting device of the present invention has excellent light emission efficiency by suppressing current concentration directly under the electrode, and light extraction by the electrode and suppression of loss due to multiple reflection are suppressed. It is clear that it is excellent in efficiency and has high emission intensity and electrical characteristics.
  • SYMBOLS 1 Group III nitride semiconductor light emitting element (light emitting element), 11, 100 ... Substrate, 11a, 110 ... Main surface, 4 ... N-type semiconductor layer, 5 ... Light emitting layer, 6 ... P-type semiconductor layer, 7 ... Translucent , 7a ... surface (translucent electrode), 8 ... positive electrode bonding pad, 15 ... insulating layer, 20 ... semiconductor layer, 80 ... lamp, A ... position (position corresponding to the insulating layer on the surface of the translucent electrode) ), Rs1... Sheet resistance (translucent electrode), Rs2... Sheet resistance (n-type semiconductor layer)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

電極直下における透光性電極及び半導体層での電流集中が抑制されて発光効率に優れるとともに、電極による光の吸収や多重反射による損失が抑制されて光取り出し効率に優れ、高い外部量子効率及び電気的特性を有するIII族窒化物半導体発光素子を提供する。基板(11)上に形成された単結晶の下地層(3)上に、n型半導体層(4)、発光層(5)及びp型半導体層(6)が順次積層された半導体層(20)が形成され、p型半導体層(6)上に透光性電極(7)が形成されてなり、p型半導体層(6)上の少なくとも一部に絶縁層(15)が備えられるとともに、透光性電極(7)が絶縁層(15)を覆って形成されており、透光性電極(7)の表面(7a)において、p型半導体層(6)上に備えられた絶縁層(15)に対応する位置Aに正極ボンディングパッド(8)が設けられており、n型半導体層(4)のシート抵抗が透光性電極(7)のシート抵抗よりも低い構成である。

Description

III族窒化物半導体発光素子及びその製造方法、並びにランプ
 本発明は、発光ダイオード(LED)構造を有するIII族窒化物半導体発光素子及びその製造方法、並びにランプに関する。
本願は、2009年3月6日に、日本に出願された特願2009-054204号、およびに2010年3月3日に、日本に出願された特願2010-46812号に基づき優先権を主張し、その内容をここに援用する。
近年、短波長の光を発する発光素子用の半導体材料として、III族窒化物半導体が注目を集めている。III族窒化物半導体は、一般式AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で表され、サファイア単結晶をはじめ種々の酸化物やIII-V族化合物からなる基板の上に、有機金属化学気相法(MOCVD法)や分子線エピタキシー法(MBE法)等によって形成される。
 III族窒化物半導体を用いた一般的な発光素子では、サファイア単結晶基板の上に、III族窒化物半導体からなるn型半導体層、発光層及びp型半導体層がこの順で積層される。サファイア基板は絶縁体であるので、その素子構造は一般的に、p型半導体層上に形成された正極とn型半導体層上に形成された負極とが同一面上に存在する構造となる。このようなIII族窒化物半導体発光素子には、正極に透光性電極を使用してp型半導体側から光を取り出すフェイスアップ方式と、正極にAgなどの高反射膜を使用してサファイア基板側から光を取り出すフリップチップ方式の2種類がある。
 このような発光素子の出力の指標として、外部量子効率が用いられる。この外部量子効率が高ければ、出力の高い発光素子と言うことができる。外部量子効率は、内部量子効率と光取り出し効率とを掛け合わせたものとして表される。
また、内部量子効率とは、素子に注入した電流のエネルギーが発光層で光に変換される割合である。一方、光取り出し効率とは、発光層で発生した光のうち発光素子の外部に取り出すことができる光の割合である。
従って、外部量子効率を向上させるには、発光層における発光効率の他、光取り出し効率を改善する必要がある。
 光取り出し効率を改善するためには、主として2つの方法がある。一つは、光取り出し面に形成される電極等による光の吸収を低減させる方法である。もう一つは、発光素子とその外部の媒体との屈折率の違いによって生じる発光素子の内部への光の閉じ込めを低減させる方法である。
 ここで、上記組成を有する窒化ガリウム系化合物半導体素子の特性としては、横方向への電流拡散が小さいことが挙げられる。このため、電極直下の半導体にしか電流が注入されず、発光層で発光した光は電極に遮られて外部に取り出されない。そこで、このような発光素子では、通常、透光性電極が用いられ、この透光性電極を通して光が取り出される。
 従来、透光性電極には、NiやCo等の酸化物と、コンタクト金属としてAu等とを組み合わせた層構造とされたもの等、周知の導電材料が用いられている。また、近年では、ITO等、より導電性の高い透光性の酸化物を用いることにより、コンタクト金属の膜厚を極力薄くして透光性を高めた層構造のものが透光性電極として採用され、発光層からの光を効率良く外部に取り出すことができる構成とされている。
 また、従来の発光素子においては、高い発光輝度を得るため、電極直下のみならず発光層(半導体層)全体が均一に発光することが求められていた。しかしながら、半導体層上に透光性電極が備えられ、この上にボンディングパッド電極が備えられてなる発光素子では、上記同様、ボンディングパッド電極の直下に電流集中が生じる。このため、発光層による発光作用が、上記同様、ボンディングパッド電極の直下に集中し、発光効率が低下して輝度の低いものとなってしまう虞があった。
 ここで、上述のような透光性電極が備えられてなる発光素子において、ボンディングパッド電極直下への電流の集中を抑制するため、ボンディングパッド電極の直下に絶縁層を設けることが提案されている(例えば、特許文献1、2を参照)。特許文献1、2に記載の発光素子によれば、上記構成の絶縁層を設けることにより、透光性電極の横方向への電流拡散を効果的に促進させ、発光効率を高めることが可能とされている。しかしながら、特許文献1、2では、n側のボンディングパッド電極付近において発光が強くなり、また、良好な電気的特性が得られにくく、発光効率が必ずしも高められないという問題があった。
日本国特許第3841460号公報 特開2008-192710号公報
本発明は上記課題に鑑みてなされたものであり、n側のボンディングパッド電極直下における透光性電極及び半導体層での電流集中が抑制されて発光効率に優れるとともに、電極による光の吸収や多重反射による損失が抑制されて光取り出し効率に優れ、高い外部量子効率及び電気的特性を有するIII族窒化物半導体発光素子を提供することを目的とする。
また、本発明は、上述のような発光効率並びに光取り出し効率に優れた発光素子を製造することが可能なIII族窒化物半導体発光素子の製造方法を提供することを目的とする。
さらに、本発明は、上記III族窒化物半導体発光素子が用いられてなり、発光特性に優れたランプを提供することを目的とする。
本発明者は、上記問題を解決するために鋭意検討したところ、従来の発光素子では、n側とp側の層のシート抵抗を同程度とし、電流を均一に拡散させることが発光効率の点から好ましいとされているのに対し、n側であるn型半導体層のシート抵抗を、p側である透光性電極のシート抵抗よりも低くすることにより、n側のボンディングパッド電極付近での発光を低減させることで、光取り出し効率が向上することを見出した。この際、p側のボンディングパッド電極による光の吸収や多重反射は、その直下に絶縁層を設けることで防止できることが明らかとなっている。
またさらに、本発明者等は、発光素子の駆動電圧にはn側の層のシート抵抗が支配的に働くことを知見し、n側の層のシート抵抗を低くすることにより、特に、30~100mA程度の大きな駆動電流を発光素子に印加する場合に、電気的特性が大きく向上することを見出し、本発明を完成した。
即ち、本発明は以下に関する。
[1] 基板上に形成された単結晶のIII族窒化物半導体層上に、n型半導体層、発光層及びp型半導体層が順次積層された半導体層が形成されており、前記p型半導体層上に透光性電極が形成されてなるIII族窒化物半導体発光素子であって、前記p型半導体層上の少なくとも一部に絶縁層が備えられるとともに、前記透光性電極が前記絶縁層を覆って形成されており、前記透光性電極の表面において、前記p型半導体層上に備えられた前記絶縁層の上方に正極ボンディングパッドが設けられており、前記n型半導体層のシート抵抗が、前記透光性電極のシート抵抗よりも低いことを特徴とするIII族窒化物半導体発光素子。
[2] 前記n型半導体層のシート抵抗が15Ω/□以下であり、前記透光性電極のシート抵抗が30Ω/□以下であることを特徴とする上記[1]に記載のIII族窒化物半導体発光素子。
 [3] 前記透光性電極の表面の少なくとも一部が凹凸形状とされていることを特徴とする上記[1]又は[2]に記載のIII族窒化物半導体発光素子。
 [4] 前記透光性電極が、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)、酸化インジウムガリウム(IGO:Indium Gallium Oxide)、酸化インジウムセリウム(ICO:Indium Cerium Oxide)及び導電性酸化チタン(TiO)からなる群から選ばれる少なくとも1種が用いられてなることを特徴とする上記[1]~[3]の何れか1項に記載のIII族窒化物半導体発光素子。
[5] 前記絶縁層が、酸化シリコン(SiO)からなることを特徴とする上記[1]~[4]の何れか1項に記載のIII族窒化物半導体発光素子。
[6] 基板上に単結晶のIII族窒化物半導体層を形成するエピタキシャル工程と、前記III族窒化物半導体層上にn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成する半導体層形成工程と、前記p型半導体層上に透光性電極を形成する透光性電極形成工程とが備えられてなるIII族窒化物半導体発光素子の製造方法であって、前記透光性電極形成工程は、前記p型半導体層上の少なくとも一部に絶縁層を形成した後、前記p型半導体層上に前記絶縁層を覆うように前記透光性電極を形成し、前記透光性電極形成工程の後、前記透光性電極の表面において、前記p型半導体層上に形成された前記絶縁層の上方に正極ボンディングパッドを形成する正極形成工程が備えられており、前記半導体層形成工程は、前記n型半導体層のシート抵抗が前記透光性電極のシート抵抗よりも低くなるように前記n型半導体層を形成することを特徴とするIII族窒化物半導体発光素子の製造方法。
 [7] 前記半導体層形成工程は、前記n型半導体層を15Ω/□以下のシート抵抗となるように形成し、前記透光性電極形成工程は、前記透光性電極を30Ω/□以下のシート抵抗となるように形成することを特徴とする上記[6]に記載のIII族窒化物半導体発光素子の製造方法。
[8] 前記透光性電極形成工程は、前記透光性電極の表面の少なくとも一部に凹凸形状を形成することを特徴とする上記[6]又は[7]に記載のIII族窒化物半導体発光素子の製造方法。
[9] 前記透光性電極形成工程は、前記透光性電極を形成する材料として酸化インジウム錫(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)、酸化インジウムガリウム(IGO:Indium Gallium Oxide)、酸化インジウムセリウム(ICO:Indium Cerium Oxide)及び導電性酸化チタン(TiO)からなる群から選ばれる少なくとも1種を用いることを特徴とする上記[6]~[8]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
 [10] 前記透光性電極形成工程は、前記絶縁層を形成する材料として酸化シリコン(SiO)を用いることを特徴とする上記[6]~[9]の何れか1項に記載のIII族窒化物半導体発光素子の製造方法。
[11] 上記[1]~[5]の何れか1項に記載のIII族窒化物半導体発光素子が用いられてなることを特徴とするランプ。
本発明のIII族窒化物半導体発光素子によれば、基板上に形成された単結晶のIII族窒化物半導体層上に、n型半導体層、発光層及びp型半導体層が順次積層された半導体層が形成され、p型半導体層上に透光性電極が形成されてなり、さらに、p型半導体層上の少なくとも一部に絶縁層が備えられるとともに透光性電極が絶縁層を覆って形成され、透光性電極の表面において、p型半導体層上に備えられた絶縁層の上方に正極ボンディングパッドが設けられているので、透光性電極及び半導体層における正極ボンディングパッドに対応する位置での電流集中が抑制でき、発光効率が向上する。またさらに、n型半導体層のシート抵抗が、透光性電極のシート抵抗よりも低い構成とされているので、n型半導体層上に設けられる負極ボンディングパッド付近での発光が抑制される一方、正極ボンディングパッド周辺の発光層が除去されていない場合には、発光強度の高い部分の面積が大きくなるので、光取り出し効率が向上する。また、透光性電極の膜厚を薄く構成することができるので、光透過率が向上し、光取り出し効率を一層向上させることが可能となる。従って、発光効率及び光取り出し効率に優れ、高い外部量子効率を備えるとともに、優れた電気的特性を備えるIII族窒化物半導体発光素子を提供することが可能となる。
また、本発明のIII族窒化物半導体発光素子の製造方法によれば、基板上に単結晶のIII族窒化物半導体層を形成するエピタキシャル工程と、III族窒化物半導体層上にn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成する半導体層形成工程と、p型半導体層上に透光性電極を形成する透光性電極形成工程とが備えられ、透光性電極形成工程は、p型半導体層上の少なくとも一部に絶縁層を形成した後、p型半導体層上に絶縁層を覆うように透光性電極を形成し、透光性電極形成工程の後、透光性電極の表面において、p型半導体層上に形成された絶縁層の上方に正極ボンディングパッドを形成する正極形成工程が備えられており、半導体層形成工程は、n型半導体層のシート抵抗が透光性電極のシート抵抗よりも低くなるようにn型半導体層を形成する方法なので、上述したような、発光効率及び光取り出し効率に優れ、高い外部量子効率を備えるとともに、優れた電気的特性を備えるIII族窒化物半導体発光素子を製造することができる。
さらに、本発明に係るランプは、本発明のIII族窒化物半導体発光素子が用いられてなるものであるので、発光特性に優れたものとなる。
本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、基板の主面上にバッファ層とIII族窒化物半導体からなる下地層とが形成され、その上に半導体層が形成されるとともに、この半導体層上に絶縁層及び透光性電極が形成された積層構造を示す断面図である。 本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、図1に示すIII族窒化物半導体発光素子の平面図である。 本発明に係るIII族窒化物半導体発光素子の他の例を模式的に説明する図であり、基板の主面上に、バッファ層と単結晶のIII族窒化物半導体からなる下地層とが形成された積層構造を示す断面図である。 本発明に係るIII族窒化物半導体発光素子の他の例を模式的に説明する図であり、図3の要部を示す斜視図である。 本発明に係るIII族窒化物半導体発光素子の一例を模式的に説明する図であり、順方向電流(I)と発光出力(Po)との関係を示すグラフである。 本発明に係るIII族窒化物半導体発光素子を用いて構成したランプの一例を模式的に説明する概略図である。
 以下、本発明に係るIII族窒化物半導体発光素子(以下、発光素子と略称することがある)及びその製造方法、並びにランプの一実施形態について、図1~図6を適宜参照しながら説明する。
[III族窒化物半導体発光素子(発光素子)]
本発明に係る発光素子1は、図1及び図2に示す一例のように、基板11の主面11a上に形成された単結晶の下地層(III族窒化物半導体層)3上に、n型半導体層4、発光層5及びp型半導体層6が順次積層された半導体層20が形成され、p型半導体層6上に透光性電極7が形成されてなり、p型半導体層6上の少なくとも一部に絶縁層15が備えられるとともに、透光性電極7が絶縁層15を覆って形成され、概略構成されている。また、図1及び図2に示す例の発光素子1は、n型半導体層4のシート抵抗Rs2が、透光性電極7のシート抵抗Rs1よりも低い構成とされたものである。また、図示例においては、基板11と下地層3との間にバッファ層2が設けられているとともに、透光性電極7上に正極ボンディングパッド8が備えられ、半導体層20の一部が除去されて露出したn型半導体層4に負極ボンディングパッド9が備えられている。また、図示例の発光素子1は、その平面形状が、正極ボンディングパッド8と負極ボンディングパッド9とが離間する方向、即ち、図2中におけるチップ長さ寸法(L)がチップ幅寸法(W)よりも長尺とされ、略長方形状として構成されている。また、本発明においては、図2中に示す平面形状において、チップ幅寸法W:チップ長さ寸法Lを、1:1(L/W=1)~1:2.7(L/W=2.7)の範囲として、正方形状チップ又は長方形状チップとして構成することができる。
本実施形態で説明する例の発光素子1は、上記構成により、図示例のような発光ダイオード(LED)として構成される。
以下、発光素子1の積層構造について詳しく説明する。
『基板』
(基板の材料)
 本実施形態の発光素子において、上述したような基板11に用いることができる材料としては、III族窒化物半導体結晶が表面にエピタキシャル成長される基板材料であれば特に限定されず、各種材料を選択して用いることができる。例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン等が挙げられる。また、上記各基板材料の中でも、特に、サファイアを用いることが好ましく、また、サファイアからなる基板11のc面からなる主面11a上に、詳細を後述するバッファ層2が形成されていることが望ましい。
 なお、上記各基板材料の内、高温でアンモニアに接触することで化学的な変性を引き起こすことが知られている酸化物基板や金属基板等を用い、アンモニアを使用せずにバッファ層2を成膜するとともに、アンモニアを使用する方法で下地層3を成膜した場合には、バッファ層2がコート層としても作用するので、基板11の化学的な変質を防ぐ点で効果的である。
また、バッファ層2をスパッタ法により形成した場合、基板11の温度を低く抑えることが可能なので、高温で分解してしまう性質を持つ材料からなる基板11を用いた場合でも、基板11にダメージを与えることなく基板上への各層の成膜が可能である。
『バッファ層』
 本発明では、基板11の主面11a上にバッファ層2を形成し、その上に下地層3を形成することが好ましい。バッファ層2は、例えば、AlGa1-XN(0≦x≦1)なる組成で基板11上に積層され、例えば、V族元素を含むガスと金属材料とをプラズマで活性化して反応させる反応性スパッタ法によって形成することができる。本実施形態のような、プラズマ化した金属原料を用いた方法で成膜された膜は、配向が得られ易いという作用がある。
バッファ層2は、基板11と下地層3との格子定数の違いを緩和し、基板11のC面上にC軸配向した単結晶層の形成を容易にする働きがある。従って、バッファ層2の上に単結晶のIII族窒化物半導体層(下地層3)を積層すると、より結晶性に優れた下地層3が形成できる。なお、本実施形態では、バッファ層2を省略した構成とすることも可能である。
 本実施形態では、バッファ層2が、上記AlGa1-XN(0≦x≦1)なる組成からなることが好ましく、AlNであることがより好ましい。一般に、基板上に積層させるバッファ層としては、Alを含有する組成とされていることが好ましく、一般式AlGa1-XN(0≦x≦1)で表されるIII族窒化物化合物であれば、如何なる材料でも用いることができ、さらに、V族としてAsやPが含有される組成とすることもできる。なかでも、バッファ層2を、Alを含んだ組成とした場合、GaAlNとすることが好ましく、この場合には、Alの組成が50%以上とされていることがより好ましい。また、バッファ層2は、AlNからなる構成とすることが最も好ましい。また、バッファ層2を構成する材料としては、III族窒化物半導体と同じ結晶構造を有するものを用いることができるが、格子の長さが後述の下地層を構成するIII族窒化物半導体に近いものが好ましく、特に周期表のIIIa族元素の窒化物が好適である。
バッファ層2をなすIII族窒化物の結晶は、六方晶系の結晶構造を持ち、成膜条件をコントロールすることにより、単結晶膜とすることができる。また、III族窒化物の結晶は、上記成膜条件をコントロールすることにより、六角柱を基本とした集合組織からなる柱状結晶(多結晶)とすることも可能である。なお、ここで説明する柱状結晶とは、隣接する結晶粒との間に結晶粒界を形成して隔てられており、それ自体は縦断面形状として柱状になっている結晶のことをいう。
バッファ層2は、単結晶構造であることが、バッファ機能の面から好ましい。上述したように、III族窒化物の結晶は六方晶系の結晶を有し、六角柱を基本とした組織を形成する。III族窒化物の結晶は、成膜条件等を制御することにより、上方向だけではなく、面内方向にも成長した結晶を成膜することが可能となる。このような単結晶構造を有するバッファ層2を基板11上に成膜した場合、バッファ層2のバッファ機能が有効に作用するため、その上に成膜されるIII族窒化物半導体の層は、良好な配向性及び結晶性を持つ結晶膜となる。
 バッファ層2の膜厚は、0.01~0.5μmの範囲とされていることが好ましい。バッファ層2の膜厚をこの範囲とすることにより、良好な配向性を有し、バッファ層2上にIII族窒化物半導体からなる各層を成膜する際に、コート層として有効に機能するバッファ層2が得られる。バッファ層2の膜厚が0.01μm未満だと、上述したコート層としての充分な機能が得られず、また、基板11と下地層3との間の格子定数の違いを緩和するバッファ作用が充分に得られない場合がある。また、0.5μmを超える膜厚でバッファ層2を形成した場合、バッファ作用やコート層としての機能には変化が無いのにも関わらず成膜処理時間が長くなり、生産性が低下する虞がある。また、バッファ層2の膜厚は、0.02~0.1μmの範囲とされていることがより好ましい。
『III族窒化物半導体層(下地層)』
 本発明の発光素子1に備えられる下地層(III族窒化物半導体層)3は、上述したようにIII族窒化物半導体からなり、従来公知のMOCVD法によってバッファ層2上に積層して成膜することができる。
下地層3の材料としては、例えば、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)を用いることができるが、AlGa1―yN層(0≦y≦1、好ましくは0≦y≦0.5、さらに好ましくは0≦y≦0.1)を用いることが、結晶性の良好な下地層3を形成できる点でより好ましい。また、下地層3の材料は、上述のように、バッファ層2と異なる材料を用いても良いが、バッファ層2と同じ材料を用いることも可能である。
 また、下地層3は、必要に応じて、n型不純物が1×1017~1×1019個/cmの範囲内でドープされた構成としても良いが、アンドープ(<1×1017個/cm)の構成とすることもでき、アンドープの方が良好な結晶性を維持できる点で好ましい。
基板11が導電性である場合には、下地層3にドーパントをドープして導電性とすることにより、発光素子の上下に電極を形成することができる。一方、基板11に絶縁性の材料を用いる場合には、発光素子の同じ面に正極及び負極の各電極が設けられたチップ構造をとることになるので、下地層3はドープしない結晶とした方が、結晶性が良好となるので好ましい。下地層3にドープされるn型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
下地層3の厚さは、1~8μmの範囲とすることが、結晶性の良好な下地層が得られる点で好ましく、2~5μmの範囲とすることが、成膜に要する工程時間を短縮でき、生産性が向上する点でより好ましい。
『半導体層』 
 下地層3上に形成される半導体層20は、III族窒化物半導体から各々なるn型半導体層4、発光層5及びp型半導体層を有する。このような半導体層20の各層は、MOCVD法で形成することにより、より結晶性の高いものが得られる。
「n型半導体層」
n型半導体層4は、通常、n型コンタクト層4aとn型クラッド層4bとから構成される。また、n型コンタクト層4aはn型クラッド層4bを兼ねることも可能である。
 n型コンタクト層4aは、負極を設けるための層である。n型コンタクト層4aとしては、AlGa1-xN層(0≦x<1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。また、n型コンタクト層4aにはn型不純物がドープされていることが好ましく、n型不純物を1.5×1017~1.5×1020/cm、好ましくは1.5×1018~1.5×1019/cmの濃度で含有すると、負極との良好なオーミック接触の維持や、n型半導体層4のシート抵抗Rs2を効果的に低減できる点から好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSi及びGeが挙げられる。
 n型コンタクト層4aの膜厚は、0.5~5μmとされることが好ましく、1~3μmの範囲に設定することがより好ましい。n型コンタクト層4aの膜厚が上記範囲にあると、半導体の結晶性が良好に維持される。
 n型コンタクト層4aと発光層5との間には、n型クラッド層4bを設けることが好ましい。n型クラッド層4bは、発光層5へのキャリアの注入とキャリアの閉じ込めを行なう層である。n型クラッド層4bはAlGaN、GaN、GaInNなどで形成することが可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造としてもよい。n型クラッド層4bをGaInNで形成する場合には、発光層5のGaInNのバンドギャップよりも大きくすることが望ましいことは言うまでもない。
 n型クラッド層4bの膜厚は、特に限定されないが、好ましくは0.005~0.5μmであり、より好ましくは0.005~0.1μmである。n型クラッド層4bのn型ドープ濃度は1.5×1017~1.5×1020/cmが好ましく、より好ましくは1.5×1018~1.5×1019/cmである。ドープ濃度がこの範囲であると、良好な結晶性の維持及び素子の動作電圧低減の他、n型半導体層4のシート抵抗Rs2を効果的に低減できる点から好ましい。
 本発明に係る発光素子1では、n型半導体層4のシート抵抗Rs2が、詳細を後述する透光性電極7のシート抵抗Rs1よりも低い構成とされている。また、本発明においては、n型半導体層4のシート抵抗Rs2が15Ω/□以下であり、透光性電極7のシート抵抗Rs1が30Ω/□以下であることがより好ましい。このように、n型半導体層4や透光性電極7の抵抗値を制御する手段としては、例えば、膜厚を適宜調整する方法がある。n型半導体層4のシート抵抗Rs2を上記とする場合には、n型半導体層4全体の膜厚を2μm以上とすることが好ましい。
また、n型半導体層4のシート抵抗Rs2を制御する方法としては、Si等のn型不純物のドープ量を制御する方法でも行なうことができる。本発明では、n型半導体層4のシート抵抗Rs2を、透光性電極7のシート抵抗Rs1よりも低い特性とするため、Si等のn型不純物のドープ量を、従来の発光素子に備えられるn型半導体層の標準的なドープ量に比べて、例えば、1.5倍程度とすることが好ましい。これにより、シート抵抗Rs2を上述した所望の範囲に制御することが可能となり、具体的には、ドープ量を上記範囲とすることが好ましい。
 従来の発光素子においては、一般的に、n型半導体層4及びp側の透光性電極7のシート抵抗を同程度とすることで、透光性電極7及び半導体層20に均一に電流を拡散させることが発光効率の面で好ましいとされていた。しかしながら、このような構成では、むしろ、発光効率並びに光取り出し効率の低下を招くという問題があった。
このような問題を解決するため、本発明者等が鋭意研究したところ、p型半導体層6上に詳細を後述する絶縁層15を設けるとともに、n型半導体層4のシート抵抗(Rs2)が透光性電極7のシート抵抗(Rs1)よりも低くなるように制御することにより、n型半導体層4上に設けられる負極ボンディングパッド9付近での発光が抑制される一方、発光層15が除去されていない正極ボンディングパッド8周辺においては、発光強度の高い部分の面積が大きくなるので光取り出し効率が向上することを見出した。また、本発明者等は、発光素子1の駆動電圧(Vf)にはn型半導体層4のシート抵抗Rs2が支配的に働くことを知見し、このシート抵抗Rs2を透光性電極7のシート抵抗(Rs1)よりも低くすることで、電気的特性が大幅に向上することを見出した。これにより、光取り出し効率が向上し、外部量子効率に優れ、高い発光出力並びに電気的特性を備える発光素子1が得られる。
 なお、n型クラッド層4bを、超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第1層と、該n側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第2層とが積層された構造を含むものであっても良い。また、n型クラッド層4bは、n側第1層とn側第2層とが交互に繰返し積層された構造を含んだものであってもよい。また、好ましくは、前記n側第1層又はn側第2層の何れかが、発光層5)に接する構成とすれば良い。
上述のようなn側第1層及びn側第2層は、例えばAlを含むAlGaN系(単にAlGaNと記載することがある)、Inを含むGaInN系(単にGaInNと記載することがある)、GaNの組成とすることができる。また、n側第1層及びn側第2層は、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、GaInN/AlGaNの交互構造、組成の異なるGaInN/GaInNの交互構造(本発明における“組成の異なる”との説明は、各元素組成比が異なることを指し、以下同様である)、組成の異なるAlGaN/AlGaNの交互構造であってもよい。本発明においては、n側第1層及びn側第2層は、GaInN/GaNの交互構造又は組成の異なるGaInN/GaInNであることが好ましい。
上記n側第1層及びn側第2層の超格子層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オンストローム~40オングストロームの範囲であることが最も好ましい。超格子層を形成するn側第1層とn側第2層の膜厚が100オングストローム超だと、結晶欠陥が入りやすく好ましくない。
上記n側第1層及びn側第2層は、それぞれドープした構造であってもよく、また、ドープ構造/未ドープ構造の組み合わせであってもよい。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、n型クラッド層として、GaInN/GaNの交互構造又は組成の異なるGaInN/GaInNの交互構造のものを用いた場合には、不純物としてSiが好適である。また、上述のようなn側超格子多層膜は、GaInNやAlGaN、GaNで代表される組成が同じであっても、ドーピングを適宜ON、OFFしながら作製してもよい。
上述のように、n型クラッド層4bを、超格子構造を含む層構成とすることで、発光出力が格段に向上し、電気特性に優れた発光素子1とすることが可能となる。
「発光層」
 n型半導体層の上に積層される発光層としては、単一量子井戸構造あるいは多重量子井戸構造等の構造を有する発光層5が挙げられる。図1に示すような量子井戸構造の井戸層としては、青色発光を呈する構成とする場合には、通常、Ga1-yInN(0<y<0.4)なる組成のIII族窒化物半導体が用いられるが、本発明のような緑色発光を呈する井戸層5bの場合には、Ga1-yInN0.07<y<0.20等、インジウムの組成が高められたものが用いられる。
 本発明のような多重量子井戸構造の発光層5の場合は、上記Ga1-yInNを井戸層5bとし、井戸層5bよりバンドギャップエネルギーが大きいAlGa1-xN(0≦z<0.3)を障壁層5aとすることが好ましい。また、井戸層5b及び障壁層5aには、不純物をドープしても良いし、あるいは、しなくてもよい。
 また、井戸層5bの膜厚としては、量子効果の得られる程度の膜厚、例えば1~10nmとすることができ、より好ましくは2~6nmとすると発光出力の点で好ましい。
「p型半導体層」
 p型半導体層6は、通常、p型クラッド層6aおよびp型コンタクト層6bから構成される。また、p型コンタクト層6bがp型クラッド層6aを兼ねることも可能である。
 p型クラッド層6aは、発光層5へのキャリアの閉じ込めとキャリアの注入を行なう層である。p型クラッド層6aの組成としては、発光層5のバンドギャップエネルギーより大きくなる組成で、発光層5へのキャリアの閉じ込めができるものであれば特に限定されないが、好ましくは、AlGa1-xN(0<x≦0.4)のものが挙げられる。p型クラッド層6aが、このようなAlGaNからなると、発光層へのキャリアの閉じ込めの点で好ましい。p型クラッド層6aの膜厚は、特に限定されないが、好ましくは1~400nmであり、より好ましくは5~100nmである。p型クラッド層6aのp型ドープ濃度は、1×1018~1×1021/cmが好ましく、より好ましくは1×1019~1×1020/cmである。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。
また、p型クラッド層6aは、複数回積層した超格子構造としてもよい。
 なお、p型クラッド層6aを超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第1層と、該p側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第2層とが積層された構造を含むものであっても良い。また、p側第1層とp側第2層とが交互に繰返し積層された構造を含んだものであっても良い。
上述のようなp側第1層及びp側第2層は、それぞれ異なる組成、例えば、AlGaN、GaInN又はGaNの内の何れの組成であっても良い、また、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、又はGaInN/AlGaNの交互構造であっても良い。本発明においては、p側第1層及びp側第2層は、AlGaN/AlGaN又はAlGaN/GaNの交互構造であることが好ましい。
上記p側第1層及びp側第2層の超格子層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オングストローム~40オングストロームの範囲であることが最も好ましい。超格子層を形成するp側第1層とp側第2層の膜厚が100オングストローム超だと、結晶欠陥等を多く含む層となり、好ましくない。
上記p側第1層及びp側第2層は、それぞれドープした構造であっても良く、また、ドープ構造/未ドープ構造の組み合わせであっても良い。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、p型クラッド層として、AlGaN/GaNの交互構造又は組成の異なるAlGaN/AlGaNの交互構造のものを用いた場合には、不純物としてMgが好適である。また、上述のようなp側超格子多層膜は、GaInNやAlGaN、GaNで代表される組成が同じであっても、ドーピングを適宜ON、OFFしながら作製してもよい。
上述のように、p型クラッド層6aを、超格子構造を含む層構成とすることで、発光出力が格段に向上し、電気特性に優れた発光素子1とすることが可能となる。
 p型コンタクト層6bは、正極を設けるための層である。p型コンタクト層6bは、AlGa1-xN(0≦x≦0.4)が好ましい。Al組成が上記範囲であると、良好な結晶性の維持およびpオーミック電極との良好なオーミック接触の点で好ましい。p型不純物(ドーパント)を1×1018~1×1021/cmの濃度、好ましくは5×1019~5×1020/cmの濃度で含有していると、良好なオーミック接触の維持、クラック発生の防止、良好な結晶性の維持の点で好ましい。p型不純物としては、特に限定されないが、例えば好ましくはMgが挙げられる。p型コンタクト層6bの膜厚は、特に限定されないが、0.01~0.5μmが好ましく、より好ましくは0.05~0.2μmである。p型コンタクト層6bの膜厚がこの範囲であると、発光出力の点で好ましい。
『絶縁層』
 本発明の発光素子においては、p型半導体層6上の少なくとも一部、図1及び図2に示す例の発光素子1では略中央付近に、絶縁材料からなる絶縁層15が備えられている。また、図示例では、絶縁層15が透光性電極7に覆われるように形成されている。
 絶縁層15の材料としては特に限定されず、従来公知の絶縁性酸化膜等を何ら制限無く用いることができるが、中でも酸化シリコン(SiO)を用いることが好ましい。
 従来、絶縁材料からなる絶縁層15が直下に備えられていない構成とされた、透光性電極7をなす導電性の薄膜は、縦方向(半導体層方向)への電流拡散よりも、横方向(膜内方向)への電流拡散が小さいことから、この上に形成されるボンディングパッド電極(正極ボンディングパッド8)の直下に電流集中が生じ易い。このため、発光層5において発光作用が得られる領域がボンディングパッド電極の直下のみとなり、発光素子から取り出される光の発光効率が低下して所望の輝度が得られないという問題があった。
 本発明では、図1及び図2に示すように、p型半導体層6上に、透光性電極7に覆われた上記構成の絶縁層15を備えることにより、透光性電極7の膜内における電流拡散が促進される。つまり、透光性電極8及び半導体層20において、主として、絶縁層15及び、正極ボンディングパッド8に対応する位置の周辺部に電流が拡散される。これにより、発光層5における絶縁層15の直下の位置では発光作用が抑制され、その周辺部や、負極ボンディングパッド9の周辺部において良好な発光作用が得られるので、発光素子から取り出される光の発光効率が向上する。従って、内部量子効率に優れ、発光輝度が高められた発光素子1が実現できる。
 ボンディングパッド電極(正極ボンディングパッド8)の直下に絶縁層15を設けることにより、絶縁層15及び正極ボンディングパッド8に対応する位置での電流集中を抑制し、その周辺部に電流を拡散することで得られる効果について、図5のグラフを用いて説明する。図5は、発光素子の順方向電流(I)と発光出力(Po)との関係を示すグラフであり、グラフ中、曲線(a)、(b)、(c)は、絶縁層が設けられた本発明に係る発光素子の特性を示すものである。また、図5のグラフ中、曲線(d)、(e)は、絶縁層を備えていない発光素子の特性を示すものである。
 図5のグラフに示すように、絶縁層を設けて該絶縁層及び正極ボンディングパッドの周辺部に電流を拡散させた本発明に係る発光素子は、絶縁層が設けられていない発光素子に比べ、順方向電流(I)が同じ場合でも高い発光出力(Po)が得られることが明らかである。これは、p型半導体層6の上に絶縁層15が設けられることで、透光性電極7及び半導体層20において、絶縁層15及び正極ボンディングパッド8に対応する位置Aの周辺部に電流が拡散され、この周辺部が効果的に発光するためと考えられる。
 なお、絶縁層15の厚さとしては、50~500nmの範囲であることが好ましく、100~300nmの範囲であることがより好ましい。絶縁層15の厚さが上記範囲であれば、上述したような電流集中を抑制する作用が、より効果的に得られる。
 また、絶縁層15の平面視形状は、特に限定されるものでは無く、例えば、略円形状や略四角形状等、適宜選択して採用することができるが、電流を効果的に拡散できる形状としては、略円形状等が挙げられる。このように、絶縁層15を平面視略円形状に形成した場合には、その直径を、正極ボンディングパッド8の直径よりも30μm以下の範囲内で大きく形成することが好ましく、また、10μm以下の範囲内で大きく形成することがより好ましい。
『透光性電極』
透光性電極7は、導電性を備えた酸化膜等からなる透光性の電極であり、この技術分野で通常用いられる透光性材料を何ら制限無く用いることができる。このような材料としては、例えば、ITO(In-SnO)、AZO(ZnO-Al)、IZO(In-ZnO:酸化インジウム亜鉛;Indium Zinc Oxide)、GZO(ZnO-Ga)、IGO(In-Ga)、ICO(In-Ce)、任意の不純物元素がドープされた酸化チタン(TiO)等を含む材料が挙げられる。また、これらの材料の内、酸化チタンには、TiOを一部還元した還元型TiO2-Xを用いてもよく、導電性のものであれば良い。また、酸化チタンにドープする材料としては、例えば、Nb等が挙げられる。
また、本発明においては、ITO、IZO、IGO、ICO及び導電性酸化チタンの内の、少なくとも何れか1種を用いることがより好ましい。
 また、透光性電極7を形成する方法としても、特に限定されず、この技術分野でよく知られた慣用の手段で設けることができる。また、透光性電極7の構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。また、透光性電極7は、絶縁層15の全面を覆うとともに、p型半導体層6上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成することも可能である。また、透光性電極9を形成した後に、合金化や透明化を目的とした熱アニールを施しても良いし、あるいは施さなくても構わない。
 本発明に係る発光素子1では、n型半導体層4のシート抵抗Rs2が、p側である透光性電極7のシート抵抗Rs1よりも低い構成とされている。このような構成とすることにより、上述したように、正極ボンディングパッド8の直下における半導体層20(発光層5)での発光が抑制されるとともに、負極ボンディングパッド9付近での発光が抑制される。これにより、主として、正極ボンディングパッド8の周辺部における位置の発光層5が発光するので、n型半導体層4上に設けられる負極ボンディングパッド9付近での発光が抑制される一方、発光層15が除去されていない正極ボンディングパッド8周辺においては、発光強度の高い部分の面積が大きくなるので、光取り出し効率が向上する。また、透光性電極7の膜厚を薄く構成することができるので、光透過率が向上し、光取り出し効率を一層向上させることが可能となる。これにより、発光効率及び光取り出し効率に優れ、高い発光強度並びに電気的特性を備える発光素子1が実現できる。
なお、透光性電極7のシート抵抗Rs1は、30Ω/□以下であることが好ましい。上述したように、n型半導体層4のシート抵抗Rs2がp側である透光性電極7のシート抵抗Rs1よりも低い構成としたうえで、n型半導体層4のシート抵抗Rs2を15Ω/□以下とし、透光性電極7のシート抵抗Rs1を30Ω/□以下とすることにより、光取り出し効率の向上効果が安定して得られるとともに、優れた電気的特性が得られる。
また、透光性電極7のシート抵抗Rs1を制御する方法としては、特に限定されないが、例えば、膜厚の調整やアニール処理によって制御する方法を採用できる。本実施形態のように、透光性電極7のシート抵抗Rs1を、n型半導体層4のシート抵抗Rs2よりも高くし、また、シート抵抗Rs1を30Ω/□以下とする場合には、例えば、膜厚を薄くすることで所望の特性に制御することが可能である。
 透光性電極7の厚さとしては、100nm以下であることが好ましい。透光性電極7の厚さを上記とすることで、シート抵抗Rs1を30Ω/□以下に制御することが可能となる。また、透光性電極7の最大厚さとしては、生産性を考慮し、600nm以下とすることが好ましい。
 なお、本発明に係る発光素子1においては、透光性電極7の表面に凹凸が形成された構成とすることがより好ましい。これにより、透光性電極7からの光取り出し効率が向上するとともに、凹凸の形状や寸法を適性化することで、透光性電極7のシート抵抗Rs1を制御することも可能となる。
『ボンディングパッド(電極)』
 本発明に係る発光素子1においては、透光性電極7上に正極ボンディングパッド8が設けられ、n型半導体層4に備えられるn型コンタクト層に接するように負極ボンディングパッド9が設けられている。
「正極ボンディングパッド」
正極ボンディングパッド8は、図1及び図2に示すように、p型半導体層6及び絶縁層15と接する透光性導電酸化膜層からなる透光性電極7上の一部に設けられている。また、図示例の正極ボンディングパッド8は、透光性電極7の表面7aにおいて、絶縁層15に対応する位置Aに設けられている。
正極ボンディングパッド8は、回路基板やリードフレーム等との電気接続のために設けられる。正極ボンディングパッドとしては、Au、Al、NiおよびCu等を用いた各種構造が周知であり、これら周知の材料、構造を何ら制限無く用いることができる。
 正極ボンディングパッド8の厚さは、100~1500nmの範囲内であることが好ましい。また、ボンディングパッドの特性上、厚さが大きい方が、ボンダビリティーが高くなるため、正極ボンディングパッド8の厚さは300nm以上とすることがより好ましい。
 本実施形態で説明する発光素子1においては、上述のように、正極ボンディングパッド8が、透光性電極7の表面7aにおいて絶縁層15に対応する位置Aに設けられていることが好ましい。このような構成により、上述したような電流集中を抑制する効果や、正極ボンディングパッド8での光の吸収や多重反射による損失を抑制できる効果が安定して得られる。また、本発明に係る発光素子1においては、正極ボンディングパッド8の直下における電流集中を抑制することにより、特に、発光素子を高電流で駆動した場合の発光出力(Po)が向上するという効果が得られる。
なお、本実施形態では、例えば、透光性電極7の表面7aにおいて絶縁層15に対応する位置Aに図示略の貫通孔を設け、正極ボンディングパッド8が貫通孔を介して絶縁層15と接して設けられた構成とすることも可能である。このような構成とすることにより、正極ボンディングパッド8の接合強度が向上するという効果が得られる。
「負極ボンディングパッド」
 負極ボンディングパッド9は、半導体層20のn型半導体層4に接するように形成される。このため、負極ボンディングパッド9を形成する際には、発光層5およびp型半導体層6の一部を除去してn型半導体層4のn型コンタクト層を露出させ、この上に負極ボンディングパッド9を形成する。
 負極ボンディングパッド9としては、各種組成や構造が周知であり、これら周知の組成や構造を何ら制限無く用いることができ、この技術分野でよく知られた慣用の手段で設けることができる。
 なお、上述した正極ボンディングパッド8並びに負極ボンディングパッド9の、発光素子1上における形成位置や電極中心間距離は、特に限定されない。しかしながら、より優れた発光効率並びに光取り出し効率を得るためには、各ボンディングパッドの形成位置や電極中心間距離を適宜調整することが好ましい。例えば、図1及び図2に示す例のような平面視略長方形の発光素子1を構成する場合には、まず、発光素子1の長手方向の一端側近傍に負極ボンディングパッド9を配置し、発光素子1の略中央付近もしくは長手方向の他端側近傍に正極ボンディングパッド8を配置した構成とすることが、上述したような高い発光効率及び光取り出し効率が得られ易くなる点から好ましい。
 本発明では、上述したように、半導体層20に備えられるn型半導体層4のシート抵抗Rs2が、透光性電極7のシート抵抗Rs1よりも低い構成とされている。これにより、負極ボンディングパッド9からn型半導体層4を介して発光層5及びp型半導体層6を流通し、透光性電極7に電流が流れる際の電流集中が抑制されるので、発光効率に優れた発光素子1が得られる。
『発光素子の平面視におけるチップサイズ』
本発明においては、発光素子1の平面視におけるチップサイズ、即ち、正極ボンディングパッド8と負極ボンディングパッド9とが離間する方向の電極離間方向寸法(チップ長さ寸法)L、及び、この電極離間方向に直交する方向でのチップ幅寸法Wについては、特に限定されない。例えば、電極離間方向寸法L及びチップ幅寸法Wを、平面視におけるチップ形状が正方形状となる寸法比としても良いし、あるいは、長方形状となる寸法比としても良く、何れの場合であっても、本発明による発光効率の向上効果が得られる。
しかしながら、上記構成によって得られる発光効率向上の効果をさらに顕著なものとするためには、図2に示す例のように、その平面視形状を、電極離間方向寸法Lをチップ幅寸法Wよりも長くし、略長方形状とすることがより好ましい。
本発明に係る発光素子1のように、上記構成の絶縁層15を備え、n型半導体層4のシート抵抗Rs2が、透光性電極7のシート抵抗Rs1よりも低い構成とされた発光素子の場合、その駆動電流(順方向電流)IFを、好ましくは30~100mA程度の範囲として使用する。このような条件で駆動される発光素子は、例えば、リフレクター等を用いた照明やヘッドランプ用途等に用いられる。このように、発光素子1は、比較的大きな電流で駆動され、高い発光強度が得られるものであり、上記した照明用途等において好適なものである。
発光素子1を上記条件で駆動する場合の、より好ましいチップサイズについて、以下に詳述する。
本実施形態の発光素子1は、その平面視における電極離間方向寸法Lを400μm以上、より好ましくは400~550μmの範囲とし、チップ幅寸法Wを180μm以上、より好ましくは180~260μmの範囲とすることにより、平面視略長方形状に構成することができる。この場合、例えば、平面視におけるチップサイズ(W×L)を、例えば、260×550μmや240×400μm、180×400μm等の組み合わせとすることができる。
本実施形態のように、大きな駆動電流(順方向電流)IFを印加して用いる発光素子1では、チップサイズ及び形状を上記構成とすることにより、正極ボンディングパッド8の直下における半導体層20(発光層5)での発光が抑制されるとともに、負極ボンディングパッド9付近での発光が抑制される作用がより顕著となる。これにより、主として正極ボンディングパッド8の周辺部における位置の発光層5が効果的に発光する一方、n型半導体層4上に設けられる負極ボンディングパッド9付近での発光がさらに抑制される。従って、発光層15が除去されていない正極ボンディングパッド8周辺においては、発光強度の高い部分の面積がさらに大きくなるので、発光効率がより一層向上する。
また、本実施形態においては、発光素子1の横縦寸法、即ち、電極離間方向寸法L×チップ幅寸法Wを上記範囲としたうえで、その平面視における面積を180,000μm程度以下とすることが、上記した発光効率向上の効果が顕著となる点から好ましい。例えば、チップサイズ(W×L)を280×550μmとした場合には、平面視面積が154,000μmとなり、チップサイズ(W×L)が260×550μmである場合には平面視面積が143,000μm、240×400μmである場合には96,000μm、180×400μmである場合には72,000μmとなる。
一般に、発光素子の平面視面積が大きいほど、n型半導体層4側のシート抵抗Rs2が低いことが求められる。本実施形態においては、特に、大電流を印加して駆動するとともに、平面視面積、即ち発光面積が大きな発光素子である場合に、n型半導体層4側のシート抵抗Rs2が、透光性電極7のシート抵抗Rs1よりも低い構成とされることで、上述のような、発光効率の向上効果がより顕著に得られる。
また、本実施形態においては、発光素子1の電極離間方向寸法L×チップ幅寸法W、並びに、平面視面積を上記範囲としたうえで、その平面視における横縦寸法比、即ち、(電極離間方向寸法L)/(チップ幅寸法W)を、1.5~2.7の範囲とすることが、上記した発光効率向上の効果が顕著となる点から好ましい。例えば、チップサイズ(L×W)が280×550μmである場合には、横縦寸法比(L/W)は2.0となる。
なお、上述した正極ボンディングパッド8と負極ボンディングパッド9の電極中心間距離は、発光素子1の電極離間方向寸法Lによって制限される。本実施形態においては、発光素子1の平面視寸法並びに形状を上記条件としたうえで、電極中心間距離を、次式{発光素子の電極離間方向寸法L×0.5~0.75}の範囲とすることが、本発明による効果が顕著になるとともに、発光ムラ等が生じること無く、より高い発光効率が得られる点から好ましい。
ここで、本実施形態で説明する例のように、大きな駆動電流(順方向電流)IFを発光素子に印加する場合、一般に、発光素子の平面視における発光ムラが生じやすいという特性がある。このような発光ムラは、例え、正極ボンディングパッド8と負極ボンディングパッド9の電極中心間距離を適正に調整した場合でも生じることがある。
本発明に係る発光素子においては、n型半導体層4のシート抵抗Rs2を、透光性電極7のシート抵抗Rs1よりも低く構成しているので、大きな順方向電流IFを印加して用いる発光素子であっても、発光ムラが生じるのが抑制されるという効果がある。
 以上説明したような、本発明に係る発光素子1によれば、基板11上に形成された単結晶の下地層3上に、n型半導体層4、発光層5及びp型半導体層6が順次積層された半導体層20が形成され、p型半導体層6上に透光性電極7が形成されてなり、さらに、p型半導体層6上の少なくとも一部に絶縁層15が備えられるとともに透光性電極7が絶縁層15を覆って形成され、透光性電極7の表面7aにおいて、p型半導体層6上に備えられた絶縁層15の上方の位置Aに正極ボンディングパッド8が設けられているので、透光性電極7及び半導体層20における正極ボンディングパッド8に対応する位置での電流集中が抑制でき、発光効率が向上する。また、n型半導体層4のシート抵抗Rs2が透光性電極7のシート抵抗Rs1よりも低い構成とされているので、n型半導体層4上に設けられる負極ボンディングパッド9付近での発光が抑制される一方、発光層15が除去されていない正極ボンディングパッド8周辺においては、発光強度の高い部分の面積が大きくなるので、光取り出し効率が向上する。また、透光性電極7の膜厚を薄く構成することができるので、光透過率が向上し、光取り出し効率を一層向上させることが可能となる。従って、発光効率及び光取り出し効率に優れ、高い外部量子効率を備えるとともに、優れた電気的特性を備える発光素子1を提供することが可能となる。
 なお、本発明に係る発光素子では、例えば、基板として、図3及び図4に示すように、(0001)C面からなる平面111と複数の凸部112とからなる主面110を有する基板100を採用し、さらに、下地層103が、主面110上において、平面111及び凸部112を覆うようにIII族窒化物半導体がエピタキシャル成長することによって形成された構成とすることも可能である。
 図3及び図4に示す例の基板11Aは、複数の凸部112が形成されている。そして、基板100の主面110において凸部112の形成されていない部分は、(0001)C面からなる平面111とされている。従って、図3及び図4に示す例のように、基板100の主面110は、C面からなる平面111と、複数の凸部112とから構成されている。
凸部112は、図示例のように、C面に非平行の表面112cからなるものであり、この表面112cにC面が現れていないものである。この112は、基部112aの平面形状が略円形であり、上部に向かって徐々に外形が小さくなる形状とされており、側面112bが外側に向かって湾曲したお椀状(半球状)の形状とされている。なお、凸部が、詳細を後述するように、サファイア以外の酸化物又は窒化物から構成される場合は、円柱形としても構わない。また、凸部112の平面配置としては、碁盤目状に等間隔に配置されている。
凸部112は、基部幅dが0.05~1.5μm、高さhが0.05~1μmの範囲で且つ基部幅dの1/4以上とされており、隣接する凸部112間の間隔dが基部幅dの0.3~5倍とされている。ここで、凸部112の基部幅dとは、凸部112の底辺(基部12a)における最大幅の長さのことをいう。また、隣接する凸部112の間隔dとは、最も近接した凸部112の基部112aの縁の間の距離をいう。
隣接する凸部112間の間隔dは、基部幅dの0.5~5倍とされることが好ましい。凸部112間の間隔dが基部幅dの0.3倍未満であると、n型半導体層4(半導体層20)を構成する下地層103をエピタキシャル成長させる際に、C面からなる平面111上からの結晶成長が促進され難くなり、凸部112を下地層103で完全に埋め込むことが難しくなるし、下地層103の表面103aの平坦性が十分に得られない場合がある。従って、凸部112を埋め下地層103上にLED構造をなす半導体層の結晶を形成した場合、この結晶は当然にピットが多く形成されることとなり、形成されるIII族窒化物半導体発光素子の出力や電気特性等の悪化につながってしまう。また、凸部112間の間隔dが基部幅dの5倍を超えると、基板100を用いてIII族窒化物半導体発光素子を形成した場合に、基板100と、基板100上に形成されたIII族窒化物半導体層との界面での光の乱反射の機会が減少し、光の取り出し効率を十分に向上させることができなくなる恐れがある。
基部幅dは0.05~1.5μmとされることが好ましい。基部幅dが0.05μm未満であると、基板100を用いてIII族窒化物半導体発光素子を形成した場合に、光を乱反射させる効果が十分に得られない恐れがある。また、基部幅dが1.5μmを超えると、凸部112を埋めて下地層1033をエピタキシャル成長させることが困難になる。また、平坦性及び結晶性の良好な下地層が形成できたとしても、下地層と発光層との間の歪みが大きくなり、内部量子効率の低下を招いてしまう。また、基部幅dは、上記範囲内においてより小さい構成とすれば、発光素子の発光出力がさらに向上するという効果が得られる。また、基部幅dは0.05~1μmとされることがより好ましい。
凸部112の高さhは0.05~1μmとされることが好ましい。凸部112の高さhが0.05μm未満であると、基板100を用いてIII族窒化物半導体発光素子を形成した場合に、光を乱反射させる効果が十分に得られない恐れがある。また、凸部112の高さhが1μmを超えると、凸部112を埋めて下地層103をエピタキシャル成長することが困難になり、下地層103の表面の平坦性が十分に得られない場合がある。
 また、凸部112の高さhは基部幅dの1/4以上とされることが好ましい。凸部112の高さhが基部幅dの1/4未満であると、基板100を用いてIII族窒化物半導体発光素子を形成した場合における光を乱反射させる効果や、光の取り出し効率を向上させる効果が十分に得られない恐れがある。
 なお、凸部112の形状は、図3及び図4に示す例に限定されるものではなく、C面に非平行の表面からなるものであれば、いかなる形状であってもよい。例えば、基部の平面形状が略多角形であり、上部に向かって徐々に外形が小さくなる形状とされており、側面111が外側に向かって湾曲している形状であってもよい。また、側面が上部に向かって徐々に外形が小さくなる斜面からなる略円錐状や略多角錐状とされていてもよい。また、側面の傾斜角度が2段階的変化する形状であってもよい。また、凸部が、詳細を後述するように、サファイア以外の酸化物又は窒化物から構成される場合は、円柱形としても構わない。また、凸部112の平面配置も、図示例に限定されるものではなく、等間隔であってもよいし、等間隔でなくてもよい。また、凸部112の平面配置は、四角形状であってもよいし、三角形状であってもよいし、ランダムであってもよい。
また、基板100上に設けられる凸部112は、詳細を後述する製造方法により、基板100をエッチングすることによって形成することができるが、これには限定されない。例えば、基板上に、凸部をなす別の材料を基板100のC面上に堆積させることによって凸部を形成してもよい。基板上に、凸部をなす別の材料を堆積させる方法としては、例えば、スパッタ法、蒸着法、CVD法等の各方法を用いることができる。また、凸部をなす材料としては、酸化物や窒化物等、基板の材料とほぼ同等の屈折率を有する材料を用いることが好ましく、基板がサファイア基板の場合には、例えば、SiO、Al、SiN、ZnO等を用いることができる。
 上記一例のように、基板100を、平面111及び凸部112からなる主面110が備えられた上記構成とすることにより、基板100と、詳細を後述する下地層103との界面が、バッファ層102を介して凹凸とされるので、光の乱反射によって発光素子の内部への光の閉じ込めが低減され、光取り出し効率に優れた発光素子が実現できる。
[III族窒化物半導体発光素子の製造方法]
 本発明に係るIII族窒化物半導体発光素子の製造方法は、基板11の主面11a上に単結晶の下地層(III族窒化物半導体層)3を形成するエピタキシャル工程と、下地層3上にn型半導体層4、発光層5及びp型半導体層6を順次積層して半導体層20を形成する半導体層形成工程と、p型半導体層6上に透光性電極7を形成する透光性電極形成工程とが備えられてなり、透光性電極形成工程が、p型半導体層6上の少なくとも一部に絶縁層15を形成した後、p型半導体層6上に絶縁層15を覆うように透光性電極7を形成し、透光性電極形成工程の後、透光性電極7の表面7aにおいて、p型半導体層6上に形成された絶縁層15の上方の位置Aに正極ボンディングパッド8を形成する正極形成工程が備えられており、半導体層形成工程は、n型半導体層4のシート抵抗が透光性電極7のシート抵抗よりも低くなるようにn型半導体層4を形成する方法である。
 以下、本発明の製造方法に備えられる各工程について詳しく説明する。
『バッファ層形成工程』
 本発明に係る製造方法では、エピタキシャル工程の前に、基板11の主面11a上にバッファ層2を形成するバッファ層形成工程が備えられていることが好ましい。また、本発明においては、バッファ層を省略した構成とすることも可能なので、この場合にはバッファ層形成工程を行なわなくても良い。
「基板の前処理」
 本実施形態では、基板11をスパッタ装置のチャンバ内に導入した後、バッファ層2を形成する前に、プラズマ処理による逆スパッタ等の方法を用いて前処理を行うことが望ましい。
「バッファ層の成膜」
基板11に前処理を行なった後、基板11の主面11a上に、反応性スパッタ法により、AlGa1-XN(0≦X≦1)なる組成のバッファ層2を成膜する。反応性スパッタ法によって単結晶構造を有するバッファ層2を形成する場合、スパッタ装置のチャンバ内の窒素原料と不活性ガスの流量に対する窒素流量の比を、窒素原料が50~100%の範囲となるように制御することが好ましく、75%程度とすることがより好ましい。また、柱状結晶(多結晶)構造を有するバッファ層2を形成する場合には、スパッタ装置のチャンバ内の窒素原料と不活性ガスの流量に対する窒素流量の比を、窒素原料が1~50%の範囲となるように制御することが好ましく、25%程度とすることがより好ましい。
また、バッファ層は、上述した反応性スパッタ法に限らず、例えば、MOCVD法を用いて形成することも可能であるが、プロセスの簡略化等の観点から、反応性スパッタ法を用いて形成することが好ましい。
『エピタキシャル工程及び半導体層形成工程』
次に、エピタキシャル工程では、上記バッファ層形成工程の後、図1に示すように、基板11の主面11a上に形成されたバッファ層2の上に、単結晶のIII族窒化物半導体をエピタキシャル成長させて、主面11aを覆うように下地層(III族窒化物半導体層)103を形成する。
 また、本発明においては、エピタキシャル工程においてIII族窒化物半導体からなる下地層3を形成した後、半導体層形成工程において、下地層3上に、n型半導体層4、発光層5及びp型半導体層6の各層からなる半導体層20を形成する。
 なお、本実施形態においては、それぞれIII族窒化物半導体を用いて各層を成膜するエピタキシャル工程及び半導体層形成工程において、両工程に共通する構成については、一部、説明を省略することがある。
 本発明において、下地層3、n型半導体層4、発光層5及びp型半導体層6を形成する際の窒化ガリウム系化合物半導体(III族窒化物半導体)の成長方法は特に限定されず、反応性スパッタ法、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)等、窒化物半導体を成長させることが知られている全ての方法を適用できる。これらの方法の内、MOCVD法では、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、V族原料であるN源としてアンモニア(NH)、ヒドラジン(N)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)またはジシラン(Si)を、Ge原料としてゲルマンガス(GeH)や、テトラメチルゲルマニウム((CHGe)やテトラエチルゲルマニウム((CGe)等の有機ゲルマニウム化合物を利用できる。MBE法では、元素状のゲルマニウムもドーピング源として利用できる。p型にはMg原料としては、例えばビスシクロペンタジエニルマグネシウム(CpMg)またはビスエチルシクロペンタジエニルマグネシウム(EtCpMg)を用いる。
また、上述したような窒化ガリウム系化合物半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、及びBe等のドーパント元素を含有することができる。さらに、意図的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。
 本発明においては、上記各方法の中でも、結晶性の良好な膜が得られる点からMOCVD法を用いることが好ましく、本実施形態では、エピタキシャル工程及び半導体層形成工程においてMOCVD法を用いた例について説明する。
「エピタキシャル工程(下地層の形成)」
エピタキシャル工程では、図1に示すように、基板11上に形成されたバッファ層2の上に、下地層3を、従来公知のMOCVD法を用いて形成する。
 本実施形態では、MOCVD法を用いて下地層3を形成する方法を説明しているが、下地層3を積層する方法としては特に限定されず、転位のループ化を生じさせることができる結晶成長方法であれば、何ら制限なく用いることができる。特に、MOCVD法やMBE法、VPE法等は、マイグレーションを生じさせることができるため、結晶性の良好な膜を形成することが可能となる点で好適である。中でも、MOCVD法は、特に結晶性の良好な膜を得ることができる点で、より好適に用いることができる。
 下地層3を成膜する際の基板11の温度、つまり、下地層3の成長温度は800℃以上とすることが好ましい。これは、下地層3を成膜する際の基板11の温度を高くすることによって原子のマイグレーションが生じやすくなり、転位のループ化が容易に進行するからであり、より好ましくは900℃以上であり、1000℃以上が最も好ましい。また、下地層3を成膜する際の基板11の温度は、結晶の分解する温度よりも低温である必要があるため、1200℃未満とすることが好ましい。下地層3を成膜する際の基板11の温度が上記範囲内であれば、結晶性の良い下地層3が得られる。
 なお、下地層3には、必要に応じて、不純物をドープして成膜することができるが、アンドープとすることが、結晶性が向上する点から好ましい。
また、反応性スパッタ法を用いてIII族窒化物半導体からなる下地層を成膜することも可能である。スパッタ法を用いる場合には、MOCVD法やMBE法等と比較して、装置を簡便な構成とすることが可能となる。
「半導体層形成工程」
 次に、半導体層形成工程においては、上記エピタキシャル工程の後、図1に示すように、下地層3の上に、n型半導体層4、発光層5及びp型半導体層6の各層からなる半導体層20を、従来公知のMOCVD法を用いて積層する。
(n型半導体層の形成)
 上記エピタキシャル工程で形成された下地層3の上に、従来公知のMOCVD法を用いて、n型コンタクト層4a及びn型クラッド層4bを順次積層することにより、n型半導体層4を形成する。n型コンタクト層4a及びn型クラッド層4bを形成する成膜装置としては、上述の下地層3や後述の発光層5の成膜に用いるMOCVD装置を、各種条件を適宜変更して用いることが可能である。また、n型コンタクト層4a及びn型クラッド層4bを反応性スパッタ法で形成することも可能である。
 本発明では、半導体層形成工程において、n型半導体層4のシート抵抗Rs2が、後の透光性電極形成工程において形成される透光性電極7のシート抵抗Rs1よりも低くなるように、n型半導体層4を形成する。また、半導体層形成工程においては、n型半導体層4を、例えば、そのシート抵抗Rs2が15Ω/□以下となるように形成する。
 このように、n型半導体層4のシート抵抗Rs2を制御する方法としては、上述したように、膜厚の適性化による方法や、Si等のn型不純物のドープ量を制御する方法を適宜採用することが可能である。本発明においては、n型半導体層4を、シート抵抗Rs2が低減されるように形成するので、上述したように、Si等のn型不純物のドープ量を、従来の発光素子におけるドープ量に比べて1.5倍程度とすることが好ましい。n型不純物のドープ量を増量することにより、シート抵抗Rs2が、例えば、15Ω/□以下となるように制御しながら、n型半導体層4を形成することができる。
(発光層の形成)
 次いで、n型クラッド層4b(n型半導体層4)上に、発光層5を、従来公知のMOCVD法によって形成する。本実施形態で形成する発光層5は、図4に例示するように、GaN障壁層に始まりGaN障壁層に終わる積層構造を有しており、GaNからなる7層の障壁層5aと、ノンドープのGa0.8In0.2Nからなる6層の井戸層5bとを交互に積層して形成する。また、本実施形態の製造方法では、上述したn型半導体層4の成膜に用いる成膜装置(MOCVD装置)と同じものを使用して発光層5を成膜することができる。
(p型半導体層の形成)
 次いで、発光層5上、つまり、発光層5の最上層となる障壁層5aの上に、p型クラッド層6a及びp型コンタクト層6bからなるp型半導体層6を、従来公知のMOCVD法を用いて形成する。p型半導体層6の形成には、n型半導体層4及び発光層5の形成に用いるMOCVD装置と同じ装置を、各種条件を適宜変更して用いることが可能である。また、p型半導体層6を構成するp型クラッド層6a及びp型コンタクト層6bを、反応性スパッタ法を用いて形成することも可能である。
 本実施形態では、まず、MgをドープしたAl0.1Ga0.9Nからなるp型クラッド層6aを発光層5(最上層の障壁層5a)上に形成し、さらにその上に、MgをドープしたAl0.02Ga0.98Nからなるp型コンタクト層6bを形成する。この際、p型クラッド層6a及びp型コンタクト層6bの積層には、同じMOCVD装置を用いることができる。なお、上述したように、p型不純物としては、Mgのみならず、例えば亜鉛(Zn)等も同様に用いることができる。
『透光性電極形成工程』
 次に、透光性電極形成工程では、図1に示すように、p型半導体層6上の少なくとも一部に絶縁層15を形成した後、p型半導体層6上に絶縁層15を覆うように透光性電極7を形成する。
「絶縁層の形成」
 まず、p型半導体層6上の少なくとも一部、図1及び図2に示す例では略中央付近に、絶縁材料からなる絶縁層15を形成する。
絶縁層15の形成に用いる材料としては特に限定されず、従来公知の絶縁性酸化膜等を何ら制限無く用いることができ、例えば、酸化シリコン(SiO)を用いることができる。
 また、絶縁層15する方法としては、例えば、スパッタ法等の従来公知の方法を何ら制限無く用いることができる。
「透光性電極の形成」
 次に、上記方法によって形成されたp型半導体層6の上に、絶縁層15を覆うようにIZOを積層することにより、透光性電極7を形成する。
 透光性電極7の形成方法としては、特に限定されず、この技術分野でよく知られた慣用の手段で設けることができる。また、その構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
 透光性電極7は、IZOの他、ITO、ITO、IGO、ICO、AZO、GZO又は導電性酸化チタン(例えばNbがドープされたTiO)等の材料を用いて形成することが可能である。また、透光性電極7を形成した後、合金化や透明化を目的とした熱アニールを施しても良い。
 本実施形態の透光性電極形成工程では、透光性電極7の表面7aに凹凸を形成することがより好ましい。これにより、透光性電極7からの光取り出し効率が向上するとともに、凹凸の形状や寸法を適宜調整することで、透光性電極7のシート抵抗Rs1を制御することが可能となる。
本発明の製造方法では、上述した半導体層形成工程において、n型半導体層4のシート抵抗Rs2が透光性電極7のシート抵抗Rs1よりも低くなるように形成する。また、透光性電極形成工程においても、透光性電極7を、そのシート抵抗Rs1が、例えば、30Ω/□以下となるように制御しながら、n型半導体層4のシート抵抗Rs2が透光性電極7のシート抵抗Rs1よりも低くなるように形成する必要がある。このため、透光性電極7の膜厚を、例えば、100nm以上600nm以下として形成することにより、透光性電極7のシート抵抗Rs1が30Ω/□以下となるように制御することが可能となる。
 透光性電極7のシート抵抗Rs1を制御する方法としては、上述したような膜厚を適性化する方法の他、アニール処理を施すことで抵抗値を低減する方法がある。このように、透光性電極7にアニール処理を施す場合には、窒素雰囲気下において、500℃以上900℃以下の温度範囲とした条件下で行なうことが好ましい。これにより、透光性電極7の結晶組織が六方晶となり、シート抵抗Rs1を効果的に低減しながら所望の抵抗値に制御することが可能となる。ここで、アニール温度が900℃を超えると、IZOからなる透光性電極の結晶組織が立方晶となり、シート抵抗Rs1を適性に制御することが困難となる。
 上記各方法を採用することにより、透光性電極7のシート抵抗Rs1を、例えば、30Ω/□以下としながら、透光性電極7とn型半導体層4の各シート抵抗Rs1、Rs2の関係を、次式(Rs1>Rs2)で表される関係に制御するのが容易になる。
『ボンディングパッド電極の形成』
 次に、本実施形態の製造方法では、透光性電極形成工程の後、透光性電極7の表面7aにおいてp型半導体層6上に形成された絶縁層15に対応する位置Aに正極ボンディングパッド8を形成する正極形成工程が備えられている。また、本実施形態では、半導体層20の所定の位置をエッチング除去することにより、n型半導体層4を露出させて露出領域を形成し、この露出領域に負極ボンディングパッド9を形成する。
「正極形成工程」
 まず、透光性電極7の表面7aに、p型半導体層6上に形成された絶縁層15に対応する位置Aで、正極ボンディングパッド8を形成する。この正極ボンディングパッド8は、例えば、透光性電極7の表面側から順に、Ti、Al、Auの各材料を、従来公知の方法で積層することによって形成することができる。
「負極ボンディングパッドの形成」
 負極ボンディングパッド9を形成する際は、まず、基板11上に形成されたp型半導体層6、発光層5及びn型半導体層4の一部をドライエッチング等の方法によって除去することにより、n型コンタクト層4aの一部を露出させる。そして、この露出領域上に、例えば、露出領域の表面側から順に、Ni、Al、Ti、及びAuの各材料を従来公知の方法で積層することにより、詳細な図示を省略する4層構造の負極ボンディングパッド9を形成することができる。
なお、本発明においては、上記手順及び条件で発光素子1を製造するにあたり、上述したように、平面視形状を、図2に示す例の如く、電極離間方向寸法Lがチップ幅寸法Wよりも長い略長方形状として形成することがより好ましい。これにより、発光効率により優れた発光素子1を製造することが可能となる。
 以上説明したような、本発明に係るIII族窒化物半導体発光素子の製造方法によれば、基板11の主面11a上に単結晶の下地層(III族窒化物半導体層)3を形成するエピタキシャル工程と、下地層3上にn型半導体層4、発光層5及びp型半導体層6を順次積層して半導体層20を形成する半導体層形成工程と、p型半導体層6上に透光性電極7を形成する透光性電極形成工程とが備えられ、透光性電極形成工程は、p型半導体層6上の少なくとも一部に絶縁層15を形成した後、p型半導体層6上に絶縁層15を覆うように透光性電極7を形成し、透光性電極形成工程の後、透光性電極7の表面7aにおいて、p型半導体層6上に形成された絶縁層15の上方の位置Aに正極ボンディングパッド8を形成する正極形成工程が備えられており、半導体層形成工程は、n型半導体層4のシート抵抗Rs2が透光性電極7のシート抵抗Rs1よりも低くなるようにn型半導体層4を形成する方法なので、上述したような、発光効率及び光取り出し効率に優れ、高い外部量子効率を備えるとともに、優れた電気的特性を備える発光素子1を製造することができる。
[ランプ]
本発明のランプは、本発明のIII族窒化物半導体発光素子が用いられてなるものである。
本発明のランプとしては、例えば、本発明のIII族窒化物半導体発光素子と蛍光体とを組み合わせてなるものを挙げることができる。III族窒化物半導体発光素子と蛍光体とを組み合わせたランプは、当業者周知の手段によって当業者周知の構成とすることができる。また、従来より、III族窒化物半導体発光素子と蛍光体と組み合わせることによって発光色を変える技術が知られており、本発明のランプにおいてもこのような技術を何ら制限されることなく採用することが可能である。
 図6は、本発明に係るIII族窒化物半導体発光素子を用いて構成したランプの一例を模式的に示した概略図である。図5に示すランプ80は、砲弾型のものであり、図1及び図2に示す発光素子1が用いられている。図6に示すように、発光素子1の正極ボンディングパッド8がワイヤー83で2本のフレーム81、82の内の一方(図6ではフレーム81)に接着され、発光素子1の負極ボンディングパッド9がワイヤー84で他方のフレーム82に接合されることにより、発光素子1が実装されている。また、発光素子1の周辺は、透明な樹脂からなるモールド85で封止されている。
本発明のランプは、本発明の発光素子1が用いられてなるものであるので、優れた発光特性を備えたものとなる。
なお、本発明のランプは、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等いかなる用途にも用いることができる。
次に、本発明のIII族窒化物半導体発光素子及びその製造方法、並びにランプに関し、実施例及び比較例を示してより詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
[実施例1]
 本実施例においては、以下に説明するような手順により、発光素子のサンプルを作製した(図1~図4、図7等を参照)。
まず、サファイア基板の(0001)C面からなる主面11aを有する基板11を準備した。ここで、本実施例においては、基板11として、主面11a上に、図示略の複数の凸部が形成されているものを用いた(図3、4において主面110上に形成された凸部112を参照)。また、本実施例では、主面11aに形成された凸部の基部幅dが1.3μm、高さhが0.7μm、間隔dが0.7μmとされた基板を用いた。
そして、基板11の主面11a上に、RFスパッタ法を用いて単結晶構造を有するAlNからなる厚さ50nmバッファ層2を形成した。この際、スパッタ成膜装置としては、高周波式の電源を備え、ターゲット内でマグネットの位置を動かすことが可能な機構を有するものを使用した。
 このようにして得られたバッファ層2上に、以下に示す減圧MOCVD法を用いてIII族窒化物半導体からなる下地層3を形成した(エピタキシャル工程)。
まず、スパッタ成膜装置から取り出した、バッファ層2が形成された基板11を、MOCVD法によるIII族窒化物半導体層の成長のための反応炉内に導入した。そして、アンモニアガスの流通を続けながら水素雰囲気中で、基板11の温度を1120℃に昇温させ、トリメチルガリウム(TMG)の気相成長反応炉内への供給を開始し、バッファ層2上にアンドープのGaNを3μmの膜厚までエピタキシャル成長させた。
下地層3の形成に引き続き、同じMOCVD装置によってGaNからなるn型コンタクト層4aの初期層を形成した(半導体層形成工程)。この際、n型コンタクト層4aにはSiをドープした。結晶成長は、Siのドーパント原料としてSiHを流通させた以外は、下地層と同じ条件によって行った。
次いで、上記手順で作製したn型コンタクト層4a上に、同じMOCVD装置を用いて、n型クラッド層4bを積層した。
 また、n型半導体層4の形成時、Siドープ量を適宜調整することにより、そのシート抵抗を下記表1に示す範囲で適宜調整した。
 次いで、上記手順で作製したn型クラッド層4b上に、同じMOCVD装置を用いて発光層5を積層した。
本実施例で形成した発光層5は、GaNからなる障壁層5aと、Ga0.85In0.15Nからなる井戸層5bとから構成される多重量子井戸構造を有する。この発光層5の形成にあたっては、SiドープのGaInNとGaNの超格子構造からなるn型クラッド層4b上に、まず、障壁層5aを形成し、この障壁層5a上に、Ga0.85In0.15Nからなる井戸層5bを形成した。このような積層手順を6回繰り返した後、6番目に積層した井戸層5b上に、7番目の障壁層5aを形成し、多重量子井戸構造を有する発光層5の両側に障壁層5aを配した構造とした。
以上の手順にて、多重量子井戸構造の発光層5を形成した。
上述の各工程に引き続き、同じMOCVD装置を用いて、4層のノンドープのAl0.06Ga0.94Nと3層のMgをドープしたGaNよりなる超格子構造を持つp型クラッド層6aを成膜した。そして、さらにその上に、膜厚が200nmのMgドープGaNからなるp型コンタクト層6bを成膜し、p型半導体層6とした。
このようにして、下地層3上に、n型半導体層4、発光層5及びp型半導体層pの各層をこの順で積層し、半導体層20を形成した。
 次いで、上記手順で得られたウェーハを用いて、以下に示す手順で、半導体発光素子の一種である発光ダイオード(LED)を作製した(図1及び図2を参照)。
 まず、p型半導体層6上の1箇所に、公知のスパッタ法を用いて、SiOからなる絶縁層15を形成した。この際、絶縁層15を200nmの膜厚で形成するとともに、直径が100μmの円形状とした。
 次いで、公知のフォトリソグラフィー技術を用いて、絶縁層15を覆うように、p型半導体層6上にIZO材料からなる層を成膜することにより、透光性電極7を形成した(透光性電極形成工程)。この際、膜厚を250nmとするとともに、窒素雰囲気下でアニールを施すことにより、透光性電極7のシート抵抗を、下記表1に示す数値で適宜調整した。
 次いで、公知のフォトリソグラフィー技術によって、透光性電極7の表面7aにおいて、その下層の絶縁層15に対応する位置に、Ti、Al及びAuを順に積層することにより、3層構造の正極ボンディングパッド8を形成した(正極形成工程)。この際、正極ボンディングパッド8を、直径が90μmの円形状として形成した。
 そして、半導体層20及び透光性正極7の一部にドライエッチングを施して除去することにより、n型コンタクト層4aが露出した露出領域を設けた後、この上にNi、Al、Ti及びAuの各層を順次積層することにより、図1及び図2に示すような負極ボンディングパッド9を形成した。また、この際、ウェーハの平面視における正極ボンディングパッド8と負極ボンディングパッド9の中心間距離を440μmとした。
 次いで、各電極が形成されたウェーハの基板11の裏面側を研削及び研磨してミラー状の面とした後、このウェーハを240μm(チップ幅寸法W)×600μm(電極離間方向寸法L)角の長方形のチップに切断してLED(発光ダイオード)のチップ(発光素子1)とした。
 そして、このチップを、正極ボンディングパッド8及び負極ボンディングパッド9が上になるようにリードフレーム81上に載置し、金線でリードフレームに結線することによってランプ80(図6参照)を作製した。
 そして、上記方法で作製したランプのp側(正極ボンディングパッド8)及びn側(負極ボンディングパッド9)の電極間に20mAの順方向電流を流した際の発光出力Po(mW)を測定するとともに、この際の駆動電圧(Vf)を測定し、結果を下記表1に示した。
[実施例2、3、比較例1、2]
実施例2、3、並びに比較例1、2においては、絶縁層の有無、透光性電極の膜厚、及び、ウェーハ平面視での正極ボンディングパッドと負極ボンディングパッドの中心間距離を下記表1に示す条件とし、また、各シート抵抗の関係が下記表1に示す関係となるように適宜調整した点を除き、上記実施例1と同様の方法で、240μm×600μm角の長方形とされたIII族窒化物半導体発光素子のチップを作製した。そして、上記同様、このチップを用いてランプを作製した。
そして、上記同様の方法で、ランプのp側(正極ボンディングパッド)及びn側(負極ボンディングパッド)の電極間に20mAの順方向電流を流した際の発光出力Po(mW)並びに駆動電圧(Vf)を測定した。
 上記実施例1~3及び比較例1、2におけるシート抵抗及び透光性電極の膜厚、発光出力(Po)並びに駆動電圧(Vf)の測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例4~6]
実施例4~6においては、透光性電極の膜厚及び各シート抵抗の関係を下記表2に示す条件とし、また、ウェーハ平面視における電極離間方向寸法(L:チップ長さ寸法)及びこれに直交する方向でのチップ幅寸法(W)が下記表2に示す関係となるように適宜調整した点を除き、上記実施例1と同様の方法でIII族窒化物半導体発光素子のチップを作製した。そして、上記同様、このチップを用いてランプを作製した。
そして、上記同様の方法で、ランプのp側(正極ボンディングパッド)及びn側(負極ボンディングパッド)の電極間に30mA、必要に応じて100mAの順方向電流IFを流した際の発光出力Po(mW)を測定した。
上記実施例4~6における発光素子の仕様、並びに、発光出力(Po)の測定結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 表1に示すように、本発明に係る発光素子の構成を備えた実施例1のサンプルは、順方向電流(IF)20mAにおける発光出力(Po)が20.8mWとなり、高い発光出力が得られるとともに、この際の駆動電圧(Vf)も3.15mVと非常に低減されたものとなり、優れた電気的特性を備えていることが明らかとなった。また、n型半導体層4のシート抵抗Rs2が透光性電極7のシート抵抗Rs1よりも低く調整された実施例2、3の各々のサンプルにおいても、何れも発光出力が19.6mW以上と高い発光出力を備えていることが確認できた。
また、n型半導体層のシート抵抗が透光性電極のシート抵抗よりも低い実施例1~3は、下記比較例1、2の発光素子に比べて、n側の負極ボンディングパッド付近での発光が低減され、発光強度の高い部分の面積が大きくなっていることが確認できた。
 これに対して、n型半導体層のシート抵抗が透光性電極のシート抵抗よりも高く、本発明で規定する関係を満たしていない比較例1、2の各サンプルは、発光出力が18.6~18.9mWであり、上記各実施例のサンプルに比べて低出力となっている。特に、絶縁層が設けられていない比較例1のサンプルは、発光出力が18.6mWと最も低出力となっている。
比較例1、2のサンプルは、n型半導体層のシート抵抗が透光性電極のシート抵抗よりも高く、また、比較例1においては絶縁層が設けられていない構成として作製されている。このため、比較例1、2のサンプルは、主として、n側である負極ボンディングパッドに対応する位置の半導体層が発光したため、発光強度の高い部分の面積が小さくなり、光取り出し率が低下したものと考えられる。
 また、表2に示す実施例4~6の結果は、ウェーハ平面視での電極離間方向寸法(L)及びチップ幅寸法(W)、並びに、正極ボンディングパッドと負極ボンディングパッドの電極中心間距離を適宜変化させた例である。
例えば、実施例4は、チップサイズをL=550μm、W=280μmとし、横縦比=2.0とした例であるが、順方向電流(IF)を30mAとした際の発光出力が31.5mWと高出力となっている。
また、n型半導体層のシート抵抗Rs2、透光性電極のシート抵抗Rs1を実施例4と同一としたうえで、平面視寸法を変化させた実施例5、6では、発光出力が31.8mW、28.1mWに変化していることがわかる。
このように、表2に示す実施例4~6の結果より、特に、チップサイズ(W×L)を280×550μm(横縦比=2.0)とした際、他のチップ形状に比べ、順方向電流(IF)が30mA~100mAの範囲である場合において、高い発光出力と低い駆動電圧を示した。
即ち、本発明では、n型半導体層のシート抵抗を透光性電極のシート抵抗よりも低くすることで上記効果が得られ、さらに好ましくは、チップ幅寸法W:チップ長さ寸法Lを、1:1(L/W=1)~1:2.7(L/W=2.7)の範囲の比とし、正方形状チップ及び長尺形状チップに構成することで、順方向電流IFが30~100mAの条件において、特に効果的に発光効率が向上することがわかる。
 上記実施例の結果により、本発明のIII族窒化物半導体発光素子が、電極直下における電流集中が抑制されて発光効率に優れるとともに、電極による光の吸収や多重反射による損失が抑制されて光取り出し効率に優れ、高い発光強度及び電気的特性を備えていることが明らかである。
1…III族窒化物半導体発光素子(発光素子)、11、100…基板、11a、110…主面、4…n型半導体層、5…発光層、6…p型半導体層、7…透光性電極、7a…表面(透光性電極)、8…正極ボンディングパッド、15…絶縁層、20…半導体層、80…ランプ、A…位置(透光性電極の表面において絶縁層に対応する位置)、Rs1…シート抵抗(透光性電極)、Rs2…シート抵抗(n型半導体層

Claims (11)

  1. 基板上に形成された単結晶のIII族窒化物半導体層上に、n型半導体層、発光層及びp型半導体層が順次積層された半導体層が形成されており、前記p型半導体層上に透光性電極が形成されてなるIII族窒化物半導体発光素子であって、
    前記p型半導体層上の少なくとも一部に絶縁層が備えられるとともに、前記透光性電極が前記絶縁層を覆って形成されており、
    前記透光性電極の表面において、前記p型半導体層上に備えられた前記絶縁層の上方に正極ボンディングパッドが設けられており、
    前記n型半導体層のシート抵抗が、前記透光性電極のシート抵抗よりも低いことを特徴とするIII族窒化物半導体発光素子。
  2.  前記n型半導体層のシート抵抗が15Ω/□以下であり、前記透光性電極のシート抵抗が30Ω/□以下であることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。
  3.  前記透光性電極の表面の少なくとも一部が凹凸形状とされていることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。
  4.  前記透光性電極が、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)、酸化インジウムガリウム(IGO:Indium Gallium Oxide)、酸化インジウムセリウム(ICO:Indium Cerium Oxide)及び導電性酸化チタン(TiO)からなる群から選ばれる少なくとも1種が用いられてなることを特徴とする請求項1に記載のIII族窒化物半導体発光素子。
  5.  前記絶縁層が、酸化シリコン(SiO)からなることを特徴とする請求項1~請求項4の何れか1項に記載のIII族窒化物半導体発光素子。
  6. 基板上に単結晶のIII族窒化物半導体層を形成するエピタキシャル工程と、前記III族窒化物半導体層上にn型半導体層、発光層及びp型半導体層を順次積層して半導体層を形成する半導体層形成工程と、前記p型半導体層上に透光性電極を形成する透光性電極形成工程とが備えられてなるIII族窒化物半導体発光素子の製造方法であって、
    前記透光性電極形成工程は、前記p型半導体層上の少なくとも一部に絶縁層を形成した後、前記p型半導体層上に前記絶縁層を覆うように前記透光性電極を形成し、
    前記透光性電極形成工程の後、前記透光性電極の表面において、前記p型半導体層上に形成された前記絶縁層の上方に正極ボンディングパッドを形成する正極形成工程が備えられており、
    前記半導体層形成工程は、前記n型半導体層のシート抵抗が前記透光性電極のシート抵抗よりも低くなるように前記n型半導体層を形成することを特徴とするIII族窒化物半導体発光素子の製造方法。
  7.  前記半導体層形成工程は、前記n型半導体層を15Ω/□以下のシート抵抗となるように形成し、前記透光性電極形成工程は、前記透光性電極を30Ω/□以下のシート抵抗となるように形成することを特徴とする請求項6に記載のIII族窒化物半導体発光素子の製造方法。
  8. 前記透光性電極形成工程は、前記透光性電極の表面の少なくとも一部に凹凸形状を形成することを特徴とする請求項6に記載のIII族窒化物半導体発光素子の製造方法。
  9.  前記透光性電極形成工程は、前記透光性電極を形成する材料として、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)、酸化インジウムガリウム(IGO:Indium Gallium Oxide)、酸化インジウムセリウム(ICO:Indium Cerium Oxide)及び導電性酸化チタン(TiO)からなる群から選ばれる少なくとも1種を用いることを特徴とする請求項6に記載のIII族窒化物半導体発光素子の製造方法。
  10. 前記透光性電極形成工程は、前記絶縁層を形成する材料として酸化シリコン(SiO)を用いることを特徴とする請求項6に記載のIII族窒化物半導体発光素子の製造方法。
  11. 請求項1~請求項5の何れか1項に記載のIII族窒化物半導体発光素子が用いられてなることを特徴とするランプ。
PCT/JP2010/001567 2009-03-06 2010-03-05 Iii族窒化物半導体発光素子及びその製造方法、並びにランプ WO2010100949A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/255,037 US8502254B2 (en) 2009-03-06 2010-03-05 Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
KR1020117021390A KR101324442B1 (ko) 2009-03-06 2010-03-05 Ⅰⅰⅰ족 질화물 반도체 발광 소자 및 그의 제조 방법, 및 램프

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009054204 2009-03-06
JP2009-054204 2009-03-06
JP2010046812A JP2010232649A (ja) 2009-03-06 2010-03-03 Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2010-046812 2010-03-03

Publications (1)

Publication Number Publication Date
WO2010100949A1 true WO2010100949A1 (ja) 2010-09-10

Family

ID=42709515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001567 WO2010100949A1 (ja) 2009-03-06 2010-03-05 Iii族窒化物半導体発光素子及びその製造方法、並びにランプ

Country Status (5)

Country Link
US (1) US8502254B2 (ja)
JP (1) JP2010232649A (ja)
KR (1) KR101324442B1 (ja)
TW (1) TWI591851B (ja)
WO (1) WO2010100949A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120248490A1 (en) * 2011-03-31 2012-10-04 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and production method thereof
US20120286286A1 (en) * 2011-05-13 2012-11-15 Jung Sukkoo Non-polar nitride-based light emitting device and method for fabricating the same
EP2555255A3 (en) * 2011-08-01 2013-11-20 Lextar Electronics Corp. Light emitting diode structure and manufacturing method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175183B1 (ko) * 2011-08-08 2012-08-17 일진머티리얼즈 주식회사 전류 확산 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
JP5879225B2 (ja) * 2011-08-22 2016-03-08 住友化学株式会社 窒化物半導体テンプレート及び発光ダイオード
CN103107257B (zh) * 2011-11-10 2015-09-09 展晶科技(深圳)有限公司 Led磊晶结构及制程
JP2013122950A (ja) * 2011-12-09 2013-06-20 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
JP2013145867A (ja) * 2011-12-15 2013-07-25 Hitachi Cable Ltd 窒化物半導体テンプレート及び発光ダイオード
CN102646769B (zh) * 2012-03-30 2015-08-05 达亮电子(苏州)有限公司 发光二极管组件、发光二极管封装结构及其制造方法
TWI502777B (zh) * 2012-08-06 2015-10-01 Univ Nat Chiao Tung 半導體元件及其製作方法
TW201409745A (zh) * 2012-08-20 2014-03-01 Procrystal Technology Company Ltd 高光取出率led
US9280240B2 (en) * 2012-11-14 2016-03-08 Synaptics Incorporated System and method for finite element imaging sensor devices
KR102066621B1 (ko) * 2013-08-02 2020-01-15 엘지이노텍 주식회사 발광 소자
JP6771065B2 (ja) * 2014-01-20 2020-10-21 ローム株式会社 発光素子および発光素子パッケージ
US10263139B2 (en) * 2014-07-24 2019-04-16 Xiamen Sanan Optoelectronics Technology Co., Ltd. Fabrication method of nitride light emitting diodes
KR20160017905A (ko) 2014-08-07 2016-02-17 엘지이노텍 주식회사 발광소자 및 조명시스템
KR102335105B1 (ko) 2014-11-14 2021-12-06 삼성전자 주식회사 발광 소자 및 그의 제조 방법
JP2016115920A (ja) * 2014-12-15 2016-06-23 豊田合成株式会社 発光素子
US9508900B2 (en) 2014-12-15 2016-11-29 Toyoda Gosei, Co., Ltd. Light-emitting device
TWI577046B (zh) * 2014-12-23 2017-04-01 錼創科技股份有限公司 半導體發光元件及其製作方法
US9741717B1 (en) * 2016-10-10 2017-08-22 International Business Machines Corporation FinFETs with controllable and adjustable channel doping
CN110010733B (zh) * 2019-03-25 2021-01-15 大连德豪光电科技有限公司 发光二极管芯片的制备方法及发光二极管芯片
US10971650B2 (en) * 2019-07-29 2021-04-06 Lextar Electronics Corporation Light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250769A (ja) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd 半導体光素子
JPH09129921A (ja) * 1995-10-27 1997-05-16 Showa Denko Kk 半導体発光素子
JP2002016288A (ja) * 2000-06-27 2002-01-18 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2006128227A (ja) * 2004-10-26 2006-05-18 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
JP2007073789A (ja) * 2005-09-08 2007-03-22 Showa Denko Kk 半導体発光素子用電極
JP2007103951A (ja) * 2005-10-07 2007-04-19 Samsung Electro Mech Co Ltd 窒化物系半導体発光素子及びその製造方法
JP2008010840A (ja) * 2006-05-29 2008-01-17 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2008147459A (ja) * 2006-12-11 2008-06-26 Showa Denko Kk 化合物半導体発光素子及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130730B2 (ja) 2007-02-01 2013-01-30 日亜化学工業株式会社 半導体発光素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250769A (ja) * 1995-03-13 1996-09-27 Toyoda Gosei Co Ltd 半導体光素子
JPH09129921A (ja) * 1995-10-27 1997-05-16 Showa Denko Kk 半導体発光素子
JP2002016288A (ja) * 2000-06-27 2002-01-18 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2006128227A (ja) * 2004-10-26 2006-05-18 Mitsubishi Cable Ind Ltd 窒化物半導体発光素子
JP2007073789A (ja) * 2005-09-08 2007-03-22 Showa Denko Kk 半導体発光素子用電極
JP2007103951A (ja) * 2005-10-07 2007-04-19 Samsung Electro Mech Co Ltd 窒化物系半導体発光素子及びその製造方法
JP2008010840A (ja) * 2006-05-29 2008-01-17 Nichia Chem Ind Ltd 窒化物半導体発光素子
JP2008147459A (ja) * 2006-12-11 2008-06-26 Showa Denko Kk 化合物半導体発光素子及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120248490A1 (en) * 2011-03-31 2012-10-04 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and production method thereof
US8829559B2 (en) * 2011-03-31 2014-09-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and production method thereof
US20120286286A1 (en) * 2011-05-13 2012-11-15 Jung Sukkoo Non-polar nitride-based light emitting device and method for fabricating the same
US9184340B2 (en) * 2011-05-13 2015-11-10 Lg Electronics Inc. Non-polar nitride-based light emitting device and method for fabricating the same
EP2555255A3 (en) * 2011-08-01 2013-11-20 Lextar Electronics Corp. Light emitting diode structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010232649A (ja) 2010-10-14
KR101324442B1 (ko) 2013-10-31
US8502254B2 (en) 2013-08-06
US20120001220A1 (en) 2012-01-05
TWI591851B (zh) 2017-07-11
KR20110134881A (ko) 2011-12-15
TW201044637A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2010100949A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
US8421107B2 (en) Group-III nitride semiconductor light emitting device and production method thereof, and lamp
JP5068475B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法及び窒化ガリウム系化合物半導体発光素子、並びにランプ
JP5201566B2 (ja) 化合物半導体発光素子及びその製造方法
KR101201035B1 (ko) 반도체 발광 소자 및 그 제조 방법, 램프
JP5310604B2 (ja) 半導体発光素子の製造方法および半導体発光素子、ランプ、電子機器、機械装置
WO2009093683A1 (ja) 化合物半導体発光素子及びその製造方法、化合物半導体発光素子用導電型透光性電極、ランプ、電子機器並びに機械装置
JP5504618B2 (ja) Iii族窒化物半導体発光素子及びその製造方法
WO2009142265A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2012009695A (ja) 半導体発光素子の製造方法、半導体発光素子、電子機器及び機械装置
WO2010100900A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
WO2007029859A1 (en) Electrode for semiconductor light emitting device
JP5353821B2 (ja) 半導体発光素子と、その製造方法およびランプ、電子機器、機械装置
JP2012084667A (ja) 化合物半導体発光素子及びその製造方法、ランプ、電子機器並びに機械装置
JP2012248765A (ja) Iii族窒化物半導体発光素子の製造方法
JP2010010444A (ja) 半導体発光素子、ランプ及び半導体発光素子の製造方法
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
JP5246081B2 (ja) 半導体発光素子の製造方法
JP5648446B2 (ja) 半導体発光素子の製造方法
KR101919109B1 (ko) 자외선 발광 소자 및 자외선 발광 소자 패키지
JP5636693B2 (ja) 半導体素子の製造方法
JP2009253056A (ja) Iii族窒化物半導体発光素子及びランプ
JP2011138893A (ja) 半導体発光素子の製造方法および半導体発光素子、ランプ、電子機器、機械装置
KR102014172B1 (ko) 자외선 발광 소자 및 발광 소자 패키지
JP5549546B2 (ja) 半導体発光素子の製造方法およびランプ、電子機器、機械装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13255037

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117021390

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10748548

Country of ref document: EP

Kind code of ref document: A1